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Abstract

The extension of Cobham’s theorem from Z to Z[i] has been studied before for special
bases. It is well known that this extension involves issues from diophantine approximation.
In this paper, we consider the extension of Cobham’s theorem for general bases.

According to Cobham’s theorem X ⊂ N is α-automatic and β-automatic for multiplicatively
independent α and β if and only if X is ultimately periodic. Does there exist a similar theorem
for the Gaussian integers? To address this question, we restate the theorem in a different, but
equivalent, form.

Theorem 1 (A variation on Cobham’s theorem). Suppose that X ⊂ N and let V (X) ⊂ N be
the subset of all natural numbers α > 1 such that X is α-automatic. Then V (X) is either equal
to {βn : n ∈ N} for some β or it is equal to all natural numbers α > 1.

The corresponding statement also holds for Z, although the result does become more involved:
for N the canonical numeration system with base α has digits {0, 1, . . . , α− 1} but if we include
negative integers, we may also consider negative digits. For instance, ({−1, 0, 1}, 3) is a numera-
tion system (with respect to base 3) for Z. One first has to settle that the notion of automaticity
does not depend on the digit system; the same problem arises if one wants to extend the theorem
to Z[i].

Remark 1. Already a formulation of the Theorem of Cobham for N that is amenable to gen-
eralization (to rings like Z and Z[i]) is problematic; one such formulation (given by Cobham
himself, cf. [4]) is that a subset of N is m- and n-automatic for multiplicatively independent nat-
ural numbers m and n if and only if it is ultimately periodic. Here an ultimately periodic subset
of N is defined by Cobham as, ‘with finitely many exceptions, the union of a system of residue
classes modulo some fixed positive integer’. The corresponding statement with N replaced by Z
everywhere is not true (even leaving aside the digit dependence), since any N-ultimately periodic
set of positive integers will not be Z-ultimately periodic anymore. The same problem prevents
an obvious generalization to Z[i] using residue classes modulo α ∈ Z[i].

An alternative, used by Allouche and Shallit, as well as by Rigo and Waxweiler, is to define
ultimately periodic for a subset of N as being, with finitely many exceptions, a finite union of
arithmetic progressions x+p·y, with fixed x, y ∈ N, and p ranging over N. For the generalization
to Z one then replaces N by Z everywhere, except for the range of p. It is then proved in [2] that
a subset X of Z is n-automatic (in Z) if and only if both X ∩ N and −X ∩ N are n-automatic
in N.

We conjecture that the following version of Cobham’s theorem holds for Z[i].
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Conjecture 1. Suppose that X ⊂ Z[i] and let V (X) ⊂ Z[i] be the set of Gaussian integers α
with |α| > 1 such that X is α-automatic. Then V (X) is equal to either

1. the set of all Gaussian integers |α| > 1; or

2. the set of Gaussian integers |α| > 1 for which some power αj ∈ N; or

3. the set {βn : n ∈ N} for some Gaussian integer β with |β| > 1.

Allouche et al [1] have developed the notion of automatic sequences for rings such as Z[i]. They
have shown that the concept of automatic set is inpendent of the choice of the digits. In [1],
p. 325 and [2], p. 415 it is proved that ({0, 1},−1 + i)-automaticity is equivalent to ({0, 1}, 2)-
automaticity on the four N×N-quadrants in Z[i]. Hansel and Safer [7] studied the extension of
Cobham’s theorem to Z[i] for basis −n + i, which allows the digit set {0, 1, . . . , n2 − 1}. Our
paper appears to be the first that deals with an arbitrary basis.

The separate cases of our conjecture all occur:

1. Any finite set X will be α-automatic for any α.

2. The set X = {βn : n ∈ N} is α-automatic if and only if α and β are multiplicatively
dependent. This follows from Theorem 3 below.

3. N ⊂ Z[i] is α-automatic if and only if αj ∈ N for some j ∈ N. This is Theorem 4 below.

The proof of the difficult direction of Cobham’s theorem for N (see [9] and [6] for a discussion)
makes use of the syndeticity of automatic sets (gaps between elements are bounded) and depends
on the fact that the multiplicative group

Gα,β = {αnβm : n,m ∈ Z}

is dense in R>0, for independent α, β. It is natural to expect that the closure of such groups is
important in the case of the Gaussian integers as well.

Indeed, the results in our paper are based on the observation that Gα,β is dense in itself if
α and β are multiplicatively independent. To derive stronger results, deeper observations are
needed. To prove that Gα,β is dense in C is equivalent to proving the Q-linear independence of

1, z = log |α|
log |β| , and z argα

2π −
arg β
2π , see [7]. This would follow if the four exponentials conjecture

holds. Hansel and Safer have used this to show that if X is syndetic if Gα,β if it is α and β
automatic, for special bases, assuming that the four exponentials conjecture is true.

Numeration systems for Z[i] have been developed by Davio et al [5], but this work is not widely
available. So we review these numeration systems first before deriving our results.

1 Numeration systems in Z[i]

Let β ∈ R in a semi-ring R and let D be a set of representatives for the residue classes modulo
β. We say that (β,D) is a numeration system if 0 ∈ D and every element of r ∈ R has a unique
representation

r = bjβ
j + bj−1β

j−1 · · ·+ b0

with every bi ∈ D and bj 6= 0. The digits can be computed recursively by setting b0 ≡ r mod β
and continuing with r′ = (r− b0)/β until zero. This procedure may not terminate and the digit
set D has to be selected carefully.



We are interested in the ring of Gaussian integers, which is a normed ring (under the usual
complex absolute value). Let s ∈ R \ D be an element of minimal norm. We say that D is a
compact digit set if |d| < |s||β−1| for all d ∈ D. For example, the digit setD = {−1, 0, . . . , |k|−2}
forms a compact digit set for base k ∈ Z if |k| > 2.

Lemma 1. Consider a normed ring R such that {|r| : r ∈ R} is discrete. If D is a compact
digit set, then (β,D) is a numeration system.

Proof. We prove that the recursive procedure terminates. It certainly does if r ∈ D so we
assume that r ∈ R \D. Then

|r′| = |r − b0|
|β|

≤ |r|+ |b0|
|β|

<
|r|+ |r|(1− |β|)

|β|
= |r| (1)

so the norm reduces under the recursive operation. On the discrete set of norms, this recursive
operation must terminate.

If r = bjβ
j + bj−1β

j−1 · · · + b0 then it is customary to represent r as a string bjbj−1 · · · b0. We
write `(r) = j for the length of the string, starting the count at zero.

Lemma 2. Let D be a compact digit set on the normed ring R. There exists γ > 0 such that
`(r) ≤ n if |r| ≤ γ|β|n, for r ∈ R.

Proof. Define ∆ = max{|d| : d ∈ D}, and let

γ = |s| − ∆

|β| − 1
.

By compactness of the digit set, γ > 0. We prove by induction that |r| < γ|β|n + ∆
|β|−1 implies

`(r) ≤ n. If n = 0 then |r| < |s| so necessarily r ∈ D and `(r) = 0. Using (1) we find

|r′| ≤ |r|+ ∆

|β|
< γ|β|n−1 +

∆

|β|(|β| − 1)
+

∆

|β|
= γ|β|n−1 +

∆

|β| − 1
.

By the induction hypothesis `(r′) ≤ n− 1 and the result follows.

Theorem 2. If β ∈ Z[i] satisfies |β| >
√

8 then there exists a compact digit set D such that
(β,D) is a numeration system for the Gaussian integers.

Proof. We need to show that B = {z : |z| < |s| (|β| − 1)} contains a representative for each
residue class modulo β. Since |β| >

√
8, all elements a + bi with |a| ≤ 1 and |b| ≤ 1 represent

different residue classes modulo β, so we may include them in our digit set, and then |s| ≥ 2. In
this case, area(B) ≥ 4π (|β| − 1)2. By Minkowski’s theorem, z +B intersects the lattice βZ[i] if
area(B) > 4|β|2, so we need to verify that

π >
|β|2

(|β| − 1)2

The right-hand side of the inequality decreases with |β|, so it suffices to verify that π > 8/(
√

8−
1)2.



2 Proof of the main theorems

Lemma 3. Let α, β ∈ Z[i] be of modulus |α|, |β| > 1. Then 1 is an accumulation point of
{αmβn : m,n ∈ Z} unless α, β are multiplicatively dependent.

Proof. The multiplicative group C∗ = C\{0} is locally compact and A = {αn : n ∈ Z} ⊂ C∗ is a
discrete subgroup. The quotient group C∗/A is homeomorphic to a torus. Let C be the closure
in C∗ of the multiplicative group {αmβn : m,n ∈ Z}. Then C/A is a closed subgroup of a torus.
So it is either finite, or it consists of a finite number of circles, or it is the entire torus. In the
first case, α and β are multiplicatively dependent. In the second case, 1 is an accumulation
point of {αmβn : m,n ∈ Z}.

If 1 is an accumulation point, then there exists a sequence αnβm → 1. Since |α|, |β| > 1 the sign

of n and m is opposite. So there exist i, j ∈ N such that αi

βj → 1.

Lemma 4. Let (β,D) be a numeration system for Z[i]. Then for every u ∈ {αmβn : m,n ∈ Z}
there exist arbitrarily large p, q ∈ N such that αp = uβq + z for some z ∈ Z[i] with `(z) ≤ q.

Proof. If α and β are multiplicatively dependent, then we may even take z = 0. So assume that
they are independent; let u = αnβm with n,m ∈ Z. Since 1 is an accumulation point there
exists a sequence of pairs i, j ∈ N such that |αi

βj − 1| → 0. Therefore αi

βj u = αi+n

βj−m converges to u

and we find a sequence of pairs p, q ∈ N such that αp

βq → u. Then |αp − βqu| < γ|βq| for large
enough p, q with γ as in Lemma 2. Now put z = αp − βqu.

Before Cobham proved his theorem, Büchi [3] showed that the set {αn : n ∈ N} is β-automatic
if and only if α and β are multiplicatively dependent for α, β ∈ N. Our next theorem extends
Büchi’s result to Z[i].

Theorem 3. The set {αn : n ∈ N} is not β-automatic if α, β ∈ Z[i] are multiplicatively inde-
pendent.

Proof. We may assume without loss of generality that |β| >
√

8 so that there exists a numeration
system (β,D) with compact digit set D which includes digit 1. Arguing by contradiction,
suppose that A = (Q, q0, D, δ, F ) is a DFA that generates the characteristic function f of the
set {αn : n ∈ N}. The power β|Q| is represented by 10|Q| in the numeration system. Since there
are |Q| states, there exist a 0 ≤ j < k ≤ |Q| such that 10j and 10k reach the same final state in
the DFA. So we can pump k − j additional zeroes in 10|Q| and still reach the same final state.
Our DFA accepts powers of α. So if αq is represented by 10|Q|v in our β-numeration system,
then we can pump k − j additional zeroes into the prefix and obtain another power of α. We
will derive a contradiction from this.

By the previous lemma, there are infinitely many powers of α that have prefix 10|Q|1 in our
β-numeration system. So two of these representations have the same length modulo k − j, and
we can pump zeroes into the prefix of the shorter representation so that we get two words of
equal length. One of these has prefix 10|Q|1 and the other has prefix 10|Q|0 so they represent
two different powers αq1 , αq2 . Since they both have prefix 10|Q|, their difference is equal to

αq1 − αq2 =
m∑
i=0

(di − d′i)βi

for digits di, d
′
i ∈ D and m smaller than the minimum of `(αq1), `(αq2). Denote this difference

by z 6= 0. By pumping additional zeroes into both prefixes, we obtain pairs of higher powers of
α that all have the same difference z. In other words, αn−αm = z has infinitely many solutions
for z 6= 0. Clearly, this is impossible. We conclude that {αn : n ∈ N} is not β-automatic.



Theorem 4. N ⊂ Z[i] is β-automatic if and only if βj ∈ N for some j ∈ N.

Proof. If βj ∈ N then clearly N is β-automatic. So assume βj 6∈ N for every j ∈ N. Suppose
that A = (Q, q0, D, δ, F ) is a DFA that generates the characteristic function f of N. Choose
any natural number α > 1. Then α and β are multiplicatively independent and all powers of α
are accepted by our DFA. There exists a power of α that is represented by a word with prefix
10|Q| in the β-numeration system. There exists an integer k < |Q|| such that we can pump an
arbitrary multiple of k zeroes into the prefix so that and the resulting word also gets accepted
by the DFA. In other words, these all represent numbers in N: βm+jk − βm ∈ N for some power
m. It follows that both βm+k−βm and βm+2k−βm+ k are natural numbers. Taking quotients,
we find βk ∈ Q and since it is an algebraic integer, βk ∈ N.
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