
Journal de Th�eorie des Nombresde Bordeaux 13 (2001), 27{41Signed bits and fast exponentiationparWieb BOSMAR�esum�e. Nous donnons une analyse pr�eise du gain obtenu enutilisant la repr�esentation des entiers sous la forme non-adjaente,plutôt que la repr�esentation binaire, lorsqu'il s'agit de aluler lespuissanes d'�el�ements dans un groupe dans lequel l'inversion estfaile. En omptant le nombre de multipliations pour un ex-posant al�eatoire ayant un nombre donn�e de bits dans son �eriturebinaire, nous obtenons une version pr�eise du r�esultat asympto-tique onnu, selon lequel en moyenne, un parmi trois bits sign�es dela forme non-adjaente n'est pas nul. Cela montre que l'utilisationdes bits sign�es r�eduit le oût de l'exponentiation d'un neuvi�eme,par rapport �a la m�ethode ordinaire onsistant �a des �elevations auarr�e et �a des multipliations r�ep�et�ees.Abstrat. An exat analysis is given of the bene�ts of usingthe non-adjaent form representation for integers (rather than thebinary representation), when omputing powers of elements in agroup in whih inverting is easy. By ounting the number ofmultipliations for a random exponent requiring a given numberof bits in its binary representation, we arrive at a preise versionof the known asymptoti result that on average one in three signedbits in the non-adjaent form is non-zero. This shows that the useof signed bits (instead of bits for ordinary repeated squaring andmultipliation) redues the ost of exponentiation by one ninth.1. IntrodutionTo raise elements of a monoid into the power e > 1, the method ofrepeated squaring and multipliation is often employed. To alulate xe,where e =Pni=0 bi2i, with bi 2 f0; 1g and bn = 1, the powersy0 = x1; y1 = x2; y2 = x4; : : : ; yn = x2nare omputed by repeated squaring, and xe is found by taking the produtof the yi for whih bi = 1. It is lear that omputing xe this way takesl(e) � 1 squarings and w(e) � 1 multipliations, where the (binary) lengthManusrit re�u le 22 otobre 1999.Thanks to Ruud Jeurissen for �rst versions of proofs and for helpful disussions.



28 Wieb Bosmal(e) = n + 1 and the Hamming weight w(e) are the total number of bitsand the number of non-zero bits bi used to express the exponent e.If the monoid is a group in whih inverses an be omputed eÆiently,it may be advantageous to use a di�erent representation of the exponent.Writing e =Pmi=0 si2i, where si 2 f�1; 0; 1g, we have obtained a signed bitrepresentation [2℄ for e. To determine xe, again omputey0 = x1; y1 = x2; y2 = x4; : : : ; ym = x2mvia repeated squaring, and aumulate the produt ysii (for the non-zerosi), whih involves an inversion if si = �1.The advantage of signed bit representations is that the signed bit weightws(e) may be smaller than w(e). Taking e = 15 for example, the binary rep-resentation onsists of four bits equal to 1. But 15 = 24� 1, so a signed bitrepresentation of weight 2 and length 5 exists. At the ost of one inversionand an extra squaring we have done away with two multipliations.There exist better ways to ompute xe, using arbitrary addition hainsor addition-subtration hains. We briey disuss them in Setion 3.A ompliation in onsidering signed bits may seem that signed bit rep-resentations of integers are by no means unique. Indeed, using that theinteger 1 has a representation 1 = 2k +Pk�1i=0 �1 � 2i, for any k > 1, it isseen that every integer admits in�nitely many signed bit representations.In Setion 2 we desribe the non-adjaent form, whih selets a uniquesigned bit representation for any non-negative integer e. We indiate howit, and a modi�ed version of it, an be determined eÆiently, and we showthat these speial representations have ertain optimal properties.In Setions 4 and 5 we will analyze exatly the weight of non-adjaentforms for integers e. It is shown (in a preise sense) that on average thisweight is a third of the length of e, as opposed to a half for the binaryform. In general the gain that an be ahieved from this in exponentiationwill depend on the relative osts of inverting, multiplying, and squaringin the group. The standard appliation for signed bit exponentiation isto the arithmeti of ellipti urves, [7℄, [9℄. The group of points on anellipti urve over a �eld in Weierstrass form has the desired property thatinverting is (almost) for free. When inverting is free the results of Setion5 show that a redution by a ninth in ost, on average, is obtained by usingthe non-adjaent form rather than the binary form. This makes preise aresult that so far only seems to be known heuristially or asymptotially [1℄,[7℄, [9℄. (Note that in the ellipti urve ase squarings are usually slightlymore expensive than ordinary multipliations, whih means that the ostredution from using signed bits is in fat less.)



Signed bits and fast exponentiation 292. Signed BitsTo �x the notation, let a signed-bit representation of length l(e) for a posi-tive integer e be a sequene sl(e)�1; sl(e)�2; : : : ; s0 suh that e =Pl(e)�1i=0 si2i,with si 2 f�1; 0; 1g and sl(e)�1 = 1. Sometimes we will write m = l(e)� 1;the sequene of signed bits si is usually written without omma's withmost-signi�ant digit sl(e)�1 �rst. In a sequene of signed bits the symbol1 will denote �1. Thus 10001 is a signed bit representation for 15.As we have seen already, e will in general have signed-bit representationsof various lengths; indeed, sine we may replae the leading 2m by 2m+1 �2m, a proess whih an be repeated, we �nd in�nitely many representationsfor any e, of arbitrary (large enough) length. With our appliation ofminimizing osts of exponentiation in mind, we are partiularly interestedin short representations of low weight.We will all a signed bit representation for e optimal if it has least possibleweight and among all representations of minimal weight it has minimallength | learly the length of the binary expansion is a lower bound forthe length of a signed-bit representation. But note that optimality doesnot determine a unique representation in general, as the example 11 =23 + 2 + 1 = 23 + 22 � 1 shows.Let us �rst worry about uniqueness. The non-adjaent form representa-tion is the signed bit representation for e haraterized by the property:si 6= 0 ) si�1 = 0; for i � 1:Proposition 1. Positive integers have unique non-adjaent form represen-tations.Proof. Suppose that there exist positive integers e with two di�erent non-adjaent forms. Among all suh e selet e0 having a non-adjaent form ofminimal length. The minimality ondition requires that the least signi�antbit in the minimal representation of e0 di�ers from that in any other. Theonly admissible pairs for the two least-signi�ant bits in non-adjaent formsare 00, 01, 01, 10, 10; only 10 and 10 determine the same value modulo 4,but their least-signi�ant bits are equal.This ends the proof.It is easy to obtain the non-adjaent form from the ordinary binary ex-pansion: apply the following rule repeatedly, working from right to left(least-signi�ant �rst):replae any sequene 01 � � � 1 by 10 � � � 01where the number of onseutive 0's in the latter is one less than the numberof onseutive 1's in the former.



30 Wieb BosmaSine Pki=0 = 2k+1 � 1, it is lear that the result will always be a non-adjaent form representation for the given integer determined by the binaryexpansion. It will also be lear that the length of the non-adjaent form iseither equal to or one larger than that of the binary expansion.Example. Starting with the binary expansion for 3190 = 211 +210 + 26 +25 + 24 + 22 + 2, the rule produes:1 1 0 0 0 1 1 1 0 1 1 01 1 0 0 0 1 1 1 1 0 1 01 1 0 0 1 0 0 0 1 0 1 01 0 1 0 0 1 0 0 0 1 0 1 0for 3190 = 212 � 210 + 27 � 23 � 2.In fat the above proedure an be generalized to transform any givensigned bit representation into the non-adjaent form; �rst apply the follow-ing rule repeatedly working from left to right:(I) replae 11 by 01; andreplae 11 by 01;and then apply the following repeatedly (working from right to left):(II) replae 0 k>1z }| {1 � � � 1 by 1 k�1z }| {0 � � � 0 1; andreplae 0 1 � � � 1| {z }k>1 by 1 0 � � � 0| {z }k�1 1;followed by a step of the form (I) if neessary.Proposition 2. For any integer the non-adjaent form has minimal weight.Proof. Apply the above two rule-transformation to any signed bit repre-sentation of minimal weight; the result is the non-adjaent form. Thetransformation does not inrease the weight.Corollary 3. For every integer there is a unique signed bit representationsatisfying:sk 6= 0 ) sk�1 = 0; or k = m and sm = sm�1 = 1;moreover this expansion is optimal.Proof. Let tmtm�1 � � � t1t0 be the non-adjaent form for e. If the three mostsigni�ant bits tmtm�1tm�2 are 101, then let n = m� 1 and de�nesi = (1 for i = n; n� 1ti for 0 � i � n� 2.In all other ases let n = m and si = ti for 0 � i � n. This way s is equal tothe non-adjaent form exept when the leading digits for the non-adjaent



Signed bits and fast exponentiation 31form are 1010, in whih ase we replae them by the shorter expansion withleading digits 110. Clearly s satis�es the non-adjaeny onditions of thestatement; we will show that it is optimal too.In the exeptional ase the weights of s and t are equal, but the length ofs equals that of the binary expansion. Hene s is optimal in that ase. Wewill prove that in all other ases the non-adjaent form t itself is optimal.Suppose that e is an integer with non-adjaent form tmtm�1 � � � t1t0 ofminimal length that is not optimal. Sine the non-adjaent weight is alwaysminimal, this an only our if the length of the non-adjaent form of eexeeds that of its binary expansion by 1. This only happens if in the �naltransformation step a sequene of k � 2 adjaent 1's is replaed by 10 � � � 01,where the number of 0's is k � 1. If k = 2 we are in the exeptional ase,so we will assume that k > 2. The binary expansion um�1um�2 � � � u0 hasum�1 = um�2 = um�3 = 1, while um�4 = 0 or 1.Sine the non-adjaent weight is minimal, there must exist a signed bitrepresentation vm�1vm�2 � � � v0 of length m, and it neessarily has vm�1 =vm�2 = vm�3 = 1, and vm�4 = um�4 2 f0; 1g sine u and v representthe same number e. If vm�4 = 1, an extra redution step redues lengthplus weight, whih ontradits optimality of v. So vm�4 = 0; but thenv 6= u ontradits minimality of m sine vm�5vm�6 � � � represents the samenumber as um�5um�6 with lower weight.That ends the proof.We will refer to the optimal representation of Corollary 3 as the modi�ednon-adjaent form. It is the same as the non-adjaent form, exept thatnon-adjaeny is allowed in the most signi�ant two bits, that is 110 isnot transformed to 1010, beause suh transformation inreases the lengthwithout dereasing the weight.Note that this does not mean that the modi�ed version is di�erent forpreisely those integers for whih the leading bits in the binary expansionare 110 beause of the propagation of arries in the transformations: non-adjaent and modi�ed non-adjaent forms for 27 = 11011 = 100101 are thesame, but for 25 = 11001 they are di�erent, namely 101001 and 11001.It is not so diÆult to obtain the (modi�ed) non-adjaent form diretlyfrom e, without omputing the binary (or another signed-bit) expansion�rst. The method resembles the method for �nding the binary expansionproduing the least signi�ant bit �rst: starting with k = e repeat:if k even: produe 0 and divide k by 2;if k odd: produe 1, subtrat 1 from k and divide k by 2;until k is 0.For the non-adjaent form one proeeds as follows. Starting with k = e > 0again, one repeats:



32 Wieb Bosmae binary NAF modi�ed NAF1 1 1 12 1 0 1 0 1 03 1 1 1 0 1 1 14 1 0 0 1 0 0 1 0 05 1 0 1 1 0 1 1 0 16 1 1 0 1 0 1 0 1 1 07 1 1 1 1 0 0 1 1 0 0 18 1 0 0 0 1 0 0 0 1 0 0 09 1 0 0 1 1 0 0 1 1 0 0 110 1 0 1 0 1 0 1 0 1 0 1 011 1 0 1 1 1 0 1 0 1 1 1 0 112 1 1 0 0 1 0 1 0 0 1 1 0 013 1 1 0 1 1 0 1 0 1 1 1 0 114 1 1 1 0 1 0 0 1 0 1 0 0 1 015 1 1 1 1 1 0 0 0 1 1 0 0 0 116 1 0 0 0 0 1 0 0 0 0 1 0 0 0 017 1 0 0 0 1 1 0 0 0 1 1 0 0 0 118 1 0 0 1 0 1 0 0 1 0 1 0 0 1 019 1 0 0 1 1 1 0 1 0 1 1 0 1 0 120 1 0 1 0 0 1 0 1 0 0 1 0 1 0 021 1 0 1 0 1 1 0 1 0 1 1 0 1 0 122 1 0 1 1 0 1 0 1 0 1 0 1 1 0 1 023 1 0 1 1 1 1 0 1 0 0 1 1 1 0 0 124 1 1 0 0 0 1 0 1 0 0 0 1 1 0 0 025 1 1 0 0 1 1 0 1 0 0 1 1 1 0 0 126 1 1 0 1 0 1 0 1 0 1 0 1 1 0 1 027 1 1 0 1 1 1 0 0 1 0 1 1 0 0 1 0 128 1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 029 1 1 1 0 1 1 0 0 1 0 1 1 0 0 1 0 130 1 1 1 1 0 1 0 0 0 1 0 1 0 0 0 1 031 1 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 132 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 033 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 134 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 035 1 0 0 0 1 1 1 0 0 1 0 1 1 0 0 1 0 136 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 037 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 138 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 039 1 0 0 1 1 1 1 0 1 0 0 1 1 0 1 0 0 1



Signed bits and fast exponentiation 33k mod 4 � s 2 f�1; 1g: produe signed bits s and 0, and replae k by(k � s)=4;k mod 4 � s 2 f0; 2g: produe 0 and replae k by k=2.until k is less than or equal to 3, after whihif k = 0: produe nothing;if k = 1: produe 1;if k = 2: produe 0 and 1;if k = 3: produe 1 and 0 and 1;and terminate.For the modi�ed version the only hange neessary is to produe 11 in thease that k = 3.Note the similarities with the ontinued fration algorithm, where divi-sion by 2 is replaed by inverting, and trunation replaes extrating bits.The algorithm to obtain the non-adjaent form is similar to the nearestinteger ontinued fration algorithm.The table shows binary expansion, non-adjaent form, and modi�ed non-adjaent form for the �rst few positive integers.3. Addition-subtration hainsThe method of repeated squaring and multipliation does not neessarilygive the fastest way to evaluate powers. It is well-known [6℄ that there areways to �nd xe using fewer multipliations.An addition hain for a positive integer e is a sequene 1 = e0, e1, : : : ,ek = e with the property that for 1 � i � k it holds that ei = eu + ev with0 � u; v < i. Eah term is thus the sum of two (possibly the same) previousterms. One usually arranges the ei in asending order. The length of theaddition hain is the integer k. It will be lear that an addition hain for ean be used to ompute xe: for any i the power xei an be omputed fromxe0 ; : : : ; xei�1 by a single multipliation.The binary expansion e = Pni=0 bi2i of any e of length n + 1 de�nesan addition hain of length n + w(e) � 1 for e, orresponding to repeatedsquaring and multipliation as desribed in Setion 1, as follows. Writedown the powers pi = 2i; i = 0; : : : ; n of 2 less than or equal to e. Nexttake r0 = 0 and let rj be rj�1+pij , where i1; : : : ; ik are those i from 0 to nfor whih bi 6= 0. The addition hain for e then onsists of the the pi (with1 � i � n) and rj (with j � 1) in asending order.There is an alternative addition hain assoiated with the binary expan-sion, obtained by reading the bits from left to right (most signi�ant �rst).Starting with e0 = 1 one repeats for i = 1; : : : ; n:if bn�i = 1: append 2ej and 2ej +1 to the existing sequene e0; : : : ej ;otherwise: append 2ej to the existing sequene e0; : : : ej .



34 Wieb BosmaThere are two problems with general addition hains. In the �rst plaeis it hard to �nd a shortest hain for given e [6℄. Seondly, general additionhains make it neessary to remember entries xe0 ; : : : ; xei�1 along the wayto ompute xei . Note that this is not true for the left-to-right binary additionhain, as ei is either 2ei�1 or ei�1+1, that is, every step is either a squaringor a multipliation by x ([4℄, see also [8℄ for the speial ase of integerexponentiation).Taking the possibility of subtrating into aount as well, we arrive ataddition-subtration hains [11℄. In general we annot insist on asendingentries anymore. Again, it will be lear that any signed-bit representationof e will give rise to two addition-subtration hains, by reading the signedbits either way. It is also obvious that, sine the weight of a signed bitrepresentation an be smaller than that of the binary expansion, that theorresponding hain may be shorter.Examples. Let e = 43; reading its bits 101011 right-to-left to obtain thesequene of pi's 1; 2; 4; 8; 16; 32 and of rj's 3; 11; 43, we obtain an additionhain by merging and ordering: 1; 2; 3; 4; 8; 11; 16; 32; 43 of length 8.Reading the binary expansion 101011 left-to-right produes e0 = 1, thene1 = 2, and e2 = 4; e3 = 5, then e4 = 10, and e5 = 20; e6 = 21, and �nallye7 = 42; e8 = 43. Indeed, length 8 for 5 doublings and 3 multipliations.Reading the modi�ed non-adjaent form 43 = 110101 left-to-right givesthe addition-subtration hain 1; 2; 3; 6; 12; 11; 22; 44; 43, reading it right-to-left the hain �1, 2, 4, �5, 8, 16, 11, 32, 43. Both have length 8. Thenon-adjaent form gives hains of length 9.There exists an addition hain of length 7 for 43: 1; 2; 4; 8; 9; 17; 34; 43.The addition-subtration hain 1; 2; 4; 8; 16; 15 assoiated with 15 = 24�20, is shorter than the hain 1; 2; 3; 6; 7; 14; 15 arising from the binary ex-pansion 15 = 23 + 22 + 21 + 20. In this ase there is an addition hain oflength 5 as well, however: 1; 2; 3; 5; 10; 15 for example.In general, for e = 2k � 1 the binary expansion gives rise to an additionhain of length 2k � 2 while the non-adjaent form leads to an addition-subtration hain of length k + 1.Outside numbers of this form, e = 23 is the �rst example where themodi�ed non-adjaent form for e leads to an addition-subtration hain(1; 2; 3; 6; 12; 24; 23 of length 6) that is stritly shorter than the binary ad-dition hains (1; 2; 4; 5; 10; 11; 22; 23 and 1; 2; 3; 4; 7; 8; 16; 23 of length 7).Again there exist addition hains of length 6, like 1; 2; 3; 5; 10; 13; 23.For e = 27 there are addition hains (suh as 1; 2; 3; 6; 9; 18; 27) that areshorter than both the hains obtained from the binary expansion (1; 2; 3; 6;12; 13; 26; 27) and the addition-subtration hain gotten from the (modi-�ed) non-adjaent form (1, 2, 4, 8, 7, 14, 28, 27). For e = 47 the length ofthe hain given by the modi�ed non-adjaent form (1, 2, 3, 6, 12, 24,48, 47) is shorter than any addition hain (the shortest of whih have



Signed bits and fast exponentiation 35length 8: 1; 2; 3; 4; 7; 10; 20; 27; 47 for example, while the binary gives length9: 1; 2; 4; 5; 10; 11; 22; 23; 46; 47); in this ase there is no shorter addition-subtration hain either.There are methods to onstrut short addition hains | these are notneessarily shortest, but shorter than those obtained from the binary ex-pansion. The results from the present paper indiate the gain that an beobtained by using signed bits rather than bits; perhaps this will lead to amore general analysis of the advantages of addition-subtration hains overaddition hains (in situations where they are appliable).4. AnalysisTo analyze the bene�ts of using the signed bit representations, we �rstprove some results on (average) length of non-adjaent and modi�ed non-adjaent forms. Let n denote the number of positive integers requiringexatly n bits in their binary representation, and let 0n and 00n be the numberof positive integers requiring exatly n signed bits in the non-adjaent formand in the modi�ed non-adjaent form representation, respetively. Also,let Cn, C 0n and C 00n similarly de�ne the number of positive integers requiringat most n bits in the three representations.Proposition 4. The number of positive integers with expansions of lengthn is given by 1 = 01 = 001 = 1, and for n � 2:n = 2n�1; 0n = 232n�1 � (�1)n3 ; 00n = 562n�1 + (�1)n3 :Hene, for n� 0:Cn = 2n; C 0n = 232n + 12 � (�1)n6 ; C 00n = 562n + 12 + (�1)n6 :Proof. Only 1 requires one bit in any expansion. It is also lear that thereare exatly 2n�1 integers with most signi�ant bit bn�1 = 1 (of length n),so n = 2n�1 and Cn =Pnk=0 k = 2n.The easiest way to ount integers with n signed bits in their non-adjaentform is to observe that the following reursion holds:0n+2 = 0n+1 + 20n; for n � 1:Namely, the 0n positive integers of length n (all having sn�1 = 1), when`prepended' with sn = 0 and sn+1 = 1 all ontribute. We get anotherontribution of size 0n by ipping the n-th bit bn�1 to �1. This aountsfor all positive integers requiring n+ 2 bits for whih bn�1 6= 0. We obtainthose with bn�1 = 0 by taking the 0n+1 representations of length n+1 andreplaing the leading digit bn = 1 by bn = 0 and putting bn+1 = 1. Thisway the validity of the reursion an be seen to hold. With starting values01 = 02 = 1 the losed form for 0n in the statement of the proposition is



36 Wieb Bosmathen easily proved, for example by indution. The formula for C 0n is simplyobtained by summation: Pnk=0 0k.One way to ount integers with modi�ed non-adjaent form of length nis to use that their number also satis�es the reursion:00n+2 = 00n+1 + 200n; for n � 2:This time one takes the representations of length n, and obtains from eahtwo valid representations of length n + 2 by shifting over 2 plaes andinserting b1 = 0 and b0 = �1. From the length n + 1 representationsone gets length n + 2 representations by shifting one plae and takingb0 = 0. This learly leads to 200n + 00n+1 valid representations of lengthn+ 2 (taking are that n > 1 to prevent the illegal representation 101 for3) that are all distint (look at b0); it is not terribly hard to see that weobtain all valid modi�ed signed bit representations this way. The startingvalues for the reursion are 002 = 2 and 003 = 3. Again, C 00n an be derivedby summation.Here are the �rst few values for eah of the funtions:n = 1 2 3 4 5 6 7 8 9 10 11 : : :n = 1 2 4 8 16 32 64 128 256 512 1024 : : :0n = 1 1 3 5 11 21 43 85 171 341 683 : : :00n = 1 2 3 7 13 27 53 107 213 427 853 : : :Cn = 2 4 8 16 32 64 128 256 512 1024 : : :C 0n = 2 3 6 11 22 43 86 171 342 683 : : :C 00n = 2 4 7 14 27 54 107 214 427 854 : : :Remarks. Note that n also satis�es the reursion that 0n and 00n satisfy.The sequene 0n has been alled the Jaobsthal sequene (A001045 in [10℄;see also [5℄).Next we ount the total weight of all representations of �xed length. De�nesn to be the total number of ones in all di�erent n-bit integers; we use s0nand s00n for the total number of non-zero signed bits in all di�erent non-adjaent forms and modi�ed non-adjaent forms of length n. Similarly, bySn, S0n and S00n we denote the total number of non-zeroes in in all binary,non-adjaent and modi�ed non-adjaent representations of length at mostn.Proposition 5. For n � 2:sn = n+ 12 � 2n�1;s0n = 6n+ 1027 � 2n�1 + (�1)n�1 6n+ 527 ;s00n = 15n+ 3454 � 2n�1 � (�1)n�1 6n+ 527 :



Signed bits and fast exponentiation 37Also, Sn = n2 � 2n;S0n = 6n+ 427 � 2n + (�1)n�1 3n+ 427 ;S00n = (5n18 + 1954) � 2n � (�1)n�1 3n+ 427 :Proof. To ount the total number of non-zero bits in n-bit words, notethat n + 1 bit words an be formed out of n-bit words by shifting and`appending' a single bit (0 or 1). Sine there are n suh n-bit integers,having sn non-zero bits, we �ndsn+1 = sn + (sn + n):From s1 = 1 and s2 = 3 we get the result by indution.To prove the formula for s0n, note thats0n+2 = 2(s0n + 0n) + s0n+1:This follows immediately from the proof of the previous Proposition. Thenuse veri�ation of s01 = s02 = 1 and indution.For s00n one derives similarly thats00n+2 = s0n + 0n + 2 � s0n+1 + 0n+1:For Sn and S0n we sum Pnk=0 sk and Pnk=0 s0k, only using thatnXk=0 k2k = (n� 1)2n+1 + 2:
Here are the �rst few values for eah of the funtions again:n = 1 2 3 4 5 6 7 8 9 10 11 : : :sn = 1 3 8 20 48 112 256 576 1280 2816 6144 : : :s0n = 1 1 5 9 25 53 125 273 609 1325 2885 : : :s00n = 1 3 5 15 31 75 163 367 799 1747 3771 : : :Sn = 1 4 12 32 80 192 448 1024 2304 5120 : : :S0n = 1 2 7 16 41 94 219 492 1101 2426 : : :S00n = 1 4 9 24 55 130 293 660 1459 3206 : : :As a onsequene we an determine how many non-zero (signed) bitsthere are on average in all integers requiring exatly or at most n bits inthe various expansions; we denote these by gn; g0n; g00n and tn; t0n; t00n.



38 Wieb BosmaCorollary 6. For all n � 2:gn = snnn = 12 + 12 � 1n;g0n = s0nn0n = 13 + 59 � 1n � (�1)n 13 � (2n � (�1)n) ;g00n = s00nn00n = 13 + 3445 � 1n + (�1)n (1� 35n)3 � (5 � 2n�2 + (�1)n) ;and Gn = SnnCn = 12 ;G0n = S0nnC 0n = 13 + 29 � 1n � 3 + (�1)n + (1 + (�1)n) 2n3 � (2n+2 + 3 + (�1)n) ;G00n = S00nnC 00n = 13 + 1945 � 1n � 3� (�1)n + (19 � (�1)n � 7) 15n3 � (5 � 2n + 3 + (�1)n)This Corollary, the proof of whih is an easy omputation, tells us that onaverage half the bits in a binary expansion are non-zero (as expeted), onein three signed bits in the non-adjaent form are non-zero (ompare [1, 3,9℄). For the modi�ed non-adjaent form also a third of the bits are non-zero asymptotially, but the onvergene is slightly slower beause thereare fewer zeroes in the exeptional ase.To give a fair omparison, we need to ount the number of bits usedfor integer with binary expansion of length n. An n-bit integer is a non-negative integer for whih the ordinary binary representation has length nexatly. 5. Analysis for integers of given lengthFirst we ount the total length and the total weight of n-bit integers inthe various representations. As usual we denote by l; l0; l00 and L;L0; L00 thevalues for ordinary binary, non-adjaent form and modi�ed non-adjaentform representation.Proposition 7. The total length of all numbers that take exatly n bits inbinary: ln = n2n�1;l0n = (n+ 23)2n�1 � 12 � (�1)n�1 16 ;l00n = (n+ 13)2n�1 � 12 + (�1)n�1 16 :



Signed bits and fast exponentiation 39The total length of all numbers that take at most n bits (in the ordinaryrepresentation): Ln = (n� 1)2n + 1;L0n = (n� 13)2n � n2 + 14 + (�1)n12 ;L00n = (n� 23)2n � n2 + 34 � (�1)n12 :Proof. Obviously the n length n integers giveln = nn:One way to ount l0n is to determine whih length n integers ontribute tolength n non-adjaent forms. These are the binary expansions of length nfor whih bn�2 = 0 and for whih the non-adjaent form of bn�3bn�4 � � � b0has length n�2. Of those there are exatly C 0n�2. The others, n�C 0n�2 =Cn�1�C 0n�2 = C 0n�1� 1 in number (ompare (�)), ontribute length n+1eah, so l0n = nC 0n�2 + (n+ 1)(C 0n�1 � 1) = (n+ 1)n �C 0n�2:Using Proposition 4 immediately gives the desired result.Similarly it an be proven thatl00n = nC 0n�1 + (n+ 1)(C 0n�2 � 1);For Ln we merely sum: Ln = nXk=0 lk;and likewise for L0n and L00n.The �rst few values for these funtions are:n = 1 2 3 4 5 6 7 8 9 10 11 : : :ln = 1 4 12 32 80 192 448 1024 2304 5120 11264 : : :l0n = 1 5 14 37 90 213 490 1109 2474 5461 11946 : : :l00n = 1 4 13 34 85 202 469 1066 2389 5290 11605 : : :Ln = 1 5 17 49 129 321 769 1793 4097 9217 : : :L0n = 1 6 20 57 147 360 850 1959 4433 9894 : : :L00n = 1 5 18 52 137 339 808 1874 4263 9553 : : :Let wn; w0n; w00n denote the total weight of all non-negative integers requir-ing exatly n bits in binary representation, and Wn;W 0n;W 00n the same forintegers of at most n bits.



40 Wieb BosmaProposition 8.wn = (n+ 1)2n�2; w0n = w00n = (n3 + 79)2n�1 + (�1)n 19Wn = n2n�1; W 0n = W 00n = (n3 + 49)2n � 12 + (�1)n 118Proof. Obviously again, wn = sn:The weight of non-adjaent and modi�ed non-adjaent forms are the same,so w0n = w00n and W 0n = W 00n . The �rst integer that requires n binary bitsis fn = 2n�1. For every integer h larger than fn for whih the length ofits non-adjaent form is n, there is an integer g smaller than fn that hasnon-adjaent form of length n�1 and the same weight as h: simply reverseall bits of h exept for the most signi�ant one. Thus the integers with non-adjaent forms of length n other than fn (whih has weight 1) ontributeexatly half their total weight, that is (s0n � 1)=2, to w0n. On the otherhand, for the same reason exatly half the total weight of the length n+ 1non-adjaent forms ontribute to the binary length n ount, whih impliesthat w0n = s0n � 12 + s0n+1 � 12 + 1;the +1 being the ontribution of fn itself. Substitution then gives theresult.A small table again:n = 1 2 3 4 5 6 7 8 9 10 11 : : :wn = 1 3 8 20 48 112 256 576 1280 2816 6144 : : :w0n = w00n = 1 3 7 17 39 89 199 441 967 2105 4551 : : :Wn = 1 4 12 32 80 192 448 1024 2304 5120 : : :W 0n = W 00n = 1 4 11 28 67 156 355 796 1763 3868 : : :Corollary 9. The number of multipliations neessary to ompute xe fora random integer e of exatly n bits using the binary expansion, the non-adjaent form and the modi�ed non-adjaent form for e is:mn = ln + wnn � 2 = 32(n� 1);m0n = l0n + w0nn � 2 = 43(n� 1) + 79 � (12 + (�1)n�1 118) � 12n�1 ;m00n = l00n + w00nn � 2 = 43(n� 1) + 49 � (12 � (�1)n�1 518) � 12n�1 :



Signed bits and fast exponentiation 41If e is random of at most n digits, the ost funtions are:Mn = Ln +WnCn � 2 = 32(n� 2) + 12n ;M 0n = L0n +W 0nCn � 2 = 43(n� 2) + 79 + (�n2 � 14 + (�1)n 536) � 12n ;M 00n = L00n +W 00nCn � 2 = 43(n� 2) + 49 + (�n2 + 14 � (�1)n 136) � 12n :As expeted we see that, for e of binary length n, it takes n� 1 multipli-ations (all squarings) and on average (n � 1)=2 multipliations using thebinary expansion for e; using the non-adjaent form the number of mul-tipliations an be redued to (n � 1)=3, where on average we save 1=3multipliation using the modi�ed form.Referenes[1℄ S. Arno, F. S. Wheeler, Signed digit representations of minimal Hamming weight. IEEETransations on Computers 42 (1993), 1007{1010.[2℄ A.D. Booth, A signed binary multipliation tehnique. Quart. Journ. Meh. and AppliedMath. 4 (1951), 236{240.[3℄ D.M. Gordon, A survey of fast exponentiation methods. Journal of Algorithms 27 (1998),129{146.[4℄ R. L. Graham, A.C.-C. Yao, F.-F. Yao, Addition hains with multipliative ost. DisreteMath. 23 (1978), 115{119.[5℄ A.F. Horadam, Jaobsthal representation numbers. Fibonai Quart. 34 (1996), 40{54.[6℄ D.E. Knuth, The Art of Computer Programming 2: Seminumerial Algorithms (thirdedition), Reading: Addison Wesley, 1998.[7℄ Neal Koblitz, CM-urves with good ryptographi properties, in: Feigenbaum (ed), Ad-vanes in Cryptology | Proeedings of Crypto '91, Leture Notes in Computer Siene 576,(1991), 279{296.[8℄ D.P. MCarthy, E�et of improved multipliation eÆieny on exponentiation algorithmsderived from addition hains. Math. Comp. 46 (1976), 603{608.[9℄ F. Morain, J. Olivos, Speeding up the omputations on an ellipti urve using addition-subtration hains. RAIRO Inform. Theory 24 (1990), 531{543.[10℄ N. J.A. Sloane, S. Plouffe, The enylopedia of integer sequenes. San Diego: AademiPress, 1995. http://www.researh.att.om/ njas/sequenes/[11℄ Hugo Volger, Some results on addition/subtration hains. Information Proessing Letters20 (1985), 155{160.Wieb BosmaVakgroep WiskundeUniversiteit van NijmegenThe NetherlandsE-mail : wieb�si.kun.nl


