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ise du gain obtenu enutilisant la repr�esentation des entiers sous la forme non-adja
ente,plutôt que la repr�esentation binaire, lorsqu'il s'agit de 
al
uler lespuissan
es d'�el�ements dans un groupe dans lequel l'inversion estfa
ile. En 
omptant le nombre de multipli
ations pour un ex-posant al�eatoire ayant un nombre donn�e de bits dans son �e
riturebinaire, nous obtenons une version pr�e
ise du r�esultat asympto-tique 
onnu, selon lequel en moyenne, un parmi trois bits sign�es dela forme non-adja
ente n'est pas nul. Cela montre que l'utilisationdes bits sign�es r�eduit le 
oût de l'exponentiation d'un neuvi�eme,par rapport �a la m�ethode ordinaire 
onsistant �a des �elevations au
arr�e et �a des multipli
ations r�ep�et�ees.Abstra
t. An exa
t analysis is given of the bene�ts of usingthe non-adja
ent form representation for integers (rather than thebinary representation), when 
omputing powers of elements in agroup in whi
h inverting is easy. By 
ounting the number ofmultipli
ations for a random exponent requiring a given numberof bits in its binary representation, we arrive at a pre
ise versionof the known asymptoti
 result that on average one in three signedbits in the non-adja
ent form is non-zero. This shows that the useof signed bits (instead of bits for ordinary repeated squaring andmultipli
ation) redu
es the 
ost of exponentiation by one ninth.1. Introdu
tionTo raise elements of a monoid into the power e > 1, the method ofrepeated squaring and multipli
ation is often employed. To 
al
ulate xe,where e =Pni=0 bi2i, with bi 2 f0; 1g and bn = 1, the powersy0 = x1; y1 = x2; y2 = x4; : : : ; yn = x2nare 
omputed by repeated squaring, and xe is found by taking the produ
tof the yi for whi
h bi = 1. It is 
lear that 
omputing xe this way takesl(e) � 1 squarings and w(e) � 1 multipli
ations, where the (binary) lengthManus
rit re�
u le 22 o
tobre 1999.Thanks to Ruud Jeurissen for �rst versions of proofs and for helpful dis
ussions.



28 Wieb Bosmal(e) = n + 1 and the Hamming weight w(e) are the total number of bitsand the number of non-zero bits bi used to express the exponent e.If the monoid is a group in whi
h inverses 
an be 
omputed eÆ
iently,it may be advantageous to use a di�erent representation of the exponent.Writing e =Pmi=0 si2i, where si 2 f�1; 0; 1g, we have obtained a signed bitrepresentation [2℄ for e. To determine xe, again 
omputey0 = x1; y1 = x2; y2 = x4; : : : ; ym = x2mvia repeated squaring, and a

umulate the produ
t ysii (for the non-zerosi), whi
h involves an inversion if si = �1.The advantage of signed bit representations is that the signed bit weightws(e) may be smaller than w(e). Taking e = 15 for example, the binary rep-resentation 
onsists of four bits equal to 1. But 15 = 24� 1, so a signed bitrepresentation of weight 2 and length 5 exists. At the 
ost of one inversionand an extra squaring we have done away with two multipli
ations.There exist better ways to 
ompute xe, using arbitrary addition 
hainsor addition-subtra
tion 
hains. We brie
y dis
uss them in Se
tion 3.A 
ompli
ation in 
onsidering signed bits may seem that signed bit rep-resentations of integers are by no means unique. Indeed, using that theinteger 1 has a representation 1 = 2k +Pk�1i=0 �1 � 2i, for any k > 1, it isseen that every integer admits in�nitely many signed bit representations.In Se
tion 2 we des
ribe the non-adja
ent form, whi
h sele
ts a uniquesigned bit representation for any non-negative integer e. We indi
ate howit, and a modi�ed version of it, 
an be determined eÆ
iently, and we showthat these spe
ial representations have 
ertain optimal properties.In Se
tions 4 and 5 we will analyze exa
tly the weight of non-adja
entforms for integers e. It is shown (in a pre
ise sense) that on average thisweight is a third of the length of e, as opposed to a half for the binaryform. In general the gain that 
an be a
hieved from this in exponentiationwill depend on the relative 
osts of inverting, multiplying, and squaringin the group. The standard appli
ation for signed bit exponentiation isto the arithmeti
 of ellipti
 
urves, [7℄, [9℄. The group of points on anellipti
 
urve over a �eld in Weierstrass form has the desired property thatinverting is (almost) for free. When inverting is free the results of Se
tion5 show that a redu
tion by a ninth in 
ost, on average, is obtained by usingthe non-adja
ent form rather than the binary form. This makes pre
ise aresult that so far only seems to be known heuristi
ally or asymptoti
ally [1℄,[7℄, [9℄. (Note that in the ellipti
 
urve 
ase squarings are usually slightlymore expensive than ordinary multipli
ations, whi
h means that the 
ostredu
tion from using signed bits is in fa
t less.)



Signed bits and fast exponentiation 292. Signed BitsTo �x the notation, let a signed-bit representation of length l(e) for a posi-tive integer e be a sequen
e sl(e)�1; sl(e)�2; : : : ; s0 su
h that e =Pl(e)�1i=0 si2i,with si 2 f�1; 0; 1g and sl(e)�1 = 1. Sometimes we will write m = l(e)� 1;the sequen
e of signed bits si is usually written without 
omma's withmost-signi�
ant digit sl(e)�1 �rst. In a sequen
e of signed bits the symbol1 will denote �1. Thus 10001 is a signed bit representation for 15.As we have seen already, e will in general have signed-bit representationsof various lengths; indeed, sin
e we may repla
e the leading 2m by 2m+1 �2m, a pro
ess whi
h 
an be repeated, we �nd in�nitely many representationsfor any e, of arbitrary (large enough) length. With our appli
ation ofminimizing 
osts of exponentiation in mind, we are parti
ularly interestedin short representations of low weight.We will 
all a signed bit representation for e optimal if it has least possibleweight and among all representations of minimal weight it has minimallength | 
learly the length of the binary expansion is a lower bound forthe length of a signed-bit representation. But note that optimality doesnot determine a unique representation in general, as the example 11 =23 + 2 + 1 = 23 + 22 � 1 shows.Let us �rst worry about uniqueness. The non-adja
ent form representa-tion is the signed bit representation for e 
hara
terized by the property:si 6= 0 ) si�1 = 0; for i � 1:Proposition 1. Positive integers have unique non-adja
ent form represen-tations.Proof. Suppose that there exist positive integers e with two di�erent non-adja
ent forms. Among all su
h e sele
t e0 having a non-adja
ent form ofminimal length. The minimality 
ondition requires that the least signi�
antbit in the minimal representation of e0 di�ers from that in any other. Theonly admissible pairs for the two least-signi�
ant bits in non-adja
ent formsare 00, 01, 01, 10, 10; only 10 and 10 determine the same value modulo 4,but their least-signi�
ant bits are equal.This ends the proof.It is easy to obtain the non-adja
ent form from the ordinary binary ex-pansion: apply the following rule repeatedly, working from right to left(least-signi�
ant �rst):repla
e any sequen
e 01 � � � 1 by 10 � � � 01where the number of 
onse
utive 0's in the latter is one less than the numberof 
onse
utive 1's in the former.



30 Wieb BosmaSin
e Pki=0 = 2k+1 � 1, it is 
lear that the result will always be a non-adja
ent form representation for the given integer determined by the binaryexpansion. It will also be 
lear that the length of the non-adja
ent form iseither equal to or one larger than that of the binary expansion.Example. Starting with the binary expansion for 3190 = 211 +210 + 26 +25 + 24 + 22 + 2, the rule produ
es:1 1 0 0 0 1 1 1 0 1 1 01 1 0 0 0 1 1 1 1 0 1 01 1 0 0 1 0 0 0 1 0 1 01 0 1 0 0 1 0 0 0 1 0 1 0for 3190 = 212 � 210 + 27 � 23 � 2.In fa
t the above pro
edure 
an be generalized to transform any givensigned bit representation into the non-adja
ent form; �rst apply the follow-ing rule repeatedly working from left to right:(I) repla
e 11 by 01; andrepla
e 11 by 01;and then apply the following repeatedly (working from right to left):(II) repla
e 0 k>1z }| {1 � � � 1 by 1 k�1z }| {0 � � � 0 1; andrepla
e 0 1 � � � 1| {z }k>1 by 1 0 � � � 0| {z }k�1 1;followed by a step of the form (I) if ne
essary.Proposition 2. For any integer the non-adja
ent form has minimal weight.Proof. Apply the above two rule-transformation to any signed bit repre-sentation of minimal weight; the result is the non-adja
ent form. Thetransformation does not in
rease the weight.Corollary 3. For every integer there is a unique signed bit representationsatisfying:sk 6= 0 ) sk�1 = 0; or k = m and sm = sm�1 = 1;moreover this expansion is optimal.Proof. Let tmtm�1 � � � t1t0 be the non-adja
ent form for e. If the three mostsigni�
ant bits tmtm�1tm�2 are 101, then let n = m� 1 and de�nesi = (1 for i = n; n� 1ti for 0 � i � n� 2.In all other 
ases let n = m and si = ti for 0 � i � n. This way s is equal tothe non-adja
ent form ex
ept when the leading digits for the non-adja
ent



Signed bits and fast exponentiation 31form are 1010, in whi
h 
ase we repla
e them by the shorter expansion withleading digits 110. Clearly s satis�es the non-adja
en
y 
onditions of thestatement; we will show that it is optimal too.In the ex
eptional 
ase the weights of s and t are equal, but the length ofs equals that of the binary expansion. Hen
e s is optimal in that 
ase. Wewill prove that in all other 
ases the non-adja
ent form t itself is optimal.Suppose that e is an integer with non-adja
ent form tmtm�1 � � � t1t0 ofminimal length that is not optimal. Sin
e the non-adja
ent weight is alwaysminimal, this 
an only o

ur if the length of the non-adja
ent form of eex
eeds that of its binary expansion by 1. This only happens if in the �naltransformation step a sequen
e of k � 2 adja
ent 1's is repla
ed by 10 � � � 01,where the number of 0's is k � 1. If k = 2 we are in the ex
eptional 
ase,so we will assume that k > 2. The binary expansion um�1um�2 � � � u0 hasum�1 = um�2 = um�3 = 1, while um�4 = 0 or 1.Sin
e the non-adja
ent weight is minimal, there must exist a signed bitrepresentation vm�1vm�2 � � � v0 of length m, and it ne
essarily has vm�1 =vm�2 = vm�3 = 1, and vm�4 = um�4 2 f0; 1g sin
e u and v representthe same number e. If vm�4 = 1, an extra redu
tion step redu
es lengthplus weight, whi
h 
ontradi
ts optimality of v. So vm�4 = 0; but thenv 6= u 
ontradi
ts minimality of m sin
e vm�5vm�6 � � � represents the samenumber as um�5um�6 with lower weight.That ends the proof.We will refer to the optimal representation of Corollary 3 as the modi�ednon-adja
ent form. It is the same as the non-adja
ent form, ex
ept thatnon-adja
en
y is allowed in the most signi�
ant two bits, that is 110 isnot transformed to 1010, be
ause su
h transformation in
reases the lengthwithout de
reasing the weight.Note that this does not mean that the modi�ed version is di�erent forpre
isely those integers for whi
h the leading bits in the binary expansionare 110 be
ause of the propagation of 
arries in the transformations: non-adja
ent and modi�ed non-adja
ent forms for 27 = 11011 = 100101 are thesame, but for 25 = 11001 they are di�erent, namely 101001 and 11001.It is not so diÆ
ult to obtain the (modi�ed) non-adja
ent form dire
tlyfrom e, without 
omputing the binary (or another signed-bit) expansion�rst. The method resembles the method for �nding the binary expansionprodu
ing the least signi�
ant bit �rst: starting with k = e repeat:if k even: produ
e 0 and divide k by 2;if k odd: produ
e 1, subtra
t 1 from k and divide k by 2;until k is 0.For the non-adja
ent form one pro
eeds as follows. Starting with k = e > 0again, one repeats:



32 Wieb Bosmae binary NAF modi�ed NAF1 1 1 12 1 0 1 0 1 03 1 1 1 0 1 1 14 1 0 0 1 0 0 1 0 05 1 0 1 1 0 1 1 0 16 1 1 0 1 0 1 0 1 1 07 1 1 1 1 0 0 1 1 0 0 18 1 0 0 0 1 0 0 0 1 0 0 09 1 0 0 1 1 0 0 1 1 0 0 110 1 0 1 0 1 0 1 0 1 0 1 011 1 0 1 1 1 0 1 0 1 1 1 0 112 1 1 0 0 1 0 1 0 0 1 1 0 013 1 1 0 1 1 0 1 0 1 1 1 0 114 1 1 1 0 1 0 0 1 0 1 0 0 1 015 1 1 1 1 1 0 0 0 1 1 0 0 0 116 1 0 0 0 0 1 0 0 0 0 1 0 0 0 017 1 0 0 0 1 1 0 0 0 1 1 0 0 0 118 1 0 0 1 0 1 0 0 1 0 1 0 0 1 019 1 0 0 1 1 1 0 1 0 1 1 0 1 0 120 1 0 1 0 0 1 0 1 0 0 1 0 1 0 021 1 0 1 0 1 1 0 1 0 1 1 0 1 0 122 1 0 1 1 0 1 0 1 0 1 0 1 1 0 1 023 1 0 1 1 1 1 0 1 0 0 1 1 1 0 0 124 1 1 0 0 0 1 0 1 0 0 0 1 1 0 0 025 1 1 0 0 1 1 0 1 0 0 1 1 1 0 0 126 1 1 0 1 0 1 0 1 0 1 0 1 1 0 1 027 1 1 0 1 1 1 0 0 1 0 1 1 0 0 1 0 128 1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 029 1 1 1 0 1 1 0 0 1 0 1 1 0 0 1 0 130 1 1 1 1 0 1 0 0 0 1 0 1 0 0 0 1 031 1 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 132 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 033 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 134 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 035 1 0 0 0 1 1 1 0 0 1 0 1 1 0 0 1 0 136 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 037 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 138 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 039 1 0 0 1 1 1 1 0 1 0 0 1 1 0 1 0 0 1



Signed bits and fast exponentiation 33k mod 4 � s 2 f�1; 1g: produ
e signed bits s and 0, and repla
e k by(k � s)=4;k mod 4 � s 2 f0; 2g: produ
e 0 and repla
e k by k=2.until k is less than or equal to 3, after whi
hif k = 0: produ
e nothing;if k = 1: produ
e 1;if k = 2: produ
e 0 and 1;if k = 3: produ
e 1 and 0 and 1;and terminate.For the modi�ed version the only 
hange ne
essary is to produ
e 11 in the
ase that k = 3.Note the similarities with the 
ontinued fra
tion algorithm, where divi-sion by 2 is repla
ed by inverting, and trun
ation repla
es extra
ting bits.The algorithm to obtain the non-adja
ent form is similar to the nearestinteger 
ontinued fra
tion algorithm.The table shows binary expansion, non-adja
ent form, and modi�ed non-adja
ent form for the �rst few positive integers.3. Addition-subtra
tion 
hainsThe method of repeated squaring and multipli
ation does not ne
essarilygive the fastest way to evaluate powers. It is well-known [6℄ that there areways to �nd xe using fewer multipli
ations.An addition 
hain for a positive integer e is a sequen
e 1 = e0, e1, : : : ,ek = e with the property that for 1 � i � k it holds that ei = eu + ev with0 � u; v < i. Ea
h term is thus the sum of two (possibly the same) previousterms. One usually arranges the ei in as
ending order. The length of theaddition 
hain is the integer k. It will be 
lear that an addition 
hain for e
an be used to 
ompute xe: for any i the power xei 
an be 
omputed fromxe0 ; : : : ; xei�1 by a single multipli
ation.The binary expansion e = Pni=0 bi2i of any e of length n + 1 de�nesan addition 
hain of length n + w(e) � 1 for e, 
orresponding to repeatedsquaring and multipli
ation as des
ribed in Se
tion 1, as follows. Writedown the powers pi = 2i; i = 0; : : : ; n of 2 less than or equal to e. Nexttake r0 = 0 and let rj be rj�1+pij , where i1; : : : ; ik are those i from 0 to nfor whi
h bi 6= 0. The addition 
hain for e then 
onsists of the the pi (with1 � i � n) and rj (with j � 1) in as
ending order.There is an alternative addition 
hain asso
iated with the binary expan-sion, obtained by reading the bits from left to right (most signi�
ant �rst).Starting with e0 = 1 one repeats for i = 1; : : : ; n:if bn�i = 1: append 2ej and 2ej +1 to the existing sequen
e e0; : : : ej ;otherwise: append 2ej to the existing sequen
e e0; : : : ej .



34 Wieb BosmaThere are two problems with general addition 
hains. In the �rst pla
eis it hard to �nd a shortest 
hain for given e [6℄. Se
ondly, general addition
hains make it ne
essary to remember entries xe0 ; : : : ; xei�1 along the wayto 
ompute xei . Note that this is not true for the left-to-right binary addition
hain, as ei is either 2ei�1 or ei�1+1, that is, every step is either a squaringor a multipli
ation by x ([4℄, see also [8℄ for the spe
ial 
ase of integerexponentiation).Taking the possibility of subtra
ting into a

ount as well, we arrive ataddition-subtra
tion 
hains [11℄. In general we 
annot insist on as
endingentries anymore. Again, it will be 
lear that any signed-bit representationof e will give rise to two addition-subtra
tion 
hains, by reading the signedbits either way. It is also obvious that, sin
e the weight of a signed bitrepresentation 
an be smaller than that of the binary expansion, that the
orresponding 
hain may be shorter.Examples. Let e = 43; reading its bits 101011 right-to-left to obtain thesequen
e of pi's 1; 2; 4; 8; 16; 32 and of rj's 3; 11; 43, we obtain an addition
hain by merging and ordering: 1; 2; 3; 4; 8; 11; 16; 32; 43 of length 8.Reading the binary expansion 101011 left-to-right produ
es e0 = 1, thene1 = 2, and e2 = 4; e3 = 5, then e4 = 10, and e5 = 20; e6 = 21, and �nallye7 = 42; e8 = 43. Indeed, length 8 for 5 doublings and 3 multipli
ations.Reading the modi�ed non-adja
ent form 43 = 110101 left-to-right givesthe addition-subtra
tion 
hain 1; 2; 3; 6; 12; 11; 22; 44; 43, reading it right-to-left the 
hain �1, 2, 4, �5, 8, 16, 11, 32, 43. Both have length 8. Thenon-adja
ent form gives 
hains of length 9.There exists an addition 
hain of length 7 for 43: 1; 2; 4; 8; 9; 17; 34; 43.The addition-subtra
tion 
hain 1; 2; 4; 8; 16; 15 asso
iated with 15 = 24�20, is shorter than the 
hain 1; 2; 3; 6; 7; 14; 15 arising from the binary ex-pansion 15 = 23 + 22 + 21 + 20. In this 
ase there is an addition 
hain oflength 5 as well, however: 1; 2; 3; 5; 10; 15 for example.In general, for e = 2k � 1 the binary expansion gives rise to an addition
hain of length 2k � 2 while the non-adja
ent form leads to an addition-subtra
tion 
hain of length k + 1.Outside numbers of this form, e = 23 is the �rst example where themodi�ed non-adja
ent form for e leads to an addition-subtra
tion 
hain(1; 2; 3; 6; 12; 24; 23 of length 6) that is stri
tly shorter than the binary ad-dition 
hains (1; 2; 4; 5; 10; 11; 22; 23 and 1; 2; 3; 4; 7; 8; 16; 23 of length 7).Again there exist addition 
hains of length 6, like 1; 2; 3; 5; 10; 13; 23.For e = 27 there are addition 
hains (su
h as 1; 2; 3; 6; 9; 18; 27) that areshorter than both the 
hains obtained from the binary expansion (1; 2; 3; 6;12; 13; 26; 27) and the addition-subtra
tion 
hain gotten from the (modi-�ed) non-adja
ent form (1, 2, 4, 8, 7, 14, 28, 27). For e = 47 the length ofthe 
hain given by the modi�ed non-adja
ent form (1, 2, 3, 6, 12, 24,48, 47) is shorter than any addition 
hain (the shortest of whi
h have



Signed bits and fast exponentiation 35length 8: 1; 2; 3; 4; 7; 10; 20; 27; 47 for example, while the binary gives length9: 1; 2; 4; 5; 10; 11; 22; 23; 46; 47); in this 
ase there is no shorter addition-subtra
tion 
hain either.There are methods to 
onstru
t short addition 
hains | these are notne
essarily shortest, but shorter than those obtained from the binary ex-pansion. The results from the present paper indi
ate the gain that 
an beobtained by using signed bits rather than bits; perhaps this will lead to amore general analysis of the advantages of addition-subtra
tion 
hains overaddition 
hains (in situations where they are appli
able).4. AnalysisTo analyze the bene�ts of using the signed bit representations, we �rstprove some results on (average) length of non-adja
ent and modi�ed non-adja
ent forms. Let 
n denote the number of positive integers requiringexa
tly n bits in their binary representation, and let 
0n and 
00n be the numberof positive integers requiring exa
tly n signed bits in the non-adja
ent formand in the modi�ed non-adja
ent form representation, respe
tively. Also,let Cn, C 0n and C 00n similarly de�ne the number of positive integers requiringat most n bits in the three representations.Proposition 4. The number of positive integers with expansions of lengthn is given by 
1 = 
01 = 
001 = 1, and for n � 2:
n = 2n�1; 
0n = 232n�1 � (�1)n3 ; 
00n = 562n�1 + (�1)n3 :Hen
e, for n� 0:Cn = 2n; C 0n = 232n + 12 � (�1)n6 ; C 00n = 562n + 12 + (�1)n6 :Proof. Only 1 requires one bit in any expansion. It is also 
lear that thereare exa
tly 2n�1 integers with most signi�
ant bit bn�1 = 1 (of length n),so 
n = 2n�1 and Cn =Pnk=0 
k = 2n.The easiest way to 
ount integers with n signed bits in their non-adja
entform is to observe that the following re
ursion holds:
0n+2 = 
0n+1 + 2
0n; for n � 1:Namely, the 
0n positive integers of length n (all having sn�1 = 1), when`prepended' with sn = 0 and sn+1 = 1 all 
ontribute. We get another
ontribution of size 
0n by 
ipping the n-th bit bn�1 to �1. This a

ountsfor all positive integers requiring n+ 2 bits for whi
h bn�1 6= 0. We obtainthose with bn�1 = 0 by taking the 
0n+1 representations of length n+1 andrepla
ing the leading digit bn = 1 by bn = 0 and putting bn+1 = 1. Thisway the validity of the re
ursion 
an be seen to hold. With starting values
01 = 
02 = 1 the 
losed form for 
0n in the statement of the proposition is



36 Wieb Bosmathen easily proved, for example by indu
tion. The formula for C 0n is simplyobtained by summation: Pnk=0 
0k.One way to 
ount integers with modi�ed non-adja
ent form of length nis to use that their number also satis�es the re
ursion:
00n+2 = 
00n+1 + 2
00n; for n � 2:This time one takes the representations of length n, and obtains from ea
htwo valid representations of length n + 2 by shifting over 2 pla
es andinserting b1 = 0 and b0 = �1. From the length n + 1 representationsone gets length n + 2 representations by shifting one pla
e and takingb0 = 0. This 
learly leads to 2
00n + 
00n+1 valid representations of lengthn+ 2 (taking 
are that n > 1 to prevent the illegal representation 101 for3) that are all distin
t (look at b0); it is not terribly hard to see that weobtain all valid modi�ed signed bit representations this way. The startingvalues for the re
ursion are 
002 = 2 and 
003 = 3. Again, C 00n 
an be derivedby summation.Here are the �rst few values for ea
h of the fun
tions:n = 1 2 3 4 5 6 7 8 9 10 11 : : :
n = 1 2 4 8 16 32 64 128 256 512 1024 : : :
0n = 1 1 3 5 11 21 43 85 171 341 683 : : :
00n = 1 2 3 7 13 27 53 107 213 427 853 : : :Cn = 2 4 8 16 32 64 128 256 512 1024 : : :C 0n = 2 3 6 11 22 43 86 171 342 683 : : :C 00n = 2 4 7 14 27 54 107 214 427 854 : : :Remarks. Note that 
n also satis�es the re
ursion that 
0n and 
00n satisfy.The sequen
e 
0n has been 
alled the Ja
obsthal sequen
e (A001045 in [10℄;see also [5℄).Next we 
ount the total weight of all representations of �xed length. De�nesn to be the total number of ones in all di�erent n-bit integers; we use s0nand s00n for the total number of non-zero signed bits in all di�erent non-adja
ent forms and modi�ed non-adja
ent forms of length n. Similarly, bySn, S0n and S00n we denote the total number of non-zeroes in in all binary,non-adja
ent and modi�ed non-adja
ent representations of length at mostn.Proposition 5. For n � 2:sn = n+ 12 � 2n�1;s0n = 6n+ 1027 � 2n�1 + (�1)n�1 6n+ 527 ;s00n = 15n+ 3454 � 2n�1 � (�1)n�1 6n+ 527 :



Signed bits and fast exponentiation 37Also, Sn = n2 � 2n;S0n = 6n+ 427 � 2n + (�1)n�1 3n+ 427 ;S00n = (5n18 + 1954) � 2n � (�1)n�1 3n+ 427 :Proof. To 
ount the total number of non-zero bits in n-bit words, notethat n + 1 bit words 
an be formed out of n-bit words by shifting and`appending' a single bit (0 or 1). Sin
e there are 
n su
h n-bit integers,having sn non-zero bits, we �ndsn+1 = sn + (sn + 
n):From s1 = 1 and s2 = 3 we get the result by indu
tion.To prove the formula for s0n, note thats0n+2 = 2(s0n + 
0n) + s0n+1:This follows immediately from the proof of the previous Proposition. Thenuse veri�
ation of s01 = s02 = 1 and indu
tion.For s00n one derives similarly thats00n+2 = s0n + 
0n + 2 � s0n+1 + 
0n+1:For Sn and S0n we sum Pnk=0 sk and Pnk=0 s0k, only using thatnXk=0 k2k = (n� 1)2n+1 + 2:
Here are the �rst few values for ea
h of the fun
tions again:n = 1 2 3 4 5 6 7 8 9 10 11 : : :sn = 1 3 8 20 48 112 256 576 1280 2816 6144 : : :s0n = 1 1 5 9 25 53 125 273 609 1325 2885 : : :s00n = 1 3 5 15 31 75 163 367 799 1747 3771 : : :Sn = 1 4 12 32 80 192 448 1024 2304 5120 : : :S0n = 1 2 7 16 41 94 219 492 1101 2426 : : :S00n = 1 4 9 24 55 130 293 660 1459 3206 : : :As a 
onsequen
e we 
an determine how many non-zero (signed) bitsthere are on average in all integers requiring exa
tly or at most n bits inthe various expansions; we denote these by gn; g0n; g00n and tn; t0n; t00n.



38 Wieb BosmaCorollary 6. For all n � 2:gn = snn
n = 12 + 12 � 1n;g0n = s0nn
0n = 13 + 59 � 1n � (�1)n 13 � (2n � (�1)n) ;g00n = s00nn
00n = 13 + 3445 � 1n + (�1)n (1� 35n)3 � (5 � 2n�2 + (�1)n) ;and Gn = SnnCn = 12 ;G0n = S0nnC 0n = 13 + 29 � 1n � 3 + (�1)n + (1 + (�1)n) 2n3 � (2n+2 + 3 + (�1)n) ;G00n = S00nnC 00n = 13 + 1945 � 1n � 3� (�1)n + (19 � (�1)n � 7) 15n3 � (5 � 2n + 3 + (�1)n)This Corollary, the proof of whi
h is an easy 
omputation, tells us that onaverage half the bits in a binary expansion are non-zero (as expe
ted), onein three signed bits in the non-adja
ent form are non-zero (
ompare [1, 3,9℄). For the modi�ed non-adja
ent form also a third of the bits are non-zero asymptoti
ally, but the 
onvergen
e is slightly slower be
ause thereare fewer zeroes in the ex
eptional 
ase.To give a fair 
omparison, we need to 
ount the number of bits usedfor integer with binary expansion of length n. An n-bit integer is a non-negative integer for whi
h the ordinary binary representation has length nexa
tly. 5. Analysis for integers of given lengthFirst we 
ount the total length and the total weight of n-bit integers inthe various representations. As usual we denote by l; l0; l00 and L;L0; L00 thevalues for ordinary binary, non-adja
ent form and modi�ed non-adja
entform representation.Proposition 7. The total length of all numbers that take exa
tly n bits inbinary: ln = n2n�1;l0n = (n+ 23)2n�1 � 12 � (�1)n�1 16 ;l00n = (n+ 13)2n�1 � 12 + (�1)n�1 16 :



Signed bits and fast exponentiation 39The total length of all numbers that take at most n bits (in the ordinaryrepresentation): Ln = (n� 1)2n + 1;L0n = (n� 13)2n � n2 + 14 + (�1)n12 ;L00n = (n� 23)2n � n2 + 34 � (�1)n12 :Proof. Obviously the 
n length n integers giveln = n
n:One way to 
ount l0n is to determine whi
h length n integers 
ontribute tolength n non-adja
ent forms. These are the binary expansions of length nfor whi
h bn�2 = 0 and for whi
h the non-adja
ent form of bn�3bn�4 � � � b0has length n�2. Of those there are exa
tly C 0n�2. The others, 
n�C 0n�2 =Cn�1�C 0n�2 = C 0n�1� 1 in number (
ompare (�)), 
ontribute length n+1ea
h, so l0n = nC 0n�2 + (n+ 1)(C 0n�1 � 1) = (n+ 1)
n �C 0n�2:Using Proposition 4 immediately gives the desired result.Similarly it 
an be proven thatl00n = nC 0n�1 + (n+ 1)(C 0n�2 � 1);For Ln we merely sum: Ln = nXk=0 lk;and likewise for L0n and L00n.The �rst few values for these fun
tions are:n = 1 2 3 4 5 6 7 8 9 10 11 : : :ln = 1 4 12 32 80 192 448 1024 2304 5120 11264 : : :l0n = 1 5 14 37 90 213 490 1109 2474 5461 11946 : : :l00n = 1 4 13 34 85 202 469 1066 2389 5290 11605 : : :Ln = 1 5 17 49 129 321 769 1793 4097 9217 : : :L0n = 1 6 20 57 147 360 850 1959 4433 9894 : : :L00n = 1 5 18 52 137 339 808 1874 4263 9553 : : :Let wn; w0n; w00n denote the total weight of all non-negative integers requir-ing exa
tly n bits in binary representation, and Wn;W 0n;W 00n the same forintegers of at most n bits.



40 Wieb BosmaProposition 8.wn = (n+ 1)2n�2; w0n = w00n = (n3 + 79)2n�1 + (�1)n 19Wn = n2n�1; W 0n = W 00n = (n3 + 49)2n � 12 + (�1)n 118Proof. Obviously again, wn = sn:The weight of non-adja
ent and modi�ed non-adja
ent forms are the same,so w0n = w00n and W 0n = W 00n . The �rst integer that requires n binary bitsis fn = 2n�1. For every integer h larger than fn for whi
h the length ofits non-adja
ent form is n, there is an integer g smaller than fn that hasnon-adja
ent form of length n�1 and the same weight as h: simply reverseall bits of h ex
ept for the most signi�
ant one. Thus the integers with non-adja
ent forms of length n other than fn (whi
h has weight 1) 
ontributeexa
tly half their total weight, that is (s0n � 1)=2, to w0n. On the otherhand, for the same reason exa
tly half the total weight of the length n+ 1non-adja
ent forms 
ontribute to the binary length n 
ount, whi
h impliesthat w0n = s0n � 12 + s0n+1 � 12 + 1;the +1 being the 
ontribution of fn itself. Substitution then gives theresult.A small table again:n = 1 2 3 4 5 6 7 8 9 10 11 : : :wn = 1 3 8 20 48 112 256 576 1280 2816 6144 : : :w0n = w00n = 1 3 7 17 39 89 199 441 967 2105 4551 : : :Wn = 1 4 12 32 80 192 448 1024 2304 5120 : : :W 0n = W 00n = 1 4 11 28 67 156 355 796 1763 3868 : : :Corollary 9. The number of multipli
ations ne
essary to 
ompute xe fora random integer e of exa
tly n bits using the binary expansion, the non-adja
ent form and the modi�ed non-adja
ent form for e is:mn = ln + wn
n � 2 = 32(n� 1);m0n = l0n + w0n
n � 2 = 43(n� 1) + 79 � (12 + (�1)n�1 118) � 12n�1 ;m00n = l00n + w00n
n � 2 = 43(n� 1) + 49 � (12 � (�1)n�1 518) � 12n�1 :



Signed bits and fast exponentiation 41If e is random of at most n digits, the 
ost fun
tions are:Mn = Ln +WnCn � 2 = 32(n� 2) + 12n ;M 0n = L0n +W 0nCn � 2 = 43(n� 2) + 79 + (�n2 � 14 + (�1)n 536) � 12n ;M 00n = L00n +W 00nCn � 2 = 43(n� 2) + 49 + (�n2 + 14 � (�1)n 136) � 12n :As expe
ted we see that, for e of binary length n, it takes n� 1 multipli-
ations (all squarings) and on average (n � 1)=2 multipli
ations using thebinary expansion for e; using the non-adja
ent form the number of mul-tipli
ations 
an be redu
ed to (n � 1)=3, where on average we save 1=3multipli
ation using the modi�ed form.Referen
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