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Summary. The Magma code and some computational results of experiments in
number theory are given. The experiments concern covering systems with applica-
tions to explicit primality tests, the inverse of Euler’s totient function, and class
number relations in Galois extensions of Q. Some evidence for various conjectures
and open problems is given.

1 Introduction

In the course of 10 years of working with and for Magma [6], I have conducted
a large number of computational experiments in number theory. Many of them
were meant, at least initially, as tests for new algorithms or implementations.
In this paper I have collected results from, and code for, a few of those exper-
iments.

Three main themes can be recognized in the material below: covering sys-

tems, the Euler φ function, and class number relations.
In section 3 it is shown how covering systems can be used, with cubic

reciprocity, to produce a simple criterion for the primality of n = h · 3k + 1 in
terms of a cubic recurrence modulo n; the starting value depends only on the
residue class of k modulo some covering modulus M . These primality tests
generalize the Lucas–Lehmer type tests for numbers of the form h · 2k + 1.
They lead to a question about values of h for which h · 3k + 1 is composite
for every k, and a generalization of a problem of Sierpiński. We found a 12-
digit number h with this property — a candidate analogue for the number
78577, which is most likely the smallest h with the property that h · 2k + 1
is composite for every k. As a simpler application of our methods to produce
covering systems in section 2, we improve slightly on the known results for a
problem of Erdős; this problem asks for a finite set of congruence classes with
distinct moduli, each at least c, that cover all integers.



2 Wieb Bosma

There is also a connection between Sierpiński’s problem and the image of
Euler’s totient function φ; this is explained in section 4, which is devoted to
various questions about the φ function, its image, its inverse image and its
iterates. We describe our implementation of the function that computes all
n with φ(n) = m for a given m; as a test we produced some statistics on
the size of the inverse image for the first 327 million even integers. We also
experimented extensively with iterates of the composite function φ ◦ σ, found
a new candidate smallest starting value for which this function may not reach
a cycle, and recorded many cycles and the frequency with which they occur.
We searched for (and found many) new fixed points n, for which φ◦σ(n) = n.
For many of the experiments in sections 2–4 the problems and the references
collected by Richard K. Guy in [20] proved very valuable.

In section 5 we present some details of computations done with Bart de
Smit on relations between class numbers in the subfields of Galois extensions
of Q with some fixed Galois group. This requires computations with transitive
permutation groups of small degree and all of their subgroups, and the char-
acters of these groups. Focusing on pairs of fields with the same zeta-function,
it is shown how Magma can now deal routinely with questions about the class
number quotients for such pairs; in particular, we use resultant computations
on polynomial rings over rational function fields to obtain symbolically the
explicit defining relations for a family of equivalent number fields in degree 7.

2 Covering systems

A collection of residue classes ai mod mi is called a covering system if every
integer n satisfies at least one of the congruences n ≡ ai mod mi. Several
constraints in various combinations are possible: for example, one may require
the system to be finite, to consist of distinct moduli, or of odd moduli only,
or to be disjoint. For a finite covering system we will call the least common
multiple M = lcm{mi} of the moduli the covering modulus.

A problem of Erdős

Erdős considered the question of whether for all c there exists a covering
system with finitely many distinct moduli satisfying c = m1 < m2 < . . . mk

(for some k) to be ‘Perhaps my favorite problem of all’, and offered $1000 for
a solution [16].

A simple search for solutions for small values of c can be conducted in
Magma as follows⋆.

for c := 2 to 10 do
D := 0;

⋆See the Preface to this volume for style conventions regarding the Magma code;
all code is available also at http://magma.maths.usyd.edu.au/magma/
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done := FALSE ;
repeat

D +:= 4;
S := [ x : x in Divisors(D) | x ge c ] ;
if &+[ Integers() | D div s : s in S ] ge D then

done, F := try (S , D) ;
end if ;

until done ;
print < Min([ f [2] : f in F ]), D , F > ;

end for ;

In this loop one attempts to find solutions with covering modulus D. Only D
with many divisors are useful, and this search takes only D ≡ 0 mod 4 into
account. Only if there are enough divisors of D exceeding c to make a covering
by residue classes feasible is a call to the function try made. The test uses the
summation over D div s for this, where the specification [ Integers() | ... ] is
used to ensure that the integer 0 is returned when the sum is taken over an
empty sequence.

Here is the function try :

try := function(S , D)
Z := Integers() ;
for tries := 1 to 50 do

T := [ ] ;
Q := [ 1 : i in [1. . D ] ] ;
for i in [1..#S ] do

addm(∼Q , ∼T , S [i ]) ;
if &+[ Z | D div s : s in S [i+1..#S ] ] lt &+Q then

if &+Q/D gt 0.1 then
break tries ;

end if ;
break ;

elif &+Q eq 0 then
return TRUE, T ;

end if ;
end for ;

end for ;
return FALSE, _ ;

end function ;

For at most 50 times (a value that could be modified, but which worked well
in our experiments) an attempt is made to add one residue class for each
modulus (which is a divisor of D) stored in S ; this residue class is added to a
list (initially empty) that is kept in T . The sequence Q of length D stores 0
in position i precisely when the residue system in T covers the residue class
i−1 mod D and 1 otherwise. If not enough divisors are left to have any hope of
completing the system, this try is aborted and a new one attempted, unless the
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50 tries have been completed or the fraction covered in this aborted attempt
is so low that the search is abandoned prematurely because it seems hopeless
altogether. An attempt is aborted if the cover could not even be completed if
all remaining residue classes were disjoint, and this implementation considers
the case hopeless (and no more attempt is made) if an aborted attempt occurs
when still more than 10% is uncovered.

The procedure addm is the most interesting part of this simple search.

addm := procedure(∼Q , ∼T , m)
if &+Q eq #Q then

addr (∼Q , ∼T , 1, m) ;
else

mx := [ &+Q [[i ..#Q by m]] : i in [1. . m] ] ;
mm := Max(mx ) ;
im := Random([ i : i in [1..#mx ] | mx [i ] eq mm ]) ;
addr (∼Q , ∼T , im−1, m) ;

end if ;
end procedure ;

In it, an attempt is made to find a good residue r for the given modulus
m to add to the system T ; ‘goodness’ is measured in terms of the number
of previously uncovered classes modulo D that will be covered when adding
r mod m. This success rate is computed for all possible choices (unless no
residue class is covered yet, in which case we may and will just choose the
class of one) and among the best a random choice is made. This random aspect
of the otherwise ‘greedy’ algorithm makes it useful to have several attempts
in try .

The function addr (that is called but will not be listed here) simply adjusts
the sequences Q and T according to the choice made: newly covered classes
i mod D get their entry in Q replaced by a 0 and the pair (r, m) is appended
to T .

Example 2.1. The little program described is fairly successful for small val-
ues for c. Of course it immediately finds a version of the well-known ‘smallest’
covering with modulus 12 for c = 2, such as

1 mod 2, 2 mod 3, 2 mod 4, 4 mod 6, 0 mod 12

and for c = 3 one obtains a covering using divisors of 120. Already for c = 4
this algorithm does better than the deterministic algorithm given in the (very
early) work of Churchhouse [14]. He gives a solution with moduli that are
divisors of 720, whereas our solution

1 mod 4, 1 mod 5, 4 mod 6, 3 mod 8, 8 mod 10,
0 mod 12, 14 mod 15, 15 mod 16, 2 mod 20, 18 mod 24,

20 mod 30, 7 mod 32, 30 mod 40, 7 mod 48, 32 mod 60,
55 mod 80, 87 mod 96, 54 mod 120, 87 mod 160, 23 mod 240,
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uses divisors of 480. The other values found are listed in the table below, and
compared to those obtained by Churchhouse:

2 3 4 5 6 7 8 9 10
12 120 480 2520 5040 20160 60480 151200 1663200
12 120 720 2520 10080 30240 75600 604800 −

For c = 10 we found a covering modulus 1663200; we did not find any cover for
this case elsewhere in the literature. Note that the values are not necessarily
smallest possible, although we tried fairly hard to beat them.

At this stage the method of storing an indicator for every residue class be-
comes cumbersome. Some larger examples were constructed by Choi [13] and
Morikawa [29].

The conjecture of de Polignac

Covering systems were introduced by Erdős, and used by him to give a dis-
proof of a conjecture made in [33] (and quickly retracted; cf. [19]) by de
Polignac, namely that every odd n > 1 can be written as 2k + p for some
k and some prime number p. De Polignac himself had already found small
counterexamples; k = 127, 149, 251 are the smallest, and there are 14 others
below 1000. But the disproof by Erdős exhibits an arithmetic progression of
counterexamples, by noting that covering systems {ri mod mi} like

0 mod 2, 0 mod 3, 1 mod 4, 3 mod 8, 7 mod 12, 23 mod 24

can be used for this purpose. Indeed, observing that the moduli mi here are
equal to the multiplicative order ei of 2 modulo pi, where pi is 3, 7, 5, 17, 13
or 241 respectively, we see that if we choose simultaneously

N ≡ 2ri mod pi

for all classes ri mod mi in the cover, then for every integer k there exists
at least one i for which k ≡ ri mod mi and hence N − 2k ≡ 0 mod pi; that
is, N − 2k is divisible by pi. As it is easy to see (by working modulo 31, for
example) that N − 2k cannot be equal to pi, we see that this N gives rise to a
counterexample to the conjecture, as does every odd integer in the arithmetic
progression of N with modulus Q =

∏

i pi = 3 · 5 · 7 · 13 · 17 · 241. The covering
system above yields N = 2036812 as the smallest non-negative solution (by
application of the Chinese Remainder Theorem) and 7629217 as the smallest
counterexample:

> m := [ 0, 0, 1, 3, 7, 23 ] ;
> P := [ 3, 7, 5, 17, 13, 241 ] ;
> N := CRT([ 2 j : j in m ], P) ; N ;

2036812

The additional condition that m is odd produces the smallest counterexample.

> N + &∗P ;

7629217



6 Wieb Bosma

The problems of Sierpiński and Riesel

The fact that N−2k is always divisible by one of the primes 3, 5, 7, 13, 17, 241 is
closely related to the solution of another problem, concerning the existence of
integers H such that H ·2k +1 is composite for every k ≥ 0. Sierpiński showed
that there is an infinitude of such H . Indeed, if we let Q = 3 · 5 · 7 · 13 · 17 · 241
again, then

N − 2k ≡ 0 mod pi ⇐⇒ H · 2k + 1 ≡ 0 mod pi,

if we let H be such that H ≡ −N−1 mod Q.
In the current example, we let H be the smallest positive element in this

residue class and find:

> Q := &∗P ; Q ;

5592405

> H := InverseMod(−N , Q) ; H ;

1624097

and the output of

> for k := 0 to 100 do
> print k , [ p : p in P | (H∗2k +1) mod p eq 0 ] ;
> end for ;

will demonstrate that H · 2k + 1 is divisible by 3 when k ≡ 0 mod 2, divisible
by 7 when k ≡ 0 mod 3, by 5 when k ≡ 1 mod 4, etc.

Since there are, in general, several covering systems for a fixed covering
modulus, there will be several pairs of solutions N, H as above. The smallest
H with covering modulus 24 is H = 271129.

However, there exists a smaller integer H with the property that H ·2k +1
is divisible by at least one prime in a fixed, finite collection, but it comes from
a covering system with covering modulus 36: the covering system

0 mod 2, 2 mod 3, 3 mod 4, 1 mod 9, 9 mod 12, 13 mod 18, 25 mod 36

yields N = 20512783, and H = 314228, the odd part of which is 78557.
The problem of determining the smallest H such that H · 2k + 1 is always

composite is sometimes referred to as Sierpiński’s problem. The number H =
78557 is the most likely candidate for Sierpiński’s problem; see [42] for progress
on the remaining work on proving that for every smaller h there is a prime of
the form h · 2k + 1. It has been conjectured (but never been proven, as far as
I know) that every H such that H · 2k + 1 is always composite arises from a
finite covering system.

The similar problem of determining the smallest H such that H · 2k − 1 is
always composite is sometimes referred to as Riesel’s problem; Riesel [36] first
showed the existence of infinitely many such H . The most likely candidate is
H = 509203; see [43].

Note that a Sierpiński number H with covering modulus D also provides
a Riesel number D − H .
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3 Covering systems and explicit primality tests

One way in which the problems of Sierpiński and Riesel (and a generalization)
arose naturally for me occurred in [3], and [4]. In these papers the well-known
Lucas–Lehmer type tests for 2n ± 1 were generalized to numbers of the form
h · 2n ± 1 and h · 3n ± 1 using covering systems. We will first explain the
connection, and then return to the problems of Sierpiński and Riesel and
their generalization.

Non-residue covers

In [3], covering systems were used to solve the following problem: for fixed
h find a finite quadratic non-residue cover of elements c1, c2, . . . , cm ∈ Z∗

satisfying
(

cr

h · 2k + 1

)

2

6= 1, when 2 ≤ k ≡ r mod m.

Here the symbol
( )

2
on the left is the Jacobi symbol. It turns out that such

a finite cover can usually be found, unless h is of the form h = 4s − 1. The
reason it is of interest to find such a finite cover is the following result.

Theorem 3.1. If c1, . . . , cm forms a quadratic non-residue cover and 2k > h
then, with k ≡ r mod m:

n = h · 2k + 1 is prime ⇐⇒ c(n−1)/2
r ≡ −1 mod n.

So a quadratic non-residue cover for h provides a nice, very explicit, primality
test for the family h · 2k + 1 (for fixed h). The classical example for this is
the case where h = 1, since in this case m = 1 and c1 = 3 work: we get a
well-known test for Fermat numbers

n = 2k + 1 is prime ⇐⇒ 3(n−1)/2 ≡ −1 mod n.

In fact, this cover works for any h not divisible by 3.
Similar, but slightly more complicated tests based on covering systems can

be derived for families h · 2k − 1, again for h not of the form 4s − 1. The extra
complication amounts to the following: The cover does not consist of integers
cr but of pairs (Dr, αr), r = 1, . . . , m, where Dr is an integer discriminant
0 < Dr ≡ 0, 1 mod 4 and αr is an element of the quadratic field Q(

√
Dr).

These pairs have the property

(

Dr

h · 2k − 1

)

2

6= 1 and

(

αrᾱr

h · 2k − 1

)

2

6= 1 whenever 2 ≤ k ≡ r mod m;

here ¯ is the non-trivial Q-automorphism of the quadratic field. Again, this
provides explicit primality tests for families h ·2k−1, which can be formulated
either in terms resembling Theorem 3.1 above
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n = h · 2k − 1 is prime ⇐⇒
(

αr

ᾱr

)(n+1)/2

≡ −1 mod n,

or in terms of a recurrence relation

n = h · 2k − 1 is prime ⇐⇒ ek−2 ≡ 0 mod n,

where ej+1 = e2
j − 2 for j ≥ 0, and the starting value e0 is determined by

αr. The classical Lucas–Lehmer case (for Mersenne numbers) is h = 1, where
again the length of the cover is m = 1 and the single pair (12, 2+

√
12) works;

in this case the starting value e0 equals −4.
The connection with ordinary congruence covers is as follows. Since the

Jacobi symbol is multiplicative (in the top argument), it is not a restriction
to assume that the cr are prime. Then I claim that for prime c

(

c

h · 2k + 1

)

2

6= 1 =⇒
(

c

h · 2j + 1

)

2

6= 1 for every j ≡ k mod d,

where d is the multiplicative order of 2 mod c. This is clear from quadratic
reciprocity and the fact that h · 2k + 1 ≡ h · 2k+d + 1 mod c. So any good pair
(c, k) provides a solution for the whole residue class k mod d. The aim in our
search for a quadratic non-residue cover then simply becomes that of finding
a congruence cover using such residue classes k mod d. The dependence of the
modulus d on (the prime) c is that c is a primitive divisor of 2d − 1; that is,
c divides 2d − 1 but not 2i − 1 for any value of i < d. In other words, d is
the multiplicative order of 2 modulo c. The way k and c are related depends
on h. For prime c > 2 precisely (c + 1)/2 residue classes modulo c consist of
non-residues, so those values k mod d can be used for which h · 2k + 1 mod c
is such quadratic non-residue class.

What we would like to show here is how Magma was used [4] to generalize
these results to integers of the form h · 3k + 1 using cubic non-residue covers.

Cubic reciprocity

Let ζ = ζ3 be a primitive third root of unity. For prime π ∈ Z[ζ] with n =
Norm π 6= 3, we let

(

α
π

)

3
be the element of {0, 1, ζ, ζ2} ⊂ Z[ζ] defined as

follows. If π divides α then the value is 0, in all other cases it is the element

ζi satisfying α
n−1

3 ≡ ζi mod π.
As a consequence, for α ∈ Z[ζ] and prime π ∈ Z[ζ] of norm n > 3:

α
n−1

3 6≡ 1 mod π ⇐⇒ ∀ x 6≡ 0 : x3 6≡ α mod π ⇐⇒
(α

π

)

3
6= 1.

Next, one extends the definition by multiplicativity: for α, β ∈ Z[ζ] with
Norm β not divisible by 3 we define

(

α

β

)

3

=

(

α

π1

)

3

(

α

π2

)

3

· · ·
(

α

πk

)

3

,
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where πi ∈ Z[ζ] is prime and β = π1π2 · · ·πk.
Other important properties of the cubic residue symbol are its multiplica-

tivity (in the top argument) and periodicity (in the top argument modulo the
bottom argument).

An element α ∈ Z[ζ] is primary if and only if α ≡ 2 mod 3. The primary
prime elements of Z[ζ] are precisely the positive rational primes q ≡ 2 mod 3
and the elements π = a + bζ with a ≡ 2 mod 3 and b ≡ 0 mod 3 for which
Norm π = a2 − ab + b2 = p ≡ 1 mod 3 is prime. Among the associates of
any β ∈ Z[ζ] of norm not divisible by 3 exactly one is primary, and if β is
primary it can be written uniquely (up to order) as a product of primary
prime elements and a power of the primary unit −1.

The following theorem summarizes the results of the cubic reciprocity law,
its supplementary law, and a result on units. For proofs see [21], [2].

Theorem 3.2. If α, β ∈ Z[ζ] are primary elements of norm not divisible by

3 then:
(

α

β

)

3

=

(

β

α

)

3

.

If β ∈ Z[ζ] is a primary prime element, β = (3m− 1) + bζ, with b ≡ 0 mod 3
then:

(

1 − ζ

β

)

3

= ζ2m.

If π ∈ Z[ζ] is a prime element of norm not equal to 3 then

(−1

π

)

3

=

(

1

π

)

3

= 1 and

(

ζ

π

)

3

=







1 if Norm π ≡ 1 mod 9,
ζ if Norm π ≡ 4 mod 9,
ζ2 if Norm π ≡ 7 mod 9.

Explicit primality tests

If, for fixed even h and k = 1, 2, . . .
(

αr

h · 3k + 1

)

3

6= 1, when 2 ≤ k ≡ r mod m,

we call α1, α2, . . . , αm ∈ Z[ζ]∗ a cubic non-residue cover for h. We obtain the
following analogue of Theorem 3.1; by ¯ we denote the automorphism of Q(ζ)
sending ζ to ζ2.

Theorem 3.3. If α1, α2, . . . , αm ∈ Z[ζ]∗ forms a cubic non-residue cover for

h and 3k > h then

N = h · 3k + 1 is a prime number ⇐⇒ wk−1 ≡ ±1 mod N,

where, with r ≡ k mod m,

w0 = Tr

(

αr

ᾱr

)
h

2

and wj+1 = wj(w
2
j − 3), for j ≥ 0.



10 Wieb Bosma

The same result holds for the family h·3k−1. So we see that we find an explicit
primality criterion for these families, if we can solve the following problem.

Problem 3.4. Given an even positive integer h not divisible by 3, find a finite
set S+

h = {(r, m, α)j : j = 1, . . . , t} of tuples (r, m, α) consisting of residue
classes r mod m that form a finite covering system such that for integers k
with 3k > h and k ≡ r mod m it holds that

(

α

h · 3k + 1

)

3

6= 1.

Similarly, for the set S−
h , we require

(

α

h · 3k − 1

)

3

6= 1.

Here is the Magma code with which we solved the problem for all h < 105

(except for h of the form h = 27s − 1 for which there are no solutions). We
give the case h · 3k − 1 below; for the similar function plusfind replace the
appropriate − sign by a + in the computation of N .

minfind := function(h, bound , PX)
i := 0;
K := [1] ;
repeat

i +:= 1;
N := h∗3 i − 1;
_, I := get (N , PX) ;
if IsEmpty(I) then return 0; end if ;
J := cut (I) ;
K := Sort([ Lcm(k , j ) : k in K , j in J | Lcm(k , j ) lt bound ]) ;
if IsEmpty(K ) then

return 0;
else

K := cut (K ) ;
end if ;

until i in K ;
return i ;

end function ;

The function minfind calls a function get , where most of the work is done,
as well as the function cut that simply removes from a sequence of positive
integers I all entries that are divisible by an entry with smaller index.

The main function get (which will work both for minfind and for plusfind )
does the following. For given N (which will be of the form h · 3k ± 1), a list
P of primes p is found for which the cubic residue symbol for p over N is not
equal to 1; the smallest e such that p divides 3e − 1 is also stored. For each
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prime p a prime π ∈ Z[ζ] lying over p is found and put in PX, that will then
consist of a sequence of sequences of prime divisors π of 3i − 1 in position
i. The function cubicsymbol is a straightforward implementation of the cubic
residue symbol (code not reproduced here).

get := function(N , PX)
S := [ Parent(ζ) | ] ;
OS := [ ] ;
for i in [1..#PX] do

if IsEmpty(PX[i ]) then
continue ;

end if ;
for x in PX[i ] do

if cubicsymbol (x [1], x [2], N , 0) ne 1 then
if x notin S then

Append(∼S , x ) ;
Append(∼OS, i ) ;

end if ;
end if ;

end for ;
end for ;
return S , OS ;

end function ;

In minfind (or plusfind ) the information from get is recorded for N = h · 3i − 1
for i = 1, 2, . . . until a value i = k is reached with the property that for all i
with 1 ≤ i ≤ k at least one of the prime divisors of 3k−1 has cubic symbol not
equal to 1. The value for bound is an upper bound for the solution that will
be found; a small value gives quicker results, but it may be that no solution
k less than this value exists, and a retry with larger bound will be necessary.

Example 3.5. We attempt to find an explicit primality test for integers of
the form 1900 ·3k −1. To this end we run minfind with h = 1900, and a bound
of 25. This means that we will make use only of prime divisors of 3e − 1 for e
up to 25 (Magma’s Cunningham facility will happily supply such divisors for e
up to 400 or more). In PX both the inert primes (those that are 2 mod 3) and
the primes in Z[ζ] lying over rational primes that are 1 mod 3 are collected.

In the first round minfind will find in PX primes that give cubic symbol
not equal to 1 with N1 = 1900 · 31 − 1 = 5699. It finds the element 29 + 36ζ
of norm 1093 (which divides 37 − 1 = 2186), the element 5 + 9ζ of norm 61
(dividing 310 − 1), 8 + 9ζ (dividing 312 − 1), and elements dividing 313 − 1,
314 − 1, 315 − 1, 316 − 1, 319 − 1, 320 − 1, and 322 − 1. For example

(

29 + 36ζ

5699

)

3

=

(

5 + 9ζ

5699

)

3

= ζ,

(

8 + 9ζ

5699

)

3

= ζ2.
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The sequence K will then consist of the integers 7, 10, 12, 13, 15, 16, 19, 22,
indicating that these (and their multiples) will have a chance left to act as
covering modulus.

It then turns to N2 = 1900 · 32 − 1 = 17099; this time elements dividing
3e − 1 with the required cubic symbol are found in PX for e = 3 and all its
multiples, for e = 10 (and 20), as well as for e = 14, 16, 19, and 22, but not for
e = 7 or e = 13. This leaves 10, 12, 14, 15, 16, 19, 21, 22 as possible primitive
solutions in K .

However, the possibilities e = 15 and e = 16 disappear when we consider
N3 = 1900 · 33 − 1, and the possibility e = 10 (as well as 20) vanishes when
looking at N6 = 1900 · 36 − 1, as does e = 19. Then e = 12 is not good for
N7 (but e = 24 is fine), e = 21 disappears with N9 and e = 22 with N10. The
remaining possibilities are then e = 14 and e = 24.

It turns out that they also furnish suitable elements for N11, N12, N13 and
N14. But at that stage we are finished because we know that among the prime
divisors of 314 − 1 we can find suitable elements for Ni with 1 ≤ i ≤ 14; if
such an element works for Ni it will also work for Ni+14, etc. In other words,
we have completed the cover! Indeed, for every k ≥ 1 at least one of

( −13 − 27ζ

1900 · 3k − 1

)

3

∈ {ζ, ζ2},
(

29 + 36ζ

1900 · 3k − 1

)

3

∈ {ζ, ζ2}

holds, which gives an explicit test by Theorem 3.3. The first holds for all
k > 0 except the residue classes 4 mod 7 and 5 mod 14, the other for all k > 0
in residue classes 0, 1, 4, 5, 6 mod 7. To make the test completely explicit we
would have to compute the trace of the 950th power of (−13 − 27ζ)/(−13 −
27ζ2) and of (29+36ζ)/(29+36ζ2). Numerator and denominator of the first w0

have over 2600 decimal digits, however. Of course w0 will be reduced modulo
N ; for example, with N69 = 1585331819829053014166528924521037699 we
find w68 = −1, hence N69 is prime.

Sierpiński’s problem revisited

It is not hard to see from cubic reciprocity that the rational primes q stored
in PX will never satisfy

(

q

h · 3k ± 1

)

3

∈ {ζ, ζ2};

what can happen and would be useful for Theorem 3.3, however, is that the
symbol becomes 0, implying that for k in a certain residue class h · 3k ± 1 will
be divisible by q.

This also gives the link with our earlier problem: If we adapt our function
get in such a way that we look for a special cubic non-residue cover consisting
only of elements with cubic symbol equal to 0 (rather than not equal to 1),
we would detect values for h with the property that h · 3k − 1 or h · 3k + 1 is



Some computational experiments in number theory 13

always divisible by one of a finite set of primes. Conducting this search in the
comparable but easier case (using quadratic reciprocity) for numbers of the
form h · 2k ± 1 for h less than 106 immediately yields the known examples of
Sierpiński and Riesel numbers ([22, 23, 24]). To test divisibility only, there is
no need at all to use quadratic or cubic reciprocity, and the test in get could
simply be replaced by a test of the type if N mod p eq 0 then for p running
over the relevant set of primes. Up to 107, however, no h with this property
for h · 3k ± 1 was found.

This led us to attempt to construct a ‘small’ solution in another way
(cf. [41, 40]). Just as before, we will find generalized Sierpiński (or Riesel)
numbers when we find a finite covering system {ai mod mi} for the expo-
nents k provided that for each modulus mi we find a prime pi such that the
order of c modulo pi is a divisor of mi (that is, pi divides cmi − 1). We use
a table P such that its i-th element contains the primitive prime divisors of
3i − 1. Now we wish to construct a covering system for the exponents, but
contrary to the situation in the problem of Erdős we will not insist that the
moduli are all distinct; however, we will only be able to use the modulus mi

with multiplicity k if there are k different primes in P [i ]. We just apply the
function try defined before, with a sequence of moduli satisfying these require-
ments. As we explained, it is easy to find H (as −N−1 mod

∏

i pi) once we
know the cover. Since we are now interested in the smallest possible value for
H , we want to generate all possible covering systems with the same (multi)set
of moduli.

Example 3.6. First let c = 2 again, the case of Sierpiński numbers. For a
very small covering modulus it may be possible to enumerate all covering
systems; here is a simple way to do it in Magma.

> S := [ 2, 3, 4, 9, 12, 18, 36 ] ; CS := [ ] ;
> K := CartesianProduct([ Integers(i ) : i in S ]) ;
> for x in K do
> C := [ [ Integers() ! x [i ], S [i ] ]: i in [1..#S ] ] ; > if check (C) then
> Append(∼CS, C) ;
> end if ;
> end for ;

The function check returns true if and only if a given system of residue classes
forms a cover (which is tested by simply checking every residue).

Out of the #K = 1679616 posibilities, we find 144 different covers with
S = {m1, m2, . . . , m7}.

We use the intrinsic ‘Chinese Remainder Theorem’ function CRT to
find, for each of the covers found, the unique H with the property that
H ≡ −2−xi mod pi for all residue classes xi mod mi in the cover, with pi

a primitive divisor of 2mi − 1:

> P := [ 3, 7, 5, 73, 13, 19, 109 ] ;
> H := CRT([ −Modexp(2, −C [i ][1], P [i ]) : i in [1..#C ] ], P) ;
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It turns out that 72 distinct Sierpiński numbers are generated this way, the
smallest being 934909, and the largest 202876561.

In the above we made one particular choice, p7 = 109, for a primitive
prime divisor of 236 −1, where an alternative p′7 = 37 was available. Applying
the same call CRT to the same set of covering systems

> P := [ 3, 7, 5, 73, 13, 19, 37 ]
> H := CRT([ −Modexp(2, −C [i ][1], P [i ]) : i in [1..#C ] ], P) ;

we find 75 Sierpiński numbers (they are all listed in [40]), the smallest this
time being 78557, the largest 68496137. Curiously, three numbers appear in
both lists: 12151397, 45181667, and 68468753.

For larger covering systems such a complete enumeration will no longer be
feasible. To find analogues of the Sierpiński numbers for h · 3k + 1 we had to
use a probabilistic approach again.

Example 3.7. Let c = 3. Suppose we know that 48 can be used as a covering
modulus. We could then use try to obtain a cover (or several covers), and
combine the information using the Chinese Remainder Theorem as before to
construct the number H . We should be careful, however, only to use residue
classes xi mod mi in our covering system for which there exist primitive prime
divisors of 3mi − 1.

For example, here is a list of the sets of odd primitive prime divisors of
3m − 1 for divisors m of 48:

1 2 3 4 6 8 12 16 24 48
∅ ∅ {13} {5} {7} {41} {73} {17, 193} {6481} {97, 577, 769}

This tells us that we cannot use a residue class with modulus 2 in the cover;
also, we are allowed 3 different residue classes modulo 48, and 2 modulo 16.

Feeding the sequence [3, 4, 6, 8, 12, 16, 16, 24, 48, 48, 48] to try pro-
duced as one solution the covering system

1 mod 3, 2 mod 4, 2 mod 6, 3 mod 8, 0 mod 12,
7 mod 16, 15 mod 16, 18 mod 24, 30 mod 48, 6 mod 48.

Now

> P := [ 13, 5, 7, 41, 73, 17, 193, 6481, 97, 577 ] ;
> H := CRT([ −Modexp(3, −C [i ][1], P [i ]) : i in [1..#C ] ], P) ;

produces the solution H = 41552862226126268.
Note that a different choice for the two primes of order 48 produces a

different answer, and so does a change in the order in which 17 and 193 are
listed.

The smallest number H that we found in our experiments with covering
modulus up to 250 with the property that H ·3k +1 is composite for all k ≥ 1
is the number 125050976086, which occurs for the covering system
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2 mod 3, 2 mod 4, 3 mod 6, 0 mod 8, 7 mod 9,
4 mod 16, 12 mod 16, 1 mod 18, 13 mod 18,

with P equal to [13, 5, 7, 41, 757, 17, 193, 19, 37].

Again, a generalized Sierpiński number furnishes an associated generalized
Riesel number for h · 3k − 1.

4 The totient function

In this section we consider various questions about the image of φ, Euler’s
totient function. By definition, φ(n) = #{x : 1 ≤ x ≤ n | gcd(x, n) = 1}.
Obviously, φ(pk) = (p − 1) · pk−1 for any prime p and every k ≥ 1. Also,
φ(s · t) = φ(s) · φ(t) if gcd(s, t) = 1. It follows immediately that φ(n) is even
when n > 2, and since φ(1) = φ(2) = 1 no odd m > 1 is in the image of φ.
But there are also even m that are not in the image of φ; these are called non-
totients. The smallest non-totient is m = 14. There also exist integers divisible
by 4 that are non-totients; the smallest is 4 · 17. In fact (cf. [30]), for every
α ≥ 1 there exists an odd h such that 2α ·h is a non-totient; the smallest such
h we denote by hα. There is a connection with Sierpiński numbers, as follows.
If h · 2n + 1, for some n ≥ 1, is a prime number, then φ(h · 2n + 1) = 2n · h,
and, more generally, φ(2r · (h · 2n + 1)) = 2r−1 · 2n · h, so φ(x) = 2k · h has
solutions for any k ≥ n. If h = 2s + 1 and 2s + 1 is a prime number, then
φ(x) = 2s · h has solution x = h2, and more generally 2r · h2 is a solution to
φ(x) = 2r−1 · 2s · h, so φ(x) = 2k · h has solutions for all k ≥ s. But if h is an
odd prime, h is not of the form 2s +1 and h ·2n +1 is composite for any n ≥ 1,
then there will exist no k for which φ(x) = 2k ·h. Thus any Sierpiński number
h that is prime but not a Fermat prime has the property that φ(x) = 2k · h
has no solution for any k ≥ 0. The smallest known prime Sierpiński number
is h = 271129. So, neither h nor any power of 2 times h is in the image of φ
for h = 271129, and hα ≤ 271129 for every α ≥ 1.

The inverse of the Euler φ function

We will now describe a function, available in Magma as EulerPhiInverse, that
determines φ−1(m) for any m ≥ 1.

When solving the equation φ(x) = m we first note that there will be no
solution for odd m exceeding 1. For even m we store the powers of 2 dividing
m in an indexed set (for efficient look-up).

inv := function(m)
mfact := Factorization(m) ;
if IsEven(m) then

twopows := {@ 2 i : i in [0. . mfact [1][2]] @} ;
else

if m gt 1 then return [ ] ; end if ;
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twopows := {@ 1 @} ;
end if ;

Any odd prime p dividing x must have the property that p− 1 divides m and
that p2 can only divide x for such p if p also divides m.

The idea of the algorithm is to build up integers x from primes p for which
φ(p) = p − 1 divides m. We keep a list of pairs of partially built up integers
a and remainder integers m/φ(a), and have found a solution whenever the
remainder becomes 1.

We start by putting the odd primes p such that m ≡ 0 mod p− 1 in P ; we
deal with the prime 2 separately at the end.

D := Divisors(mfact ) ;
P := [ ] ;
for d in D do

if d eq 1 then continue ; end if ;
if IsPrime(d+1) then

Append(∼P , d+1) ;
end if ;

end for ;

In S we will store pairs (a, b) such that a is odd (kept in factored form) and
φ(a) = m/b with b even or 1; clearly, when b = 1 we have found a solution
n = a to our equation, and 2 · a is another solution. More generally, when
b = 2k is a power of 2 we always have a solution n = 2 · b · a.

Initially we put (1, m) in S , and then loop through the primes p in P ,
checking for every pair (a, b) already in S whether b is divisible by p−1; if so,
we append a pair (a · p, b/(p− 1)) to S , and also a pair (a · p2, b/((p− 1) · p))
if p divides b, and so on for higher powers of p, except when the second value
is odd and greater than 1.

In this algorithm it is most restrictive, and hence efficient, to treat the
primes in P in descending order.

S := [ <SeqFact([ ]), m> ] ;
for p in Reverse(P) do

for s in S do
if s[2] eq 1 then continue ; end if ;
k := 1;
d , mmod := Quotrem(s[2], p−1) ;
while mmod eq 0 do

if IsEven(d ) or d eq 1 then
Append(∼S , <SeqFact([<p, k >])∗s[1], d>) ;

end if ;
k +:= 1;
d , mmod := Quotrem(d , p) ;

end while ;
end for ;
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end for ;

The last prime p = 2 is dealt with in a special way, since at the end of this
loop only those pairs (a, b) in S will be of use for which b is a power of 2.
Every such pair contributes a solution as we indicated above, or even two in
case b = 1. On the other hand it is also easy to see that we find all possible
solutions this way, and hence all that remains is to assemble these solutions,
and to sort and return them.

R := {} ;
for s in S do

j := Index(twopows, s[2]) ;
if j gt 0 then

Include(∼R , SeqFact([<2, j>] cat s[1])) ;
if j eq 1 then

Include(∼R , s[1]) ;
end if ;

end if ;
end for ;
return Sort([ Facint(nf ) : nf in R ]) ;

end function ;

Example 4.1. Looking at the equation φ(n) = m = 1012, we find first that
P=[2, 3, 5, 23, 47, 1013], and in the loop for p = 1013 only the pair (1013, 1)
is added to the list S consisting initially of (1, 1012). For p=47 we see that the
second value of the pair (1, 1012) is divisible by φ(47) = 46, and we add a pair
(47, 22) to S . For p = 23 we add a pair (23, 46) and a pair (232, 2), and also a
pair (23 ·47, 1) because (47, 22) was in S . For p = 5 nothing happens, but with
p = 3 we add (3, 506) and also (3·232, 1) because (232, 2) was in S . That means
that when we start considering the last prime p = 2 in P , S contains the useful
pairs (1013, 1), (47, 22), (23, 46), (232, 2), (23 · 47, 1), (3, 506), and (3 · 232, 1).
This furnishes the solutions 1013, and 1081 = 23·47, and 1587 = 3·232, as well
as twice these numbers. Finally, the pair (232, 2) implies that also 2116 = 22 ·
232 is a solution. Thus φ−1(12) = {1013, 1081, 1587, 2026, 2116, 2162, 3174}.

Carmichael’s conjecture

One of the striking properties of the inverse Euler-φ function is that when n
ranges over the natural numbers, the size #φ−1(n) of the set of inverse images
of n seems to assume every possible natural number — except 1. Carmichael’s

conjecture states that for no n can there be exactly one solution to the equation
φ(x) = n. Carmichael thought he had a proof [11], but it was erroneous; it
was replaced by an argument showing that any solution would have to be
very large [12], an argument that was refined later [25, 37] to show that any
solution will have at least 107 decimal digits (see also [34]).

We recorded #EulerPhiInverse(m) while executing a simple loop over even
m. The results given here concerned the computations for the 327 million even
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integers up to 654000000. The table lists for some values of k how many m in
the range given were found such that #EulerPhiInverse(m) equals k, as well as
the smallest n for which #EulerPhiInverse(m) equals k.

0 234369438 14
1 0 −
2 34885680 10
5 3936195 8

10 1964797 24
50 74409 1680

100 18425 34272
500 603 2363904

1000 129 1360800
2500 12 36408960
5000 3 107520000

63255 1 638668800

The last line in the table shows the maximum size that was found: there are
63255 integers x with φ(x) = 638668800.

The smallest value k for which no m was encountered with #φ−1(m) = k
was k = 4077. It is an open conjecture that every k > 1 will occur eventually.

Erdős proved [17] that if there exists an integer m for which #φ−1(m) = k,
then there exist infinitely many such m. This was done by a fairly complicated
analytic argument, showing that there are very many primes p such that
#φ−1((p − 1)m) = #φ−1(m) = k.

Iteration of φ ◦ σ

Another conjecture about φ concerns the iteration of the composite φ ◦ σ
of φ and the divisor-σ function, which assigns to n the sum of its divisors
σ(n) =

∑

d|n d. The conjecture, formulated by Poulet in [35] as ‘loi empirique’,
states that this function will ultimately cycle for every input n. Meade and
Nicol [28] found that for the starting value n1 = 455536928 = 25 · 76 · 112

no cycle had occurred yet when they had computed iterates of φ ◦ σ up to
50 digits long, and they state that ‘In independent studies Sid Graham has
observed that this appears to be the smallest number which does not cycle’.
One part of this claim we can prove incorrect here: If the function does not
cycle for n1, this is certainly not the smallest such starting value. The reason
is that the sequence of iterates for n1 merges with the sequence for the starting
value n0 = 254731536 = 24 · 32 · 172 · 6121 after a few steps. As a matter of
fact, there are almost 400 starting values smaller than n1 leading to the same
sequence, and n0 is the smallest. After 29781 iterations on n0 we reached the
179 digit number

2106 · 370 · 540 · 718 · 1111 · 134 · 172 · 193 · 233 · 312 · 37 · 41 · 59 ·
612 · 67 · 229 · 271 · 347 · 733 · 5569 · 18211 · 33791 · 83151337.
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We stopped at this point for no particular reason.
Here are some more statistics about what happens up to starting value

255 · 106. All but one of the sequences, the one starting with n0, end in one
of 46 different cycles. Of these cycles, 20 are of length 1, namely (listing the
number of occurrences in parentheses):

1 (1), 712800 = 25 · 34 · 52 · 11 (7741)
2 (3), 1140480 = 28 · 34 · 5 · 11 (44858)
8 = 23 (6), 1190400 = 29 · 3 · 52 · 31 (1833)

12 = 22 · 3 (7), 3345408 = 210 · 33 · 112 (73649)
128 = 27 (37), 3571200 = 29 · 32 · 52 · 31 (128258)
240 = 24 · 3 · 5 (43), 5702400 = 28 · 34 · 52 · 11 (1149102)
720 = 24 · 32 · 5 (151), 14859936 = 25 · 36 · 72 · 13 (48306)

6912 = 28 · 33 (1919), 29719872 = 26 · 36 · 72 · 13 (44113)
32768 = 215 (160), 50319360 = 212 · 33 · 5 · 7 · 13 (1135829)

142560 = 25 · 34 · 5 · 11 (1374), 118879488 = 28 · 36 · 72 · 13 (290673)

We found 11 cycles of length 2, 5 cycles of length 3, 3 cycles of length 4 and
2 cycles of length 6, as well as single cycles of lengths 9, 11, 12, 15, and 18.
The following table lists some of them (again, the number of occurrences in
brackets), cf. [5].

length 2:

[4, 6] (7),
[3852635996160, 4702924800000] (123),

length 3:

[16, 30, 24] (35),
[272160, 290304, 290400] (413972),

length 4:

[2142720000, 2935296000, 3311642880, 3185049600] (16),

length 9:

[113218560, 124895232, 163296000, 181149696, 170698752,
125798400, 116121600, 139708800, 136857600] (7682341),

length 15:

[40255488, 48384000, 43130880, 41912640, 47029248,
70253568, 91998720, 82944000, 83825280, 71663616,
52428800, 79221120, 70778880, 57600000, 42456960] (128378949),

length 18:

[150493593600, 152374763520, 202491394560, 167215104000,
219847799808, 161864220672, 247328774784, 191102976000,
207622711296, 178362777600, 283740364800, 233003796480,
221908377600, 204838502400, 214695936000, 237283098624,
185794560000, 178886400000] (82683195).
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It is surprising that so many sequences end in so few cycles. One should not
get the impression, however, that it is difficult to find other cycles. Starting
values n = 2ℓ for example, frequently lead to new ones. Indeed, for ℓ = 33 we
find a cycle of length 21, and for ℓ = 40 we find a cycle of length 22. We list
a few more values below.

ℓ length minimal entry

33 21 12227604480
41 3 4672651788288000
45 8 140005324800000
52 34 19937391280128000
54 9 1401456438084102782976000000
79 5 6634509269055173050761216000
88 56 423134057722616480079544320000
89 23 562218111097315629465600000

For larger values of ℓ the sequence of iterates seems to keep growing for a long
time. All of this hardly provides evidence for or against the conjecture that
every starting value eventually leads to a cycle.

Fixed points

A related question concerns fixed points under φ ◦ σ: solutions in positive
integers to φ ◦ σ(n) = n. According to Guy (Problem B42 in [20]) Selfridge,
Hoffman and Schroeppel found all but the final value 28 ·36 ·72 ·13 mentioned
in the table of the previous section, and in addition

2147483648 = 231

4389396480 = 213 · 37 · 5 · 72

21946982400 = 213 · 37 · 52 · 72

11681629470720 = 221 · 33 · 5 · 113 · 31
58408147353600 = 221 · 33 · 52 · 113 · 31

We tried the following code in Magma to generate some more solutions, using
various values for A to produce a list of primes P and maximal exponents E :

> A := 35;
> P := [ n : n in [2. . A] | IsPrime(n) ] ;
> E := [ Floor(A/p) : p in P ] ;
> C := CartesianProduct([ [ e. . 0 by −1] : e in E ]) ;
> for c in C do
> nfn := SeqFact([ <P [i ], c [i ]> : i in [1..#P ] | c [i ] ne 0 ]) ;
> if EulerPhi(DivisorSigma(1, nfn)) eq Facint(nfn) then
> print nfn ;
> end if ;
> end for ;
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Here are some of the 25 new solutions we found (cf. [5]):

118879488 = 28 · 36 · 72 · 13
3889036800 = 29 · 34 · 52 · 112 · 31

1168272833817083904000000 = 225 · 311 · 56 · 74 · 132 · 31
148771996063925942112680411136 · 107 = 235 · 321 · 57 · 72 · 114 · 132 · 19 · 23

5 Class number relations

The final examples concern the art of computing with character relations.
A character relation for a finite group G consists of a sequence of integers

aH , one for every subgroup H of G, such that
∑

aH1G
H = 0, when we sum

over all subgroups. Here χ = 1G
H is the permutation character of the subgroup

H , so χ(g) is the integer counting the number of cosets of H left invariant
by the action of g. The number theoretic significance of character relations
follows from a theorem of Brauer [9],

#
{

∏

H<G

h(NH)aH : Gal(N/Q) = G
}

< ∞,

expressing that the class number products with multiplicities according to a
character relation for G assume finitely many different rational values when
N ranges over all normal number fields with Galois group G. Here h(NH) is
the ideal class number of the ring of integers of the subfield of N fixed by the
elements of the subgroup H of G. To prevent trivial cases we will assume that
in the character sums (and the related class number products) the sum (and
product) ranges over non-conjugate subgroups only.

In Magma the permutation characters for all subgroups of a given permu-
tation group G can be generated, as a matrix with the characters as rows, by
this function:

permcharmat := function(G)
nc := #ConjugacyClasses(G) ;
subs := Subgroups(G) ;
M := Hom(RSpace(Integers(), #subs), RSpace(Integers(), nc)) ;
return M !

&cat[ Eltseq(PermutationCharacter(G, s`subgroup)) : s in subs ] ;
end function ;

The intrinsic function Subgroups returns a representative for all conjugacy
classes of subgroups of a permutation group as a sequence of records, one for
each class. Each record contains the representative of the class, which can be
obtained via the attribute ‘subgroup’, here in the form s`subgroup , where s
is one of the records in the sequence subs. Other attributes that can be used
on this record are s`order for the order of the subgroup and s`length for the
number of different subgroups that are in the class.
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Here is the result for the alternating group on 4 letters:

> permcharmat ( Alt(4) ) ;

[12 0 0 0]

[ 6 2 0 0]

[ 4 0 1 1]

[ 3 3 0 0]

[ 1 1 1 1]

The character relations are the non-trivial relations between the rows of this
matrix, and they can simply be generated as its kernel:

> relations := func< G | Kernel( permcharmat (G) ) > ;
> relations( Alt(4) ) ;

RSpace of degree 5, dimension 2 over Integer Ring

Echelonized basis:

( 1 0 -3 -1 3)

( 0 1 -1 -1 1)

Thus, for A4, all character relations can be derived from the basis pair given
here. According to Brauer’s theorem the class number products corresponding
to these relations

h(N) · h(Q)3

h(N4)3 · h(N3)
,

h(N6) · h(Q)

h(N4) · h(N3)

take on finitely many values as N ranges over all Galois extensions of Q with
Galois group A4. Here we used the notation Nd for the degree d subfield of
N invariant under the index d subgroup of A4; of course h(N1) = h(Q) = 1
in this notation. In [7], Example 5.3, it is shown that the set of rationals that
will occur is included in { 1

8 , 1
4 , 1

2 , 1, 2}.

Arithmetically equivalent fields

The simplest non-trivial character relation occurs when G has a pair H, H ′

of non-conjugate subgroups with the same permutation character. The corre-
sponding invariant subfields NH , NH′

of the normal field N with Galois group
G will then be non-isomorphic but they share many properties: they will have
the same zeta-function [32]. Such fields are called arithmetically equivalent.

The existence of arithmetically equivalent number fields was shown by
Gassmann [18], who exhibited in 1926 two non-conjugate subgroups of the
symmetric group on 6 elements (both isomorphic to V4) with the same per-
mutation character:

> G := Sym(6) ;
> U := sub< G | (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3) > ;
> V := sub< G | (1, 2)(3, 4), (1, 2)(5, 6), (3, 4)(5, 6) > ;
> PermutationCharacter(G, U ) ;

( 180, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0 )
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> PermutationCharacter(G, V ) ;

( 180, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0 )

> Induction(PrincipalCharacter(U ), G) eq PermutationCharacter(G, U ) ;

true

The last line is included here by way of explanation for the notation 1G
U for

the permutation character: it is the character on G induced by the principal
character on U . In this case it is easy to see that 1G

U = 1G
V if one uses the

equivalent property that C ∩U = C ∩ V for all conjugacy classes C of G; the
latter is obvious as conjugacy classes in Sn coincide with cycle types, and U
and V are clearly the same in this respect. Since U fixes the points 5, 6 and
V is fix-point free, U and V are non-conjugate in G.

The degree of the equivalent number fields in this case is 180 (being the
index of U in G, which equals the first character value). Since S6 is the generic
group for an irreducible polynomial of degree 6, the construction will furnish
infinitely many pairs of arithmetically equivalent fields.

To search for examples of small degree n in Magma, one uses a simple dou-
ble loop over all transitive subgroups G of Sn. Since only subgroups of index
n are relevant, we set the parameter OrderEqual on the intrinsic Subgroups
equal to #G/n, and search for pairs U, V of subgroups isomorphic to a point
stabilizer but not conjugate in Sn:

> for n := 1 to 12 do
> for k := 1 to NumberOfTransitiveGroups(n) do
> G := TransitiveGroup(n, k ) ;
> U := Stabilizer(G, 1) ;
> χ := PermutationCharacter(G, U ) ;
> S := Subgroups(G : OrderEqual := Order(G) div n) ;
> if exists(i ){ i : i in [1..#S ] | PermutationCharacter(G, V ) eq χ
> and IsEmpty(Fix(V )) where V := S [i ]`subgroup } then
> < n, k , Order(G)> ;
> end if ;
> end for ;
> end for ;

<7, 5, 168>

<8, 15, 32>

<8, 23, 48>

<11, 5, 660>

<12, 26, 48>

<12, 38, 72>

<12, 49, 96>

<12, 57, 96>

<12, 104, 192>

<12, 124, 240>
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This computation reproduces part of the table given in [8], see also [26], and
proves that there exist precisely 10 different configurations of pairs of arith-
metically equivalent fields in degrees up to 12, namely one in degree 7, two in
degree 8, one in degree 11, and six in degree 12. This non-trivial computation
can only be done efficiently (in a matter of minutes) because of the availability
of a database of transitive groups and a fast subgroup algorithm [10].

This computation confirms the theoretical proof of Perlis [31] that no non-
trivial character relations exist for permutation groups of degree less than 7.

An arithmetically equivalent family in degree 7

A family of arithmetically equivalent pairs of number fields consists of a
parametrized pair of polynomials that generically generate subfields of a Ga-
lois extension invariant under the pair of subgroups of a given configuration
(as in the previous section). In this section we show how this can be done for
the configuration in the smallest possible degree 7.

If we replace the line that produces output in the previous code fragment
by

> < n, k , G, U , S [i ]`subgroup > ;

it would output this for the degree 7 case:
<7, 5,

Permutation group G acting on a set of cardinality 7

Order = 168 = 2^3 * 3 * 7

(1, 2, 3, 4, 5, 6, 7)

(1, 2)(3, 6),

Permutation group U acting on a set of cardinality 7

Order = 24 = 2^3 * 3

(2, 3)(4, 7)

(2, 7, 5)(3, 6, 4)

(3, 7)(5, 6)

(3, 6)(5, 7),

Permutation group acting on a set of cardinality 7

Order = 24 = 2^3 * 3

(1, 6)(4, 7)

(1, 6, 5)(2, 3, 7)

(2, 4)(3, 7)

(2, 3)(4, 7)>

In [8] it is shown how the two subgroups U, V of the simple group G ∼= GL3(F2)
of 168 elements can be related to each other geometrically. If N is Galois with
group G and the invariant field NU is generated by the irreducible degree 7
polynomial f , then V leaves ‘collinear’ triples of roots of f invariant, when
we identify the 7 roots of f with the points of the projective plane over F2; so
NV is generated by a polynomial of degree 7 having sums of collinear roots
of f as its roots.

The following notation will be used for the particular family of arithmeti-
cally equivalent fields that will be considered here. For s, t ∈ Q let fs,t be
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defined as

x7 + (−6t + 2)x6 + (8t2 + 4t − 3)x5 + (−s − 14t2 + 6t − 2)x4

+(s + 6t2 − 8t3 − 4t + 2)x3 + (8t3 + 16t2)x2 + (8t3 − 12t2)x − 8t3.

If fs,t is irreducible over Q then the number field obtained by adjoining a
root of fs,t to Q will be denoted by K, and the field defined by f−s,t will be
denoted by K ′. The Galois closure of K will be denoted by N as usual.

Magma can be used in the proof of the following proposition, cf. [8].

Proposition 5.1. If fs,t is irreducible in Q[x], then so is f−s,t; the Galois

group of fs,t is a subgroup of GL3(F2), and when it equals GL3(F2) then K
and K ′ are arithmetically equivalent.

LaMacchia [27] already showed that the Galois group Gal(N/Q) of fs,t is
generically GL3(F2). The remarks above imply that we can identify a poly-
nomial generating K ′ as an irreducible factor g of degree 7 of the polynomial
P of degree 35 that has all sums of three roots of fs,t as roots. We determine
this polynomial here symbolically; for the paper [8] a modular approach was
used.

> F <s, t> := FunctionField(Rationals(), 2) ;
> Q<x> := PolynomialRing(F ) ;
> f := x 7 + (−6∗t+2)∗x 6 + (8∗t 2+4∗t−3)∗x 5 +
> (−s−14∗t 2+6∗t−2)∗x 4 + (s+6∗t 2−8∗t 3−4∗t+2)∗x 3 +
> (8∗t 3+16∗t 2)∗x 2 + (8∗t 3 − 12∗t 2)∗x − 8∗t 3 ;

We determine the polynomial q1 having as roots all sums of pairs of distinct
roots of fs,t. For this, observe that the resultant of f(x − y) and f(y) with
respect to y is a polynomial in x that consists of the product of all differences
of the roots x − αi of f(x − y) and αj of f :

r = Resy(f(x − y), f(y)) = −
∏

1≤i,j≤7

(x − αi − αj) = −q2
1 · h2,

where h2 is the monic polynomial that has the sums of two equal roots of f
as its root. To work with monic polynomials throughout we replace f by the
monic version h1 of f(−x).

> h1 := (−1)Degree(f )∗Evaluate(f , −x ) ;
> Y <y > := PolynomialRing(Q) ;
> r := Resultant(Evaluate(h1, y−x ), Evaluate(f , y )) ;
> h2 := 27∗Evaluate(f , x/2) ;
> q1 := SquareRoot(r div h2) ;

The resulting polynomial q1 of degree 21 is

q1 = x21 + (−36t + 12)x20 + · · · (−147456t13 + · · · − 8s4t3 + · · · − 384t5).
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To find P , repeat the resultant trick. Determine the polynomial q having as
roots the sums of three roots of f , at least two of them equal, and also q2,
having as roots the sum of one root and twice another root of f :

> q := Resultant(Evaluate(h1, y−x ), Evaluate(h2, y )) ;
> h3 := 37∗Evaluate(f , x/3) ;
> q2 := q div h3 ;

then the polynomial P having sums of three distinct roots of f as its roots is
easily obtained:

> R := Resultant(Evaluate(h1, y−x ), Evaluate(q1, y )) ;
> P := Root(R div q2, 3) ;

From this polynomial P of degree 35, which has 2668 non-zero terms, we
obtain the desired polynomial g by factorization:

> fP := Factorization(P) ;
> g := fP [1][1] ; g ;

x^7 + (-18*t + 6)*x^6 + (124*t^2 - 64*t + 6)*x^5 + (-408*t^3 +

208*t^2 - 4*t - 16)*x^4 + (6*s*t - 6*s + 640*t^4 - 156*t^3 -

116*t^2 + 84*t - 27)*x^3 + (-36*s*t^2 + 36*s*t - 12*s -

384*t^5 - 152*t^4 + 120*t^3 + 88*t^2 - 34*t - 6)*x^2 +

(-s^2 + 48*s*t^3 - 20*s*t^2 - 2*s*t - 2*s - 64*t^5 - 84*t^4 +

52*t^3 - 8*t^2 - 12*t)*x - 8*s*t^3 - 4*s*t^2 + 384*t^6 +

80*t^5 - 88*t^4 - 24*t^3

The bottlenecks in this computation are the root extraction P = 3

√

R/q2 and
the factorization of P . The polynomial R has degree 147 and

> &+[ #Terms(Integers(F ) ! c) : c in Coefficients(R) ] ;

165555

non-zero terms.
Finally we show that f−s,t and g generate the same number field. Instead

of literally pasting in the definition of f−s,t we obtain it by applying the
homomorphism h of F (s, t)[x] sending s to −s:

> fh := hom< F → F | −s, t > ;
> h := hom< Q → Q | fh, x > ;
> fminus := f @h ;

When we apply a particular rational transformation to g the result is divisible
by fminus,

> gnew := Q ! x 7∗Evaluate(g , (x−1)∗(1+2∗t/x )) ;
> gnew mod fminus ;

0

and the proposition follows.
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Class number quotients

Arithmetically equivalent number fields have the same zeta-function; the zeta-
function encodes a lot of information but it is not true that number fields are
characterized (up to isomorphism) by their zeta-function. Equality of zeta-
functions for two fields forces many invariants of the fields to be equal, but
not necessarily their ideal class numbers. However, the product of class number
and regulator for arithmetically equivalent fields will be the same.

The first example of number fields with the same zeta-function but differ-
ent class numbers was published by Perlis and de Smit [39]. It consists of a pair
of arithmetically equivalent fields in degree 8 of the form Q( 8

√
a), Q( 8

√
16a).

Work by de Smit has produced bounds on the possible class number quo-
tients that appear in the finite set h(NH)/h(NH′

) for a fixed triple (G, H, H ′)
that produces arithmetically equivalent number fields NH and NH′

with
G = Gal(N/Q) of small degree [G : H ]. These bound are fairly tight in
the sense that most remaining quotients do occur. For our example in degree
7 the bounds imply that the set is contained in {1, 1

2 , 1
4 , 1

8} and their recipro-
cals, where 1

8 would only be possible for a totally real field N (the only other
possibility in this configuration is that N has precisely 2 pairs of complex
embeddings).

To generate examples the following code could be used. It is useful in prac-
tice to search for examples with relatively small discriminant only. Continuing
our previous examples with F = Q(s, t) and Q = F [x]

> U<u> := PolynomialRing(Rationals()) ;
> evalst := func< j , k | hom< Q → U | C , u>
> where C is hom< F → Rationals() | j , k > > ;

the function evalst (j , k ) can, for rational values of j, k, be applied to fs,t to
cast it into an element of U = Q[u] by evaluating s = j and t = k. Here we
use this for some selected values for j and k (obtained from a search):

> for p in [ [1, 2], [7, 1], [6,−7], [5, 4], [1, 4], [19, 5] ] do
> j , k := Explode(p) ;
> N1 := NumberField( evalst (j , k )(f ) ) ;
> fD := Factorization(Discriminant(Integers(N1))) ;
> h1 := ClassNumber(N1: Bound := 300) ;
> N2 := NumberField( evalst (−j , k )(f ) ) ;
> h2 := ClassNumber(N2: Bound := 300) ;
> print <p, Min([ h1/h2, h2/h1 ]), fD , Signature(N1)> ;
> end for ;

<[ 1, 2 ], 1, [ <27277, 2> ], 3>

<[ 7, 1 ], 1/2, [ <222107, 2> ], 3>

<[ 6, -7 ], 1/4, [ <2, 4>, <13, 2>, <1728655121887, 2> ], 3>

<[ 5, 4 ], 1, [ <8488225021, 2> ], 7>

<[ 1, 4 ], 1/2, [ <3347, 2>, <2602463, 2> ], 7>

<[ 19, 5 ], 1/4, [ <270982714837, 2> ], 7>
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The ideal class numbers for the pair of arithmetically equivalent number fields
N1 and N2 are calculated, and their quotient is displayed here, together with
the field discriminant (in factored form) and the number of real embeddings.
The bound of 300, given as a parameter here, speeds up the computation (it
puts a bound on the norms of the ideals used as generators for ideal classes),
but some additional work is required to obtained guaranteed results. We did
not find an example where the quotient equals 1

8 (or 8).

References

1. R. Baillie, G. Cormack, H.C. Williams, The problem of Sierpiński concerning
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