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Wieb Bosma

Abstract.

In this report some rational primality tests are described, obtained

from polynomially equivalent primality tests for certain elements of

z{i] and %[pl (with p a third root of unity)}. The method generalizes
the well-known tests for n in % depending on the partial factorization
of n-1 , replacing the group (Z/niz)* involved in these by the
modules of points on certain elliptic curves admitting complex
multiplication. Like in the rational case, congruences can be derived

for possible divisors of v in #[il or zlpl , leading to primality
criteria for v 1if one is able to find a sufficient partial

factorization of v-1
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80, Introduction,

We present a new application of the theory of elliptic curves to
primality testing.

In the first chapter the results of the "classical" theory of elliptic
curves over fields, in particular finite fields, are summarized, often
without proofs {our main reference for this ig [TATE]); furthermore,
the definition of elliptic curves is extended to allow Artin rings as
ground ring, instead of only fields. In the second part we apply the
results of the first chapter to primality testing, resulting in
theorems containing tests for certain elements of Z[il and Zlpl.
The tests that we develop are analogous to the well-known tests for
rational primality that make use of (partial)factorizations of n-1 ,
where n is the integer to be tested, In these one utilizes the group
structure of (#Z/n%Z )* , which is cyclic of order n-1 only if

n is prime. In our tests these Z-modules are replaced by the Zlil-
or the Z[pl-modules of points on certain elliptic curves admitting
complex multiplication by Zlil (or #Zlpl). Generalizations to Z{i]
and @{p] of the methods for % that make use of partial
factorizations of n-1 to derive congruences on possible divisors of
n , are first given in sections 7 and 9. Use is made here of the fact
that the elliptic curves under consideration yield cyclic modules over
the finite field arising from reduction modulo a prime element of Z[1i]
(resp. 2Zlpl).

The rational primality test that makes use of the complete factorization
of n-~1 (an element of order n-1 in (Z/n&)}¥* can be found only if
n is prime) is also generalized. In doing this, by showing that we can
find a point on our curves after reduction modulo v {the element to
be tested, after a proper normalization) that is annihilated by v-1
{and not by aproper divisor of it) only if v is prime ({with a few
small exceptions, detected in 8§8), we have to make sure that these
reductions are well-defined for composite v too, This is taken care of
in sections 2 and 5, where it is shown that elliptic curves over Artin
rings can be defined in such a way that if we use the proper universal
formulas for addition (and complex multiplication} of points on elliptic

curves over fields, these formulas do also give the addition on curves




over Artin rings.

The resulting primality tests in #Z[il and ZIpl (leading to tests in
7% ) are in general independent of the classical tests, and have the
advantage that for testing one integer in fact a collection of
independent tests is available, since different elliptic curves can

be used. Moreover, it turns out that for the tests exploiting the
}_Jaactir;L'L= factorization of v-1 , use can be made of all factors found
of associates of v minus 1 , which means that we utilize the factored

part of vi-1 (in Z[il) or even wo -1 (in =IpD).




CHAPTER L. ELLIPTIC CURVES,

§1. Elliptic curves over fields,.

(1.1) Definition. An elliptic curve E over a field K is a projective

non-singular algebraic curve of genus 1 with a point OE defined over X .

{1.2) Remarks. Recall that any projective algebraic curve C can be given

by an equation F = 0 , for some absolute irreducible homogeneous form

F ¢ K[X,¥,2]. The set of projective solutions ( x :y : z) to F =20
in X is the set of K-rational points of C , denoted by Cc({K). For
elliptic curves, E(K} is non-empty by definition. Non-singularity of

¢ means that the three partial derivatives of F do not simultanecusly
vanish in any point defined over an algebraic closure K of K.

Of course there are several other definitions, equivalent to {1.1), for
elliptic curves (of which we will in fact make use, sce below); in terms
of function fields assoclated to the curve E , we demand to have given
a prime divisor O_ of degree 1 in a function field of one variable

45
which is of (absolute) genus 1 (see e.yg. [ROBEl}.

(1.3) Weierstrass Forms, An immediate consequence of the Riemann-Roch

theorem for curves is that any elliptic curve E over K can be given

by a cubic eguation

2 2.3 2 2 3
(1.4) Y'Z + alXYZ + a3YZ_ =X + a2X 7 + a4XZ + aGZ

with coefficients a, € K ({i=1,2,3,4,6) .

Motice that the unique point (0 : 1 : 0} at infinity (2 =20 ) is

always K-rational; we take this for O_ .

E
If the characteristic charK does not equal 2 or 3 , we can transform
the equation (1.4} into
(1.5) Y2Z = x3 + axZ2 + bZ3 ' a,be¥x .

Conversely a cubic defined by (1.4) always defines an elliptic curve



provided that the discriminant A , defined by

a_.a, ta a2~a2)-8(a a

2 2, 2 3 2 2
A= ~(a1+4a2) ((a1+4a2)a6 ajaqa,ta,a,-a, 1 3+2a4) —27(a3+4a6) 4

2
+4a6) '

2
+9{a1+4a2)-(a1a3+2a4) (a3

is non-zero.
In characteristic # 2,3 this means
A = -16(4a°+27b%) # 0O (with a and b as in (1.5)).

(LTaTE]E2.)

(1.6) Remarks. This characterization of elliptic curves in terms of

Weierstrass forms will be used to define elliptic curves over Artin
rings in §5.

Since in our applications we can usually exclude the cases char K=2,3
we will from now on refer to the simplified equation (1.3} as the
Weierstrass form of our curves (with A # 0)., When some results in the
sequel can be obtained in these exceptional characteristics, we will

sometimes just mention this without working them out in detail using (1.4).



§2, The group law.

The feature that makes elliptic curves of special interest to us, is
that they form abelian varieties (of dimension 1 ); in particular
their K-rational points constitute an abelian group. This structure is
inherited from the divisor class group, which enables us to define
addition of rational points via the multiplication of the corresponding

prime divisors.

{2.1) Definition. Let E be an elliptic curve over a field K of

characteristic # 2,3 and given in Weierstrass form (1.5).

We make the set E(K) into a group by:

{2.2) taking OE {0:1:0) as zero element 0 ,

{(2.3) teking =P {x: -~y : 2 ) as the oppositeof P = (x:y: 2z)
for any P e E(K},

{2.4) defining the sum P1-+P2 of points 'Pl'P e B(K) via

2
P1-+P2-+P3==0 = Pl,P2,P3 collinear ;
in other words: P3==—(P14~P2) is the third rational point of
intersection of the straight line through P1 and P2 {which

we take to be the tangent whenever P1=:P2 } and the curve.

{2.5) Remarks, That {2.1) reflects multiplication of divisor classes

is of course a proposition rather than a definition (seé e.q. LHART ICh, IV,
[ROBE]Ch.II}). For a proof of the fact that this definition furnishes

E(K) with an abelian group structure without reference to divisor classes
see [FUOLTICh.S5 .

pefinition (2,1) has the following well-known real-geometric
interpretation (see figure 1):

by (2.2) and {2.3) the zero element 0E can be thought of as lying
infinitely far off in the direction of the y-axis (lying on every vertical

line), and according to (2.4) the sum P1-+P2 can be found by reflecting

-6




Figure 1,

the third intersection point of the 1line through P1 and P2 {tangent

if P1==P2 ) in the x-axis.

(2.6) Formulas. The addition of points as defined in (2.1) can be made

quite explicit in terms of the coordinates. Classically this is done
distinguishing three different cases:

(i) either P1 or P2 equals OE , Or P1== —P2 F

(11) case (i) does not apply and P15£P2 P

(iii) case (i) does not apply and P1==P2

P.or O

then being P1 r Py -

Case (i) is the simplest, the sum P1-+P2

respectively. In the second case, one finds an equation for the line

determined by P, and P

1 2
L: ¥Y=2A+v (we can work affinely now)
YoqY K ¥, — X, ¥
with A= Eg:_xl and Vo= _g_ifrgiwg
27 %1 R B |

g1t ] = £ = R
writing Pi (xi,yi) or i=1,2
Subsequently, the coordinates of the third point of intersection of L

with E give P3 = - (Pli-Pz) .

In the third case one proceeds similarly, but now L is replaced by the

tangent at P so A is found as gquotient of the partial derivatives

1 r

of the affine equation for E .



{2.7) Comments. For our purposes the resulting formulas are not

satisfactory; to be able to define addition in the next sections on
curves over certain rings, we would like to have formulas for addition
on open subsets of the curve., Since addition is a map E(K) X E(K) > E(K)
we would like to have a finite open covering of E(K) x E(K) (defined
by typically "open conditions” G # 0 for some polynomial G in the
coordinates of the points and the Weierstrass coefficients of the curve),
such that an arbitrary pair (Pl’Pz) € E(K) ¥ E(K) is contained in an
open on which addition is given uniformly, for every E and K , by
polynomials in the coordinates of (Pl'PZ) and the coefficients of the
Weierstrass form.

Fortunately we can always achieve this, We formulate this property as

follows.

{2.8) Assertion. There exist ke Z, and for every ie Z with

0

L £
i< 4 kX , elements Qi' Ri, Si and Ti #0 o

11 _ . , _ 3 2
Z {A,B,I—),é][Xl,Yl,Zl,Xz,Yz,Zz}/(Fl,Fz) (in which D = -16(4A"+278")
and F, = Y27, -X° -BX.Z° -BZ°>  for j=1,2)

3 i I | id |

with Ti homogeneous, and Qi, Ri' Si bihcemogeneous of the same bidegree,
such that:
for every field X with charkK # 2,3 , and
o 2 3 2 3 ,
for every elliptic curve E : Y Z = X + aXZ + b4, with a,beX and

with A= -16(4a3+-27b2) 0 ,

we have for every pair of points P, = (x1 'Yy :zl)sz(K) and
P2 = (xz: Y, 22}6 E(X) that
. : 1
{2.9) for at least one i {(1=2i<k) : Ti(a,b,ﬁ,xi,yi,zl,xz,yz,ZZ)%E)
and
1
i <i< i s =
(2.10) for evexry i (1=<ic<k)}) with Ti(a,b,ﬂ,xi,yi,zl,xz,yz,zz}#()
one has P, + P, = (Qi(a,...,zz) :Ri(a,...,zz) :Si(a,...,zz) )




(2,11) Remark. Again of course essentially the same applies in

characteristics 2 and 3 , with A and B (resp. a and b )
replaced by Al’AQ'A3'A4'A6 (resp. Ayreserdg ) and with the appropriate

Weierstrass forms etc, .

(2.12) Remark. It turns out (see below} that we can add on E as in

{2.8) using only three triples of formulas (Qi'Ri’Si) , 80 essentially
we can take k=3 in (2.8); see also [LA-RU] . This may be the minimal

value for k, but a proof for this is lacking.

(2.13) Proof of {2.8). We give a constructive proof, distinguishing three

cagses, Let E and K be given as above,

The first case is in fact the "generic" classical case {(2.6) (1i):

{2.14) Pl# Pz and Plaé OE# P2
We intersect Lt Y= AX + VvZ
Vo2, ~Y,Z X V. —X,¥
mere A= Fiot2ama v e Ia
271 7172 271 7172
and E : YQZ = x3 + aX22 + bZ3

This leads to an equation of degree 3 in % , of which we know the roots

* *2
— and - ; thus we find
Z zZ
1 2
¥3 2 R
- r et )
3 1 2
Y3
Writing this and the resulting formula for o out, we find after
3

reduction modulo the Weierstrass equation and after removing common

factors 2122 , formulas Ql' Ri' Sl°

I+ turns out that these do also apply in case either P1= OE or

P2= 0E (but not both), which implies that they are valid on the union

of the opens defined by Tll# 0, Tiz# 0 :

(2.15) T11= XlZzw X2Z1 T122 Y122* YZZl .




The second set of formulas gives addition near the diagonal of
E{X) % E(K) . For, if

{(2.16) P,= (x Py Y} and P_= (x2 Py, :zi) with x2¢ X,

1 1 1 2
then using the equation for E we may write
Z,~V.2Z x222-+x X,Z z‘+~x222+-azzzz
P UL N TS Gt N W 5 W M TR

®3%17%1%2 (vy2, +yy7)22)
Taking this for A in the eguation of L above, we get formulas Qz,

Rz, 82 . The open set where they are valid is characterized

by Tzl# 0 or T22¢ 0

=Y 2, +Y,2 T, =X, 2 +X,X 2,0, +X,2

To1 = T2t % IR B e R h

2.2 2
(2.17) 2

2 2.2
1+A2§1Z2 .
Finally, since the only pair (Pl,P2) not covered yet is (OE,OE) p
we derive formulas for a neighbourhood of (OE,OE) .
Here we use yiyzyéo + and using the equation for E again, we get
2 2 2 2
(2.18) YR TN X Yo VX XYV T RY FAY Vo2 2y
’ X, ¥, XY, 22 2 2 2 2 2 2
142 271 - N - - - -
Y1¥y = ax ¥y7y ~aXyyy2, ~byyzy - by ¥,n, 2, - by 2

Taking this for p in the equation for the line, that now reads
L': 4 = uX + wY

: R s which are valid

gives after intersection with E formulas Q 5 1 8,y

3
at least on the open given by

(2.19) 'I‘Baé 0

where T3 is, if we do not make any effort to simplify it, a polynomial

that is bihomogeneous of bidegree (9,9} .

That completes the proof of (2.8). i

(2.20) Remarks. Notice that {(for j=1,2) Fj is Eisenstein at 2, as
]
a polynomial in Xj and therefore (Fl’FZ) is a prime ideal:

11
Zi[A,B,I—),E}{Xl,Yl,Zl,X Y2,Zz}/(F1,F2) is a domain,

2!
Furthermore the Ti together generate this whole ring as an ideal:

(Tl""’Tk) = (1) , for else they would all be contained in some maximal

=10~




ideal in whose residue class field {which is of characteristic # 2,3
and in which F again determines an elliptic curve since both 6 and
P are invertible in the ring) they would thus all vanish simultaneously

in contradiction to (2.8).

We will now mention some important corollaries for the universal formulas
of (2.8}, which we will prove below all at once after a short explanation.

We use the notations of (2.8).

{(2.21) Corollary.

2 3 2 T3
F i<k RS, -Q,.-240Q.8,-B,.57 = Q.
or every i i85 Ql Q:L i lS: 0

=

(2.22} Corollary.

For every i,j<k:: QR, - QR; = 0, R;S, - R;S; = 0, Qisj--sti =0 .

(2.23) Corollary. Let for Ue {Q, R, S} the elements 5; (for 1<k)

11
of :Z[A’B'ﬁ’@3[x1'Y1'Z1’X Y., % ]/(FI,FZ) be given by:

A S
Ui(xllYltzlfxthzrzz) = Ui(XZ'Y.?'Zé'xl’Yl'Zl) ;
then Qi 'S QiRi =0, RiSi _RiSi =0, Qisi --QiSi =0

(2.24) Corollary. Let for Uec {Q, R, 5} the elements U, , U£ of

ij 3
QZ[A,B,%,é][Xl,Yl,Zi,XZ,Y2,Z2,X3,Y3;231/(F1,Fz,F3) be given by {i,j =<k)
Uij== Ui(Qj(Xi,Yl,Zl,X2,Y2,Z2),Rj(Xl,Yl,Zl,X2,Y2,Zz),Sj(Xl,Yl,Zl,Xz,Yz,Zz}f
X3,Y3,Z3) and
137 VR r By Qg (XY B o Xy X B ) R (X oY B s X Y Z)

Sj(X2:Y2132;X3:Y3,Z3)) '
then for every i,jm,n=k all of’

1ot 1A
¢ R sSmn " Rn®ig 0 2i5%mn " %an®is

(e
Qinmn anRij

are egual to =zero in the above ring {in which P, has obvious meaning).

3

(2,25} Remark. Informally we may explain these as follows.

Corollary (2.21) merely states that for every i the set of formulas

=11-



Qi : Ri ' Si yield a point satisfying the Weierstrass equation, provided
that they do not all vanish (which may happen when Ti7£0 }; thus it
expresses that the map E(K) XE(K) +E(K) is well-defined.

According to (2,22), whenever (Q. :R,:8,) # {(0:0:0) # (Q.:R,:5,)

- B | 373073
both projective points are the same: on the open defined by Ti%ta# Tj
the sum of two points defined either way is the same,

Corollary (2.23) formally states commutativity of the mappings defined

: + P +P, Cor is way vi
by Qi, Ri’ Si when P1 5 and Pz P1 computed this way yield
both good projective points, they coincide (but we do not rule out
that on some closed set only one of them gives (0:0:0) ).
Finally, (2.24) expresses the associativity of addition on E : whenever

\J |J I > .
both Yi(vj(Pl,Pz),PB) and ?i(PI,?j(Pz,P3)) are good projective points,

they coincide (where Wi denotes addition using the formulas Qi etc.}.

(2.26) Proofs. Let K be the field of fractions

0

11
then Y2Z = X3 + AX22 + B23 defines an elliptic curve over K0 and
this equation is satisfied by the images of the coordinates of P1 =
(Xl:lezl) and P2 = (X Y2 22) in KO . Moreover the images of the

Ti are non—zeroc elements of K and therefore according to (2.8)

0 !

addition on all of E(KO) is given by each of the triples Qi, Ri' Si .

This immediately implies (2.21) and {2.22), Then (2.23) alsoc follows.
For the proof of (2,24) we observe that it suffiices to prove
{(2.27) if G(Qi,Ri,Si}==O for some G e:Z[A,é,%,é][X,Y,Z]

then G € (F)
in which F denotes the Weierstrass form as usual; for in that case the
isomorphism Z[A,B,%,é][X,Y,Z]/(F) 7Z[A,B, 1 1]{9 R '8 ] as subrings
of :Z{A,...,Xl...,Zz}/(Fl,Fz) yields an isomorphism between the subrings

wlia, B, ][x 2 X ,Y. % J/(F F2) 2Z[A,B,-%,%][Q R, s X ]

11 RprEyrdy 30¥30%5

—-12-




of the ring in three variables, and so on, whence by a reasoning
similar to the above, but now in the field of fractions of

11
iE[A,B,B,E][Xl,Yl,Zl,X Zz,x } , the result follows,

2.1/ (0 ¥

2'Y2’ 3’Y3' 2’F3

Which leaves {2,27) to prove.

Let therefore first Heﬂ%[A,B,é,é}{X,Y,Z]/(F) be a homogeneous polynomial
with H(Qi,Ri,Si)==0 1 then by (2,22) for all j<Xk : H(Qj,Rj,Sj)==0 .
Since for every field X and every point Pe¢ E(K) the sum P-FOE==P

is given by some triple {Qj(P,OE): Rj(P,OE) :Sj(P,OE)) we find that
H(P) =0 for every point over every field, so F|H v

Let G be arbitrary in the ring with the property that G(Qi,Ri,Si) =0,
We next use that the @, R, S are bihomogeneous of the same bidegree

{m,n) , fixing and omitting all subscripts i ., First notice that always

{m,n) # (0,0} since otherwise (Q:R:8)=(c:d:e) for constants

11 .,
c,d,ecﬂZ[A,B,ﬁ,gl implying that @, R, § satisfies e.g. the homogeneous
equation cY-d¥=0 . Since ¥ - dX is clearly not contained in
(F) , we get a contradiction to the above. So suppose m>0 ; then

Q(API,P2)== AmQ(Pi,Pz) and so on, but now writing G = X Hd as sum

of its homogeneous parts Hd of degree d , we find that
0=G(Q,R,8) =X Hd(Q,R,s)Amd as polynomial in A , which by the above
implies that each of the Hd , and therefore G itself, is contained in

the ideal () .

This ends the proofs of the corollaries. 0

{2.27) Remark. Notice that these corollaries imply that from the outcome

of the computation we can Jjudge whether we were allowed to use the
formulas Qi’ Ri’ Si or not: the result is either a good projective
point which can only be the desired sum (by (2.21) and (2.22})), or it

is (D: 0 :0}, which can easily be recognized.

~13—




§3, Endomorphisms.

In the previous sections we defined elliptic curves over fields; we

now want to study morphisms ¢ : Ef+E2 between them, in particular

i E = E N
in case 1 E2

(3.1) Definitions. A homomorphism between two elliptic curves E1 and

E2 , both defined over a field K , is a rational map ¢: Ef+E2 between

the curves (as varieties) which is also a group homomorphism (which

just means that we reguire ¢(0E )= OE }. Bn isogeny is a surijective

1 2
homemorphism of elliptic curves; in fact a homomorphism is surjective

as scon as it is non-zZero. Any isogeny corresponds to an injective field
homomorphism F2-+ FI of the corregponding function fields, The degree

of an isogeny is the degree of this field extension deg¢ = [F :imEé}.

i
For the zero map we define deg0 = 0 , Every isomorphism (homomorphism
having two-sided inverse) is then an isogeny of degree 1 ,

An endomorphism of an elliptic curve is a homomorphism ¢: E » E from
E to itself, i.e. either an isogeny or the zero map {denoted by OE).
The set of endomorphismsg of E over K is made into a ring, and
denocted by EndK(E) . under

addition: (¢ +P)(P) = d(P} + Y(P) and

composition: {p oY) (P) = d{P(P}) for all Pe E(X}) .

Phe units of EndK(E) are the automorphisms AutK(E) .

An isogeny is called separable whenever the coriesponding function field
extension is separable; in that case deg¢ = #ker ¢ ,

Every homomorphism ¢ : E, » E_, over K gives rise to a mapping between

1 2

the tangent spaces, the differential mapping d¢ : GE-+BE ; this
1 2
1
induces an adjoint X-homomorphism ¢*.; QF > QF on the K-vector
2 1

spaces of one-dimensional regular differential forms, But for elliptic

ny.




T, s
curves over K , the space QF is just of dimension one over K , s0

1

1
Hom_(Q ﬂ‘ }  is isomorphic to K itself. If we take E, =E_=E ,

I
K F2 F, 1 2
it can be shown that the map ¢ - ¢* is an anti-ringhomomorphism:
i1
{3.2) EndK(B) -+ HomK(QF,Q ) = K .

Phe kernel of this homomorphism, the endomorphisms with differential
zero, are just the inseparable isogenies and the zero map OE .

Finally we note here that for elliptic curves the invariant differential
one-forms {which are by definition those that are invariant under the
translations on the curve, given by addition of a fixed point) are just
the regular differential forms, and therefore generated over K by e.qd.

a . \
(3.3) ©w = ox , an invariant differential on E in Weierstrass

¥
form {1.5). (For all this see [TATE],[sH-TAICH.I,{3HAFICh.III .)

{3.4) Examples, Apart from the trivial endomoxphisms 1E= idE and OE

on every E there is an endomorphism defined by inverting points,
-1E: P > -P for all Pe¢ E(K) ,
which is for E in Weierstrass form (1.5) given by

-1 : (x:y:iz2) > (x:-y:2]}) .

E
Also for every 11eEZ>0 there is an endomorphism given by multiplication
with n , nE: P>+>nP=P+ ,.. + P {n times) , for all Pe E(K) .

One can show that these multiplications - now defined for every integer -
2
have degree degr%:= n~ , and that they are separable if and only if

{char K ,n)= 1 .,

{3,5) Corollary. For every E there is an injection Z -~ EndK(E) .4

Phe two examples now following will be of major interest to us in the
next chapter and will therefore serve as illustration throughout the

rest of this chapter.

~15-



{3.6) Example. Let the curve E be given (over € say) by

E: Y2Z = X3 - AX22 for some Aed* ,

This curve admits multiplication by i , an endomorphism defined by

:LE: {xt1yv:iz) > ({-x:iv:z) for every point on E .

This is an automorphism satisfying iE2= —IE .

We thus have in this case %2[il= Endﬂ:(E) , and we say that E has

complex multiplication by Z[il,

{3.7) Example, Similarly the elliptic curve

E: Y22=X3+BZ3 for some Be ¥ ;

admits complex multiplication by Z[pl , where the primitive third root
of unity p acts by

p: (x:y:2z) *+ (px:y:2) for every point on E ,

{3.8) Example, There is another important example for curves over finite

fields, the so-called Frobenius—-endomorphism Frob . It acts on E ,
defined over the finite field IE‘q of g= pk ({ p prime} elements,

t
by raising coordinates in the g h power:

Frob: {(x:y:z} =+ (xq:yq:zq) for every point on E ,

For every intermediate field ]Fqc quc“}r”_‘q it is a purely inseparable

element of EndF (E) with deyg(Frob)= g . In fact it is clear that
m

g —
E(]qu) corresponds precisely to the points of E(Fq) satisfying

Frobm(P) =P ,

From the fact that an elliptic curve is its own Jacobian it can be

deduced that (cf. [TATE] , [CASS] ) associated to any isogeny ¢ : E, > E,
there is a dual isocgeny ¢ : E2+ B ) with the property that d o ¢ = L
a 2

degd =deg¢ . For E, = E,= E we write

and ¢ed = n 1 2

Il

B where n
1

¢=$. ; then qbo$=$o¢

[}

L
Using this one can show that there are only three essentially different

types of rings occurring as endomorphism rings of elliptic curves.
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(3.9) Theorem, For every elliptic curve EndK(E) is isomorphic to either

(i) % , or

{ii} an order in (the ring of integers of) a complex quadratic extension
of Q@ , or

(1ii) a maximal order in a certain totally definite guaternion algebra
over @ .

{cf. [DEUR].) {]

(3.10) Remarks. Notice that EndK(E) depends on K : it may be that only
over some extension of K all endomorphisms of E are defined. (Take
for instance Ae¢Z in example (3.6) and E defined over @ ; in that
case iE is not defined over the ground field,)

The rings in (3.9)(iii) are non-commutative of Z-rank four; they can
only occur in positive characteristics., An elliptic curve is called

supersingular whenever its ring of endomorphisms over some algebraic

closure K of K 1is non-commutative.

An immediate consequence of this characterization of endomorphism rings

is that any endomorphism ¢ ¢ Z can be identified with an Integral
element in an imaginary guadratic extension of @ , so we can embed

ZL¢l in € (which is just what we did in examples (3.6) and (3.7}).

In this embedding the dual 5 of ¢ corregponds to the complex
conjugate % of the quadratic integer ¢ {whence the notation); the
norm N¢ = ¢$€ %  then eguals the degree degd¢ , as we saw before (3,9),

and the trace of an endomorphism is defined by Tr ¢ = ¢-b$ e .,

We are now able to formulate the theorem on kernel and image of
maltiplication by n on a curve E ; here E(K)[n]} will denocte the
n-torsion subgroup of E over K , i.e. points defined over K of

order dividing n .
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(3.11) Theorem. Let the elliptic curve E be defined over some

algebraically closed field K . Then for any integer m , E(K)

is m-divisible, and

if {(charK,m) =1 then E(R)Im] = (&/mZ) % (Z/mZ)
_ K Z/mZ 1f E not supersingular
if charK=p, m=p then E(K)[m] = {
¢ if E is supersingular
([TATE]p. 185). 0

Welexstrass models (1.4) for an elliptic curve are only unique upto
transformations of the form

3
(3.12) X=u2X' + r . ¥ = quy' +su2X' + t

which means in characteristic #2,3 that two models of the form (1.5):

2 X3 + aXZ2 + bZ3 and

2 X3 +:’:1'X22-i~b'Z3 over K

o
]
n

H
]
i

determine the same curxve if and only if there exists a ue K¥ sguch that

u4a' = a and u6b' =b .,

1
This implies that u 2A‘ = A . We see that neither Weierstrass models

nor discriminants are invariant under isomorphisms.

(3.13) Definition. For an elliptic curve given by a Weierstrass equation

2 2 3 2 2 3
E: YZ+a1XYZ+a3YZ = X +a2XZ+a4XZ +a6Z

the modular invariant 3 1is defined by

. I 2 3
J{E) = j = A((a1+4a2) 24(a1a3+2a4}) .

In characteristics #2,3 this reduces to
3
j = {—4§a) 5 with a and b as in (1.5) .
~16{4a™"+27b")

(3.14) Corollary. Over an algebralcally closed field X we have for

elliptic curves E and E' :
E and E' isomorphic = J{EY = 3(E") .
Furthermore, if charK # 2,3 then one can prove:
=0 > a=0 = AUti_((E) &y

8
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§=1728 = b=0 - Autz(E) = u,
0#£j#1728 <« a#0#b == Autl-i(E) i D
with — u the group of kth roots of unity {cf. [SCHOL,[DEURT). g

The special role for the values 0 and 1728 for j can also been

seen in connection with supersingularity.

(3.15) Proposition. Let E have coefficients in the finite field Ea

of characteristic p . Then

il

if p 2or 3: I is supersingular = 3=0=1728
if p 25
E with 3J(E) =0 not supersingular e p=1mod3 < Endg (B)= zlp]

q

E with jJ(E})=1728 not supersingular « pzZ!l modd <« Endﬁ (B) ==[i]
d

and there are E%J values different from 0 and 1728 which are

supersingular ([TATE]lp.184,185), U
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§4, Pinite ground field,

As we saw in example (3.8) the group of points of any elliptic curve
over a finite field }T‘q is just the kernel of the endomorphism

Frob-1 on the algebraic closure ﬁq . But since Frob is purely
inseparable and since we observed (after (3.2)) that the inseparable
endomorphisms (plus zero map OE ) constitute an ideal, Frob-1 is
separable and therefore we can find the number of points on E defined

over :Fq using (3.1):

BE(F )= #ker{Frob-1) on F
g g

1]

deg (Frob-1} = (¢~-1)(¢-1)

1

Ndp+1-Tr¢p =g+1-Tr¢
where we identified Frop with a guadratic integer ¢ as in (3.10),

with |¢|=vg . This immediately gives the following theorem,

{4.1) Theorem. For any elliptic curve E defined over qu , and fox
any integer m=21 we have

FE(E ) = @ +1-Tr (67 . 0

(4.2) Remarks. We see that #E(]qu) differs at most 2\/qm from

qm+ 1 , the number of points of ]P1 ; this is in fact the gpecial

qu
case of genus 1 of the Riemann-hypothesis for function fields of curves
over finite fields,
Notice that multiplying ¢ withaunlt (composing the Frobenius with
an automorphism) does not change | ¢ |, but that it might affect Tr P .

Therefore it will sometimes be necessary to determine ¢ uniguely as a

quadratic integer,

(4.3) Reduction. Much of the importance of the finite ground field case

arises from the possibility of reducing elliptic curves: given an elliptic

curve with coefficients in Z {or in any ring of integers A of a
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number field) we can investigate solutions to the reduced equation

(4.4) Y2Z = X3 + aX22 + bZ3 mod p

for any prime ideal P (not dividing 2 or 3) of Z (resp. A ). In
other words, we are looking for the finitely many points over the finite
residue class field I‘E‘p {resp., A/p ) satisfying (4.4), which determines
an elliptic curve provided it is non-singular, which means

4a3+27b25 AZO modp {characteristic# 2,3} .

{4.5) befinition, An elliptic curve E with coefficients in some ring

R 1is said to have good reduction at some prime ideal P of R when

Emed 2 is again an elliptic curve (that is, non-singular).

Next we will considexr the two examples mentioned before again; first we
introduce some auxiliary notations.

In the sequel E_. and B will respectively denote elliptic curves

§
defined by the Weierstrass equations:
E6 : Y2Z = X3 - ('3)(22
¥ 2 3 3

E': YZ =X + vyZ

with ¥ and § in the ground ring or field.

(4.6) Definition., Let o, me Z[i]l , 7 prime, with (2a,7)=1 . The

biquadratic residue symbol with respect to 7 is defined by

o X Nm- 1~
(~) = j o 4 mod w .
4

11

When extended by multiplicativity to non-prime wve % [i]l , we get for

every v with (v,2) =1 a character of order dividing 4 ,

For sake of simplicity we introduce a standard normalization on elements

of #l[il .

{4.7) Definition. An element ve¢ Zl[il, v#0 is called normalized if

v=.1 mod 2421 .
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For every non~unit veZ{il , with 1+i f v this definition picks
exactly one out of the four associated generators for (v} as a

principal ideal. For prime elements m f 2 we have that if T is
a rational prime, then -7 is normalized, and for arbitrary primes

T=atbi is normalized <= a=3 ,bz2medd4d or azl , bz0modd .,

(4.8) Example, The curve E(,3 .

We consider the curve EéS for arbritrary 6SeZl[il]l , §#0 . For every

prime we ZLi]l , with (28,7 =1 , reduction modulo w yields an

elliptic curve E,. mod7nm over the finite field of N7 elements, By

8
way of example we will compute the number of points of E s mod ¥ {which
ve will also denote by B if no confusion will arise), making use only

§
of some elementary properties of Jacobi sums (see [HA-DAJ,[IR-ROICh.VIILI,

IX, XVIII}.

We assume our prime 7 to be normalized, and we identify RZL[il/{m} = JFq
so we consider imodrm and Smodw  to be elements of ]Fq , the finite
field of

elements.

_ pElmod4 , p prime
ﬁﬂ&{

pZEl med4 , p=3moedd , p prime
Since there is only one point at infinity {0:1:0) on E6 mod # we have
#E (F )= 1 + N (Y%= x> - 8x)
87 gq q

where Nq denotes the number of solutions in JFq .

Next we bring E6 onto diagonal form: define
2
Y
U= 2% - —5 ’ vV = §
X
2 2
f=Te} X=—-——U;v ,Y=V————(Ugv)

Then there can easily be seen to be a bijection between

2 3
{{x,y) e xT = x
Y a q Yy

2 4

dxI\{ (0,00 } and

48}

1]
<
+

{(u,vyeP xTF : u
q q
[={e]

#E(JF)_=2+N(U2=V4+46).
§ g q
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This is where the Jacobi sums come in:

N (U2 =v4 + 48}
q

Il

Lr N (=N v -
r+us=44§ 4

il

% Y ox{ry I ¢(-s)
rts=4% 3(2=X0 ¢4=)(0

summing over x¥,s in EI-‘q and over multiplicative characters ¥,y on

:in with X the trivial character

i

T z x(x) P(-s)
)(22)( = U,)‘* r+s=48
X:

XPp(48) v(-1) I{x, ¥ .

2oy =

X

But for the Jacobl sums J(¥,¥) we use ([ IR-RO]|Ch,VIII)

J(XOIXO) = q

1l
1i

J(x:xo) J(xo,x) 0 for x#xo

since

Il

J(X:X—l)

and J(x.,x)} -x{-1} = -1 for ¥ 75)(0 with x2=

X0

g=1 mod4d, so we are left with

2 4 2
J(x, W) X=Xy #x and  y=x AU .
But JouW = X oxelv) = £ N_(t2=uw yiv)
utv=1 utv=1
= = oya-th =@z edEh edsh
t t
= () T D)

and J(P, )

I

S oplt) B(l-t)
i

i

2% ¢ls) p{i-s) + Ip(%)z
s

where t runs over ]Fq and s runs through an appropriate half

representative system of ]Fq : g{ s,1-s } = .'IFq .

51;—3.2 + P{~1) mod (242i)
since every unit P(s) ¥(i-s) = 1 mod (1+i) and since

2

v = v@7% = p@? = piaAH? = gy

Because Y(-1) = +1 (depending on ¢g=1 or 5 mod8), we find
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{4.9) P(-1) I{P,P)= -1 mod (2+21) .

Furthermore for every ¥ with 1,!}274 X on T

qd
(4.100 ol = Vg ([1rR-ROJE8.3) .
Now we take for ¢ the biguadratic residue character (1_1) ;, in which
4
3 -1 = .
I = = = 1} = —
case i U i U (“)4 and
q-1 g-1
{4.11) Jp,) = L t % (1-t)4 = 0 modnm {summing over JFq ).
: .

Combining (4.9), (4.10) and (4.11) with = being normalized, we get
{(4.12) —Pp(-1) T, P) = 7 .
Putting everything together we sege
#EG(IEFq) =2 + g~ 1+ xp(48) p(-1) p(4Y {(-p(-1)m) +
o XP(48) B(=1) $(4) (-§(-1)m)

=g+ 1~ (8w - p(&w .

(4.13) Theorem. Let = be a normalized prime in Z[i], O0#68e¢=[i], with

(26,m =1 and Nw =g . Then

—————

PE(E )=+ 1 - T ( (g);) : O

{4,14) Corcllary.

X 78\ .k
#Eé(Fqk) = d +1 - Tr(((;r)f) ) for all k=1 .

Proof. From (4.13) we see that the Frobenius corresponds to (g)‘ﬂ or

its conjugate; the result follows by (4.1) . 0
{(4.15) Example. As very first numerical example, let §=1, (m¥=1(3) .
Then accoxding to (4.14) the curve YZZ = x3 - xZ2 should have 16
points defined over IE‘q . Indeed Va short computation yields:
{(C:1:0) {0 : 0O 1) { t : O 1) {2 : 0 1)

{i :142i: 1) {( 1+1 : 14231 :1) (241 & 1421 : 1)

{1 : 241 @ 1} (141 ¢ 244 :1) {241 ¢ 241 : 1}

(24 : 141 : 1} {i+24 3 141 :1) {2421 : i : 1)

{(2i: 2424 : 1) {1+241 : 2+2i :1) (2424 : 2423 : 1)

Notice that in this example the curve was defined over Z alrxeady, and
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that reduction moduleo the rational prime 3 would have given E (F3) .

8
Apparently #ES(}FB.) =4 ., But this can easily be derived from (4.13)

in general: let d§e€¢Z and p a rational prime, If p=1 mod4d then
(4.13) applies immediately to find #Eé(]Fp) ; if p=3 modd then (4.13)
yields #E(S(]sz) = p2+ 1 - Tr {~p)

from which we deduce by (4.1) that ¢2=—p : we find that the
Frobenius is purely imaginary, and the following result for the prime
field is proved. (Of course it can also be proved directly, using in the

above Jacobi sum computations that in this case every square in the field

is a fourth power.)

(4.16) Corollary. If §¢%Z , §#£0 , p=3 modd prime, then

#Eﬁ(]Fp) =p+1 .

~14/3

Next we summarize the corresponding results for E! . We fix p= 5

{4.17) Definition. The sixth power residue symbol is defined as follows:

for every prime weZ [p] and every oeZlp] with (ga,m) =1,

N#E-1
(g) = pk Z o 6 modwn
R

which gives by multiplicativity for every n with (©,p) =1 a character

(1:1) of order dividing 6 .
6

(4.18) Definition. Bn element ne #[pl is called normalized if

p=1 mod 2 (1-p} .

Again, the images of all units are different, and we choose one out of
the six associates of each element in % [p} for which (2:{1-p),u) =1,
For prime elements wn#2, i-p one finds that if # is a rational prime
pZ2mod3 , then -1 is normalized, and if w=a+b ¢£%Z then it is

normalized <= az5, b=2 modé6 or az3, bz4d mod6 .
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Considerations analogous to that in %Z[i ] above (compare [HA-DAJ,

[IR-RO1818.3) then lead to the following.

(4.19) Theorem, Let T be a normalized prime in Zlp] , O#yez[pl with

{6y,n} =1, and Ni= q; Then

Y _ . y
T ) = q + 1 Tr(\ﬁ)(:r) . 0
§4°20) Corollary. o
Y .k {Y k
#E (I‘qk)ﬂq + 1 ~'J:‘r((\,i-T w) ) for all k=1 . {1

‘6

(4.21) Corollary. If O#vyeZ and 7w isarational (normalized) prime

so -w=p=2mod3 , then

#EY(FP) =p+1 . 0

{4,22) Remark. In the above we several times stated that the Frobenius

corresponds to a certain assoclate of 7  where the unit is determined
by a power residue symbol; we did not check yet however that the Frobenius
is in the image of Z[il resp. of Z{p]l under the embedding of Z[il ,
Zlpl in Endﬁ (E) i.e. that the product of iE {resp. pE) and the

q

Frobenius makes sense in 2Z&[i] or Z{p]. However (working this out

only for E, , the other case is similar), for p=Z1 mod4 this is clear

]
from proposition (3.15), while for p = 3 mod4 it is a consequence of

corollary (4.16) - which we therefore have to proof directly as

indicated - that the Frobenius is even an element of Z .

This means that we now have completely determined the number of points

on each of the EG-,EY over any finite field. In doing so we determined

the Frobenius endomorphism upto complex conjugation. In oxder to find

8

as a @[1i] resp. Z[p] module - we first determine the Frobenius

the structure of E (I’E‘q) and EY(IE‘q) - not only as a group, but even

unanbiguously.
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(4.23) Proposition. Let 7 be a normalized prime in Z[il . Then

for &ezbil with (2§,7) =1 , the Frobenius endomorphism belonging to

Eg mod 1 corresponds to (g)'ﬂ in ZEil .

4
if rt is a normalized prime in Z{pl and O0#+vy eZipl, then for
vy with (6y,7 =1 the Frobenius of E' modm' is given by (%)‘ﬂ'
6
in Z[pl

Proof, We only give the proof for the curve EG ; the other case can

be dealt with analogously.

From theorems (4.13) and (4.1) it follows, as mentioned above, that the
Frobenius is either the element indicated in the proposition or its
complex conjugate. We consider two cases.

Let first the primes ¢ and T be non-associated, i.e. mer=p=1 mod 4
p prime. We identified Z[il/y and E‘p ; but we also have a map

Z?,[i]%]FP defined by the action on the tangent spaces, as in (3.2},

since Zfi] injects into Enle (ES) . By making use of the invariant
P

differential dx we verify that the diagram

zZii] —- End._]F (E_ )

o §
modﬂ\ /
r

p
comrutes, i.e. that we made the right choice for the action iE in
(3.6):
dfi, (x)) _oatw _ o ax
iz(v) iy Y

so "taking differentials commutes with multiplication by i ".

Since we know that Frobe (m) or {(w} , and since we know that in the
above diagram on the one hand m is mapped to 0 but 7 is not,

while on the othex hand the Frobenius is mapped to zero because it is

inseparable, we can conclude that Frob ¢(n). That settles the first case.
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In the other case, when {a) = (m) this argument clearly does not

work. But here we observe that in some instances the case is already

settled, namely when (§) = *1 , For then (§)1r= fé)ﬁ and we are
n T, \“
4 4 w4
done.

But the remaining cases can be deduced from this by "twisting", as

3 2
follows. Let E1 be the curve Y2Z = X - X2 of which we know
that the Frobenius {denoted by ¢1) corresponds to the normalized
prime T = (§)1r= (§ #=7 , and let E, be given for some §cI*
m =/ § e
4 m’4 .
g=Nnw . Then over the algebraic closure ZFq we find an isomorphism

{in fact of course already over some finite extension) E1 SAGI E6

for instance given by:

(x:y:2)b— { &EQX: ?Egy: 2} .
We thus see that Ei{iﬁé) o Eé(iﬁq) ; but then this isomorphism
should induce an isomorphism on the endomorphism ring that is the
identity on the subring 2[i] if we define the action on E of
i as in {(3.6) by iE(x: y:2) = {~x:1iy : z). Now

¢1(P) = ¢l( (952x: ?an: z) )= (aggxq: 3%3yq: 73)
wnile

bs®) =4 Fax: I8y 12 )= (D)% (T8 T )
which means that mocdulo # the difference is given by multiplication

by a unit, namely,

g-1 _g-1
( 53)q 1-—(83)_1_ =35 4 modnw
and
g-1 qg-1
{ 62)q 1. (62)T = 32T mod T
_{8Y} .
s0 b5®) = (5)4 6, (P)

where the residue symbol denotes complex multiplication on E1 with
the unit.it determines,

Since % corresponds to 1w , this ends the proof of (4.22).

We now know that under the proper normalizations E6 mod T 1is

annihilated by Frob-1 = 7-1 ; but we can prove that this is precisely
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the annihilator, that is we have the following proposition, which

could be called an analogue of (Z/pZ )*¥* = (Z /{p-1)Z)

{4.24) Proposition. Let w be prime in zfi] and § such that (2§,7) = 1.

If we normalize T by 1w = (%) med 2+2i then {with ag=Nn )
4
Es(:qu) = Z[i}/{r-1) as Z[il-modules,
The procf is a consequence of the following lemma,

(4.25) Lemma, Let R be a principal ideal domain having only finite
residue class fields. For every finite R-module M :
if f{xeM: (b)x=0} < §R/{b) for every ideal O0# (b)cR ,

then M is a cyclic module: M= R/{a} , for some (a)c<RrR,

Proof, If M is not cyclic, then by the structure theorem for finitely
generated torsion modules over principal ideal domains (fLANGI12 Ch.XV) it
is the sum of at least 2 cyclic modules: M = iq=31 R/(ai) which can he
chosen such that (ai+1) | (ai) . Then at least one prime ideal ({w)

divides both (ai) and (a2) ; this (m} contradicts the assumption, i}

Proof of (4,24). We know that ES( ]Fq) is a finite Z{il-module (annihilated

by mw-1}, Now for O#o=%Z[i] we have
#{PEE(S(]Fq) : aP=0,} < {PEEG(“]ET‘HQ} : a P=0E} < a'a = No= #2[il/ (o)

so application of ({4.25) yields the desired conclusion. a
We find a similar result for EY,

(4.26) Proposition. Let # be prime in Z[p] and ¥ such that (6Y,%) =1,

If we normalize % by m = (%) mod 2{i-p) then (with g=N7 )
e

EY(IE‘q} = @mlpl/(r-1) as Zlpl-modules. 0
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§5, Elliptic curves over Artin rings.

As pointed out in the introduction, and as we will see in the next chapter,
we want to work with reductions of elliptic curves by ideals that are not
necessarily maximal, Therefore we need to define elliptic curves over a
wider class of rings than fields. Since in our applications we will only
encounter -z/nzz and Z3{1i1 or Zlp]l modulo (y) as ground rings, we
will confine ourselves for simplicity to Artin rings.

(All rings are assumed to be commutative with 1).

{5.1) Remark. We briefly recall the basic properties of Artin rings (see

[A-McD]Ch.VIII). By definition an Artin ring is a ring that satisfies

the descending chain condition on ideals. This is eguivalent to A

being noetherian of dimension 0 (i.e. every prime ideal is maximal).
Furthermore any Artin ring has only finitely many maximal ideals my
(i=1,...,n), and there is a k>0 such that igl m£§= 0 . The structure
theorem for Artin rings then says that A — iﬁl A/mi 2 A now

gives an (upto isomorphism) unigue decomposition of A into a finite

direct product of local Artin rings,

{5.2)} befinition. An elliptic curve over an Artin ring B is the set of

projective points

E{A) = {{x:y:2) , x,v,2¢hA , (x,v,2)=(1}) and F{x,y,z)=0}
satisfying the homogeneous Weierstrass form FeAlX,Y,%] with AeA¥ ,
equipped with the structure of an abelian group under addition defined
below.
Here of course {xlz vy zl)==(x2 :y2 :22) = Ju ¢ A% such that

(Xi’ Yy zl)==(ux2, uy, uzz).

{5.3) Addition. First we define addition of points on elliptic curves

over local (Artin) rings as follows, We make use of the formulas of

assertion (2.8). Let P,,P ezE(Am) ; find an i (1 <i<k) for which

172
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Ti(xi'yl’zi’xz'y2’22) Z 0 modm
and now define with this 1 :

P1-+P2==(Qi(xjf-..,zz): Ri(xl,...,zz) :Si(xl,...,zz)) .
For arbitrary Artin rings we then extend this definition by multiplicativity
making use of the structure theorem:

n n

B(a) = B(H Ami) =0 E(Ami) :

{5.4) Verifications, Let us verify that this definition makes sense,

The existence of at least one 1 satisfying Ti 20 modm in Am

is guaranteed by (2.8) , %n/nr being a field.
That P1~+P255E(Am) is clear since by (2.21) the coordinates satisfy the

required Weierstrass equation, while they can not all reduce to zero as

can be seen immediately from commutativity of the diagram

+
E(Am) X E(Am) —_— E(Am) vi0:0:0)
E(Am/m) x E(Am/m) LN E(Am/m)

{in which vertical arrows denote reduction of coordinates modulo m )}
and the fact that addition on E(ﬁm/rn) is well-defined.

The sum is independent of the choice of 1 : this follows from {(2.22).
The other axioms for a commutative group are clearly satisfied except for

associativity, which is guaranteed by (2.24).

(5.5) Example. With this definition we can now reduce the curve

E(S: YZZ =x3— 5x22 , =il ,

modulo any non-unit v for which {2§,v) =1 , instead of only prime

elements. Since we defined these reductions multiplicatively, it

k \
suffices to consider EG med w for w prime, {(2§,7)=1 and k=22 ;

the case k=1 was treated in example (4.8). We suppose that our prime

(§) mod 242i .
T/

(for k=1 ) the ring Z[i]/(wk) and by Ik the ideal

i

is normalized by =

Denoting by A
k-1
T

k

} of A , we get for every k=22 , by reduction of the coordinates

( k
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-1
modulo “k

Xt Ea(Ak) -— Ea“‘k—i) = E(S(Ak/]lk) ‘
a group homomorphism (by definitions (5.2) and (5.3)).

These reductions are surjective, since any point on E (Ak/Ik) can be

lifted using Hensel's lemma; moreover, the kernel of rk can be geen to

+
be isomorphic to the additive group Ik by a change of variable. For,

if rk(x:y:z)=(0:1:0)
then w*yi* but nk_llx and ﬂknilz .
From Welerstrass equation (1.5) we can see in general that

ﬂlz = ﬁ[x and if ﬂml X say, then ﬂ3mi z .

So in the kernel of x, We may write (x:y:2)= (—E: -1: ~§)

and now

the mapping w b— {(w:-1:0)

+
Ik  — ker(rk)

gives a bijection that is not only a group homomorphism, but even a
Z[il-module homomorphism (see for this [TATE]S3).
This implies that multiplication by = on EG(Ak) sends all points to

).

the zero element of EG(Ak~1

(5.6) Corollary. For any prime « in #%[il , normalized by w = (%) mod 2+2i
4
for § with (28,7} = 1 we have that EG(:EEi}/(ﬁk)) is annihilated

-1
by (n-—l)ﬂk for any k=1 . g

(5.7) Corollary, For any prime = in Z[pl} , normalized by = = 1A

w
A
mod 2¢({l1-p) for vy with (6y,m) =1 , EY(QZ[p]/(ﬂk)) is annihilated

by (ﬁ-—i)ﬁk"1 for any k=z1 . D
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CHAPTER 1T PRIMALITY TESTS

§6, Primality testing.

In this chapter we will apply results of the previous chapter to
primality testing, i.e, deciding whether a certain given positive integer
n is prime or composite. To us a primality fest will be a sufficient
criterion for primality, and a compositeness test will be a sufficient
criterion foxr compositeness; of course we should add that a good test

is also (computationally) effective, but we will not specify this here

in terms of complexity.

Since it only takes one non-trivial multiplication with outcome n to
show that the integer n is composite, while primality - the non-
existence of non-trivial divisors - can only be proved in some "indirect"
way, it seems obvious at first sight that , generally speaking, recognizing
composite numbers is easier than recognizing primes. However, finding a
factor of a given large integer turns out to be even harder than proving
primality. Though proving the compositeness of an integer without
indicating a factor seems remarkable, the most commonly used tocl for

this is just Fermat's theorem

(6,1) n prime = for all a with (a,n})=1 : an—l =1 modn
which gives rise to the following compositeness test :
(6.2) anqlffl modn , f(a,n)=1 = n composite .
When sharpened to
i
{(6.3) a 2 # (5) modn , {a,n)=1 = n composite ,

{using Jacobi's symbol (;)) , one can show that for every composite

n at least a half of the elements a with {a,n}=1 yieldsaproof

for its compositeness (see [LEHM],[S0-ST]1). When trying severai a does
not lead to such a proof, n will probably be prime.

At that point one wants to subject n to a primality test.
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The prototype for our primality tests is based on the converse of
Fermat's theorem; since this does unfortunately not hold, some
modifications have to be made first.

For instance, the converse of {6.3) does hold, but checking the desired
congruence for all a for large n (for our purposes upto several
hundreds of digits) is computationally not feasible. More useful is

the following proposition, the proof of which we will discuss in {6.7),

after an application.

(6.4) Proposition. Let n be an odd positive integer. If there exists

an a in 7% such that
n-1
{a,n) =1 and a =1 modn but net

{6.5) for all prime numbhers g dividing n-1 : ad # 1 modn

then n is prime.

{6.6) Example, Pé&pin's test.

This one of the older {(1877) and easiest primality tests, designed
especially for the Fermat numbers n = 22 ¢ 1 , k=21 ., It reads:

2k 2
n=2 +1 is prime <= 3 = -1 medn

and is an immediate consequence of (6.3) and {6.4), observing that

06

14
This way 2 + 1 was proved to be composite, though no factor is known

{ {BLSTW]).

The above example, and in fact the proposition itself, shows immediately
the main shortcoming of these type of tests: the use of (6.5) is restricted
to those n for which the prime factorization of n-1 is completely known.
Though this may be relaxed for instance to knowledge of a partial
factorization (see below), it is still true that the tests we consider

are limited in the sense that they are particularly suited for integers
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of a special form.

(6.7) Proof of (6.4). The proof of (6.4) is obvious: the conditions

on a imply that its order in (Z/n% }* equals n-1 , which means that
(%Z/nZ)* 1is cyclic of order n-1 , showing that n 1is prime.

It is worth noticing however that what really matters here is the exponent
of (Z/n7%)* rather than its order: writing n = jél ijj , the exponent

of (&/nZ)* eguals (n is odd)

lem $(p3) = lom ((p,-1)p_}§j’1)
3 3 j ] 3

{(in which ¢ denotes Euler's function). Since the order of a mod n
is n-1 , and (n,n-1) =1 we find that
t Ka
] - -
(6.8) (40 pg) -1 | dem (o= D)
which gives a contradiction (using that 2} (pj~1) ) unless t=1 =k1
n 1is prime.

Rephrased this way we will see that the proof lends itself for generalization

as well as the proposition itself. 1

(6.9) Remark. As can be seen from the proof, the uniform condition
on a in (6.4) for all primes dividing n-1 can be replaced by a
condition in which a may depend on the prime:

{(6.10) Vgl n-1 (q prime) 3 a satisfying (a,n}=1,

anmlz 1 modn but

=

n-1
a4 £ 1 modn .

When only a partial factorization of n-1 is known, ‘considerations similar
to the above lead, if not to a primality proof, at least to information on

possible factors of n . This is shown by the following theorem, in which

s should be thought of as the factored part of n-1 .

(6.11) Theorem. Suppose we are given n, s in Z_, , s} n-1 , and acZ

with anhlaimodn . If for every prime ¢ dividing s we have
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then every dilvisor r of n satisfies r=1 mods .,

n-1

(6.12) Remarks. For the proof we just ohserve here that a has corder

s in (Z/pZ)* when taken modulo the prime- p , pln .

It ie clear that the theorem yields primality proofs when s> Yn (or,

with some more caution, even if s> 9; : see [LENST ).
Again the uniform condition on a can be replaced by -1
\ n-1 _ q
(6.13) VY prime qls 3 a : a =1modn and ged (a - -1, n)=
k . k . .
{6,14) Example, Let n=h-2"+1 with 1<h<2 . Then, if there exists
an a satisfying
n-1
a 2 z-1 modn
we conclude that n is prime,
229,,.228 . .
For example: 2 {2 - 1) +1 was proved prime this way ([BLSTWI]).

Primality tests based on (6.4} and (6.11} have been generalized in such
a way, that also use can be made of (partial) factorizations of n+l,
n2+n+1 etc. ([WILL]), giving rise for example to the well-known Lucas-
Lehmer test for Mersenne numbers. In the next section we will generalize
the tests in a somewhat other direction; we want to replace the group
structure of (Z/nZ)¥* by the module structure of the group of points
E(A) over an Artin ring A of an elliptic curve admitting complex

multiplication.

—36—
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§7. The Z[i]-tests,

In the Ffollowing "generalization" of theorem (6,11) the main primality

test of this section for Zl[il is contained.

The curve E6 is defined as before: Y2Z = X3 - 6X22 ; and by

P = OE mod 4 we will denote that P = 0 on the curve E modyu.

{(7.1) Theorem. Let veZ[il and let oe Z[i]l divide v-1 .

If there exist &8eZlill with (26§,v) =1 and points P:_| on EG(Z{i}/{\;))
satisfying:

(7.2) for all 3 : h)—i)-Pj = 0
and

{7.3) for every Y]o ,yeli] prime, there exists a Jj such that:

v=1

for every non-unit peZlil , u[v we have )-Pj Z 0E mod 1

]
then every divisor p of v , normalized by

p = (g) mod 2+2i. , satisfies
4

{7.4) p =1 modo .,

If moreover o [f 2 then also

v = (§) mod 2+2i .
v/ 4

(7.5) corollary. ( lo}~1 )2 > vl = y prime in the above.[]

Proof of (7.1). Choose some prime T [u .

v-1

Consider the points Qj = )‘Pj . According to (7.2) we have for all

ij = OEG, while (7.3) implies that for every prime vy dividing o there
is a 3 such that $g3j Z OEamod 7T . We conclude from this that o
divides the annihilator of Eémod'n, which is -1 for 7w normalized as
in the theorem, as we saw in (4.23). By multiplicativity this leads to

the desired conclusion. ‘ f

(7.6) Remarks. It is important to note that conditions like those of (7.2)

and {7.3) about the annihilation of points after reduction, that may seem
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elusive at first sight, can be made very explicit - and thereby suited

for easy computational verification - as follows. Since we know how to

v-1
Y

add and multiply by i on Ea, we know how to compute e.g. Q = { )P

{we may also use explicit formulas for multiplication by m given
in [CASS] )}: now the condition Q % OE mod ®# comes down to ZQ {and
8

therefore XQ) being not divisible by # (see §5}. We thus have

Vu[v Q;EOE mod u e gecd{z_,v)=1 .

s Q
Notice that the normalization of v as in the theorem here is a
conclusion and not a condition; but in practice of course one first
makes sure that it is satisfied for the & under consideration. The

verification of such congruences can be done using the biguadratic

reciprocity laws and its supplementary laws.

If we succeed in factoring v -1 completely in ZIil we can use the

following theorem.

{7.7) Theorem, Let wve Z[i] and suppose that

(7.8) (v, 3:5.13-17+29) = 1

If there exist §eZ[il with (v,28) =1 and points Pj on EG( Zlil/{v))

satisfying:
(7.9) Vi s (\J—l)'Pj = OE(5
(7.10) V prime Jv-1 33 : =H.p. £ 0
3 Bg
then v 1is prime in 2[i]
{and v = ((—3) mod 2+2i ).
Vg

Proof. By (7.9) and (7.10) v -1 divides the annihilator of EG(%[i‘]/{\))).

But from §5 we know that this annihilator divides lcm((nj - l)ﬂjkj_ 1)

7N t

with #, = (‘ng) mod 2+2i if we write v' = jﬂl 'ﬁjkj where v' denotes
j4 B

the associate of v that is likewise normalized., But since (v'-1,v)=1

we conclude that

(7.11) v' -1 11cm(nj-1) .
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Now (v,2)=1 so always 1+i 1 Trj and thus

t 7w, -1 t

- 1) ; J -
(7.12) Ilom(my ~ 131 € 141) 1) —e— | < NI tnj 1} <

1 t
< (v37 + 1)
/2t

because condition (7.8) on v implies that lﬂjl2 ¥37, and therefore alsc

(7.13) lvi—1] = {vl-12 /37°-1 .

For t=z2 now (7.12) and (7.13) contradict (7.1!1) while for t=1 , k12 2
(7.14) jvi-1] 2 juvl-1 2 yﬁﬁk -1

together with (7.12) also contradicts (7.11}. The result follows , {1

{7.15) Remarks. Condition (7.8) that v has no small prime factors

{which in practice is no restriction of course) is put in to make the

inequalities (7.12)-{(7.14) work; in fact it can be relaxed to (v,15) =1
as we will see in the next section, We will prove there that there exist
only finitely many composite v for which all conditions of the theorem,

except (7.8}, can be met, and that they all have {(v,15)>1.

{7.16) Rational primality. Let now n>1 be an odd rational integer

with (n,15)=1 , ¥If n=1i modd write n = v'v in Z{il; if n=3 mod 4
take n = v , We next choose 8¢ Zli] and normalize :
_ (8 .
v = | =] mod 2+2i
AY
4

Factoring wv-1 as far as possible, we get a factored Ulu—-l and we
can apply theorem (7.1) or, if we are lucky, even {(7.7), trying to prove

that v and therefore n is prime,

(7.17) Remarks, ¥irst notice that not every n=1 mod4 can be written

as n = v‘G in Z[il ; but if n is prime then this decomposition
does exist, and what is more, it can be found efficiently (in "polyncmial

time", see eg. ESCHO1). This makes testing for primality in Z and z[il]

~30~



polynomially equivalent.

Secondly, it is important to observe here that we can make use of
(partial) factorizations of the different associates of v minus 1
(in particular when we use theorem {7.1}). What matters here is the
factorization of v4-1 = = (v=1){-v-1){iv=-1)(-iv-1} ; we utilize
all factors of this we can find, choosing different §'s,

We also remark that knowledge of a (partial) factorization of wv-1 in
#Z[1i]1 of course does not mean that we know that of n-1 in Z, i.,e.
that we could also use the classical tests (except when n =3 mod4
and n = v after normalization). In any case the advantage of (7.1)
and (7.7) over (6.11) and (6.4) is the possibility of using different
8§ for the same (associate) of v , vielding in fact a sequence of

(independent) tests of the type of 56, instead of just one for every n .
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§8, Pseudoprimes in Z[il.

This section is devoted to a curiosity: the existence of what we will call
peeudoprimes in #Zfi]l . For us a pseudoprime in general will be a composite
number that passes a certain test . ({Since we have understood a primality
test to be a sufficient condition for primality we cannot say it passes

a certain primality test.)

{8,1) Examples, A composite number ne¢Z is called a pseudoprime to

>1

the base a , for a¢é ZZ>1 ; when an_l =1 moedn .

A Carmichael number is a composite integer that is pseudoprime to all bases:
n—-1 _

(8.2) VaeceZ, (any=1: a =1 modn .

Phus the Carmichael numbers {which do exist: the least is 561 ) are just

those composites that prevent us from taking the converse of Fermat's

theorem as primality test.

(8,3) Definition, We will call an element w of Z[il a pseudoprime inzlil

whenever 1+ifw , it is composite and writing

t
{8.4) w=j{__117rjk3 with qrj different prime elements in Z[i], ﬂj f2, kj>0
it satisfies
(8.5) w-1 | lem (w,~1)
3 ]

(8.6) Remarks. By definition, a pseudoprime in Z[il is not just an

element w of Z[i] , but such an element together with its decomposition
(8.4); notice that this is not just the prime decomposition of w in Z[il:
we suppose in {8.4) that for 3j#J' always qrj #ﬁj, but it may be that

are associates. The definition is

{r.)=(w,,) , i.e. that =, and 7,
J J J J

of course motivated by the proof of theorem (7,8) : it may be that these
composites satisfy all conditions of the statement except {w,15} =1 {note
that in (7.8) assocliated primes Ty and Ty for j#3' are ruled out

by the normalizations},
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Remark that the divisibility condition in 2 can be met also: take
n= (—2)2, then n-1=3 divides 1lcm{-3) . Of course, under our usual
(but often implicit) normalization for primes in % to be positive,

such ‘pseudoprimes" do not exist in Z .

(8.7) Theorem, The only pseudoprimes in Z%Ei] are:

Wy, = (=2-1) (=3) (-2+5i) = ~27+24}% v, = 51
wy = (~2-1i) (-2+31) (-4-1) = -32+91 w, = O,
W, = (—3) (-4+1i) (-4-1) = -51
W = (—1+24) (-2-1) (-2-31) = -17-61 Wy = W '
where denotes complex conjugation of each of the factors of w .
t k
Proof. We write W= jgl Hj 3 with t£=21 , kj 21 and 1+i1nj , and

we suppose that w-11 lcm(nj— i)

For this to hold we need at least an inequality

t k t ks
8.8) Jo w3 -1 < 10 w2~ tl=w - 1] € [lom(m -1}} <
( AN Lo, n9 - 11=1 | < Jrem(n,-1) ]
ﬁ !nj—il 1 £

< 3 . B = _

L PRI vy -1 sy 17y - 1
since always i+i Iﬁj-l . 'This yields the necessary ineqguality

t w, -1] 1 g

(8.9) O e 2 /2T )

ks kg
a,|"d 7,1 ]
I 3! | JI

far - 1]

Por finding prime elements with large guotient ——FET—- it is convenient

to use the following obvious lemma,

{8.10) Lemma. Let =ze€ , =z=atbi . Then for every reR, we have

1
lz - 1] 2 1 2 1
—iz—]—-zr <= b™ + (a+ 2_1)$ (1_r2)2 . il

¥

Using this for decreasing values of r one proves that the prime elements

in Z[{i] can be ranked in oxder of decreasing quotient iﬂﬁ%%i- as follows,

(8.11) corollary. The thirteen prime elements in Z[i] with largest
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fm—1]

guotient T are:
m : =2+i -3 —-1%21 -3%2i ~4+23 -2%31 -5+21 ‘e
fm-1] yio . 4 & V13 Y26 /1B | Ja0
] V5 3 3 v20 17 13 25
Continuing our proof, we first show that t=£5 ,
For suppose that t 26 , then since for every prime 7
(8.12) =3l < vz
[l
we gee
t im, -1} t fm, -1} 6 fm., -1}
1 3 1 3 1 j
(8.13) Al < N, —— = —= .0
R U - R Lt e L Y
and using lemma (8.1l) we find for this
(8.14) < —— rﬁwj—” B S W)
/2> 3=t ‘ﬂji 2 /2 3 2
which happens to be smaller than
(8.15) <1-—---§—-—1—-—-—-—-—- Sl—'{__-—-——l—-—-—-——.
v57+3:/13 ks
O, Jw. 173
3=t 3
Combining (8.13), (8.14) and (8.15) we find a contradiction with (8.,9)
so t£5H .
Next we deal with the cases t=1 and t=2 .
k
If t=1, so =T, then
o -1l = - 2 B o
which in case k22 , exceeds
2fub -1 > dwl+1 2 o]t
in contradiction to w-~1 | ®-1,
If t=2, so &= ﬂ1k1n2k2 , we first suppose that k1=k2=1 . Then
(8.16) w=1 | lcm('n'i-i,'n'zni) = mw-1 divides both 1T1—1 and 712—1

because, if 7w 1s any prime such that qu” w-1 then TEk | ‘nl-i say,
. , k = g -

implies ™ | {{w-1) 1r2(1r1 1)) = s 1

Now the righthandside of (8.16) clearly vields acontradiction:

[NHI}: |7T11T2_1] Zlﬂlt-gﬂzi —1?-[5_.'1721 -1 >l‘”2l + iz iﬂz_ll
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which settles this case., Suppose then that kl 22 , in which case

lw -~ 1}

I

ky kg kg 2
In1 , -1] = |n1| ;iqrzl-i zlwll ]1:21—1

together with
lir1_11'1w2-1!

fw -1} < ilcm('ﬂl—l,'ﬁz—l)t < < HHIHI)”%H“

[1+i] 75
leads to
< Eﬂ114-1+/2_ ) hr11+1+/5<1+§+ 2 3
k (/2_I1rilw1)i1r1!— 1 2lml-1 2 2l -1 2
which is impossible for a prime T {not dividing 2 }.

2

To deal with the remaining cases 3<t<5 , we first observe the following.

-+

(8,17) Lemma. If w = ];IlTrij is a pseudoprime, then:
t w, -1
(8.18) {w-1) =l(lcm(fr -13y = (1+:|,)jl_“__l1 ey y .
Proof. For every pseudoprime
t w,=-1
w-1 l lcm('nj—l) ] (1+:|..‘J}.l;f1 e

Suppose that for some prime @ also 7 (w=-1) divides the righthand

product, then

t
1 1
(8.19) lw=11 < llem(w,-1)} £ — n h: - 1] — r_ll -1i
? [l /* = SR 9
and so we find using lwl-1 2 fw-1]|
t jm.e=1] t §ﬁ
(8.20) jgl—ﬁ?_s— 2 0 e > /201 -
j J= l'll' |3

ingtead of (8.9). Now we use that t =23 , together with (8.12) and find
[m, - 1]

(8.21) mjn —io— 2 /2 (1~ —l) s I
J 3 . V5

Using Corollary (8.11) it can eagily be seen that this inequality is
only satisfied by the prime elements -2+i and =3 . We see that

w=111k1 '!T2k2 11;(3 with my= -2+1 = -2-1 , w,=-3 . Bul now

T2 3
5| mm, as well as 5 | (m~1)(m,=1) the former implies that

(w~1,5) = 1 and the latter that 5 1 lcm(nj - 1) . Like above, with now
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Iw] replaced by 5 , we find that (8.21) can be replaced by

_.11
4 ;ﬂj 1 1

= = min ————— 2 - > -

3 min ETT.‘ 5(1 !ml ) 5(1 15)

J
a contradiction . That proves lemma (8.17} . g
t s

(8.22) Corollary., For a pseudoprime © = jgl ﬁjj one has
(8.23) VY i#3! {’JTj—l, ﬂjl-i) = (i+i) , and
(8,24} if one of -24i and -2-i occurs in the decomposition

of ®w then no associate of the other does . {l

Next we notice that if some k., 22 in the decomposition of w , then
0
the condition for pseudoprimality leads to {compare (8.20)):

t Jm, — 1} fm, - 1]
1, —T%~T~— z Ju, |- 0, __l__i,. > fm, | /2" 1(1-T%T )
J 5 To ijE ] Jo

so (8.21) is replaced by the even sharper

t fw, - 1]
J

8.2 . —tr
(8.25) 31 |

> wEVEt“1(1~-ﬁ%F)

and therefore proceeding as in the proof of (8.17) leads to the following.

t
(8.26) Lemma. If w = 51 ﬁj is pseudopxime then k,=k,=...=k_=11{]

The cases t=4,5 are easily settled using corollary (B.22), since by
(8.23) in the decomposition of a pseudoprime only one of -3 , -1+21 ,
-3%2i may occur ( (1+i)2 dividing 7 -1 for each of them), and by (8.24)

only one of -2+i and -2-i , For t=5 , using (8.11),

SoIm-U loLa /B g1
3=yl 5 3 7% /i3 /53 3./172

< V-
los]

contradicts (8.9) and for t=4 only W=y (=2+1i) (=3) (-4+1) (~4~1i)

is left as possibility since we find for w|w with iﬁ{;ﬁj minimal by (8.,9)
(8.27) ...1:9. oé',}é-—?ﬁmij > ‘/2_3(1_.__}__)
i 3 I ol
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which can by (8.11) easily be seen to imply that this minimal quotient

Y26

exceeds —— ., It takes only one norm computation to check that Yy is
v17

not a pseudoprime, which finishes this case.

So far we proved that a pseudoprime w is the product of three different

prime elements: w = LPPLENE Now we treat this final case, by taking
le— il Eﬂz-‘lt Eﬂ3— 1]
z 2 , using lemma (8,10) and by first trying
bar, | EN P,
1 2 3
to satisfy
(8.28) Imy - 11 by =11l -1l /2 i
@1~ T In,] EA R T
1 2 3 17273
lmy = 1]
a) Let —i—— = V2 , i.e, & =-2%i .
bl 1
According to (8.24) we have ﬂ2%:ﬁ1°
& swpese 2l e
i uppose Eﬁzl = 3 ., i.e. 5" .
Using (8.23) to rule out that (1+i)2 divides ﬂ3-—1 since it

already divides nz-i ,ineguality (8.28) leaves the following 17

(pairs of complex conjugated) prime elements .,
-2%3i, -245i, -2+7i, -4%i, -4+5i, -6*i, -6#5i, -8&3i, -815i,
-87i, -10%i, -10%7i, -1049i, -12+7i, -14%i, -16+i, -16#bi .
Some computational work leads to the conclusion that out of the

34 remaining possible pairs only one is pseudoprinme, namely:

wor w = (=24i){-3)(-2-51) .

far, = 11
(ii) Let ""%%F'?” _ B e m, = -1x21
2 V5 B
By (8.24) T is not an associate of My

Using (8.23) we now find 9 pairs of elements satisfying (8.28):
~2+3i, -2%5i, -2+47i, -4+i, -435i, -6xi, -6x5i, -8%3i, -10%i .,
Only one pseudoprime pair is found:

wor u = {~2+i)(-1-24) (=2434)

lm, -1}
(iii) Suppose 2 i = /20 , i.e. T, = -3+2i {by (8.24)) .

by /13 2
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Here again using (8.22) we see that we have to find T, among

~2%34, -4%i, -6+i ,

Of the six possibilities arising, non gives a pseudoprime,

my -t /e

{iv) Suppose —F—— = —— , l.e. w, = -4%i ,
I, /17 2
Now we have to consider

~2431i, -4+i, -5%2i, -5%4i, ~6xi, -7, -7%2i ,

yielding only one new pair:

W or @ = (=24i)(-4+i)(-2-31) .
fw, ~ 1] vy
(v} Suppose ——%;—T—- - 48  l.e. T, = -2+33
2 Vi3
Then Ty is to be found among:
-2¥3i, -5+2i .

No new pseudoprime is found,

[m, 1]
{(vi) Finally we find by (8.28) that for ? | > Y40
Ty /29
lmy - 1] , 3 1 ) =1“2‘“
7y /26 /5/3\m] /25 byl

for any 7. with En3]2 V13 , which implies that we will not

3
find any new pseudoprime.
fmg =11
i 4 , .
b} Let iﬂii = 3 i.e, ayo= -3

avoiding extra factors 1+i , lemma {8.17) and corollary (8,11) show

lmy =11 . /2%
iy | /17
e, -1}
{i} Suppose that ? l = /26 , i.e. m, = -4+ .,
Ty Y17

We find that we only have to look at
-4%i , which indeed yields a new pseudoprime , namely:

w=u= (~3)(-4+i) (-4-1) .

lﬂz -1 s

(ii)} For TN < an inequality like that in a) (vi) shous
2 V17

that no new pseudoprimes will ke found.
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lm, - 1]

_—%T_T_ /8 - M= ~1+£2i .
1 /5

Now (8.11) and (8.18) imply that

I

|
-
b

¢) Let

E'ﬂz—ll ) /76
EA /17

but then by (8.28) we £ind

bmy - 11 , /26
1ﬂ3E JT7
This gives only one new possibility, namely: (-1%21) (-17)

which is not a pseudoprime.

fm, =1} |w., - 3|
d) For -%—-r~ < fgg we see that ——%—-T—- < KEE: and from
m /13 T Y17
lw, -1}
{8.28) we then find —“%;MT— = J__ /d“ 1 > fEE:
3 FJ_ /‘"/_/_ /17

contradicting our assumptions.
'this ends the case t=3 ; the seven pseudoprimes found in a) (i), (11}, (iv)
and b) (i) are those listed in the statement of the proposition, and

therefore the proof of (8.7) is established. ]
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§9, The Zlpl-tests.

In this section we want to use the curves ! for testing primality in

Zfpl , analogous to the use of E_ in 2[il; here E' is given as

before by Y2Z = X3 + YZB .

8

There is however a slight complication that prevents us from just
translating the results of section 7 to this case. For, the proof of
theorem (7.7) and its applications were based on the fact that there
are only finitely many composite v satisfying

v=1 ! 1cm(1Tj-1) ’ 'nj]\) e 'nj,TZ .

which was due to the fact that for every J#3j' we had 1+i l('lTj -1,7m,,-1).

jl
In Zlpl one does not have the same phenomenon. Therefore there is no

reason why there should only be a finite number of small composite

solutiocng to

t
= ki e 1 -
we= 0w . W, prime in Zilpl , (n,6) =1
(9.1) (ﬁi) # ('!Tj) for 147

p-1 | lem(m, - 1) .

It is not very hard to exhibit an example,

= ~3-7p , w,= 16+7p . Then |

(9.2) Example. Let w_ = 1+7p , 3

Ty

111112113—1 = ]..cm(ﬁi——l) = (1?1—1)(172-—1)(173—1)
153

In this case we have (ﬂi—l,'nj—l)=1 for i,1<3, i#3j .

One way to overcome this, is by restricting ourselves for the analogon

of (7.7} to those curves EY

with the property that (under the proper
normalizations) all ﬂi—- 1 do have some non-trivial common factor,

namely 1-p (the prime above 3 }, or 2 ; that this can be done

and how, is shown in the next proposition.

{9.3) Proposition. Let wue Zlpl, (u,6)=1,

(i) If vye Zlpl with (6u,y) =1 satisfies
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3
(9.4} vy = f modu for some B

I) mod 2{1-p)
e

Hi
TN

then for every prime 7 dividing n , with T
we have: 2 [ w-1

(ii) If vye Zlpl with (6y,y) =1 satisfies

{9.5) Y = 82 mod 4 for some B

%) mod 2{i-p)

o

then for every prime 7 dividing up , with b3

t
Pl

we have: i-p | -1

3
(B_) =1
A
i mod2 .

Proof. If vy = 83 mod ¢ then for every prime 'n]u we have (%)
e \ /3

and thus we find ;—{T) = +1 , Then w1 = 1 wod 2{(1-p) so =
V6

The other case is proved similarly.

{9.6) Remarks. Conditions (9.4) and (9.5) also have a geometric meaning:

it provides E! with certain torsion. Indeed, Yy being a cube in Z[pl/(u)

means that E' has 2-torsion modulo u , since in this case the point

(~-B:0:1) on Y2Z = X3 + B3Z3 is its own inverse, while ¥y equal to

Y

a square gives (l-p)-torsion on E’ , since then the point (0:pB: 1)

2
is on Yzz = x3 + B 23 and satisfies:

p+(0:B8:1) = (p-0:B:1) = (0:8:1} .

For prime u we see that these are equivalent:

3
Yy 2 f medu for some B il EY has 2—-torsion,

¥y = 62 mod u for some B = EY has {(l1-p}-torsion .

ext we show that pseudoprimes in Z[p] do not exist if we insist that
all 71— 1 have a factor 2 or 1-p in common.

ki s s
L in Zlpl , Triaé my for i#j all

HEI#

(9.7) Proposition. Let u= 1

3.

prime and (w,6) =1 . If for all i : 2w -1 or for all i: 1-p | m 1

then p-1 | lcm(qri~1) = t=1=k : is prime .

Proof. In case 1-p divides all ‘rfi—I then the following inequality

yields for all t>2 a contradiction with the required divisibility:
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£t om, -1 tlw, ~ 1] t :
(9.8) Klii_ Ky 0y 55— 1 = 1-=-1 i Tn [F 11;—1 ig1(ﬁ+“ <
b /3t i /3 /7
< (1-—-}H) < 1-—L
/7t jul

using that ifriE >vV7 ; for t=2 we may proceed just the same as in the
previous section . Ineguality (9.8) applies with /3 replaced by 2
directly for all £>1 in case 2 divides all L 1. This leaves only
the case t=1 and k>1 to deal with, which under either of the

assumptions is settled by:
;?u—[u < 1~1 lTﬂ-Eu . 1 (/7“+1 V< (-1 < 1"112
/7 7oA 7 v

which again contradicts divisibility of the lom by u-1 .

This proves (9.7). 1

We now give the results analogous to those of section 7.

{9.9) Theorem. Let yue Zlpl and let ge Zlpl divide y- 1.

If there exist vye Zlpl with (6y,u} =1 and points Pi on E (Zlpl/(u))

satisfying:

(9.10) for all { : (n—l)‘Pi = OEY

and

{9.11) for every ﬂ]U , me Zlpl prime, there exists a 1 such that

for every non-unit Tte @lpl, Th.l we have (g-;—l) 'P:L Z OEYmodT

then every divisor ®w of u , noxmalized by

W (I) mod 2(t-p) , satisfies
s

(9.12) w =1 mod o

If moreover o J 6 then also

TS (I> mod 2{1-p) . &1
W

(9.13) Corollary. { lol - 1 )2 > ful = u prime in the above.[l
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(9.14) Theorem. Let pe Zlpl .

If there exist ye Zipl with

(9.15) {6y,n) =1 and

(2.16) either vy = 83 or Yy = 82 mody for some Re Blpl,

and points Pi on ET( Z{pl/(n)) satisfving
(9.17) Vi i (u-1)-P, = Oy

, , u-1
(9.18) V¥ prime Trlp -1 31 (T) -Pi # OEY

then p is prime in Z{p].

{9.19) Remarks. Of course the remarks made in section 7 caryy over; we

emphasize here again that for (9.9) all factors found for all associates

of u minus 1 can be used : so here we use even the factored part of

u6~1
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