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DENSITY COMPUTATIONS FOR REAL QUADRATIC UNITS 

WIEB BOSMA AND PETER STEVENHAGEN 

ABSTRACT.In order to  study the density of the set of positive integers d for 
which the negative Pell equation x2 - dy2 = -1 is solvable in integers, we 
compute the norm of the fundamental unit in certain well-chosen families of 
real quadratic orders. A fast algorithm that computes 2-class groups rather 
than units is used. It is random polynomial-time in logd as the factorization 
of d is a natural part of the input for the values of d we encounter. 

The data obtained provide convincing numerical evidence for the density 
heuristics for the negative Pell equation proposed by the second author. In 
particular, an irrational proportion P = 1 - o d d ( l- 2-j) x .58 of the nj21 
real quadratic fields without discriminantal prime divisors congruent to  3 mod 
4 should have a fundamental unit of norm -1. 

This paper is devoted to a numerical study of the solvability in integers of the 
negative Pell equation 

when d ranges over the set of nonsquare positive integers. Euler showed in 1759 
that the equation with right-hand side +1 always has infinitely many solutions, 
and that the smallest nontrivial solution can be found from the continued fraction 
expansion of &.He also showed that (1.1) is solvable if and only if the period of 
this expansion is odd. If this is the case, there are again infinitely many solutions, 
and the smallest of them can be found from the expansion. Euler's result settles 
the solvability question for every specific d, but it does not tell us at all how often 
we should expect (1.1) to be solvable. This basic problem, which was raised in the 
present form by Nagell [8],appears to be of a very different nature. 

An obvious necessary condition for solvability of (1.1) is that -1 is a square 
modulo d, i.e., that d is not divisible by 4 or by a prime p - 3 mod 4. Let us 
write S for the set of integers d 2 1 that satisfy this condition. Then S consists 
of the integers that can be written as the sum of two coprime squares, and its 
distribution is well known. We have [lo] 

Received by the editor February 24, 1995. 

1991 Mathematics Subject Classzlfication. Primary 11R11, l lY40, l lR45; Secondary llE16. 

K e y  words and phrases. Real quadratic class groups, negative Pell equation, density theorems. 


0 1 9 9 6  American Mathematical Society 

1327 



1328 SVIEB BOSMA AND P E T E R  STEVENHAGEN 

We will study how often the necessary condition d E S is sufficient for solvability of 
(1.1). More precisely, we will investigate whether the subset S- cS of integers d 
for which x2 -dy2= -1 has integral solutions possesses a natural density inside S, 
i.e., whether the limit 

# { d € S - : d I X }
Q = lim 

# { d ~ s : d ~ X )  

exists. If it exists, we of course want to know the value of Q as well. 
The analysis of the density (1.2) is the subject of two papers [ll,121 by the second 

author. The main results given there are conjectural as they involve unproved 
hypotheses on the distribution of the'infinite Frobenius element in real quadratic 
class groups. They predict that the limit value Q exists, and that the convergence 
to the limit value Q is very slow. More precisely, we will not find the value of 
the quotient in (1.2) to be close to Q unless loglogx,  the order of magnitude of 
the average number of prime factors of a number of size X, is large. As it is not 
feasible to check a number of values d of double exponential order of magnitude, 
our numerical investigation has to proceed by indirect means. 

Whatever way one chooses to proceed, one needs a fast algorithm to check 
whether (1.1) is solvable for a given integer d E S .  This is clearly equivalent to the 
determination of the norm of the fundamental unit qd of the quadratic order z[&] 
of discriminant 4d. As for every E > 0, the regulator log jqdl exceeds di-' for infin- 
itely many d, one cannot expect to be able to write down q d  for large values of d. 
For the same reason, it is not feasible for large d to decide the solvability of (1.1) by 
computing the length of the period of the continued fraction of &. Fortunately, 
it is possible to compute the norm of q d  without computing qd or the continued 
fraction of &.One observes that computing the sign of the norm is equivalent to 
deciding whether the class of the ideal generated by & in the strict class group of 
the quadratic order of discriminant 4d, which has order at most two, is in fact the 
trivial class. One can find this order by computing the 2-Sylow subgroup of the 
class group, and it was shown by Lagarias [5, 61 that if the factorization of d is part 
of the input, this leads to an algorithm to determine the solvability of (1.1) that 
is random polynomial-time in logd. We have implemented a modified version of 
this algorithm in the computer algebra system Magma, and we will briefly indicate 
in the next section how it works. As is pointed out in [7], the basic ideas of the 
algorithm go back to RBdei. 

We start in §3 with the somewhat simpler case of squarefree integers d E S .  
These form a subset C of large natural density np=1(4) - = .95 in S.prime(lp-2) 

We call this the fundamental case, as the frequency of solvability for d E C, i.e., the 
natural density of C n S- in C, is nothing but the natural density of the set of real 
quadratic fields with fundamental unit of norm -1 inside the set of real quadratic 
fields containing elements of norm -1. The main conjecture in [ll]is that this 
density exists and equals the irrational Pell constant 

(1.3) 	 P = 1- n (1- 2-.') = .5805775582.. . . 
921 odd 

It is based on the heuristic argument that the 'probability' for the negative Pell 
equation to be solvable for d E C depends solely on the 4-rank of the strict class 
group of the order z[&]. 
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Unlike the class group itself, this 4-rank can easily be determined from the prime 
factors of d by a theorem of Rkdei. In fact, our algorithm to decide the solvability 
of (1.1) computes it in its first step. Rkdei's theorem shows that integers d E S 
giving rise to high 4-ranks are so rare that they will not be found by picking 
random elements in S. On the other hand, it also shows that they can easily be 
constructed as products of primes that satisfy certain congruence conditions with 
respect to each other. In this way, we can produce large sets of d giving rise to 
certain 4-ranks, and such d come by construction in factored form, as required by 
the algorithm. As it happens, the conjectured densities for the solvability of (1.1) 
are very small for d E S yielding high 4-ranks, so in this case the numerical testing 
of the conjecture necessitates the handling of large numbers of large discriminants. 
For this reason, it is essential to have a fast algorithm to decide the solvability of 
(1.1). Implementation of an Euler-type algorithm as in [l]would never have yielded 
the current data. 

The final section describes similar computations for d E S that are not square- 
free. In this situation we study the norm of fundamental units in arbitrary real 
quadratic orders, and here the frequency for solvability is predicted to depend on 
the conductor of the order in the corresponding maximal order [12] as well. 

The computations in both sections show that the underlying hypotheses of [ll] 
and [12] are very much in accordance with our numerical data. This of course does 
not prove that the values P and Q are the limit values they are conjectured to be, 
but it shows that these conjectures are very plausible. Especially in the fundamental 
case, there are various proven results in the direction of these conjectures, for which 
we refer to the last section of [ l l ] .  

2. DECIDINGTHE SOLVABILITY O F  THE NEGATIVE PELLEQUATION 

Let d E S be a nonsquare integer and OD = z[&] the quadratic order of 
discriminant D = 4d. It is elementary [ll,Lemma 2.11 to check that the negative 
Pel1 equation is solvable for d if and only if the class F, of &. OD is the trivial 
element in the strict class group of OD. As is well known [3], the elements of 
this class group can be identified with the SL2(Z)-equivalence classes of the binary 
quadratic forms of discriminant D ,  and in this terminology (1.1) is solvable if and 
only if the anti-principal form -X2 + dY2 of discriminant D is SL2(Z)-equivalent 
to the principal form X 2  - dY2. As F, has order at most two in the strict class 
group of OD, we are done if we can find a basis for the 2-Sylow subgroup CD of this 
class group and a representation of F, on this basis. By a basis of CD, we mean 
a finite number of nonzero elements xi E CD such that CD is the direct product of 
the cyclic groups (xi). 

The algorithm we use in this paper computes, for any nonsquare factored dis- 
criminant D - 0 , l  mod 4, a basis for the 2-Sylow subgroup CD of the strict class 
group of the quadratic order of discriminant D. Moreover, it efficiently computes 
the representation with respect to this basis for any given element x E CD. As the 
mathematical content of the algorithm is described in detail in [2], we will only give 
a very brief description here. 

From the factorization of D, one obtains an F2-basis X for the group of quadratic 
characters x : C = CD -+ F2 with image in the field F2 of two elements. Such x 
are quadratic Dirichlet characters of conductor dividing D. If the elements of C are 
represented by binary quadratic forms, the value of x on the class of a form F is 
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the value taken by x on the integers coprime to D that are represented by F .  The 
basis X consists of characters of prime power conductor. 

In addition, the factorization of D provides us with a set of so-called ambiguous 
forms, whose classes generate the 2-torsion subgroup C[2] of C. We do not in general 
know the relation between these generators, and in fact the whole purpose of our 
computation is to decide whether the class F, E C[2] of the antiprincipal form is the 
trivial class. If we select one ambiguous form F, for each prime divisor p of D (and 
two for p = 2 when 32 divides D) ,  we obtain a set S of 2-torsion generators that 
has exactly one nontrivial relation. More precisely, we have a natural surjection 
F$' + C[2] with an unknown 1-dimensional kernel. Even though we cannot see 
which ambiguous form in F$' is in the trivial class, the character pairing 

tells us which ambiguous forms are in 2C. The pairing (2.1) is completely explicit: 
for x E X of q-power conductor, with q # p an odd prime, the value x(F,) equals 

with values taken in Fa. RBdei's theorem is the simple 
group-theoretic fact that the 4-rank of C equals the cardinality of X minus the rank 
of the Fa-matrix 

What enables our algorithm to find the full 2-class group C is the observation of 
Gauss [4, art. 2861 that if the class F of a form in C is in 2C, then one can find a form 
whose class in C is a 'square root' of F, i.e., twice its class equals F. This square root 
is usually not unique, and Gauss's algorithm, which employs a reduction procedure 
for ternary quadratic forms, does not necessarily yield a form in the trivial class if 
F is the trivial class in C. 

The construction of a basis for the 2-class group C proceeds recursively and is 
essentially a matter of linear algebra over Fa. From the pairing (2.1) one readily 
computes a subset B c S that yields a basis for C[2] /(C[2] n 2C). One can then 
change the remaining elements of S by Fa-linear combinations of forms in B to 
ensure that their classes in C are 'squares'. Using Gauss's algorithm, one now com- 
putes a square root of each of these forms. This yields a set S' of forms whose classes 
generate the 2-torsion subgroup of C/C[2]. As the group of quadratic characters on 
C/C[2] is the annihilator of F; under the pairing (2.1), we can easily compute an 
Fa-basis for this group. This brings us back to the original situation in which C has 
been replaced by the smaller group C/C[2]. A basis of C is obtained as the union of 
B and a basis of C/C[2]. In order to represent an element x E C with respect to this 
basis, we compute the unique Fa-linear combination b of forms in B for which the 
class of x - b is in 2C and a form a whose class is a square root of x - b in C. Then 
we have x = b + 2a, and it suffices to write a with respect to the basis of C/C[2]. 

In our situation, we want to decide whether the element F, is the trivial element, 
so we write it with respect to the basis of C that is being computed recursively. As 
soon as we discover during the computation that F, does require a basis element in 
its representation, we know it is nontrivial and we stop. This implies that in many 
cases, we only have to perform part of the computation of C4d in order to decide 
the solvability of (1.1) for d. Especially in the fundamental case in the next section, 
where we test many d for which (1.1) is not solvable, this leads to a considerable 
reduction of the running time of the algorithm. 
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3. THEFUNDAMENTAL CASE 

In this section, we study the density problem (1.2) for the subset C c S of 
squarefree integers in S. It is conjectured in [ll]that the limit 

# { d ~ C n S - : d s X )
P = lim

xioo # { d ~ C : d s X )  

exists and is equal to the value given in (1.3). If d ranges over the elements of C, 
then the fields Q(&) range over the real quadratic fields K for which, by the Hasse 
principle, -1 is in the norm image NKIgK*.Thus, P is the natural density of the 
set of real quadratic fields having a unit of negative norm inside the set of real 
quadratic fields containing elements of norm -1. The ordering in this case is by 
'radicand' d rather than by discriminant AK (which equals d for odd d and 4d for 
even d E C), but this is of no importance, as even and odd d are conjectured to 
yield the same density P. We will see this numerically later in this section. 

As stated in the introduction, it is not possible to check (3.1) numerically by 
computing the value of the quotient for large values of X .  The conjectural value 
(1.3) of the limit is based on the fact that the average number of prime factors of 
d tends to infinity with d. However, this number grows asymptotically only like 
log logd, so it is never large for tractable d. For this reason, we do not check the 
conjecture directly but focus on the underlying heuristic argument instead. This 
argument states that the probability for the negative Pel1 equation to be solvable 
for d E C depends solely on the 4-rank of the strict class group of the quadratic 
field Q(&). More precisely, let us denote for e 2 0 by C(e) c C the set of d E C 
for which the 4-rank of the narrow class group C of Q(&) equals e. Then the main 
conjecture in [ll]is the following. 

3.2. Conjecture. For every e 2 0, the subset C(e)- = C(e) n S- has natural 
density (2e+1 - I)-' in C(e). 

This conjecture is a theorem for e = 0, but an open problem for all e 2 1. It 
can in principle be checked numerically by considering all d E C in a given large 
interval, as is done in [Ill for those d for which the discriminant of Q(&) is in 
one of the intervals [I,  2 . lo7] and [lo1', 10'' + 2 . lo7]. However, it then turns out 
that about 99.9% of all tested d have 4-rank e 5 2, so we only get a numerical 
confirmation of our conjecture for small e. Moreover, testing a density (2e+1 - I)-' 
for large e involves testing a large number of d in order to make it possible to obtain 
an approximation of this small probability. 

Our algorithm is sufficiently efficient to handle large numbers of (factored) dis- 
criminants, so we only have to come up with many d E C for which C has some 
fixed 4-rank e. Fortunately, this is an easy task, as Rkdei's theorem tells us that 
the 4-rank of C can be read off from the Re'dei matrix (2.2). If we generate C[2] 
with the classes of the 'prime forms' { F p ) p dand the quadratic characters on C by 
Legendre symbols X, = (9)  for odd primes q dividing d, the matrix MD consists of 
Legendre symbols x,(p) with values in F2. If p and q coincide, one can compute 
the corresponding entry from the fact that the rows of MD add up to zero. 

The simplest way to produce a discriminant d E C of 4-rank e is to take the 
product of e + 1primes that are not congruent to 3 mod 4 and all squares modulo 
each other. As we need very many d of this kind, especially for the higher values 
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of e, we have done the following. For each of the 22 primes p < 200 that are 
not congruent to 3 mod 4, we computed prime numbers pl < p2 < . . . < p20 by 
taking pl = p and pi, > pi,-1 the smallest prime congruent to 1mod 4 such that 
all pi with i < k are squares modulo ph. In all cases, this yields sequences with 
lo7 < p2o < lo8. Out of such a sequence, we can construct (e2:) values of d for 
which C(4d) has 4-rank e. For the values 2 < e 5 9 we considered, these numbers 
increase with e as follows. 
e 2 3 4 5 6 7 8 9 
#d 1140 4845 15504 38760 77520 125970 167960 184756 

The large numbers for the higher e-values are necessary, as we expect to find only 
1 out of 2"+' - 1 values of d with 4-rank e to be in S-,  so the expected number 
N, = (e2+01)/(2ef1- 1) of such d per sequence should not become too small to 
be 'measurable' with some accuracy. Note that the case e = 9 involves a 2-class 
group computation for 22. (;:) = 4064632 discriminants that mostly have 40 to 50 
decimal digits. Moreover, these are large 2-class groups in the sense that their 4- 
rank is by construction very high. Even with our fast algorithm, this is still a rather 
formidable computing task. However, it can easily be run on parallel machines. In 
our case, we used about 50 Sun workstations at the University of Amsterdam. The 
results are presented in Table 3.3. 

3.3. TABLE. Solvability of the negative Pel1 equation for high 4-ranks 

The first column has the prime p = pl that is used to generate the sequence of 20 
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'cosquare primes'. The other columns have the value e of the 4-rank on the first 
line, then the number of d-values in C(e)- for each of the 22 sequences, and on 
the bottom lines the average number A, of d-values in C(e)- per sequence, the 
expected number N, defined above and the percentage by which A, deviates from 
N,. We see that deviations of 10% from the predicted values are not uncommon 
in single rows, but that the overall behavior is remarkably close to what conjecture 
3.2 predicts: the deviation of A, from N, is less than 1%. 

We note also that the even values of d, which occur on the line p = 8 and were 
excluded from consideration in [9], behave in no way different from the odd values. 

For still higher 4-ranks, the testing rapidly becomes unattractive, as the ex- 
pected density (2,+' - 1)-l decreases exponentially. Moreover, our basic setup 
using 20 cosquare primes becomes inappropriate as (e2$) decreases for e > 9. We 
did perform the computations for e = 10. The expected number N, is then as 
small as 82.05, and the computed values ranged from 67 to 103. They lead to a 
value A, = 86.18, which deviates only +5.03% from its expected value. We found 
Nll = 30.76 too small to be worth trying. 

One may object against our approach of testing Conjecture 3.2 that the values 
of d we consider are rather special in the sense that M4d is the zero matrix for these 
d, so the 4-rank of C(4d) is equal to the 2-rank. We have therefore conducted a 
similar experiment for discriminants that do not have this property, i.e., we have 
constructed discriminants for which the 4-rank of C(4d) is fairly high and smaller 
than the %-rank. To obtain such discriminants, we took, from each of the 22 se- 
quences of 'cosquare primes' constructed above, the set A of the first 10 primes and 
computed a set B of 10 other primes congruent to 1mod 4 that are squares modulo 
each prime in A without paying attention to the quadratic character of the primes 
in B modulo each other. If we now form d = dld2 by multiplying a product dl of 
tl  primes in A and a product d2 of t2  primes in B ,  the rank r of the R6dei matrix 
M4d is equal to the rank of its submatrix Md2. Thus, the class group C(4d) will 
have 2-rank t l  + t2  - 1 and 4-rank tl  + t2  - 1- r > t l .  As we have not imposed 
any restrictions on the relative quadratic behavior of the primes in B ,  the rank r 
of Md2, which is in our situation the difference between the 2-rank and the 4-rank 
of C(4d), will in most cases be positive, and often not far from the maximal value 
t2  - 1. For varying choices of t l  and t2 ,  one can thus obtain large families of values 
of d of the required type. 

In our numerical experiment, we varied t l  in the range 3 ,4 , .  . . , 9  and fixed 
t2  = 4. This yields 22. zL3('20) = 21274 values of dl ,  each to be multiplied with 
( y ) = 210 values of d2 constructed from the corresponding set of primes B; in 
total this makes 4467540 values of d. The 2-rank ea = t l  + t2 - 1= t l  + 3 of the 
corresponding class groups ranges from 6 to 12, and the difference r between 2- and 
4-rank from 0 to 3. There are 22 . ( y )= 4620 values of d2 that occur, and as the 
corresponding R6dei matrices Md2 are expected to behave like 'random symmetric 
4 x 4-matrices' over the field of %-elements, one expects the distribution over the 
possible r-values 3-2-1-0 to be close to 2021-2021-505-72, cf. [ll].The actual 
distribution in our example was 2106-1987-455-72. 

The following table presents the outcome of our experiment. We leave out the 
data for discriminants with M4d = 0, since they were tested in the preceding ex- 
periment, and there are only few of them among our current data. In each row 
the value of r E {3,2,1) is fixed, and in each column the %-rank e2. The entry 
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corresponding to a pair ( r ,e2) lists the number of d E S- that was found and below 
that the number that is predicted by our conjecture. Note that the 4-rank for such 
an entry is e2 - r E {3,4, .. . ,111,so we have constant 4-rank along diagonal lines 
(/") in the table. In smaller type, the total number of d's that were tested for this 
entry is indicated. Again, we see that the deviation from the expected values is 
relatively small as soon as this expected value is sufficiently large to be accurately 
'measurable'. This convinces us of the correctness of the basic Conjecture 3.2. 

3.4. TABLE. Solvability of the negative Pell equation for d with M4d# 0 

4. THENONFUNDAMENTAL CASE 

As we mentioned in the introduction, the squarefree values of d form a set C of 
large natural density 

p s l ( 4 )  prime 

in S .  An arbitrary element in S can uniquely be written as f 2d with d E C 
squarefree and f E Z,o a product of primes congruent to 1mod 4. We therefore 
have S = U f E 3 S fwith S f  = { f 2 d  : d E C) and f ranging over the set F of 
odd positive integers without prime factors congruent to 3 mod 4. It is elementary 
to show that S f  has natural density f - ' B  in S ,  in accordance with the identity 
C f E 3f P 2  = B-l. We can find the natural density Q of S- in S defined in (1.2) 
from the natural densities of S f  nS- in S for each f E F.For the main term 
coming from f = 1 the conjectural density equals P . B,with B as above and P 
the Pell constant from (1.3). This has been checked numerically in the previous 
section. It is conjectured in [12] that the natural density of S f  n S- in S for 
arbitrary f E F equals +(f )  . P . B,where + is the multiplicative function defined 
by +(f  = n,,,prime +(PI and 

for p = 1mod 4 a prime number with exactly v, factors 2 in p- 1. Setting $(f)  = 0 
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for f E Z \ 3,we obtain the value 

= P . 1 + 1 - +) = ,57339 
p prime 

p l r n o d 4  

for the density of S- in S .  
As in the fundamental case, we cannot check the conjectural value of Q by a direct 

computation. However, it is perfectly feasible to check the numerical adequacy of 
the constant +(f)  for any value of f E F.We can restrict to squarefree values of 
f ,  since f2d  with f E Z and d E C is in S- if and only if f i d  is in S- for the 
largest squarefree factor fo of f ,  cf. [12]. The value of +(f)  for f E F is based on 
two heuristic assumptions. 

4.2. Assumption. For every conductor f E 3 ,  the discriminants in  C and C-
have the same distribution over the residue classes of Zl fZ.  

This assumption reflects the fact that for squarefree d, no relation is known to 
exist between the solvability of (1.1) and the congruence class of d modulo a prime 
p r 1mod 4. All we need for the conjecture in [12] is that for d E C-, the values 
of the Legendre symbol ($) are independent for p E F,and the values 1, -1 and 0 
occur with relative frequencies pl(2p + 2), pl(2p + 2) and l / (p  + 1). This density 
statement is easily seen to be true for the set of all squarefree integers, and it also 
holds for the set C by a theorem of Rieger [lo].  In order to check it numerically 
for the subset C- c C, we have determined for all d E C considered in [ll],i.e., 
those d for which the associated discriminant is contained in one of the intervals 
[I,  2 . lo7]and [lolo,lo1' +2 . lo7],  the values of the Legendre symbols ($) for a.few 
small p E F. There are 1696777 values of d for the first interval and 1420163 for 
the second. 

4.3. TABLE. Distribution of Legendre symbols for d in C and C- 

Table 4.3 shows the relative frequencies for each p. The first line of each entry 
is the proven asymptotic fraction of d E C with indicated value of ($). Within 
the accuracy of the table, this coincides with the computed fraction for the set of 
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all squarefree d in these intervals. The second line of the entry has the computed 
fractions for d E C in each of the two selected intervals, and the third line the same 
fractions for d E C - .  We see that the distributions for the sets C - and C do not 
differ substantially. We also tested for possible dependencies between values of (i) 
for our six primes p for d E C - .  They are known to be independent for d E C ,  and 
we found no indication that the situation is different for C - .  

If p E 3 is prime, Assumption 4.2 implies that a fraction ( 2  + p ) / ( 2 p  + 2 )  of 
all d E C has Legendre symbol (') # 1 and a fraction pl(2p + 2 )  has (g) = 1. 

For d E C satisfying (g) # 1, we always have p2d E S - .  In the other case 

however, when we have (g) = 1,we need a second heuristic assumption, which is 
an equidistribution assumption on fundamental units of real quadratic fields modulo 
a fixed conductor that is explained in [12].For the basic case of a prime conductor 
it is the following. 

4.4. Assumption. Let p E 3 be a prime number with v, factors 2 i n  p - 1. Then 
{d  E C - : p2d E S - )  has natural density 2TVp i n  C - .  

Under the natural asumption that these frequencies are again independent mod- 
ulo different p, we obtain the value in (4.1) for + ( f )  since an elementary argument 
[12,Lemma 3.11 shows that we have f2d  E S - for d E C - if and only if p2d is in 
S - for all prime divisors pi f .  

In order to test Assumption 4.4, we determined for the values d E C- from each 
of the intervals used in compiling Table 4.2 and a few well-chosen p E3 the number 
of discriminants d that have p2d E S - among those that satisfy (g) = 1. Table 4.5 
shows the fractions obtained. 

4.5. TABLE. Fraction of d E C- with (') = 1 and p2d E S-

P up  fraction value 2"'~ . value 

5 2 2866191573486 ,49978 ,99956 
2315401462884 ,50021 1.00042 

The final column lists the value 2 '~ - I  . (fraction), which is conjecturally close to 
1. The behavior of the fractions in Table 4.5 is again as good as we may reasonably 
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expect. This convinces us of the correctness of the conjectural values of $ ( f )  for 
all f 2 1,and consequently of the validity of the conjectures in [12]. 
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