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Abstract

As a direct generalization of the Lucas-Lehmer test for the Mersenne numbers
2k−1, explicit primality tests for numbers of the form N = h ·3k ±1 are derived,
for fixed h, and all k with 3k

> h. The result is that N is prime if and only if
wk−1 ≡ ±1 mod N , where w is given by the recursion wj = wj−1(w

2

j−1 −3); the
main difference with the original Lucas-Lehmer test is that the starting value
w0 of this recursion may depend on k, (as is the case in tests for h · 2k ± 1).
For h 6= 27m ± 1 it is usually easy to determine a finite covering prescribing a
starting value depending only on the residue class of k modulo some auxiliary
integer. We show how this can be done using cubic reciprocity and give some
examples, drawing from the cases h ≤ 105, which were all computed explicitly
for this paper.

1 Introduction

This paper was written with the intention of serving several purposes, besides marking
the birthday of Hugh Williams. One of these purposes was to show that results from
[4] for numbers of the form h · 2k ± 1 could easily be adapted to h · 3k ± 1. Assuming
only the cubic reciprocity law (replacing quadratic reciprocity) it was intended to give
an entirely elementary exposition from a computational point of view, leading up to a
generalization of the famous Lucas-Lehmer test, but avoiding the language of ‘Lucas
functions’. Cubic reciprocity is far less known than quadratic reciprocity, but just as
easy to implement and use in practice. From the description given it should be easy
for an interested reader to write programs (similar to the ones I wrote using Magma)
for finding the explicit primality tests and for executing them. There is an emphasis
on finding finite covers, especially single-element covers, as Hugh Williams mentioned
his interest in them to me long ago, and as he wrote about them in several places, see
for example [8]. Finally, some results and curiosities from computational experiments
I conducted were included.

Only when putting together the list of references after writing most of this paper, I
became aware of the existence of [3]. In that paper, Berrizbeitia and Berry formulated
the primality tests for h · 3k ± 1 analogous to the Lucas-Lehmer test for the first time
(it is essentially Corollary 4.4 below). Their proofs are along lines very similar to
mine; their use of the trace function leads to a formulation that is better than my
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original one (where I used the difference rather than the sum of two conjugates),
and so I decided to change my exposition slightly accordingly. The formulation of
Corollary 4.2 and Corollary 4.4 should therefore be attributed to them.

The main idea of the primality criteria in this paper can be explained as follows;
the precise formulation is found in Theorems 2.1 and 2.3 in the next section. This
idea is that when N = h ·3k±1 and 3k exceeds h, showing the existence of an element
α of multiplicative order 3k in certain finite ring of cardinality N or N 2 equivalent to
showing that a this ring is a field and that N is prime. To prove that α has the right
order it is shown that the α(N±1)/3 is a primitive third root of unity ζ3.

The tasks that remain from then on are to show that the test can be performed
simply in Z[ζ3]/N , that taking the required power of an element can be done by a
simple recursion modulo N , and to furnish the element α. The result will best imitate
the classical Lucas-Lehmer test, which says that

2k − 1 is prime ⇐⇒ ek−2 ≡ 0 mod (2k − 1),

where e0 = −4 and ej+1 = e2
j − 2, when we explicitly write down the element α.

However, the α to be taken may depend on the exponent k; the analogy is complete
if a single α (which means a single starting value for the recursion) can be used for
every k. That happens when a single-element cover is found.

Most results from [4] carry over to the present paper in a straightforward manner.
There are a few differences though. The main difference has to do with the primality
criterion we mentioned; for N = h · 2k + 1 (with 2k >

√
N) one looks for an element

for which the power (N −1)/2 is a primitive second root of unity, i.e., equals −1. The
entire primality test can then be carried out in (Z/NZ)∗. Already for N = h · 2k − 1
we need to work in a quadratic extension ring in order to find an element for which
the power (N + 1)/2 is −1. In the present case, for h · 3k ± 1, it is best to ensure that
the third roots of unity are present, by starting in Z[ζ3]. Then both tests can take
place in a finite quotient of this ring, without the need to make further extensions.

Notation and Preliminaries

Thus, the primality tests in this paper are essentially performed in the ring of integers
Z[ζ3] of the cyclotomic field Q(ζ3). Elements α of the field will be represented as
a + b · ζ3, with a, b ∈ Q, the non-trivial automorphism sending ζ3 to ζ2

3 = −1 − ζ3

by ¯ and the norm and trace are then given by Nmα = α · ᾱ = a2 − ab + b2 and
Tr α = α + ᾱ = 2a − b. Occasionally we will use that Q(ζ3) is isomorphic to the
quadratic field Q(

√
−3), and we write ζ3 = (−1 +

√
−3)/2.

It is well-known that Z[ζ3] is a unique factorization domain, in which there are
three types of prime: the inert rational primes q ≡ 2 mod 3 of norm q2, the primes
π of prime norm p = π · π̄ ≡ 1 mod 3, and the prime 1 − ζ3, which lies over 3 as
3 = −ζ2

3 · (1 − ζ3)
2.

The units of Z[ζ3] are the sixth roots of unity ±ζ i
3, for i = 0, 1, 2.

The cubic character introduced in Section 3 is analogous to the well-known Jacobi
symbol, for which we will here use the notation

(

a
m

)

2
. The Euler criterion mentioned
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in the following proof states that for primes p and every a not divisible by p always
(

a
p

)

2
≡ a(p−1)/2 mod p.

Theorem 1.1 Let α, π ∈ Z[ζ3], with π prime of norm 6= 3. Then:

(i) απ ≡ ᾱ mod π, if π ∈ Z, so π ≡ 2 mod 3;

(ii) αNmπ ≡ α mod π;

(iii) there is a unique i ∈ {0, 1, 2} such that α
Nmπ−1

3 ≡ ζi
3 mod π if α 6≡ 0 mod π.

Proof If π = q ≡ 2 mod 3 is a prime in Z with q > 2, then Fermat’s little theorem
implies that aq ≡ a mod q for every a. Write α = (x+ y ·

√
−3)/z with z ∈ {1, 2} and

use that every binomial coefficient
(

q
i

)

is divisible by q, as well as Euler’s criterion,
to see that

αq =

(

x + y
√
−3

z

)q

≡ x + (−3)
q−1

2 y
√
−3

z
≡ ᾱ mod q,

as −3 is a quadratic non-residue for primes q ≡ 2 mod 3.
The second result follows from this if π = q ≡ 2 mod 3, and in any case holds since

Z[ζ3]/π is a finite field of Nmπ elements with multiplicative group of order Nmπ− 1.
The third results must then hold because α(Nmπ−1)/3 mod π must equal one of

the three solutions to x3 − 1 = 0 in this field.

2 Primality criteria

The primality criteria in Z[ζ3] we use are formulated in the Theorems 2.1 and 2.3.

Theorem 2.1 Let ν ∈ Z[ζ3] with N = Nmν. If N > 1 is odd and 3k >
√

N , where
k ≥ 1 is such that 3k | N − 1, then:

ν is prime ⇐⇒ ∃ α ∈ Z[ζ3] : α
N−1

3 ≡ ζ3 mod ν. (1)

Proof First note that by hypothesis N = Nmν ≡ 1 mod 3.
If ν is prime then the ring Z[ζ3]/ν is a field of N elements. Its multiplicative group

is cyclic of order N − 1, so for any non-cube γ mod ν (for example, any generator
of the group), the power (N − 1)/3 will be a primitive third root of unity, so either
α = γ or α = γ2 will have the desired property.

For the converse, let α have the property stated and let π ∈ Z[ζ3] be any prime
divisor of ν. Then α(N−1)/3 ≡ ζ3 6≡ 1 mod π, as ζ3 − 1 is a prime of norm 3 which
does not divide N . So the multiplicative order of α in (Z[ζ3]/π)∗ is divisible by the
largest power 3k dividing N − 1. The order Nmπ − 1 of the group (Z[ζ3]/π)∗ is then
divisible by 3k.

If π = q is a prime in Z that is 2 mod 3 then Nmπ = q2 divides Nmν = N . Now
3k | q2 − 1 but 3 does not divide q − 1, so 3k | q + 1 and hence q + 1 ≥ 3k. As N is
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odd, so is q, and this inequality must be strict, so q ≥ 3k >
√

N , contradicting that
q2 divides N .

Therefore any prime π dividing ν has Nmπ = p, a prime in Z dividing N , with
3k | p − 1. Then p − 1 ≥ 3k >

√
N , so p >

√
N . But then every prime p dividing N

exceeds
√

N , so N is prime and so is ν.

Corollary 2.2 If N > 1 is odd and 3k | N − 1, with k ≥ 1 and 3k >
√

N , then:

N is prime in Z ⇐⇒ ∃ α ∈ Z[ζ3] : α
N−1

3 ≡ ζ3 mod N. (2)

Proof If N is prime then N = ν · ν̄ since N ≡ 1 mod 3; by Theorem 2.1 there are

elements α1 and α2 in Z[ζ3] with α
(N−1)/3
1 ≡ ζ3 mod ν and α

(N−1)/3
2 ≡ ζ3 mod ν̄.

But ν and ν̄ are coprime in Z[ζ3], and by the Chinese remainder theorem there
exists α ∈ Z[ζ3] such that α ≡ α1 mod ν and α ≡ α2 mod ν̄; this implies that
α(N−1)/3 ≡ ζ3 mod ν · ν̄ as desired.

For the converse we argue as in the proof of the theorem: for a prime q ≡ 2 mod 3
dividing N the existence of α implies that q + 1 is divisible by 3k. As q is odd this
implies that it exceeds

√
N . If p ≡ 1 mod 3 is a prime divisor of N then the existence

of α forces p−1 to be divisible by 3k, and so p exceeds
√

N . Thus every prime divisor
of N exceeds

√
N , and N must be prime itself.

Theorem 2.3 If N > 1 is odd and 3k | N + 1, with k ≥ 1 and 3k >
√

N , then:

N is prime ⇐⇒ ∃ α ∈ Z[ζ3] : α
N+1

3 ≡ ζ3 mod N. (3)

Proof Note that by hypothesis N ≡ 2 mod 3, and so N is prime in Z if and only if
N is prime in Z[ζ3].

If N is prime, then Z[ζ3]/N is a field of N2 elements. Hence any η ∈ Z[ζ3] with

η 6≡ 0 mod N will satisfy ηN2
−1 ≡ 1 mod N by Theorem 1.1(ii) and if η is a non-cube

modulo N we get η(N2
−1)/3 6≡ 1 mod N , so it must be a primitive third root of unity.

Taking α congruent to ηN−1 mod N or its square will give the result.
For the converse, let π be a prime element of Z[ζ3] dividing N and let α satisfy

α
N+1

3 ≡ ζ3 mod π. Note that π cannot be the prime over 3 as N ≡ 2 mod 3. Then
the largest power 3k dividing N +1 also divides the order of α mod π, hence the order
of (Z[ζ3]/π)∗. If π 6∈ Z then π̄ also divides N and Nmπ = Nm π̄ = p, an odd prime;
in this case p − 1 is divisible by, and hence exceeds, 3k >

√
N .

If π = q ≡ 2 mod 3 is a prime in Z dividing N , then 3k | q+1, so q+1 ≥ 3k >
√

N .
Since N is odd, so is q, and q + 1 > 3k hence q exceeds

√
N .

Now all prime divisors of N exceed
√

N , so N must be prime.

Remark 2.4 The above results provide a primality criterion for all odd integers
N > 1 for which either N − 1 or N + 1 has a factor of the form 3k exceeding

√
N .

The requirement 3k >
√

N can be slightly relaxed by considering the divisibil-
ity properties more carefully than by just deriving inequalities. This was done by
Williams in Lemma 1 of [9], and used also in in [3]. They essentially need 3k > h/8.
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The non-explicit part of the criteria lies in the choice of α. To prove that N is
prime using Corollary 2.2 or Theorem 2.3 one would have to exhibit an element α
with the desired property. To prove compositeness using them directly one would
even have to show that no α has this property.

In practice both problems can be solved quite easily using probabilistic methods.
For primes, one third of random choices for α will be non-cubes and hence lead to
a primality proof. For composite integers random choices for α will usually quickly
yield a non-zero example for which αNmν−1 6≡ 1 mod ν, violating the generalization of
Fermat’s little theorem. However, for pseudoprimes this may fail; one could overcome
this by using a stronger test analogous to the Miller-Rabin test. Or one could simply
subject N to the original Miller-Rabin test.

The alternative we consider here is to make the criteria implied by the theorems
explicit by prescribing a single α to be tested for a given ν or N .

We formulate a first version of the problem that arises.

Problem 2.5 Given an odd integer N > 1 with N − 1 or N + 1 divisible by 3k for
some k ≥ 1 with 3k >

√
N , determine an element α ∈ Z[ζ3] with the property that

N is prime ⇐⇒ α
N±1

3 ≡ ζ3 mod N. (4)

Instead of solving the problem by constructing α for a single N , we consider families
of integers of the form N+

h = {h · 3k + 1} and N−

h = {h · 3k − 1}, for fixed h, with k

running, such that 3k >
√

N , to satisfy the requirements of the theorems above. For
obvious reasons we will insist that h is even and not divisible by 3. By constructing
an explicit primality test we will now mean writing N+

h (or N−

h ) as a finite union of
subsets consisting of N = h ·3k +1 with k in a fixed residue class modulo an auxiliary
integer m, and exhibiting an element α that works for every N in such a subset. We
also say that we construct a finite cover by doing this.

The reformulated problem reads as follows.

Problem 2.6 Given an even, positive integer h not divisible by 3, find a finite set
S+

h = {(m, r, α)j : j = 1, . . . , t} of tuples (m, r, α) consisting of an integer m with
m ≥ 2, a representative r for a residue class in Z/mZ, and an element α ∈ Q(ζ3),
such that for all integers N ∈ N+

h there exists a tuple (m, r, α) ∈ S+
h for which

k ≡ r mod m and

N = h · 3k + 1 is prime ⇐⇒ α
N−1

3 ≡ ζ3 mod N. (5)

Similarly, find S−

h = {(m, r, α)j : j = 1, . . . , t} such that for all integers N ∈ N−

h

there exists a tuple (m, r, α) ∈ S−

h for which k ≡ r mod m and

N = h · 3k − 1 is prime ⇐⇒ α
N+1

3 ≡ ζ3 mod N. (6)

We have deliberately allowed α ∈ Q(ζ3); its denominator ought to be coprime to
every N for which it is employed. We will use cubic reciprocity to solve this problem.
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3 Cubic reciprocity

The cubic character
(

α
π

)

3
indicates for an element α of Z[ζ3] whether or not it is a

cube modulo π, provided π ∈ Z[ζ3] is a prime element. This fact, together with an
efficient method of establishing the character using cubic reciprocity provides a means
to solve our problem of finding α efficiently in most cases.

We review the main properties of the cubic character here; for some proofs we
refer the reader to [7] and [2].

Definition 3.1 For prime π ∈ Z[ζ3] with n = Nmπ 6= 3, we let
(

α
π

)

3
be the element

of {0, 1, ζ3, ζ
2
3} ⊂ Z[ζ3] defined as follows, If π divides α then the value is 0, in in all

other cases it is the element ζ i
3 satisfying α

n−1

3 ≡ ζi
3 mod π. This is well-defined by

Theorem 1.1(iii).

Lemma 3.2 For every α ∈ Z[ζ3] and every prime π ∈ Z[ζ3] of norm n 6= 3:

α
n−1

3 6≡ 1 mod π ⇐⇒ ∀ x 6≡ 0 mod π : x3 6≡ α mod π ⇐⇒
(α

π

)

3
6= 1.

Proof All three statements express that α is either 0 mod π or not equivalent to the
cube of an element modulo π.

Next one defines the cubic symbol for arbitrary ‘denominator’ by multiplicativity (in
the second argument).

Definitions 3.3 For α, β ∈ Z[ζ3] with Nmβ not divisible by 3 we define

(

α

β

)

3

=

(

α

π1

)

3

·
(

α

π2

)

3

· · ·
(

α

πk

)

3

,

where πi ∈ Z[ζ3] is prime and β = π1 · π2 · · ·πk .

Other important properties of the cubic residue symbol, including its multiplicativity
(in the first argument), are summarized in the following theorem.

Theorem 3.4 For every α, β in Z[ζ3] the following hold for prime π ∈ Z[ζ3] of norm
unequal to 3, and hence for every π of norm not divisible by 3:

(

αβ

π

)

3

=
(α

π

)

3

(

β

π

)

3

and

α ≡ β mod π ⇒
(α

π

)

3
=

(

β

π

)

3

.

Proof For prime π both statements follow directly from Definition 3.1; for composite
π they then follow from Definition 3.3.

The following is an easy consequence of the definitions that will turn out to be useful
for us.
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Lemma 3.5 For any prime element π ∈ Z[ζ3] of norm unequal to 3, and hence for
any element of Z[ζ3] of norm not divisible by 3:

( ᾱ

π̄

)

3
=

(α

π

)

3
.

In particular, for any m ∈ Z of norm not divisible by 3:

( ᾱ

m

)

3
=

( α

m

)

3
.

Proof Let n = Nmπ = Nm π̄ 6= 3. Note that by conjugating

α
n−1

3 ≡
(α

π

)

3
mod π

we obtain

ᾱ
n−1

3 ≡
(α

π

)

3
mod π̄,

and the first result follows. The second is an immediate consequence.

Definition 3.6 An element α ∈ Z[ζ3] is primary if and only if α ≡ 2 mod 3.

Lemma 3.7 The primary prime elements of Z[ζ3] are precisely the positive rational
primes q ≡ 2 mod 3 and the elements π = a+b ·ζ3 with a ≡ 2 mod 3 and b ≡ 0 mod 3
for which Nmπ = a2 − ab + b2 = p ≡ 1 mod 3 prime.

Proof An element β = a + b · ζ3 ∈ Z[ζ3] is primary if and only if a ≡ 2 mod 3 and
b ≡ 0 mod 3. The result follows from the classification of primes in Z[ζ3].

Corollary 3.8 Let β ∈ Z[ζ3] of norm not divisible by 3. Among the associates of β
exactly one is primary, and if β is primary it can be written uniquely (up to order)
as a product of primary prime elements and a power of the primary unit −1.

Proof The first assertion follows from simple inspection of the six associates ±ζ i
3 · β

of β. The second follows by writing β as a product of primary primes and units.

We can now formulate analogues of the law of quadratic reciprocity and the supple-
mentary law for the quadratic character.

Theorem 3.9 [Cubic Reciprocity Law] Let α, β ∈ Z[ζ3] be primary elements of
norm not divisible by 3. Then:

(

α

β

)

3

=

(

β

α

)

3

.

Proof Here we refer the reader to [7], Chapter 9, and to [2], Chapter 8 for the proof
when both α and β are primary primes. The general statement then follows from
Theorem 3.4.

7



Theorem 3.10 [Supplementary Law] Let β ∈ Z[ζ3] be a primary prime element,
β = (3m − 1) + b · ζ3, with b ≡ 0 mod 3. Then:

(

1− ζ3

β

)

3

= ζ2m
3 .

Proof See [2], Theorem 8.1.9.

Finally, the following takes care of the units.

Lemma 3.11 Let π ∈ Z[ζ3] be a prime element of norm unequal to 3. Then

(−1

π

)

3

=

(

1

π

)

3

= 1 and

(

ζ3

π

)

3

=







1 if Nmπ ≡ 1 mod 9,
ζ3 if Nmπ ≡ 4 mod 9,
ζ2
3 if Nmπ ≡ 7 mod 9.

Proof Direct from the definition and evaluation of ζ
(Nmπ−1)/3
3 mod π.

Just as Jacobi symbols can be computed efficiently using just quadratic reciprocity
and the ability to divide by 2, the above results enable us to compute the cubic
character without a general factorization algorithm in Z[ζ3], as long as we are able to
divide by the prime over 3, that is, to take out any factors 1 − ζ3.

Algorithm 3.12 Computing the cubic residue symbol

in: Elements α, β 6= 0 of Z[ζ3] such that β is not divisible by 1 − ζ3.

out: The value of

(

α

β

)

3

∈ {0, 1, ζ3, ζ
2
3}.

0. If α = 0 return 0; if β is a unit, then return 1. In all other cases replace β by
its unique primary conjugate, initialize r = 1 and repeat the following steps:

1. Replace α by an element α′ of norm less than β in the congruence class α mod β.
If α′ = 0 then return the value 0.

2. Find a unit u ∈ Z[ζ3] and an integer e ≥ 0 such that α′ = u · (1− ζ3)
e · α′′ with

α′′ primary, and multiply r by the following value (using 3.10 and 3.11):

(

u

β

)

3

·
(

1 − ζ3

β

)e

3

.

3. If α′′ = −1 then return r, otherwise go back to step 1. with α replaced by β and
β by α′′.

Termination of this Algorithm in finitely many steps is guaranteed because the norm
of α decreases with every time we execute Step 1 (except possibly the first time).
Correctness is based on the fact that Z[ζ3] is Euclidean with respect to the norm, on
cubic reciprocity, the supplementary law and the result on units above.
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4 Explicit primality tests

It may seem that we now have all the ingredients for explicit primality tests. This
is certainly the case if N ≡ 2 mod 3; as we will see below, any cubic non-residue
for N can be used to apply Theorem 2.3. If N ≡ 1 mod 3 there is still a problem:
to apply Theorem 2.1 directly we would like to have a cubic non-residue modulo ν,
where N = Nmν. However, computing ν from N may be a cumbersome task (which
may not be solvable if N is not prime) that we would like to avoid when possible.
However, a cubic non-residue modulo N may well be a residue modulo ν. Conjugates
come to the rescue here.

Theorem 4.1 Suppose that N > 1 is odd and that 3k | N2 − 1, with 3k >
√

N . If
α ∈ Z[ζ3] satisfies

( α

N

)

3
= ζ3

then

N is prime in Z ⇐⇒











(α

ᾱ

)

N−1

3 ≡ ζ3 mod N if 3k|N − 1,
( ᾱ

α

)

N+1

3 ≡ ζ3 mod N if 3k|N + 1.

(7)

Proof Note that the hypotheses imply that α and ᾱ are coprime to N .
The implication from right to left follows immediately from Corollary 2.2 and

Theorem 2.3, as we can find elements in Z[ζ3] congruent to α · ᾱ−1 and ᾱ · α−1

modulo N .
So suppose for the converse that N is prime, and

(

α
N

)

3
= ζ3. Then either 3k | N−1

or 3k | N + 1 holds. In the former case N ≡ 1 mod 3 and N = ν · ν̄, while

(α

ν

)

3

(α

ν̄

)

3
=

( α

N

)

3
= ζ3.

This leaves three possibilities:
(α

ν

)

3
= ζ3,

(α

ν̄

)

3
= 1, or

(α

ν

)

3
= 1,

(α

ν̄

)

3
= ζ3, or

(α

ν

)

3
=

(α

ν̄

)

3
= ζ2

3 .

Now use that by Lemma 3.5
( ᾱ

ν

)

3
=

(α

ν̄

)

3
,

to obtain in all three cases

(α

ν

)

3
·
( ᾱ

ν

)−1

3
≡ ζ3 mod ν.

Theorem 2.1 now implies that ν, and hence N , is prime.
If N ≡ 2 mod 3 is an inert prime in Z[ζ3] of norm N2, then

( α

N

)

3
≡ α

N2−1

3 ≡
(

αN−1
)

N+1

3 ≡
(

ᾱ · α−1
)

N+1

3 ≡ ζ2
3 · ζ−1

3 mod N,
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by Theorem 1.1(i), and since here

( ᾱ

N

)

3
≡

( α

N

)

3
≡ ζ2 mod N

by Lemma 3.5.
This completes the proof.

Corollary 4.2 Suppose that N > 1 is odd and 3k | N±1, with 3k >
√

N . If α ∈ Z[ζ3]
satisfies

( α

N

)

3
= ζ3

then

N is prime in Z ⇐⇒ Tr
(α

ᾱ

)

N±1

6 ≡ ±1 mod N

(where the sign in N ± 1 is chosen in such a way that N ± 1 is divisible by 3).

Proof If N is prime then Theorem 4.1 implies immediately that the trace of
(α/ᾱ)(N±1)/3 equals the sum of ζ3 and its conjugate, which equals −1, modulo N .
Only ±ζ6 are square root of ζ3, and the result follows easily.

For the converse, let p be a prime divisor of N in Z. The trace of (α/ᾱ)(N±1)/6

is ≡ ±1 by hypothesis. Suppose that u + v · ζ3 is any element of Q(ζ3) of norm 1, for
which the trace is ≡ ±1 mod p. Then u2 + v2 − uv = 1 and 2u− v ≡ ±1 mod p. But
the only solutions to these equations are

u ≡ 0, v ≡ ±1 mod p, or u ≡ v ≡ ±1 mod p

when p > 3, that is, u + vζ3 ≡ ±ζ3 or ±ζ2
3 mod p. It follows that

α

ᾱ

N±1

3 ≡ ζ3 or ζ2
3 mod p,

so 3k divides the order of α · ᾱ−1 modulo p, and the result follows by the usual
argument.

The only remaining ingredient now tells us how to compute the trace of a large power
of an element modulo N by a simple recursion modulo N .

Lemma 4.3 Let γ ∈ Q(ζ3) with Nmγ = 1. If, for j ≥ 0,

wj = γ3j

+ γ−3j

,

then w0 = Tr γ ∈ Q and for j ≥ 0:

wj+1 = wj(w
2
j − 3) ∈ Q.

Proof Note that

w3
j = (γ3j

+ γ−3j

)3 = (γ3j+1

+ γ−3j+1

) + 3(γ3j

+ γ−3j

) = wj+1 + 3wj .

Since 1 = Nmγ = γγ̄ we see that γ̄ = γ−1, so Tr γ = γ + γ−1 = w0 ∈ Q; from the
recursion we obtain that wj ∈ Q.
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Corollary 4.4 Let N = h · 3k ± 1 with h > 1 even and 3k > h, and let α ∈ Z[ζ3] be
such that

( α

N

)

3
∈ {ζ3, ζ

2
3}.

Then:
N is a prime number ⇐⇒ wk−1 ≡ ±1 mod N,

where

w0 = Tr
(α

ᾱ

)
h
2

and wj = wj−1(w
2
j−1 − 3), for j ≥ 1.

Proof Immediate by the previous Corollary.

Remarks 4.5 The computation of w0 can also be done recursively in Q, using for
example that

vivj = vi+j − vi−j , for i ≥ j ≥ 0,

when vi = Tr
(

α
ᾱ

)i
. The single rational number w0 will be used for all exponents k in

a residue class modulo an auxiliary number m. However, if h becomes bigger it may
be more convenient to compute w0 modulo N for each k, since the rational number
may become rather large.

The use of (N ± 1)/6 in Corollary 4.2 rather than (N ± 1)/3, and consequently
of h/2 in Corollary 4.4 rather than h leads only to a minor improvement over the
equivalent test

N is prime ⇐⇒ wk−1 ≡ −1 mod N,

where w0 = Tr
(

α
ᾱ

)h
and wj = wj−1(w

2
j−1 − 3). However it suggests that we could

have used the sextic residue symbol symbol rather than the cubic symbol: indeed
Z[ζ3] contains the sixth roots of unity.

5 Finding covers

To make the main test from the previous section, Corollary 4.4, entirely explicit, we
will attempt to solve the following problem.

Problem 5.1 Given an even, positive integer h not divisible by 3, find a finite set
S+

h = {(m, r, α)j : j = 1, . . . , t} of tuples (m, r, α) consisting of an integer m with
m ≥ 2, a representative r for a residue class in Z/mZ, and an element α ∈ Q(ζ3),
such that for all integers k with 3k > h there exists a tuple (m, r, α) ∈ S+

h for which
k ≡ r mod m and

(

α

h · 3k + 1

)

3

6= 1. (8)

Similarly, for the set S−

h , we require

(

α

h · 3k − 1

)

3

6= 1. (9)
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Remark 5.2 It will be clear that any α with residue symbol ζ3 or ζ2
3 will be useful

in the primality test of Corollary 4.4. If we would use only such elements, we would
only need to consider prime elements π ∈ Z[ζ3] not in Z (by Lemma 3.5). However,
rational primes ≡ 2 mod 3 will be useful as divisors, elements for which the cubic
symbol becomes zero! See also the examples below.

Before we consider an algorithm to construct covers, we give a negative result, showing
that such covers do not always exist.

Proposition 5.3 Finite covers do not exist for N+
h when h = 27m − 1, with m ≥ 1,

and they do not exist for N−

h when h = 27m − 1, with m ≥ 1, and h = 27m + 1, with
m ≥ 0.

Proof Suppose that C is some finite cover of elements from Z[ζ3]; let P be the finite
set of primes in Z consisting of the primes q ∈ Z dividing some c ∈ C and the primes
p = Nmπ, for π ∈ Z[ζ3] \ Z, for which π divides some c ∈ C. Choosing k to be a
multiple of all multiplicative orders op(3) of 3 modulo p in P it is easy to see that all
elements in C are cubic residues modulo (27m − 1) · 3k + 1.

This shows that no finite cover for N+
h exists when h = 27m − 1.

The same argument shows that no finite cover for N−

h can exist when h = 27m+1.

Choosing k simultaneously congruent to −3m modulo every order op(3) we find a
that every prime is cubic residue modulo (27m − 1) · 3k − 1. That proves N+

h has no
finite cover when h = 27m − 1.

Remark 5.4 This results is an immediate analogue of a results in [4]. The argument
given was later generalized by Williams in [11]; see also [8].

Here is a very simple but effective way to find a cover for given h.

Algorithm 5.5 Finding a cover

in: Element h of Z such that h is even and not divisible by 3

out: A finite cover S+
h for N+

h , or the empty set

0. Find a sequence P of odd primes pi as well as a corresponding sequence O
consisting of the multiplicative orders oi of 3 modulo pi for each of the pi.
Moreover, let Π be a sequence of primes πi in Z[ζ3] such that Nmπi = pi if
pi ≡ 1 mod 3 and πi = pi if pi ≡ 2 mod 3. For P one could use the complete
factorization for 3e − 1 for 1 ≤ e ≤ 50, for example.

Initialize k = 0 and M = {1} and repeat the following three steps.

1. Increment k and find the subset Πk of primes π in Π with
(

π
h·3k+1

)

3
6= 1 as well

as the corresponding sequence Ok of multiplicative orders for 3 modulo π ∈ Πk.
If Πk is empty, then no cover is found and the empty set returned.

12



2. Replace M by the set of least common multiples lcm(m, o) of elements m of M
with elements o of Ok. [ The elements of the new M are the moduli m with the
property that we have found cubic non-residues for exponents in residue classes
j modulo m with 1 ≤ j ≤ k. ]

3. If k /∈ M then go back to step 1. Otherwise, return the finite cover S+
h consisting

of triples (mj , j, πj) for 1 ≤ j ≤ k, with mj a divisor of k and πj an element of

Πj found in step 1 with the order of 3 modulo πj equal to mj and
(

πj

h·3k+1

)

3
6= 1.

Remarks 5.6 Several tricks (most of them also described in [4]) can be used to
enhance the performance of the algorithm, We indicate a few.

The algorithm was used to compute covers for a large collection of values for h.
Once a cover is found for a particular value of h it will be useful for certain residue
classes of h with respect to some auxiliary modulus. Computing these residue classes
makes it possible to re-use the cover quickly.

For hard cases (see also Section 6) it is often possible to predict which primes will
have to appear and hence a factor that will appear in the auxiliary modulus m, by
looking at values for which h · 3k ± 1 is a cube.

It is often not necessary to factor large values of 3e − 1 to use a large modulus:
known factors for all proper divisors of e can be used.

Example 5.7 To explain the idea behind the algorithm we construct S−

14.
For step 0 of the algorithm we generate the prime factorization of 3e−1 for e ≤ 50.

In the table below we give a relevant excerpt, in which the third and fourth columns
list the primitive prime factors that are 2 and 1 mod 3 respectively, for each e. In the
fifth column we give one of the conjugates in Z[ζ3] of the primes that are 1 mod 3.
We only listed the primitive primes, that is, those that do not appear for a smaller e.
This also means that e is the order of 3 modulo the primes in the row for e.

In step 1 we find the primes that give a non-zero cubic residue symbol with
h ·3k −1 = 41; it turns out that the first few are 3ζ1, of order e = 3, 36ζ +29 of order
e = 7, 41 of order 8, 27ζ − 1 of order e = 9 and 9ζ + 8 of order 12. This means that
we can use these elements for k with k ≡ 1 mod 3, 1 mod 7, 1 mod 8, 1 mod 9 and
1 mod 12 respectively.

The set M in step 2 will therefore contain 3, 7, 8, 9, 12 and their multiples (in fact
we will only store 3, 7, 8 of these, and remember that all multiples of elements should
be included as well).

Since k = 1 is not contained in M , we return in step 3 to step 1 and repeat the
search for cubic non-residues with 14 · 32 − 1 = 125. Of course we will only find that
q = 5 works! And as the order e of 3 modulo 5 is 4, it will work for any k with
k ≡ 2 mod 4.

The set M will then be updated to consist of common multiples of 4 and the
integers previously found, so multiples of 8, 12, 28 and so on.

For k = 3 the elements of order 3, 7, 9, 12 we found before work again, and M
contains multiples of 12, 28, 40 and so on. This means, then, that we can deal with
k = 1, 2, 3 using only prime divisors of 312 − 1, or only prime divisors of 328 − 1, and
so on.
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We know from what we saw for k = 1 that 3ζ − 1 will also work for k = 4, 7, 10.
The algorithm simply repeats step 1 for k = 4, without using this knowledge. The
smallest entries of M remain 12, 28, 40 after this round for k = 4.

e 3e − 1 q p π

1 2 2
2 8
3 26 13 3ζ − 1
4 80 5
5 242 11
6 728 7 −3ζ − 1
7 2186 1093 36ζ + 29
8 6560 41
9 19682 757 27ζ − 1

10 59048 61 9ζ + 5
11 177146 23, 3851
12 531440 73 9ζ + 8
13 1594322 797161 351ζ − 664
14 4782968 547 −27ζ − 13
15 14348906 4561 −75ζ − 19

...
...

...
...

...
24 282429536480 6481 81ζ + 80

When looking at k = 5, no divisors of 12 yield useful primes, and the set M will
contain 24, 28, 36, 40 as smallest elements after this. From then on we find for every
k with 6 ≤ k ≤ 24 a prime element π for which the order e of 3 mod π divides 24
that furnishes a non-cubic residue. Hence, when we get to k = 24, we finally arrive
at the situation where k is contained in M , and we are essentially finished. The only
remaining task, when we want to produce the test explicitly, is to recover all elements
and the residue classes for which they work; we now know where to look and just
consider the prime divisors of 324 − 1 again (or we could have kept track somehow
along the line).

The cover we find is summarized as follows.

S−

14 = {(3, {0, 1}, 3ζ−1), (4, 2, 5), (12, {8, 11}, 9ζ+8), (1, 8, 41), (24, {5, 11}, 81ζ+80)}

This means that 3ζ − 1 works for 0, 1 mod 3, and 5 works for 2 mod 4, etc.

6 Computational results

In this Section we list some of the results and curiosities found while computing covers
for all h up to 105 using Magma, cf. [5]. We used factors of 3e − 1 for e up to 340.

Example 6.1 The first example concerns a cover S+
2 for the smallest case h = 2.
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Since
(

2 · 3k + 1

3ζ3 − 1

)

3

=

{

ζ2
3 if k ≡ 0 mod 3,

ζ3 if k ≡ 1, 2 mod 3,

the cover can be summarized by

S+
2 = {(3, {0, 1, 2}, 3ζ3 − 1)},

to emphasize that a single element can be used for all k. We say that a single-element
cover exists when this happens.

Example 6.2 In this example we give a finite cover S+
98: we contend that the fol-

lowing set of tuples forms a finite cover for h = 98. Here we use the same convention
as in the previous example to denote that an element can be used for several residue
classes.

S+
98 = {(3, 1, 3ζ3 − 1), (4, 1, 5), (12, {0, 3, 8, 11}, 9ζ3 + 8), (24, {2, 6, 14, 18}, 81ζ3 + 80)}

This is a four-element cover. It is easy to see that all residue classes modulo 24 are
indeed covered by these cases, and it is also easily verified that the cubic symbols
involved are not 1. Note that the element 5 works for k ≡ 1 mod 4 since 98 · 3k + 1 is
divisible by 5 in this case.

The first table below lists the values of e used for the 33334 cases for h even and
not divisible by 3 below 105; the first line does so for h ·3k +1, the second for h ·3k−1.
The entry 6594 in the + line in the column with m = 6 means, for example, that for
6594 values of h less than 105 we found a cover using prime divisors of 36 − 1. These
divisors are 7 and 13, and it means that −3ζ3 − 1 and 3ζ3 − 1 provided a cover in
these cases.

The first column in the table (with m = 0) is used to indicate the exceptional
cases when no finite cover exists: this happens for h = 2, 27± 1, 729± 1, 19683± 1 in
h · 3k − 1 and for h = 26, 728, 19682 in h · 3k + 1 (compare Proposition 5.3).

Note that a table like this is very sensitive to the order in which one looks for
covers. Very often several (small) covers exist and the one found first depends on the
order in which covers already found for other h are searched for re-use, for example.

m 0 3 6 7 9 10 12 13 14 15 16 18 ≥ 19

+ 3 15385 6594 245 133 53 1634 6 284 52 0 6630 2315
− 7 15385 6595 214 144 47 1546 6 242 46 1 7008 2093

For h · 3k − 1 we used m exceeding 100 only six times, the largest being m = 176
for h = 26110 and m = 318 for h = 15124. For h · 3k + 1 it happened five times that
m exceeded 100; the largest cases occurred for h = 17822 (m = 162) and h = 40346
(m = 246).

The second table lists the sizes of the covers generated.
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# 0 1 2 3 4 5

+ 3 15649 15847 1766 65 4
− 7 15612 16107 1540 61 7

We did not adapt our algorithm to look systematically for small covers first, so
the table does not imply that single-element covers will only exist in roughly half the
cases. Since this question was raised before by Williams we look into it a little more
closely.

Once an element α ∈ Z[ζ3] provides a single-element cover, it will do so for certain
residue classes of h modulo Nmα. Very few elements however, do provide single
element covers.

Examples 6.3 The prime element 3ζ3 − 1 lying over 13 provides a single-element
cover of S+

h for half the non-zero residue classes of h modulo 13 (as does its conjugate
−3ζ3−4), namely when h ≡ 1, 2, 3, 5, 6, 9 mod 13; these fill two cosets of the subgroup
generated by 3 in (Z/13Z)∗. Similarly, for a single coset of h (consisting of 9 elements)
modulo 757 the element 27ζ3 − 1 gives a single-element cover, and 11 cosets of size
7 give 77 residue classes modulo 1093 covered by the single element 36ζ3 + 29 or its
conjugate. A single coset of size 15 of residue classes for h modulo 4561 is covered
by −75ζ3 − 19. There are no other cases of elements of norm less than 10000 that
provide single-element covers. This clearly gives a lower bound for the fraction of h
for which a single element cover exists.

As there are exactly 15385 integers h below 105 in the residue classes 1, 2, 3, 5, 6,
9 mod 13, the single element 3ζ3 − 1 is responsible the first entry in the first table, as
well as the majority of the 15649 single-element covers in the + case.

In 245 more cases we used the single-element cover 36ζ3+29 in 6 cases the element
351ζ − 664 of norm 797161 (e = 13) and in 13 cases the element −75ζ − 19 of norm
4561.

The corresponding numbers for − are 214, 6, 6, and in one case we used the
element 168ζ − 505 of norm 86716 (a divisor of 321 − 1).

Example 6.4 Our standard algorithm not always finds these single-element covers
(first). For example, when h = 62, our algorithm produces the two-element cover

S+
62 = {(6, {0, 1, 3, 4, 5},−3ζ3 − 1), (3, 2, 3ζ3 − 1)}

whereas the single-element cover

S+
62 = {(7, {0, . . . , 6}, 36ζ3 + 29)}

also works. In this case, Corollary 4.4 reads as follows: for k ≥ 4

N = 62 · 3k + 1 is prime ⇐⇒ wk−1 ≡ ±1 mod N,

where wj = wj−1(w
2
j−1 − 3) and w0 equals

18027359792342957730200164658097029888766633833904464442302563479856560386246905242864266173802

15747986014915371831233697482831018842401392203543213727554475497385953425233181116949288198157
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Example 6.5 Another interesting example is h = 4. Our algorithm finds a two-
element cover

S+
4 = {(6, {0, 2, 3, 5},−3ζ3 − 1), (3, {1}, 3ζ3 − 1)}.

However, when k ≡ 1 mod 3 then 4 · 3k + 1 is divisible by 13 and hence only prime
for k = 1. But that means that there remain only 4 interesting residue classes for k
modulo 6 to be tested. In fact, for k ≡ 5 mod 6 we always get divisibility by 7, and
only three cases remain. Thus:

4 · 3k + 1 is prime ⇐⇒ k = 1, or k ≡ 0, 2, 3 mod 6 and wk−1 ≡ ±1 mod N,

where wj = wj−1(w
2
j−1 − 3) and w0 = 71

49 .

It is an easy consequence of Lemma 3.11 that if a prime π gives a single-element cover
for h · 3k + 1 when h ≡ r mod m, then π also provides a single-element cover for
h · 3k − 1 when h ≡ −r mod m. In particular, −1 + ζ3 forms a single-element cover
for S−

h when when h ≡ 4, 7, 8, 10, 11, 12 mod 13.
We constructed finite covers S+

h and S−

h for all h ≤ 105 (except for the cases
27m ± 1 mentioned in 5.3 of course). We also executed the explicit primality tests
in these cases to find all primes with k ≤ 1000. Some statistics will appear on my
web page; here I mention just another curiosity. The smallest prime in the family
H−

302 occurs at k = 2091, giving the 1001 digit prime 302 · 32091 − 1. This made us
wonder about the existence of analogues to the numbers that have the names of Riesel,
Sierpinski and Selfridge attached to them (see for example [1], or Problem B21 in [6]
and the references therein). These are numbers h · 2k ± 1 that are composite for all
k ≥ 1, and for which there exists a finite cover of prime divisors. By slightly adapting
our algorithm we could simply search for covers consisting solely of elements giving
cubic symbol equal to zero. We found no examples for h ≤ 107, using all primes
appearing in the factorization of 3e − 1 for e ≤ 300. A similar search among h · 2k ± 1
quickly generates the known examples below 106, h = 78557, 271129, 271577, 322523,
327739, 482719, 575041, 603713, for h·2k+1 and h = 509203, 762701, 777149, 790841,
992077, for h · 2k − 1.
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