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APPROXIMATION BY MEDIANTS 

WIEB BOSMA 

ABSTRACT.The distribution is determined of some sequences that measure how 
well a number is approximated by its mediants (or intermediate continued frac- 
tion convergents). The connection with a theorem of Fatou, as well as a new 
proof of this, is given. 

Let x denote an irrational number. From the expansion of x into a regular 
continued fraction 

(0.1) x = B 0 +  
1 

= [Bo; B, ,BZ,.. .I1 
B1 +87+ 


one gets the convergents Pn/Qn of x by truncation, 

These convergents satisfy the relation 

and provide very good approximations to x ;for instance, defining { O ~ ( X ) } ~ ~  
by 

it is a classical result that On(x)  5 1 always holds. In [ l ]  it was shown that for 
almost all x the sequence { O , ( X ) } ~ ~has a limiting distribution & F ( z ) ,  
where 

for z 5 0 ,  
f o r O s z 5 $ ,  

(0.5) F ( z )  = 
1 - z + log(2z), for 5 z 5 1, 
log 2 ,  for 1 5 s. 
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Here we will consider a similar question for the mediants (or secondary conver- 
gents, or intermediate convergents) of x ; these are defined by 

for integers B ,  0 < B < B, (n > 2 ) .  In particular, we will derive in $1 for 

almost all x the limiting distribution of the sequences {@)P'(x)):, for every 

B , where @ y ) ( x )  is given by 

Note that some care is needed because L : ~ ' / M ~ ~  0:'and hence does not 

exist for every n and B . The values of @?) are not bounded by 1 but satisfy 

thus these values are uniformly bounded for fixed x if and only if the partial 
quotients En are bounded. In $1 we study the distribution of 0:' for fixed 

B .  In order to be able to study the distribution of the values of 8:' for 
all B simultaneously (in $2), we will consider sets of the form (010 5 C} 
(for any positive real constant C )  , with Q = QlQx - PI,  where P / Q  ranges 
over the rationals that are either convergents or mediants of x . Finally, in $3  
and $4 we collect some (previously known) results, especially concerning the 
approximation by nearest mediants, that follow from the method employed. In 
particular, we show how to retrieve Fatou's theorem, stating that every rational 
number P / Q  for which QlQx - PI 5 1 is either a convergent or a nearest 
mediant of x . 

In the following we will always assume rationals P / Q  (and L /M)  to be in 
lowest terms, i.e., that gcd(P, Q) = 1 and that Q > 0 .  Whenever a result is 
stated for almost all x , this is meant to be in the Lebesgue sense. 

1. APPROXIMATIONBY MEDIANTS 

The main tool we will use is a variation on a theme that first appeared in [ l ]  
and was used in several papers thereafter. The theme consists of considering 
the sequence {(T, (x), v , ( x ) ) } ~ ,  for an irrational number x , where T, (x) is 
given by 

(1.1) T, = T,(") = [O; , En+,' . . 'I 

and V,(x) by 


( 1.2) V, = K ( x )  = 10; B,, . . .  , E l l ,  


with B, as in (0.1). For every x and every n , the pair (T, (x), y, (x))E [0 , 11x 

[O, 11, and for almost all x the sequence {(T,(x), <(x))}:, is distributed 

over the unit square with density function 
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Basically, this is a consequence of the fact that 

(1.4) (A,9,p , 7)forms an ergodic system ; 

here .kt' is the unit square and 7acts on by 

53' is the collection of Bore1 subsets of A and p is the measure on .k' with 
density function 11(see [ l o ] ) .Using ergodicity and the first of the 

log 2 ( 1 + X J , ) ~  

basic relations 

On = Tn and 0,-, = ' n  
1 + Tn Vn 1 + T, y, ' 

one gets immediately that 

where 3-is the subspace of A consisting of points under the hyperbola 

T 
1 + TV 

-- Z .  

The variation we need here is, that instead of using the function 0, in every 

point of the unit square, we consider B, - 1 functions, namely 0:) with 

0 < B < Bn . More precisely, let B > 0 ;  then the function OiB) as in (0.7) 
is defined in (Tn- ,, V,-,) E [O, 1 1  x [O, 1 1  precisely when the partial quotient 

B, exceeds B , that is, when T,-, < & . SO 0:) is defined on the rectangle 

9 = ( T ,  V ) :O I T S - 0 ,  V ,  1 ) .  
' " )  B + 1{ 

1 

Instead of (0.6) and (0.7) one would like to have formulas expressing 0:) in 
terms of B ,  T ,  and V only. This can be done as follows. Combining (0.4), 
(0.6),and (0.7),one easily gets 

Then use ( 1 . 5 )  to express 0,-, and 0,,-, in terms of T,-, and and 
one arrives at 

This provides the preliminaries for the proof of the following theorem. 

( 1.9) Theorem. Let B > 0 be an integer. 
(i) For every x and for every n > 1 such that 0 < B < Bn , there holds 
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(ii) For almost all x , the sequence { ~ ~ ~ ( x ) } ~ ,is distributed according to 
the distribution function 

where 

Proof. From (1.8)we see that O:) < z if and only if (Tn- ,, Vn-,) is in 3?(B) 
and satisfies 

or, equivalently, 
B ' T ~ - ,+ z - B 

% - I  < 1 - '( B+ Z ) T ~ - ~  

So, for given x and fixed B we have to find all pairs (Tn- ,  ( x )  , VnPI( x ) )in 

~ 9 2 ' ~ )under the hyperbola 

Denote by the set of points ( T ,  V )  under the hyperbola 

=Since L3"B)nx ( ~ ) ( z )is empty for z < and L3"B' n ~ ' ~ ' ( z )L3'lB' for 
z > B + 1 ,we are done with part (i).  For the second part we use the ergodicity 
given in ( 1.4),which implies that for almost all x : 

1 1
lim -#{j< n : O Y 1 ( x )< Z }  = p ( d B ) )p ( d B )nx ( ~ ) ( z ) ) .n-cc n 

Therefore, we are left with the computation of , L L ( ~ ? ( ~ )  as a function n ~ ( ~ ) ( z ) )  
of z , which equals, by ( 1.3), 
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For & < z 5 one gets 

and we find 

1 B + l  
---log 2 (Yz-log ( T z )  - 1 ) .  

For % < z < B ,  

dB'nz ( ~ ) ( z )  

B - z  B + I - z  B ~ T + Z - B  
= { ( T ,  V ) :  -5 T I  0 5 V 5  

B B ~ + B + Z  1 - ( B+ Z ) T  

and this gives 

--
z + log 

-L(B ( B + 1 )  + log- log2 
( B+ 1 1 2  

by a computation similar to the above. 
Finally, for B 5 z 5 B + 1 , 

B + I - z  B ~ T + Z - BI9 )nZ B ( z )= ( T ,  V )  : 0 < T 5 
B ~ + B + Z  

O < V 5  1 - ( B+ z ) T  
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and the double integral (1.11) equals 

1 z (B + l ) z  B + 2  
-(1 - p - q  +log
log 2 B ~ + B + Z  

-
z 

- -!- 1 - ,;,-log
log 2 (BB + 2+ 112z ) .  

To find the distribution function G ( ~ ), we have to normalize, i.e., we have to 
divide in each of the cases by 

This completes the proof of (1.9). 

Remark. The special case B = 1 of Theorem (1.9) yields the result that was 
found as Lemma 2.24 in [7]. 

In this section we look at the approximation of an irrational number x by 
all of its mediants and convergents simultaneously. 

(2.1) Lemma. Let G ( ~ ) ( z )be as in (1.9). Then for the function H ( z )  dejined 
by 

1 
0 ,  for z 5 7 , 

1
-1 +2z- log(2z ) ,  for - < z 5 1 ,

2 -
z 

1 + log - ,
2 

for 1 5 z. 

Proof. Let GiB'(z) be as in (1.9) for i = 0 ,  .. . , 4 .  Suppose first that 5 z 
5 1 ; let the positive integer k be determined by & 5 z < $. Then 

k + l
+ ( - I + ~z - log -k + l ~ )k + O  

k + l  k + l  
= ( ~ - ~ ) z + l o g - - l + ~2k z - log -k + l

k 
z 

= - 1 + 22 - log 22. 
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For 1 < z we let the integer k be such that k 5 z < k + 1 . Then 

k + l  
= log -

1
+ I - - k + 2  

2 k + l  
z +log ---

( k +  l ) ? ;  
1+- k + l  

k + l  
z + log -

k + 2  

= 1 +log&
2 

This completes the proof of (2.1). 

For any irrational x we introduce the following notation for the collection 
of all convergents and mediants of x : 

For any C > 0 we will denote by d c ( x )  the subset 

of d ( x ). We enumerate the elements of d C ( x )  after ordering them by in-
creasing denominators; thus every fraction L n / M n  in d C ( x ) is either a con-
vergent or a mediant of x , and M, < MI if i < j . 

(2.2) Theorem. Let C > 0 ;for almost all x 

C 
( x ) , M ~ M , x - L ~ ~ < ~

n - m  n 

exists and {MJlM J x  - LJI : 5 E d C ( x ) )  has limiting distribution ~ " ' ( z )
M ,

given by 

- z ,C 
f o r O I z < C ,  i f O < C < l ,  

f o r O < z <  1 ,  

1 
i f C 2 1 .  

( 1  + l o g z ) ,  for I <  z 5 C ,
1 + logC 

Proof. Let C > 0 be arbitrary. For 0 5 z 5 C we have to find all n , B (with 
0 < B < Bn)  such that @:)(x) 5 z as well as all n for which O,,(x)5 z . Let 
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A ( ~ ) ( Z )c 9'(B)denote the subset for which O y ) ( x )5 z and let ~ ' " ( z )be 
the subset of [ 0 ,  1 1  x [ 0 ,  11 for which On( x )5 z . By the ergodicity of (1.4) 
and the individual ergodic theorem it follows that for almost all x 

1
lim - # { j  5 n : O y ' ( x )5 Z }  = 

1 
n - m  n , L L ( ~ ( ~ ) )P ( A ' ~ ' ( z ) )  

and 
1

lim - # { j  5 n : O , ( X )5 z }  = , U ( A ( ~ ) ( Z ) ) .  
n - m  n 

In ( 1.9) we saw that 

and by (0.5), 
1 

, U ( A ' ~ ' ( Z ) )= - F ( z )  .
log 2 

Denoting the whole space by A,, these combine to 

1 l o o  
= - F ( z )  + - d B ' ( z )

log 2 log 2 B= I 

1 1 
= - F ( z )  + - H ( z )log 2 log 2 

as in (2.1).The distribution function H( ' ) ( z )  is now found from the definitions 
of F ( z )  and H ( z )  and by scaling: 

( C )H ( z )= F ( z )+ H ( z )  
F ( C )+ H ( C )  ' 

This proves (2.2). 

3. APPROXIMATIONBY NEAREST MEDIANTS 

In this section we look at the approximation of an irrational number x by 
its nearest mediants, that is, by the mediants with B = 1 or with B = B,, - 1 . 
Since the case B = 1 is contained in Theorem (1.9),we look here at B = Bn- 1 . 
Notice that the 'first' mediant ( B  = 1 )  and the 'final' mediant ( B  = B,, - 1 )  
coincide in case Bn = 2 ; if B,, = 1 , there are no mediants. The first theorem 
tells us how the final mediants are distributed for a given partial quotient. By 

we will denote the sequence consisting of the O's belonging to the final mediants 
for which the partial quotient equals D . 
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(3.1) Theorem. (i) For every x and for every n > 1 such that B, 2 2 ,  there 
holds 

Bn - l + e ~ - l )  2 45 -
B, B, + 2' 

(ii) For almost all x ,  the sequence { Q ~ - ~ ) I , ~ = , )for D 2 2 is distributed 
according to the distribution function 

Proof. The proof is an imitation of the proof of Theorem (1.91, the difference 
being that we have to consider pairs ( T ,  V)  here in 9(D-')\ 9(D). We leave 
the details to the reader. 

1 
(D+ I l 2  

~ ' ~ ' ( z ), 
log q z T )  

where 

Let 9 ( x )  denote the collection of final mediants: 

( D l  

M .  M q - 1 for some n for which B, 2 2 

(Dl  D - 1J, ( z ) = O ,  f o r z + y ,  

( D l  DJl ( z ) = - I + -
D 

z -log (-z)
D - 1  D - 1  ' 

D - 1  D 
for 7I z I -D +  1 ' 

( D l  1 z + logJ2 = D(D - 1 )  > 

We enumerate the elements of F ( x )  again after ordering them by increasing 
denominators; thus every fraction L,/M, in 9 is a final mediant of x , and 
M , < M  if i < j .  

J ( z )= 
< z <  

2(D - 1 )
for - D + l  ' 

( D l
J3 ( z )= 1 --

( D  + 1 1 2
D i 2 z + l o g (2 0  2 0 2  z ) ,  

2(D - 1 )  2 0  
for D + 1 

+ z I -
D + 2 '  

( D lJ4 ( z )= log 
( D  + 1 1 2  2 0  

1 D(D + 2 )  ' for + z .  

(3.2) Theorem. For almost all x 
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exists and {M,IM,x - L ,  : E F ( x ) )  has limiting distribution %J ( Z )  ,", log 3 
where 

/ 1 
0 ,  f o r z <  2 ,  

1 2
-1 + 2 z  -log(2z), or - < z < - ,

2 - 3 
z 3 2

J(z)= < - + log - , f o r - < z <  1 ,
2 4 3 -

z
I- -+log( : ; ) ,  for1 5 1 5 2 ,  2 

,1% 2
3 

, for 2 < z. 

Proof. We have to find all n with O?-li(x) < z .  Let c 
denote the subset for which O?-')(x) < z . By the ergodicity of ( 1.4) and the 
individual ergodic theorem it follows that for almost all x 

From (3.1) we can see that 

This gives 

03 
 A(B"-l) 
-- C B , - I = I  P( ( z ) )  1 " (D)= Y ~ J (z).  

C ; - I = l l o g ( ( B n + 1 ) 2 1 ~ n ( ~ , + 2 ) )logID=2 

Suppose first that < z < $ ; then 

Next, let < z < 1; let the positive integer k be determined by < z <
& . Then (just as in the proof of (2.1)) 

00 k - l  00x J ' ~ ' ( z )= J;"(Z) + J iDi (z )+ J:~)(z)+ x JAD)(z) 
D=2 D=3 D=k+l 

k 
+ ( - I + =  z - log- k - 1  z ) + 0  
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2(k-2) 2 ( k - l )  ~h~~For 1 5 z 5 2 we let the integer k be such that 5 z < . 

z 
+ D=k (D(D - 1) + log (D - D~ + 

3(k - 1)  
= 1 + log 

2k 
+ 1 - 2(k - 1)  .+ log(  k2  :)

2(k - 112 

This completes the proof of (3.2). 

Next, we look at the sequence of Q's coming from convergents and nearest 
mediants of a given x . Let M ( x )  denote the collection of convergents and 
nearest mediants: 

L . L - Pn L L L ~ : - l )  
-- o r - = L  or -= ---

M ' M  Q M M y  M M;B"-l) 
for some n ,I 

enumerated in order of increasing denominators M . 

(3.3) Theorem. For almost all x 

L
exists and {MiIMJx - Li I : E M ( x ) }  has limiting distribution &K(z) ,,Y
where 

fo rz  5 0 ,  
f o r O i z 5  1 ,

K(z )  = 
2 - z + 2 l o g z ,  for 1 5 ~ 5 2 ,  
2log2,I Y :  for 2 5 z. 

Proof. We consider convergents and nearest mediants now, so it is clear from 
their definitions that 

(3.4) K ( z )  = F ( z )  + ~ ' " ( z )+ J ( z )  - C(z)  

if we denote by C(z )  the function that gives the distribution of O's in case 
that the first and the final mediants coincide, that is if Bn = 2 (see the remark 
before Theorem (3.1)). To find C(z)  , we have to evaluate 

, u ( { d l )\ d 2 ) }n~ ( " ( z ) )  
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(cf. ( 1.6) and ( 1.10)). For z < f this equals 

p ( ~ ' i )n~ ' " ( z ) )= G( ' ) (z )= J ( z ) .  

For $ < z < 1 we find that 

and a straightforward calculation of 

d V d T& S / , t ~ ~ M ( B l ( z )  (1 + TY)2 

in this case, as in the proof of (1.9), leads to 

1
for z < - ,

2 

2
for - < z <  1 ,

3 -

for 1 < z.  

If we use this with (0.5), Theorems (1.9) and (3.2) in (3.4) we immediately get 
the function K ( z )  as in the statement of the theorem. 

(3.5) Remarks. In [4], Ito proved the part of (3.3) with z < 1 .  Using this, he 
was able to prove that for 0 < A < 1 : 

gcd(p, q ) =  1 a n d q  < n 

(for almost all x ) .  In fact, this holds for arbitrary A 2 0 and is known as 
Erdos' theorem (see [2]). Jager proved all of Theorem (3.3) in [7]; there, he 
also gives an alternative proof for the part of Erdos' theorem with 0 < A 5 1 , 
using Fatou's theorem (see $4  below). Notice that K ( z )  = 2 F ( i ) .  

4. THEOREMSOF LEGENDREAND FATOU 

The linear part in the distribution function F of (0.5) for 0 5 z < reflects 
the fact that the convergents to any x include all rationals P / Q  for which 
QlQx - PI < $ ; this is known as Legendre's theorem, and it is part (i) of 
Theorem (4.1) below, cf. [5, 2, 41. Since the distribution function in (3.3) is 
linear up to z = 1 , one wonders whether this indicates that for every x all 
rationals satisfying Q l Q x - PI < 1 are among the set of convergents and nearest 
mediants to x . This is indeed the case, and it seems that this was first observed 
in [3], where it is stated without proof. The first proof, apparently, appeared 
in a paper by Koksma (see [8 and 91). Fatou's theorem is part (ii) of Theorem 
(4.1) below. 
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(4.1) Theorem. Let x be an irrational number and P / Q  a rational number 
( Q > O  and gcd(P,  Q ) =  1 ) .  

(i) If QlQx - PI < f , then 

-- -',jx) for some n > 0 .
Q - Q,,(x? 

(ii) If QlQx - PI < 1 ,  then 

Proof. The proof consists of twa parts; first we show (using Koksma's argument) 
that if 6 is not a convergent or mediant, then necessarily Ql Qx  -PI > 1 . For, 

in this case we can find integers n > 0 and B (0 5 B < B,) such that 6 lies 
between 

P' BP,-, + q - 2  and -P" - (B+1)P, -1+P, , -2  

Q' - Be,- ,  + Q,-, Q" - ( B  + l?Q,-, + Q,-, 


If we assume (the other case being similar) that < x , then 

This implies 

I P P' P" P' P,-lQn-2- Pn-ZQn-l 1- . -< - - -<  - - - =  --
QQ Q e1 Q" e1 Q'Q" Q'Q" 

since P,-, Q,-, - Pn-,Q,- , = 1 . So we see that Q > Q" . 
But on the other hand, 

1 P" P P- < - - - < x - -
QQ" - Q" Q Q 7  

we would get 
1 1m'd 

and thus Q" > Q , a contradiction. 
In the second part of the proof we therefore consider only convergents and 

mediants of x . By (1.9)(i)we have @LB' > f for any n if B > 0 ; this finishes 
the proof of (4 . l ) ( i ) .  

It remains to prove that QlQx - PI < 1 can only hold for convergents and 
nearest mediants; thus suppose that 
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and suppose, moreover, that B > 2 in 

We will show that in that case, B = Bn - 1 

By (1.81, the inequality Q1Qs - P = Q?) < 1 is equivalent to 

Then 

'+"-l increases monotonically with V ( V  > 0 ). This impliesSince B ~ + B V + V  

SO 

< B + 2 ,B , < B , + T , , < B + l + -
B - l -

in which the last inequality follows from our assumption that B 2 2 .  Thus we 
see that B > B,, - 2 ,  and since b y  definition B < B,, , we find that B = B,, - 1 . 
This completes the proof of (4.1). 
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