
Complexity of Periodic Sequences

Wieb Bosma1

Radboud University Nijmegen, P.O. Box 9010,
6500 GL Nijmegen, the Netherlands, email: w.bosma@math.ru.nl

Abstract. Periodic sequences form the easiest sub-class of k-automatic
sequences. Two characterizations of k-automatic sequences lead to two
different complexity measures: the sizes of the minimal automaton with
output generating the sequence on input either the k-representations of
numbers or their reverses. In this note we analyze this exactly.

1 Introduction

By definition, an infinite k-automatic sequence a = (an)∞n=0 = a0a1a2a3 · · · is the
output of a deterministic finite automaton with output (DFAO) upon feeding
the index n as input for an. In [2] two obvious complexity measure for such
sequences are compared. The first, denoted ‖a‖k, is simply the size (that is, the
number of states) of the smallest DFAO that produces a; the second, ‖a‖Rk (the
reversed size) is the size of the smallest DFAO that produces a when the input
for n is the reverse of the k-ary representation of n. In general the two measures
may differ, even exponentially, in size. In this note we attempt to analyze the
exact values of both complexity measures for periodic sequences a. It turns out
that in this case ‖a‖k = O(n) and ‖a‖Rk is O(n2); we will be more precise in the
statement of the main theorems.

The main tool for the analysis is the basic result that ‖a‖Rk is essentially equal
to the size of the k-kernel Kk(a); this kernel may be defined to be the smallest
set of infinite sequences containing a as well as every pj(b) for any b ∈ Kk(a)
and any j with 0 ≤ j < k, where pj(b) = (bj+n)∞n=0 = bjbj+nbj+2nbj+3n · · · . By
[1], Theorem 6.6.2, a is k-automatic if and only if Kk(a) is finite. For periodic
sequences ‖a‖Rk = |Kk(a)|, see Theorem 4 in [2].

In this note we will mainly be concerned with the case of binary sequences
and with k = 2; most result easily generalize (see also the Remarks).

2 Basic definitions

For any k ≥ 2 and Σk = {0, 1, . . . , k − 1} every natural number n has a unique
representation (n)k ∈ Σ∗k , where (0)k = ε and

(n)k = a0a1 · · · ar ⇐⇒ n = a0k
r + a1k

r−1 + · · ·+ ar−1k + ar ∧ a0 > 0

for n > 0. Conversely, every u ∈ Σ∗k represents a number [u]k:

[a0a1 · · · ar]k = a0k
r + a1k

r−1 + · · ·+ ar−1k + ar.



For anyΣ and any string u ∈ Σ∗ the reverse uR of u is defined by (u1u2 · · ·un)R =
unun−1 · · ·u1.

The set of infinite sequences a = a0a1a2a3 · · · over a finite alphabet Γ is
denoted by ΓN.

A deterministic finite automaton M with output (DFAO) is a tuple M =
(Q,Σ, δ, q0, Γ, τ), of a finite set of states Q with q0 ∈ Q the initial state, a finite
input alphabet Σ and finite output alphabet Γ , a transition function δ : Q×Σ →
Q, and output function τ : Q→ Γ . We mainly focus on the case Σ = Γ = Σ2.

The transition function δ extends to δ : Q × Σ∗ → Q, and a DFAO thus
defines a function fM : Σ∗ → Γ defined by fM (u) = τ(δ(q0, u)).

An infinite sequence a ∈ ΓN is called k-automatic if a k-DFAO exists such
that a[w]k = τ(δ(q0, w) for all w ∈ Σ∗k : the automaton produces an upon reading
the k-ary representation of n. According to Theorem 5.2.3 from [1] a this is
equivalent to the existence of a DFAO that produces an upon reading the reverse
of the k-ary representation of n. As a matter of fact the latter automaton can
be constructed directly from the k-kernel Kk(a): its states Q correspond to
the elements of Kk(a) (with initial state a), and with input alphabet Σk the
transition maps δ : Kk(a) × Σk → Q are given by δ(b, i) = pi(b) for any b ∈
Kk(a), while the output function τ : Q → Γ is τ(b) = b0. Here pi was defined
in the previous section as the function that selects the subsequence with indices
i mod k from a given sequence.

3 Periodic sequences

We intend to analyze the complexity of periodic sequences. In this section m
will be a positive integer. A sequence a will be called m-periodic if ai+m = ai
for every natural number i; the set of all m-periodic sequences is denoted Pm.
Note that the period of a (by definition the least positive integer p for which a
is p-periodic) will be a divisor of m, which may be, but is not necessarily, the
same as m. For an m-periodic a we can write a = (a0a1 · · · am−1)ω.

By (Z/mZ)∗ we indicate the multiplicative group of integers modulo m,
and by ord(a,m) we denote the multiplicative order of a mod m, the smallest
positive integer k for which ak ≡ 1 mod m, for any a coprime to m. Also, φ will
be the Euler-phi function on the positive integers, that is, φ(m) = |(Z/mZ)∗| is
the order of the multiplicative group (and the number of integers less than m
coprime to m).

The main result on the complexity is this.

Theorem 1. Let m be the period of periodic sequence a, and write m = 2r · s,
with s odd. Then r + s ≤ ‖a‖2 ≤ m.

Corollary 2 For any periodic sequence a of odd period m holds ‖a‖2 = m.

Conjecture 3 For any m = 2rs (with s odd) and any integer n such that
r + s ≤ n ≤ m there exists a periodic sequence a with ‖a‖2 = n.



Proof. (Sketch) We first prove the upper bound. We construct a 2-DFAO M that
will output the given m-periodic sequence a. The states of M will correspond to
the residue classes modulo m, and the initial state corresponds to 0 mod m. The
transition maps will be defined by δ(x, j) = k · x+ j mod m, for any x ∈ Z/mZ
and 0 ≤ j < 2. The output function is given by τ(x) = ax mod m, which is
well-defined as a ∈ ΓN is m-periodic.

This automaton does what it should do, since reading a symbol j corresponds
in the 2-ary representation to replacing the index n by k · n+ j. So this proves
that ‖a‖k ≤ m.

For the lower bound we first prove the result (stated separately in the Corol-
lary) for the odd case r = 0, and then show that the sequence with period 10m−1

has complexity r+ s, and then show that any other sequence has complexity at
least as large. ut

Remarks 4 There is compelling numerical evidence (for small r, s) that indeed
every value in the range from r+ s to m is attained by ‖a‖2 for many sequences
a. It is usually not difficult to exhibit an example a with given value for ‖a‖2 in
this range. But we do not have a general proof for this statement.

4 The k-kernel

The purpose of this section is to establish the exact size of the kernel (and hence
the ‘reversed complexity’) of periodic sequences. We will focus on the case where
k = 2 (binary representation of natural numbers) and binary sequences (so the
output alphabet is also Σ2 = {0, 1}).

In this case we denote the operations p0 (take the subsequence of even index)
and p1 (those of odd index) by even and odd. The main proofs of this section
are given by looking at the action of these two operations on the set Pm of m-
periodic sequences. First note the following properties of odd and even in their
action on Pm:

(1) under composition, odd and even form a non-commutative semigroup S =
〈odd, even〉, with the empty product as 1;

(2) if m is odd, then oddk = 1 = evenk for k = ord(2,m), and this is the smallest
positive integer with that property;

(3) hence, for odd m again, oddk−1 = odd−1 and evenk−1 = even−1, and S =
〈odd, even〉 is a finite group;

(4) the element m2 = even−1 in this group acts in on a ∈ Pm by aj 7→ a2j with
the index taken modulo m, so

m2((a0a1a2 · · · am−1)ω) = (a0am+1
2
a1am+3

2
a2 · · · am−1

2
)ω.

If p1, p2, . . . , pw, with 0 ≤ w ≤ m and 0 ≤ p1 < p2 < · · · < pw < m are the
positions in the period of a where a 1 occurs, then m2(a) is m-periodic with
1 exactly at the positions 2p1, 2p2, . . . , 2pw mod m.



(5) the shift operator tail, acting by tail(a0a1a2 · · · ) = a1a2 · · · is also in this
group (for m odd): tail = even−1 ◦ odd ∈ 〈odd, even〉, and it satifies the
additional properties:

(6) 〈odd, even〉 = S = 〈tail,m2〉;
(7) tail2 ◦m2 = m2 ◦ tail.

Theorem 5. Let a be an m-periodic sequence for m odd; then |K2(a)| is at most
ord(2,m) ·m, which is a divisor of φ(m) ·m. In particular

‖a‖R2 = |K2(a)| ≤ (m− 1) ·m.

Proof. By the above properties, for m odd, the semigroup S is a group, gener-
ated by m2 and tail as well as by odd and even. Clearly, the order of m2 equals
ord(2,m), by Properties 4 and 2, and the order of tail and tail2 equals m. Ele-
ments of the group can now be written as mx

2 ◦ tail
y, with 0 ≤ x < ord(2,m)

and 0 ≤ y < m, while it follows from Property 4 that mx
2 /∈ 〈tail〉, unless x = 0.

Hence the order of the group equals ord(2,m) ·m.
For any element a ∈ Pm it will be clear that the size of the orbit aS is

bounded by |S|, Since K2(a) is by definition equal to the orbit aS , we obtain the
inequality |K2(a)| ≤ ord(2,m) ·m. To obtain the final result, note that ord(2,m)
is the order of the element 2 in the group (Z/mZ)∗, hence divides the group
order φ(m), which is at most m− 1. ut

The following theorem implies that for every odd m > 7 the upper bound
ord(2,m) ·m on the size of the kernel is attained for some m-periodic sequence.

Theorem 6. Let m ≥ 9 be odd, and let c be the periodic sequence, of period
length m, and period 10110m−4, so c = (10110m−4)ω. Then the kernel K2(c) of
c consists of ord(2,m) ·m elements.

Proof. Let c = (10110m−4)ω for some odd m ≥ 9. We use the presentation
S = 〈m2, tail〉 for the group S (Property 6 above) and keep track of the positions
of the 1s in the sequence c under the action of elements of S. We will show that
the orbit cS contains ord(2,m) ·m different images, whence the theorem follows
from the previous proposition.

In the period of c itself, there are only 1s in positions with index in {0, 2, 3}.
Taking all positions modulo m, it is clear that for 0 ≤ j < m the periodic
sequences tailj(c) have 1s precisely in the positions {j, j + 2, j + 3}. And mi

2(c)
has 1s in positions {0, 2i+1, 3 · 2i}, by Property 4. It is then also obvious that
tailj ◦mi

2(c) has 1s exactly in the positions {j, 2i+1 + j, 3 · 2i + j}.
Suppose that the positions of the 1s for tailj ◦mi

2(c) and taill ◦mk
2(c) coincide,

that is, the sets {j, 2i+1 + j, 3 · 2i + j} and {l, 2k+1 + l, 3 · 2k + l} are the same.
Since these sets of positions (all taken modulo m) may be permutations of each
other, we consider six cases:

(i) j ≡ l, 2i+1 + j ≡ 2k+1 + l, and 3 · 2i + j ≡ 3 · 2k + l;
from j ≡ l it follows that i ≡ k mod ord(2,m).



(ii) j ≡ l, 2i+1 + j ≡ 3 · 2k + l, and 3 · 2i + j ≡ 2k+1 + l;
again j ≡ l and we find 3 · 2i ≡ 2k+1 and 3 · 2k ≡ 2i+1. It follows that
3 · 2i+1 ≡ 9 · 2k ≡ 2k+2 and so 5 · 2k ≡ 0 mod m, which contradicts m > 7
odd.

(iii) j ≡ 2k+1 + l, 2i+1 + j ≡ l, and 3 · 2i + j ≡ 3 · 2k + l; the first two imply that
2i + 2k ≡ 0 mod m, and substituting this and the first in the third equation
gives −3 · 2k + 2k+1 + l ≡ 3 · 2k + l, so 4 · 2k ≡ 0 mod m, which is impossible
for odd m > 1.

(iv) j ≡ 2k+1+ l, 2i+1+j ≡ 3 ·2k + l, and 3 ·2i+j ≡ l; in this case 2i+1+2k+1 ≡ 0
and 3 · 2i + 2k+1 ≡ 3 · 2k imply that 4 · 2i+1 ≡ 0 mod m, which is impossible.

(v) j ≡ 3 · 2k + l, 2i+1 + j ≡ l, and 3 · 2i + j ≡ 2k+1 + l; now the first and second
yield 2i+1 + 3 · 2k ≡ 0, while second and third give 3 · 2i + 3 · 2k ≡ 2k+1; from
this we find 7 · 2k ≡ 0 mod m, which contradicts m > 7 odd.

(vi) j ≡ 3·2k+l, 2i+1+j ≡ 2k+1+l, and 3·2i+j ≡ l; first and third equation imply
3 · 2k + 3 · 2i ≡ 0, while second and third combine to 2k+1 + 2i ≡ 0 mod m.
Together this can only be if 3 · 2k ≡ 0 mod m, contradicting m > 7 being
odd.

We conclude that for odd m > 7 the positions can only coincide in the first case,
and then only when j ≡ l mod m and i ≡ k mod ord(2,m), and thus there are
ord(2,m) ·m different images in cS . ut

Example 7 Here, for example is a scheme for the 54 images in the case m = 9:

{0, 2, 3} {1, 3, 4} {2, 4, 5} {3, 5, 6} {4, 6, 7} {5, 7, 8} {0, 6, 8} {0, 1, 7} {1, 2, 8}
{0, 4, 6} {1, 5, 7} {2, 6, 8} {0, 3, 7} {1, 4, 8} {0, 2, 5} {1, 3, 6} {2, 4, 7} {3, 5, 8}
{0, 3, 8} {0, 1, 4} {1, 2, 5} {2, 3, 6} {3, 4, 7} {4, 5, 8} {0, 5, 6} {1, 6, 7} {2, 7, 8}
{0, 6, 7} {1, 7, 8} {0, 2, 8} {0, 1, 3} {1, 2, 4} {2, 3, 5} {3, 4, 6} {4, 5, 8} {0, 5, 6}
{0, 3, 5} {1, 4, 6} {2, 5, 7} {3, 6, 8} {0, 4, 7} {1, 5, 8} {0, 2, 6} ,{1, 3, 7} {2, 4, 8}
{0, 1, 6} {1, 2, 7} {2, 3, 8} {0, 3, 4} {1, 4, 5} {2, 5, 6} {3, 6, 7} {4, 7, 8} {0, 5, 8}

The positions of 1s in the period are given: the top left entry gives the initial
sequence c = (101100000)ω and to its right all of its shifts. Below it we find
m2(c) = (100010100)ω, below that m2

2(c) = (100100001)ω etc. Note that it is
always the case that m2(a) for a sequence a in row i can be found in row i+ 1,
due to Property 7.

Remarks 8 The reason the cases m = 3 and m = 5 need to be excluded
from Theorem 6 is that there are no periodic sequences in these two cases with
6 = ord(2, 3) · 3, respectively 20 = ord(2, 5) · 5 different images. However, for
m = 7 there are such sequences, but the uniform sequence c given does not work
in that case. The sequence (1100000)ω, for example, does have ord(2, 7) · 7 = 21
distinct images under the action of the group.

The upper bound (m − 1)m in Theorem 6 can only be attained for prime
values of m. Conjecturally, this happens for infinitely many primes, namely for
the primes m for which 2 is a primitive root modulo m. The Artin conjecture
states that this occurs infinitely often (and this is proven under assumption of
a generalized Riemann hypothesis).

A similar proof works for period (11010m−4)ω and for (111010m−5)ω and
several other cases.



Note also that for a larger output alphabet Σk (with k > 2) Theorem 5 also
holds, and since the sequence c can also be represented as one defined over Σk,
Theorem 6 also holds. In fact, it is easy in the case of larger output alphabet
to show that the upper bound given will also be attained for certain sequences
that are 3-, 5- or 7-periodic.

Theorem 9. Let m = 2rs with s > 7 odd, and let a be an m-periodic binary
sequence; then |K2(a)| ≤ ord(2, s) ·m+ 2r − 1.

Proof. We will assume that r ≥ 1, as Theorem 6 dealt with the case r = 0.
Note that the semigroup S is now not a group, and the operations odd and
even will not be invertible. Also, for a ∈ Pm we find that odd(a), even(a) ∈ Pm

2
,

so the images will be m
2 -periodic. But this means that we can prove the result

recursively! ut

Remarks 10 It is no longer generally true that the upper bound in Theorem 9
can always be attained: for large r there may not be sufficiently many distinct
elements in Ps.

A general strategy to create an element of P2rs with maximal kernel size, is
to start with 2r ‘different’ elements of Ps and to use the zip operation repeatedly
to create a single element of P2rs. The elements of Ps have to be sufficiently
different to prevent any collisions under the action of S.

Example 11 Let a, b, c, d be the four 9-periodic binary sequences

a = (110100000)ω, b = (111010000)ω, c = (111101000)ω, d = (111110100)ω

from P9; each of these have the maximum size 54 for the orbit under S, much
like that in Example 7. Moreover, the weights of the periods of these sequences,
as of all those in their orbits, are 3, 4, 5, 6, respectively, which implies that all
four orbits are disjoint. As a consequence, the orbits of the sequences zip(a, b)
and zip(c, d) in P18 contain the maximum of 108 elements, and the orbit of
z = zip(zip(a, b), zip(c, d)) contains 218 different elements, namely the previous
orbits as well as zip(a, b) and zip(c, d) themselves. Together with z itself this
gives the maximum number of 219 elements in the kernel of z.

Here is a preliminary version of the accompanying result for a lower bound.

Conjecture 12 Let m = 2rs with s odd, and let a be an m-periodic binary
sequence; then r + s+ e ≤ |K2(a)|, where e = 1 if s = 1, and e = 0 otherwise.

Remarks 13 In this case only a few values in the range will be attained by
|K2(a)|.

It is not difficult to generalize Theorem 1, and Theorem 5 to the case of
k-automatic sequences, k ≥ 2, when m is coprime to k. In that case S is a group
again, which is generated by tail and mk, and ord(2,m) should be replaced by
ord(k,m). Also Theorem 9 generalizes, with m = kr · s, for s coprime to k, and
upper bound ord(k, s) ·m+ kr − 1.
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