
Journal de Th�eorie des Nombresde Bordeaux 8 (1996), 283{313On the computation of quadratic 2-class groupspar Wieb BOSMA et Peter STEVENHAGENR�esum�e. Nous d�ecrivons un algorithme dû �a Gauss, Shanks et Lagariasqui �etant donn�e un entier D � 0; 1 mod 4 non carr�e et la factorisation deD, d�etermine la structure du 2-sous-groupe de Sylow du groupe des classesde l'ordre quadratique de d�eterminant D ; la complexit�e de cet algorithmeest en temps polynomial probabiliste en log jDj.Abstract. We describe an algorithm due to Gauss, Shanks and Lagariasthat, given a non-square integer D � 0; 1 mod 4 and the factorization of D,computes the structure of the 2-Sylow subgroup of the class group of thequadratic order of discriminant D in random polynomial time in log jDj.1. Introduction.Let D � 0; 1 mod 4 be a non-square integer, and denote by Cl(D) the strictclass group of the quadratic order O = Z[(D+pD)=2] of discriminant D.The group Cl(D) may be identi�ed with the class group of primitive integralbinary quadratic forms of discriminant D, and this yields a description thatis very useful for explicit computations. There do exist algorithms thatcompute Cl(D) in a time that is subexponential in the length logD of theinput; see [4] and [6, 8] for the respective cases D > 0 and D < 0. However,these algorithms are far from polynomial-time, and it is unlikely that theywill be used in the near future for discriminants D having more than, say,50 decimal digits.The algorithm in this paper only computes the 2-Sylow subgroup C(D) =Cl(D)2 of the class group. It runs in random polynomial time [9, 10] if thefactorization of D is given as part of the input, and it handles most 50-digit discriminants in a matter of seconds. In contrast to the situationfor algorithms that compute the full class group Cl(D), it turns out thatnot only the size of D, but also the number of prime factors of D and theClass. Math. : Primary 11Y40, 11R11; Secondary 11E16, 11E20.Mots-cl�es : Quadratic 2-class groups, binary and ternary quadratic forms.Manuscrit re�cu le 29 janvier 1996



284 Wieb Bosma et Peter Stevenhagen`depth' of the resulting class group greatly inuence the running time. Forinstance, consider the 501-digit discriminantD = (10100+949)(10100+1293)(10100+2809)(10100+6637)(10100+22261);which is the product of �ve primes exceeding 10100 that are 1 mod 4 andsquares modulo each other. It is chosen in such a way that C(D) �= C34�C128has high 4-rank. It takes less than a second to �nd the elementary abelian2-groups C(173 �D) �= C52 �= C(�43 �D). Now consider the sample of 2-classgroupsC(�8 �D) �= C(61 �D) �= C2 � C2 � C2 � C2 � C4 (30 and 81 sec)C(�311 �D) �= C(137 �D) �= C2 � C4 � C4 � C4 � C4 (127 and 183 sec)C(�359 �D) �= C(1129 �D) �= C4 � C4 � C4 � C4 � C8 (220 and 385 sec)C(�2711 �D) �= C(433 �D) �= C2 � C4 � C4 � C4 � C64 (309 and 596 sec)C256C(�1663 �D) �= C2 � C4 � C4 � C4 � C4096 (576 sec)with approximate timings on a Sun MP670 workstation indicated in brack-ets. We see that the algorithm takes more time if the resulting 2-classgroup is `further' from elementary 2-abelian, and that the real quadraticcase D > 0 appears to be somewhat harder than the imaginary quadraticcase. We will give a complete quantitative explanation for both obser-vations. Note that computation of the full class group for any of thesediscriminants is currently completely unfeasible.The basis of our algorithm is a method to solve the duplication equation2x = c in quadratic class groups that is due to Gauss [7, section 286]. Ithas been implemented and used to compute various imaginary quadratic2-class groups C(D) by Shanks [11]. All of Shanks's examples were cyclicor almost cyclic, and he did not give an algorithm to handle general D.Doing so is essentially a matter of linear algebra, as was shown by Lagarias[10], who analyzed the algorithm from the point of view of its computa-tional complexity but referred to [11] for a practical implementation. Theredoes not seem to be a complete description of the mathematical content ofthe algorithm in the existing literature, and this paper intends to �ll thisgap. It turns out that a careful description of the mathematics leads tosomething which is not too far from an actual implementation in a highlevel programming language like that of Magma[1]. Moreover, it naturallyyields an algorithm that includes the improvements of Shanks regarding theGaussian solution of the duplication equation and avoids the unnecessarycoprimality assumptions on the �rst coe�cients of the quadratic forms in[10].



On the computation of quadratic 2-class groups 285The algorithm has been successfully exploited [2] in the veri�cation of theheuristics of the second author [12, 13] regarding the solvability in integersof the negative Pell equation x2 � dy2 = �1. This veri�cation involvedthe computation of C(D) for several millions of large, highly non-cyclic realquadratic 2-class groups.The description of the actual algorithm is contained in section 3 of thispaper. It is preceded by a summary of the basic results on binary quadraticforms and followed by a worked example illustrating some technical pointsof the algorithm. The algorithm itself is essentially a matter of linearalgebra once one knows how to generate the 2-torsion subgroup of Cl(D)and how to solve the equation 2x = c for elements c in the principal genus2Cl(D). The `division-by-2-algorithm' used in solving 2x = c is based onthe reduction theory of ternary quadratic forms. As this reduction theoryis considerably less well known than the corresponding theory for binaryquadratic forms, a concise description of it has been included as section 5. Itis used in section 6, which deals with the solution of the duplication equationthat forms the backbone of the algorithm. A �nal section 7 comments onthe performance of the algorithm.We thank Andreas Meyer for detecting a number of typos in an earlierversion of this paper.2. Quadratic class groups.Let D � 0; 1 mod 4 be an integer that is not a square. The class groupCl(D) of discriminant D is de�ned to be the quotient of the group of in-vertible ideals of the quadratic order OD = Z[(D+pD)=2] by the subgroupof principal ideals having a totally positive generator. Note that the posi-tivity requirement is automatically ful�lled for negative D, and that Cl(D)is the (strict) class group of the quadratic �eld Q(pD) if D is fundamental,i.e., if D is the discriminant of the �eld Q(pD).The relative ease with which one can perform computations in Cl(D)comes from an alternative description in terms of binary quadratic formswhich is due to Gauss. Consider the set FD of primitive integral binaryquadratic forms of discriminant D, i.e., formsQ = (a; b; c) = ax2+bxy+cy2in two variables x, y with coe�cients a; b; c 2 Z that satisfy gcd(a; b; c) = 1and b2 � 4ac = D. For D < 0, we require in addition that a is positive.The group SL2(Z) of integral 2�2-matrices of determinant 1 has a naturalright action on FD de�ned by QS(x; y) = Q(sx + ty; ux + vy) for S =�s tu v� 2 SL2(Z), and the orbit space FD=SL2(Z) maps bijectively to the



286 Wieb Bosma et Peter Stevenhagengroup Cl(D) under the map[ax2 + bxy + cy2] 7�! [(Z � 2a+ Z � (b+pD)) � pD(1�sign(a))=2]:The power of pD in the map above is only there to `preserve orientation'and vanishes for negative D. By transport of structure, FD=SL2(Z) be-comes a group that we identify with Cl(D). Accordingly, we speak of theclass rather than of the orbit of a form in Cl(D). In the case that D is asquare, which we have excluded so far, the orbit space FD=SL2(Z) can bemade into a group by Gauss's original method that we will discuss laterin this section. Following Gauss [7, end of section 249], we will write thegroup operation in Cl(D) additively . This appears to be the most conve-nient notation for computational purposes, as most computations in classgroups use techniques coming from linear algebra, and it is in line with thecommon usage to treat divisor class groups as additive objects.As the forms (a; b; c) and (a; b+ 2ka; c+ kb+ k2a) are in the same classfor all k 2 Z, every class contains a form (a; b; c) with jbj � jaj. It is nothard to show [3, propositions 5.3.4 and 5.6.3] that every class contains aquadratic form (a; b; c) with(2.1) jaj �pjDj=3;so it follows that Cl(D) is �nite for all D, square or not. Given a formin FD, one can e�ciently compute [9] a unimodular transformation thatreduces this form to one of the �nitely many forms (a; b; c) satisfying jbj �jaj � pjDj=3. However, it is not in general possible to decide e�cientlywhether two quadratic forms are in the same class in Cl(D). This is aserious di�culty that prevents us from working directly in the class groupitself. Instead, one has a �nite set of reduced forms �D that maps surjec-tively to the class group Cl(D), and one works with these reduced formsas representatives of the classes of Cl(D). For D < 0, an appropriate def-inition of reduced forms ensures that the map �D ! Cl(D) is a bijectionand the situation is perfectly satisfactory. For D > 0 however, there areusually many reduced forms mapping to the same class in Cl(D), and inthis case an arbitrary form in FD can be e�ciently reduced to a form in�D, but not to an element of Cl(D). As an example, one can think of theform (�1; 0; d) for d > 0 that represents the unit element in Cl(4d) if andonly if the negative Pell equation x2 � dy2 = �1 is solvable in integers.This example is of fundamental importance in [2].In the case of non-square discriminants D, our map shows that the prin-cipal form (1; 0;�D=4) (for even D) or (1; 1; (1�D)=4) (for odd D) maps



On the computation of quadratic 2-class groups 287to the unit element in Cl(D). The opposite form (a;�b; c) of (a; b; c) isthe inverse of the class of (a; b; c) as it maps to the conjugate ideal classin Cl(D). If we work out how the multiplication of ideals translates intoa composition formula for quadratic forms, we �nd [3, 5.4.6] that the sumof the classes of the primitive quadratic forms (a1; b1; c1) and (a2; b2; c2) inCl(D) contains a form (a3; b3; c3) satisfying(2.2) a3 = a1a2d2 and b3 � b2 + 2a2d (�b1 � b22 � �c2) mod 2a3;where d = gcd(a1; a2; b1 + b22 ) = �a1 + �a2 + � b1 + b22 :It was shown by Dirichlet that the forms can be chosen in such a wayinside their equivalence class that one only needs to perform compositionsfor which d = 1, known as compositions of `concordant forms'. In fact, itsu�ces [5, lemma 3.2] to have a composition of concordant forms (a1; b; c1)and (a2; b; c2) having the same middle coe�cient b that satis�es b2 � D mod4a1a2. In this situation, one has c1 = a2c and c2 = a1c for some integer c,and (2.2) yields an identity(2.3) [(a1; b; c1)] + [(a2; b; c2)] = [(a1a2; b; c)] 2 Cl(D)that is known as Dirichlet composition of forms.Together with the reduction of arbitrary forms to forms in a �nite set�D, the composition formulae provide us with a computational model forthe class group. More precisely, there is for each D a �nite set �D ofreduced forms of discriminant D that is usually too large to be enumerated.Given a form F 2 FD, one can e�ciently �nd some form F red 2 �D thatis in the same class. Given F1; F2 2 �D, the composition formula (2.2)makes it possible to compute e�ciently a reduced form F3 = F1 �F2 2 �Dwhose class in Cl(D) is the sum of the classes of F1 and F2. The oppositeof a reduced form is trivially computed, so we can perform the `groupoperations' of Cl(D) on the level of �D. However, since equivalence cannotbe tested e�ciently when D is large and positive, passing from �D to Cl(D)is an entirely non-trivial matter. It is exactly this complication which ledShanks [11, p. 849] to believe that one cannot always decide e�cientlywhether certain 2-torsion classes in Cl(D) are actually trivial. We will comeback to this problem, which will turn out ot be non-existent, in section 3.The ambiguity between forms and their classes will however necessitate acareful formulation of our algorithm in section 3, where we compute the2-primary part of Cl(D) while working with representing forms.As we will be interested in duplication in the class group in later sections,we mention the following important example of concordant composition.



288 Wieb Bosma et Peter Stevenhagen2.4. Duplication lemma. Let (a; b; c) be a form of discriminant D withgcd(a; b) = 1. If �; � 2 Z satisfy �a + �b = 1, then we have 2[(a; b; c)] =[(a2; b � 2�ac; c0)] 2 Cl(D) for some integer c0. In particular, we have2[(a; b; c)] = [(a2; b; c=a)] if a divides c. �This lemma can be used in the opposite direction to solve the equation2[P ] = [Q] for a form Q that represents a square k2 coprime to 2D. Indeed,suppose we have Q(u; v) = k2 for certain u; v 2 Z, and assume without lossof generality that u and v are coprime. Transforming Q by a unimodularmatrix S = �u sv t�, we obtain an equivalent form QS satisfying QS(1; 0) = k2,so we have QS = (k2; l; m) for certain l;m 2 Z. The form (k; l; km) ofdiscriminant l2 � 4k2m = D is primitive since gcd(k; l) = gcd(k; 2D) = 1,and the duplication lemma shows that we have 2[(k; l; km)] = [(k2; l; m)] =[Q]. however that (k; l; km) is primitive if k is odd andIn section 6, we will employ the original description of Gauss of thegroup structure on Cl(D), which is quite di�erent from the one we havegiven above and also works for square discriminants. In this description, aform Q = (a3; b3; c3) of discriminant D is the composition of two primitivequadratic forms (a1; b1; c1) and (a2; b2; c2) of discriminant D if there existbilinear relationsx3 = s1x1x2 + s2x1y2 + s3x2y1 + s4x2y2y3 = t1x1x2 + t2x1y2 + t3x2y1 + t4x2y2over Z that yield the identity(a1x21 + b1x1y1 + c1y21) � (a2x22 + b2x2y2 + c2y22) == Q(x3; y3) = a3x23 + b3x3y3 + c3y23(2.5)and satisfy an `orientability condition' that distinguishes the forms (a1; b1; c1)and (a2; b2; c2) in (2.5) from their opposite forms (a1;�b1; c1) and (a2;�b2; c2).Write �ij = ���� si sjti tj ����for the subdeterminants of our bilinear relations. An elementary computa-tion [5, exercise 3.1] shows that if (2.5) holds for a formQ of discriminant D,then we necessarily have �12 = �a1 and �13 = �a2. The orientability con-dition is that the +-sign holds in both cases. Note that the preceding de�-nition for the composition of forms is indeed de�ned on SL2(Z)-equivalenceclasses.



On the computation of quadratic 2-class groups 289If Q is a composition as speci�ed above, the determinants �ij satisfy(2.6) a1 = �12 b1 = �14 � �23 c1 = �34a2 = �13 b2 = �14 + �23 c2 = �24and the coe�cients of Q area3 = t2t3 � t1t4b3 = s1t4 + s4t1 � s2t3 � s3t2(2.7) c3 = s2s3 � s1s4:Conversely, given primitive forms Q1 = (a1; b1; c1) and Q2 = (a2; b2; c2)and integers si; ti for which (2.6) and (2.7) hold, we have b21� 4a1c1 = b22�4a2c2 = D for some discriminant D and [(a3; b3; c3)] = [Q1]+[Q2] 2 Cl(D).For non-square D, Gauss's de�nition yields the same group structure onCl(D) as the Dirichlet composition (2.3). This is immediate from the ob-servation that the identities (2.6) and (2.7) are satis�ed for the forms in(2.3) if one takes the bilinear relations equal to� s1 s2 s3 s4t1 t2 t3 t4 � = � 1 0 0 �c0 a1 a2 b � :In the particular case where we want to duplicate a form in Cl(D), theidentities (2.6) suggest that we should take s2 = s3 and t2 = t3. The resultwill be used in section 6 to prove the correctness of the algorithm to solvethe duplication equation 2x = c 2 2Cl(D).2.8. Lemma. Let F = (a; b; c) be a primitive quadratic form of discrimi-nant D, and suppose we are given integers si, ti for i = 1; 2; 3 satisfyingthe identitiesa = s1t2 � t1s2 b = s1t3 � t1s3 c = s2t3 � t2s3:Then the class 2[F ] 2 Cl(D) contains the form(t22 � t1t3 ; s1t3 + s3t1 � 2s2t2 ; s22 � s1s3): �If a and b are coprime in this lemma, we can �nd � and � satisfying �a+�b =1 and take � s1 s2 s3t1 t2 t3 � = � 1 �c ��c0 a b �to �nd the identity 2[(a; b; c)] = [(a2; b� 2�ac; �2c2 + �c)] from lemma 2.4.



290 Wieb Bosma et Peter Stevenhagen3. Computing quadratic 2-class groups.Let D � 0; 1 mod 4 be a non-square integer for which we have a completefactorization. We want to compute the strict 2-class group C � Cl of thequadratic order of discriminant D. The computation is essentially a matterof linear algebra over the �eld of 2 elements F2. For this reason, we takethe values of all quadratic characters in this section to lie in F2 rather thanin the multiplicative group h�1i.The factorization of D provides us with the two basic ingredients of ouralgorithm. The �rst is an F2-basis of the character group XD of C=2C =Cl=2Cl, commonly known as the group of genus characters of Cl. Thesecond is a generating set of ambiguous forms, i.e., a set of forms whoseclasses generate the 2-torsion subgroup C[2] = Cl[2] of C � Cl. The classesin Cl of the elements of our set will not in general form an F2-basis for C[2].Let d be the discriminant of the �eld Q(pD). We haveD = f2d for someinteger f � 1 that equals the index of the quadratic order of discriminant Dinside the maximal order in Q(pD).For an odd prime divisor p of D, we write �p : (Z=DZ)� ! F2 for thequadratic character of conductor p and �d = �d�� : (Z=DZ)� ! F2 for thequadratic character corresponding to the �eld Q(pD).The group of �eld characters Xd corresponding to D is the groupXd = hf�pgpjd odd; �diof Dirichlet characters on (Z=DZ)�. Here p ranges over the odd primedivisors of d. If d is odd, the characters �p form a basis of Xd and theirproduct equals �d. If d is even, the product of �d and all characters �p is aquadratic character of 2-power conductor associated to the quadratic �eld ofdiscriminant �4 or �8. This character, which we denote correspondinglyby ��4, �8 or ��8, and the characters �p now form a basis for Xd. Inall cases, the order of Xd equals 2t, with t the number of distinct primedivisors of d. The abelian �eld corresponding to Xd is the genus �eld ofthe quadratic �eld Q(pD). It is the maximal abelian extension of Q(pD)that is unrami�ed at all �nite primes and abelian over Q.The full group XD of genus characters associated to the discriminant Dhas a similar de�nition, but special care is needed to obtain the correctcharacters of 2-power conductor. Writing X0D for the group of charactersgenerated by Xd and the quadratic characters �p for odd prime divisors p



On the computation of quadratic 2-class groups 291of f , we have(3.1)XD = 8>>><>>>: hX0Di if 8jd and f is odd, or if 8 - d and 4 - f ;hX0D; ��4i if 8jd and f is even, or if d is odd and 4jf ;hX0D; �8i if d � 4 mod 8 and 4jf ;hX0D; ��4; �8i if d is odd and 8jf .A basis of XD is obtained by adding to a basis for Xd the characters �pfor the odd prime divisors of f that do not divide d and the characters��4 and �8 as speci�ed in the de�nition above. One �nds that if D has udistinct prime divisors, then XD has dimension u + 1 if D is divisible by32 (and XD contains all quadratic characters of 2-power conductor), u� 1for D � 4 mod 16 (when d is odd and f � 2 mod 4) and u otherwise. Theabelian �eld GD corresponding to XD is the genus �eld of the quadraticorder of discriminant D. It the maximal abelian extension of Q that iscontained in the ring class �eld of conductor f of Q(pD). By class �eldtheory, the Galois group Gal(GD=Q(pD)) is canonically isomorphic toCl=2Cl = C=2C, and it follows that there is a perfect pairing of F2-vectorspaces(3.2) C=2C � XD=h�di �! F2:More explicitly, the value of a character � 2 XD on a class [Q] 2 Cl is thecommon �-value of the integers coprime to D that are represented by Q.One deduces that the value of a character � 2 XD of conductor k on theclass of (a; b; c) in Cl equals(3.3) � ([(a; b; c)]) = � �(a) if gcd(a; k) = 1�(c) if gcd(c; k) = 1:If the conductor k of � is a prime power dividing D, as in the case of the`basis characters' of XD mentioned above, the primitivity of the form im-plies that at least one of these conditions is satis�ed. Our algorithm willonly use such basis characters. For general � 2 XD, one uses its representa-tion on the basis. Alternatively, one can replace a form of discriminant Dby an equivalent form (a; b; c) satisfying gcd(a;D) = 1, cf. [5, ex. 2.18]. Anelement [Q] 2 Cl is in the principal genus 2Cl if and only if all charactersof XD vanish on it, so the genus characters enable us to decide e�cientlywhether an element of Cl is in 2Cl. In section 6, we will prove the following.3.4. Division-by-2-algorithm. Given a form Q 2 FD whose class liesin 2Cl, we can e�ciently �nd a form P 2 FD satisfying 2[P ] = [Q] 2 Cl.



292 Wieb Bosma et Peter StevenhagenThe class of the form P in 3.4 is only determined up to composition withclasses from Cl[2], and all we know is that the form P found by the algo-rithm lies in one of these classes. Even when Q is in the trivial class, thereis no guarantee that P will be in the trivial class.Apart from an explicit description of the character group of C=2C, thefactorization of D also yields generators for the subgroup C[2] of ambiguousideal classes in Cl. This is due to the well known fact that C[2] consistsof classes of invertible OD-ideals I � OD of index dividing D. We cantake classes of ideals of prime power index as generators. If p is an oddprime dividing D, say pk jjD, there is an invertible OD-ideal Ip = Z � pk +Z � (D +pD)=2 of index pk in the order OD. As this ideal is equal to itsconjugate in OD, its class in Cl(D) is a 2-torsion element. It is the class ofthe quadratic formQp = � (pk; pk; (pk �D=pk)=4) if D � 1 mod 4(pk; 0;�D=4pk) if D � 0 mod 4:For D � 0 mod 4, say 2tjjD with t � 2, we have an ambiguous formQ2 = � (2; 2; (4�D)=8) if D � �4 mod 16(2t�2; 0;�D=2t) otherwisethat is the principal form for D � 4 mod 16. If D is divisible by 32, thereis another ambiguous form Q02 = (4; 4; 1� D16)that is needed to complete our generating set of ambiguous forms. Thus, ifwe start with the set of forms fQpgpjD prime, we obtain a generating set S0by leaving out Q2 for D � 4 mod 16 and including Q02 for D � 0 mod 32.If D has u distinct prime divisors, then S0 has u + 1 elements if D isdivisible by 32, it has u � 1 elements for D � 4 mod 16, and u elementsotherwise. This is exactly the F2-dimension of the character group XD,and as the cardinality of C[2] equals #(C=2C) = #XD=h�di, we concludethat there is exactly one non-trivial relation in Cl between the elementsof S0. For negative D, the triviality of the ideal class [(pD)] = [(pd)] 2 Clyields the desired relation in all cases but one (the easy case d = �4). Wecan then form an F2-basis for C[2] from S0 by leaving out an appropriateelement. For D > 0 however, the relation between the ambiguous idealclasses is much more subtle. If the fundamental unit "D 2 OD is of norm�1, the relation is again [("DpD)] = [(pd)] = 0. If "D is of norm +1, the



On the computation of quadratic 2-class groups 293ambiguous ideal class [(1+"D)] = 0 yields the desired relation. The problemis of course that "D is usually too large to be computable in practice. Forthis reason, we have to start our algorithm for D > 0 with a generatingset S0 for C[2], not an F2-basis. This di�erence between the real andthe imaginary case accounts for the slightly larger running times of thealgorithm for positive D. The relation between the generators of C[2] forD > 0 can be obtained as a by-product of the computation of C. Fromthe relation we can determine the sign of the norm of "D without explicitlycomputing "D. This feature of the algorithm is exploited in [2].The computation of C proceeds by the construction of an F2-basis forthe left argument of the character pairing(3.2) C=2C � XD=h�di �! F2:For the right argument XD=h�di we have our basis X of characters of primepower conductor indicated above. The basis B � FD of forms whose classesyield a basis for C=2C will be constructed as a disjoint union of sets Aj(j = 1; 2; : : :) in such a way that the classes of the forms in Bi = Sij=1Ajform a basis for the canonical image of C[2i] in C=2C. The basis A1 forthe image of the 2-torsion subgroup C[2] will be formed from the set S0of ambiguous forms. More generally, we will carry a set Si of 2i+1-torsionforms along at stage i. Roughly speaking, the character pairing is used to`split' the set Si into a set Ai+1 of basis forms and a set of forms that mapto 2C. We divide the latter forms by 2 using our algorithm 3.4 to obtainthe set Si+1 of 2i+2-torsion forms needed at the next level. We continueuntil the union Sj Aj yields a basis for C=2C. We are then done by thefollowing elementary lemma on abelian 2-groups.3.5. Lemma. Let G be a �nite abelian 2-group, X a basis for its group ofquadratic characters, and suppose we have a disjoint union B = SNj=1Ajof �nite sets Aj � G such that the following holds:a. the 2-torsion subgroup G[2] is generated by the elements 2j�1aj withaj 2 Aj and j 2 f1; 2; : : : ; Ng.b. the matrix (�(a))�2X;a2B is a non-singular square matrix.Then B maps to an F2-basis for G=2G, the elements in Aj have exact order2j in G and the natural mapYNj=1(Z=2jZ)Aj s�! Gis an isomorphism of groups.



294 Wieb Bosma et Peter StevenhagenProof. The non-singularity of the character matrix in (b) implies that theelements in B map to a basis for G=2G, so these elements generate thegroup G. As G[2] and G=2G have the same F2-dimension, the elements ofthe form 2j�1aj with aj 2 Aj that occur in (a) necessarily form a basisfor G[2]. In particular, the elements of Aj have exact order 2j . In orderto obtain the required isomorphism for G, we have to show that for anyrelationPb2B kbb = 0 2 G with coe�cients kb 2 Z, we have ord2(kb) � j(b)for all b 2 B. Here j(b) denotes the index j for which b is in Aj . Supposethat, on the contrary, the integer n = maxb2Bfj(b)� ord2(kb)g is positive.Then we can multiply our relation by 2n�1 and write it asPb2B(2n�j(b)kb) � 2j(b)�1b = 0:By de�nition of n, the expressions in brackets are integral and not all even.This implies that we would have a non-trivial relation between the basiselements 2j(b)�1b of G[2]. Contradiction. �Note that the conclusion of the lemma implies that the subsetBi = Sij=1Aj� G maps to a basis of the canonical image of G[2i] in G=2G.We now describe an inductive algorithm that computes sets of formsAj � FD such that the hypotheses of lemma 3.5 apply to their classes inG = C. We noted already that the problem with working with forms is thatwe cannot decide whether two di�erent forms are di�erent as elements of C.However, the forms in the sets Aj that are computed by our algorithm areconstructed in such a way that the quadratic character values of each twoof these forms are distinct. This means that B = SNj=1Aj can indeed byviewed as a subset of G = C, as required by 3.5. Thus, we do not run intothe problem encountered by Shanks [11, p. 849]. The sets of forms Si thatare constructed during the algorithm do not in general map injectively toC. Our algorithm computes more than just a set of forms Aj at stage j.The data it stores after i steps are the following:1. a disjoint union Bi = Sij=1Aj of �nite sets of forms Aj , together witha collection of forms Si such that C[2] is generated by elements of theform 2j�1[aj ] with aj 2 Aj and 2i[s] with s 2 Si.2. a subset Xi � X of characters such that the matrix (�(a))�2Xi;a2Bi isa non-singular square matrix.Initialization. At the initial stage i = 0, we have B0 = X0 = ; and ourset S0 of ambiguous forms that meets the non-empty requirement (1).



On the computation of quadratic 2-class groups 295Induction step. Suppose we have Xi 6= X at stage i. Then the set Bi isnot a set of generators for C, and we proceed to the next stage as follows.Consider the character matrixMi = (�(a))�2X;a2Bi[Si :whose columns X(a) 2 FX2 give the `complete quadratic character' of theforms a 2 Bi [Si. By (2), the elements X(a) for a 2 Bi are independent inFX2 , and we can compose each of the elements of Si with forms from Bi toobtain that all characters in Xi vanish on it. After doing so, we still have(1) for our modi�ed set Si, and the new columns X(s) for s 2 Si span asubspace V � FX2 that is linearly disjoint from the space spanned by thecolumns X(a) with a 2 Bi. We choose Ai+1 � Si such that the columnsX(a) with a 2 Ai+1 form a basis of V , and we pick a set of charactersYi � X such that the matrix (�(a))�2Yi;a2Ai+1 is non-singular. We clearlyhave Yi \Xi = ;, and we set Xi+1 = Xi [ Yi to obtain (2) for stage i+ 1.The remaining forms in Si n Ai+1 are now composed with forms fromAi+1 in such a way that the characters in X nXi also vanish on them. Thenall characters in X vanish on these modi�ed forms, so their classes are in2C. We now apply our division-by-2-algorithm 3.4 to each of the modi�edforms in Si nAi+1, and take the solutions obtained as the set Si+1.If s is in Si, we can by construction write [s] 2 C as a sum of classes[ai+1] with ai+1 2 Ai+1 and 2[si+1] with si+1 2 Si+1. We conclude that thesets f2i[s] : s 2 Sig and f2i[ai+1] : ai+1 2 Ai+1g[f2i+1[si+1] : si+1 2 Si+1ggenerate the same subgroup of C[2], so we have (1) for stage i+ 1 as well.Termination. The algorithm terminates at stage i if we have Xi = X .This is bound to happen as we have Xi = X if and only if C is annihilatedby 2i. To see this, suppose �rst that C is annihilated by 2i. Condition (1)then implies that the elements2j�1aj for j � i generate C[2], so the number#Bi of such elements is at least equal to dim C[2] = #X . It follows from(2) that we have #Xi = #Bi � #X , so Xi = X . Conversely, if we �ndXi = X at stage i, then C is annihilated by 2i as it can be generated by aset Bi of 2i-torsion elements.We conclude that after N steps, with 2N the exponent of C, we havefound a basis B = SNj=1Aj for C that satis�es the conditions of lemma 3.5.This �nishes the description of the algorithm.In the actual implementation of the algorithm, we used a re�nement thatensures that the �nal character matrix (�(a))�2X;a2B becomes lower trian-gular. Instead of taking for Ai+1 some subset of Si whoseX-image spans V ,one alternately picks a character and constructs a form to produce Yi and



296 Wieb Bosma et Peter StevenhagenAi+1, as follows. Let Si be our set of forms, modi�ed such that all charac-ters in Xi vanish on Si, and look at the submatrixM 0i = (�(a))�2XnXi;a2Siof Mi. We set Yi = ; = Ai+1 and do the following until all entries of M 0iequal zero. Pick a form a 2 Si and a character � 2 X � Xi such that�(a) 6= 0, add � to the set Yi and move the form a from Si to Ai+1. Com-pose the remaining forms s 2 Si that have �(a) 6= 0 with a|this yields anew set Si|and continue with the new, smaller matrix M 0i . This process,which is called echelonization, produces a non-singular lower-triangular ma-trix (�(a))�2Yi;a2Ai+1 for the ordering of forms and characters suggestedabove. Moreover, it replaces Si by a set of forms with classes in 2C, andSi+1 is constructed from this set applying 3.4.At the �nal stage i = N of the algorithm, there is no need to apply thedivision-by-2-algorithm 3.4 to compute a set SN of 2N+1-torsion forms. Inthe imaginary case D < 0, this is clear since we can take S0 to be a basisfor C[2] and �nd SN = ;. In the real case D > 0, we have to work withan extra generator in S0. At the �nal stage N , we compute from SN�1 aset AN that completes our basis B and a single form sD 2 2C to whichwe can apply 3.4 to �nd the single element of SN . As [sD] is divisible by2 in a group of exponent 2N , we have 2N�1[sD] = 0. We can, at the costof a little extra administration, carry not only the set Si along at stage i,but also for each s 2 Si the representation of 2i[s] in terms of our original2-torsion generators in S0. This is simply done by keeping track of how theforms in Si+1 are constructed at stage i from the previous set Si. If we doso, the relation 2N�1[sD] = 0 for D > 0 provides us with the dependencybetween the ambiguous forms in S0. If, for some reason, we would haveeven more generators in S0, we could in the same way �nd a complete setof relations between them.Given an element c 2 C, the explicit knowledge of the character pairingwith respect to the basis B for C enables us to write c on the basis B. Fromthe pairing, one computes a sum b0 2 C of elements in B � C that has thesame quadratic character values as c = c0. This yields c0 = b0 + 2c1 forsome class c1 2 C that can be found by 3.4. One inductively computes sumsbi 2 C of elements in B such that ci = bi + 2ci+1 for i = 0; 1; : : : ; N � 1.The desired representation for c is then c =PN�1i=0 2ibi.The number k of divisions by 2 performed by the algorithm to compute Ccan easily be derived from the group structure of C: for any factor (Z=2jZ)in the representation of lemma 3.5 one has to perform j � 1 divisions by 2.However, since for D > 0 there is at any stage in the algorithm one moregenerator than the rank of the group necessitates, the number of divisionsperformed for the maximal j, which equals N , has to be counted twice.



On the computation of quadratic 2-class groups 297Writing h = #C for the 2-class number of D and r 2 fu� 2; u� 1; ug forthe 2-rank of C, we �nd(3.6) k = � log2(h)� r for D < 0log2(h)� r � 1 +N for D > 0.This explains the observation in the introduction that our algorithm usuallyneeds more time for real class groups than for comparable imaginary classgroups.4. A worked example.In order to illustrate the abstract description in the previous section, wecompute by way of example the real quadratic 2-class group C of discrimi-nantD = 33923894057872 = 11482 � 25740793 = (4 � 7 � 41)2 � 13 � 97 � 137 � 149;which has 7 distinct prime factors. We use the notation from the previoussection.In our example, the group of �eld characters Xd corresponding to D hasorder 23 and is generated by the quadratic characters �13, �97, �137 and�149. The product of these four characters corresponds to the �eld Q(pD)and vanishes on C, so we can form an F2-basis of Xd by dropping �149 fromour set of generators. By (3.1), we can complete this to a basis X for thegroup of genus characters XD on C by adding the characters ��4, �7 and�41. Our initial set S0 of ambiguous forms consists of a form Qp for eachodd prime divisor of D and the form Q2 = (4; 0;�D=16) at 2.We initialize our algorithm by taking B0 = X0 = ; and compute thecharacter matrix M0 = (�(a))�2X;a2S0 using (3.3). This yields0BBBBBB@Q2 Q7 Q13 Q41 Q97 Q137 Q149��4 1 0 0 0 0 0 0�7 0 1 1 0 1 0 0�13 0 0 1 0 1 1 1�41 0 0 1 0 1 1 1�97 0 0 1 0 1 1 1�137 0 0 1 0 1 1 1 1CCCCCCA:The space V spanned by the columns of M0 is 3-dimensional, and the3 � 3-submatrix corresponding to the forms Q2, Q7 and Q13 and the setY0 = f��4; �7; �13g of characters is non-singular. In order to obtain a



298 Wieb Bosma et Peter Stevenhagenlower-triangular matrix, we choose the 3 basis elements in A1 as the classesof the forms a11 = Q2 = (4; 5824416;�4519801);a12 = Q7 = (49; 5824336;�5123556);a13 = Q13 �Q7 = (637; 5823454;�4426047):These elements span the image C32 of C[2] in C=2C. We obtain B1 = A1 [B0 = A1 and X1 = X0 [ Y0 = Y0.The 4 remaining forms Q41, Q97, Q137 and Q149 from S0 are now com-posed with forms from A1 to make all characters vanish on them,and we use our division-by-2-algorithm to compute the forms s1j 2 S1from the duplication equations2s11 = Q412s12 = Q97 �Q13 = Q97 � a12 � a132s13 = Q137 �Q7 �Q13 = Q137 � a132s14 = Q149 �Q7 �Q13 = Q149 � a13:The matrix M1 of character values in the next iteration step is readilyevaluated as 0BBBBBB@a11 a12 a13 s11 s12 s13 s14��4 1 0 0 1 0 0 0�7 0 1 0 1 1 1 1�13 0 0 1 1 1 1 0�41 0 0 1 1 1 1 1�97 0 0 1 1 1 1 0�137 0 0 1 1 1 1 0 1CCCCCCA:Only the column of s14 lies outside the space spanned by the columns ofthe forms in A1. Thus A2 contains a single element, for which we takea21 = s14 � a12 = (�410164; 5326064; 3387021):As �41 is the only character that does not vanish on a12, we take Y1 = f�41gand obtain a set X2 = Y0 [ Y1 of cardinality 4. The three remaining formsin S1 are now composed with forms in B2 = A1\A2 to make them divisibleby 2, and we �nd forms in S2 from the duplication equations2s21 = s11 � a11 � a12 � a132s22 = s12 � a12 � a132s23 = s13 � a12 � a13:



On the computation of quadratic 2-class groups 299The next matrix of character values M2 becomes0BBBBBB@a11 a12 a13 a21 s21 s22 s23��4 1 0 0 0 0 0 1�7 0 1 0 0 0 0 0�13 0 0 1 0 0 1 0�41 0 0 1 1 0 1 1�97 0 0 1 0 0 1 0�137 0 0 1 0 0 1 0 1CCCCCCA:All 3 columns of the forms s2j 2 S2 lie in the space spanned by the columnsof the forms in B2 = A1 [A2. This immediately yields Y2 = ; = A3, so wehave X3 = X2 and B3 = B2, and S3 contains 3 forms that are computedfrom the equations 2s31 = s212s32 = s22 � a132s33 = s23 � a11 � a21:The character matrix M3 becomes0BBBBBB@a11 a12 a13 a21 s31 s32 s33��4 1 0 0 0 0 1 0�7 0 1 0 0 0 1 0�13 0 0 1 0 1 0 1�41 0 0 1 1 1 1 0�97 0 0 1 0 1 0 0�137 0 0 1 0 0 1 1 1CCCCCCA;which has maximal rank 6. This means that we have found the structureof our group to be C32 � C4 � C216. In order to obtain a lower triangularcharacter matrix, we take our �nal two generators of order 16 asa41 = s31 � a13 = (�1060801; 5626768; 533412);a42 = s33 � a13 � a21 = (875729; 4584376;�3684756);and add Y3 = f�137; �97g in the suggested order to our character basis.The result is the �nal character matrix0BBBBBB@a11 a12 a13 a21 a41 a42��4 1 0 0 0 0 0�7 0 1 0 0 0 0�13 0 0 1 0 0 0�41 0 0 1 1 0 0�137 0 0 1 0 1 0�97 0 0 1 0 0 1 1CCCCCCA;



300 Wieb Bosma et Peter Stevenhagenand our algorithm terminates. The elements aij listed in the top row forman ordered basis of C, i.e., the sets Ai = faijgj satisfy the hypotheses oflemma 3.5 for G = C.In the �nal stage of the algorithm, it turns out that the character columnof the form s32 2 S3 lies in the space generated by the previous columns,so we have to compute s33 before we �nd that the character matrix hasmaximal rank. In the cases where we are lucky enough to obtain already acharacter matrix of full rank before the �nal column has been computed,our algorithm suppresses the computation of the form corresponding to this�nal column. This saves an application of the division-by-2-algorithm. Forlarge positive discriminants, the resulting gain can be considerable.As observed in the previous section, the `superuous generator' s32 inthe �nal stage of our algorithm is not entirely useless: it carries informationon the relation between the ambiguous forms in the initial set S0. Moreexplicitly, the character values of s32 tell us that the elementsD = s32 � a11 � a12 � a21 � a41is in 2C. As C is of exponent 16, this implies that sD is annihilated by 8.Using the de�nition of sij and the order relations 2iaij = 0, the resultingrelation 8s32 + 8a41 = 0 is easily traced back to yields12 + s11 = [Q13] + [Q97] + [Q41] = 0:This is the unique non-trivial relation between the initial generators Qp.We noted already that such relations can in principle be found from thefundamental unit "D. In this fairly small example it is still possible tocompute "D explicitly. It has norm 1, and we have"D + 1 = t � (u+ v � 4 � 7 � 41 � (1 +pD2 ))where each of t; u; v is an integer of approximately 230 decimal digits. We�nd that ("D + 1)=t is an element of norm 13 � 97 � 412, from which we canread o� the relation indicated above.5. Ternary quadratic forms.This section describes the reduction theory of ternary quadratic formsthat is the basis of the division-by-2-algorithm in section 6.Let n � 1 be an integer, and L = Zn an n-dimensional lattice withstandard inner product h�; �i : L � L ! Z. For every endomorphism A 2



On the computation of quadratic 2-class groups 301End(L) = Mn(Z), we have an associated quadratic form F = FA on Lde�ned by F (X) = hAX;Xi. Writing A as a matrix (aij)ni;j=1 with respectto the standard basis of L, we haveF (X) = F (x1; : : : ; xn) = X1�i;j�n aijxixj :For n = 2 and n = 3, we use variables x, y and z. If A ranges over theintegral symmetric (n � n)-matrices, then FA ranges over the quadraticforms F = P1�i�j�n cijxixj for which the `mixed coe�cients' cij withi 6= j are even. quadratic forms of this type in the current paper.We de�ne the determinant det(F ) of a form F corresponding to a sym-metric matrix A by det(F ) = det(A). In particular, the determinant of aquadratic form Q = ax2 + 2bxy + cy2 is for us equal todet(Q) = ac� b2 = �14disc(Q):There is a natural right action of GLn(Z) on the set of quadratic formsin n variables by `coordinate transformations'. If a form F correspondsto a symmetric matrix A and S 2 GLn(Z) is a coordinate change, thenFS = hASX; SXi= hSTASX;Xi clearly corresponds to the matrix STAS.Here ST denotes the transpose of S.Two quadratic forms F and G are said to be equivalent if there existsa unimodular transformation S 2 SLn(Z) such that FS = G. Note that�idL acts trivially and has determinant (�1)n, so the GLn(Z)-orbits andthe SLn(Z)-orbits of forms coincide in odd dimension.The adjoint A� of a matrixA = (aij)ni;j=1 is the matrix ((�1)i+jmij)ni;j=1,where the (i; j)-minor mij of A is the determinant of the matrix that isobtained from A by deleting the i-th row and the j-th column. If A isinvertible, one has A� = (detA) � (AT )�1:This immediately yields the general identities detA� = (detA)n�1 andA�B� = (AB)�, and an easy check yields the useful identity(5.1) A�� = (detA)n�2A:For a quadratic form F corresponding to a symmetric matrix A, the adjointform F � of F is the form corresponding to A�. Passing to the adjoint iscompatible with the action of SL2(Z) in the sense that we have (FS)� =(F �)S� .



302 Wieb Bosma et Peter StevenhagenFor n = 2, we have Gauss's binary quadratic forms (a; 2b; c) = ax2 +2bxy+cy2 with even middle coe�cient corresponding to symmetric matrices�a bb c�. Identity (2.1) tells us that every form of determinant � is equivalentto a form with �rst coe�cient jaj � p4j�j=3. Moreover, a unimodulartransformation that yields such an equivalent form can be e�ciently com-puted [9].For n = 3 we obtain ternary forms, and for forms of non-zero determinantthe reduction theory proceeds by a combination of binary reduction of boththe form itself and its adjoint. Suppose the ternary form F of determinant�F 6= 0 corresponds to a symmetric matrix A = (aij)3i;j=1 with adjointA� = (Aij)3i;j=1. Then we can use suitable unimodular transformations ofthe form S0 = 0@ s11 s12 0s21 s22 00 0 11A ;as if we were to reduce the quadratic form F (x; y; 0) = a11x2 + 2a12xy +a22y2 of determinant a11a22 � a212 = A33, and produce a ternary formF with unchanged adjoint coe�cient A33 but with a11 satisfying ja11j �p4jA33j=3. Similarly, by applying the unimodular matrixS1 = 0@ 1 0 00 s22 s230 s32 s331Ato F we leave a11 invariant and change F � by an application ofS�1 = 0@ 1 0 00 s33 �s320 �s23 s22 1A :Choosing the coe�cients of S1 as if reducing the quadratic form F �(0; y; x) =A33x2 + 2A23xy + A22y2, which has determinant A33A22 � A223 = �Fa11by (5.1), we can satisfy the inequality jA33j � p4ja11�F j=3. Alternatingthese two transformations, we get smaller values of ja11j and jA33j untilboth inequalities ja11j �p4jA33j=3 and jA33j �p4ja11�F j=3 hold at thesame time. The form F is then said to be semi-reduced, and it satis�es(5.2) ja11j � 43 j�F j1=3jA33j � 43 j�F j2=3:



On the computation of quadratic 2-class groups 303A semi-reduced form remains semi-reduced under unimodular transforma-tions of the form S2 = 0@ 1 s12 s130 1 s230 0 1 1A ;and we can use these to produce a reduced ternary form. There are twopossibilities, depending on whether the coe�cient a11 of our semi-reducedform is zero or not.In case a11 = 0 we also haveA33 = a12 = 0, and therefore �F = �a213a22.Looking at the e�ect of S2 on F , we see that an appropriate choice of S2yields a form with(5.3) ja33j � ja13j and ja23j � 12 gcd(a22; a13):A semi-reduced form with a11 = 0 satisfying (5.3) is said to be reduced.For given �F , there are only �nitely many possible values of a13 and a22,so the number of reduced forms of given determinant with a11 = 0 is �nite.For a semi-reduced form with a11 6= 0, we apply S2 with suitable s12 toobtain(5.4) ja12j � 12 ja11j:As A33 does not vanish, a simple inspection of the action ofS�2 = 0@ 1 0 0�s12 1 0s12s23 � s13 �s23 11Aon F � shows that we can further achieve(5.5) jA23j � 12 jA33j and jA13j � 12 jA33j:A semi-reduced form with a11 6= 0 satisfying (5.4) and (5.5) is called re-duced. It is again true that there are only �nitely many reduced forms ofgiven determinant with a11 6= 0. Indeed, we have bounded the coe�cientsa11; a12 and A13; A23; A33 in terms of �F , and the following elementarycompletion lemma shows that in our situation, these coe�cients and �Funiquely determine the form.



304 Wieb Bosma et Peter Stevenhagen5.6. Lemma. Suppose we are given rational numbers �; a11; a12; A13; A23and A33 satisfying �a11A33 6= 0. Then there exists a unique rationalsymmetric (3 � 3)-matrix A = (aij)3i;j=1 with determinant � and adjointA� = (Aij)3i;j=1, i.e., there is a unique way to de�ne the starred entries inA = 0@ a11 a12 �a12 � �� � � 1A and A� = 0@ � � A13� � A23A13 A23 A331A :such that A is rational and symmetric with determinant � and adjoint A�.Proof. As a11 is non-zero, we can de�ne a22 by the relation(*) a11a22 � a212 = A33:We now use A33 6= 0 to de�ne A11; A12; A22 as the unique solutions to theequations �a11 = A22A33 �A223��a12 = A12A33 �A23A13(5.7) �a22 = A11A33 �A213;and form the rational symmetric matrix B = (Aij)3i;j=1. It is clear that ifmatrices A and A� of the required sort exist, then the relations (5.7) holdby (5.1) and A is uniquely determined by the equality A� = B. Let ustherefore, in accordance with (5.7), de�ne the rational symmetric matrixA = (aij)3i;j=1 by the identity �A = B�. Passing to the adjoint yields�2A� = det(B) � B, so we see from (�) that we have �2 = det(B) andA� = B. Thus A has the correct adjoint, and from �A = B� = A�� we seethat its determinant equals �. �As every ternary form is equivalent to a reduced form, we see that thenumber of equivalence classes of ternary forms of determinant � is �nitefor every �. As an example that we will need in the next section, let ustake� = �1 and determine the equivalence classes. The entries of thesymmetric matrices corresponding to the ternary form F and its adjointwill again be denoted by aij and Aij , respectively.By (5.2), a semi-reduced ternary form F of determinant � = �1 haseither a11 = A33 = 0 or ja11j = jA33j = 1. In the case a11 = A33 = 0we have a22a213 = 1, so a22 = 1 and a13 = �1. If F is reduced, (5.3)



On the computation of quadratic 2-class groups 305yields a23 = 0 and a33 2 f�1; 0; 1g, so we �nd 6 forms. If we are in thesecond case and F is reduced, then a12 = A23 = A13 = 0 by (5.4) and(5.5). This yields a13 = a23 = 0 and shows that F is one of the 4 forms�x2 � y2 � z2 with an odd number of coe�cients �1. This shows thatthere are 6 + 4 = 10 reduced forms of determinant �1. Apart from thenegative de�nite form �x2 � y2 � z2, all these forms are inde�nite. It iseasily checked that the nine reduced inde�nite forms are all equivalent, sothere are two SL3(Z)-equivalence classes. We have proved the following.5.8. Lemma. An inde�nite ternary form of determinant �1 is SL3(Z)-equivalent to the form y2 � 2xz. �Our proof of this lemma is constructive, as it shows how to �nd a matrixS 2 SL3(Z) that maps a ternary form F of determinant �1 to y2�2xz. Onesimply reduces F by the procedure outlined in this section to obtain oneof the 9 reduced inde�nite forms listed above, keeping track of the trans-formation matrices encountered along the way, and performs an explicittransformation that we did not bother to write down to obtain y2 � 2xz.It has been shown by Lagarias [9] that this gives rise to a polynomial-timealgorithm.6. Division by 2 in quadratic class groups.In order to complete the description of our algorithm, we explain in thissection how one can explicitly divide by 2 the class of a binary quadraticform Q that is known to be in the principal genus. We have seen in thediscussion following lemma 2.4 that �nding a form P satisfying 2[P ] = [Q]is closely related to the representation of suitable squares by the form Q,i.e., to �nding solutions to a ternary quadratic equation Q(x; y) = z2.Gauss [7, art. 286] observed that this can be done e�ciently by extendingthe given binary form to a ternary form for which the represented squarescan be trivially found after reduction. It is convenient to assume that wework with even discriminants. This is not a restriction as for odd D, thenatural map C(4D) ! C(D) is an isomorphism. The basic observation isthe following.6.1. Lemma. Let Q be a binary quadratic form of even discriminant D.Then the class of Q is in 2Cl(D) if and only if there exists a ternary qua-dratic form Q1 of determinant �1 satisfying Q1(x; y; 0) = Q(x; y).Proof. It su�ces to show that all genus characters in XD vanish on theclass of Q = (�; 2�; ) if and only if there exists an integral symmetric



306 Wieb Bosma et Peter Stevenhagenmatrix A of determinant �1 of the formA = 0@ � � a13�  a23a13 a23 a331A :Suppose A exists, and write � = �D=4 = � � �2 for the determinant ofQ. Then the adjoint of A is an integral matrix of the formA� = 0@A11 A12 nA12 A22 mn m � 1A ;and the relations (5.7) with � = �1 yield(6.2) � = m2 � �A22�� = mn � �A12 = n2 � �A11:If p is an odd prime divisor of D, then p divides � = � � �2 and either �or  is coprime to p, so we see from (3.3) and (6.2) that the genus character�p vanishes on Q. The characters of odd prime conductor generate thesubgroup X 0D=h�di � XD=h�di, and we see from de�nition (3.1) that � isdivisible by 4 if ��4 is needed to generate the full group, and divisible by 8if �8 is needed. As either � or  is odd, (6.2) shows that these charactersvanish on Q as well. We conclude that the existence of A implies that Q isin the principal genus of Cl(D).Conversely, if Q is in the principal genus, we claim that the congruencesm2 � � mod � mn � �� mod � n2 �  mod �admit solutionsm;n 2 Z. By the Chinese remainder theorem, this amountsto solving the congruences modulo all prime powers pk dividing �. Either� or  is a unit modulo such a prime power, say �, and the vanishing ofthe corresponding genus character (or, for p = 2, characters) implies thatwe can solve m2 � � mod pk. Taking n � ��m�1 mod pk, we see that allthree congruences are satis�ed modulo pk.Now pick m and n satisfying the congruences modulo �. As � and �are non-zero, we can apply the completion lemma 5.6 to �nd a rationalsymmetric matrix A of determinant �1 and its adjoint A� that are of theform given above. The coe�cients A11, A12 and A22 of A� satisfy (6.2) and



On the computation of quadratic 2-class groups 307are clearly integral. This makes A� and A�� = �A integral, so we havefound the required matrix A. �The preceding proof shows that �nding the matrix A corresponding to Q1amounts to extracting square roots of integers modulo the prime powersdividing D. The prime powers dividing D are supposed to be known, andextracting square roots modulo prime powers can be done e�ciently if oneknows a quadratic non-residue modulo the prime occurring in the modulus[3, section 1.5.1]. Finding such a residue is easy in practice and can be donein random polynomial time. A deterministic polynomial algorithm howeveronly exists if one assumes the generalized Riemann hypothesis. See [3, p.33{34, remarks (2) and (3)]. It is only this minor non-deterministic stepthat makes our algorithm a random polynomial time algorithm.In the situation of lemma 6.1, the binary form Q is represented by theternary form Q1. More generally, we say that a binary quadratic form Q isrepresented by a ternary quadratic form F if there exist integers ai and bifor i = 1; 2; 3 such that(6.3) F (a1x+ b1y; a2x+ b2y; a3x+ b3y) = Q(x; y):Writing AF for the symmetric matrix corresponding to F and Q = (�; 2�; ),we see that (6.3) is equivalent to the identities(6.4) � = F (a1; a2; a3) � = h(ai)3i=1; AF (bi)3i=1i  = F (b1; b2; b3):The representation (6.3) is proper if the integers ai and bi come from aunimodular transformation(6.5) S = 0@a1 b1 c1a2 b2 c2a3 b3 c31A 2 SL3(Z):If this is the case, we have Q(x; y) = Q1(x; y; 0) for the ternary formQ1 = FS . Moreover, we have Q�1(0; 0; 1) = detQ, and Q is representedby every ternary form that is equivalent to Q1. As we do not consider bi-nary quadratic forms that are negative de�nite, the form Q1 and thereforethe representing ternary form F are inde�nite. Combining lemmas 6.1 and5.8, we now obtain the following result.6.6. Theorem. Let Q be a binary quadratic form of even discriminant D.Then the class of Q is in the principal genus 2Cl(D) if and only if Q canbe properly represented by the ternary form � = y2 � 2xz. �The representation in theorem 6.6 is found by constructing a ternary formQ1 of determinant �1 as in lemma 6.1 and reducing the form Q1 to � as



308 Wieb Bosma et Peter Stevenhagenoutlined in the previous section. We �nd QM1 = � for some M 2 SL3(Z),and S = M�1 yields the representation Q(x; y) = �S(x; y; 0). However, asShanks observed, we do not need S but only the reduction matrix M to tosolve the equation 2[P ] = [Q].Indeed, if we have Q(x; y) = �S(x; y; 0) with S 2 SL3(Z) as in (6.5), theform Q represents the squaresQ(b1;�a1) = (a1b2 � a2b1)2 and Q(b3;�a3) = (a3b2 � a2b3)2of integers r = a1b2 � a2b1 and p = a2b3 � a3b2 that occur in the last rowMT (0; 0; 1) = (p; q; r) = (a2b3 � a3b2; a3b1 � a1b3; a1b2 � a2b1)of the reduction matrix M = S�1. In view of the observation followinglemma 2.4, it is therefore to be expected that p and r occur as �rst coe�-cients of binary forms whose duplication lies in [Q].6.7. Theorem. Let Q be a primitive binary quadratic form of even dis-criminant D, and suppose we have M 2 SL3(Z) and a ternary form Q1satisfying Q1(x; y; 0) = Q(x; y) and QM1 = � = y2 � 2xz. Let (p; q; r) =MT (0; 0; 1) be the last row of M , and de�ne the quadratic formP = � px2 + 2qxy + 2ry2 if p is oddrx2 � 2qxy + 2py2 if p is even.Then P is a primitive form of discriminant D, and we have 2[P ] = [Q] 2Cl(D).Proof. As gcd(p; q; r) divides detM = 1, we have gcd(p; q; r) = 1, so inorder to show that P is primitive we have to check that p and r cannotboth be even. Suppose they are. Then q is odd. The last row of the matrixproduct MS = id yields the relations pa1+qa2+ra3 = pb1+qb2+rb3 = 0,so a2 and b2 are both even. It follows from (6.4) that the coe�cients� = �(a1; a2; a3) = a22 � 2a1a3 = �(b1; b2; b3) = b22 � 2b1b3and 2� of Q = (�; 2�; ) are all even, contradicting the primitivity assump-tions on Q.There are various ways to check the identity 2[P ] = [Q]. One can mul-tiply M by transformations stabilizing � and reduce to the case that p is



On the computation of quadratic 2-class groups 309coprime to D, which can be handled by the method given after lemma 2.4.However, it is much more e�cient to apply lemma 2.8 directly. Taking Fin that lemma to be equal to (p;�2q; 2r) or (2p;�2q; r), i.e., in the class of�[P ], we can take the bilinear form in 2.8 respectively equal to� s1 s2 s3t1 t2 t3 � = � b3 b2 2b1a3 a2 2a1 � and � 2b3 b2 b12a3 a2 a1 � :As we have � = �a1b3 + a2b2 � a3b1 by (6.4), it follows from 2.8 that theclass inverse to 2[P ] contains the form (�;�2�; ). This implies 2[P ] = [Q],and consequently P has the required discriminant 4(q2�2pr) = D. We cancheck this directly by substituting (p; q; r) in the adjoint �� = �y2 + 2xzof � = QM1 = y2� 2xz. As M� is the inverse of MT , we obtain the desiredvalue��(p; q; r) = �q2 + 2pr = (Q�1)M�(p; q; r) = Q�1(0; 0; 1) = detQ = �D=4:�Theorem 6.7 shows that we can divide [Q] 2 Cl(D) by 2 if we can completeQ to a ternary form Q1 of determinant �1 and �nd the transformationmatrix M that reduces Q1 to � = y2 � 2xz. Both of these steps can bee�ciently performed whenever Q is in the principal genus. This �nishesthe description of the division-by-2-algorithm 3.4.7. Performance of the algorithm.The algorithms described in the previous sections have been implementedin the high-level language of the computer algebra system Magma. Table7.1 below shows the results of an experiment devised to give an indication ofthe dependence of the performance of the algorithm on various parameters,in particular the size and sign of the discriminant and the structure of C.For several n ranging from 25 to 400 (as indicated at the top of eachcolumn in the tables), we found 5 primes close to 10n that are squaresmodulo each other. The �rst table lists the primes used; the i-th primeused for each value of n is 10n + ri. The primes 10100 + ri are the primefactors of the discriminant D occurring in the introduction.r n = 25 50 100 200 400r1 13 577 949 357 69r2 609 709 1293 3381 2877r3 657 1137 2809 5541 16249r4 1821 2781 6637 11269 29857r5 3309 4209 22261 23317 32797



310 Wieb Bosma et Peter StevenhagenEach row in table 7.1 gives results for the discriminant pD built up fromthe product D of the �ve primes of size 10n and an additional factor p thatis indicated in the �rst column. As additional factors we chose the oddprimes up to 79, with a sign chosen such that we have p � 1 mod 4, andthe even factors p = �8. We are looking here then at discriminants of 125to just over 2000 decimal digits. It would be out of the question to factorarbitrary discriminants of that size, or to compute a single full class groupCl(pD).Each entry in the table consists of three values. The �rst is the 2-classnumber of pD, written in a way that corresponds to the structure of the2-class group C(pD). The two values on the second line are the numberof seconds it took our implementation to �nd this group structure and the(rounded) quotient of this running time by the number of times a divisionby 2 had to be performed to obtain the group structure. Thus, the �rstentry says that for D the product of our �ve primes 1025 + ri, we haveC(�79 �D) � C32 � C4 � C16. This computation took 11 seconds. As thecomputation of such a group takes 4 divisions by 2 by formula (3.6), thisis approximately 3 seconds per division.In a given column, the time needed per division is roughly constant. Thismeans that the time needed to �nd the 2-group structure is proportionalto the number of divisions by 2, that is, to the combination of the widthand depth of the 2-group given in (3.6). There is a small but noticeabledi�erence in running time between imaginary and real class groups. In thetable, they are separated by a row that indicates, for each value of n, theaverage time it took the algorithm per division for the imaginary and forthe real class groups. On average, the algorithm is about 15% slower forreal quadratic class groups.The average running times per division in the central row give an indi-cation of the complexity function for the major operations as a functionof the number of decimal digits. The dominant factor is the slightly worsethan quadratic time growth of ordinary integer arithmetic with the size ofthe integers.A closer look at where the time is spent reveals that there are three mainc omponents: the ternary reduction step, the modular square root used inthe division by 2 of a class in the principal genus, and the composition andreduction of quadratic forms. The ternary reduction step takes up between1=3 and 1=2 of the total time for a divison by 2. The fraction of timeneeded for the modular square root (with modulus the discriminant, butperformed prime by prime) increases slightly with the size of the primes



On the computation of quadratic 2-class groups 311Table 7.1. Class groups and running times.p n = 25 50 100 200 400�79 23 � 4 � 16 2 � 43 � 256 23 � 42 23 � 4 � 16 23 � 4 � 811 3 100 10 64 32 811 203 3831 1277�71 22 � 4 � 82 2 � 43 � 8 22 � 42 � 8 2 � 43 � 8 2 � 43 � 812 2 44 9 137 34 922 184 5749 1150�67 23 � 4 � 8 23 � 8 � 64 23 � 4 � 8 23 � 4 � 8 23 � 4 � 87 2 68 10 101 34 604 201 3617 1206�59 2 � 44 22 � 42 � 8 23 � 4 � 8 23 � 4 � 64 24 � 48 2 35 9 102 34 1290 215 1067 1067�47 24 � 4 24 � 8 2 � 42 � 8 � 64 24 � 4 22 � 42 � 82 2 18 9 328 36 178 178 4933 1233�43 23 � 8 � 16 22 � 42 � 8 25 24 � 16 2 � 43 � 1613 3 36 9 0 � 631 210 7201 1200�31 2 � 42 � 8 � 64 23 � 4 � 16 23 � 82 23 � 4 � 8 22 � 4 � 8225 3 37 9 149 37 597 199 6330 1266�23 22 � 42 � 64 44 � 16 22 � 43 22 � 42 � 64 23 � 4219 3 62 9 91 30 1464 209 2212 1106�19 22 � 43 22 � 43 24 � 8 44 � 32 24 � 47 2 25 8 74 37 1554 194 1084 1084�11 22 � 4 � 8 � 128 24 � 4 2 � 42 � 8 � 256 22 � 42 � 8 22 � 42 � 824 3 8 8 415 38 802 200 4703 1176�8 23 � 8 � 64 22 � 43 24 � 4 25 23 � 4223 3 22 7 30 30 0 � 2145 1072�7 2 � 43 � 16 22 � 42 � 32 23 � 4 � 16 2 � 44 24 � 414 2 56 9 144 36 694 173 1070 1070�3 2 � 43 � 8 22 � 42 � 8 24 � 4 22 � 42 � 8 23 � 4211 2 33 8 30 30 791 198 2256 1128mean 2:6 8:9 35:6 198:5 1176:93:1 10:3 40:9 212:0 1350:05 22 � 42 � 8 22 � 43 22 � 42 � 16 22 � 43 23 � 4219 3 38 10 341 43 796 199 3676 12258 23 � 4 � 16 22 � 43 24 � 4 25 23 � 4223 3 43 11 94 47 2 � 4434 147813 22 � 43 23 � 42 2 � 44 22 � 43 23 � 4 � 812 3 28 9 187 37 861 215 6630 132617 2 � 43 � 8 22 � 42 � 8 23 � 42 22 � 43 23 � 4223 3 58 10 110 37 817 204 4102 136729 24 � 4 23 � 42 23 � 4 � 16 23 � 42 22 � 437 3 30 10 306 44 601 200 5366 134137 22 � 43 23 � 42 22 � 42 � 8 22 � 42 � 16 22 � 4311 3 29 10 255 43 1929 241 5653 141341 22 � 42 � 8 23 � 4 � 8 22 � 43 23 � 42 22 � 4318 3 54 11 154 38 669 223 4749 118753 22 � 43 45 2 � 44 24 � 4 24 � 412 3 61 10 190 38 373 187 2516 125861 22 � 43 22 � 43 24 � 4 2 � 42 � 82 22 � 42 � 1612 3 45 11 81 40 1804 226 11044 138173 22 � 43 22 � 43 24 � 4 23 � 42 23 � 4 � 812 3 45 11 81 41 626 209 7178 1436



312 Wieb Bosma et Peter Stevenhageninvolved, and in the largest case (of 400 digit primes) takes about as longas the ternary reduction. The contribution from the composition of formsvaries considerably but is usually much smaller. It depends primarily onthe number of reduction steps necessary after a single composition in thevery last stage of the division-by-2-algorithm. In our examples sometimesseveral hundreds of reduction steps were needed, taking up to 1=5 of thetotal time for the large discriminant case.References[1] W. Bosma, J. J. Cannon, C. Playoust, The Magma algebra system I: the user lan-guage, J. Symbolic Comput. (to appear).[2] W. Bosma and P. Stevenhagen, Density computations for real quadratic units, Math.Comp. 65 (1996), no. 215, 1327{1337.[3] H. Cohen, A course in computational algebraic number theory, Springer GTM 138,1993.[4] H. Cohen, F. Diaz y Diaz, M. Olivier, Calculs de nombres de classes et de r�egulateursde corps quadratiques en temps sous-exponentiel, S�eminaire de Th�eorie des NombresParis 1990{91, Birkh�auser, 1993, pp. 35{46.[5] D.A. Cox, Primes of the form x2 + ny2, Wiley-Interscience, 1989.[6] S. D�ullmann, Ein Algorithmus zur Bestimmung der Klassengruppe positiv de�niterbin�arer quadratischer Formen, Dissertation, Universit�at des Saarlandes, Saarbr�ucken,1991.[7] C.F. Gauss, Disquisitiones Arithmeticae, Gerhard Fleischer, Leipzig, 1801.[8] J. Hafner, K. McCurley, A rigorous subexponential algorithm for computation ofclass groups, J. Amer. Math. Soc. 2 (1989), no. 4, 837{850.[9] J.C. Lagarias, Worst-case complexity bounds for algorithms in the theory of integralquadratic forms, J. of Algorithms 1 (1980), 142{186.[10] J.C. Lagarias, On the computational complexity of determining the solvability orunsolvability of the equation X2�DY 2 = �1, Trans. Amer. Math. Soc. 260 (1980),no. 2, 485{508.[11] D. Shanks, Gauss's ternary form reduction and the 2-Sylow subgroup, Math. Comp.25 (1971), no. 116, 837{853; Erratum: Math. Comp. 32 (1978), 1328{1329.[12] P. Stevenhagen, The number of real quadratic �elds having units of negative norm,Exp. Math. 2 (1993), no. 2, 121{136.[13] P. Stevenhagen, A density conjecture for the negative Pell equation, ComputationalAlgebra and Number Theory, Sydney 1992, Kluwer Academic Publishers, 1995,pp. 187{200.
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