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Mais ne trouvez vous pas que c’est presque
faire trop d’honneur aux nombres premiers que d’y

répandre tant de richesses, et ne doit-on aucun
égard au goût raffiné de notre siècle?

Daniel Bernoulli, Letter to L. Euler, 18 March 1778.
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PREFACE.

This thesis consists of seven chapters, and five appendices.

In the first chapter the history of the primality testing problem is outlined. The second

chapter comprises a mathematical description of the primality test that is the main subject

of this thesis. In particular, it is proved in this chapter that the conditions that an integer

n must satisfy in order to pass the test are sufficient to prove the primality of n. In the

third chapter some problems (and their solutions) are discussed that regard the optimal

choice of the parameters in the test. A detailed description of the primality test is given in

the fourth chapter. In the fifth chapter the complexity bounds of the algorithm are given

and some heuristics necessary to obtain these bounds are presented. In the sixth chapter

an overview is given of the performance of the primality test, and the seventh chapter is

intended to be a guideline for those people interested in installing and using the computer

program that accompanies this thesis. Finally, the appendices consist of some tables that

are part of the computer program, a bibliography, a list of symbols, an index, and a Dutch

summary.

The primality testing algorithm, as described in Chapter IV, is a modified version of the so-

called Jacobi sum test (cf. [29], [30]). The main theoretical improvements are the following.

First of all, it turned out to be possible, and very fruitful, to combine the Jacobi sum test

with Lucas-Lehmer type tests (which are classically used for primes of a special form), by

putting everything in the same mathematical framework; see Sections II.5 and II.7. The

second improvement makes the new algorithm faster: a Jacobi sum test, which consists of

the verification of an identity (involving Jacobi sums), will in general be done in a smaller

ring. The construction of the rings necessary for this is explained in Section II.4. Thirdly,

it has been possible to reduce the amount of work involved, by doing several of such Jacobi

sum tests simultaneously; this is explained in Section II.8. To find good combinations of

tests, and to determine good values for all parameters in the improved primality test, an

intricate optimization stage had to be built into the algorithm (see Chapter III).

The effect of these changes on the performance of the algorithm (both in a theoretical

and a practical sense), is explained in Chapters V and VI. An important conclusion is,

that in practice the improved algorithm performs better than any other general purpose

primality proving algorithm that is currently known, in two respects: it is faster, and it is

capable of coping with larger primes.
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I. History 1. Terminology

1. TERMINOLOGY.

The fundamental theorem of arithmetic states that every positive integer n has a unique

prime factor decomposition:

n =
∏

p prime

pk(p).

This thesis is concerned with a problem that arises when one tries to find prime factor

decompositions. In finding such factorizations, three steps can be recognized; these steps

are applied recursively if necessary. Loosely speaking they are the following.

(i) Find out whether n is prime or composite.

(ii) If n is prime, prove its primality.

(iii) If n is composite, find n1 and n2 in Z≥2 such that n = n1n2.

The second step, called primality testing, covers the field we will concern ourselves with.

In this first section, we will present motivation for interest in the problem, and we will

introduce the basic terminology. The rest of this chapter describes some of the historic

attempts to conquer the problem, in particular in relation to the algorithm presented in

the next chapters.

A primality testing algorithm, or primality test for short, is an algorithm that, on input a

prime number n, outputs a proof for the primality of n; if the input n is a composite number

however, the algorithm need not terminate, but if it does, a proof for the compositeness

of n is supplied. Thus, as was suggested in the formulation of step (ii) above, a primality

test is a primality prover.

This raises several questions; first of all: what is a primality proof? This is closely

related to the question: what is an algorithm? We do not want to go into (interesting but

distracting) details here, but content ourselves with the following. An algorithm consists,

for our purposes, of a set of instructions for constructing certain objects and verifying

certain identities between these; in this way, a primality test of n should be thought of as a

series of operations, depending on n, showing that certain conditions ensuring the primality

of n are satisfied. The correctness of the algorithm and the sufficiency of the conditions

form the contents of a theorem, which requires a proof; the algorithm is supposed to be

merely a constructive way of checking the conditions.

Of course this ignores practical difficulties, but the point we are making, is that a

primality test is ultimately a theorem, and that proof of correctness lies in mathematical
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1. Terminology I. History

rigour. Still, one would like to be able to verify primality proofs, preferably without

carrying out all the (possibly cumbersome) steps of the algorithm again. Later on such

easily verifiable certificates for primality will be discussed. In general, algorithms do not

provide short certificates; for example, a trial division certificate could consist of all (non-

zero) residues n mod p, for the primes p up to
√
n. Checking these residues comes down

to doing trial division again; assuming that these are correct, primality is proven if all

residues are non-zero. (The trial division algorithm will be discussed shortly.)

A question that is of greater relevance to our subject is, why steps (ii) and (iii) are

put into our description above at all. For, in step (i) we have already found out whether n

was prime or not – does this mean that we “know” whether n is prime without a proof, or

that we “know” that n is composite without having a non-trivial factor? Indeed it does,

and this comes as a surprise on seeing it for the first time. The reason is, that there exist

very fast compositeness tests (we will describe them later on), that on input an integer n,

output one of two possible answers. Either it tells that n is composite, and it furnishes

a proof for this as well, or it declares n prime. In the latter case however, it does not

furnish a proof, but a probability that the answer is in fact wrong; thus it merely tells that

n is probably prime. The probability with which a composite number may be declared

probably prime by a compositeness test can be made very small, at the cost of performing

the test repeatedly; primes will never be declared composite. In practice this means that

one knows whether n is prime or composite, but in the prime case a formal proof is lacking,

and in the composite case no factors are known!

The aforementioned compositeness tests have led some authors to the use of confusing

terminology; regarding compositeness tests as algorithms which output either “prime”

or “composite”, they call them probabilistic primality tests, because the output has a

probability of being wrong. Our view will be that compositeness tests are compositeness

provers, and cannot serve as a primality test in our sense.

The name probabilistic primality test will be reserved for primality testing algorithms

that have some “random” aspect built in, in which certain constructions are made depend-

ing on random choices. Probabilistic algorithms in our sense may rely on randomness for

obtaining their output, but the output itself must be correct. This notion is thus opposed

to that of so-called deterministic algorithms, in which all steps are determined once the

input is known. In either case, if a primality test declares n prime, it is proven to be so.

Practical algorithms are usually probabilistic, but sometimes an effort is made to give a
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I. History 1. Terminology

deterministic version.

We want to mention the so-called conditional primality tests here too, since we will

also encounter those in this chapter. A conditional primality test provides primality proofs

of which the correctness is conditional upon some unproved (but likely) hypothesis. The

only examples we know of are those in which conditions are checked that are sufficient

for primality if certain generalized Riemann hypotheses are correct. Often the complexity

bounds are conditional in the above sense too.

In a way, one could say that primality proving deals with a problem that does not exist.

From a practical point of view, compositeness tests provide the answer: who cares about

the negligible possibility of erring? And from a theoretical point of view the question is

resolved before it arises, since primality can be proved by using the definition of prime

number.

In fact we try to find a practical solution to a theoretical question: find an efficient

algorithm for primality proving. This leads us to considerations of computational com-

plexity; complexity theory provides the tools to distinguish between efficient and inefficient

algorithms. But even on this level it is not clear that the primality proving problem is

of interest. As we will point out further on in this chapter, from a strictly theoretical

point of view the primality proving problem has been solved: there exists an algorithm for

distinguishing primes from composite numbers that is efficient in the theoretical sense of

the word. However, so far it has not been (and it is doubtful that it ever will be) useful

for proving the primality of one single integer. This type of algorithm gives the theoretical

solution in an unpractical way. Even more subtly, there are algorithms that can be used

in practice, but that can only be proven to yield the correct answer under the assump-

tion that certain mathematical hypotheses hold – hypotheses that many number theorists

are willing to accept, let alone the customer in the prime shop. Such algorithms form a

practical solution in a theoretically unsatisfactory way.

The algorithm we will describe in later chapters satisfies both the theoretical need

for algorithms that give a correct answer, and the practical need to find that answer in a

reasonable amount of time. This also suggests that we will not be satisfied with a merely

theoretical algorithm: we want to apply the ideas in practice, which means that algorithms

should be implemented on electronic computers.

4



2. Complexity I. History

2. COMPLEXITY.

With the theory of computational complexity one attempts to measure how hard compu-

tational problems are. In this section we give some basic complexity results concerning

primality proving and factorization.

A natural measure for the difficulty of problems seems to be the number of arithmetic

operations that are needed to solve the problem; here arithmetic operations are additions,

subtractions, multiplications and divisions (with remainder) of integers. The following two

theorems apply this measure to both of our problems and serve to show the shortcomings.

From now on, n will denote an integer greater than 1.

(2.1) Theorem. If n is composite, this can be proved by one integer multiplication.

The proof will be clear: if n is composite, there exist n1, n2 ∈ Z≥2 such that n = n1n2.

Carrying out this multiplication (and comparison) proves compositeness.

This proof shows the first flaw of complexity measures: the existence of a short proof

for compositeness is shown, but not the way to find this short proof, that is, how to factor

a number! This is overcome by the following theorem of Shamir [143]. The g(n) = O(f(n))

notation denotes (as usual) an upper bound |g(n)| ≤ Cf(n), with a constant C independent

of n. In complexity matters one often uses the binary number system, and taking the

logarithm with base 2, the size of an integer (the number of binary digits, or bits) is

bounded by logn+ 1, and is thus O(logn).

(2.2) Theorem. If n is composite, a non-trivial factor can be found using O(logn)

arithmetic operations.

The algorithm that finds a factor in O(logn) arithmetic operations, essentially uses the

computation of factorials, and has the same defect for practical purposes as the algorithm

behind the following theorem, dealing with primality proofs.

(2.3) Theorem. If n is prime, this can be proved by at most 87 integer additions,

subtractions and multiplications.

The proof of this uses that the set of primes is Diophantine: there exists a polynomial

f ∈ Z[X1, X2, . . . , Xk] with the property that n is prime if and only if n is positive and there

exist non-negative integers x1, x2, . . . , xk such that n = f(x1, x2, . . . , xk). Several of these

5



I. History 2. Complexity

polynomials, of varying degrees, are known (see [101], [59]). It turns out that evaluating the

polynomial in 26 variables, explicitly given in [59], takes at most 87 arithmetic operations.

Similarly as in (2.1), the proof does not tell how to find the values of the variables

for which the polynomial represents n. But in this case there is another problem, just as

for (2.2), that has to do with our choice of complexity measure. Although the primality

of a prime n can be proved by at most 87 integer operations, and a composite n can be

factored in O(logn) integer operations, the theorems do not tell how large the integers

involved are. It turns out that the size of the variables grows exponentially with n; in fact,

according to Lenstra in [91], the largest variable for (2.3) will exceed

nnnnn

for the polynomial in 26 variables mentioned before. It is clearly not reasonable to consider

multiplication of integers of this size to be as basic as multiplying 2 and 3.

A much better complexity measure is provided by the notion of bit operations. A bit

operation is an arithmetic operation on integers consisting of one bit. Since the size of

n is O(logn), the addition and subtraction can be done in O(logn) bit operations, while

multiplication and division with remainder take at most O((logn)2) bit operations. (We

should mention here that using fast Fourier transforms one can asymptotically achieve an

O((logn)1+ε) bound for multiplication, with arbitrary small ε, see [140], and Chapter V.

This affects all theoretical complexity bounds below.)

Usually an algorithm is called efficient if the number of bit operations is bounded

by a function that is polynomial in the size of the input; these are the polynomial time

algorithms, which in our applications thus require O((logn)k) bit operations, for some

k ∈ Z≥0). The class of problems for which polynomial time solutions exist, is often

indicated by P.

Before we describe more “practical” results, we state analogues of the previous theo-

rems for bit operations.

(2.4) Theorem. If n is composite, this can be proved using O((logn)2) bit operations.

This follows immediately from the proof of (2.1), since the factors of n are bounded by

n. This result shows that “compositeness” is in the complexity class NP of problems that

have a non-deterministic polynomial time solution, i.e., problems for which a suggested

6



2. Complexity I. History

solution for any instance can be verified in polynomial time. Though finding a solution for

such problems need not be possible in polynomial time, at least checking the correctness

of a solution is. Obviously the class P of problems for which a solution can be found in

polynomial time, is contained in NP . One of the major unsolved problems in complexity

theory is whether NP is really larger than P see e.g. [43].

As remarked above, the proof of (2.3) will not lead to polynomial primality proofs.

Pratt however, was the first to show that O((logn)4) proofs do always exist [125]. Thus

“primality” is in NP as well as the complementary property “compositeness”; this is some-

times expressed by saying that “primality” is in NP∩co-NP. In fact this is one of the few

problems known to be in this class, but not known to be in P. We will explain the idea

behind Pratt’s theorem later on in this chapter. Pomerance [121] improved upon this,

using elliptic curves (see Sections 10 and 11), to obtain Theorem (2.5). Again, this result

only concerns the existence of proofs, not ways of finding them.

(2.5) Theorem. If n is prime, this can be proved by O((logn)3) bit operations.

The following theorem shows that, assuming the extended Riemann hypothesis, primes and

composites can be distinguished in polynomial time. The generalized Riemann hypotheses

referred to in (2.6) prescribe the position of the zeroes of the L-series of the characters on
(

Z/nZ
)∗

.

(2.6) Theorem. There is a deterministic algorithm taking O((logn)5) bit operations,

that correctly decides whether n is prime or composite if certain generalized Riemann

hypotheses hold.

Results of this type give rise to the conditional primality tests, and are due to Miller and

Rabin, (see [102], [128], [36]). If n is composite, certain elements of
(

Z/nZ
)∗

are “witness”

to this fact, which means that using one of those elements a polynomial proof for com-

positeness can be made, without exhibiting a factor of n. Assuming the proper Riemann

hypotheses, one proves that a small witness must exist; checking all small possibilities in

polynomial time, either a witness will be found (and the problem of factoring n remains),

or a conditional proof for primality has been obtained.

In a practical variant of this test, one does not really check every small element of
(

Z/nZ
)∗

for being witness, but random choices; it can be proved (see II.1 below) that

for every composite n at least three quarters of all elements are witnesses, and thus after

7



I. History 2. Complexity

several failed attempts to find a witness one may be confident that they do not exist.

Compositeness tests like this underly the division of the task of finding the complete prime

factorization into three steps as in the previous section. The problem of primality proving

remains that of finding a rigorous proof, once it seems that witnesses for compositeness do

not exist.

Theoretically, primality testing is “easy”, not only conditionally, as (2.6) shows, but also

in a probabilistic sense, see (2.8) below. Until very recently however, the best algorithms

for proving the primality of n relied on the factorization of certain auxiliary numbers, viz.

n− 1 or n+ 1. But it is also widely believed that factoring is “hard”, which appears to be

based on the fact that, despite many efforts, an efficient factoring algorithm has not been

found.

The following theorem describes the best known (and proved) bounds for different

types of factoring algorithms. The notation g(x) = o(f(x)) means that (g(x)/f(x)) → 0

for x→ ∞.

(2.7) Theorem.

(i) There is a deterministic algorithm that factors n completely in O(n
1
4+ε) bit opera-

tions.

(ii) There is a deterministic algorithm that factors n completely, and takes O(n
1
5+ε) bit

operations if the generalized Riemann hypothesis is true.

(iii) There is a probabilistic algorithm that factors n completely in an expected number

of L(n)1+o(1) bit operations, where L(n) = e
√

log n log log n.

The algorithm in (2.7)(i) is known as Pollard–Strassen, see [119], [149], and Pomerance’s

paper in [91].

The conditional result of (2.7)(ii) refers to Schoof’s adaptation of Shanks’ class group

algorithm, see Schoof’s paper in [91].

The best probabilistic result mentioned in (2.7)(iii) is due to an analysis by H. W. Len-

stra, Jr., and C. Pomerance (to be published) of an algorithm using various methods, in-

cluding class groups and elliptic curves. We should mention here that a recently developed

method that works extremely well for numbers of the form re±s, where r and s are small,

has a heuristic expected running time of

e(c+o(1)) 3
√

log n(log log n)2 ,

8



2. Complexity I. History

with c ≈ 1.526. This refers to the “number field sieve”, see [82].

For probabilistic algorithms we use expected running time; the precise definition of

the bound in (2.7)(iii) is the following. There exists a function f(n), tending to 0 as n

tends to infinity, such that for every ε > 0 there exists K such that with probability at

least 1 − ε the number of bit operations for factoring n lies in between

1

K
L(n)1+f(n) and KL(n)1+f(n).

For primality proving the following summarizes the best proved theoretical results.

(2.8) Theorem.

(i) There is a deterministic algorithm that, for prime n, leads to a primality proof in

O((logn)C log log log n) bit operations, for some effectively computable constant C.

(ii) If the generalized Riemann hypothesis is true, there is a deterministic algorithm

that, for prime n, leads to a primality proof in O((logn)5) bit operations.

(iii) There is a probabilistic algorithm that, for prime n, leads to a primality proof in

O((logn)k) expected bit operations, for some k ≥ 1.

The algorithm referred to in (i) is the Gauss sum primality test, see Section 9, and variants

like the Jacobi sum test. A probabilistic variant of this led to the first practical general-

purpose primality test, that is, a test that does not rely upon special properties of n (such as

n−1 being easily factorable) to complete the primality proof (see [29] and [30]). The bound

in (2.8)(i) is not polynomial in log n, albeit sub-exponential. Recently one competitor for

the Jacobi sum test has emerged, see Section 10, for which a rigorous running time analysis

has not been given, but which has sparked hope that it may at some time be proven to

be polynomial. A probabilistic variant is the only serious competitor for the Jacobi sum

method in practice as well.

The result in (2.8)(ii) is a consequence of (2.6).

The final result alludes to results by Adleman and Huang, see [3] and also Section 10.

9



I. History 3. Trial division

3. TRIAL DIVISION.

By the very definition of prime number, as an integer having no non-trivial divisors, one

can prove the primality of n by showing that it is not divisible by any r with 1 < r < n.

This is the basic form of the trial division method for primality testing. But we can do

better, based on the following (obvious) theorem.

(3.1) Theorem. If n has no divisor r with 1 < r ≤ √
n then n is prime.

In this explicit form the method is often attributed to Leonardo Pisano (“Fibonacci”),

beginning 13th century. Cataldi is said to have used trial division to prove that the

numbers 213 − 1, 217 − 1 and 219 − 1 are prime ([22] published 1603, see [5]).

Several more methods have been devised to prevent having to trial divide by all r.

Firstly, it suffices to check primes r up to
√
n for divisibility. But to use this, one has to

generate a list of primes up to
√
n first. As a matter of fact, such lists are usually made

applying trial division techniques, see below. If n is large, it will be more work to generate

these primes than it is to do some unnecessary trial divisions. Therefore “wheel” methods

are often used, which generalize the simple idea that it is useless to trial divide by even

numbers larger than 2 (see e.g. [163]). In these methods trial division is applied by all r up

to
√
n for which ri is coprime to the auxiliary number t, where 1 ≤ ri ≤ t and r ≡ ri mod t.

The auxiliary number t will be taken as the product of small primes. Taking for instance

t = 2 · 3 · 5 · 7 = 210, first gcd(n, t) = 1 is checked. Next trial division by the “spokes”

ri smaller than and coprime to t is performed, and then the wheel is turned once, to do

trial division by the integers ri + t. This is repeated until the bound
√
n is reached. Thus

t trial divisions have been replaced by φ(t) of them, where φ denotes Euler’s function. In

this example every 210 trials have been replaced by φ(210) = 48 of them.

No matter how much the method is speeded up however, it remains an exponential

method. Basically, one proves primality by showing that one cannot factor n. For several

reasons though, trial division remains an important tool. We list some of these reasons

below.

(3.2) Prime tables. For generating a list of primes up to a given bound, still the sieve

method of Eratosthenes, sometimes with minor modifications, is generally used. This

elementary sieve method dates back to 200 B.C. approximately. From the list of all positive

10



3. Trial division I. History

integers up to the required bound B, the multiples of the primes are discarded; the primes

appear successively on top of the list. For fast methods, see [126], [148].

(3.3) Restricted divisors. If n is an integer of a special form, the number of trial

divisions can often be reduced dramatically for primality proofs.

For example, in the (näıve) case n = 8191 = 213 − 1 it will take only two trial

divisions to complete a primality proof by the following argument. Since 213 ≡ 1 mod n,

also 213 ≡ 1 mod p for any prime divisor p of n, and therefore (by Fermat’s theorem) 13

divides p − 1. If n were composite, it would thus have an odd prime factor smaller than
√

8191 < 91 and congruent to 1 modulo 13, that is, among the integers 27, 53, 79. Since

27 is composite, the primality proof is finished by calculating the remainder of 8191 upon

division by 53 and 79.

A bit more of a landmark was reached by Euler, who proved in 1772 that n = 231 − 1

is prime, as follows (see [39]). Fermat’s theorem again (much more on that in Section 6),

gives a congruence for any prime divisor p of n modulo 31. On the other hand p will divide

2 · (231−1) = (216)2−2, and any odd divisor of x2−2 is ±1 mod 8. That restricts p to the

residue classes 1 and 63 modulo 248, and Euler completed trial division up to the square

root of n for integers in these classes with negative results.

Later on, we shall see that modern primality proving algorithms also often restrict

the possible divisors of n to a very limited set, for which trial division remains to be done.

(3.4) Trial division bounds. In certain special purpose primality tests that we will

encounter in the next sections, it will sometimes be convenient (or even crucial) to know

that n, or an auxiliary integer depending on n, does not have divisors smaller than a bound

B, even if B is considerably smaller than
√
n.

11



I. History 4. Difference of squares

4. DIFFERENCE OF SQUARES.

The method of factoring n by looking for integers x and y such that

(4.1) n = x2 − y2 = (x+ y)(x− y)

was invented by Fermat. If n = rs is odd and composite, it has a decomposition as the

difference of squares, since one may take

x =
r + s

2
and y =

r − s

2
,

in (4.1). Thus an exhaustive search for squares among

(4.2) x2 − n, for
√
n ≤ x ≤ 1

2
(
n

3
+ 3),

can prove the non-existence of divisors. As a primality test, the difference of squares

method is only practical in combination with methods of limiting the search in (4.2).

The first way of achieving this, is by trial division, as discussed in the previous section.

Gauss proposed another way of limiting the set of possible divisors of n, called

quadratic exclusion. Here one simply uses the observation that a quadratic residue modulo

n must necessarily be a quadratic residue modulo every prime divisor of n. Thus one tries

to generate many (small) quadratic residues a modulo n and excludes primes p from the

list of possible prime divisors of n by finding some a that is a quadratic non-residue modulo

p. Of course the difficulty lies in generating sufficiently many quadratic residues modulo

n. Gauss proposed ways of doing that in [44].

By one, or a combination, of the methods of trial division and quadratic exclusion,

one may arrive at a bound B such that n is known to have no factors below B. That leads

to an upper bound for x in (4.2), replacing 3 by B:

(4.3) x ≤ 1

2
(
n

B
+B).

For numbers n that have a particular form, this may be combined with restricting the

residue classes in which divisors must lie, as done in (3.3).

We demonstrate this by copying a primality proof given by Lehmer in 1929, see [71].

(4.4) Example. Let

n = 11111111111111111111111 =
1023 − 1

9
.

12



4. Difference of squares I. History

First note that if p > 3 is a prime divisor of n, then 1023 ≡ 1 mod p, and hence by Fermat’s

little theorem p ≡ 1 mod 23. As a consequence, every divisor r of n must be 1 mod 23.

Next, Lehmer looked for prime divisors of n− 1, and found the factors 112 and 4093.

He showed that both

m1 ≡ 3
n−1
11 − 1 and m2 ≡ 3

n−1
4093 − 1

are coprime to n, while 3n−1 ≡ 1 mod n. That shows that for every prime divisor p of n

the order of 3 in the group
(

Z/pZ
)∗

is a multiple of both 112 and 4093; thus every prime

divisor, and as a consequence every divisor, is congruent to 1 modulo 112 · 4093. (More

about this method in Section 6.)

Since also every divisor r of n is odd, we arrive at

(4.5) r ≡ 1 mod 2B where B = 112 · 23 · 4093.

Without trial division (or quadratic exclusion) we have at least found the lower bound

2B for factors of n. For the possible difference of squares n = x2 − y2, this leads to the

restrictions

(4.6) 105409255338 <
√
n ≤ x ≤ 1

2
(
n

2B
+ 2B) < 243861122499492.

The lower bound for x is then raised by Lehmer as follows. Applying (4.5) to the

factors r = n, r = x− y and r = x+ y, we find that n ≡ 1 + fB mod B2 for some f that

is determined modulo B, that x ≡ 1 mod B and that y ≡ 0 mod B. But then

x2 ≡ x2 − y2 ≡ n ≡ 1 + fB mod B2,

which together with x ≡ 1 mod B implies that

x ≡ 1 +
fB

2
mod B2.

Explicitly: x ≡ 115222895547343 mod 114 · 232 · 40932.

Finally, this is combined with information modulo 3. Since n ≡ 2 mod 3, we must

have x ≡ 0 mod 3. Combined with the previous congruence, this leads to

x = 115222895547343 + k · 114 · 232 · 40932 where k ≡ 2 mod 3.

But the smallest such x, with k = 2 exceeds the upper bound in (4.6). That proves that

n is not the difference of two squares and therefore n is prime.

The fact that in a paper two years earlier Lehmer claimed [69] that 3n−1 6≡ 1 mod n,

with n as in this example, and that therefore n could not be prime, shows once more that

mistakes are easily made in finding compositeness or primality proofs.
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I. History 5. Quadratic forms

5. QUADRATIC FORMS.

The primality test described in this section arose, mainly by the efforts of Euler, out of

an attempt to generalize the following property, known to Fermat. If p is prime and

p ≡ 1 mod 4, then p is the sum of two squares in a unique way (up to interchanging the

summands).

For a primality criterion a converse to this would be required. Some care is needed

for that as the following examples show. The only representation of the composite number

45 as a sum of squares is 45 = 36 + 9; it suggests that we should require that the sum of

squares is proper, meaning that the summands are coprime. But 125 = 121+4 is the only

proper sum of squares representation of 125, which also has the improper 125 = 100 + 25.

(5.1) Theorem. An integer m > 1 with m ≡ 1 mod 4 is prime if and only if it is the sum

of two squares in a unique way and this sum is proper.

(5.2) Examples. Euler used this primality criterion (even before he had a formal proof

for it), to show for instance that

262657 = 1292 + 4962

uniquely, which shows that 262657 is prime, while

32129 = 952 + 1522

uniquely but improperly, proving that 32129 is composite.

If we say that an integer m is represented by a quadratic form aX2 + bXY + cY 2 when

there exist integers x and y such that m = ax2 + bxy + cy2, then (5.1) is a statement

about the representability by the quadratic form X2 +Y 2. The discriminant of the general

quadratic form is ∆ = b2 − 4ac.

We will say that m is represented by F = aX2 + cY 2 in essentially one way if there

exist integers x and y with m = ax2 + cy2, and every solution in integers is among the

pairs (x, y), (−x, y), (x,−y), (−x,−y); if there exist other solutions, we say that m is

represented by F in essentially more than one way. Generalizing our previous notion, a

representation m = ax2 + cy2 is called proper if x is coprime to cy and y is coprime to ax.

The first step towards a generalization of (5.1) by Euler consisted of the following

lemma; note that again this is the “wrong direction” for primality testing.

14



5. Quadratic forms I. History

(5.3) Lemma. Let F = aX2 + cY 2 be a quadratic form of negative discriminant ∆ =

−4ac. Let m ∈ Z>1 be coprime to ∆. If m is represented by F in essentially more than

one way, then m is composite.

Two centuries ago, this could be proved by looking at identities between products of

quadratic forms; for an account of this (and most of this section) see [159]. Modern proofs

of the statements in this section use the correspondence between quadratic forms and

modules in (orders of) the ring of integers of Q(
√

∆), see [10].

(5.4) Remark. It is worth remarking that if m is represented in essentially more than

one way as in Lemma (5.3), a factor of m is also easily obtained. We prove this in an

entirely elementary way as follows.

Suppose that ax2
1 + cy2

1 = m = ax2
2 + cy2

2, with a, c ∈ Z≥1. Without loss of generality

we assume that x1, x2, y1, y2 are all positive integers. We also assume that gcd(a, c) = 1,

since otherwise a factor is obtained immediately. Finally, we may assume that x1 > x2,

and hence y1 < y2. Note that therefore 0 < x1y2 − x2y1 < m.

We claim that if the two representations of m are essentially different, then either at

least one of them is not proper, or gcd(x1y2 − x2y1,m) is a non-trivial factor of m. In the

former case, a non-trivial factor is given by gcd(ax1, y1) or gcd(ax2, y2).

Suppose that gcd(x1, y1) = gcd(x2, y2) = 1, otherwise we have an improper represen-

tation. The core of the proof is contained in the following identities:

m(x2y2 − x1y1) = (ax2
1 + cy2

1)x2y2 − (ax2
2 + cy2

2)x1y1 =

= a(x2
1x2y2 − x1x

2
2y1) + c((x2y

2
1y2 − x1y1y

2
2) =

= (ax1x2 − cy1y2)(x1y2 − x2y1).

For, suppose first that x2y2 − x1y1 6= 0; we assume x2y2 − x1y1 > 0, the other case is

similar. Now necessarily

0 < ax1x2 − cy1y2 < ax2
1 − cy2

1 < ax2
1 + cy2

1 = m,

and therefore the above identities show that x1y2 − x2y1 has at least one prime factor in

common with m.

Suppose, on the other hand, that x2y2 = x1y1. Let 1 ≤ s = gcd(y1, y2), with y1 = rs

and y2 = qs. Then, since x1 and y1 are coprime, x2 = pr, for some p ≥ 1. But x2y2 = x1y1,

so x1 = pq. Next observe that a(x2
1 − x2

2) = c(y2
2 − y2

1). If gcd(a, s) 6= 1, the above

15



I. History 5. Quadratic forms

representations are not both proper, and we have proved our claim. So assume that

gcd(a, s) = 1; because s2 | y2
2 − y2

1 then also s2 | x2
1 − x2

2 = p2(q2 − r2). But gcd(s, p) = 1,

since x1 and y1 are coprime, and hence s2 | q2 − r2. This implies that in fact s4 | y2
2 − y2

1,

and, as before, s4 | q2 − r2, etcetera. Therefore, s = 1, and, by an analogous argument,

p = 1. In other words, x1 = y2 and x2 = y1. Hence ax2
2 + cy2

2 = ay2
2 + cx2

2, therefore

a(x2
2 − y2

2) = c(x2
2 − y2

2). Since x2 and y2 are coprime, either x2 = y2 = 1 (and then also

x1 = y1 = 1), or a = c = 1 (by coprimality). In both cases the two representations are not

essentially different, in contradiction with the assumptions.

In 1778 Euler proposed the following theorem concerning the idoneal numbers; he did not

have a proof, or even a clear way of defining or finding idoneal numbers (by some others

called suitable numbers or convenient numbers), apparently, other than that which forms

the content of the theorem.

(5.5) Theorem. Let the set I of idoneal numbers consist of the following 65 integers:

I = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 18, 21, 22, 24, 25, 28, 30, 33, 37, 40, 42,

45, 48, 57, 58, 60, 70, 72, 78, 85, 88, 93, 102, 105, 112, 120, 130, 133, 165, 168, 177,

190, 210232, 240, 253, 273, 280, 312, 330, 345, 357, 385, 408, 462, 520, 760, 840,

1320, 1365, 1848}.
Let F = aX2 + cY 2, with a, c ∈ Z≥1, and let n be coprime to ∆ = −4ac. If ac ∈ I, and n

is represented essentially uniquely by F and this representation is proper moreover, then

n is prime.

(5.6) Example. Using the largest of his idoneal numbers, Euler “proved” the primality

of 18518809, by showing that it is uniquely and properly represented as

18518809 = 1972 + 1848 · 1002.

An understanding (as well as a proof) of this theorem, and of the fact that Euler could

not find any other idoneal numbers up to at least 10000, came only with the further

development of the theory of quadratic forms, by Lagrange and Gauss.

Two quadratic forms F (X,Y ) and G(X,Y ) of (the same) negative discriminant are

strictly equivalent, if integers α, β, γ, δ exist such that

(5.7) F (αX + βY, γX + δY ) = G(X,Y ) with αδ − βγ = 1.
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5. Quadratic forms I. History

We call F and G rationally equivalent, if (5.7) holds with α, β, γ, δ in Q; thus strictly

equivalent forms are certainly rationally equivalent. Strict equivalence is an equivalence

relation, and so is rational equivalence. Strictly equivalent forms are said to be in the

same class. Rationally equivalent forms are said to be in the same genus, provided that

the equivalence over Q is given by a matrix with entries whose denominators are coprime

to ∆. Thus each genus will comprise at least one class.

The important fact is that two forms of the same discriminant are in the same genus,

if and only if they represent integers in the same residue classes of (Z/∆Z)∗. Therefore,

given a finite set of classes of forms, the integers represented by these will only have a

characterization in terms of residue classes modulo ∆ if the classes constitute one or more

genera. In terms of class field theory this is merely a statement about the splitting of

primes in (subfields of) the genus field of Q(
√

∆). For a detailed exposition of all this, see

[32].

As a consequence, when looking at a single quadratic form as above, we will only

arrive at a satisfactory description of the prime numbers represented by it, in case the

class of the form makes up a whole genus of its own; in that case one will obtain (5.5). The

integers i in I are such that every genus of quadratic forms of discriminant −4i consists

of one class. (In the (36) cases where i ∈ I is congruent to 0 or 3 modulo 4, the quadratic

forms Euler considered correspond to non-maximal orders (proper subrings of the ring of

integers) of Q(
√

∆).)

The search for more idoneal numbers has been continued to over 100000 in 1901 (in [33,

p. 552], according to Frobenius [42, p. 574]), and even 107 in 1948 (see [151]), using

restrictions given by Dickson and Hall, (see [35], [48], [49]). No more examples were found.

As a consequence of bounds for L-series associated to quadratic fields, it was proven that

their number is finite by Chowla in 1934, and Siegel ([24] and [144]). Chowla and Briggs

showed in [25] that there is at most one idoneal number exceeding 1060. In [160] it is shown

that under certain hypotheses on the distribution of zeroes of L-series it cannot exist.
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I. History 6. The converse of Fermat’s theorem

6. THE CONVERSE OF FERMAT’S THEOREM.

The ideas invoked to apply some kind of converse to Fermat’s (little) theorem to primality

testing, have been the most successful of all. In fact, these are the only methods that have

survived the advent of the electronic computer, and, until very recently, virtually every

practical primality test was a descendant of these.

Let us first cite Fermat’s theorem.

(6.1) Theorem. If n is prime, then every a coprime to n satisfies

(6.2) an−1 ≡ 1 mod n.

It therefore takes only one a for which (6.2) does not hold to prove that n is not prime.

Using (6.2) for primality proving is more difficult. Although checking (6.2) for a single a

can be done quickly, for large n it is impossible to check it for every residue class a modulo

n. Still, one could hope that checking (6.2) for one particular a would suffice to prove that

n is prime. It was established by Lucas that the value a = 2 cannot serve for this purpose,

since he noted that 2n−1 ≡ 1 mod n for n = 37 · 73; he apparently overlooked the smaller

example n = 11 · 31. In 1904 Cipolla [27] proved the following theorem, showing that no

fixed value for a in (6.2) will distinguish primes from composites.

(6.3) Theorem. For every a ∈ Z≥2 there exist infinitely many composite n such that

an−1 ≡ 1 mod n.

Cipolla’s proof (see [163]) was simple and constructive: for every a, any n of the form

a2p − 1

a2 − 1

with p prime and not a divisor of a2 − 1 will be composite and will satisfy (6.2).

Soon after this, Carmichael (see [21]) showed that trying to find a single a depending

on n is also doomed to fail eventually, since for certain composite n there exist no a coprime

to n that violate (6.2).

(6.4) Theorem. There exist composite numbers n > 1 such that every a coprime to n

satisfies

an−1 ≡ 1 mod n.
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6. The converse of Fermat’s theorem I. History

(6.5) Carmichael numbers. The composite numbers n referred to in (6.4) are now

called Carmichael numbers.

Since (6.2) is satisfied for a whenever the order of a in the multiplicative group
(

Z/nZ
)∗

divides the exponent of the group, Carmichael numbers are those composite

numbers for which λ(n)|n − 1; here λ is the function giving the exponent of
(

Z/nZ
)∗

.

Carmichael’s λ-function is easily computed from the structure of
(

Z/nZ
)∗

as the least

common multiple of the λ(pk), where pk is a maximal prime power dividing n, and where

λ(pk) =

{

φ(pk), if p is odd or k ≤ 2;

1
2
φ(2k), if p = 2 and k > 2.

It follows at once that every Carmichael number is odd and squarefree. Moreover it is

easily shown (as Carmichael did) that Carmichael numbers are the product of at least 3

distinct primes; cf. [23].

The smallest example of a Carmichael number is n = 3 ·11 ·17 = 561; indeed λ(561) =

lcm(2, 10, 16) = 80, which divides n− 1 = 560. (Strangely enough, Carmichael overlooked

this example; but he gave several others, the smallest being n = 5 · 13 · 17 = 1105.)

It is believed that infinitely many Carmichael numbers exist, cf. [122], but this has

not been proved; for a conjectured density function see [120], and for large examples see

[37], [152], [156], [166], [167], [168].

Still, it is possible to use the fact that only for prime n the multiplicative group
(

Z/nZ
)∗

has order n− 1. The first steps towards the following result were, again, taken by Lucas.

(6.6) Theorem. Let n ∈ Z≥2. If for every prime p dividing n− 1 there exists an integer

a such that

(6.7) a
n−1

p 6≡ 1 mod n and an−1 ≡ 1 mod n,

then n is prime.

(6.8) Remarks. In [99] it seems that Lucas was the first to note that n must be prime if

there exists some a such that ak ≡ 1 mod n for k = n − 1 but for no k > 0 smaller than

n − 1. In his book on number theory in 1891 he mentioned that it suffices to check this

property for the divisors k of n− 1. Lehmer ([69], [70], [75], [76]) remarks that it suffices

to check it for all k of the form n−1
p

, with p a prime divisor of n − 1. Apparently, the
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I. History 6. The converse of Fermat’s theorem

explicit observation that different a may be used for different p has been made much more

recently.

In any case, the primality of n follows from the existence of an element of multiplicative

order n− 1 modulo n.

The most important step forward came with Pocklington’s theorem; it shows at the same

time all the possibilities as well as the inherent limitations of the method. Before we state

his result, we mention two special instances, that historically preluded on it.

(6.9) Pepin’s Theorem. Let n = 2m + 1 with m ≥ 2. Then:

n is prime ⇐⇒ 3
n−1

2 ≡ −1 mod n.

In (6.9) the implication

n is prime ⇒ 3
n−1

2 ≡ −1 mod n

is usually proved using quadratic reciprocity: 3 is a quadratic non-residue for primes of

the form 2m + 1 so the right hand side follows by Euler’s criterion. The implication that

is of interest for primality testing

n is prime ⇐ 3
n−1

2 ≡ −1 mod n

is merely the observation that the order of 3 in
(

Z/nZ
)∗

equals n− 1.

(6.10) Fermat numbers. Let again n = 2m + 1, and write m = 2kr, with r odd. From

22kr ≡ (22k

)r ≡ (−1)r ≡ −1 mod 22k

+ 1

it follows immediately that n = 2m + 1 can only be prime if r = 1, so n is one of the

Fermat numbers Fk = 22k

+ 1. Pepin’s theorem provides a fast primality test for these.

The first five Fermat numbers F0, F1, . . . , F4 are prime, and Fermat seemed to believe

that all of them are. Euler however, found the factorization F5 = 232 + 1 = 641 · 6700417.

As an aside, we remark that Euler also succeeded in finding two essentially different ways

of representing F5 as the sum of two squares:

F5 = (216)2 + 12 = 622642 + 204492.
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6. The converse of Fermat’s theorem I. History

Indeed, as pointed out in (5.4), this yields a factor: gcd(216·20449−62264·1, F5) = 6700417.

The only other Fermat numbers that have been completely factored are F6 (by Landry

[66], 1880), F7 (by Morrison and Brillhart [17], 1970), F8 (by Brent and Pollard [14], 1980),

F9 (by Lenstra and Manasse et al. [84], 1990) and F11 (by Brent [13], 1989). The latter

involved a primality proof for the largest prime factor (564 decimal digits), by an elliptic

curve method as implemented by F. Morain (see also Section 10).

The smallest Fermat numbers of which the status is at present unknown are F22, F24,

F28 and F31.

For F14 (Selfridge and Hurwitz [53], 1963) and F20 (Young and Buell [169], 1987) a

compositeness proof has been given, but no factors are known.

For the remaining k up to 32 (inclusive) a partial factorization of Fk is known, as well

as for 76 larger values of k, the largest being k = 23471 (see Keller [63]). For all these, see

[132] and [18].

(6.11) Remarks. Pepin’s original test [113] dates back to 1877; he used the base 5 instead

of 3, which will work for all Fermat numbers except F1 = 5. (As a matter of fact, he also

mentions 10 as a possible base, because it has the advantage that the actual calculations

start only when the power of 10 exceeds the modulus n = Fk.)

It is interesting to note that Pepin’s paper appeared as a reaction to a paper by Lucas,

in the same volume of the same journal ([96]). In the latter, Lucas made an apparently

erroneous attempt to apply the new method he was developing (which we will describe

in the next section) to the Fermat numbers. Apart from those errors, it was not clear

from the theorem as it was stated, for which k it would settle the question of primality of

Fk and for which k it would merely recount known information about residue classes of

possible divisors of Fk. But anyhow it is interesting to see that the “n + 1”-methods in

fact preceded the “n− 1”-methods.

The following is a slight generalization of Pepin’s theorem, due to Proth (1878) [127].

(6.12) Proth’s Theorem. Let n = h · 2m + 1 with h odd and h < 2m. Then:

n is prime ⇐⇒ there exists a ∈ Z such that a
n−1

2 ≡ −1 mod n.
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I. History 6. The converse of Fermat’s theorem

In this case the right hand side implies the existence of an element of order 2m in
(

Z/nZ
)∗

;

that element must have order 2m for at least one prime p dividing n. Necessarily, this p

is congruent to 1 modulo 2m. But 2m exceeds the square root of n by assumption, and

therefore n = p is prime itself.

This argument lends itself for generalization to a proof of Pocklington’s theorem below.

For testing a particular n, a suitable value of a is generally easily found: find an

element that is a quadratic non-residue modulo n if n is prime. A given a typically works

for h and m in certain residue classes modulo the value of some function of a.

(6.13) Example. In 1957 Robinson carried out the first extensive (computer) tests based

on Proth’s theorem and he generated several pages of primes (see [134]). One of these

primes is n = 1575 · 2147 + 1, which was proven prime by calculating

47
n−1

2 mod n.

The value 47 was an exceptionally large smallest quadratic non-residue.

(6.14) Pocklington’s Theorem. Let n ∈ Z≥2 and let pk | n − 1, with p prime and

k ∈ Z≥1. If there exists a ∈ Z such that

gcd(a
n−1

p − 1, n) = 1 and an−1 ≡ 1 mod n,

then every divisor r of n satisfies r ≡ 1 mod pk.

The main new ingredient in Pocklington’s theorem (first given in [118]) is the requirement

that the greatest common divisor is trivial, which allows one to draw the conclusion that

the order of a modulo any prime divisor (and hence every divisor) of n is divisible by pk.

In order to be able to draw the conclusion that n is prime, either pk should in itself

exceed
√
n, or we have to combine our knowledge for several primes dividing n− 1, using

the Chinese remainder theorem. In any event, proofs for primality will be obtained only

if the factored part of n− 1 exceeds
√
n.

This shows the weakness of this converse of Fermat type approach from a general

point of view: it reduces the primality question for n to a supposedly harder problem,

namely that of factoring n−1. Before we show the generalizations allowing factors of n+1

and other auxiliary numbers as well, we present the most versatile theorem of this section,

taking factor bounds into consideration (see [18] and [19]).
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6. The converse of Fermat’s theorem I. History

(6.15) Theorem. Let n ∈ Z≥2 and let n− 1 = FR. If for every prime p dividing F there

exists a ∈ Z such that

gcd(a
n−1

p − 1, n) = 1 and an−1 ≡ 1 mod n,

then every divisor r of n satisfies r ≡ 1 mod F .

Suppose moreover that gcd(F,R) = 1, that every prime factor of R exceeds B, and

there exists b ∈ Z such that

gcd(b
n−1

R − 1, n) = 1 and bn−1 ≡ 1 mod n;

then n is prime if FB >
√
n.

In the first assertion Pocklington’s theorem has been combined for all primes in the factored

part F of n−1; the last assertion combines this with a Pocklington type test for the prime

divisors of the unfactored part R of n − 1, about which the only available information is

that they exceed B.

23



I. History 7. Tests of Lucas-Lehmer type

7. TESTS OF LUCAS-LEHMER TYPE.

The primality tests of the previous section can be seen as attempts to prove that n is prime

by showing that the multiplicative group
(

Z/nZ
)∗

has order (or rather exponent) n−1. If

n is indeed prime, Z/nZ is a finite field of n elements, and extension fields of every positive

degree will exist. In the simplest case of a quadratic extension, the multiplicative group

will have order n2 − 1; using that, one is able to utilize divisors of n+ 1 too. An easy way

to construct these quadratic extensions of finite fields, is by looking at reductions modulo

n of the ring of integers of suitable quadratic number fields as follows.

The quadratic field Q(
√

∆) is obtained by adjoining to Q a root (in an algebraic

closure) of X2 − PX +Q = 0, with P , Q in Z and where the discriminant ∆ = P 2 − 4Q

is not an integral square. This field Q(
√

∆) has an automorphism σ over Q of order 2,

obtained by sending
√

∆ to −
√

∆. The norm of an element x ∈ Q(
√

∆) is the element

N(x) = xσx of Q. In the ring of integers O∆ of Q(
√

∆), rational primes p (not dividing

∆) for which ∆ is not a square modulo p remain prime, and O∆/(p) forms a field of order

p2. We say that α ∈ Q(
√

∆) is coprime to m ∈ Z if N(α) is.

(7.1) Theorem. Let ∆ ≡ 0, 1 mod 4. If n is an odd prime number not dividing ∆, then

every α ∈ O∆ coprime to n satisfies

(7.2) αn2−1 ≡ 1 mod n.

This is the direct generalization of Theorem (6.1). Notice that in case
(

∆
n

)

= 1, the

conclusion follows from (6.1).

If n is an odd prime, then for α = a+ b
√

∆ ∈ Z[
√

∆] we have

αn = (a+ b
√

∆)n ≡ an + bn
√

∆
n ≡ a+ b∆

n−1
2

√
∆ mod n.

By Euler’s criterion

∆
n−1

2 ≡
(∆

n

)

,

so

αn = (a+ b
√

∆)n ≡ an + bn
√

∆
n ≡ a+

(∆

n

)

b
√

∆ mod n.
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7. Tests of Lucas-Lehmer type I. History

If we define ρn = σ in case
(

∆
n

)

= −1 and ρn = id in case
(

∆
n

)

= 1, we proved that

αn ≡ ρnα mod n.

Remark that in any case ρn induces an automorphism on the finite field Z/nZ[
√

∆] gener-

ating the automorphism group over Z/nZ, under the convention that Z/nZ[
√

∆] denotes

Z/nZ in case ∆ is a square modulo n.

The next theorem easily follows; note that 2α ∈ Z[
√

∆] if α ∈ O∆. It shows that

powering modulo n has the same effect as applying the automorphism that generates the

Galois group of the extension, a theme that will reappear in Chapter II.

(7.3) Theorem. Let ∆ ≡ 0, 1 mod 4 and let n be an odd prime number not dividing ∆.

Then every α ∈ O∆ satisfies

(7.4) αn+1 ≡ αρnα mod n.

We can rephrase (7.4) in several ways; for instance

(7.5) αn+1 − (ρnα)n+1 ≡ 0 mod n.

If we write β = α/ρnα, which equals 1 if
(

∆
n

)

= 1, then (7.4) implies

(7.6) βn+1 ≡ 1 mod n.

From this it is even more obvious that n+ 1 is coming into play.

Of course we need some kind of converse again for primality testing.

The first to exploit (7.3) was Lucas (see [93], [94], [95], [96], [97] and [98]), as we pointed out,

in fact even before Pepin and Proth developed the first “plain” n− 1-techniques. He, and

many of the people building upon his work, phrased results in terms of recurring sequences.

Basically, these recurring sequences are merely a way of computing the coefficients of the

powers of α in (7.3), without leaving Z, as follows. The more algebraic description can be

found in [16], [55], [62], [131], [161].

Suppose that α is a zero of X2−Px+Q, with P,Q ∈ Z, so α+σα = P and ασα = Q,

while ∆ = P 2 − 4Q. Define integers vi, ui for i ≥ 1 by

αk =
vk + uk

√
∆

2k
.
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I. History 7. Tests of Lucas-Lehmer type

Then obviously

vk = 2k−1(αk + (σα)k) and uk

√
∆ = 2k−1(αk − (σα)k).

That makes it easy to calculate uk and vk recursively:

vk+1 = 2k(αk+1 + (σα)k+1)

= 2k
(

(α+ σα)(αk + (σα)k) − ασα(αk−1 + (σα)k−1)
)

= 2k
(

Pvk −Qvk−1

)

,

and

uk+1

√
∆ = 2k(αk+1 − (σα)k+1)

= 2k
(

(α+ σα)(αk − (σα)k) − ασα(αk−1 − (σα)k−1)
)

= 2k
(

Puk

√
∆ −Quk−1

√
∆
)

,

so

uk+1 = 2k
(

Puk −Quk−1

)

.

Also, exponentiation can be done efficiently by repeated squaring and multiplication, and

so un and vn are quickly found by the above together with the doubling formulas

v2k = 22k(v2
k − 2Q2) and u2k = 22kukvk.

Taking everything modulo n, and replacing σ by ρn as before, (7.5) states that

(7.7) un+1 ≡ 0 mod n

for odd primes n; thus we will only be interested in vn and un modulo n, and we need not

worry about the powers of 2 in particular. for every k ≥ 1 if
(

∆
n

)

= 1.

Before stating Lucas’s results for primality testing, we say something about pseudo-

primes.

(7.8) Lucas pseudoprimes. Again, (7.2) will be satisfied for certain composite numbers

too. Every property of primes that does not precisely characterize the primes will give rise

to a notion of pseudoprimes, composite numbers having that particular property. More on

this in the next section.
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7. Tests of Lucas-Lehmer type I. History

Here we give an example of an analogue of Carmichael numbers: there exist composite

n for which (7.2) holds for every α coprime to n in O∆, where
(

∆
n

)

= −1. For this, let

n = 5 · 7 · 13 and ∆ = 61; one easily verifies that

(∆

5

)

=
(∆

13

)

= 1 and
(∆

7

)

=
(∆

n

)

= −1.

Since 5 − 1 and 13 − 1 divide n+ 1, by Fermat’s theorem αn+1 ≡ 1 mod p both for p = 5

and p = 13. Also, 72 − 1 divides n2 − 1 and therefore αn2−1 ≡ 1 mod 7 by (7.1).

Williams studied the following analogue of Carmichael numbers: composite n such

that for some ∆ with
(

∆
n

)

= −1 the congruence in (7.7) holds (and hence that in (7.5)),

for every α ∈ O∆ (see [162]). One example he gives is n = 17 · 19 with ∆ = 5. Then:

(∆

n

)

=
( 5

17 · 19

)

= −1 =
( 5

17

)

and
( 5

19

)

= 1,

while both 17 + 1 and 19− 1 divide n+ 1. Thus (7.5) holds by (7.3) and (6.1) for every α.

See also [8], [122], [136].

(7.9) Lucas’s Theorem. Let n = 2m − 1 with m > 2, and define ei ∈ Z for i ≥ 1 by

e1 = 4 and ei+1 = e2i − 2. Then:

(7.10) n is prime ⇐⇒ em−1 ≡ 0 mod n.

Proof. If m is even, n = 2m − 1 is divisible by 3, and therefore not prime for m > 2; on

the other hand em−1 ≡ 2 mod 3 in this case, so not divisible by n. Thus we may assume

that m is odd.

Now

(12

n

)

=
( 3

n

)

= −
(2m − 1

3

)

= −
(1

3

)

= −1,

sincem is odd. Take take ∆ = 12 and α = 2
m−1

2 (−1+
√

3) ∈ O∆, then σα = 2
m−1

2 (−1−
√

3)

and ασα = −2m. Furthermore, define for i ≥ 0:

ai = α2i

+ σα2i ∈ O∆;

then

ai+1 = α2i+1

+ σα2i+1

= (α2i

+ σα2i

)2 − 2(ασα)2
i

= a2
i − 2(−2m)2

i

,
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I. History 7. Tests of Lucas-Lehmer type

and in particular

a1 = (a0)
2 − 2(−2m) = (α+ σα)2 + 2m+1 = 2m+1 + 2m+1 = 2m+2.

Using that 2m ≡ 1 mod n, we find that a1 ≡ 4 mod n and that ai+1 ≡ a2
i − 2 mod n. As a

consequence ai ≡ ei holds for i ≥ 1. Thus

em−1 ≡ 0 mod n ⇐⇒ am−1 ≡ 0 mod n

⇐⇒ α
n+1

2 + σα
n+1
2 ≡ 0 mod n.

If the right hand side in (7.10) holds, this shows that the image of the element α/σα in

O∆/(n) has order n+ 1; then n+ 1 divides p2 − 1 by (7.1) for every prime divisor p of n.

In particular, p2 − 1 ≥ n+ 1, so n must be prime itself.

If, on the other hand, n is prime, then

α
n+1

2 (α
n+1
2 + σα

n+1
2 ) ≡ αn+1 + (ασα)

n+1
2 ≡ ασα+ (−1)

n+1
2 ≡ 0 mod n,

by (7.4), and because ασα ≡ −1 mod n, while n ≡ 3 mod 4.

That proves (7.9).

Lehmer is credited for formulating the Lucas test in the present form (see [72], [73]). In his

original papers ([97], [98]), Lucas formulated his test as in (7.9) only for m ≡ 1 mod 4; for

m ≡ 3 mod 4 he used the same recurrence relation for ei but starting value e1 = 3, i.e., in

that case he used discriminant ∆ = 5 and α = 3+
√

5
2 instead of the above values. Lehmer

erroneously claimed that the latter would not give a necessary condition for primality.

(7.11) Mersenne numbers. Just as Pepin’s test was tailor-made for Fermat numbers,

Lucas’s test works for the Mersenne numbers n = Mm = 2m − 1. We saw already that for

m > 2 these can only be prime if m is odd. Since

2rs ≡ (2r)s ≡ (1)s ≡ 1 mod 2r − 1

it is clear that only prime exponents m need be considered.

These numbers are named after Marin Mersenne (1568-1648), who made the unsub-

stantiated claim in 1647 that Mm is prime for those prime exponents m that exceed by

at most 3 a power of 2 with even exponent. He claimed moreover for m ≤ 257, that Mm

is prime only if m = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, or 257. The Mersenne primes up
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7. Tests of Lucas-Lehmer type I. History

to M19 were known by Cataldi, as we pointed out in Section 4. Also, M11 was known to

be divisible by 23 and Fermat had published non-trivial factors for M23 and M37 in 1640.

Much later, in 1732, Euler found factors of M29, M43 and M73 (and stated in general,

that if the prime m is 3 mod 4 and 2m+ 1 is prime too, then Mm is divisible by 2m+ 1,

and therefore not prime; this was proven by Lagrange, 1775). Still in accordance with

Mersenne’s list, Euler proved the primality of 231 − 1 in 1772, see (3.3).

Lucas was especially interested in applying his method to M127, and he claimed to

have proved its primality by the above method (“mais une seule fois”) in 1877. It seems

that only after this had been checked by Fauquemberge [40] in 1914, that its primality

was put beyond doubt. Lucas also believed (see [100, v1, p. 376]) to have shown the

compositeness of M89, which later turned out to be prime. (Additional justification for

suspicion in these matters in general is given by the case of M167; Barker [9] published his

result in 1945, stating that this number is composite since he found a non-zero residue for

a sequence as in (7.9). Lehmer later found that the result was right, but the residue given

wrong. See [154].)

In 1883 finally Mersenne’s claim was refuted, as Pervouchine [114] proved M61 prime.

Cole [31] found the (non-trivial) factorization of M67 in 1903. Later three more errors

emerged: M89 (Powers [123], 1911) and M107 (Powers [124] and Fauquemberge [40], 1914)

are prime, while M257 turned out to be composite (Kraitchik, 1922, “but no guarantee”,

and Lehmer [73], 1932). For all this, and much more (for instance on Lucas’s proposal for

a primality proving machine) see [5].

At present, many more of the numbers Mm have been checked, including all m up to

150000. For the following values of m Mersenne’s numbers are known to be prime: 2, 3, 5,

7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941,

11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091. See [132] and [18].

For numbers of the form n = h·2m−1 we have this theorem, analogous to Proth’s theorem.

(7.12) Theorem. Let n = h · 2m − 1 with h odd and h < 2m. Let ∆ ≡ 0, 1 mod 4 and

suppose that
(

∆
n

)

= −1. Then:

(7.13) n is prime ⇐⇒ there exists α ∈ O∆ such that
( α

σα

)
n+1

2 ≡ −1 mod n.
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Proof. First suppose that n is prime. Then σα ≡ αn mod n as we saw above, and

( α

σα

)
n+1
2 ≡ (

α

αn
)

n+1
2 = (αn+1)

−n−1
2 mod n.

Since O∆/(n) is a finite field of n2 elements, the multiplicative group is cyclic of order

n2 − 1, so any non-square α will have the desired property.

Conversely, in case

( α

σα

)
n+1
2 ≡ −1 mod n,

the order of α/σα modulo p is divisible by 2m for every prime divisor p of n. Then either

p − 1 or p + 1 is divisible by 2m by (6.1) or (7.6), depending on
(

∆
p

)

. First suppose that

p = 2m ± 1. Then either p = 2m − 1, in which case p divides n− ph = h− 1, or p = 2m +1,

in which case p divides hp−n = h+1; in both cases h ≥ 2m, contrary to the assumptions.

So every prime p dividing n satisfies p = k · 2m ± 1 with k ≥ 2; hence

p2 − n ≥ (k2m − 1)2 − h2m = (k22m − h− 2k)2m − 2 >

> ((k2 − 1)2m − 2k)2m + 2 > 0,

and p must equal n.

That proves (7.12).

(7.14) Remarks. Theorem (7.12) is easily translated into the language of recurring

sequences again. Let the hypotheses be as in (7.12), in particular n = h · 2m − 1. Writing

β = α
σα , the congruence in (7.13) is equivalent to

β
n+1

2 ≡ −1 mod n ⇐⇒ β
n+1

4 + β− (n+1)
4 ≡ 0 mod n

⇐⇒ wm−2 ≡ 0 mod n,

if we define wi for i ≥ 0 as follows:

w0 = βh + β−h and wi = w2
i−1 − 2, for i ≥ 1.

The starting value w0 is similarly determined recursively: w0 = zh if we put

z0 = 2, z1 = β + β−1, zi+1 = z1zi − zi−1 and z2i = z2
i − 2, for i ≥ 1,

(making zi = βi + β−i).
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The analogue of Pocklington’s theorem reads as follows.

(7.15) Theorem. Let n ∈ Z≥2 and let pk | n+ 1, with p prime. Let ∆ ≡ 0, 1 mod 4 and

suppose that
(

∆
n

)

= −1. If there exists α ∈ O∆ coprime to n such that

gcd(β
n+1

p − 1, n) = 1 and βn+1 ≡ 1 mod n, where β =
α

σα
,

then every prime divisor r of n satisfies r ≡
(

∆
r

)

mod pk.

As we will generalize this type of theorem in Chapter II further, we do not give a formal

proof here. But basically, the imposed conditions imply for any prime divisor r of n that

the order of α in O∆/(r)
∗ is divisible by pk, whence the result by (6.1) and (7.1) (but note

that for p = 2 an additional argument is required!). Again everything may be phrased in

terms of recurring “Lucas”-sequences.

Combining information about divisors of n−1 and n+1, we have the following theorem

(see [131], [111], [18] etc.).

(7.16) Theorem. Let n ∈ Z≥2 and let n2 − 1 = FR. Let ∆ ≡ 0, 1 mod 4 and suppose

that
(

∆
n

)

= −1. If for every prime p dividing F there exists α ∈ O∆ such that

gcd(α
n2−1

p − 1, n) = 1 and αn2−1 ≡ 1 mod n,

then every divisor r of n satisfies r ≡ ±1 mod F . Suppose moreover that gcd(F,R) = 1,

that every prime factor of R exceeds B, and there exists β ∈ O∆ such that

gcd(β
n2−1

R − 1, n) = 1 and βn2−1 ≡ 1 mod n;

then n is prime if F ·B >
√
n.

Lehmer, Williams and others (see [72], [60], [164]) have generalized the resulting primality

test in such a way that divisors of n12−1 will help in completing the primality proof for n.

We will refer in the sequel to all of these (including those in the present and in the previous

section) as Lucas-Lehmer-type primality tests. The basic problem with all of these is that

they rely on factorization of auxiliary numbers (such as n2 − 1) and are therefore suitable

only for primes for which these factorizations can be obtained, such as the Fermat and the

Mersenne numbers.
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The success of these methods can be seen from the table below. In it we have tried

to assemble information about the largest known primes throughout history.

(7.17) Remarks. The first entry in the table that has not been mentioned so far, is the

14-digit prime discovered by Landry. As an appendix to the first of two lengthy papers

by Lucas [97], a table of prime factors of numbers 2m ± 1, with m up to 64, compiled by

Landry, was published in 1878. The 14-digit divisor of 253 +1 was the largest of those. He

found also four 13-digit primes; all of his results are correct, but it is not clear how Landry

obtained his results. Lucas remarks: “M. F. Landry, au moyen d’une méthode inédite, et

probablement fort simple, est parvenu à la décomposition de certains grands nombres en

leurs facteurs premiers”.

In the second paper ([98]), Lucas mentions that since 1859 a 10-digit prime had been

known, as Plana claimed to have verified that

329 + 1

22 · 6091

is prime. Lucas discovered however that this number is divisible by 523.

We mentioned before that Lucas put some effort into proving 2127−1 prime. Especially

in later years, he did not seem to be too convinced that he had succeeded. At first he was

rather confident: “C’est à l’aide de ces théorèmes que je pense avoir demontré que le

nombre A = 2127 − 1 est premier.” (1876). In 1877 he made the statement we quoted

in (7.11), that he had shown the primality of M127, but only once. In 1887 however, he

said about 261 − 1: “C’est le plus grand nombre premier actuellement connu”. (We thank

J. O. Shallit for pointing these references out to us.)

This number M61 was proven prime by Pervouchine, in 1883; the report [114] only

mentions “ses longs et fatigants calculs”, and also the existence of a document, accompa-

nied by some tables, that should facilitate the verification of the primality proof – in other

words, a prime certificate. But nothing is said about the method.

In June of 1951, for the first time an electronic computer (Edsac) produced a prime

that was larger than any known before, after searching through numbers of the form

k ·M127 + 1. For the period from early July to October 1951, Ferrier was the last to hold

the record with a prime that was found by the use of a desk calculator only. After that,

electronic computers took over completely.
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The largest proven primes throughout history

Prime Digits Prover Year Method

2
13 − 1 4 ? [28] ≤1461 (3.1)

2
17 − 1 6 Cataldi [22] 1588 (3.1)

2
19 − 1 6 Cataldi [22] 1588 (3.1)

2
31 − 1 10 Euler [39] 1772 (3.3)

2
53

+ 1
3·107 14 Landry [97] 1876 ?

2
61 − 1 19 Pervouchine [114] 1883 ?

2
89 − 1 27 Powers [123] 1911 (7.9)

2
107 − 1 33 Powers [124]/Fauquembergue [40] 1914 (7.9)

2
127 − 1 39 Lucas/Fauquemberge [40] 1914 (7.9)

934(2
127 − 1) + 1 42 Miller,Wheeler [103] 1951 (6.12)?

2
148

+ 1
17 44 Ferrier [41] 1951 (4.4)

180(2
127 − 1)

2
+ 1 79 Miller,Wheeler [103] 1951 (6.12)?

2
521 − 1 157 Lehmer, Robinson [77][133] 1952 (7.9)

2
607 − 1 183 Lehmer, Robinson [77][133] 1952 (7.9)

2
1279 − 1 386 Lehmer, Robinson [78][133] 1952 (7.9)

2
2203 − 1 664 Lehmer, Robinson [79][133] 1952 (7.9)

2
2281 − 1 687 Lehmer, Robinson [79][133] 1952 (7.9)

2
3217 − 1 969 Riesel [130] 1957 (7.9)

2
4253 − 1 1281 Hurwitz, Selfridge [52][53] 1961 (7.9)

2
4423 − 1 1332 Hurwitz, Selfridge [52][53] 1961 (7.9)

2
9689 − 1 2917 Gillies [45] 1963 (7.9)

2
9941 − 1 2993 Gillies [45] 1963 (7.9)

2
11213 − 1 3376 Gillies [45] 1963 (7.9)

2
19937 − 1 6002 Tuckerman [153] 1971 (7.9)

2
21701 − 1 6533 Nickel, Noll [112] 1978 (7.9)

2
23209 − 1 6987 Noll [112] 1979 (7.9)

2
44497 − 1 13395 Nelson, Slowinski [146] 1979 (7.9)

2
86243 − 1 25962 Slowinski 1982 (7.9)

2
132049 − 1 39751 Slowinski 1983 (7.9)

2
216091 − 1 65050 Slowinski 1985 (7.9)

391581 · 2216193 − 1 65087 Brown, Noll, Parady, Smith, Smith and Zarantonello [170] 1989 (7.9)
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8. PSEUDOPRIMES.

Apart from the Lucas-Lehmer type tests, there are several other applications in primality

testing that grew out of attempts to find a converse to Fermat’s theorem. We describe

several of them in this section.

We noted in Section 6 that there exist composite n such that an−1 ≡ 1 mod n for some

a coprime to n. Such composite n are called pseudoprimes to the base a. Every fixed

integer a admits infinitely many pseudoprimes, as Cipolla showed, cf. (6.3); more recent

results about the density of pseudoprimes can be found in [122]. We also introduced the

Carmichael numbers, composite numbers n that are pseudoprime to every base coprime

to n.

Several attempts have been made to strengthen Fermat’s theorem in order to restrict

the number of pseudoprimes. The first idea is to use Euler’s criterion.

(8.1) Theorem. Let n be an odd prime number. Then every integer a that is not divisible

by n satisfies:

(8.2) a
n−1

2 ≡
(a

n

)

mod n;

in particular for every such a:

(8.3) a
n−1

2 ≡ ±1 mod n.

An Euler pseudoprime to the base a is an odd composite integer n, not dividing a, such

that (8.2) holds.

(8.4) Theorem. Let n be an odd integer. Then:

n is prime ⇐⇒ {an−1
2 mod n: a coprime to n} = {−1, 1}.

Furthermore, if n is composite, then either

(8.5) a
n−1

2 ≡ 1 mod n for every a coprime to n,

or

(8.6) a
n−1

2 6≡ ±1 mod n for at least
φ(n)

2
of all a with 1 ≤ a < n coprime to n.
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A proof for the second assertion in (8.4) is given easily as follows (cf. [80], [147], [68]).

Let n be odd and composite. Assume that (8.3) holds for every a with coprime to n. In

particular, n will be a Carmichael number, hence squarefree, see (6.5). Let n = q · r, with

coprime q and r exceeding 1. Suppose that for at least one a:

a∗ = a
n−1

2 6≡ 1 mod n.

Then by assumption a∗ ≡ −1 mod n. Choose b ≡ 1 mod q and b ≡ a mod r, then b does

not satisfy (8.3). This is a contradiction and therefore either a∗ ≡ 1 mod n for every a, or

the assumption that (8.3) holds for every a ∈
(

Z/nZ
)∗

must be false. But the a satisfying

(8.3) form a subgroup H of
(

Z/nZ
)∗

, which must in this case have index at least 2.

The first assertion follows from this and from Euler’s criterion (8.1).

In particular, a composite integer is an Euler pseudoprime to at most half of all bases co-

prime to it. Namely, either (8.6) applies, or (8.5) holds; in the latter case, n is a Carmichael

number, therefore squarefree, and the Jacobi symbol forms a non-trivial quadratic charac-

ter on
(

Z/nZ
)∗

, which assumes the values 1 and −1 equally often.

Thus, if an odd n is composite, we have a probability exceeding 1/2 that a randomly

chosen a will enable us to prove that n is composite, by checking (8.2). This will give rise

to a compositeness test, an idea we will discuss below.

If n is composite, and (8.3) holds for some a coprime to n, then (8.2) may or may not hold

for every such a; this depends on the number of times that 2 divides n− 1 and each of the

p − 1, for the prime divisors p of n. This is closely related to an idea that was first used

by Miller, which we describe next (see [102]).

Again n will be an odd integer. Write n − 1 = r2k, with r odd. If n is prime then

an−1 ≡ 1 mod n. Therefore either ar ≡ 1 mod n, or ar2j ≡ 1 mod n for some j with

0 < j ≤ k. If, in the latter case, we take j minimal then ar2j−1 ≡ −1 mod n since Z/nZ is

a field.

If we find a ∈ {1, 2, . . . , n−1} for which the above does not hold, n must be composite.

We will call a non-zero element a ∈ Z/nZ a witness to the compositeness of n = r2k if

both

(8.7) ar − 1 6= 0 and ar2i

+ 1 6= 0 for i = 0, 1, . . . , k − 1.
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If n is composite but a is a non-witness, then n is also called a strong pseudoprime to the

base a. Selfridge and others (see [122]) proved the following connection between strong

and Euler pseudoprimes.

(8.8) Theorem. Let n be an odd composite number. If a is a non-witness for n, then n

is an Euler pseudoprime to the base a.

The following theorem is due to Rabin (cf. [128]). We present a proof of this in section

II.1. In combination with the observation that testing whether or not a is a witness is

cheaper than testing (8.2), Theorems (8.8) and (8.9) show that the concept of witnesses is

an improvement over the Euler-pseudoprimes.

(8.9) Theorem. Let n be an odd composite number. Then at least 3
4
(n− 1) of all a with

1 ≤ a < n are witness to the compositeness of n.

The first application of (8.9) is that of the cheap compositeness test, which we announced

in Section 1.

(8.10) Compositeness test. Let n > 3 be odd, and n − 1 = r2k, with r odd. Choose

a ∈ {2, 3, . . . , n − 2} at random, and compute b = ar mod n. If b 6≡ ±1 mod n, compute

b2, b4, b8 . . . mod n until either b2
i ≡ −1 mod n or i = k − 1.

The number n is said to pass the test if (8.7) holds. If n passes the test, n is composite,

and a is a witness for that fact. If n does not pass (“fails”) the test, we may repeat it with

another choice of a; from (8.8) we see that the probability that a composite n does not pass

the test for c independent choices of a is at most 4−c. Therefore we may be reasonably

confident that n is prime if it fails this test a few times.

In practice this distinguishes composites from the probable primes.

(8.11) Remarks. Solovay and Strassen (see [147]) proposed a compositeness test based

on (8.2) rather than (8.7), and Lehmann [68] suggested to use (8.3). See also [105].

Lehmann also proposes a test that is in our language neither a compositeness test nor

a primality test: calculate a∗ = a
n−1

2 mod n for c random choices of a. If for all of these

a∗ ≡ ±1 and for at least one a∗ ≡ −1, declare n prime; declare n composite otherwise. In

both cases the answer may be wrong, and in both cases the probability that this happens

is at most 2−c.
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The second application concerns so-called conditional primality tests. These supply suffi-

cient conditions for primality provided that certain unproved (but generally acknowledged

to be likely to hold) hypotheses are true, notably certain generalized Riemann hypotheses.

These assert that the non-trivial zeroes in the complex numbers of L-series associated to

certain characters modulo n all have real part 1/2. See [102] and Lenstra in [91] for a

proper definition of these notions in our cases, and [85] for a small set of characters that

will suffice here.

(8.12) Theorem. Under the assumption of certain generalized Riemann hypotheses there

exists an absolute and effectively computable constant C such that an element of
(

Z/nZ
)∗

outside a given proper subgroup G exists smaller than C(log n)2.

Proofs can be found in [4] (for the case of index 2) and [106]. In our application we take

a subgroup of
(

Z/nZ
)∗

containing all non-witnesses. In fact one may take the subgroup

consisting of all a satisfying (8.2). The constant C = 2 in the resulting Theorem (8.13) is

due to Bach [7]. The logarithm is the natural logarithm.

(8.13) Theorem. Let n be an odd composite number. Under the assumption of certain

generalized Riemann hypotheses there exists a witness for the compositeness of n smaller

than 2(logn)2.

As a final application of the above ideas, one may list all pseudoprimes of a particular kind

in a certain range; if n is in that range, it may be subjected to the corresponding test and

if it passes that, it will be prime unless it equals one of the pseudoprimes in the list. Here

is a popular example, from [122]; another example may be found in [65].

(8.14) Theorem. Let n > 1 be odd and n < 25 · 109. If n does not have a witness among

2, 3, 5, 7 it is prime, unless n = 3215031751 = 151 · 751 · 28351.
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I. History 9. The Gauss sum test

9. THE GAUSS SUM TEST.

The first major improvement on all methods described so far, came with Adleman and

Rumely’s introduction of the Gauss sum test (see [1], [2]). It led to the first primality test

that does not require the factorization of integers of about the same size as n itself, and

the first test with a sub-exponential bound on the running time on every input.

In this section we give a short outline of the deterministic version of the Gauss sum

test, following the presentation in [86] and [87] rather than that of [2]. A probabilistic

version was also given in [2]; major improvements to make it practical can be found in [29]

and [30], and the following chapters will describe all of those and many more in detail. We

will also describe the important possibility to combine the improved versions of the Gauss

sum test with Lucas-Lehmer type tests. All of the notions necessary to describe the Gauss

sum test will recur in Chapter II. Therefore we do not attempt to make this section as

self-contained as the previous ones.

The algorithm we will describe leads to the following result, quoted before in (2.8).

(9.1) Theorem. There exists an algorithm that, for prime n, proves the primality of n

in O((logn)C log log log n) bit operations, for some effectively computable constant C.

Four stages can be distinguished in the algorithm. We will describe each of these, with a

brief theoretical justification.

(9.2) First step of the algorithm. Select the auxiliary integers s and t as follows.

Let t be the smallest positive, squarefree integer such that s = s(t) exceeds
√
n, where

(9.3) s =
∏

q prime
q−1|t

q.

Finding s and t may be done by trying t = 1, 2, . . . in succession; it should also be checked

that gcd(st, n) = 1.

For the second and third step we have to introduce Gauss sums, and their multiplicative

and additive properties.

(9.4) Multiplicative properties of Gauss sums. Let Rp,q for different primes p and

q be the ring (Z/nZ)[ζp, ζq], obtained by formal adjunction of the zeroes ζp and ζq of the

p-th and q-th cyclotomic polynomial.
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9. The Gauss sum test I. History

We will consider Rp,q for every pair (p, q) of primes for which q divides s and p divides

q − 1 and hence t, with s and t as in (9.2).

Let χ be a character of conductor q and order p with values in Rp,q, that is, a mul-

tiplicative homomorphism χ:
(

Z/qZ
)∗ → 〈ζp〉 that is surjective. This can be constructed

by finding a primitive root g modulo q and by putting χ(g) = ζp.

Furthermore, let τ(χ) be the Gauss sum

τ(χ) =

q−1
∑

x=1

χ(x)ζx
q ∈ Rp,q.

Write np−1 − 1 = phup, where p6 |up.

The following lemma expresses a multiplicative property of Gauss sums that holds if

n is prime. It justifies the second step of the algorithm.

(9.5) Lemma. If n is prime, then, with notation as in (9.4):

τ(χ)np−1−1 = χ(n) ∈ 〈ζp〉.

(9.6) Second step of the algorithm. For every pair of primes (p, q) for which q divides

s and p divides q − 1, do the following. Determine w(χ), the smallest i ∈ {1, 2, . . . , h} for

which

τ(χ)piup ∈ 〈ζp〉;

also, check that

(9.7) τ(χ)np−1−1 ∈ 〈ζp〉;

otherwise n is declared composite.

(9.8) Additive properties of Gauss sums. In the next step of the algorithm an additive

property of Gauss sums will be checked. We introduce the following notation.

Let wp = max(w(χ)), the maximum being taken over all characters in (9.4) of order

p. Let mp = pwpup, with up as in (9.4). Let qp be such, that the character χ of conductor

qp and order p satisfies w(χ) = wp.
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(9.9) Third step of the algorithm. For every prime p dividing t verify that:

(9.10) one of the following holds:

(i) wp = 1;

(ii) τ(χ)pw(χ)up 6= 1;

(iii) ord(τ(χ)pw(χ)−1up − ζ) = n for all ζ ∈ 〈ζp〉,
where ord denotes the additive order in the ring Rp,qp

of (9.4). If none of (i)–(iii) hold for

some p, declare n composite.

Verifying the property of the additive order in (iii) can simply be done by checking

that one of the coordinates of the element, on a basis over Z/nZ, is coprime to n.

It is easy to see that (9.10) will hold when n is prime. Conversely, using (9.5), one can

prove the following.

(9.11) Lemma. Let notation be as in (9.8). If (9.10) holds, then

rp−1 ≡ 1 mod pwp for every divisor r of n.

(9.12) Fourth step of the algorithm. Find the (unique) element z ∈
(

Z/sZ
)∗

satisfying

χ(z) = τ(χ)mp for every pair (p, q) as before.

Let f ≤ t− 1 be the order of z in
(

Z/sZ
)∗

. Define for 1 ≤ i ≤ f the integer ri by

ri ≡ zi mod s and 0 < ri < s.

Check for all i < f for which ri ≤ √
n that ri does not divide n; if this does not hold,

declare n composite.

If n has not been declared composite before, it is now declared prime.

The correctness of the algorithm is a consequence of the following.

(9.13) Proposition. Let notation be as before. If (9.10) holds for every prime p dividing

t, then for every pair (p, q) as in (9.6)

(τ(χ)mp)lp(r) = χ(r) for every divisor r of n,
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9. The Gauss sum test I. History

with lp(r) defined modulo p by:

lp(r) ≡
rp−1 − 1

mp
mod p.

To see that this implies the correctness of the remaining part of the algorithm, let r be

a divisor of n. Once (9.10) has been checked for all p, we find a unique l(r) modulo t by

(9.13), with the property that for every character χ modulo s:

χ(r) = χ(zl(r))

with z as in (9.12). But then r ≡ zl(r) mod s, while s >
√
n and therefore the only possible

divisors of n are to be found among the powers of z modulo s. These are checked in (9.12).

The running time analysis given in (9.1) is based on the following result (cf [2], [30]),

together with the observation that all steps of the Gauss sum test as described can be

done in time polynomial in t and logn. It also proves that the bound given is essentially

best possible.

(9.14) Theorem. There exist effectively computable positive constants C1 and C2 such

that the smallest t for which s as in (9.3) exceeds
√
n, satisfies:

(logn)C1 log log log n ≤ t ≤ (logn)C2 log log log n.
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10. ABELIAN VARIETIES.

In recent years the application of methods from computational algebraic geometry has

led to breakthroughs in the area of factoring as well as primality testing. In this section

we briefly describe the results with respect to primality testing; a fully self-contained

account would take more space than we allow ourselves here. For the use of elliptic curves

in factoring the reader should consult [90] and [89]. For general results concerning the

arithmetic on elliptic curves we refer to [145].

The use of abelian varieties has brought major improvements both on the theoretical and on

the practical side of primality testing. From a practical point of view, the most elementary

(non-trivial) abelian varieties, the elliptic curves have been the most prolific so far.

Roughly speaking, an elliptic curve and a prime number together determine a finite

group; the idea is to use this group instead of
(

Z/nZ
)∗

as in Section 6, for primality

proving. Two important features of these groups make this idea work so well. Firstly,

the group law is very easy and explicit; secondly, choosing another elliptic curve, for the

same prime, will give rise to another group with probably a different order. In the classical

case, using the multiplicative group
(

Z/nZ
)∗

, success of our primality test depends on the

properties of n− 1; in the case of elliptic curves we get a collection of groups, with orders

having a known distribution, from which we can pick one with a favourable order.

Without giving all the details we will describe the basic facts.

(10.1) Elliptic curves. In our applications, we need elliptic curves over certain rings,

which means that our definitions will have to be slightly more general than in the classical

case of elliptic curves defined over fields.

Two restrictions will be imposed on the rings R. The first is that 6 ∈ R∗; this condition

is merely put in to allow the use of nice Weierstrass models, and is common in the classical

case as well. The second condition is that for every primitive m × n matrix over R for

which all 2 × 2-subdeterminants are zero, an R-linear combination of the rows must exist

that is primitive in Rm. Here a finite set of elements of a ring R is called primitive if they

generate R as an R-ideal, and a matrix is primitive if the set of entries is.

An elliptic curve E = Ea,b over a ring R may be defined, for our purposes, as a pair

a, b ∈ R, for which the discriminant D = 4a3 + 27b2 ∈ R∗. The set of points E(R) of E
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over R is the set of projective solutions (x : y : z) to the Weierstrass equation

(10.2) Y 2Z = X3 + aXZ2 + bZ3.

Here a projective point (x : y : z) is an equivalence class of triples (0, 0, 0) 6= (x, y, z) ∈
R×R×R, under the equivalence

(x, y, z) ∼ (x′, y′, z′) ⇐⇒ ∃λ ∈ R: x′ = λx, y′ = λy, z′ = λz.

For the rings satisfying the two conditions above, the set E(R) forms an abelian group. This

group is usually written additively, and the zero element is the point OE = (0 : 1 : 0). Two

points can be added easily, using explicit formulas for addition in terms of the coordinates

of both points, and a (see [89], [11]).

Thus integer multiples of points are also defined, and can be computed efficiently by

repeated doubling and addition. Since the addition formulas do not depend on the ring

over which the points are defined, multiplication by a fixed integer m gives in fact rise

to an endomorphism of E; if there are other endomorphisms than those obtained from

Z, we say that E admits complex multiplication (since such endomorphisms are obtained

from multiplication by an element from a subring of the ring of integers of some complex

quadratic field).

(10.3) Finite ground field. We will be especially interested in elliptic curves over finite

fields. Often, these are obtained from reductions of elliptic curves over number fields; more

precisely, if Ea,b is an elliptic curve over a number field K with coefficients a, b in the ring

of integers OK , then taking (10.2) modulo a prime ideal I of OK , we arrive at an elliptic

curve over OK/I, a finite field of N(I) elements, provided that D = 4a3 +27b2 6≡ 0 mod I.

Elliptic curves over finite fields have been studied for a long time. The number of

points of such a curve over a finite field is obviously finite, but much more can be said.

Hasse proved (see [145, Ch. V]), that for an elliptic curve E over Fq:

(10.4) | #E(Fqk) − (qk + 1) |≤ 2
√

qk

for every k ≥ 1. Also, for most integers m in the interval around qk +1 indicated by (10.4),

elliptic curves over Fqk of order m exist (see [158]), and the orders of all curves have a

known distribution over this interval (see [142]); all possible group structures have been

determined (see [142], [155], [137]).
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In 1985, an algorithm was published by Schoof [141], to compute the number of points

of an elliptic curve over a finite field Fq, that has an expected running time of O((logn)8)

bit operations ([141], [89]).

(10.5) Reduction modulo n. If n is prime and E is an elliptic curve defined over Q

such that a, b ∈ Z, reduction modulo n leads to an elliptic curve over the finite field Z/nZ.

In proving the primality of n, we may not use that n is prime though; that is one reason

why elliptic curves over rings are of interest to us.

All primality tests using elliptic curves make use of some variant of the following theorem.

(10.6) Theorem. Let n be coprime to 6, and let E be an elliptic curve defined over Z.

Let m and s be positive integers with s | m. Suppose that for every prime divisor q of s

there exists a point P ∈ E(Z/nZ) such that

(10.7) m · P = (0 : 1 : 0) and gcd(z, n) = 1,where (x : y : z) =
m

q
P ∈ E(Z/nZ).

Then

#E(Z/pZ) ≡ 0 mod s for every prime divisor p of n.

If moreover s > ( 4
√
n+ 1)2, then n is prime.

The proof is simple: (10.7) implies that the order of E(Z/pZ) is divisible by s, and the

bound in (10.4) does the rest.

The first application of the theory of elliptic curves to primality testing consisted of

analogues of Pocklington’s theorem in [11] (see also [26]). We quote an easy example here.

(10.8) Theorem. Let n ≡ 1 mod 4 and suppose that n = νν̄ ∈ Z[i], where ¯ denotes

complex conjugation in Z[i]. Suppose that gcd(ν, 2 · 3 · 5 · 13 · 17 · 29) = 1.

If there exist δ ∈ Z[i] coprime to ν, and for every prime divisor π of ν − 1 in Z[i] a

point P ∈ E−δ,0(Z[i]/(ν)), such that:

(ν − 1) · P = (0 : 1 : 0) and O 6= (ν − 1)

π
P ∈ E−δ,0(Z[i]/(ν)),

then n is prime.
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(10.9) Remarks. Actually, (10.8) yields a primality test in Z[i]: it is proved that ν is

prime in Z[i] and hence that n is prime in Z. Use is made of the fact that the curves

E−δ,0 : Y 2Z = X3 − δXZ2 admit complex multiplication by Z[i], given by i · (x : y : z) =

(−x : iy : z).

This theorem is readily generalized to other complex multiplication rings for which

corresponding elliptic curves are known.

Note that we need to be able to factor ν− 1 in Z[i] to apply (10.8), or equivalently, to

factor n− (ν + ν̄) + 1. The chances that we are able to do this, are independent of those

for n− 1. Also, ν may be multiplied by a unit, giving four possibilities.

The requirement that ν is coprime to some small odd primes is put in because of the

existence of certain small pseudoprimes to this primality test (see [11]). For a more general

discussion of elliptic pseudoprimes see [47], [104].

In 1986, the first general purpose primality test based on elliptic curves was proposed by

Goldwasser and Kilian [46]. We outline this next.

(10.10) The random curve method.

(i) Selection of a curve E and a point P . This is done by repeating the steps (a)

and (b), until the following conditions are satisfied: gcd(4a3 + 27b2, n) = 1, the

integer m satisfies m = kq with k > 1 small and q declared probably prime by some

compositeness test as in (8.10), and k · P 6= O in Ea,b(Z/nZ).

(a) Choose random x, y, a ∈ Z/nZ and compute b = y2 − x3 − ax ∈ Z/nZ; let

E = Ea,b and P = (x : y : 1).

(b) Apply Schoof’s method to the set Ea,b(Z/nZ) to determine the integer m; if

n is prime, m = #Ea,b(Z/nZ), but if n is not prime this step need not even

terminate.

(iii) Verification of the order. Finally it is checked that m · P = (0 : 1 : 0), as should be

the case if n is prime.

If all these steps have been performed successfully, n is proven prime if q is, by Theorem

(10.6). So we apply this algorithm recursively to q.

There is a heuristic argument why (10.10) should lead to a probabilistic primality test

running in expected polynomial time. First of all, if n is prime, the recursion depth is

O(logn) since q ≤ (n + 1 + 2
√
n)/2 by (10.5). There is only one point in this algorithm
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for which it was not already known that it can be done in expected polynomial time, and

that concerns the number of times the steps in (i) have to be performed until m has the

required form. The probability of m being of the right form, is comparable to that of m

being prime, and heuristically this probability should be of order (logn)−1. Goldwasser

and Kilian proved the following two theorems, even though they only allowed k = 2 in

(10.10). Here π(x) denotes the number of primes smaller than x.

(10.11) Theorem. If there exist constants C1 > 0 and C2 such that

(10.12) π(x+ 2
√
x) − π(x) ≥ C1

√
x

(logx)C2
for all x ≥ 2,

then the random curve test supplies a primality proof for prime n in an expected number

of O((logn)9+C) bit operations.

The main contribution to the running time in (10.11) is due to Schoof’s theorem for

computing the order of an elliptic curve over a finite field. Although polynomial, it has

been asserted that this algorithm is too slow for practical purposes.

The existence of the constants C1, C2 in (10.11) has not been proved; the best result

that is available, implies that (10.12) holds on the average, (see [57], [46]).

Yet it has been shown that (10.11) will run in expected polynomial time for almost

all n, in the following sense.

(10.13) Theorem. The random curve method provides primality proofs in an expected

number of bit operations that is polynomial in log n for a fraction of at least

1 − O(2−(log2 n)
1

log2 log2 log2 n

)

of all primes n.

Atkin has proposed another way of choosing an elliptic curve in (10.10). We will briefly

describe this below; his method circumvents the use of Schoof’s algorithm, and has led to a

practical primality test (see [6], [108]). With this test impressive results have been achieved

recently, see e.g. [13]. For a heuristic argument that Atkin’s complex multiplication method

leads to a probabilistic test running in expected time O((logn)7), see [83]. A rigorous

analysis of this algorithm has not been given yet.
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(10.14) The complex multiplication method. For this algorithm the following pro-

cedure to find a curve E and the integer m replaces that of (10.10)(i).

Choose a negative discriminant (that is ∆ ≡ 1 mod 4 or ∆ ≡ 8, 12 mod 16 and ∆ < 0

not divisible by the square of an odd prime), with gcd(n,∆) = 1. Next find out whether

or not in O∆, the ring of integers of Q(
√

∆), there exists ν such that n = νν̄; there is

an efficient way of doing this. Moreover, if such ν ∈ O∆ exists, and if n is prime, ν can

be found efficiently using quadratic forms. Compute m = (µν − 1)(µ̄ν − 1) for each of

the units µ in O∆; notice that there are four (if ∆ = −4) or six (if ∆ = −3) or two (for

other ∆) such units. If one of these m is of the required form, m = kq with k small and

q probably prime, we continue, and if none is as desired we repeat everything for another

choice of ∆.

Once a properm is found, construct an elliptic curve admitting complex multiplication

by O∆. This involves finding a root of a polynomial of degree h∆ over Z/nZ. For details,

see [83], [108], and also [61].

For theoretical purposes, Adleman and Huang have improved upon the random curve

method in another direction. Instead of looking at elliptic curves, they consider more

general abelian varieties; notably, they utilize abelian varieties obtained from hyper-elliptic

curves, defined in general by Y 2 = f(X), where f is a squarefree monic polynomial of

degree 2g+1 over some field K; for g = 1 we get the ordinary elliptic curve. The Jacobian

of such a hyper-elliptic curve is an abelian variety of dimension g over K; elliptic curves

form their own Jacobians. Again, the set of points of such a curve over an extension field

of the field of definition is the set of solutions to the equation Y 2 = f(X), replacing (10.2),

and the set of points of the Jacobian of the curve forms an abelian group. Over a finite

field, its number of elements is bounded by

(10.15) #J(Fq) = pg +O(
√

4p
2g−1

).

In the abelian variety method one uses Jacobians of dimension g = 2; again one

chooses random varieties, until the number m, that is the order #J(Z/nZ) if n is prime,

is of the form m = kq. If g = 2 however, the interval given by (10.15) has length O(n3/4),

and it has been proven that this contains sufficiently many primes to provide polynomial

bounds. Note that (10.15) shows that we reduce the proof of primality of n in this way to

that of an integer of roughly size n2; Adleman and Huang prove that after a few of these

steps in the wrong direction, one expects to hit a prime for which a proof can be given in
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time polynomial in logn by the random curve test (10.10). One arrives at the following

result, quoted before in (2.8).

(10.16) Theorem. There exists a positive integer k such that for every prime n the

abelian variety method gives a primality proof for n in expected time O((logn)k).
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11. MISCELLANEOUS RESULTS.

We start this section with some results concerning short proofs for primality. The first one

was already mentioned in Section 2, and states that every prime admits a short proof.

(11.1) Theorem. If n is prime, this can be proved by O((logn)4) bit operations.

Theorem (11.1) is due to Pratt, see [125]. As we mentioned in Section 2, the exponent 4

can be improved upon by using elliptic curves, see [121], and by using fast multiplication

techniques (see also [116]. For some examples see [12].

Here we are mainly interested in the concept of short certificates, that is, primality

proofs that can be verified in polynomial time.

(11.2) Short certificates. Pratt’s certificate for primality of n consists of a tree T , where

the nodes are integer triples, that can be constructed as follows.

First of all, T contains a root (n, 1, 0).

Then we add a node (n, p, a), one for every prime divisor p of n− 1, with a such that

a
n−1

p 6≡ 1 mod n and an−1 ≡ 1 mod n;

and we add edges between these nodes and the root. Notice that different nodes may

already consist of identical triples, if n− 1 contains multiple prime factors.

Next, for every odd prime divisor p of n − 1, we repeat the construction, that is, to

(n, p, a) we attach nodes (p, p′, b), where the primes p′ satisfy
∏

p′ = p− 1, and where

(11.3) b
p−1

p′ 6≡ 1 mod p and bp−1 ≡ 1 mod p;

moreover, we connect a leaf (2, 1, 0) to (n, 2, a).

This process is repeated for every odd prime that is encountered; since the primes

decrease, this terminates after finitely many steps. All leaves will be triples (2, 1, 0).

Verifying the primality proof encoded by T means checking that (11.3) holds for every

triple (p, p′, b) in T that forms a node other than the root or a leaf. That this suffices to

prove primality is an immediate consequence of Theorem (6.6).

Every check of (11.3) involves at most log2 p multiplications modulo p. Theorem

(11.1) can now simply be proved by showing that T has at most 2 log2 n− 1 nodes. That

can be done by induction; it is certainly true for n = 2 and n = 3, when the number of
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nodes is 1, respectively 2. Suppose it has been proved for all primes smaller than n; let

n− 1 = p1p2 · · · pk, with pi prime. Then k ≥ 2, and for the number of nodes we have:

#T ≤ 1 +

k
∑

i=1

(

2 log2 pi − 1
)

= 1 + 2 log2(n− 1) − k < 2 log2 n− 1.

(11.4) Example. The proof tree for the largest prime smaller than 1000 looks like this.
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Q

Q
Q

XXXXXXXXXXX

HHHHH

�
�

�
�

(2, 1, 0)

(2, 1, 0)

(3, 2, 2)

(2, 1, 0)

(2, 1, 0)

(2, 1, 0)

(5, 2, 2)

(41, 2, 3)(41, 5, 2)

(83, 2, 2)(83, 41, 2)

(997, 83, 2) (997, 2, 2)(997, 3, 7)

(997, 0, 0)

The second result we wish to mention here, concerns the existence of an infinitude of primes

for which short proofs can be found quickly.

One has to keep in mind that Theorem (11.1) asserts that short primality proofs exist

for every prime, but it does not tell you how to find them. On the other hand, we have

seen in Sections 6 and 7 that for certain infinite sets of integers, like the Fermat and the

Mersenne numbers, it is possible to decide efficiently whether an element is prime or not;

however, it is not known whether any of these sets contain infinitely many primes.

The result from [115] we quote below postulates the existence of a set containing

infinitely many primes, such that a given element n of the set can be tested for primality

in time polynomial in logn.

(11.5) Theorem. Let C be some suitably chosen absolute constant. Let N consist of the

positive integers n with

(11.6) n ≡ 1 mod 3k and 33(k−1) < n < 33k for some k,
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11. Miscellaneous results I. History

that satisfy the following property: if n is prime, there exists a with 1 < a ≤ C(log n)6

such that

(11.7) gcd(a
n−1

3 − 1, n) = 1 and an−1 ≡ 1 mod n.

If n ∈ N and n is prime, this can be proved in O((logn)9) bit operations. Moreover, N

contains infinitely many primes.

The first assertion is easily proved: let n ∈ N , then to prove that it is prime, we check

(11.7) for a ≤ C(logn)6. For every a this involves about logn multiplications modulo n, so

this can be done in O((logn)9). If (11.7) does not hold for any such a, then n is composite

by the assumptions on N . If we find a such that (11.7) holds, then every divisor r of

n satisfies r ≡ 1 mod 3k, with k as in (11.6), by Pocklington’s theorem (6.14). But since

n < 33k, it can have at most two such divisors r, say x3k +1 and y3k +1, with 1 ≤ xy < 3k;

then n = xy32k + (x + y)3k + 1. So, writing n = A32k + B3k + 1, we conclude that n is

now prime precisely when B2 − 4A is not an integral square.

The interesting part of Theorem (11.5) is the final assertion. Using results from

analytic number theory, a much stronger statement is proved in [115], namely that

{n ∈ N : n ≤ x, n prime} > cx
2
3

logx
,

for every x exceeding some x0, and for some absolute constant c > 0.

The final result we mention in this chapter concerns an efficient algorithm of H.W. Lenstra,

Jr., to find all divisors in a given residue class for a sufficiently large modulus. The following

theorem is contained in [88].

(11.8) Theorem. Let C > 0 and α ≥ 1
3

be constants, and let r, s, n be integers satisfying:

0 ≤ r < s < n, s > Cnα, gcd(r, s) = 1.

Then the number of divisors of n that are congruent to r mod s is bounded by a constant

that only depends on C and α, and there exists an algorithm that finds all of these in time

polynomial in logn.

We will be more explicit in Section II.9, since this algorithm is used in the final stage of

the algorithm of Chapter IV. For C = 1 and α = 1
3
, it is shown in [88] that there exist
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at most 11 divisors in a given residue class modulo s > 3
√
n, and that the algorithm for

finding them takes O((logn)3) bit operations. The running time does not depend on α,

and is linear in 1/C, which leads to a general bound of O( 1
C (logn)3) bit operations.

The use of Theorem (11.8) for primality testing will be clear: methods based on

Pocklington’s theorem, or on the Gauss sum method as in Section 9, restrict possible

divisors of n to certain residue classes modulo an auxiliary number s. Classically, one is

able to finish the primality proof quickly if s >
√
n since any composite n will have at least

one divisor smaller than
√
n; but using (11.8) the same is true if only s > 3

√
n.

(11.9) Example. Theorem (11.8) was successfully applied in primality testing for the

first time for the primality proof of

n =
101031 − 1

9
,

the number consisting of 1031 decimal digits 1. As reported in [38], an enormous effort

produced a completely factored part s of n12 − 1 larger than the cube root of n, but much

smaller than its square root. Using the Lucas-Lehmer methods, briefly mentioned at the

end of Section 7, one finds the residue classes modulo s in which the divisors of n must lie.

Running the algorithm in (11.8) took only a fraction of the time spent on finding factors

of n12 − 1.

The numbers (10k − 1)/9 are the analogue to the Mersenne numbers in base 10. It is

now known that for k ≤ 10000 (see [38]) there are only 5 primes, namely for k = 2, 19, 23

(see (4.4)), 317 (see [165]), and 1031.
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II. Theory 1. Compositeness testing

1. COMPOSITENESS TESTING.

In this chapter we give the mathematical background for the primality testing algorithm

that is described in detail in Chapter IV. As we explained in the previous chapter, this

algorithm should be thought of as a primality prover. It provides rigorous proofs of pri-

mality for prime numbers, and one would rather not spend any time on looking for such a

proof if the number is composite. Therefore one subjects the integer that is to be tested

to a few preliminary tests that will sort out the vast majority of composites. First one

performs some trial divisions by small primes and next one can apply a compositeness test

based on the theorem below.

(1.1) Lemma. Let n ∈ Z≥2 and n − 1 = r2k, with r odd. If n is prime then for every

element a ∈ {1, 2, . . . , n− 1}:

(1.2) ar ≡ 1 mod n or ar2i ≡ −1 mod n for some i with 0 ≤ i < k.

Proof. Since n is prime, we know from Fermat’s little theorem that an−1 ≡ 1 mod n.

Then either ar ≡ 1 mod n, or ar2j ≡ 1 mod n for some j with 0 < j ≤ k. If, in the latter

case, we take j minimal, then ar2j−1 ≡ −1 mod n since Z/nZ is a field. That proves (1.1).

This means that if we find a ∈ {1, 2, . . . , n− 1} for which (1.2) does not hold, n must be

composite. We will call a non-zero element a ∈ Z/nZ a witness to the compositeness of

n = r2k+1 if both ar−1 6= 0 and ar2i

+1 6= 0 for i = 0, 1, . . . , k−1. The following theorem,

due to Rabin (cf. [128]), shows that witnesses for composite numbers are abundant.

(1.3) Theorem. Let n ∈ Z≥2 be an odd composite number; write n − 1 = r2k, with r

odd. Then at least 3
4
(n− 1) elements a of {1, 2, . . . , n− 1} satisfy:

(1.4) ar 6≡ 1 mod n

and

(1.5) ar2i 6≡ −1 mod n, for i = 0, 1, . . . , k − 1.
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1. Compositeness testing II. Theory

Proof. Define j by

j = max{i ∈ Z≥0: b
2i ≡ −1 mod n for some b ∈ Z}.

Notice that every divisor of n, in particular n itself, must be 1 mod 2j+1. Let m = r2j;

then 2m divides n− 1.

Suppose that a is a non-witness for n. Then either ar = 1 or ar2i

= −1 for some i

with i ≤ j by definition of j. In both cases am = ±1, which implies that all non-witnesses

are contained in the subgroup

{a ∈
(

Z/nZ
)∗

: am = ±1}

of
(

Z/nZ
)∗

. Note that in particular every non-unit of Z/nZ is a witness.

Write
(

Z/nZ
)∗

=
∏

q

(

Z/qZ
)∗

where the product ranges over the set S of prime powers

q exactly dividing n. Let J be the subgroup J =
∏

q〈−1〉 of
(

Z/nZ
)∗

. Since every q satisfies

q ≡ 1 mod 2j+1, it follows that every element of J is a 2j-th power, and therefore also an

m-th power. Hence {a ∈
(

Z/nZ
)∗

: am = 1} has index 2#S in {a ∈
(

Z/nZ
)∗

: am ∈ J}.
But {a ∈

(

Z/nZ
)∗

: am = 1} is a subgroup of index 2 in {a ∈
(

Z/nZ
)∗

: am = ±1} and

{a ∈
(

Z/nZ
)∗

: am ∈ J} is contained in {a ∈
(

Z/nZ
)∗

: an−1 = 1}, so

[
(

Z/nZ
)∗

: {a ∈
(

Z/nZ
)∗

: am = ±1}] ≥
≥ 2#S−1[

(

Z/nZ
)∗

: {a ∈
(

Z/nZ
)∗

: an−1 = 1}].

If #S ≥ 3 this implies that the subgroup in which the non-witnesses are contained has

at least index 4 in
(

Z/nZ
)∗

, which proves the result in that case. If #S = 2, then n can not

be a Carmichael number by I.(6.5); in that case [
(

Z/nZ
)∗

: {a ∈
(

Z/nZ
)∗

: an−1 = 1}] ≥ 2

by Theorem I.(8.4) and so again the result follows. Finally, if #S = 1, then n = q = pl for

some odd prime p and some l ∈ Z≥2. Now
(

Z/nZ
)∗

is cyclic of order (p − 1)pl−1; since

p and n − 1 are coprime, bn−1 = 1 implies that b is a pl−1-th power, so [
(

Z/nZ
)∗

: {a ∈
(

Z/nZ
)∗

: an−1 = 1}] ≥ pl−1. But pl−1 is at least 4, unless n = 9. For n = 9 however, only

cubes b satisfy b8 = 1, so there are 6/3 = 2 non-witnesses, and 6 = 3(n− 1)/4 witnesses.

This proves (1.3).

(1.4) Compositeness test. Choose a ∈ {2, 3, . . . , n − 2} at random, and compute b =

ar mod n. If b 6≡ ±1 mod n, compute b2, b4, b8 . . . mod n until either b2
i ≡ −1 mod n or

i = k − 1.
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II. Theory 1. Compositeness testing

The number n is said to pass the test if b 6≡ ±1 mod n and b2
i 6≡ −1 mod n for

1 ≤ i < k. If n passes the test, n must be composite by (1.1). If n does not pass the test

we may repeat it with another choice of a; from (1.3) we see that the probability that n

will not pass the test for c independent choices of a is at most 4−c. Therefore we may be

reasonably confident that n is prime if it does not pass this test a few times and in that

case we will subject it to our primality prover.
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2. Cyclotomic constellations II. Theory

2. CYCLOTOMIC CONSTELLATIONS.

Before giving the first theorem we will indicate the kind of properties of prime numbers we

will try to use. For the basic properties of cyclotomic fields and cyclotomic polynomials,

we refer the reader to [56].

Suppose that K is a finite Galois extension of Q with group Gal(K/Q), of order u.

Suppose that a cyclotomic field Q(ζm) exists such that Q ⊂ K ⊂ Q(ζm), where ζm is a

primitivem-th root of unity. It is well known that Gal(Q(ζm)/Q) is canonically isomorphic

to
(

Z/mZ
)∗

under the map

Gal(Q(ζm)/Q) →
(

Z/mZ
)∗

given by

σ 7→ b, where b is such that σ(ζm) = ζb
m.

For n with gcd(m,n) = 1 the Artin symbol φn of K ⊃ Q is the element of Gal(K/Q)

obtained by restriction of the inverse image of n mod m under this map; that is, φn is the

restriction to K of the automorphism on Q(ζm) that sends ζm to ζn
m. Notice that φn acts

on OK , the ring of integers of K, and since the ideal nOK is invariant this induces an

action on OK/nOK . Below we give three properties involving the Artin symbol φn, the

residue class ring OK/nOK and cyclotomic polynomials Φt, with t ∈ Z≥1, that hold if n

is prime; Theorem (2.8) may be seen as a partial converse: what can be said about n if

some of these properties hold for some K?

First we need a lemma on roots of unity. By ord g we will abbreviate the order of an

element g in a finite group G.

(2.1) Lemma. Let R be a commutative ring with 1, let t ∈ Z≥1, and let ζ ∈ R satisfy

Φt(ζ) = 0. Then ζ ∈ R∗. If t · 1 6= 0 in R then ord ζ = t in R∗. If t · 1 ∈ R∗ then

ζi − ζj ∈ R∗, for every i, j ∈ Z with i 6≡ j mod t.

Proof. In Z[X]

Xt − 1 =
∏

k|t
Φk.

Since Φt(ζ) = 0, this implies that ζt = 1 so ζ ∈ R∗ and d = ord ζ divides t.
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II. Theory 2. Cyclotomic constellations

Assume that t · 1 6= 0 in R; if d < t, then

Xt − 1 = Φt ·
(

∏

k|d
Φk

)

·G = Φt · (Xd − 1) ·G

for some G ∈ Z[X]. Now

Φt ·G =
Xt − 1

Xd − 1
= 1 +Xd + . . .+X( t

d−1)d

and on substituting ζ we see 0 = t/d in R. This contradicts our assumption, and therefore

d = t.

Now assume that t · 1 ∈ R∗. Suppose that i 6≡ j mod t; without loss of generality we

assume that i > j. Since ζ ∈ R∗, multiplication by ζ−j shows that the final statement

of the lemma is equivalent to the assertion ζk − 1 ∈ R∗, for every k 6≡ 0 mod t. Fix such

k, and let the ring S be S = R/(ζk − 1)R. The image of ζ in S still satisfies Φt(ζ) = 0,

while the order of ζ in S is clearly smaller than t; that contradicts the previous part of

this lemma, unless t · 1 = 0 in S. But t · 1 is also a unit in S since it is a unit in R by

assumption. Therefore S must be the zero ring: ζk − 1 is a unit in R.

That proves (2.1).

(2.2) Remarks. Note that it is not always true that an element of order t is a zero of Φt:

for any t ∈ Z≥2, the element ζ = Y in the ring R = Q[Y ]/(Y t − 1)Q[Y ] has order t, but

Φt(Y ) 6= 0 in R.

In the remainder of this chapter, we will also use several times that if h divides k, we

may view R[ζh] as a subring of R[ζk], for any commutative ring R with 1. Here we define

R[ζk] to be the ring R[X]/Φk, in which the element ζk is the image of X. Let f be the

minimal polynomial of ζk over Q(ζh); this will be a polynomial of degree d = φ(k)/φ(h)

with coefficients in the ring of integers Z[ζh]. Therefore, Z[ζk] = Z[ζh]/fZ[ζh]. As additive

groups, we therefore have

Z[ζk] ∼= ⊕d
i=0Z[ζh]Xi;

in particular, Z[ζh] is a direct summand of Z[ζk]. This leads not only to an injection of

Z[ζh] into Z[ζk], but, by taking tensor products with R over Z, indeed to an injection of

R[ζh] into R[ζk] for any R.

Note that an injection Z[α] ↪→ Z[β] does not in general lead to R[α] ↪→ R[β] for every

R, as the following exaple shows. Take α =
√

50 and β = ζ8; since
√

2 ∈ Z[ζ8] we have
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Z[
√

50] ↪→ Z[ζ8]. But if we take R = Z/5Z, then R[
√

50] ∼= R[X]/X2 does not inject into

R[ζ8] (which does not have nilpotents).

(2.3) Lemma. Let Q ⊂ K ⊂ Q(ζm) be an intermediate field. If n is prime then:

φn(ζ) = ζn for every ζ ∈ OK/nOK .

Proof. By Fermat’s little theorem and the action of φn on ζm we see that φn(α) ≡ αn mod

n for every α ∈ Z[ζm], the ring of integers of Q(ζm). The result follows immediately.

(2.4) Remark. Note that the converse of (2.3) does not hold: for instance, if n is a

Carmichael number, then with K = Q and any m coprime to n, we have that φn(z) = z ≡
zn mod n for every z ∈ Z.

(2.5) Lemma. Let Q ⊂ K ⊂ Q(ζm) be a Galois extension, and let n ∈ Z≥2 be coprime

to m. Then:

OK/nOK is a field ⇐⇒ n is prime and Gal(K/Q) = 〈φn〉.

Proof. Let u denote the degree [K : Q]. Suppose that OK/nOK is a field; since Z/nZ ⊂
OK/nOK it is clear that n is prime. Then OK/nOK is a field of nu elements and it is

well-known that Gal(Fnu/Fn) = 〈Fn〉, where Fn: x 7→ xn. Any σ ∈ Gal(K/Q) induces

an Fn-automorphism of Fnu , so we get a homomorphism Gal(K/Q) → Gal(Fnu/Fn) that

maps φn by (2.3) to the generator Fn. Since both Galois groups are of order u this proves

the implication ⇒.

For the converse, use again that φn(α) ≡ αn mod nOK for every α ∈ OK by (2.3) and

so φi(α) ≡ αni

mod nOK . For the norm NK/Q(α) ∈ Z we have:

NK/Q(α) ≡
u−1
∏

i=0

αni

= α1+n+...+nu−1

= α
nu−1
n−1 mod nOK .

Since n is prime, αnu−1 ≡ NK/Q(α)n−1 ≡ 0 or 1 mod nOK . But αnu−1 ≡ 1 mod nOK

means that α ∈
(

OK/nOK

)∗
and αnu−1 ≡ 0 mod nOK implies that α = φuα ≡ αnu ≡

0 mod nOK . Therefore every non-unit in OK/nOK is zero: OK/nOK is a field.
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This proves (2.5).

(2.6) Lemma. Let K be a number field of degree [K : Q] = u, and let n ∈ Z≥2. Then

OK/nOK is a field if and only if:

for every t | nu − 1 : Φt(ζ) = 0 for some ζ ∈
(

OK/nOK

)∗
.

Proof. If OK/nOK is a field, it consists of nu elements and it is the splitting field over

Fn of Xnu−1 − 1 =
∏

Φd, the product ranging over all divisors of nu − 1. That proves ⇒.

For the other implication, apply Lemma (2.1) with t = nu − 1.

That proves (2.6).

Next we investigate what can be said about n if for some t we can find a cyclic field L of

degree u (with u such that t | nu−1) and an element ζ in OL/nOL such that Φt(ζ) = 0 and

σζ = ζn for some generator σ of Gal(L/Q). In Section 4 we will construct number fields

L such that φn generates the Galois group; notice that then, if n is prime the existence of

ζ is ensured by (2.3), (2.5) and (2.6).

In the sequel we will often encounter the above situation and therefore we introduce

the following abbreviating definition.

(2.7) Definition. Let n ∈ Z≥2 and let t ∈ Z≥1 be coprime to n. A t-th cyclotomic

constellation for n is a triple L, ζ, σ consisting of a Galois extension L ⊃ Q of degree u =

ordn, the order of n in
(

Z/tZ
)∗

, an element ζ in OL/nOL and an element σ ∈ Gal(L/Q),

satisfying

Φt(ζ) = 0 and σζ = ζn.

(2.8) Theorem. Let n ∈ Z≥2, t ∈ Z≥1 with gcd(n, t) = 1 and let u be the order of n in
(

Z/tZ
)∗

. Suppose that a t-th cyclotomic constellation L, ζ, σ for n exists. Then:

OL/nOL = Z/nZ[ζ] and gcd(∆L, n) = 1.

Furthermore,

(2.9) for every r | n there exists i mod u such that r ≡ ni mod t.
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Finally, L ⊃ Q is cyclic and Gal(L/Q) = 〈σ〉, while

(2.10) for every r | n : φr = σi with i as in (2.9); in particular φn = σ.

Finally, and

Proof. The element σ of Gal(L/Q) induces an automorphism of OL/nOL that we also

indicate by σ. Since gcd(n, t) = 1, the element ζ of OL/nOL has order t by (2.1). But

σζ = ζn, and therefore the order of σ on OL/nOL is at least u, the order of n in
(

Z/tZ
)∗

.

This implies that 〈σ〉 = Gal(L/Q).

Obviously OL/nOL ⊃ Z/nZ[ζ]; we show that the elements 1, ζ, . . . , ζu−1 are linearly

independent over Z/nZ, and so the cardinality of both rings must be nu, which proves

equality. To do so, look at the Vandermonde determinant

det









1 ζ · · · ζu−1

σ1 σζ · · · σζu−1

...
...

. . .
...

σu−11 σu−1ζ · · · σu−1ζu−1









=
u−1
∏

i,j=0
i>j

(

σiζ − σjζ
)

=
u−1
∏

i,j=0
i>j

(

ζni − ζnj
)

of which the value is a unit in Z/nZ[ζ] by (2.1). But a non-trivial Z/nZ-linear combination

of the elements in the first row would give a non-trivial Z/nZ-linear combination of any

other row as well, since σ leaves Z/nZ invariant. Therefore the existence of a non-trivial

relation between 1, ζ, . . . , ζu−1 would imply that the above determinant is a zero-divisor,

and would thus lead to a contradiction.

By lifting ζ to an element in OL, one proves also that gcd(∆L, n) = 1.

From the theorem of Kronecker-Weber it follows that L ⊂ Q(ζm) for some m, and

moreover such that m can be chosen coprime to n (see [58, Ch. V]).

Let r be a prime divisor of n; then φr ∈ Gal(L/Q) = 〈σ〉, so φr = σi for some i with

0 ≤ i < u. As before, φr induces an automorphism on OL/rOL that we indicate by the

same symbol, and which is by (2.3) just r-th powering on OL/rOL. From the commutative

diagram

OL/nOL
modr−→ OL/rOL





yσi





y
φr

OL/nOL
modr−→ OL/rOL

we see that ζni

= σi(ζ) ≡ φr(ζ) ≡ ζr mod rOL. From Lemma (2.1) again, we see that the

order of (the image of) ζ in OL/rOL is t. Therefore ζni ≡ ζr mod rOL implies ni ≡ r mod t
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and we find (2.9). Moreover, ni ≡ r mod t holds by multiplicativity for every divisor r of

n, if we take i such that φr = σi. In particular then, with r = n, we find that ni ≡ n mod t

for i such that φn = σi, and therefore i ≡ 1 mod ordn, the order of n in
(

Z/tZ
)∗

. Since

this order equals u by definition and u = ordσ as well, we get φn = σ. This proves (2.10).

That finishes the proof of (2.8).

(2.11) Proposition. Let n ∈ Z≥2, and t ∈ Z≥1 with gcd(n, t) = 1. Suppose that a t-th

cyclotomic constellation L, ζ, σ for n exists. Then for every divisor t′ of t there exists a

t′-th cyclotomic constellation L′, ζ ′, σ′ for n, with L ⊃ L′ ⊃ Q.

Proof. Let Gal(L/Q) = 〈σ〉 and let L′ be the intermediate field Q ⊂ L′ ⊂ L of degree

u′ over Q, where u′ is the order of n in
(

Z/t′Z
)∗

. Notice that L′ is the invariant field of

L under H = 〈σu′〉. Let ζ ′ = ζt/t′ ∈ OL/nOL, then the basic properties of cyclotomic

polynomials imply that Φt′(ζ
′) = 0. Since σ(ζ) = ζn and nu′ ≡ 1 mod t′ we also have

σu′
(ζ ′) = ζ ′n

u′
= ζ ′. Thus ζ ′ ∈ (OL/nOL)H . We want to prove that ζ ′ ∈ OL′/nOL′ . This

is done by showing that in fact OL′/nOL′ = (OL/nOL)H , by a cardinality argument, as

in (2.10).

Clearly, OL′/nOL′ ⊂ (OL/nOL)H , and since #OL′/nOL′ = nu′
, it suffices to show

that #(OL/nOL)H ≤ nu′
. Consider the value of the Vandermonde determinant

det









1 ζ · · · ζ
u
u′ −1

σu′
1 σu′

ζ · · · σu′
ζ

u
u′ −1

...
...

. . .
...

σ( u
u′ −1)u′

1 σ( u
u′ −1)u′

ζ · · · σ( u
u′ −1)u′

ζ
u
u′ −1









;

this is a unit, and hence 1, ζ, . . . , ζ
u
u′ −1 are independent over (OL/nOL)H . Therefore

nu = #(OL/nOL) ≥ #((OL/nOL)H)u/u′
, that is, #(OL/nOL)H ≤ nu′

as desired.

This concludes the proof of (2.11).

(2.12) Remarks. Let again L, ζ, σ be a t-th cyclotomic constellation for n, with [L :

Q] = u. Then the above shows in particular that for every u′ dividing u, the degree

u′ subfield L′ ⊂ L forms together with ζt/t′ and σu′
a t′-th cyclotomic constellation for

n, where t′ = gcd(t, nu′ − 1). It will later on be convenient to refer to this as the t′-th

cyclotomic sub-constellation.

The definition of cyclotomic constellation L, ζ, σ above ensures that OL/nOL, ζ,

together with the induced automorphism σ on OL/nOL, form what is called a cyclotomic
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2. Cyclotomic constellations II. Theory

extension of Z/nZ in [87]. After we will have described a method for finding the field

L and the element ζ (in Section 4), a cyclotomic constellation may be thought of as the

construction of a cyclotomic extension for Z/nZ.

Proposition (2.11) merely states that the existence of t-th cyclotomic constellations

guarantees the existence of t′-th cyclotomic constellations for divisors t′ of t. Later on

we will see that the nice property of Artin symbols in cyclotomic extensions expressed by

(2.10) implies that the consequence expressed by (2.9), that every divisor of n is a power

of n modulo t, even holds for many multiples of t. (In [87] it is also proved that for these

multiples cyclotomic extensions do exist, but we will not use that fact.)
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II. Theory 3. Characters and Gauss sums

3. CHARACTERS AND GAUSS SUMS.

This section contains useful prerequisites about characters and Gauss sums. Most of these

are well-known (and can for instance be found in [51], [92]), except that our characters

take on their values in certain rings.

Throughout this section, let G denote a finite abelian group, and let expG denote the

exponent. That is, expG is the smallest positive integer e for which ge = 1 for every g ∈ G.

Since our groups are finite, expG is thus equal to the maximal order of the elements in G.

Also, throughout this section, A will be a commutative ring with 1, and t ∈ Z≥1 will

be such that t · 1 6= 0 in A; furthermore ζ ∈ A will be such that Φt(ζ) = 0.

(3.1) Definitions. A character χ on a finite abelian group G with values in 〈ζ〉 is a

homomorphism

χ: G→ 〈ζ〉

from G to the multiplicative subgroup 〈ζ〉 of A∗ generated by ζ. The principal character

is the character χ with χ(g) = 1 for every g ∈ G. The set of characters on G with values

in 〈ζ〉 forms a group under multiplication:

χ1 · χ2(x) = χ1(x) · χ2(x);

this group is denoted by Hom(G, 〈ζ〉). Its unit element is the principal character on G.

(3.2) Lemma. If expG divides ord ζ then #Hom(G, 〈ζ〉) = #G.

Proof. To prove this assertion, use that any character on a quotient group G/H of G

induces a character on G via the natural map G→ G/H; writing G as the direct product

of cyclic subgroups, we thus see that it suffices to prove equality in case G is cyclic. A

character on a cyclic group G is determined by its action on a generator g. But then it is

immediately clear that every character on G is equal to one of the #G different powers of

the character that sends g to an element of order #G in 〈ζ〉; notice that such an element

exists by our assumptions.

That proves (3.2).

(3.3) Lemma. Let χ ∈ Hom(G, 〈ζ〉) be a non-principal character. Suppose that t ·1 ∈ A∗.

Then:
∑

x∈G

χ(x) = 0.
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3. Characters and Gauss sums II. Theory

Proof. Let a ∈ G be such that χ(a) 6= 1. Let 1 ≤ k < t be such that χ(a) = ζk. By

Lemma (2.1), the element χ(a) − 1 = ζk − 1 is a unit in A. Now

∑

x∈G

χ(x) =
∑

x∈G

χ(ax) = χ(a)
∑

x∈G

χ(x)

which implies that
∑

χ(x) = 0 in A since χ(a) − 1 is a unit.

That proves (3.3).

(3.4) Lemma. Suppose that expG divides ord ζ. Let x, y ∈ G. If

χ(x) = χ(y) for every character χ ∈ Hom(G, 〈ζ〉),

then x = y.

Proof. Denote z = xy−1 ∈ G. Suppose that χ(z) = 1 for every character on G; if Z

denotes the subgroup of G generated by z then all characters on G factor via G/Z. Thus

#Hom(G, 〈ζ〉) ≤ #Hom(G/Z, 〈ζ〉) = #G/Z ≤ #G;

by (3.2) this implies that Z is trivial, so z = 1 and x = y.

That ends the proof of (3.4).

We will mainly be interested in the case that G is the multiplicative group
(

Z/sZ
)∗

of

integers modulo s; in the rest of this section s ∈ Z≥1.

(3.5) Definitions. Let χ ∈ Hom(
(

Z/sZ
)∗
, 〈ζ〉). The conductor condχ of χ is the smallest

divisor m of s for which the homomorphism χ factors as

χ:
(

Z/sZ
)∗ →

(

Z/mZ
)∗ → 〈ζ〉

where the first map is the natural map. If condχ = s then the character is called primitive;

otherwise it is induced from a primitive character in Hom(
(

Z/mZ
)∗
, 〈ζ〉), for a proper

divisor m of s. Note that for every χ there is a unique primitive character that induces χ.

The unit element of Hom(
(

Z/sZ
)∗
, 〈ζ〉) is the principal character (of conductor 1) denoted

by 1. The inverse of χ, denoted by χ−1, is a character of conductor condχ−1 = condχ

that satisfies: χ−1(x) = χ(x)−1 = χ(x−1) for every x ∈
(

Z/ condχZ
)∗

. The order ordχ of

a character is its order as an element of Hom(
(

Z/sZ
)∗
, 〈ζ〉). Notice that by this definition

ordχ | exp
(

Z/ condχZ
)∗

.
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A character modulo s is an element of Hom(
(

Z/sZ
)∗
, 〈ζ〉), where exp

(

Z/sZ
)∗ | ord ζ.

Next we extend the definition of a character modulo s in such a way, that is defined

on the integers. If χ is a character modulo s of conductor m, then for x ∈ Z/sZ with

gcd(x,m) > 1 we define χ(x) = 0. For any z ∈ Z we then define χ(z) by χ(z) = χ(x),

where x ∈ Z/mZ and x = (z mod m). It is important that m is the conductor here; as

a consequence, if χ modulo s is any character, χ(x) 6= 0 whenever x is coprime to the

conductor of χ, even though gcd(x, s) may be non-trivial. For the the trivial character we

have 1(z) = 1 for every z ∈ Z.

Let χ be a character modulo s; then χ defines a character χp modulo pk, for each of

the maximal prime powers pk ‖ s, by projection onto the components in the decomposition:

(

Z/sZ
)∗

=
∏

(

Z/pkZ
)∗
.

Explicitly, for every x ∈
(

Z/pkZ
)∗

we can find by the Chinese remainder theorem an

integer y such that

y ≡ x mod pk and y ≡ 1 mod
s

pk
.

The character χp modulo pk is then defined by χp(x) = χ(y) for every x ∈
(

Z/pkZ
)∗

. The

characters χp are called the components of χ. This gives the component decomposition

χ =
∏

χp for any character. We have χ(x) =
∏

χp(x) for every x ∈
(

Z/sZ
)∗

. The

components are completely determined by χ; conversely, a finite set of characters defined

modulo mutually coprime moduli defines a character modulo the product of these moduli,

so in particular χ is completely determined by its components χp. If χ is primitive, then

so are all of its components, and vice versa.

Recall from (2.2) that we may view A[ζk′ ] as a subring of A[ζk], for any k′ dividing k.

(3.6) Definition. Let χ be a primitive character modulo s and a ∈ Z. Then we define

the Gauss sums

τa(χ) =
∑

x∈(Z/sZ)∗

χ(x)ζax
s

in A[ζs]. The Gauss sum τ(χ) associated to a character χ is by definition τ1(χ).

Notice that by our conventions we may as well let the summation in the definition of

Gauss sums range over all x ∈ Z/sZ. Also note that τ(1) = 1.
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3. Characters and Gauss sums II. Theory

(3.7) Remark. It is important to note in the definition above that s is the conductor of

χ. For every k ∈ Z≥1, the primitive character χ modulo s induces a character modulo ks.

Hasse proves the following relation (cf [51, p. 449])

∑

x∈(Z/ksZ)∗

χ(x)ζax
ks =

φ(ks)

φ(s)
µ(k)χ(k)τa(χ);

here µ is Möbius’s function, given by µ(p1p2 · · · pl) = (−1)l if all primes pi are different,

while µ(z) = 0 if z is not squarefree.

It is somewhat easier to see that by our previous conventions

∑

x∈Z/ksZ

χ(x)ζax
ks = 0

whenever ζa
k 6= 1.

(3.8) Proposition. Let χ be a character modulo s. Then:

τa(χ) = χ−1(a)τ(χ) for every a ∈ Z.

Proof. Let m be the conductor of χ.

If gcd(a,m) = 1 then x 7→ a · x is injective on Z/mZ so

τa(χ) =
∑

x∈(Z/mZ)∗

χ(x)ζax
m =

= χ(a−1)
∑

x∈(Z/mZ)∗

χ(ax)ζax
m =

= χ−1(a)
∑

ax∈(Z/mZ)∗

χ(ax)ζax
m = χ−1(a)τ(χ).

If gcd(a,m) = d > 1, let I ⊂ Z/mZ be the ideal I = ker(x 7→ a ·x). Then I is non-zero (it

is for instance generated by m/d), and J = (1 + I)∩
(

Z/mZ
)∗

is a subgroup of
(

Z/mZ
)∗

.

Also, J is equal to the kernel of the natural map
(

Z/mZ
)∗ → ((Z/mZ)/I)

∗
; so if χ is

trivial on J , it factors through I, which is impossible since m is the conductor of χ. But

then with Y a set of representatives for
(

Z/mZ
)∗
/J

τa(χ) =
∑

y∈Y

∑

x∈yJ

χ(x)ζax
m =

=
∑

y∈Y

χ(y)ζay
m

∑

x∈J

χ(x) = 0
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by (3.3). Because χ−1(a) = 0 as well in this case, this finishes the proof of (3.8).

(3.9) Lemma. Let χ be a primitive character modulo s. Then for a ∈ Z:

τa(χ)τa(χ
−1) =

{

τ(χ)τ(χ−1) if gcd(a, s) = 1;
0 if gcd(a, s) 6= 1.

Proof. By (3.8) we find:

τa(χ)τa(χ
−1) = χ−1(a)τ(χ)χ(a)τ(χ−1).

If gcd(a, s) 6= 1 this equals 0 because χ−1(a) = 0. If gcd(a, s) = 1 it equals τ(χ)τ(χ−1).

This proves (3.9).

(3.10) Corollary. For every character χ modulo s:

τ(χ)τ(χ−1) = χ(−1) condχ.

If s ∈ A∗, then for every j ∈ Z≥1:

τ(χj) ∈ A[ζs]
∗.

Proof. Let m be the conductor of χ. Consider the Gauss sums τa(χ) ∈ (Z[ζt])[ζs], where

we let a range over a set of representatives of Z/mZ. On the one hand:

∑

a∈Z/mZ

τa(χ)τa(χ
−1) = #

(

Z/mZ
)∗
τ(χ)τ(χ−1)

by (3.9). On the other hand, the map a 7→ ζ
(x+y)a
m is a character on Z/mZ, so:

∑

a∈Z/mZ

τa(χ)τa(χ
−1) =

∑

x,y∈(Z/mZ)∗

(

χ(x)χ−1(y)
∑

a∈Z/mZ

ζ(x+y)a
m

)

= χ(−1)φ(m)m

since by (3.3) the inner sum is zero whenever x 6= −y. Since φ(m) is not a zero-divisor in

(Z[ζt])[ζm], it follows that τ(χ)τ(χ−1) = χ(−1) ·m ∈ Z[ζm]; but then they are equal under

the natural map (Z[ζt])[ζm] → A[ζm], sending ζt to ζ and ζm to ζm, as well. That yields

the first part of the corollary.
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The second part follows from this, since the conductor m of χj is a divisor of s. If m

is a proper divisor of s, then τ(χj) ∈ A[ζm], which we have viewed as a proper subring of

A[ζs]; in both τ(χj) is a unit.

(3.11) Lemma. If n is prime, gcd(n, s) = 1 and both χ and χn are primitive characters

modulo s, then:

τ(χn) ≡ χ(n)nτ(χ)n mod nA[ζs].

Proof. In A[ζs] we have the following equalities:

τ(χn) =
∑

x∈(Z/sZ)∗

χ(x)nζx

=
∑

x∈(Z/sZ)∗

χ(nx)nζnx since gcd(n, s) = 1

= χ(n)n
∑

x∈(Z/sZ)∗

χ(x)nζnx

≡ χ(n)n
(

∑

x∈(Z/sZ)∗

χ(x)ζx
)n

mod n since n is prime.

But

(

∑

x∈(Z/sZ)∗

χ(x)ζx
)n

= τ(χ)n,

and the proof of (3.11) is finished.
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4. CONSTRUCTING CYCLOTOMIC CONSTELLATIONS.

For the applications of Theorem (2.8) and some theorems in the next sections, we need to

construct cyclotomic constellations L, ζ, σ of a given degree. We want to be able to compute

efficiently in OL/nOL, in particular to find an element ζ with the desired properties. In

this section we describe how to do this explicitly.

First we show that, to obtain suitable fields for our cyclotomic constellations, it suffices

to construct extensions of prime power degree.

(4.1) Proposition. Let n ∈ Z≥2, and suppose that for i = 1, 2 the number field Li ⊃ Q is

cyclic, Gal(Li/Q) = 〈σi〉, of degree [Li : Q] = ui, with gcd(∆Li
, n) = 1. If gcd(u1, u2) = 1

then L = L1 ·L2 is cyclic over Q of degree u1u2 with group 〈σ〉 = Gal(L/Q) ∼= Gal(L1/Q)×
Gal(L2/Q), and gcd(∆L, n) = 1.

Proof. It is standard Galois theory that the composite L of two number fields L1, L2

that have cyclic Galois groups of coprime orders, is a cyclic number field with the direct

product of these groups as Galois group. For the discriminants one has (cf. [139, p. 112]):

∆L = NL1/Q

(

∆L/L1

)

· ∆[L:L1]
L1/Q ,

and as a consequence ∆L is built up from primes in ∆L1
and ∆L2

only.

This proves (4.1).

The rest of this section is devoted to the construction of cyclotomic constellations of prime

power degree. The idea is to give an explicit description of useful prime power degree fields

as subfields of cyclotomic fields. For this description we use the correspondence, given in

the next lemma, between intermediate fields Q(ζm) ⊃ L ⊃ Q and subgroups of characters

in Hom(
(

Z/mZ
)∗
, 〈ζ〉) for ζ a zero of a cyclotomic polynomial of large enough order. If X

is a subgroup of Hom(G, 〈ζ〉) then we denote

ker X =
⋂

χ∈X

kerχ =
⋂

χ∈X

{x ∈ G: χ(x) = 1}.

As is customary in Galois theory, we denote for any subgroup H of Gal(L/Q) by LH the

invariant field of L under H.

Recall from the previous section that a character modulo m, with m ∈ Z≥1, is an

element of Hom(
(

Z/mZ
)∗
, 〈ζ〉); here ζ is an element of a commutative ring A with 1, and

satisfies Φt(ζ) = 0, with t · 1 6= 0 and with exp
(

Z/mZ
)∗ | ord ζ.
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(4.2) Proposition. Let m ∈ Z≥2. There exists a bijection between the set of intermediate

fields Q(ζm) ⊃ L ⊃ Q and the set of subgroups X of the group of characters modulo

m, which is given by L = Q(ζm)ker X, where ker X acts via the usual identification of

Gal(Q(ζm)/Q) with
(

Z/mZ
)∗

.

Proof. Let G =
(

Z/mZ
)∗

and let X be a subgroup of characters on G. It is clear that

ker X is a subgroup of G. Conversely, to any subgroup H of G, we can assign a subgroup

of characters on G, namely those characters that are trivial on H. This gives an inclusion

reversing bijection between the set of subgroups X of characters on G and the set of

subgroups H of G. By the main theorem of Galois theory the set of subgroups H of G

corresponds bijectively to the set of intermediate fields Q ⊂ L ⊂ Q(ζm), via L = Q(ζm)H .

That proves (4.2).

(4.3) Theorem. Let n ∈ Z≥2. Let χ be a primitive character modulo m. Let L =

Q(ζm)ker χ and let η = TrQ(ζm)/L ζm ∈ OL. If gcd(n,m) = 1, then ση 6≡ η mod nOL for

any σ ∈ Gal(L/Q).

Proof. Let G denote Gal(Q(ζm)/Q) and let H = kerχ ⊂ G. Then G/H is cyclic, of

order u = ordχ; let τ be a generator. The canonical map G → G/H induces a surjective

map ε: Z[G] → Z[G/H] of group rings. We map any element µ ∈ Z[G/H] to an element

δµ ∈ Z[G] by:

µ =
∑

ν∈G/H

tνν 7→ δ(µ) =
∑

σ∈G

sσσ, where sσ = tε(σ).

Note that δ is clearly injective. In this way, for every µ ∈ Z[G/H] we have

δ(µ)x = µ (Trx) for every x ∈ Q(ζm),

where, as in the rest of this proof, Tr = TrQ(ζm)/L. Let x ∈ Z[ζm] and suppose that ρx = x

for some ρ ∈ G \H. Then

Trx = ρ (Trx) = ε(ρ) Trx.

Since ε(ρ) 6= 1 in G/H = 〈τ〉, we have τu/p ∈ 〈ε(ρ)〉 for some prime p dividing u, and

therefore (1 − τu/p) Trx = 0.

Now choose

ψ =
∏

p|u
(1 − τu/p) ∈ Z[G/H],
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and let γ = δ(ψ) ∈ Z[G]. Note that γ 6= 0, since δ is injective. The above argument shows

that for any x ∈ Z[ζm]

ρx = x for some ρ 6∈ H ⇒ γx = δ(ψ)x = 0;

the same is true for x ∈ Z/nZ[ζm].

Suppose that the image of Z/nZ[ζm] under γ is 0, so in particular γζi
m ≡ 0 mod n for

every i; then

(4.4) n divides det
(

σζi
m

)

0≤i<φ(m)
σ∈G

.

But

∆Q(ζm) =
(

det
(

σζi
m

)

0≤i<φ(m)
σ∈G

)2

and ∆Q(ζm) is divisible only by primes dividing m, so (4.4) contradicts the assumption

that m is coprime to n.

Hence, γζi
m = ψ(ηi) 6≡ 0 mod n for some i, where ηi = Tr ζi

m. Suppose gcd(i,m) > 1

for this particular i, say the prime p divides gcd(i,m). Then ηi is contained in the invariant

field of Q(ζm) under S = ker
(

(

Z/mZ
)∗ →

(

Z/m
p Z
)∗)

; from the definition of η it is also

clear that ηi is invariant under H. Thus ηi is invariant under H · S ⊂ G, a subgroup

that is strictly larger than H = kerχ since χ is primitive! Therefore ηi is contained in a

proper subfield of L, which means that (1− τu/q)ηi ≡ 0 mod n, for some prime q dividing

u. Hence ψηi ≡ 0 mod n, which implies that δ(ψ)ηi = γηi ≡ 0 mod n, contradicting the

choice for i. That proves that i is relatively prime to m.

Now γζi
m 6≡ 0 mod n implies that γζm 6≡ 0 mod n and thus that ψη 6≡ 0 mod n, so by

the definition of ψ we find that (τd − 1)η 6≡ 0 mod n for every proper divisor d of u. Since

τ generates the group, that proves the result.

(4.5) Corollary. Let χ be a primitive character modulo m. Let L = Q(ζm)ker χ and let

η = TrQ(ζm)/L ζm ∈ OL. Then L = Q(η). Moreover, if n is prime, n6 |m and φn generates

Gal(L/Q), then OL/nOL
∼= (Z/nZ)[η].

Proof. It is clear that Q(η) ⊂ L. Also, the conjugates of η under G = Gal(Q(ζm)/Q)

are in L; from the previous theorem it follows that η is not contained in a proper subfield.

That proves the first assertion.
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If n is prime and φn generates Gal(L/Q), we know from (2.5) that OL/nOL is a field,

containing Z/nZ as its prime field. Now n does not divide ∆(f η
Q), the discriminant of the

minimal polynomial of η over Q, if and only if the discriminant of f η
Q (the reduction modulo

n) is unit in Z/nZ, that is, non-zero. By Vandermonde’s formula for the discriminant this

is equivalent to

∏

σ,τ∈G
σ 6=τ

(ση − τη) =
∏

σ,τ∈G
σ 6=τ

(ση − τη) 6≡ 0 mod n,

where g abbreviates Gal(Q(ζm)/L). But by (4.3) the factors in the latter product are

non-zero, whence the product in the field OL/nOL is non-zero. Since (cf. [139])

∆(fη
Q) = index

[

OL : Z[η]
]2

∆L,

this shows that index
[

OL : Z[η]
]

is not divisible by n, so it is a unit modulo n. Therefore

OL/nOL
∼= (Z/nZ)[η] ∼= Z/nZ[X]/

(

fη
Q

)

, a field of n[L:Q] elements.

That proves (4.5).

(4.6) Theorem. Let l be prime and k ∈ Z≥1. Suppose that L is an intermediate field

Q ⊂ L ⊂ Q(ζf ) for some f ∈ Z≥1, with the property that it is cyclic of degree lk over Q.

Then there exist a divisor m of f and a character χ on
(

Z/mZ
)∗

such that Q(ζm)ker χ is

cyclic over Q of degree lk and one of the following holds:

(i) m is prime and lk | m− 1;

(ii) l is odd and m = lk+1;

(iii) lk = 2k with k ≥ 2 and m = 2k+2. In this case χ may be any of the two different

characters (up to conjugacy) of order lk modulo m;

(iv) lk = 2 and m = 8 or m = 4. Here χ may be any of the three quadratic characters

modulo 8.

Proof. Since L ⊂ Q(ζf ) is cyclic over Q of degree lk, it corresponds by (4.2) to a character

of order lk on
(

Z/fZ
)∗

. Let χ =
∏

χp be the component decomposition of χ. Then χp

must be of order lk for one of the components χp. Let the conductor of this component

χp be pd, then ordχp | exp
(

Z/pdZ
)∗

.

If p is odd, exp
(

Z/pdZ
)∗

= (p− 1)pd−1; if p = 2 then exp
(

Z/pdZ
)∗

is 2d−1 for d ≤ 2

and 2d−2 for d ≥ 3.
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Therefore either lk | p − 1 or l = p. In the former case take m = p and in the latter

take m = lk+1 (if l is odd) and m = 2k+2 (if l = 2), and let χ be the character of order lk

modulo m induced by χp. Then the field Q(ζm)ker χ is cyclic of degree lk by (4.2).

If m = 2k+2 with k ≥ 1 then
(

Z/mZ
)∗

is the product of a group of order 2 and a

cyclic group of order 2k. Therefore, if we fix a primitive 2k-th root of unity, there exist

precisely 2 different characters of order 2k, unless k = 1; in the latter case there exist 3

different characters, two of conductor 8 and one of conductor 4.

This proves (4.6).

(4.7) Remarks. Since every abelian number field is contained in some cyclotomic field

by Kronecker-Weber’s theorem (cf. [58, p. 165]), every cyclic extension of Q is contained

in a cyclotomic field. Thus the condition L ⊂ Q(ζf ) imposes no restriction at all.

The smallest m for which a given abelian field L is contained in Q(ζm) is called the

conductor of L; after the above discussion it will be clear that the conductor of the cyclic

field L equals the conductor m of the character χ for which L ∼= Q(ζm)ker χ.

Let χ be a primitive character modulo m of prime power order le. Let L = Q(ζm)ker χ

and let η = TrQ(ζm)/L ζm ∈ OL; then L = Q(η) by (4.5). For use in Chapter IV, we

make the following observations concerning bases for L over Q (as vector space). For the

constructions we choose m either prime or a power of l, which is not a genuine restriction

by (4.6). Suppose that σ generates the group Gal(L/Q). If m is prime, we can always

choose η = σ0η, σ1η, . . . , σu−1η as a basis for L over Q. In case m is a power of l however,

we have to choose the basis differently; so assume for the rest of (4.7) that m is a power

of l. Let η1 = 1 and ηle = η, and consider the chain

Q = Q(ηl0) ⊂ Q(ηl1) ⊂ · · · ⊂ Q(ηle) = Q(η),

where [Q(ηlj ) : Q] = lj . We claim that for 0 ≤ j ≤ e the set

{1} ∪
{

σd−li−1

(ηli) : 1 ≤ i ≤ j, li−1 ≤ d < li
}

forms a basis for the ring of integers of Q(ηlj ) over Z, and hence for Q(ηlj ) over Q.

The claim can be proved as follows. Let A ⊂ (Z/lkZ)∗ be such that A maps bijec-

tively to (Z/lk−1Z)∗ under the natural homomorphism (Z/lkZ)∗ → (Z/lk−1Z)∗. Since

TrQ(ζ
lk

)/Q(ζ
lk−1)(ζlk) = 0, we find that for every a ∈ A:

∑

x≡a mod lk−1

x∈(Z/lkZ)∗

ζx
lk = 0.
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Using this, and by comparing ranks, it follows that

Z[ζlk ] =
(
⊕

b/∈AZ · ζb
lk

)
⊕

Z[ζlk−1 ]

as Z-modules. Let H be the subgroup kerχ of (Z/lkZ)∗, which is of order l − 1 if l is

odd, and equals 〈−1〉 if l = 2. Since H maps injectively into (Z/lk−1Z)∗, it follows that A

can be chosen in such a way that it is a union of cosets of H in (Z/lkZ)∗; the same then

applies to B = (Z/lkZ)∗ \A. Now
∑

h∈H ζlk = ηlj , with j = k− 1 for l odd and j = k− 2

for l = 2 and therefore

Z[ζlk ]H =
(
⊕

b/∈AZ · ζb
lk

)H ⊕
Z[ζlk−1 ]H =

(

⊕

b∈B/HZ · ηlj

)

⊕

Z[ζlk−1 ]H .

The claim follows by induction, if we choose A such that B/H = {g0, g1, . . . , glj−lj−1}, for

a generator g of (Z/lkZ)∗/H, and define σ by σ(ζlk) = ζg
lk

and restriction.

From (4.6) we now know where to look for our cyclic extensions L. For our primality testing

purposes we will have to find an element ζ ∈ OL/nOL satisfying certain conditions; if we

succeed, we will know among others that the cyclic Galois group Gal(L/Q) is generated

by φn. The following lemma gives us a necessary and sufficient condition for this in terms

of just n, l and m. Thus we will look for our cyclic extension only in those cyclotomic fields

where this condition is met.

(4.8) Lemma. Let l be a prime number, k ∈ Z≥1 and n ∈ Z≥1. Let χ be a character

of conductor m and order lk, where either m is prime or l is odd and m = lk+1. Let

L = Q(ζm)ker χ. If gcd(n,m) = 1 then:

Gal(L/Q) = 〈φn〉 ⇐⇒ ordχ(n) = lk ⇐⇒ n
φ(m)

l 6≡ 1 mod m.

Proof. Under the isomorphism G = Gal(Q(ζm)/Q) ∼=
(

Z/mZ
)∗

the Artin symbol φn

corresponds to n mod m, for n coprime to m. By Galois theory, Gal(L/Q) ∼= G/ kerχ.

Therefore φn generates the Galois group Gal(L/Q) if and only if the image of n mod m

generates G/ kerχ, which is the case if and only if χ(n) generates the image of χ. This is

true if and only if n is not an l-th power modulo m, which is equivalent to the condition

on the right hand side, since (under the hypotheses)
(

Z/mZ
)∗

is cyclic, of order φ(m).

That ends the proof.
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(4.9) Remarks. Note that by the previous theorem for every cyclic L of degree lk either

we may choose m as in Lemma (4.8), or l = 2 and we may choose m = 2k+2; the latter

case will be covered by the proposition below.

Notice that if n is prime, the existence of the element ζ in OL/nOL with the property

that Φt(ζ) = 0 and φ(ζ) = ζn is guaranteed by (2.3), (2.5) and (2.6), if L is constructed

in such a way that the condition in (4.8) is satisfied.

In the next corollary the fields having both degree and conductor a power of 2 are explicitly

described, and criteria are given for these to have the desired property that φn generates

their Galois group.

(4.10) Proposition. Let k ∈ Z≥1 and let L
(k)
1 , L

(k)
2 and L

(k)
3 be the subfields of Q(ζ2k+2)

defined by:

L
(k)
1 = Q(η1), where η1 = ζ2k+2 + ζ−1

2k+2 ,

L
(k)
2 = Q(η2), where η2 = ζ2k+2 − ζ−1

2k+2

L
(k)
3 = Q(η3), where η3 = ζ2k+1 .

A subfield L ⊂ Q(ζ2k+2) is quadratic over Q if and only if L = L
(1)
i , for some i ∈ {1, 2, 3};

it is cyclic of degree 2j (with j > 1) over Q if and only if L = L
(j)
i , for some i ∈ {1, 2}.

Furthermore:

Gal(L
(k)
1 /Q) = 〈φn〉 ⇐⇒ k ≥ 1 and n ≡ ±3 mod 8,

Gal(L
(k)
2 /Q) = 〈φn〉 ⇐⇒

{

k = 1 and n ≡ −1 or −3 mod 8,
k ≥ 2 and n ≡ ±3 mod 8,

Gal(L
(k)
3 /Q) = 〈φn〉 ⇐⇒ k = 1 and n ≡ 3 mod 4.

Proof. We prove that the fields L
(k)
i (with k = 1 if i = 3) are the cyclic fields of degree 2k

over Q indicated by (4.6) (iii) and (iv). That these are the only ones, is then an immediate

consequence of (4.6).

First let k ≥ 2. We will use the fact that
(

Z/2k+2Z
)∗

is generated by the elements

−1 (of order 2) and 5 (of order 2k); furthermore, a ∈
(

Z/2k+2Z
)∗

has order 2k if and

only if a ≡ ±3 mod 8 (since exactly half of the elements have this order and since a2k−1 ≡
1 mod 2k+2 if a ≡ ±1 mod 8). To find the subfields of Q(ζ2k+2) that are cyclic of degree 2k

over Q, we have to find the invariant fields under characters of order 2k. There are 2 such
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characters (up to choice of primitive root of unity), given by χ1(−1) = 1 and χ1(5) = ζ2k ,

respectively χ2(−1) = −1 and χ2(5) = ζ2k ; the kernel of χ1 is generated by −1 and that of

χ2 by 2k+1−1 ≡ −52k−1

. According to corollary (4.5)(i), their invariant fields are generated

by ζ2k+2 + ζ−1
2k+2 and ζ2k+2 + ζ−52k−1

2k+2 respectively. Since 52k−1 ≡ 2k+1 + 1 mod 2k+2 (being

“another” square root of 1), and since ζ2k+1

2k+2 = −1 we find that these fields are L
(k)
1 and

L
(k)
2 respectively. Their Galois groups are generated by φn if and only if the order of n

in
(

Z/2k+2Z
)∗

equals 2k; these are exactly the elements congruent to ±3 modulo 8 as we

mentioned above.

The only remaining cases are when k = 1: here again we find the characters χ1

and χ2, but in addition there is the character χ3 = χ1χ2 of order 2. Just as above, the

invariant fields of χ1 and χ2 are L
(1)
1 and L

(1)
2 ; now φn generates Gal(L

(1)
1 /Q) if and only

if χ1(n) = −1, which is exactly when n ≡ ±3 mod 8. But φn generates Gal(L
(1)
2 /Q) if

and only if χ2(n) = −1, which means n ≡ −1 or n ≡ −3 modulo 8. Finally, the character

χ3 has kernel generated by 5; here however the invariant field is not given by η as in (4.5)

because the conductor of χ3 is 4 instead of 8. Here the invariant field is Q(ζ2
8 ) = Q(i) and

φn generates the group if and only if χ3(n) = −1, that is when n ≡ 3 mod 4.

This proves (4.10).

(4.11) Remarks. Altogether, for given u (and n), we now have the following explicit

construction for a suitable ring OL/nOL.

First decompose u into its maximal prime power factors u =
∏

lk. For every l find a

conductor m that is either prime and 1 mod lk or (if l is odd) equal to lk+1, satisfying

n
φ(m)

l 6≡ 1 mod m.

Choose a primitive root g modulo m and put

ηl =

φ(m)

lk
−1

∑

i=0

ζgilk

m .

For l = 2 and k ≥ 2, one may also choose m = 2k+2, and η2 = ζ2k ± ζ−1
2k , provided

that n ≡ ±3 mod 8; if l = 2 and k = 1, one may choose m = 8 and η2 = ζ2k + ζ−1
2k if

n ≡ ±3 mod 8, or m = 4 and η2 = ζ4 in case n ≡ 3 mod 4. By (4.5), (4.8) and (4.10)

the field Q(ηl) is cyclic of degree lk with group 〈φn〉, and moreover, if n is prime then

OL/nOL
∼= Z/nZ[ηl].
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For the composite field L = Q({ηl : l | u}) containing all ηl, we find, taking tensor

products over Z/nZ

OL/nOL
∼=
⊗

l|uZ/nZ[ηl] ∼=
⊗

l|uZ/nZ[X]/(fηl

Q (X))

∼= Z/nZ[X1, X2, . . . , Xh]/(f1(X1), f2(X2), . . . , fh(Xh)),

where h is the number of distinct prime divisors of u, and the fi are the minimal polyno-

mials of the ηl over Q.

Now that we have an explicit construction for our ring, we construct the element ζ.

(4.12) Proposition. Let n ∈ Z≥2, t ∈ Z≥1 and let u = ordn in
(

Z/tZ
)∗

. Let L ⊃ Q be

cyclic of degree u, with gcd(∆L, n) = 1 and suppose that φn generates Gal(L/Q). Suppose

also that for every prime divisor p of t there exists an element αp ∈ OL/nOL satisfying:

(4.13) φn(αp) = αn
p .

Define

βp = α
nu−1

p
p − 1 and γp = α

nu−1

pk

p ,

where pk ‖ nu − 1. Suppose finally that

(4.14) ordαp = ord βp = n in the additive group of OL/nOL.

Then:

Φt(ζ) = 0 where ζ =
∏

p|t
γp.

Proof. Let σ = φn be a generator for Gal(L/Q). Let I be the ideal in OL/nOL that is

generated by αp; since σ(αp) = φn(αp) = αn
p we find σI ⊂ I. But then I = σuI ⊂ σu−1I ⊂

· · · ⊂ σI ⊂ I and so σI = I. Writing OL on a basis {b1, b2, . . . , bu} over Z, we know that

∆L =
(

det(σibj)
)2

is coprime to n and therefore a unit in OL/nOL. Taking everything

modulo n, we get a basis {b1, b2, . . . , bu} of OL/nOL over Z/nZ. Suppose now that x ∈ I,

where x =
∑

xjbj with coordinates xj ∈ Z/nZ. Then σix =
∑

xjσ
i(bj) and σix ∈ I for

i = 1, 2, . . . , u. So
∑

j xjσ
i(bj) ≡ 0 mod I for every i, which implies that xj ≡ 0 mod I
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since det
(

σi(bj)
)

∈
(

OL/nOL

)∗
. In other words, every x ∈ I has coordinates in the ideal

I ∩ Z/nZ of Z/nZ over OL/nOL; this holds in particular for αp itself. Since the additive

order of αp in OL/nOL is by assumption equal to n, the ideal I ∩ Z/nZ must be Z/nZ.

This implies that I = OL/nOL and therefore αp is a unit in OL/nOL.

Since φn(βp) ∈ βpOL/nOL, a similar argument shows that βp is a unit.

Now αp = σuαp = αnu

p so αnu−1
p = 1. Therefore the element γp has the property that

γpk

p − 1 = 0 while γpk−1

p − 1 = βp is a unit. Thus γp is a zero of Φpk in OL/nOL. Using

the multiplicative properties of roots of unity, it is shown that ζ is a zero of Φt.

Thereby the proof of (4.12) is finished.

(4.15) Remark. If we have constructed the ring OL/nOL as in (4.11), the construction

of the element ζ we need in our primality proof is now easy by (4.12): for every prime p

in t we have to find an element αp satisfying (4.13). This can be done by just taking a

random choice for (the coordinates over Z/nZ of) αp and by checking (4.13) and (4.14).

The latter is easy, since (4.14) is equivalent to

(4.16) for every divisor r of n: αp /∈ r ·OL/nOL and βp /∈ r ·OL/nOL,

so one just checks that gcd(apbp, n) = 1 for some non-zero coefficient ap of αp and some

non-zero coefficient bp of βp; either this gcd equals 1 and (4.14) holds, or one finds a factor

of n. Verifying (4.13) takes one n-th powering in OL/nOL.

If n is prime, then (4.13) is trivially satisfied for any choice of αp, while (4.14) holds

for non-zero αp with probability 1 − 1
p (it only fails if αp is a p-th power).

Note that the checks on the root βp of Φp imply the existence of the root γp of Φpk .
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5. LUCAS-LEHMER TYPE TESTS.

As a first application in primality proving we show in this section how to use Theorem (2.8).

The computationally explicit constructions of the previous section enable one to exhibit

certain cyclotomic constellations; the mere existence of such a cyclotomic constellation

may be enough to prove primality.

(5.1) Theorem. Let n ∈ Z≥2; let t ∈ Z≥1, coprime to n and let u be the order of n in
(

Z/tZ
)∗

. Suppose that for every prime divisor l of u there exists a number field Ll that is

cyclic of degree lk, where lk ‖ u, and such that Gal(Ll/Q) = 〈φn〉. Let L be the composite

of all Ll.

Suppose moreover, that for every prime divisor p of t the element αp ∈ OL/nOL

satisfies:

φn(αp) = αn
p

and that for the order in the additive group of OL/nOL:

ordαp = ord(α
nu−1

p
p − 1) = n.

Then:

for every r | n there exists i mod u such that r ≡ ni mod t.

In particular, n is prime if t >
√
n and none of r1, r2, . . . , ru−1 is a proper divisor of n,

where ri is the least positive integer satisfying ri ≡ ni mod t.

Proof. By Proposition (4.1) the field L is cyclic over Q of degree u, and φn is clearly a

generator of the group Gal(L/Q). The element

ζ =
∏

pk‖t
pprime

α
nu−1

pk

p

has the property that φn(ζ) = ζn, by the hypotheses on αp, while Φt(ζ) = 0 by Proposition

(4.12). Thus L, ζ and φn satisfy the conditions of t-th cyclotomic constellations for n, so

Theorem (2.8) proves the first assertion. The second holds obviously.

That proves (5.1).
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(5.2) Remarks. For the construction of the fields Ll, one may use (4.8) and (4.10).

Theorem (5.1) leads to primality proofs for primes n for which we can find a small

u and a large enough, completely factored divisor t of nu − 1. Testing Φt(ζ) = 0 seems

impossible without knowing the prime factorization of t, which makes it necessary that t

is completely factored.

Arithmetic in OL/nOL is easy, using (4.11); as remarked in (4.15), the conditions on

ordαp and ord(α
(nu−1)/p
p − 1) are checked by showing that one of the coordinates of each

of these elements on a basis of OL/nOL over Z/nZ is coprime to n.

The primality test implied by (5.1) is a generalization of well-known primality tests, that

are classical for numbers n of a special form. By way of example we show to retrieve the

classical formulation for a few of these tests; compare Chapter I.

(5.3) Corollary. Let n ∈ Z≥2; let t | n− 1. Suppose that for every prime divisor p of t

the element αp ∈ Z/nZ satisfies:

αp = αn
p and gcd(αp, n) = gcd(α

n−1
p

p − 1, n) = 1.

Then every divisor r of n satisfies:

r ≡ 1 mod t.

In particular: n is prime if t >
√
n.

Proof. This is the case that u = 1 in (5.1); then L = Q, φn = id and αp ∈ Z/nZ. For the

condition on αp, see (5.2) and use that OL = Z now.

That proves (5.3).

This is the same as Pocklington’s Theorem I.(6.14), combined for all pk dividing t. A

particular case is the following special purpose test for numbers of the form hpk + 1 (with

h small), in which finding a non-p-th power modulo n suffices. Note that this includes (the

non-trivial implications in) Proth’s Theorem I.(6.12) and Pepin’s test I.(6.9).

(5.4) Corollary. Let n = hpk + 1 with p prime and pk > h. If α ∈ Z/nZ satisfies:

αn = α and gcd(α, n) = gcd(α
n−1

p − 1, n) = 1,

then n is prime.
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Proof. Take t = pk in (5.3).

As a final example, we prove the correctness of Lucas-Lehmer test for Mersenne numbers

(see I.(7.9)) once more, using (5.1) with u = 2.

(5.5) Lucas-Lehmer test. Let n = 2k − 1 with k > 2 and define ei ∈ Z for i ≥ 1 by

e1 = 4 and ei+1 = e2i − 2. Then:

n is prime ⇐⇒ ek−1 ≡ 0 mod n.

Proof. Suppose that k is even. Then 3 | n so n is composite. On the other hand

ei ≡ −1 mod 3 for i > 1 so n cannot divide ek−1. In the rest of the proof we therefore

assume that k is odd.

Let L = L2 = Q(
√

3) ⊂ Q(ζ12), let σ the non-trivial automorphism of L and let

ζ = 2
k−1
2

(

1 +
√

3
)

∈ OL/nOL; notice that ζ−1 = 2
k−1
2

(

−1 +
√

3
)

. Also, observe that

ei ≡ ζ2i

+ ζ−2i

mod n for i ≥ 1,

since

ζ2 + ζ−2 = 2k+2 ≡ 1 mod n and ζ2i+1

+ ζ−2i+1

= (ζ2i

+ ζ−2i

)2 − 2

in Z/nZ ⊂ OL/nOL.

By its definition, n ≡ 3 mod 4. Also, k > 2 is odd so n 6≡ 0 mod 3; and since

n+ 1 = 2k 6≡ 0 mod 3 we have n ≡ 1 mod 3. Therefore n ≡ 7 mod 12 and

φn(
√

3) = φn(ζ12 + ζ−1
12 ) = ζ7

12 + ζ−7
12 = −ζ12 − ζ−1

12 = −
√

3

so

φn(ζ) = φn(2
k−1
2

(

1 +
√

3
)

) = 2
k−1
2

(

1 −
√

3
)

= −ζ−1.

Note in particular that φn generates the Galois group Gal(L/Q).

Suppose that n is prime. Then φn(ζ) = ζn by (2.3), and we get

0 = ζn + ζ−1 = ζ2k−1−1(ζ2k−1

+ ζ−2k−1

)
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so ζ2k−1

+ ζ−2k−1

= 0, in other words: ek−1 ≡ 0 mod n.

For the converse, let t = 2k+1. The order of n in
(

Z/tZ
)∗

is u = 2. As we saw above,

φn generates Gal(L/Q). Furthermore,

φn(ζ) = ζn ⇐⇒ ζ2k−1

+ ζ−2k−1

= 0 ⇐⇒ ek−1 ≡ 0 mod n

since φn(ζ) = φn(2
k−1
2

(

1 +
√

3
)

) = 2
k−1
2

(

1−
√

3
)

= −ζ−1. Finally, the additive order of ζ

is n, since 26 |n (cf. (4.16)), and the same applies to ζ
n2−1

2 − 1, since in OL/nOL

ζ
n2−1

2 − 1 =
(

ζn+1
)

n−1
2 − 1 =

(

ζφn(ζ)
)

n−1
2 − 1 = (−1)

n−1
2 − 1 = −2,

because n ≡ 3 mod 4. Thus, if ek−1 ≡ 0 mod n the conditions in Theorem (5.1) are verified

(with αp = ζ), and every divisor must be either 1 or n modulo t, with t > n.

This proves (5.5).

83



II. Theory 6. The Jacobi sum test

6. THE JACOBI SUM TEST.

In this section we continue our investigation of cyclotomic constellations that started in

Section 2. In Theorem (2.8) we saw that the existence of t-th cyclotomic constellations

for n implies that every divisor of n is a power of n modulo t. The first proposition below

will be used to show that, under some mild extra conditions, the same conclusion will even

hold modulo any t′ that is built up from primes in t only.

It will be convenient to use the informal notation t∞ for an integer that is the product

of “large enough” powers of all primes dividing t; more specifically, we will use this to

write t′ | t∞ as an abbreviation for the statement that every prime divisor of t′ divides t,

and to use gcd(k, t∞) for the largest divisor of k built up from primes in t only.

(6.1) Proposition. Let n ∈ Z≥2, t ∈ Z≥1 with gcd(n, t) = 1 and let u be the order of n

in
(

Z/tZ
)∗

. Suppose that:

(i) gcd(t, nu−1
t ) = 1,

(ii) for every r | n there exists i mod u such that r ≡ ni mod t.

Let t′ ∈ Z≥1 and let u′ be ordn in
(

Z/t′Z
)∗

. Suppose moreover that:

(iii) t′ | t∞,

(iv) t′ 6≡ 0 mod 8 if t ≡ 2 mod 4.

Then:

for every r | n there exists i mod u′ such that r ≡ ni mod t′.

Also, if t | t′, then gcd(t′, nu′−1
t′ ) = 1.

Proof. Let r be a divisor of n and let i be such that r ≡ ni mod t, as in (ii). Let p

be a prime divisor of t′. If op(t
′) ≤ op(t) then r ≡ ni mod pop(t′). If op(t

′) > op(t) then

by (iii) and (i) we have nu ≡ 1 mod pop(t) but nu 6≡ 1 mod pop(t)+1. The cyclic subgroup

1+pop(t) ⊂
(

Z/pop(t′)Z
)∗

of order pop(t′)−op(t) is then generated by nu mod pop(t′), provided

that for p = 2 we require that 86 |t′ in case t ≡ 2 mod 4. Therefore we can find j such that

rn−i ≡ (nu)j mod pop(t′); here j is determined modulo pop(t′)−op(t). But then we can

combine these congruences for all p dividing t to get rn−i ≡ (nu)j mod t′ simultaneously.

Since the observations above imply that op(n
up − 1) = op(n

u − 1) + 1 the second

assertion follows.

That proves (6.1).

84



6. The Jacobi sum test II. Theory

(6.2) Corollary. Let n ∈ Z≥2, t ∈ Z≥1 with t ≡ 0 mod 4 and gcd(n, t) = 1. Let u be the

order of n in
(

Z/tZ
)∗

. Suppose that:

(i) gcd(t, nu−1
t ) = 1,

(ii) for every r | n there exists i mod u such that r ≡ ni mod t.

Then for every divisor r of n, for every prime number l dividing t and every d ∈ Z≥1 there

exists a unique j mod ld with the following property.

If t′ ∈ Z≥1 satisfies

(iii) t′ | t∞,

(iv) ld | u′, where u′ is the order of n in
(

Z/t′Z
)∗

,

then the integer i′ such that r ≡ ni′ mod t′ satisfies i′ ≡ j mod ld.

If moreover a t′-th cyclotomic constellation L, ζ, σ exists, then the integer k such that

φr = φk
n in Gal(L/Q) satisfies k ≡ j mod ld.

Proof. First of all note that there exist positive integers t′ satisfying (iii) and (iv): for k

large enough, ld divides the order of n modulo lkt.

Fix a divisor r of n. Suppose that both t′1 and t′2 satisfy the conditions for t′ in the

statement of the corollary. Then so does lcm(t′1, t
′
2), and by (6.1) there exists i′ such that

r ≡ ni′ mod lcm(t′1, t
′
2). Clearly i′ ≡ i′1 mod u′1 and i′ ≡ i′2 mod u′2, where u′1 and u′2 are

the orders of n modulo t′1 and t′2 and where r ≡ ni′1 mod t′1 while r ≡ ni′2 mod t′2. In

particular i′1 ≡ i′ ≡ i′2 mod ld. That proves the first assertion.

The other assertion is now immediate from (2.8).

That proves (6.2).

As we saw in Section 5, the scope of the applications of Theorem (2.8) to primality testing

is rather limited. We get much more powerful tools if besides the existence of a t-th

cyclotomic constellation L, ζ, σ, we have additional information on the character group

Hom(
(

Z/sZ
)∗
, 〈ζ〉). The kind of information we want to obtain, is that in OL/nOL

(6.3)
τ(χ)n

φnτ(χ)
∈ 〈ζ〉,

for a set of primitive characters χ generating Hom(
(

Z/sZ
)∗
, 〈ζ〉); here the Gauss sum τ(χ)

is considered as an element of OL/nOL[ζs], cf. (3.6) and the discussion preceding that.

The action of φn is extended to OL/nOL[ζs] by defining φn(ζs) = 1.

It will be convenient to write the action of φn exponentially, so

τ(χ)n−φn =
τ(χ)n

φnτ(χ)
.
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Note that φn is only defined if n is coprime to the order of χ, and that for the division by

φnτ(χ) we require s coprime to n (see (3.10)). In this case

τ(χ)n−φn =
τ(χ)n

τ(χn)

if n is coprime to the order of χ; by (3.11) we then know that (6.3) holds if n is prime.

(6.4) Proposition. Let n ∈ Z≥2, t ∈ Z≥1 with gcd(n, t) = 1 and let u be the order of n

in
(

Z/tZ
)∗

. Suppose that:

(i) gcd(t, nu−1
t

) = 1,

(ii) L, ζ, σ forms a t-th cyclotomic constellation for n.

Let t′ ∈ Z≥1 and let u′ be the order of n in
(

Z/t′Z
)∗

. Suppose also that:

(iii) t′ | t∞,

(iv) t′ 6≡ 0 mod 8 if t ≡ 2 mod 4.

Let s ∈ Z≥1 with gcd(n, s) = 1 and let χ ∈ Hom(
(

Z/sZ
)∗
, 〈ζ〉) be a primitive character

modulo s. Suppose that for some z ∈
(

OL/nOL

)∗
:

(v) µχ = (zτ(χ))n−φn ∈ 〈ζ〉
in the ring

(

OL/nOL

)

[ζs].

Then for every divisor r of n there exists i mod lcm(u′, t) such that:

(6.5) r ≡ ni mod t′

and

(6.6) χ(r) = χ(n)i.

Furthermore µχ = χ(n)−n.

Proof. It suffices to consider the case that t′ is a multiple of t2; if necessary, replace t′ by

lcm(t′, t2). So let in the rest of the proof t2 | t′; then t | u′.
The hypotheses of Theorem (2.8) are satisfied, and therefore φn = σ, and for every

divisor r of n there exists j such that both r ≡ nj mod t and φr = φj
n. But then the

hypotheses for (6.1) are satisfied, and so there exists k mod u′ such that r ≡ nk mod t′.

Note that both τ(χn) and τ(χ) are units in OL/nOL[ζs]
∗ by (3.10), so it makes sense

to consider µχ =
(

zτ(χ)
)n−φn

. Since µχ is a power of ζ by hypothesis, φn(µχ) = µn
χ.

Hence we find for every j ∈ Z≥1:

(

zτ(χ)
)nj−φj

n = µj·nj−1

χ .
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From ordχ | t and t | nu − 1, we see that φu
n = id. By taking j = u in the above

(

zτ(χ)
)nu−1

=
(

zτ(χ)
)nu−φu

n ∈ 〈ζ〉.

Thus ord(zτ(χ)) divides t(nu − 1) = t2y, if we abbreviate y = nu−1
t for the rest of this

proof.

Let r be a prime divisor of n; by our hypotheses and the previous proposition there

exists i such that r ≡ ni mod t2; notice that i is determined modulo u′ and that i ≡
k mod u′, where k is such that r ≡ nk mod t′. Also, i ≡ j mod u, where j is such that

r ≡ nj mod t, so φr = φi
n and

ry ≡ niy mod t2y;

therefore ry and niy are certainly congruent modulo ord(zτ(χ)). Hence

(

zτ(χ)
)ry−φry

=
(

zτ(χ)
)niy−φi

ny
= µini−1y

χ .

Now r is prime, so zr−φr ≡ 1 mod r by (2.3); moreover r is not a divisor of ordχ, so by

Lemma (3.11)

(

zτ(χ)
)r−φr

= τ(χ)r−φr = χ(r)−r ∈ OL/rOL

which implies by the above that

χ(r)−ry ≡
(

zτ(χ)
)(r−φr)y

= µini−1y
χ mod r.

Since distinct powers of ζ are distinct modulo r by (2.1), and gcd(t, y) = gcd(t, nu−1
t ) = 1

by (i), we get

χ(r)−r = µini−1

χ for every prime divisor r of n.

But ni−1 ≡ rn−1 mod t by definition of i, hence the equality χ(r)−n = µi
χ; by multiplica-

tivity this equality holds for every divisor of n. In particular, for r = n we find i = 1 so

χ(n)−n = µχ. Thus:

χ(r) = χ(n)i, for every divisor r of n.

This ends the proof for (6.4).

87



II. Theory 6. The Jacobi sum test

(6.7) Remarks. The use of the unit z ∈ (OL/nOL)∗ will become clear later on. You may

think of it as an extra degree of freedom that will be exploited for practical purposes; for

the time being one might as well put z = 1.

Now we are ready for the principal theorem of this section. It tells us what we know

if we require that (6.4)(v) is satisfied for a set of generators for the characters modulo s.

(6.8) Theorem. Let n ∈ Z≥2, t ∈ Z≥1 with gcd(n, t) = 1 and let u be the order of n in
(

Z/tZ
)∗

; let t1 = gcd(nu − 1, t∞). Suppose that:

(i) L, ζ, σ forms a t1-th cyclotomic constellation for n.

Let t′ ∈ Z≥1 and let u′ be ordn in
(

Z/t′Z
)∗

. Suppose that:

(ii) t′ | t∞,

(iii) t′ 6≡ 0 mod 8 if t1 ≡ 2 mod 4,

Let s ∈ Z≥1 such that gcd(nt, s) = 1; suppose also that:

(iv) exp
(

Z/sZ
)∗ | t1.

Suppose moreover that for some set Y generating the group Hom(
(

Z/sZ
)∗
, 〈ζ〉):

(v) for all χ ∈ Y there exist µχ ∈ 〈ζ〉 and z ∈
(

OL/nOL

)∗
such that

(

zτ(χ)
)n−φn

= µχ.

Then for every divisor r of n there exists i mod lcm(u′, t1) such that:

r ≡ ni mod st′.

Furthermore

(6.9) µχ = χ(n)−n for all χ ∈ Y.

Proof. Fix a divisor r of n. As in the proof of Proposition (6.4) we may restrict to the

case that t1 divides u′. By (6.4) there exists j mod u′ such that:

(6.10) r ≡ nj mod t′

and for all χ ∈ Y :

(6.11) χ(r) = χ(n)j ;
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note that j does not depend on χ since it is determined modulo the order of χ, a divisor of

t1, by (6.10). By the hypothesis on Y and multiplicativity, (6.11) holds for every character

modulo s. The order of ζ is t1 by (2.1) and exp
(

Z/sZ
)∗ | t1 by hypothesis, so by (3.4):

r ≡ nj mod s,

with j as in (6.10) and (6.11). Since s and t′ are relatively prime this combines with (6.10)

to r ≡ nj mod st′; note that j only matters modulo u∗, where u∗ = ordn in
(

Z/st′Z
)∗

.

Assertion (6.9) is a consequence of the final statement in Proposition (6.4).

That proves (6.8).

One of the conditions in Theorem (6.8) is that exp
(

Z/sZ
)∗

divides t, (if we require that

gcd(t, nu−1
t

) = 1). For primality testing purposes one wishes that s becomes large, while

t should remain small. The following lemma shows that it is advisable to choose a highly

composite, even value for t in order to get s large.

(6.12) Lemma. Let s ∈ Z≥1. Then:

exp
(

Z/sZ
)∗ | t ⇐⇒ s | e(t)

where

(6.13) e(t) =







2 · ∏

q prime
q−1|t

qoq(t)+1, if t is even;

2, if t is odd.

Proof. For odd primes q, the group
(

Z/qkZ
)∗

is annihilated by t if and only if (q−1)qk−1

divides t. If q = 2, then
(

Z/qkZ
)∗

is annihilated by t if and only if either k ≤ 2 and

t is even, or k > 2 and 2k−2 divides t. The result is now immediate from the Chinese

remainder theorem.

The following corollary shows the use of Theorem (6.8) in primality testing. We use the

notation e(t) as in (6.13).

(6.14) Corollary. Let n ∈ Z≥2, s, t ∈ Z≥1 with 4 | t and gcd(n, st) = 1; let u = ordn in
(

Z/tZ
)∗

and let t1 = gcd(nu − 1, t∞) and s1 = s/ gcd(s, t∞). Suppose that

(i) L, ζ, σ forms a t1-th cyclotomic constellation for n;
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(ii) s1 | e(t1).
Suppose moreover that for some set Y generating the group Hom(

(

Z/s1Z
)∗
, 〈ζ〉):

(iii) for all χ ∈ Y there exist µχ ∈ 〈ζ〉 and z ∈
(

OL/nOL

)∗
such that

(

zτ(χ)
)n−φn

= µχ.

Then for every divisor r of n there exists i modulo ordn such that r ≡ ni mod s, where

ordn is the order of n in
(

Z/sZ
)∗

.

Proof. Take t′ =
s

s1
in Theorem (6.8).

The Jacobi sum primality testing algorithm based on this corollary may be described as

follows.

(6.15) Jacobi sum test. Choose a positive multiple t of 4 such that e(t) >
√
n, for

instance by using a table. Let u be the order of n in
(

Z/tZ
)∗

. Let s be a divisor of e(t)

such that s >
√
n and let s1 be the largest factor of s that is coprime to t. Construct

a t1-th cyclotomic constellation L, σ, ζ for n, where t1 = gcd(nu − 1, t∞). Finally verify

that τ(χ)n−φn ∈ 〈ζ〉 for every character in
⋃

q|s1
Yq, where q is prime and Yq consists of

characters of conductor q and order pk ‖ q − 1, one for each prime p | q − 1. If these steps

have been performed and gcd(n, st∆L) = 1, check for i = 1, 2, . . . , ordn − 1 whether ri

divides n, in case 1 < ri ≤
√
n; here ri ≡ ni mod s and ordn is the order of n in

(

Z/sZ
)∗

.

(6.16) Remarks. If all conditions are satisfied and if in the final step no proper divisor

of n is found, n must be prime as a consequence of Corollary (6.14).

Notice that s1 is squarefree: suppose that qk divides s1 for some prime q and some

k ≥ 2, then q divides exp
(

Z/s1Z
)∗

and therefore t; by definition s1 contains no factors

q, a contradiction. Therefore
⋃

q|s1
Yq generates Hom(

(

Z/s1Z
)∗
, 〈ζ〉). In Section 4 a con-

struction for L was described that is guaranteed to work if n is not a (non-trivial) power

in Z, as well as a construction for ζ that is likely to work if n is indeed prime.

The verifications τ(χ)n−φn ∈ 〈ζ〉 would take place in the ring OL/nOL[ζm] for a

character of conductor m; for large m this ring is much too large for practical purposes.

In Section 8 we will see how this can be overcome by using Jacobi sums instead of Gauss

sums. There it will also be explained what the use of the mysterious unit z that first

appeared in (6.4) will be in practice.

(6.17) Remark. The condition 4 | t is imposed on t in (6.14) and (6.15) to ensure that

t′ satisfies (6.4)(iv), or (6.8)(iii). Alternatively, one may do the following.
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First of all notice that (6.4)(iv) is only restricting in the (rather special) case that

o2(n
u − 1) = 1 and o2(t

′) ≥ 3, where o2 denotes the number of factors 2. In the notation

of (6.15) that means that t1 ≡ 2 mod 4, that n ≡ 3 mod 4, that u is odd, and that

e(t) ≡ ss−1
1 ≡ 8 mod 16. This means that s/s1 does not satisfy the condition for t′, but

s/(2s1) does; therefore in this case we find:

r ≡ nj mod
s

2
for every divisor r of n.

If one is not satisfied with this weaker conclusion, for instance because s < 2
√
n, one more

Gauss sum test can help: let χ0 be a quadratic character of conductor 8, then

(6.18) τ(χ0)
n−1 ∈ 〈−1〉

implies by (6.4), with s = 8, u = 1, t = 2, and ζ = −1, that χ0(r) = χ0(n)j, which gives

together with r ≡ nj mod s
2 that indeed r ≡ nj mod s.

Notice that (6.18) is equivalent to

(6.19) 8
n−1

2 ≡ ±1 mod n

since τ(χ0)
2 = ±8 and since n ≡ 3 mod 4 in this case, so τ(χn

0 ) = τ(χ0).

(6.20) Remarks. Again, we would like to point out that in choosing t there are conflicting

considerations. In order to get s larger than
√
n one wishes t (and thus e(t)) to be large;

on the other hand, in the final stage one has to perform usually about t trial divisions, and

therefore t should not be too large. Below we will quote a theorem due to Odlyzko, that

shows how fast t grows asymptotically (cf. [2], [30]).

Also, we refer to Section 9, for the description of Lenstra’s algorithm with which one

finds the divisors of n in a given residue class every modulo s efficiently, provided that

s > 3
√
n. At the cost of performing this algorithm, the condition that e(t) >

√
n can be

relaxed to e(t) > 3
√
n.

Finally we present a table of nice values for t > 1 in the Jacobi sum test; here nice

means by definition that the value for e(t) is larger than any value e(t′) for a smaller divisor

t′ of the number t0 = 6983776800 = 25 · 33 · 52 · 7 · 11 · 13 · 17 · 19.

(6.21) Theorem. There exists an effectively computable positive constant c such that

for every n > 15 there exists t ∈ Z≥1 with:

t < (logn)c log log log n and e(t) >
√
n.
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t log10 e(t) t log10 e(t)

2 = 2 1.380 128520 = 23
· 33

· 5 · 7 · 17 145.431

4 = 22 2.380 131040 = 25
· 32

· 5 · 7 · 13 151.897

6 = 2 · 3 2.702 166320 = 24
· 33

· 5 · 7 · 11 156.844

12 = 22
· 3 4.816 196560 = 24

· 33
· 5 · 7 · 13 169.327

24 = 23
· 3 5.117 257040 = 24

· 33
· 5 · 7 · 17 188.309

30 = 2 · 3 · 5 5.235 332640 = 25
· 33

· 5 · 7 · 11 206.979

36 = 22
· 32 8.140 393120 = 25

· 33
· 5 · 7 · 13 215.405

60 = 22
· 3 · 5 9.833 514080 = 25

· 33
· 5 · 7 · 17 223.283

72 = 23
· 32 10.304 655200 = 25

· 32
· 52

· 7 · 13 232.767

108 = 22
· 33 10.654 720720 = 24

· 32
· 5 · 7 · 11 · 13 237.414

120 = 23
· 3 · 5 11.747 831600 = 24

· 33
· 52

· 7 · 11 251.010

144 = 24
· 32 11.836 942480 = 24

· 32
· 5 · 7 · 11 · 17 251.021

180 = 22
· 32

· 5 15.415 982800 = 24
· 33

· 52
· 7 · 13 260.117

240 = 24
· 3 · 5 15.660 1081080 = 23

· 33
· 5 · 7 · 11 · 13 263.037

360 = 23
· 32

· 5 19.192 1285200 = 24
· 33

· 52
· 7 · 17 272.555

420 = 22
· 3 · 5 · 7 20.574 1413720 = 23

· 33
· 5 · 7 · 11 · 17 283.806

540 = 22
· 33

· 5 23.095 1441440 = 25
· 32

· 5 · 7 · 11 · 13 301.222

720 = 24
· 32

· 5 23.105 1663200 = 25
· 33

· 52
· 7 · 11 315.558

840 = 23
· 3 · 5 · 7 24.936 1965600 = 25

· 33
· 52

· 7 · 13 326.018

1008 = 24
· 32

· 7 25.465 2162160 = 24
· 33

· 5 · 7 · 11 · 13 349.475

1080 = 23
· 33

· 5 26.872 2827440 = 24
· 33

· 5 · 7 · 11 · 17 357.833

1200 = 24
· 3 · 52 29.004 3341520 = 24

· 33
· 5 · 7 · 13 · 17 389.642

1260 = 22
· 32

· 5 · 7 31.059 3603600 = 24
· 32

· 52
· 7 · 11 · 13 396.884

1680 = 24
· 3 · 5 · 7 33.430 4324320 = 25

· 33
· 5 · 7 · 11 · 13 455.899

2016 = 25
· 32

· 7 33.886 5654880 = 25
· 33

· 5 · 7 · 11 · 17 458.434

2160 = 24
· 33

· 5 36.757 6683040 = 25
· 33

· 5 · 7 · 13 · 17 469.891

2520 = 23
· 32

· 5 · 7 40.687 7207200 = 25
· 32

· 52
· 7 · 11 · 13 494.198

3360 = 25
· 3 · 5 · 7 42.073 10810800 = 24

· 33
· 52

· 7 · 11 · 13 560.776

3780 = 22
· 33

· 5 · 7 44.198 16707600 = 24
· 33

· 52
· 7 · 13 · 17 575.923

5040 = 24
· 32

· 5 · 7 52.185 18378360 = 23
· 33

· 5 · 7 · 11 · 13 · 17 599.160

7560 = 23
· 33

· 5 · 7 57.704 21621600 = 25
· 33

· 52
· 7 · 11 · 13 716.709

8400 = 24
· 3 · 52

· 7 59.712 36756720 = 24
· 33

· 5 · 7 · 11 · 13 · 17 762.754

10080 = 25
· 32

· 5 · 7 64.132 61261200 = 24
· 32

· 52
· 7 · 11 · 13 · 17 819.989

12600 = 23
· 32

· 52
· 7 68.994 73513440 = 25

· 33
· 5 · 7 · 11 · 13 · 17 966.850

15120 = 24
· 33

· 5 · 7 79.352 122522400 = 25
· 32

· 52
· 7 · 11 · 13 · 17 1038.433

25200 = 24
· 32

· 52
· 7 89.622 183783600 = 24

· 33
· 52

· 7 · 11 · 13 · 17 1171.776

30240 = 25
· 33

· 5 · 7 95.780 367567200 = 25
· 33

· 52
· 7 · 11 · 13 · 17 1501.792

42840 = 23
· 32

· 5 · 7 · 17 101.235 698377680 = 24
· 33

· 5 · 7 · 11 · 13 · 17 · 19 1532.790

50400 = 25
· 32

· 52
· 7 101.569 1163962800 = 24

· 32
· 52

· 7 · 11 · 13 · 17 · 19 1650.980

55440 = 24
· 32

· 5 · 7 · 11 106.691 1396755360 = 25
· 33

· 5 · 7 · 11 · 13 · 17 · 19 1913.604

65520 = 24
· 32

· 5 · 7 · 13 115.895 2327925600 = 25
· 32

· 52
· 7 · 11 · 13 · 17 · 19 2082.848

75600 = 24
· 33

· 52
· 7 116.790 3491888400 = 24

· 33
· 52

· 7 · 11 · 13 · 17 · 19 2388.470

85680 = 24
· 32

· 5 · 7 · 17 129.398 6983776800 = 25
· 33

· 52
· 7 · 11 · 13 · 17 · 19 3010.872

110880 = 25
· 32

· 5 · 7 · 11 137.324
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7. COMBINING JACOBI SUM AND LUCAS-LEHMER TYPE TESTS.

The aim of this section is to give the proof of Theorem (7.1) below, which combines

Theorem (2.8) and Theorem (6.8). The primality testing algorithm outlined briefly in

(7.7) and described in detail in Chapter IV is the main application of this theorem. The

important new feature here is, that special properties of a particular n are used (as in

Lucas-Lehmer type tests based on (2.8)) as well as the power of the Jacobi sum test, which

works almost irrespective of the properties of n (other than its size).

After the proof of Theorem (7.1) we will comment upon its complicated hypotheses.

(7.1) Theorem. Let n ∈ Z≥2, s, t, v ∈ Z≥1 with gcd(n, stv) = 1, and let u,w be the

order of n in
(

Z/tZ
)∗

and in
(

Z/vZ
)∗

respectively. Let t1 = gcd(nu − 1, t∞) and let

s1 = s/ gcd(s, t∞).

Suppose that:

(i) t1 ≡ 0 mod 4;

(ii) L, ζ, σ forms an lcm(t1, v)-th cyclotomic constellation for n;

(iii) exp
(

Z/s1Z
)∗ | t1;

(iv) for every prime l dividing t:

0 < ol(u) < ol(gcd(t1, w)) ⇒ ol(v) = ol(n
f − 1),

where f = lcm(u,w) = [L : Q];

(v) X ⊂ Hom
((

Z/lcm(s1, v)Z
)∗
, 〈ζ〉

)

is a set of characters that contains generators

for the group Hom(
(

Z/s1Z
)∗
, 〈ζ〉) and that also contains for every prime power ld > 1

for which ld ‖ gcd(t1, w), but l 6 |u, a character χ of order ld and conductor m, with the

property that Lld
∼= Q(ζm)ker χ, where Lld ⊂ L is the subfield of degree ld;

(vi) for every χ ∈ X there exist µχ ∈ 〈ζ〉 and z ∈
(

OL/nOL

)∗
such that

(

zτ(χ)
)n−φn

= µχ.

Then for every divisor r of n there exists i mod lcm(t1, u, w) such that:

r ≡ ni mod lcm(s1t, v).

Proof. The field L in the cyclotomic constellation L, ζ, σ of (ii) has degree f = lcm(u,w)

over Q. By (2.11) therefore, L, ζ, σ contains a t1-th cyclotomic sub-constellation L1, ζ1,

σ1 of degree u and a v-th cyclotomic sub-constellation L2, ζ2, σ2 of degree w.
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Let r be a fixed divisor of n, and let M be a sufficiently large integer (in fact, it will

suffice that M ≥ 2, and that M ≥ ol(v) for each prime divisor l of t). By (6.8), with

t′ = tM1 , we see that there exists i such that

(7.2) r ≡ ni mod s1t
M
1 .

Then also r ≡ ni mod t1, so by (2.8) we have φr = φi
n ∈ Gal(L1/Q). Likewise, there exists

j (mod w) such that φr = φj
n ∈ Gal(L2/Q), and

(7.3) r ≡ nj mod v

by (2.8).

To obtain the statement of the theorem from (7.2) and (7.3), it suffices to prove that

(7.4) i ≡ j mod ld,

for every prime l | gcd(w, lcm(t1, u)), where d is such that ld ‖ gcd(w, lcm(t1, u)).

In the rest of the proof l will be a prime divisor of w. We distinguish three cases.

(a) First suppose that ld | u. In this case ld divides both u and w; therefore L has a

subfield L′ of degree ld over Q, that is contained in L1 as well as in L2.

S
SS�

��

S
SS

�
��

Q

L′

L2

L1

L

Since φn generates Gal(L1/Q), we find by restriction to L′ that φr = φi′
n ∈ Gal(L′/Q)

for some i′. But Gal(L′/Q) ∼= Gal(L1/Q)/〈φld

n 〉, and φr = φi
n ∈ Gal(L1/Q), so i ≡

i′ mod ld, with i as in (7.2). Using L2 instead of L1 we get similarly that j ≡ i′ mod ld,

with j as in (7.3). Thus i ≡ j mod ld in this case.

(b) Next assume that l | u, but ld 6 |u. In this case ld divides both w and t1. Let h = ol(v);

then h ≤ M by the choice of M , so from (7.2) and (7.3) we see that ni ≡ r ≡ nj mod lh.

Therefore i ≡ j mod e, where e is the order of n modulo lh. To prove (7.4) it therefore

suffices to show that ld divides e.
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By (iv) we have h = ol(n
f − 1). Since l divides t it divides nu − 1; and u divides f/l,

since we are in case (b), so l divides nf/l − 1. But then h = ol(n
f − 1) > ol(n

f/l − 1),

which means that e divides f but does not divide f/l. Therefore ol(e) = ol(f), and since

f is divisible by ld this proves what we want.

(c) Finally assume that l 6 |u. Then ld | t1. Let f = lcm(u,w) as before; then ol(f) =

ol(w) ≥ d. By assumption (v) there exists a character χ in X of order ld and conductor

m such that Lld
∼= Q(ζm)ker χ, and for which by (vi) we have (zτ(χ))

n−φn ∈ 〈ζ〉, for some

unit z in OL/nOL.

Apply Proposition (6.4), with t1, u, t
2
1, ut1, L1, m in the roles of t, u, t′, u′, L, s,

respectively. Then it follows that there exists an integer k modulo ut1 for which

(7.5) r ≡ nk mod t21, and χ(r) = χ(n)k.

The latter equality means that (r mod m) ≡ (n mod m)k mod kerχ in the group
(

Z/mZ
)∗

,

and so

(7.6) φr ≡ φk
n mod kerχ

in Gal(Q(ζm)/Q). Hence, φr = φk
n in Gal(Q(ζm)ker χ/Q), where Q(ζm)ker χ ∼= Lld by

assumption (v). But also φr = φj
n in Gal(Lld/Q), because Lld ⊂ L2. Since Gal(Lld/Q) is

generated by φn this implies that k ≡ j mod ld.

On the other hand, from (7.2) and (7.5) we see that k ≡ i mod t1, since t1 divides the

order of n modulo t21. In particular k ≡ i mod ld. So i ≡ k ≡ j mod ld, and we have (7.4)

again.

That completes the proof of (7.1).

Informally, the primality test based on Theorem (7.1) may be described as follows.

(7.7) Cyclotomy test. Find a completely factored integer v, and let w be the order of

n in
(

Z/vZ
)∗

. Choose a positive multiple t of 4 such that lcm(e(t), v) >
√
n, for instance

by using a table. Let u be the order of n in
(

Z/tZ
)∗

. For every prime divisor l of t for

which 0 < ol(u) < ol(gcd(t1, w), make sure that v contains as many factors l as nf − 1

does, where f = lcm(u,w). Let s be a divisor of e(t) such that lcm(s, v) >
√
n and let

s1 be the largest factor of s that is coprime to t. Construct an lcm(t1, v)-th cyclotomic

constellation L, σ, ζ for n, where t1 = gcd(nu − 1, t∞). Verify that τ(χ)n−φn ∈ 〈ζ〉 for

every character in
⋃

q|s1
Yq, where q is prime and Yq consists of characters of conductor q
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and order pk ‖ q − 1, one for each prime p | q − 1, as well as for a character of order ld

in Hom
((

Z/lcm(s1, v)Z
)∗
, 〈ζ〉

)

, for every ld ‖ gcd(t1, w) with l 6 |u, as in (7.1)(v). If these

steps have been performed and gcd(n, stuvw∆L) = 1, check for i = 1, 2, . . . , ordn − 1

whether ri divides n, in case 1 < ri ≤ √
n; here ri ≡ ni mod lcm(s, v) and ordn is the

multiplicative order of n modulo lcm(s, v).

(7.8) Remarks. If all conditions in (7.7) are satisfied, and if in the final step no proper

divisor of n is found, n must be prime.

We briefly comment upon the conditions in Theorem (7.1).

Concerning the condition 4 | t1 imposed on t in (i), the remark made in (6.17) carries

over. The conditions (ii) and (iii) are also found in Theorem (6.8). In the next section we

will explain how the verification of τ(χ)n−φn ∈ 〈ζ〉 can be done within OL/nOL, and also

how z enables us to combine the verifications for several characters (cf. (6.16)).

The mechanism that ensures the compatibility of the Lucas-Lehmer part of the above

theorem (the congruence (7.3), derived from (2.8)) and the Jacobi sum part (congruence

(7.2), obtained from Theorem (6.8)), is that of choosing the same extensions: whenever

for both parts an extension of l-th power degrees is needed, we use for the smaller one the

subextension inside the larger. In certain cases we need to impose some extra conditions

for this compatibility; these are contained in (iv) and (v).

Condition (iv) comes down to the following. If both the degree of the extension

necessary for the Lucas-Lehmer part and the degree of the extension needed for the Jacobi

sum part contain an l-power, but that power is larger in the former, that is, if 0 < ol(u) <

ol(w), then we require that v contains all h factors l that occur in nf − 1 (where f is

the total degree lcm(u,w)). This means that in the Lucas-Lehmer part of the test the

existence of an lh-th root of unity in OL/nOL must be shown. This is used in part (b) of

the proof.

In case there is no common l-th power degree extension for the Lucas-Lehmer and

the Jacobi sum parts because l does not divide the degree u used in the latter, we need a

“special” character in X for which (vi) is checked. The ordinary characters in (v), that is,

those necessary for generating Hom(
(

Z/s1Z
)∗
, 〈ζ〉), serve the same purpose as in Theorem

(6.8). Note that the special characters in X may have some special properties. Although

ld | λ(m) will hold necessarily (where ld is the order and m the conductor), we did in

particular not require that ld ‖ λ(m); in addition it may very well be that such a special

character χ is the only character of conductor m that is in X. On the other hand, if one
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is fortunate, it may happen that χ is already in X as a generator of Hom(
(

Z/s1Z
)∗
, 〈ζ〉),

in which case no extra Jacobi sum test is necessary.

As in Theorem (6.8), it is possible to replace t in Theorem (7.1) by t′, an integer built

up from primes in t only. For t′ > t it usually implies in the final step of (7.7) that more

potential divisors ri have to be tested.

The primality test (7.7) that results from (7.1), consists of the choice of parameters s,

t, u, v, and w, and a set of characters X, satisfying (i)–(vi), and such that lcm(s1t, v) >
√
n.

The problem of course is, how to choose the parameters in such a way that the necessary

verifications can be done efficiently. That is the subject of the next chapter.
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8. JACOBI SUMS.

In this section we present some results on Jacobi sums that are used in the primality testing

algorithm. Jacobi sums will be used for two purposes, both aimed at reducing the amount

of work to be done for the Jacobi sum test. Firstly, Jacobi sums will make it possible to

verify identities of the type

τ(χ)n

τ(χn)
∈ 〈ζ〉

without leaving the ring OL/nOL, cf. (6.16). Secondly, Jacobi sums will enable us to do

these verifications for several characters at the same time.

We recall from Section 3 that characters modulo s take on their values in the cyclic

subgroup 〈ζ〉 of the unit group of some commutative ring A with 1; here ζ is a zero of a

cyclotomic polynomial Φt with t · 1 6= 0 in A, and exp
(

Z/sZ
)∗ | ord ζ.

(8.1) Definition. Let χ1 and χ2 be characters of conductors s1 and s2. Define s =

lcm(s1, s2). Let A be such that s ∈ A∗. The Jacobi sum J(χ1, χ2) is the element of A[ζs]

defined by

J(χ1, χ2) =
τ(χ1)τ(χ2)

τ(χ1χ2)
.

(8.2) Remarks. Jacobi sums are well-defined this way as a consequence of (3.10), and

the fact that by (2.2) τ(χ1), τ(χ2) and τ(χ1χ2) may all be regarded as elements of A[ζs].

Note that by (3.10) in fact J(χ1, χ2) ∈ A[ζs]
∗.

(8.3) Lemma.

(i) J(χ, 1) = 1 for any character χ.

(ii) J(χ, χ−1) = χ(−1)s, where s is the conductor of χ.

(iii) If s is prime and χ1, χ2 and χ1χ2 are primitive characters modulo s, then:

J(χ1, χ2) =

s−1
∑

x=0

χ1(x)χ2(1 − x).

Proof.

(i) Immediate from the definition.
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(ii) This is (3.10), since τ(1) = 1.

(iii) This follows from:

τ(χ1)τ(χ2) =
(

q−1
∑

x=0

χ1(x)ζ
x
q

)(

q−1
∑

y=0

χ2(y)ζ
y
q

)

=

q−1
∑

x,y=0

χ1(x)χ2(y)ζ
x+y
q =

q−1
∑

z=0

(

q−1
∑

x=0

χ1(x)χ2(z − x)
)

ζz
q

=

q−1
∑

z=1

(

q−1
∑

x=0

χ1(zx)χ2(z − zx)
)

ζz
q +

q−1
∑

x=0

χ1(x)χ2(−x)

=

q−1
∑

z=1

(

χ1χ2(z)

q−1
∑

x=0

χ1(x)χ2(1 − x)
)

ζz
q +

q−1
∑

x=0

χ1(x)χ2(−x)

=

q−1
∑

x=0

χ1(x)χ2(1 − x)τ(χ1χ2) + 0,

by (3.3) since χ1χ2 6= 1.

(8.4) Remarks. For characters of the same prime conductor whose product is non-

principal, (8.3)(iii) is often used as definition for the Jacobi symbol. Notice that in this case

we can define J(χ1, χ2) even if not q ∈ A∗. Also remark that here clearly J(χ1, χ2) ∈ A;

below we will see that this is more generally true.

(8.5) Lemma. Let χ1 and χ2 be characters of conductors s1 and s2 respectively, and let

s = lcm(s1, s2). If s ∈ A∗, then J(χ1, χ2) ∈ A∗.

Proof. Define the automorphism σh on A[ζs], for h coprime to s, by σh(ζs) = ζh
s and

σh(a) = a for a ∈ A. Then obviously A ⊂ B, if we define:

B = {z ∈ A[ζs] : σh(z) = z for every h coprime to s}.

Using a Vandermonde determinant and Lemma (2.1) (as in the proof of (2.10)) one shows

that ζ0
s , ζ

1
s , . . . , ζ

φ(s)−1
s are linearly independent over B, hence B[ζs] = A[ζs], so A = B.

Since

σh

(τ(χ1)τ(χ2)

τ(χ1χ2)

)

=
τh(χ1)τh(χ2)

τh(χ1χ2)
=
χ−1

1 (h)χ−1
2 (h)

(χ1χ2)−1(h)

τ(χ1)τ(χ2)

τ(χ1χ2)
=
τ(χ1)τ(χ2)

τ(χ1χ2)

we find that J(χ1, χ2) = τ(χ1)τ(χ2)/τ(χ1χ2) ∈ A. The result now follows from the remark

made in (8.2) that J(χ1, χ2) ∈ A[ζs]
∗.
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(8.6) Remarks. Lemma (8.5) will be used for the second purpose mentioned in the

introduction of this section, as follows. In applying (7.1) one has to check that for some

unit z in the relevant ring, (zτ(χ))
n−φn ∈ 〈ζ〉, for a set of characters including a set

of generators for Hom(
(

Z/s1Z
)∗
, 〈ζ〉). In (8.9) below we will see that τ(χ)n−φn can be

calculated as a small product times an enormous exponentiation (roughly an n-th powering)

of a product of Jacobi sums. Of course one would like to perform this n-th powering as

few times as possible; (8.5) enables us to combine the calculations for two characters. For,

checking that
(

τ(χ1)τ(χ2)
)n−φn ∈ 〈ζ〉 proves that

(

J(χ1, χ2)τ(χ1χ2)
)n−φn

has the same

property, and since J(χ1, χ2) is a unit, the condition for the character χ1χ2 has been

verified. If we make sure that 〈χ1χ2〉 is the same subgroup as 〈χ1, χ2〉, which we do by

ensuring that the orders of χ1 and χ2 are coprime, we obtain the same information by

essentially halving the amount of work.

This introduces an interesting optimization problem: how to combine tests for charac-

ters in such a way that the amount of work to be done is minimized? We will answer this

question in Chapter III. We will choose the set of characters generating Hom(
(

Z/s1Z
)∗
, 〈ζ〉)

to consist of characters of conductor q, a prime divisor of s1, and order pk, a prime power

exactly dividing q−1. One has to keep in mind here that the computations for a character

of order a prime power pk will be done in an extension ring OL/nOL of degree u, the order

of n in
(

Z/pkZ
)∗

.

This choice implies that for the first application mentioned in the introduction to this

section, we are only interested in the case of prime conductor.

(8.7) Lemma. Let χ be a character of conductor s and suppose that s ∈ A∗. For every

integer h ≥ 0:

τ(χ)h

τ(χh)
=

h−1
∏

j=1

J(χ, χj).

Proof. For h = 0, 1 the right hand side is the empty product, which equals 1 by definition;

the left hand side equals 1 as well in both cases (χ0 is the principal character and τ(1) = 1).

For h > 1 we see from (3.10) that τ(χj) ∈ A[ζs]
∗. By (8.1) we then have in A[ζs]

∗:

h−1
∏

j=1

J(χ, χj) =
τ(χ)τ(χ)

τ(χ2)
· τ(χ)τ(χ2)

τ(χ3)
· · · τ(χ)τ(χh−1)

τ(χh)
=
τ(χ)h

τ(χh)
.

That proves (8.7).
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(8.8) Corollary. Let χ be a character of conductor s and suppose that s ∈ A∗. Then:

τ(χ)ord χ = χ(−1)s

ord χ−2
∏

j=1

J(χ, χj) = χ(−1)s
τ(χ)ord χ−1

τ(χord χ−1)
.

Proof. Applying (3.10) and (8.7) we find

τ(χ)ord χ = τ(χ)τ(χord χ−1)
τ(χ)ord χ−1

τ(χord χ−1)

= χ(−1)s
τ(χ)ord χ−1

τ(χord χ−1)

= χ(−1)s

ord χ−2
∏

j=1

J(χ, χj),

which proves (8.8).

(8.9) Corollary. Let χ be a character of conductor s and suppose that s ∈ A∗. Then for

every h ∈ Z≥0:

τ(χ)h

τ(χh)
=
(

h∗−1
∏

j=1

J(χ, χj)
)(

χ(−1)s

ordχ−2
∏

j=1

J(χ, χj)
)l

where 0 ≤ h∗ < ordχ with h∗ ≡ h mod ordχ, and h = h∗ + l ordχ. In particular:

τ(χ)h

τ(χh)
∈ A∗.

Proof. With h∗ and l as defined in the statement:

τ(χ)h

τ(χh)
=
τ(χ)h∗

τ(χ)l ord χ

τ(χh∗)
.

The identity follows immediately from (8.7) and (8.8). By (3.10) the element τ(χ)h/τ(χh)

is a unit in A[ζs]; but J(χ, χj) ∈ A∗ and the result follows. That proves (8.9).

(8.10) Remarks. The main use of (8.7)–(8.9) is that it shows that τ(χ)h/τ(χh) can

always be expressed as a product of Jacobi sums in A∗. That means that we can check

τ(χ)n/τ(χn) ∈ 〈ζ〉, as necessary in the Jacobi sum test, in A∗. In practice we will want to
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express τ(χ)h/τ(χh) as a product of as few Jacobi sums as possible, and to avoid inverting

elements in A we would like to have all exponents positive. In IV.(2.4) an algorithm is

given that yields good results (these results can be found in the Appendix). To explain

some of the ideas behind this algorithm, we give an example below. But first there is an

obvious but very useful identity that we state for future reference.

(8.11) Lemma. Let χ be a character of prime conductor q and suppose that q ∈ A∗. If

χh 6= 1 6= χl, then for every i, j ∈ Z:

τ(χh)

τ(χl)
=
χh(−1)τ(χi·ord χ−l)

χl(−1)τ(χj·ord χ−h)
.

Proof. This is a consequence of the fact that τ(χj·ord χ−h) = τ(χ−h), and of (3.10),

implying that

τ(χh)

τ(χl)
=
χl(−1)qτ(χj·ord χ−h)

χh(−1)qτ(χi·ord χ−l)
.

(8.12) Example. We propose to generate expressions for τ(χ)h/τ(χh), with h = 1, 2,

. . ., 17 for a character of order 17 with values in a ring in which the conductor of χ is a

unit.

We use the exponential notation again, so τ(χ)σh = σhτ(χ), where σhζ = ζh, so

τ(χ)σh = τ(χh). We are after expressions

τ(χ)i−σi =
∏

J(χa, χb)eJ

for i = 1, 2, . . . , 17; here the product ranges over the Jacobi sums J(χa, χb), so in fact over

the pairs (a, b) with 1 ≤ a, b ≤ 17. We want the exponents eJ to be of the form
∑

j≥0 zjσj

with zj ≥ 0, and we would like to use only a small set of different Jacobi sums (pairs

(a, b)).

The first steps are easy: τ(χ)1−σ1 = 1 and for τ(χ)2−σ2 we have not much choice but

to write it as τ(χ)2−σ2 = J(χ, χ) = J2. (Here the index of J will denote the sum a+ b in

J(χa, χb).) But this means that we are able to find expressions for all τ(χ)i−σi for all i

that are powers of 2, since

τ(χ)4−σ4 =
(

τ(χ)2−σ2

)2+σ2

= J2+σ2
2 ,
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and similarly

τ(χ)8−σ8 = J4+2σ2+σ4
2

τ(χ)16−σ16 = J8+4σ4+2σ4+σ8
2 .

It turns out that for τ(χ)3−σ3 we need a new Jacobi sum, namely J3 = τ(χ)τ(χ2)/τ(χ3);

then τ(χ)3−σ3 = J2J3. Next we can generate τ(χ)i−σi for every i that is built up from

powers of 2 and 3. For instance

τ(χ)6−σ6 =
(τ(χ)3

τ(χ3)

)2 τ(χ3)2

τ(χ6)
=
(

τ(χ)3−σ3

)2

Jσ3
2 = J2+σ3

2 J2
3 ;

similarly

τ(χ)9−σ9 = τ(χ)(3−σ3)(3+σ3) = J3+σ3
2 J3+σ3

3 ,

τ(χ)12−σ12 = τ(χ)(3−σ3)4τ(χ)(2−σ2)(2σ3+σ6) = J4+2σ3+σ6
2 J4

3 .

Actually, for τ(χ)9−σ9 we could have done without J3, since by (8.11)

τ(χ)9−σ9 = τ(χ)8
τ(χ)

τ(χ9)
= τ(χ)8

τ(χ8)

τ(χ16)
= J4+2σ2+σ4+σ8

2 .

Note that χ(−1) = 1 for this character.

From this it may be clear that the problem really is to generate τ(χ)i−σi for prime i.

It turns out that for τ(χ)5−σ5 we need again a new Jacobi sum, but to illustrate that this

not always the case and how one should try to find alternatives, we turn to τ(χ)7−σ7 first.

We will attempt to use (8.11) again; suppose we can find integers x, y such that x+ y = 7

(with 1 ≤ x, y < 7), such that both τ(χ)x−σx and τ(χ)y−σy have been generated before,

with the additional property that for some j ≥ 1 and h ≥ 1 we have

τ(χx)τ(χj·17−7)

τ(χ17−y)
= Jσh

2 or = Jσh
3 .

Then we are done, since by (8.11):

τ(χx)τ(χj·17−7)

τ(χ17−y)
=
τ(χx)τ(χy)

τ(χ7)

so we find τ(χ)7−σ7 on multiplying this by the expression we found previously (by assump-

tion) for τ(χ)x−σx and τ(χ)y−σy .
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Such x, y, j, h do indeed exist here; take x = 3, y = 4, j = 1, h = 10:

τ(χ3)τ(χ1·17−7)

τ(χ17−4)
=
τ(χ20)τ(χ10)

τ(χ30)
= Jσ10

3 .

With τ(χ)3−σ3 and τ(χ)4−σ4 as above we thus find

τ(χ)7−σ7 = J3+σ2
2 J1+σ10

3 .

This immediately gives

τ(χ)14−σ14 = J6+2σ2+σ7
2 J2+2σ10

3 .

Exactly the same procedure will also work for i = 11, using x = 3, y = 8, j = 1, h = 3

(with J3), to obtain:

τ(χ)11−σ11 =
τ(χ)3

τ(χ3)

τ(χ)8

τ(χ8)

τ(χ3)τ(χ6)

τ(χ9)
= J5+2σ2+σ4

2 J1+σ3
3

using the expressions for τ(χ)3−σ3 and τ(χ)8−σ8 given above.

It will work for i = 13 as well, using x = 4, y = 9, j = 1, h = 4 (with J2), to obtain:

τ(χ)13−σ13 =
τ(χ)4

τ(χ4)

τ(χ)9

τ(χ9)

τ(χ4)τ(χ4)

τ(χ8)
= J6+3σ2+2σ4+σ8

2

using the second alternative for τ(χ)9−σ9 given above.

That leaves only i = 5, 10 and 15. It is clear that an expression for τ(χ)5−σ5 will

also solve the problem for τ(χ)10−σ10 and τ(χ)15−σ15 ; it is interesting however, that both

τ(χ)10−σ10 and τ(χ)15−σ15 can be done by the above method as well, using only J2 and

J3. Namely, for τ(χ)10−σ10 we may take x = 7, y = 3, j = 1, h = 7 (with J2), to arrive

at:

τ(χ)10−σ10 =
τ(χ)3

τ(χ3)

τ(χ)7

τ(χ7)

τ(χ7)τ(χ7)

τ(χ14)
= J4+σ2+σ7

2 J2+σ10
3

using τ(χ)7−σ7 .

For τ(χ)15−σ15 we may take x = 2, y = 13, j = 1, h = 2 (with J2), to get:

τ(χ)15−σ15 =
τ(χ)2

τ(χ2)

τ(χ)13

τ(χ13)

τ(χ2)τ(χ2)

τ(χ4)
= J7+4σ2+2σ4+σ8

2

using τ(χ)13−σ13 above.
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8. Jacobi sums II. Theory

However, if we try to use the same method for i = 5, we do not succeed; all we have

to do is checking the following. If

τ(χx)τ(χj·17−5)

τ(χ17−y)
= Jσh

2

holds with j = 1, then x = h = 1 · 17 − 5 = 12 and y = 10, in which case clearly not

x, y < 5; taking j ≥ 2 will not help here since y mod 17 will be unaffected. If

τ(χx)τ(χj·17−5)

τ(χ17−y)
= Jσh

3

holds with j = 1, then either x = h(1 · 17 − 5) ≡ 7 mod 17 and y = 15, or 2x = h =

1 · 17 − 5 = 12 and y = 16; in both cases neither x nor y is smaller than 5. Again, for y

modulo 17 nothing changes for larger j.

So our method fails and we introduce a new Jacobi sum J5; here a choice has to be

made: either we take J5 = J(χ2, χ3) or J5 = J(χ, χ4). Both will do, but the resulting

exponents will differ. It turns out that in making exponents like this for orders other than

17, one will have a preference for J(χ2, χ3). Then: τ(χ)5−σ5 = J2
2J3J5.

For reference in Chapter IV we state here the result that was used several times in the

previous example.

(8.13) Lemma. Let χ be a character of prime conductor q, with q ∈ A∗, of order pk,

with p prime. Let 0 < i < pk, and i not divisible by p.

Suppose that positive integers a and j exist, as well as a prime π 6= p, such that the

following hold:

(8.14) a | j · pk − i and (π − a)
(j · pk − i

a

)

≡ m mod pk for some m with 0 < m < i.

Then there exist positive integers b, c < i, d < i and e, such that

(8.15) J(χa, χb)σe = ±τ(χ
c)τ(χd)

τ(χi)
.

Explicitly, this is true for

b = π − a, c = i− (π − a)
(j · pk − i

a

)

, d = (π − a)
(j · pk − i

a
, and e =

j · pk − i

a
,

and the sign in (8.15) equals χd(−1).

Proof. Apply (8.11), for the given values of b, c, d and e:

J(χa, χπ−a)σe =
τ(χjpk−i)

τ(χjpk−i+d)
τ(χd) =

χ−i(−1)

χ−i+d(−1)

τ(χi−d)τ(χd)

τ(χi)
,

and the result is immediate.
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9. THE FINAL STAGE.

In the final stage of the algorithm some trial divisions will have to be performed. The

outcome of the previous parts of the algorithm will be that every possible divisor of n is

congruent to a power of n modulo an auxiliary number, that we shall call m in this section.

We describe an algorithm due to H.W. Lenstra Jr., for finding all divisors of n quickly in

this situation (see [88]).

At this stage we know (cf. Theorem (7.1)) that every divisor r of n satisfies

(9.1) r ≡ ni mod m

for an auxiliary number m.

If m >
√
n, then it is clear what the final step will consist of: for every i, find the

representative

ri ≡ ni mod m, with 0 ≤ ri < m;

if 1 < ri ≤
√
n, then do a trial division of n by ri.

As we pointed out before, making m large is expensive, and therefore it would be

desirable to allow m ≤ √
n. In that case however, it is not obvious any more that there

exists an efficient way of finding all divisors of n; checking all possibilities leads to an

exponential algorithm. Here we invoke the following result of [88].

(9.2) Theorem. Let r,m and n be integers satisfying

(9.3) 0 ≤ r < m < n, with m > 3
√
n and gcd(r,m) = 1.

Then there is an algorithm for determining all positive divisors of n that are congruent to

r modulo n, which requires O((logn)3) bit operations.

It has even been proved that in the above situation there are at most 11 divisors in any

given residue class r modulo m. We will present the algorithm for finding them below.

(9.4) Algorithm. Let r, m, and n satisfy (9.3).

Use the Euclidean algorithm to find the inverse r−1 of r modulo m, and determine

the integer

r′ ≡ r−1n mod m, with 0 ≤ r′ < m.
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9. The final stage II. Theory

Do the following for j = 0, 1, . . . in succession. Calculate the triple aj, bj , cj of integers,

defined by:

a0 = m a1 ≡ r′r−1 mod m, 0 < a1 ≤ m, aj = aj−2 − qjaj−1, for j ≥ 2,

b0 = 0 b1 = 1, bj = bj−2 − qjbj−1, for j ≥ 2,

c0 = 0 c1 ≡ (n− rr′)

m
r−1 mod m, cj = cj−2 − qjcj−1, for j ≥ 2,

where qj is the unique integer for which

0 ≤ aj < aj−1 if j is even,

0 < aj ≤ aj−1 if j is odd.

Next, solve the quadratic equation

(9.5) T 2 − (cs+ ajr + bjr
′)T + ajbjn = 0,

for every integer c satisfying

c ≡ cj mod m and







−m < c < m if j is even,

2ajbj ≤ c ≤ n

m2
+ ajbj if j is odd.

If the solutions to (9.5) are integers, and if there exist non-negative integers x and y such

that these solutions equal

t1 = aj(xm+ r) and t2 = bj(ym+ r′),

then xm+r is a divisor of n congruent to r modulo m. If aj = 0, the algorithm terminates,

otherwise we continue with the next j.

(9.6) Remarks. We refer to [88] for a proof of the fact that the algorithm in (9.4) has

the properties claimed in Theorem (9.2).

Note that the number of residue classes r that need to be checked in the primality test

is at most the order of n in
(

Z/mZ
)∗

by (9.1), which is relatively small by our construction

of m, as in Sections 6 and 7. In fact, (9.4) need to be applied at most half that number of

times, since in solving (9.5) one detects divisors congruent to ri ≡ ni mod m and congruent

to r′ ≡ n1−i mod m simultaneously.
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III. Optimization 1. Introduction

1. INTRODUCTION.

In this chapter we describe the strategy used in the optimization stage of the algorithm,

described in detail in Section IV.4.

During the optimization stage of the algorithm several choices have to be made. In

the first place it should be decided how much time will be spent on looking for additional

“Lucas-Lehmer factors”; secondly one has to choose the values of the auxiliary integers

s, t, u, v and w, and finally the Jacobi sum tests that have to be performed are to be

combined. The aim of the optimization stage is to make these choices in such a way that

the running time of the primality test (including this optimization stage!) for a given

number n is minimal.

Solving this minimization problem seems to be a difficult and complex problem how-

ever. As a result, it will in general not be possible to find the minimal solution, but we

will have to be satisfied with an approximation.

Since for small numbers the primality proofs will be very short, the optimization stage

cannot take too much time, since otherwise the total running time to complete the proof

would be influenced considerably by the time needed to perform the optimization stage.

On the other hand, in the proofs of primality for large numbers, it will be worthwhile

to invest some time in the optimization stage, since it can speed up the various stages of

the primality test considerably.

These considerations show that before starting the optimization routine an estimate

should be made of the time that will be invested in optimizing. This estimate may depend

on two rough estimates; firstly for the time necessary to complete the primality proof

without further optimizing, and secondly for the expected profit of optimizing. The first

could for instance consist of the calculation of the time necessary to complete the proof

using only Jacobi sum tests, depending on the size of n only. The second could be based

on previous experience. This also implies that the steps of the optimization stage, as

described below, may be repeated, as long as it is expected to be profitable to do so.

The rest of this introductory section is devoted to the description of an overview of

the optimization stage, explaining the constraints in the optimization problem and the

meaning of the symbols used, while referring to the previous chapter. The following five

steps each correspond, in reverse order, to one of the next five sections.

(1.1) Factoring time. The primality proofs are based on Theorem II.(7.1), in which
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1. Introduction III. Optimization

Jacobi sum tests and Lucas-Lehmer type tests are combined. The parameters s, t and u

refer to the Jacobi sum test, v and w refer to the Lucas-Lehmer type tests.

The basic constraint on the auxiliary integers is that

(1.2) lcm(s, v) >
√
n,

(or lcm(s, v) > 3
√
n, applying the techniques of II.9).

As explained in II.5, a Lucas-Lehmer type test consists of constructing a vi-th cyclo-

tomic constellation L, ζ, σ, where L is cyclic field of degree wi, the order of n in (Z/viZ)∗.

Here the prime factorization of vi must be known. Roughly speaking, the test comes down

to performing a nwi-th powering in the ring OL/nOL, an extension ring of degree wi of

Z/nZ. The integer v will be the product of the vi for which one performs such Lucas-

Lehmer tests, and w = lcm(wi). Thus v is (a divisor of) the completely factored part of

nw − 1.

It should be remarked that, although w is the total degree of the extension in which

all Lucas-Lehmer type tests can be performed, the actual tests will all take place in proper

subextensions (unless a primitive factor of nw − 1 is used).

The contribution to v may come from different sources. It may be that someone

has found factors of n − 1, n2 − 1, . . . in the past. To find additional factors one should

apply some factorization algorithm. The optimization step first determines how much time

should be spent on this. This decision is based on the calculation of the expected size of

the product of the factors that are to be found and balancing the costs for the factor search

and the Lucas-Lehmer test with the costs of doing additional Jacobi sum tests instead.

This strategy is discussed in Section 6.

(1.3) Choosing v. The second choice that is made during the optimization step, is that

of the value of v, and of w at the same time. That means that one decides which of the

factors vi (either given beforehand or found from factoring) are to be used. Using a small

factor vi for large wi may be much too expensive. One is particularly interested in factors

of nwi − 1 for values of wi that divide some up,k, since these may be regarded as “free”

(see below). The strategy for choosing v and w is described in Section 5; basically one

first limits the set of values for w taken into consideration drastically and then performs

an exhaustive search over the remaining, useful values.

It may be that some small prime factors of v will in fact be used as factors for t.
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III. Optimization 1. Introduction

(1.4) Choosing t. The integer s will be a divisor e(t), as in II.(6.13), possibly multiplied

by a few extra small prime factors dividing t. Thus it will mainly be built up from primes

q with the property that q− 1 | t. Since we want s in general to be large, the integer t will

be built up from small primes, cf. II.(6.13).

The third choice made during the optimization, is that of t. For each prime power

dividing t and for each prime q dividing s we have to do a few initialization steps, which

can be done in advance, i.e., without knowledge about the number n. Therefore we require

that the number t will be a divisor of an initially chosen value t0.

Again, one basically performs an exhaustive search, after discarding “bad” values for

t. Here “bad” either means that lcm(e(t), v) <
√
n so that (1.2) will never hold, or that

using this t is obviously more expensive than using other values. This can often easily be

seen by calculating a rough underestimate of the costs of the principal steps.

The integer u will be equal to u = ordn in
(

Z/tZ
)∗

, the total degree of the extensions

in which the Jacobi sum tests will take place. Therefore u is determined by the choice for

t.

The first part of the Jacobi sum test consists of showing the existence of t1-th cyclo-

tomic constellations; here t1 will be the largest divisor of nu−1 that is built up from primes

in t only. This comes down to finding pk-th roots of unity, for all prime power divisors

pk ‖ t1, in extensions of Z/nZ of degree up,k, the order of n in
(

Z/pkZ
)∗

. This means

roughly that an n-th powering in that extension has to be done. If also a Lucas-Lehmer

test has to be done in an extension of degree wi | up,k, both can be done by the same

exponentiation. This explains why it was remarked above that such a Lucas-Lehmer test

is gotten (almost) for free. For a description see Section 4.

(1.5) Choosing s. Next one chooses the divisor s of e(t) that will be used. For every pair

(pk, q), with q a prime divisor of s and pk ‖ q − 1, a Jacobi sum test must be performed,

in an extension of degree up,k, the order of n in
(

Z/pkZ
)∗

. But since two such tests

can sometimes be combined into one cheaper test, the costs of using different q’s are not

independent. An exhaustive search over all s satisfying (1.2) soon becomes too time-

consuming, and therefore one has to find a reasonable estimate for the cost of using q,

taking the possibility of combining characters into account. See Section 3 for this.

(1.6) Finding an optimal matching. Finally, once s is chosen, one has to find an

optimal combination of the Jacobi sum tests that have to be performed. An efficient
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1. Introduction III. Optimization

algorithm for this is described in Section 2.

Thus the optimization can be divided into five consecutive steps, each of which can be

regarded as a sub-step of the preceding one. Since several steps consist of a search over

possible values for the parameters that are to be chosen, it seems natural to discuss the

steps in reverse order. In the first section to come, we will discuss the innermost stage

of the optimization problem: suppose that all parameters have been fixed, except for the

matching of the Jacobi sums. Subsequently we will work our way out from this stage to

the outermost stage. In this way we will complete the description of all the strategies used

by the optimization stage of the algorithm.
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III. Optimization 2. Finding an optimal matching

2. FINDING AN OPTIMAL MATCHING.

(2.1) Assumptions. In this section we consider the problem of combining the Jacobi

sum tests in an optimal way. Throughout this section we assume that the values for the

auxiliary integers s, t, u, v, and w are fixed. Moreover we assume that a set X of characters

is given for which Jacobi sum tests have to be performed. Characters χ ∈ X will also be

represented here as pairs (pk, q), consisting of the order and the conductor of the character;

here p and q will be prime and pk | q− 1. Finally it is assumed that for every pk for which

there exists q such that (pk, q) ∈ X, some pk-th cyclotomic constellation L, ζpk , σ has been

constructed.

(2.2) Remark. Most of the characters (pk, q) in X have the property that q is a prime

divisor of s and that pk ‖ q − 1. However, X may contain some “special” characters as

well; for these q need not divide s, and pk need not be the largest power of p dividing q−1,

see II.(7.8).

(2.3) Performing Jacobi sum tests. Performing a Jacobi sum test for a character χ of

order pk and conductor q consists, in principle, of checking the condition (cf. II.(6.4)(v))

(2.4) (zτ(χ))
n−φn ∈ 〈ζpk〉

for χ. However, in practice one does not check (2.4), but one employs Jacobi sums. As

pointed out in II.(8.10), τ(χ)n−φn is rewritten as a product of Jacobi sums, which means

that (2.4) can be checked without leaving the ring OL/nOL, an extension of Z/nZ of

degree up,k, the order of n in
(

Z/pkZ
)∗

. Checking (2.4) essentially consists then of taking

the n-th power of an element consisting of up,k coordinates over Z/nZ. This has to be

done for every character, that is pair (pk, q), in X.

The aim is to find an algorithm for minimizing the cost of performing the Jacobi sum

tests for a given set X. The reason that there is a minimization problem at all lies in the

possibility of combining tests, for which again Jacobi sums are utilized.

Instead of checking (2.4) for a character χ1 in an extension of degree u1 and for a

character χ2 in an extension of degree u2, one may perform one combined test

(2.5) (J(χ1, χ2)τ(χ1χ2))
n−φn ∈ 〈ζ〉

in an extension of degree lcm(u1, u2), as was pointed out in II.(8.6). So two (or more) n-th

powerings can be replaced by one, but possibly on an element with more coordinates.
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This means that whether or not it is profitable to combine these tests depends on

the degrees u1 and u2, as well as on the function G(u) that expresses how expensive it

is to multiply two elements of u coordinates (over Z/nZ). If for instance G(u) = u, so

the cost of multiplication is linear in the number of coordinates, then it is profitable to

combine tests in extensions of degree 6, 10 and 15 into one in degree lcm(6, 10, 15) = 30

since 30 < 6 + 10 + 15; but if G(u) = u2, quadratic in the number of coordinates, which is

certainly more realistic, then this combination is not profitable at all: 302 > 62 +102 +152.

There is one more rule that is to be obeyed, namely: two Jacobi sum tests as in (2.4)

will only be combined to one test as in (2.5) if the orders of the characters involved (the

pk above) are relatively prime, see II.(8.6).

Now we describe the resulting optimization problem in a slightly more general form. The

reason for this is that we will show that the computational complexity of the problem

changes dramatically – from having a polynomial time solution (e.g. in the case we need)

to being NP-complete – if the imposed conditions are slightly modified.

(2.6) The problem. Given the disjoint union X =
∐

i∈I Xi of a finite number of finite

sets and a function

d : X → Z≥1

assigning a positive integer to every element of X, as well as a function

G : Z≥1 → R≥0.

Find a disjoint covering
∐

j∈J Wj = X such that:

for every i ∈ I and j ∈ J : #
(

Xi ∩Wj

)

≤ 1

and

∑

j∈J

G
(

lcm{d(w) : w ∈Wj}
)

is minimized.

(2.7) Comments. We translate this problem in terms of the description given above.

The collection X in the above formulation can be thought of as the collection of characters
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(pk, q) for which one has to do a Jacobi sum test. These are grouped in sets Xi of characters

of order a power of the same prime p. Then d may be thought of as the function that

assigns to a character the degree of the extension in which the Jacobi sum for that character

exists. The function G reflects the cost of a multiplication: it gives the cost G(k) for the

multiplication of two elements having k coordinates, that is, in an extension of degree k.

Every Wj is a combination for which the tests are done simultaneously; since characters

within the same Xi may not be combined, the total cost should be minimized under the

given restriction.

In fact the problem described above is a matching problem.

(2.8) Matchings. Let X1, X2, . . ., Xn be finite sets. Let

M ⊂ X1 ×X2 × · · · ×Xn;

a matching M ′ is a subset M ′ ⊂ M such that no two elements of M ′ agree in any

coordinate.

The 2-dimensional matching problem is: given a subset M ⊂ X1 ×X2, with #X1 =

#X2 = k, does M contain a maximal matching, that is, a matching of cardinality k?

The 2-dimensional matching problem can be interpreted in terms of graphs; the sets

X1 and X2 form the disjoint sets of nodes of a bipartite graph, and edges between x1 ∈ X1

and x2 ∈ X2 exist precisely if (x1, x2) ∈M . A matching consists of a subset of edges such

that no pair is incident with the same vertex.

If we assign (positive) weights to the edges of the bipartite graph, we arrive at the

weighted bipartite matching problem: given a bipartite graph with positive weights at-

tached to every edge, find a matching for which the sum of the weights is maximal.

Another way of looking at weighted bipartite matching leads to the assignment prob-

lem: given a n × n-matrix Wij with non-negative entries, find a subset of the entries

containing precisely one element in every row and in every column, for which the sum of

the values is minimal. One may think of this as minimizing the cost of assigning one task

to each of n people. This is equivalent with the weighted bipartite matching problem.

The 3-dimensional matching problem reads as follows: given a subset M ⊂ X1 ×
X2 ×X3, with #X1 = #X2 = #X3 = k, does M contain a maximal matching, that is, a

matching of cardinality k?
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For both the 2-dimensional matching problem and the weighted bipartite matching

problem polynomial time solutions exist (cf. [67, Ch. 5]). The 3-dimensional matching

problem is known to be NP-complete, cf. [43].

Below we will deal with several special cases of problem (2.6), either by imposing conditions

on the function G or by restricting the number of sets Xi.

We start with the bipartite case.

(2.9) Theorem. Let notations be as in (2.6). If #I = 2, there is a polynomial time

algorithm to find the minimal covering in problem (2.6).

Proof. In this case our problem is equivalent to the assignment problem, as follows.

Let #X = n, and write X = {x1, . . . , xn}. Let W be the n×n-matrix with entries wij

(for 1 ≤ i, j ≤ n) obtained as follows. If xi ∈ X1 and xj ∈ X2, or the other way around,

put wij = 1
2
G
(

lcm{d(xi), d(xj)}
)

; if xi and xj are both in X1 or both in X2, put wij = ∞,

unless xi = xj , in which case wij = wii = G(d(xi)). One verifies easily that solving (2.6)

is the same as solving the assignment problem for the above matrix W .

That proves (2.9).

Next we consider the “free multiplication case”, that is the case where G ≡ 1.

(2.10) Theorem. Let notations be as in (2.6). If G(u) = 1 for every u, there is a

polynomial time algorithm to find the minimal covering in problem (2.6).

Proof. If G(u) = 1 for every u, then

∑

j∈J

G
(

lcm{d(w) : w ∈Wj}
)

is minimized exactly when #J is minimized. From #
(

Wj ∩ Xi

)

≤ 1 we see that #J ≥
max{#Xi : i ∈ I}. But it is easy to realize a covering by #J = max{#Xi : i ∈ I} sets Wj

as follows: for every i ∈ I put each of the elements of Xi in one of the Wj , different elements

in different sets. Then all requirements are met and this gives certainly a polynomial time

algorithm.

(2.11) Remark. We could replace 1 in Theorem (2.10) by any constant C > 0; the reason

we have taken C = 1 and call this the free multiplication case is that it corresponds to the
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case of multiplication exponent 0: the cost of multiplication of elements on u coordinates

is independent of u. Compare this to the realistic case below.

(2.12) Theorem. Let notations be as in (2.6). Suppose that G satisfies

(2.13) G(u) ≥
∑

p|u
p prime

G(
u

p
) for every u

and suppose moreover that d satisfies

(2.14) for every i ∈ I and every y, y′ ∈ Xi: d(y) | d(y′) or d(y′) | d(y).

Then there is a polynomial time algorithm to find the minimal covering in problem (2.6).

We prove this theorem by describing a greedy algorithm that yields a solution, and show

afterwards that it is optimal.

(2.15) Matching algorithm. Let notations be as in (2.6). Find a covering X =
∐

Wj

by repeating the following steps until the set X is empty.

(i) Suppose that the sets W1, . . . ,Wj−1 have been found; find an element in X, say

y0 ∈ Xi0 , such that d(y0) is maximal, put it in Wj and remove it from X.

(ii) Next find for every i 6= i0 an element y ∈ Xi (if it exists) such that d(y) is maximal

under the restriction that d(y) | d(y0); add these elements to Wj and remove them

from X. This finishes the description of Wj .

Proof of (2.12). First we observe the following. Suppose that X ′ ⊂ X and X ′′ ⊂ X; let
∐

j∈J ′ W ′
j be an optimal covering of X ′ and let

∐

j∈J ′′ W ′′
j be an optimal covering of X ′′.

If we let G(
∐

j∈J Wj) abbreviate

∑

j∈J

G
(

lcm{d(w) : w ∈Wj}
)

,

thenG(
∐

j∈J ′ Wj) ≤ G(
∐

j∈J ′′ Wj) provided thatX ′ “injects piecewise” intoX ′′ as follows.

Denote X ′
i = X ′ ∩ Xi and X ′′

i = X ′′ ∩ Xi; suppose that for every i ∈ I there exists an

injection

ψi : X ′
i ↪→ X ′′

i
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combining to

ψ : X ′ ↪→ X ′′

such that

for every x′ ∈ X ′: d(x′) ≤ d(ψ(x′))

then by (2.14) in fact d(x′) | d(ψ(x′)). Under this condition

∑

j∈J ′

G
(

lcm{d(w) : w ∈W ′
j}
)

≤
∑

j∈J ′′

G
(

lcm{d(w) : w ∈ X ′, ψ(w) ∈W ′′
j }
)

,

since the W ′
j cover X ′ optimally; also d(w) | d(ψ(w)), and therefore

∑

j∈J ′′

G
(

lcm{d(w) : w ∈ X ′, ψ(w) ∈W ′′
j }
)

≤
∑

j∈J ′′

G
(

lcm{d(w) : w ∈ W ′′
j }
)

.

Combining these we find indeed that G(
∐

j∈J ′ Wj) ≤ G(
∐

j∈J ′′ Wj).

Let
∐

j∈J Wj be the covering found by applying the algorithm in (2.15) to X and let
∐

k∈K W ∗
k be any other disjoint covering. We show that

∑

j∈J

G
(

lcm{d(w) : w ∈Wj}
)

≤
∑

k∈K

G
(

lcm{d(w) : w ∈W ∗
k }
)

.

Let x ∈ X be an element for which d(x) is maximal, and let j0 and k0 be such that

x ∈ Wj0 and x ∈ W ∗
k0

. Let L = lcm{d(w) : w ∈ W ∗
k0
}. Suppose that W ∗

k0
contains

an element w such that d(w)6 |d(x); by maximality d(x) | d(w) is impossible now, so

L ≥ lcm(d(w), d(x)) > max(d(x), d(w)) = d(x). Therefore, the value L is not equal to

d(w) for any w ∈ W ∗
k0

and that means that by (2.13) we will find a solution that is at least

as good as the one provided by the covering
∐

W ∗
k if we split W ∗

k0
into sets for which

W ∗
k0,p ⊂

{

w ∈W ∗
k0

: d(w)
∣

∣

L

p

}

,

for primes p dividing L. Making choices if necessary, we can obtain such sets forming

a disjoint covering of W ∗
k0

; one of the W ∗
k0,p contains x, and we can repeat the above

reasoning, replacing W ∗
k0

by W ∗
k0,p. But L will now be replaced by L/p, and after finitely

many steps in which the solution can only have changed for the better, we arrive at the

situation in which every w in the subset containing x satisfies d(w) | d(x).
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We may as well assume rightaway that for every w ∈ W ∗
k0

we have d(w) | d(x); thus

G
(

lcm{d(w) : w ∈ Wj0}
)

= G
(

lcm{d(w) : w ∈ W ∗
k0
}
)

= G(d(x)). Next let X ′ = X \Wj0

and likewise X ′′ = X \ W ∗
k0

. Let z ∈ Wj0 with z 6= x; then z ∈ Xi for some i 6= k0,

and z was chosen to be that element of Xi for which d(z) is the maximal divisor of d(x),

according to algorithm (2.15). Now either W ∗
k0

∩Xi is empty, or it contains one element,

z∗, for which d(z∗) ≤ d(z). As a consequence, for every i there exists an injection

ψi : X ′ ∩Xi ↪→ X ′′ ∩Xi

with the property that

for every x′i ∈ X ′ ∩Xi: d(x′i) ≤ d(ψi(x
′
i)).

In other words, the observation at the beginning of this proof applies, and we find

∑

j∈J

G
(

lcm{d(w) : w ∈Wj}
)

= G(d(x)) +
∑

j0 6=j∈J

G
(

lcm{d(w) : w ∈Wj}
)

≤ G(d(x)) +
∑

k0 6=k∈K

G
(

lcm{d(w) : w ∈ W ∗
k }
)

=
∑

k∈K

G
(

lcm{d(w) : w ∈W ∗
k }
)

.

That completes the proof of (2.12).

(2.16) Corollary. Let the notation be as in (2.6). If G(u) = uρ for some ρ ≥ ρ0 = 1.41 · · ·,
where the constant ρ0 satisfies

∑

p prime

1

pρ0
= 1,

and if d satisfies (2.14), then there is a polynomial time algorithm to find the minimal

covering in problem (2.6).

Proof. If G(u) = uρ with ρ ≥ ρ0, then

∑

p|u
p prime

G(
u

p
) =

∑

p|u
p prime

(u

p

)ρ
< uρ

∑

p
p prime

1

pρ
≤ G(u),

and the result follows immediately from Theorem (2.12).
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(2.17) Remarks. We call the above case the realistic case, because in our primality

testing application both conditions (2.13) and (2.14) are satisfied. Condition (2.14) holds

because the order of an integer modulo pk will divide the order of that integer modulo

pl if l ≥ k. Condition (2.13) is satisfied if we use näıve multiplication (requiring u2

multiplications and some additions to multiply two elements with u coordinates), or if

we make at least the realistic assumption that we cannot do better than something with

exponent of multiplication ρ0.

Moreover, we work in practice in extensions of degrees that are small powers of 2, 3

or 5 only, and therefore even every exponent of multiplication ρ larger than 1.033 · · · leads

to a polynomial solution.

Finally we show that if condition (2.13) on G is slightly relaxed in the realistic case, we

get an NP-complete problem.

(2.18) Theorem. Problem (2.6) is NP-complete.

This remains the case if we assume that G satisfies

(2.19) G(u) ≥ G(d) for every divisor d of u

and that d satisfies

(2.20) for every i ∈ I and every y, y′ ∈ Xi: d(y) | d(y′) or d(y′) | d(y).

Proof. We construct a subclass, for which we can show that it is NP-complete by trans-

forming 3-dimensional matching into it. Let X = U ∪ V ∪W where U = {u1, . . . , un},
V = {v1, . . . , vn}, and W = {w1, . . . , wn}. Define

d(ui) = 2i, d(vi) = 3i, d(wi) = 5i, for i = 1, . . . , n .

If we now define

G(2i3j5k) =

{

2(i+ j + k) − 1 if min(i, j, k) > 0 and (i, j, k) ∈M ;
2(i+ j + k) else,

then it is clear that finding an optimal solution comes down to finding a matching of

maximal cardinality. Since d and G can easily be seen to satisfy (2.19) and (2.20), this

proves the theorem.

(2.21) Remark. It would of course be interesting to know how much of an improvement

combining tests gives. Some experiments for this have been done, and it seems that a

speed-up of no more than 20% will be achieved.
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3. CHOOSING s.

(3.1) Assumptions. Throughout this section we assume that the values for t, u, v and w

are fixed. It is also assumed that for every prime power pk ‖ lcm(t1, v) the pk-th cyclotomic

constellation L, ζpk , σ has been constructed; here t1 = gcd(nu − 1, t∞).

The aim of this section is to show how a set X of characters is chosen; in the previous

section we discussed the problem of finding optimal combinations of characters for which

Jacobi sum tests will have to be performed (but see Remark (3.3)). Again, characters will

often be represented by the pair (pk, q) of its order and its conductor.

The constraints on X will be the following.

Every character (pk, q) has prime conductor q, and q− 1 must divide t1. By
∏

X q we

will denote the product over the set of all different conductors occurring in X; note that

this product divides e(t1), with e(t1) as in II.(6.14). By s1 we denote the largest factor
∏

X q that is coprime to t.

Furthermore, we want that X contains generators for all characters modulo s1, and

therefore we impose the following condition on X.

(3.2) If X contains a character of conductor q, it shall for every prime p dividing q − 1

contain a character (pk, q) with pk ‖ q − 1.

(3.3) Remark. Notice that the difference between the set of characters X chosen here

and that of X in the previous section is that in the previous section X may contain a few

more, the “special” characters, cf. (2.2). These do not depend on s, cf. II.(7.8).

Finally, we want to be able to complete the primality test by applying Theorem II.(7.1),

using the set X. In particular we want that s = s1t1 = lcm(
∏

X q, t1) satisfies the basic

inequality, given in (1.2), that lcm(s, v) >
√
n. Therefore we require that every conductor

q is coprime to both t and v, to arrive at a uniform lower bound B (i.e. not depending on

X) given by the following equation:

(3.4)
∏

X

q > B,

with B =
√
n/t1v; as usual the square root may be replaced by a cube root using II.9.
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3. Choosing s III. Optimization

(3.5) Remark. From now on we will assume in this section that X is chosen in such a

way that
∏

X q is coprime to tv, so

∏

X

q divides e(t1)t
−∞v−∞;

here we have extended the definition of the symbol ∞ as follows: kr−∞ will be the integer

obtained by removing all primes from k that occur in r. Then choosing X satisfying (3.2)

is equivalent to making a choice for s = t1
∏

X q, whence the title of this section.

Note that we did not use the extra freedom of multiplying more prime factors of t

into s, at the cost of having to do more trial divisions in the end (this is the choice of t′ in

II.(6.8), see also II.(7.8)).

Before stating our general problem, we introduce another famous combinatorial optimiza-

tion problem.

(3.6) Knapsacks. One way to describe the knapsack problem is as follows.

Given a finite set U , two functions s, v : U → Z≥1 and a positive integer S. Find a

subset U ′ ⊂ U such that

V =
∑

u∈U ′

v(u) is maximized, under the restriction
∑

u∈U ′

s(u) ≤ S.

One may think of this as the problem of maximizing the total value V of the objects

chosen out of the finite set, under the restriction that the sum of their sizes does not exceed

the size S of the knapsack. Equivalently, but more suited for the subsequent discussion,

one has the following formulation (that can be obtained by taking complements).

Given a finite set U , two functions s, v : U → Z≥1 and an integer S. Find a subset

U ′ ⊂ U such that

∑

u∈U ′

v(u) is minimized, under the restriction
∑

u∈U ′

s(u) ≥ S.

This knapsack problem is known to be NP-complete [43], [67], even if one knows the

cardinality #U ′ beforehand.

Using the same generality for the degree function d and the cost of multiplication function

G as used in the previous section, our problem may be stated as follows.
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(3.7) The general problem. Given B ∈ R≥1, finite sets Ī ⊂ Z≥1 and J̄ ⊂ Z≥1 and a

finite non-empty set X̄, with X̄ ⊂ Ī × J̄ ; also given, functions

d : X̄ → Z≥1 and e : J̄ → Z≥1 and G : Z>0 → R≥0.

Find a subset J of J̄ and a disjoint covering
∐

h∈H Wh = X, where X = X̄ ∩
(

Ī × J
)

,

with the following properties:

(i)
∏

j∈J e(j) > B;

(ii) for every h ∈ H: if x1 = (i1, j1) ∈ Wh and x2 = (i2, j2) ∈ Wh with x1 6= x2, then

i1 6= i2;

(iii)
∑

h∈H G
(

lcm{d(x) : x ∈Wh}
)

is minimal.

(3.8) Comments. The following description shows that (3.7) generalizes the problem of

choosing Jacobi sum tests.

Think of X̄ as a set of characters to choose from; it consists of pairs (p, q), representing

the prime of which the order is a power, and the conductor of the character. The function

d assigns to a character the degree of the extension in which the test for that character has

to be performed. The function e serves two purposes. It allows different j ∈ J̄ to have the

same value e(j); in the present context that is superfluous, but it is useful in the proof of

(3.9), where it avoids the awkwardness of the set J̄ containing like elements. Also, it allows

us to value the contribution of the “special characters” towards reaching (3.4) differently

(compare II.7). The function G determines the cost of multiplication as a function of the

degree of the extension. The problem is to find a subset X of X̄ that satisfies (3.2) and

(3.4), and a collection H of combinations Wh with minimal costs.

(3.9) Theorem. Problem (3.7) is NP-complete.

This remains the case if we assume that G satisfies

(3.10) G(u) ≥
∑

p|u
p prime

G(
u

p
) for every u

and that d satisfies

(3.11) for every i ∈ Ī and every j, j′ ∈ J̄ : d((i, j))|d((i, j′)) or d((i, j′))|d((i, j)).

Proof. We prove this by reducing the knapsack problem to the problem described in (3.7),

with the restrictions (3.10) and (3.11) imposed.
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Let the set U of cardinality #U = k, the functions s, v : U → Z≥1 and the positive

integer S be given. Suppose that b = #U ′ is the number of items in the solution of the

knapsack. Then we choose the parameters in problem (3.7) as follows.

First we enumerate the elements of U in such a way that U = {u1, u2, . . . , uk} with

v(u1) ≤ v(u2) ≤ · · · ≤ v(uk). Choose B = 2S − 1, so B ∈ Z≥1. Choose I ⊂ Z≥1 such

that #Ī = 1; then we may as well identify X̄ and J̄ . Without loss of generality we may

assume that U consists of a finite number of integers; we choose J̄ = X̄ = U and we define

e(j) = M + s(j) for every j ∈ J̄ , and a sufficiently large integer M (it suffices to take

M = (2V )b, with V = max(v(ui)). Choose B = M b + M b−1S ∈ Z≥1. Furthermore, let

d : U = X̄ → Z≥1 be defined by d(ui) = 2i. Next choose r ≥ 2 large enough (it suffices

that 2ir > v(ui) for 1 ≤ i ≤ k), and define G as follows:

G(m) =

{

v(uf ), if m = 2f and 1 ≤ f ≤ k
mr, otherwise.

Clearly G(d(u)) = v(u), for u ∈ U . It is easy to see (3.10) is now satisfied, using (2.16).

Also (3.11) holds, by our choice of d.

A solution of (3.7) with these parameters, will consist of a subset J = X of J̄ = X̄ = U

of cardinality #J = b, and a disjoint covering
∐

h∈H Wh = J = X, satisfying (i), (ii) and

(iii) in (3.7). But

∏

j∈J

e(j) =
∏

j∈J

(M + s(j)) > B = M b +M b−1S ⇐⇒
∑

j∈J

s(j) ≥ S,

by the definition of b and our choice of M . Furthermore, (ii) means in this case (since

#Ī = 1) that every non-empty Wh shall consist of precisely 1 element. Finally, by (iii),

the value of

∑

h∈H

G
(

lcm{d(x) : x ∈Wh}
)

=
∑

x∈X

G(d(x)) =
∑

x∈X

v(x)

will be minimized.

Choosing U ′ = X = J ⊂ U , the solution to (3.7) thus solves the knapsack problem.

That proves (3.9).

Even though (3.10) and (3.11) already impose “realistic” restrictions, as we explained in

Remark (2.17), we are interested in practice in the following specific problem.
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(3.12) The specific problem. Given n, t1, v ∈ Z≥1 with gcd(n, t1v) = 1, finite sets

J̄ = {q : q prime and q divides e(t1)t
−∞
1 v−∞},

Ī = {pk : p prime, pk ‖ q − 1 with q ∈ J̄},
X̄ = {(pk, q) : p and q prime, pk ‖ q − 1} ⊂ Ī × J̄ ,

and the function d : X̄ → Z≥1 defined by

d : (pk, q) 7→ ordn, the order of n in
(

Z/pkZ
)∗
,

as well as the function G(u) = u2 for u ∈ Z≥1.

Find a subset J of J̄ and a disjoint covering
∐

h∈H Wh = X, where X = X̄ ∩
(

Ī×J
)

, with

the following properties:

(i)
∏

q∈J q > B, where B =
√

n
t1v

(ii) for every h ∈ H: if x1 = (i1, j1) ∈ Wh and x2 = (i2, j2) ∈ Wh with x1 6= x2, then

i1 6= i2;

(iii)
∑

h∈H G
(

lcm{d(w) : w ∈Wh}
)

is minimal.

(3.13) Remark. An even more special (but probably still intractable) case is obtained

if we insist that #Wh ≤ 1 for every h ∈ H, which means that every combination consists

of one test. In other words, this describes the situation in which no combination of tests

takes place. This description applies to earlier versions of the Jacobi sum test (cf. [29]).

In the rest of this section we discuss the specific problem (3.12). Since solving (3.12) in

general seems to be hard, the description of the optimization will from now on focus on

strategies that may not be guaranteed to give the best solution, but, while being efficient,

seem to yield a reasonable approximation to the optimum.

(3.14) Cost per prime. The restriction on the subset X of X̄ imposed by (3.2) means

that if we remove a pair (pk, q) from X̄, we will at the same time remove all pairs with

the same q; in other words, in removing tests from X̄ we make sure to remove all tests for

characters with the same conductor at the same time. Thus
∏

X q will be decreased, and

it seems sensible to remove the most expensive q’s first. This leads to the notion of the

cost c(q) for the prime conductor q, a measure for the time it will take to complete all the

tests for the characters with conductor q.
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(3.15) Cost per bit. Two problems arise in introducing the cost c(q) per prime q in s.

The first is, that this cost should be made relative; for larger q we are willing to spend

more time, since it will help more in terms of achieving our goal
∏

X q > B. Therefore we

make the assumption that in comparing different primes q it is reasonable to apply a cost

per bit criterion; that is, the costs of completing all tests for the characters with conductor

q ought to be divided by log q.

(3.16) Dependency of tests. The second problem for the cost function lies in the

combinability of tests, as described in the previous section. It may very well be that (some

of) the tests that have to be performed for a particular q can be combined with tests for

other q, implying that the cost of performing these tests becomes small (or even zero) once

the other tests must be done. In other words, the costs for q depend on the rest of X.

There are various ways of treating this difficulty: one may either ignore it (as is done

in the first option below), or try to find a reasonable way of taking this dependency into

account (the second option).

(3.17) The first cost function. If we ignore the possibility of combining tests, the costs

of q per bit are given by

c1(q) =
1

log q

∑

pk‖q−1
p prime

G(up,k),

where up,k is the order of n in
(

Z/pkZ
)∗

.

(3.18) The first algorithm. Perform step (i); put J = J̄ and repeat step (ii) until

termination.

(i) Compute c1(q) for all q in J̄ .

(ii) If J ′ = {q′ ∈ J : 1
q′
∏

J q > B} is non-empty, let q0 ∈ J be such that c1(q0) =

max{c1(q′) : q′ ∈ J ′}, and replace J by J \ {q0}. If J ′ is empty, the algorithm is

terminated.

(3.19) The second cost function. Taking combinability into account for the cost

function, means letting the cost of q depend on (the rest of) J . One way of doing this is

by letting the cost for q be equal to the difference between the minimal cost of performing

the tests in J including the tests for q, and the minimal cost of performing the tests in J
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excluding those for q. Here the minimal cost C(J) for a given set J can be computed by

applying matching algorithm (2.14) and putting

C(J) =
∑

j∈J

G(lcm{d(w) : w ∈Wj}),

with now d and G as above and the covering Wj as supplied by the matching algorithm.

Applying the cost per bit principle we find

c2(q) = c2(q, J) =
C(J) − C(J \ {q})

log q
.

(3.20) The second algorithm. Put J = J̄ and repeat the following two steps until

termination.

(i) For all q in J̄ compute c2(q) as in (3.19) by applying the matching algorithm (2.15)

to both J and J \ {q}.
(ii) If J ′ = {q′ ∈ J : 1

q′
∏

J q > B} is non-empty, let q0 ∈ J be such that c2(q0) =

max{c2(q′) : q′ ∈ J ′}, and replace J by J \ {q0}. If J ′ is empty, the algorithm is

terminated.

(3.21) Remarks. Several variants of the above algorithms may be considered. First of

all, in both algorithms the strategy of constructing J by deleting primes q from J̄ can be

replaced by the strategy of building up J from the empty set.

Secondly, in the second algorithm, instead of recalculating the costs for q after every

change made to J , one can do such recalculation for instance after five changes have been

made. In particular if the set J is very large, this does not make a big difference to the

resulting solution, but it speeds up the algorithm considerably.

Finally, it appears to be beneficial in practice to use a small off-set factor: remove q0

from J only if the product of the remaining q’s exceeds B by that factor.

(3.22) Comparing the algorithms. There are two striking differences between the

two algorithms for deleting q’s. One is that in the first algorithm calculating the cost

is much easier; in the second algorithm the matching algorithm has to be applied for

every evaluation of the cost function. The second important difference is that in the first

algorithm the cost for given q can be calculated once and for all; the second cost function

depends on J and must therefore be recalculated for every q after every change made in

J .
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One would expect that the second algorithm, in which combinability is taken into

account, generates a solution closer to optimal. In practice this is not always the case.

Usually, the second algorithm gives a slightly better result, but we never found a case in

which any of the two algorithms produced a solution with costs not within 2 % of that for

the optimal solution.

The fact that the second algorithm does not exhibit the expected superior perfor-

mance, is perhaps partly due to the limited effect of combining tests anyhow, as pointed

out in the previous section.

The optimization step described in the next section involves a search over sets X̄. The

following strategy, based on the considerations above, has been adopted for constructing

J from J̄ , and hence X from X̄.

(3.23) Strategy. Given J̄ , construct J as follows. Let C ′ be the cost of the best solution

found so far, or, in case no solution has been found yet, put C ′ = ∞. Apply the first

algorithm (3.18) to J̄ and next apply matching algorithm (2.15) to the resulting set X =

X̄ ∩
(

Ī × J
)

. If the cost C(X) of the solution found this way satisfies C(X) < bC ′, where

b is a blow-up factor, also apply the second algorithm (3.20) to J̄ .

The blow-up factor has to be chosen in advance, it could for instance be 1.05; its

significance is, that every new solution with cost within 5% of the present optimum (for

b = 1.05) is subjected to the closer scrutiny of the second algorithm.
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4. CHOOSING t.

(4.1) Assumptions. Throughout this section the values for v and w are fixed. Moreover

we assume that for every prime power pk ‖ lcm(t0, v) we have found a field L for the pk-th

cyclotomic extension for n, of which the degree equals the order of n in
(

Z/pkZ
)∗

. For the

choice of the initial value t0, see (1.4) and II.(6.22).

Now making a choice for t will be described. Since by definition u = ordn, the order of n

in
(

Z/tZ
)∗

, this will determine u as well. We have to deal with the following constraints.

In fact the integer t1 = gcd(nu − 1, t∞) will be more important than t.

Since for every maximal prime power divisor of t we need the result of several precom-

putations (see Section IV.2), we require that t is a divisor of the value t0, that is chosen

once and for all. This implies that u divides u0, the exponent of (Z/t0Z)∗. We do not

require that t1 divides t0. If t > 1, we will for simplicity assume that 4 | t, cf. II.(6.17).

Let e(t1) be as in II.(6.13). Since we want to use Theorem II.(7.1), we have to require

by II.(6.14) that

(4.2) lcm(e(t1), v) >
√
n,

(or 3
√
n using II.(9.4)).

(4.3) Exhaustive search. The basic strategy for finding the best value for t is to do

an exhaustive search over all divisors of t0. Although the search space is usually rather

restricted by (4.2), a good strategy reduces the work considerably.

(4.4) Small n. For two reasons it is worthwhile to consider adapting the strategy for

“small” n. Firstly because the search space quickly expands with decreasing n, and sec-

ondly because any reasonable first choice for t will lead to a primality proof that is fast

enough anyway.

Therefore one might skip the rest of the optimization step if for the first choice for t

the running time for the rest of the algorithm does not exceed a certain threshold value T̄ .

An approach that is a bit more sophisticated, is to decide that the time spent on searching

for better t is bounded by some function of the running time for the first choice.

Another suggestion is to apply the algorithm with given t0 for a somewhat restricted

range of primes. It is advisable to choose a smaller t0 for testing primes of say up to 100
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digits than the one in Chapter IV; this will reduce the search space considerably, while

hardly affecting the minimal time needed to complete the actual primality proof.

This ties in with the suggestion of building up t from below, instead of constructing

it by removing factors from t0.

(4.5) First estimate. In doing our search, we would like to reject most values for t that

are too expensive by comparing a rough lower bound for the cost of using it to the cost

of using the best value found so far. That makes the choice of a good first value for t

paramount.

Roughly speaking, the amount of work grows with t, and therefore an obvious can-

didate is the smallest t for which (4.2) holds, which can for instance be found by using a

table. In practice, better results are obtained for values of t that exceed the bound in (4.2)

by a small offset factor (of about 5%). To such a value t one applies the strategy of finding

an optimal factor s1 of e(t1) as described in the previous section. Next one calculates C,

the minimal costs found so far of executing the primality test, by analyzing the various

stages in detail; this is done in Chapter VI, see also below.

(4.6) Rejecting too expensive values. The next step is to reject most other values of t

satisfying (4.2) as being too expensive. For this we need a reasonable lower bound for the

amount of work that is required for given t. So suppose for the moment that t, u and t1 are

chosen; in the next three paragraphs we give an approximation for the costs of the three

most time-consuming parts of the actual primality test. These concern generating the

necessary “roots of unity” (the elements ζpk in the cyclotomic constellations), performing

the Jacobi sum tests, and the final trial division.

(4.7) Roots of unity. For every maximal prime power pk ‖ lcm(t1, v), we have to find,

for II.(7.1)(ii), an element ζpk that is a zero of the pk-th cyclotomic polynomial in the ring

OL/nOL, where L is the field of degree up,k associated to pk as in the assumptions (4.1).

The way to do this was described in II.(4.15). Basically, it means that a random element

of OL/nOL must be raised to the power (nup,k − 1)/p. This takes time O((up,k logn)3),

using straightforward multiplication. It should be noted that, starting with a random

element, this method fails with probability 1
p , in which case it is repeated for another

random element.

In total that would imply that this part requires time O(
∑

U (up,k log n)3), summing

over the set U consisting of all primes p dividing lcm(t1, v). We can do a little bit bet-
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ter though, since we can combine the construction for several roots of unity, as follows.

Generating a p1
k1 -th root of unity in an extension of degree up1

, and a p2
k2 -th root of

unity in an extension of degree up2
can be done simultaneously in an extension of degree

lcm(up1
, up2

). It is only beneficial to do so however, if either up1
| up2

or vice versa. Thus

one gets that the construction of all roots of unity can be done in time O(
∑

W (up,k logn)3),

summing over a minimal subset W of U with the property that for every p ∈ U there exists

p′ ∈ W such that up,k | up′ . Such a subset W can be found efficiently by a simple greedy

algorithm.

For more on this, see V.(4.3).

(4.8) Jacobi sum tests. As was pointed out in (2.3), performing a Jacobi sum test for

a character (pk,m) means taking the n-th power of an element of up,k coordinates over

Z/nZ; this requires time O(u2
p,k(logn)3). If we want to know what this amounts to in

total, we first have to decide what s to use (applying the ideas from Section 3) and next

we should combine the tests in an optimal way (using (2.15)). This leads to a contribution

O(
∑

J u
2
p,k(logn)3), where the index set J is given by the matching algorithm (2.15).

For more on this, see V.(4.4).

(4.9) Final trial division. In the final trial division stage of the algorithm, one checks

all different residue classes ni mod lcm(e(t1), v) for possible divisors of n. There are at

most lcm(t1, u, w) of these, and thus this stage requires O(lcm(t1, u, w)(logn)2).

For more on this, see V.(4.5).

(4.10) Strategy. All this leads to the following strategy for treating the values for t

satisfying (4.2), once initial values t∗ and C∗ have been found (but see (4.4)).

Calculate the time Ct needed to perform the final trial division stage with t as in (4.9).

If Ct exceeds C∗, proceed to the next value of t; otherwise add the cost of generating the

necessary roots of unity to Ct, as in (4.7). If now Ct exceeds C∗, proceed to the next value

of t.

If Ct does still not exceed C∗, this t needs more attention. Apply the strategies from

the previous two sections to find good values for s and the set of characters X, and use

these to determine the time needed to complete the Jacobi sum tests, as in (4.8). Add this

to Ct; if now Ct < C∗, we have improved upon our best solution, and we replace it. Next

we proceed to the next value of t.
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5. CHOOSING v.

(5.1) Assumptions. Throughout this section we assume that a finite set Ω̄ of positive

integers has been found, and for every ω ∈ Ω̄ a completely factored divisor vω > 1 of

nω − 1.

The aim of this section is to explain how to decide which of the factors vω will be used in

the Lucas-Lehmer part of the primality test. That means that we want to choose a subset

Ω of Ω̄. Since v = lcmω∈Ωvω, this is the same as choosing v.

(5.2) The relation between w and Ω. It is clear that making a choice for Ω determines

w, since by definition, w is the smallest degree of the ring extension of Z/nZ in which the

Lucas-Lehmer test may take place, that is,

w = lcm{ω ∈ Ω}.

But the converse is not true, w does not generally determine Ω. So we do not just want to

choose w, we also decide for which divisors of ω of w we use vω. For instance, if we choose

w = 6, it makes a big difference whether we only use factors of n− 1, n2 − 1 and n3 − 1,

or we use primitive factors of n6 − 1 as well. The reason is, that in the former case the

Lucas-Lehmer tests will all take place in quadratic or cubic extensions, while in the latter

we are forced to work in an extension of degree 6. (We will call a prime power factor of

nω − 1 primitive if it is not a divisor of nν − 1 for any proper divisor ν of ω.)

(5.3) Performing Lucas-Lehmer type tests. We emphasize that performing a Lucas-

Lehmer test for a primitive factor vω of nω −1 means that a vω-th cyclotomic constellation

must be constructed. Essentially, this comes down to finding a vω-th root of unity in an

extension of degree ω, as in (4.7). This takes time O((ω logn)3) (if we do not combine it

with other roots), see V.(4.3).

(5.4) Free factors. Let ω divide up,k, the order of n in
(

Z/pkZ
)∗

, for some maximal

prime power divisor pk of the number t1 we will use. The necessary vω-th root of unity,

and the pk-th root of unity that must be constructed for the Jacobi sum part, can be

generated in the same ring, and usually in one stroke. Thus we get the factor vω in v

almost for free — almost, because of the small possibility of failure. Therefore we would

certainly incorporate in Ω all up,k that appear in Ω̄; note that in particular the factor v1 is
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always “free”. The problem however, is that the choice of t (that is as yet unknown), and

thus of the up,k, depends on the size of v. The larger v, the smaller t will usually be and

thus the fewer “free” factors. Of course, even including factors that are not “free” may be

cheaper than having to use a larger t.

Our strategy consists of trying all reasonable subsets Ω of Ω̄ (in a sense that is to be

explained), and comparing the costs of each with the minimal costs so far.

(5.5) First estimate. Too find a first upper bound for the costs of completing the

primality test, take w = 1; these factors are “free” in any case (unless no Jacobi sum test

will have to be done at all, but even then one will utilize v1). Then apply the strategies of

the previous sections to find a first approximation C∗ of the minimal costs.

(5.6) Upper bound. It only makes sense to include ω in Ω for which the cost of con-

structing a vω-th root of unity alone does not exceed the minimal costs C∗ found so far.

By (5.3) that means that we have an upper bound O( 3
√
C∗/ logn) on the elements of Ω.

We may as well replace Ω̄ by its subset of elements not exceeding that bound. Every time

we improve C∗ the upper bound for Ω̄ decreases.

(5.7) Cost per bit. To further reduce the number of cases to be considered, one may

introduce a cost per bit criterion for a set Ω. A way of measuring whether Ω contains

“expensive degrees” ω with small contribution vω, is to consider the cost per bit function

C(Ω)/ log v, where v =
∏

vω over Ω and where C(Ω) is the cost of using Ω, given by

C(Ω) =
∑

i∈I

(ωi logn)3;

here the summation is over a minimal set such that for every ω ∈ Ω a multiple ωi is

included (compare (4.7)). The cost per bit criterion is that only those Ω would be taken

into consideration for which the cost per bit is smaller than the cost per bit in the optimal

solution found so far, given by C∗/ log
√
n.

One could, alternatively, apply the cost per bit criterion to individual values of ω.

Some care should be taken in applying this principle though; it may very well be that

using a large v with a somewhat larger cost per bit value leads to a dramatic drop in the

Jacobi sum costs and thus to an improved solution.
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(5.8) Strategy. This leads to the following strategy for choosing the subset Ω of Ω̄. Do

the following for the divisors w = 1, 2, . . . , lcm{ω ∈ Ω̄} of lcm{ω ∈ Ω̄} in succession.

Determine all subsets Ω of Ω̄ with the property that lcm{ω ∈ Ω} = w. Apply some

form of the cost per bit criterion to decide which of these require further investigation. For

the sets thus selected apply the techniques of the previous section to find an approximately

optimal choice for the other parameters and calculate the cost of using these. Whenever

the costs are smaller than the minimal costs so far, replace the optimal solution, replace

Ω̄ by a subset if possible, using an upper bound as in (5.6), and continue.
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6. FACTORING TIME.

This section deals with the problem of deciding how much time should be spent on the

search for more Lucas-Lehmer factors. Since Lucas-Lehmer type tests are cheaper than

Jacobi sum tests, increasing v and decreasing s usually leads to a cheaper primality proof;

however, the cost of finding extra factors has to be taken into account, and thus another

optimization problem arises.

The starting point will be the situation in which an approximation C∗ for the costs

of the primality test has been found, using the present set Ω̄ and the factors vω for ω ∈ Ω̄.

By s∗, t∗, u∗ and v∗, w∗ we will denote the values of the parameters for which the minimal

cost C∗ found so far, is realized.

(6.1) Finding factors. Finding additional factors in ni − 1 for small i will be done by

trial division, using a table of primes. This is done as follows. Choose a value W ; we will

search for factors in ni − 1 for 1 ≤ i ≤ W simultaneously. Next choose a lower bound A

and an upper bound B, and check for all primes p with A ≤ p ≤ B in succession whether

any of n̄, n̄2, . . . , n̄W is congruent to 1 modulo p, where n̄ is the reduction of n modulo p.

This can be done in time O(logn + W ). Since there are approximately B/ logB primes

up to B, checking the range from A to be can be done in time

O
(

(logn+W )
( B

logB
− A

logA

)

)

.

(We should remark that this accounts only time O(1) to calculate n̄, which is motivated

by the fact that in practice B will be single-precision, and hence reduction modulo p is

cheap.)

(6.2) Other factorization methods. For huge n it may very well be that one is willing

to spend more time on factoring once the prime table is exhausted. If the total time for

completing the test would be in terms of weeks or even months, one might try one’s luck

in applying a Pollard method or an elliptic curve method, on n − 1 and n + 1, for a few

days. Using heuristics for these methods and the considerations below, an estimate for

the probability of improvement by these methods can be obtained similarly as for trial

division.

(6.3) Randomness. The basic assumption underlying the following analysis, is that with

respect to the distribution of their prime divisors, the numbers ni − 1 behave as random
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numbers. That means that we expect to find roughly log logB− log logA prime factors of

ni − 1 between A and B, each of size roughly (A+B)/2. Searching this range leads under

the randomness hypothesis thus to an extra factor in vi of size roughly:

(

A+ B

2

)log log B−log log A

.

(6.4) Search bound. It is easy to find an upper B bound for the factor search in terms

of the best solution found so far: suppose that we spend all of the currently found minimal

time C∗ on finding more factors, then by (6.1)

C∗ = (logn+W )

(

logB

B
− logA

A

)

,

where A is the previous search bound and where we choose W as follows. Recall that W

will be the maximal value for i for which factors of ni − 1 will be taken into consideration;

since we are particularly interested in “free” factors, see (5.4), we will choose

W = max{up,k : up,k = ordn, the order of n in
(

Z/pkZ
)∗},

the maximum taken over all maximal prime power divisors pk | t∗, with t∗ the value of t

in the currently found minimal solution.

(6.5) Range. In the best known solution so far, the value for s∗ will be approximately

equal to
√
n/v∗. (Approximately, because there may be an overshoot, and because we

ignored common factors.)

Suppose that we conduct a search for factors over primes in the interval from A to B

as in (6.4). Then we expect to increase v∗ by the factor

(

A+ B

2

)log log B−log log A

,

and thus s∗ may be decreased by the same factor to a value we denote by s∗. The

optimization now comes down to scanning the interval [s∗, s∗] for s for an optimal solution,

which corresponds to varying the time spent on factoring from maximal to zero.

(6.6) Linearity hypothesis. It turns out that the costs of performing the Jacobi sum

primality test are almost linear in log s as long as the value for t is fixed. This means that
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the function describing these costs is almost piecewise linear as a function of log s, with

discontinuities whenever one is forced to use a larger t. The slope of this linear function

depends on specific properties of n, particularly its residue classes modulo small prime

powers (those in t0).

(6.7) Minimizing. The piecewise linearity of the cost function makes it easy to perform

the minimization over [s∗, s∗] as proposed in (6.5); first apply the techniques of the previous

sections to find an approximately optimal solution with s of size s∗ (by which we mean

that the lower bound for s will be s∗ =
√
n/v∗). Two cases have to be distinguished now.

If in this solution the same value t∗ for t is used, we may be reasonably confident

that the cost for the Jacobi sum part of the test is given by a linearly increasing function

on [s∗, s∗], which we can write down explicitly since we know its value in the end points.

Optimizing means minimizing the sum of this linear function and the function expressing

the costs of the Lucas-Lehmer part. Both can be written down explicitly (see below) and

thus we are left with an easy minimization problem of a function in one variable (s). This

yields an optimal value s̃ ∈ [s∗, s∗].

If, on the other hand, another value than t∗ appears in the minimal solution at the

end point s∗, there will probably be a discontinuity (and usually just one) in the cost

function for the Jacobi sum part on the interval. This discontinuity can be approximated

as follows. Minimize as in the previous case, i.e., as if the linearity hypothesis holds to find

s̃; next perform an optimization with a Jacobi sum test of size s̃ (as we did before for size

s∗). The t used in the solution tells on which side of the discontinuity s̃ is. Repeating this

step a few times, we find an approximation to the discontinuity. Usually the best value for

s is just to the left of this continuity; anyway an optimal value s̃ ∈ [s∗, s∗] can again be

found.

(6.8) Cost function. Now we give the cost function f explicitly as a function of s that

is to be minimized under the assumption of linearity (6.6). Firstly, f = f ′ + f ′′, the cost

of the Jacobi sum and the cost of the Lucas-Lehmer part respectively.

Now f ′ is just the function

f ′(s) = f ′(s∗)

(

f ′(s∗) − f ′(s∗)

log s∗ − log s∗

)

(log s− log s∗),

linear in log s.
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The function f ′′ consists of two parts: the costs of factoring and the costs of performing

the Lucas-Lehmer tests for the non-free factors. The costs for factoring are calculated as

follows. To complete the test with s, we must have that

sv∗F >
√
n,

where F is the product over the factors to be found. By (6.3) a search bound BF is

expected to be given by

F =

(

A+BF

2

)log log BF −log log A

and by (6.1) the time needed for factoring will be

(logn+W )

(

BF

logBF
− A

logA

)

.

But after factoring we will have found factors of nω − 1 for all 1 ≤ ω ≤ W , including those

not occurring in the set

{up,k : up,k = ordn, the order of n in
(

Z/pkZ
)∗

, with pk ‖ t∗1}.

But these are not free: we will have to generate cyclotomic constellations of degree ω for

them. By (4.7) this gives to f ′′ a contribution

∑

ω

(ω logn)3,

summing over the ω ≤W not occurring as up,k.

All in all, we have now found a value s̃ ∈ [s∗, s∗] which we expect to be optimal. Just as

we explained in (6.8), this value determines the size of the factor that has to be found by

factoring and hence a search bound B.

Finally it will be time to transform expectations into facts: the trial division now

should be executed. Once this has been done, v will be chosen as in the previous section,

etcetera.
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IV. Algorithm 1. Outline of the algorithm

1. OUTLINE OF THE ALGORITHM.

(1.1) Remark. This section contains a rough outline of the primality testing algorithm

that is described in the following sections in detail. We will also comment upon the

differences with its predecessor, the Cohen-Lenstra version of the Adleman-Pomerance-

Rumely primality proving algorithm, which we will refer to as the old algorithm, (cf. [2],

[29], [30]).

The detailed description in the next five sections is interspersed with comments (in

small print), which do not form part of the algorthm. They are meant to elucidate the

steps of the algorithm, and provide references to the other chapters. The following five

steps correspond to these five sections.

(1.2) Preparation of tables. This pre-calculation step is done once and for all. The

integers t0 and s0 are chosen; the auxiliary numbers t and s, to be chosen in step (1.4), will

be divisors of t0 and s0 respectively. The choice of s0 gives an upper bound for the size of

the integers that can be dealt with by the Jacobi sum test alone: n may not exceed s3
0 (cf.

II.9). Furthermore, all tables that will be needed, and that can be created irrespective of

the arithmetic properties of n, are generated. They include: a list of primes, a list of data

for the extension rings, a list of Jacobi sums and a table of exponents to express certain

quotients of Gauss sums as products of Jacobi sums.

(1.3) Initializations. This is the preliminary step for testing n. It is checked whether n is

not obviously composite, by subjecting it to a compositeness test and some trial divisions

by small primes; during the latter at the same time factors of n− 1 and n+ 1 are found.

Here also known factors for nw − 1 for small values of w, for instance found before by

someone else, can be read into the program.

(1.4) Optimization. Integers s, t, u, v and w have to be chosen; roughly speaking these

have the following meaning. The completely factored part of nw − 1 is denoted by v; it

will consist of the factors found in the previous steps and new factors found here by trial

division of nw − 1 for small w. The integer s will be a product
∏

q of primes q with the

property that q − 1 | t; also we want s to be large, in particular we want s · v > nµ, with

µ = 1
2

or µ = 1
3
. Therefore t can best be built up from powers of small primes; we require

t | t0. The integer u is the total degree of the ring extension in which the Jacobi sum test

will take place.
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An effort is made in this step, to determine the auxiliary integers in such a way that

the total running time of the algorithm will be minimal. The main contributions to the

running time are the time spent on looking for more factors of nw − 1, the time needed

to construct the necessary roots of unity in the extension rings, the time necessary for

doing the Jacobi sum tests, which is influenced by how well they combine, and the time

necessary to do the final trial divisions.

(1.5) Lucas-Lehmer and Jacobi sum tests. A Jacobi sum test has to be performed

for every pair (pk, q) consisting of a prime power pk dividing q−1 and a prime factor q of s.

Basically, this comes down to raising a product of Jacobi sums to a power which is of the

same magnitude as n and checking that the result equals some pk-th root of unity; all this

is done in a ring extension of Z/nZ of degree equal to the order of n in
(

Z/pkZ
)∗

, which

divides u. Several of these tests will be combined to one test in common ring extension of

Z/nZ, of which the degree is equal to the maximum of, and divisible by each of, the degrees

of the individual tests in the combination. Performing the Lucas-Lehmer test comes down

to finding v-th roots of unity in the proper w-th degree ring extension of Z/nZ.

(1.6) Final trial divisions. If the preceding tests have been performed successfully, then

every divisor of n must be a power of n modulo s ·v. Thus the final step consists of finding

out whether there exist integers r dividing n in the residue class ri ≡ ni mod (s · v), with

1 ≤ i < t · w.

(1.7) Remarks. There are three important differences between this algorithm and the

old algorithm, which have far-reaching consequences, especially in step (1.4) above.

In the first place there is the combination of the Jacobi sum test with the Lucas-

Lehmer type tests. Every factor found in nw − 1 contributes to v above. This makes it

possible to decrease s by the same factor. Of course one has to balance the cost of finding

extra factors and performing the Lucas-Lehmer tests against the expected gain of having

less Jacobi sum tests to perform.

Secondly, an observation made in [30] is used, namely that the Jacobi sum tests can

be done in a ring extension of Z/nZ of degree equal to the order of n in
(

Z/pkZ
)∗

instead

of the ring Z[ζpk ]/nZ[ζpk ], which is of degree φ(pk). Usually the degree used is much

smaller than φ(pk); it may be equal to 1, in which case this observation was also used in

the implementation of the old algorithm.
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As an aside it should be remarked that in fact the fixed extension Z[ζpk ]/nZ[ζpk ] has

been replaced by a list of extensions of Z/nZ, all having a non-zero probability of at most
1
2 of not being suitable for a given n. That makes it more cumbersome to find efficient

multiplication algorithms in each of the extension rings, than in the old algorithm.

Thirdly, advantageous use is made of the possibility to combine several Jacobi sum

tests in rings of degree ui into one large test in a ring of degree lcm(ui) (compare II.(8.6)).

Of course this only makes sense if the resulting amount of work is less than it would

have been without combining. The Jacobi sum tests consist roughly of n-th powerings of

elements that are represented as tensor products over Z/nZ modulo polynomials of prime

power degree le ‖ ui. Assuming that the time to perform one multiplication is quadratic

in the number of coordinates, combining a set of tests in rings of degree ui into one test

only makes sense if
∑

u2
i > (lcm(ui))

2, where the sum is taken over different values of

ui; tests in rings having the same degree can be combined without any extra costs. Using

that the ui are built up from small prime powers, this is easily seen to be true only in

case max{ui} = lcm(ui) (see also III.2); that is, if all ui divide the maximal u in the

combination. It is part of the optimization step to determine the optimal combination of

tests for given s, t and u. There is an easy, efficient procedure for doing that. On the other

hand it is hard to find out for what choice of s and t the optimal choice will be minimal

(for more on this, see Sections III.3 and III.4).

All this makes the optimization step much more complicated than in the old algorithm;

but especially for large n the investment made pays off tremendously (see Chapter VI).

It should be remarked that the first and second of the differences pointed out above,

and the use of s · v ≥ 3
√
n instead of s · v ≥ 2

√
n, are the main contributions to the

improvement of the primality test over the old Jacobi sum test.

(1.8) Conventional notation. In the next sections we will use the phrase “a = b mod c”

when a is defined to be the unique integer in {0, 1, . . . , c− 1} congruent to b modulo c.
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2. PREPARATION OF TABLES.

Perform steps (2.1) through (2.5).

In this section a description is given of the preparation of the tables needed in the primality

test described in Sections 3 through 6. It should be emphasized that the work done here is

done once and for all, and is independent of properties, other than the size, of the integers
n that are to be tested. The choice of the parameters determines the size of the integers

that can be tested. With the choices made below, every n of up to 6000 digits (and some
larger n) can be dealt with; the optimization routines work best however for integers n up

to about 1500 decimal digits.

(2.1) Creation of a file to generate prime numbers.

Select a positive integer B0, and create a file containing the differences between the con-

secutive primes up to B0.

To find small divisors of a large number (e.g. in steps (3.2) and (4.6)), one can use a table

of prime numbers up to a certain bound B0. This table is made here. The bound B0 could

for instance be 106.

(2.2) Selection of t0.

Perform steps (a) through (h).

In the Jacobi sum test one needs auxiliary integers t and s with the property that t is
small, while s is large and built up from primes q such that q − 1 | t (cf. II.6). In this step

a number t0 and sets P0 and Q0 are chosen. The value of t, to be selected for a specific n

during the optimization step, will divide t0 and is built up from powers of small primes in
a subset P of P0, and s will be built up from primes in a subset Q of Q0.

(a) Select a positive integer t0 with t0 ≡ 0 mod 4.

The integer t0 should be “rich” in the sense that it is small but q − 1 divides t0 for many

primes q. For a table of nice values see II.6. In II.(6.17) it is explained why preferably

t0 ≡ 0 mod 4. A possible choice is t0 = 25 · 33 · 52 · 7 · 11 · 13 · 17 · 19 = 6983776800.

(b) Let P0 = {p : p prime, p | t0}, and let kp be given by
∏

p∈P0
pkp = t0.

(c) Calculate φ(pk) = (p− 1)pk−1 for p ∈ P0 and 1 ≤ k ≤ kp.

(d) Put λ(t0) = lcm{2k, (p− 1)pkp−1 : p ∈ P0, p odd} with k = max{1, k2 − 2}, let

L0 = {l : l prime, l | λ(t0)}, and let el be given by
∏

l∈L0
lel = λ(t0).

The integer λ(t0) is the exponent of (Z/t0Z)∗, i.e., the maximal order of the elements in

the group (Z/t0Z)∗. For the choice of t0 suggested above, one gets λ(t0) = lcm{8, 18, 20, 6,
10, 12, 16, 18} = 24 · 32 · 5.

(e) Determine Q0 = {q : q prime, q − 1 | t0}.
For the above choice of t0 one gets #Q0 = 618, and

∏

q∈Q0
q just exceeds 5.3 ·103000. This

product determines the maximal size of integers that can be taken care of by the Jacobi

sum test alone; one can deal with numbers of size (= logarithm) up to twice (or even thrice,
see II.9) the size of this product times 2t0.
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(f) For all q ∈ Q0 and p ∈ P0 determine op(q − 1), the number of times that p occurs

in the prime factorization of q − 1.

(g) For every divisor t of t0 such that t ≡ 0 mod 4, calculate

i(t) =
∑

p∈P0

o′p(t)
∏

p′>p

p′∈P0

(kp′ + 1) and e′i(t) =
∏

q−1|t
q prime

q ;

here we define o′p(t) by o′2(t) = o2(t) − 2 and o′p(t) = op(t) for other primes p, with

op(t) the number of times that p occurs in the prime factorization of t.

In the optimization step, one uses a divisor t of t0 for which the primality test can be
finished; i.e., for which e(t) is large enough. Note that e(t) as in II.(6.12) is the product of

2t and the value e′i(t) given here. In order to be able to retrieve these values quickly for

all divisors t of a given t′, they are indexed by the number i(t), running from 0 to one less
than the total number of divisors congruent to 0 mod 4. The numbers kp are defined in

(2.2)(b).

(h) Tabulate t0, P0, kp for p ∈ P0, φ(pk) for p ∈ P0 and 1 ≤ k ≤ kp, λ(t0), L0, el for

l ∈ L0, Q0, and op(q − 1) for q ∈ Q0, p ∈ P0. For i = 0, . . . ,#{t : t | t0, 4 | t} − 1,

also tabulate the pair (t, log e′i(t)), where t is such that i(t) = i (cf. (2.2)(g)).

(2.3) Generation of Galois extensions.

Perform steps (a) through (c) for all prime powers u = le dividing λ(t0), with e > 0.

In the Jacobi sum test one will compute in certain extension rings of Z/nZ; as explained

in II.(4.11) these rings can be constructed from rings of integers of cyclic subfields (of
prime power degrees dividing λ(t0)) of cyclotomic fields. Here some preliminary steps

are performed without knowledge of the integer n; they will facilitate arithmetic in the

extension rings later on. Since a given cyclic field of degree le has for random n a probability
of l − 1 out of l to provide a “good” ring (useful in the test of n), one pre-calculates a list

of such extensions for every le.

(a) Put M(u) equal to the empty set.

The set M(u) will in the end contain the conductors m of the field extensions of degree u
from which the ring extensions will be constructed.

(b) Select a constant C.

If u = 2 perform steps (b1), (b2), (b3), and (b10) for every m ∈ {4, 8} and steps

(b1), (b2), (b4), (b5) and (b10) for every m = k · u + 1 for which m is prime and

m ≤ C · lel .

If u = 2e with e > 1, perform steps (b1), and (b5) through (b10) for every m =

k · u+ 1 for which m is prime and m ≤ C · lel , as well as for m = 2e+2.

If u = le with l odd and e ≥ 1, perform steps (b1), and (b5) through (b10) for every

m = k · u+ 1 for which m is prime and m ≤ C · lel , as well as for m = le+1.
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As was pointed out in II.4, every prime conductor m for which u | m − 1 provides a cyclic
field of degree u; moreover, for u = 2 there are 3 quadratic fields inside Q(ζ8) that can be

used, corresponding to conductors 4, 8 and 8. From II.(4.10) it follows that if the field of

conductor 8 generated by ζ8 − ζ−1
8 can be used in the test for n, then at least one of the

other fields might also be used. Therefore the field of conductor 8 with generator ζ8 + ζ−1
8

and the field of conductor 4 with generator ζ4 suffice.

For u = 2e with e > 1 and u = le with l odd there are additional useful extensions of
conductor 2e+2 and le+1 respectively, cf II.(4.6). The constant C gives an arbitrary bound

on the size – and thus on the number – of conductors in the tables. One could for instance
use C = 10.

(b1) Replace the set M(u) by M(u)∪{m}. Put r = 1 if m is prime, and put r = 0 if m

is not prime.

(b2) Put D = 1. If m is prime put

S =

(

−1 1
−1 0

)

and S∗ =

(

0 −1
1 −1

)

.

If m ∈ {4, 8} put S and S∗ both equal to the 2 × 2 unit matrix.

In general, the matrices S and S∗ will be the transition matrices between the bases consist-
ing of powers of the generator η of the ring (see II.(4.11)) and that consisting of the elements

ςg,i,u for i = 0, . . . , u−1. For u = 2 and m is prime we have that ςg,0,u = σ0
g(ηu) = ηu = η

and ςg,1,u = σ1
g(ηu) = σg(η); for u = 2 and m ∈ {4, 8} we have that ςg,0,u = 1 and

ςg,1,u = ηu = η. The isomorphism σg is defined by σg(ζm) = ζg
m, for some element g of

order λ(m) modulo m (cf. (2.2)(d)). For u 6= 2 the elements ςg,i,u for i = 0, . . . , u − 1

will be defined below. The number D ∈ Z>0 will be the denominator of S−1, i.e., the
smallest integer such that S∗ = D · S−1 is an integral matrix. The matrix S will express

an element which is represented in the basis {η0, η1, . . . , ηu−1} in terms of the elements
ςg,i,u for i = 0, . . . , u − 1. The matrix D−1 · S∗ performs the inverse operation.

(b3) If m = 4 put g = 3 and f = X2 + 1; if m = 8 put g = 5 and f = X2 − 2.

In the sequel g ∈ (Z/mZ)∗ will be such that the restriction of ζm 7→ ζg
m generates the

Galois group of a u-th degree cyclic subextension of Q(ζm), where m is the conductor.

Furthermore, f will be the minimal polynomial for η, the generator of the cyclic field,

which equals here ζ4, respectively ζ8 + ζ−1
8 , see II.(4.10).

(b4) Put f = X2 +X + (4 · bm+1
4

c −m) · bm+1
4

c.
This is the minimal polynomial X2 + X + (1 ∓ m)/4 for the generator

η =

(m−3)/2
∑

i=0

ζg2i

m

of our ring in the quadratic subfield Q(
√
±m) of Q(ζm), where g is a primitive root modulo

m. The sign under the square root equals the Legendre symbol (−4
m

), so the square root is√
−m for m ≡ 3 mod 4 and

√
m for m ≡ 1 mod 4.

(b5) If m is odd, find a primitive root g modulo m, for instance by trying all g ≥ 2 with

gcd(m, g) = 1 in succession. If m = 2e+2, put g = 5.

It would be more efficient to determine a primitive root g modulo m for each m only once,
but since this table is made only once, and since the time to determine a primitive root is

147



IV. Algorithm 2. Preparation of tables

relatively small in comparison to the time needed to generate other elements in the table,
this improvement will not be described.

(b6) Let bi,j = 0 for 0 ≤ i < u and 0 ≤ j < m. Put j = 1. If m is odd, for

i = 0, 1, . . . , φ(m) − 1 in succession replace bi mod u,j by 1 and j by j · g mod m.

If m = 2e+2, for i = 0, 1, . . . , 2e − 1 in succession replace bi mod u,j and bi mod u,m−j

by 1 and j by j · g mod m. Define η =
∑m−1

j=0 b0,j · ζj
m and, for i = 0, 1, . . . , u− 1,

its conjugates σi
g(η) =

∑m−1
j=0 bi,j · ζj

m. The σi
g(η) will be represented by the vectors

(bi,j)
m−1
j=0 .

The element η = ηu generates a cyclic subfield of degree u inside Q(ζm) by II.(4.8). The
conjugates σi

g(η) are also computed, where σg acts via σg(ζm) = ζg
m. Notice that σ0

g(η) = η;

also notice that the representation given is not unique (since the powers ζ0
m, ζ1

m, . . . , ζm−1
m

are dependent) and that bi,j = 0 for 0 ≤ i < u, 0 ≤ j < m with gcd(j, m) 6= 1.

(b7) Determine the polynomial f =
∏u−1

i=0 (X − σi
g(η)) ∈ Z[X] by calculating sufficiently

close approximations ci ∈ C to
∑m−1

j=1 bi,j · ζj
m for 0 ≤ i < u, with ζm = e2π

√
−1/m,

and by rounding the coefficients of the polynomial
∏u−1

i=0 (X − ci) to the nearest

integers.

Here f is again the minimal polynomial of η over Q; writing f =
∑

fiX
i, one should notice

that fu = 1 and fu−1 = r, with r as in (b1).
Since all coefficients |bi| ≤ 1 the value ci approximates

∑m−1
j=1 bi,j · ζj

m within m · ε,

where ε is the absolute error made in the calculation of ζm = e2π
√

−1/m. Since |ζm| ≤ 1,

this is at most equal to the machine-precision. For the machines we used the machine-
precision was at most 2−24.

(b8) If m is prime, define ςg,k,u for 0 ≤ k < u by

ςg,k,u = σk
g (ηu) = σk

g (η).

If m is not prime, define ςg,k,u for 0 ≤ k < u by ςg,0,u = 1, and

ςg,k,u = σ(k−li−1)
g (ηli),

with i such that 1 ≤ i ≤ e and li−1 ≤ k < li. Compute a u× u dimensional integer

matrix S by performing steps (b8a) through (b8c).

The matrix S is to convert an element expressed in the basis of η0, . . . , ηu−1 to its rep-

resentation in the basis ςg,0,u, ςg,1,u, . . . , ςg,u−1,u. For any element x ∈ Z[η] which is
represented as a u-dimensional column vector over Z, such that x =

∑u−1
i=0 xi · ηi, the

u-dimensional column vector y = S · x represents the same element with respect to the
basis ςg,0,u, ςg,1,u, . . . , ςg,u−1,u:

u−1
∑

i=0

yi · ςg,i,u =

u−1
∑

i=0

xi · ηi.

The element ηli generates the cyclic subfield of degree li inside Q(ζm) for i = 1, . . . , e,
see II.(4.7). In case m is not prime, the basis ςg,0,u, ςg,1,u, . . . , ςg,u−1,u consists of the basis
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of the cyclic subfield of degree u/l with generator ηu/l extended with the conjugates σk
g (η),

for 0 ≤ k < u − u/l; the basis of the cyclic subfield of degree u/l equals 1 if e = 1 and

equals ςg,0,u/l, ςg,1,u/l, . . . , ςg,u/l−1,u/l if e > 1.

(b8a) Determine di,j such that ηi =
∑m−1

j=0 di,j · ζj
m for i = 2, 3, . . . , u− 1, by computing

the consecutive powers of the polynomial
∑m−1

j=0 bi,j · T j modulo the polynomial

Tm − 1.

The powers of η are expressed as linear combinations of ζ0
m, ζ1

m, . . . , ζm−1
m . Note again that

this is not a unique representation.

(b8b) Perform step (b8b1) if m is prime and perform step (b8b2) for k = 1, . . . , e in

succession if m is not a prime.

(b8b1)First put h = 1 and for j = 0, 1, . . . , u − 1 in succession first put sj,i = di,h − di,0

for 0 ≤ i < u and next replace h by h · g mod m.

(b8b2)Put h = 1 and for j = lk−1, . . . , lk − 1 in succession first put h′ = (hm/lk) mod m,

next put sj,i = di,h′ for 0 ≤ i < u and finally replace h by h · g mod m. For

j = lk, . . . , lk + lk−1 − 1 in succession first put h′ = (hm/lk) mod m, next put

s(j−zlk−1),i = s(j−zlk−1),i−di,h′ for z = 1, . . . , l−1 and 0 ≤ i < u and finally replace

h by h · g mod m.

(b8c) Put s0,i = di,0 for 0 ≤ i < u. Let S be the matrix having the (sj,i)
u−1
j=0 as columns,

for 0 ≤ i < u.

(b9) Compute the u×u dimensional integer matrix S∗ and D ∈ Z>0 such that D−1 ·S∗ =

S−1 and D is minimal. This can efficiently be done using a variant of the Gaussian

elimination method. See V.6 for more details.

(b10) Tabulate u, mu = m, ru,m = r, gu,m = g, fu,m = f , Su,m = S, S∗
u,m = S∗, and

Du,m = D.

(c) Tabulate M(u).

(2.4) Replacing Gauss sums by Jacobi sums.

Perform steps (a) through (f).

In this step a method is described to determine a set of prime numbers J , and for every

prime π ∈ J one pair of positive integers (a, b) with a+b = π, as well as a set of expressions
e = eπ,pk,i of the form e =

∑

zjσj with zj ∈ Z≥0 and j ranging over (Z/pkZ)∗, for every

π ∈ J , every pk | t0 and 1 ≤ i ≤ pk with p6 |i. One should think of the prime π ∈ J and
the pair (a, b) as a representation of the Jacobi sum Jπ = J(χa, χb) = τ(χa)τ(χb)/τ(χπ),

and the exponents eπ,pk ,i will be chosen in such a way that for every character χ of order

pk

τ(χ)i

τ(χi)
=
∏

π∈J
J(χa, χb)

e
π,pk,i ;
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here J(χa, χb)zjσj = σjJ(χa, χb)zj = J(χaj , χbj)zj . Note that σ1 = 1 and σjσl =
σjl mod pk . It turns out that for this purpose it suffices to consider only Jacobi sums

J(χa, χb) with a + b prime.

Since the calculation of Jacobi sums (see (2.5)) is cumbersome for large conductor and
the memory needed to store them expands fast for growing conductor, an effort is made

here to find both a small set J and for given pk a small subset of J such that for every π
outside this subset eπ,pk ,i = 0 for every i. For more information, see II.(8.7) – (8.13) and

V.(2.1).

(a) Let Π = max{π : π prime, there exists a prime power pk | t0 such that pk > π}.
Put J = ∅, put ρpk,i = ρ′pk,i = 0 and put αpk,i,a = 0 for every pk | t0, every

0 ≤ i ≤ pk, and 0 ≤ a ≤ bΠ
2 c. Perform step (a1) successively for every prime power

pk dividing t0.

The primes π in J will be at most equal to Π. While constructing the set J below, one will

sometimes be forced to add primes π to J , while some choice in splitting π into π = a + b
remains; the set Aπ will for π ∈ J consist of the “breaking points” that are still allowed,

i.e. those values for 0 < a ≤ bπ
2
c that one is free to choose from in (a, b). In the end choices

are made such that #Aπ = 1.

The exponents will be built up recursively, using the values for ρ and ρ′, indicating

which prime from J is used in the final step of the construction of τ(χ)i/τ(χi), and the
values for α, indicating the operation that we have to perform on it. So far ρ and α were

initialized only.

(a1) For i = 2, . . . , pk−1 with p6 |i in succession, do the following. Put κpk,i = 1. If there

exist primes π dividing i such that π ∈ J or π < i, let π be minimal among these;

put ρpk,i = π and put αpk,i,0 = σi/π.

We are trying to find an expression for τ(χ)i−σi = τ(χ)i/τ(χi) that holds for any character

of the present order pk ; generating the proper denominator is the main problem. In the
present case we can use the identity: σi/πJ(χa, χb) = τ(χai/π)τ(χbi/π)/τ(χi), if a+b = π,

which is particularly useful because both ai/π < i and bi/π < i; this means that the
numerator can be cancelled using previous instances of this step yielding τ(χai/π) and

τ(χbi/π) in the denominator. Therefore we let ρ point to the prime π and α to σi/π ; since

the above relation holds independently of the value of a, we use αpk ,i,0. The use of κ will
become clear in (c).

If there exist π ∈ J such that for every a ∈ Aπ there exists j with 1 ≤ j ≤ a having

the property that either

(∗) a | j · pk − i and 0 < d < i, for some d ≡ (π − a)(
j · pk − i

a
) mod pk

or

(∗∗) π − a | j · pk − i and 0 < d < i, for some d ≡ a(
j · pk − i

π − a
) mod pk,

then let π be the smallest of these; for this π put ρ′
pk,i

= π, choose j such that (∗)
or (∗∗) holds and for every a ∈ Aπ replace αpk,i,a by σ(j·pk−i)/a if (∗) holds and else

by σ(j·pk−i)/(π−a).
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In this case we can utilize the rule J(χa, χπ−a)σ = τ(χc)τ(χd)/τ(χi) for certain c, d < i
and the indicated value for σ, as was pointed out in II.(8.13). For step (c) we have to

distinguish between the use of II.(8.13) and the rule applied in the previous step, and for

that purpose we introduce ρ′. Since for the chosen value of π the “breaking point” has not
been established yet and σ depends on it, we have to record α now for every value for a

that is still available.

If there exist π ∈ J with the property that there exists at least one a ∈ Aπ for which

there is 1 ≤ j ≤ a such that either (∗) or (∗∗) above holds, let π be the smallest of

these; if ρpk,i = ρ′pk,i = 0 remove all a from Aπ for which neither (∗) nor (∗∗) can

be met for any j. Also in this case, if either ρpk,i = ρ′pk,i = 0 or π < ρ′pk,i, replace

ρ′pk,i by π, choose j such that (∗) or (∗∗) holds, and replace αpk,i,a for a ∈ Aπ by

σ(j·pk−i)/a if (∗) holds and by σ(j·pk−i)/(π−a) if (∗∗) holds.

Here the same rule is used as in the previous case, but now it does not work for every a any

more. To use the rule we thus have to make restrictions concerning the “breaking points”
a; we are only willing to do so in case we found nothing before (for the present i) or in case

we can use a smaller π than before. The latter is often advantageous, since smaller π are

more likely to be needed later on anyhow.

If now still ρpk,i = ρ′pk,i = 0 (in which case i must be prime), put i in J , put

1, . . . , b i
2c in Aπ, put ρpk,i = π and put αpk,i,a = 1 for every a ∈ Aπ.

If we have not yet been able to succeed for the current i so far, we will have to introduce

a new prime. That is done here; every “breaking point” is allowed.

(b) For every π with #Aπ > 1, let a be the smallest of the elements of Aπ, and replace

Aπ by {a}.
For every prime π for which there is a choice left, we choose the “breaking point” a in

π = a + b.

(c) Put eπ,pk,1 = 0 for every π ∈ J and every pk | t0. For every prime power pk | t0
do the following for i = 2, . . . , pk − 1 (with p6 |i) in succession to find the exponents

eπ,pk,i for i < pk. Put eπ,pk,i = 0 for every π ∈ J . If ρpk,i 6= 0 and either

ρpk,i ≤ ρ′
pk,i

or ρ′
pk,i

= 0, then perform step (c1); in all other cases replace αpk,i,0

by αpk,i,a with a ∈ Aπ and perform step (c2).

Using the values for ρ and α, we will now assemble the exponents eπ,pk ,i recursively.

(c1) If ρ = ρpk,i ∈ J , let a, b be such that a + b = ρ and a ∈ Aρ. In this case put

eρ,pk,ρ = σi/ρ and next replace eπ,pk,i by eπ,pk,i +σi/ρ ·(eπ,pk,a +eπ,pk,b)+ρ ·eπ,pk,i/ρ

for every π ∈ J . If ρ = ρpk,i /∈ J , put eπ,pk,i = σi/ρ · eπ,pk,ρ + ρ · eπ,pk,i/ρ for every

π ∈ J .

(c2) Let ρ′ = ρ′
pk,i

. Replace eρ′,pk,i by αpk,i · eρ′,pk,ρ′ . If αpk,i = σ(j·pk−i)/a (that is, if

(∗) held above) put d = (π − a) · (j · pk − i)/a mod pk and else (if (∗∗) was true

above) put d = a · (j · pk − i)/(π − a) mod pk. Put c = i − d and replace eπ,pk,i
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by eπ,pk,i + eπ,pk,c + eπ,pk,d for every π ∈ J . Finally, if p = 2, replace κpk,i by

χd(−1)κpk,iκpk,cκpk,d.

We use κpk,i, for i < pk, to keep track of sign changes, due to an appeal to II.(8.11). A

factor −1 can only arise if p = 2.

(d) For every prime power pk | t0 put eπ,pk,pk = eπ,pk,pk−1 for every π ∈ J . Put

κpk,pk = χ(−1)qκpk,pk−1.

The relation τ(χ)pk
= χ(−1)q ·

∏

π∈J
J
e

π,pk,pk−1 of II.(8.8) is used. In this particular case

we multiply κ by the non-Gauss-sum factor χ(−1)q.

(e) Let Jpk ⊂ J consist of those π ∈ J such that eπ,pk,i 6= 0 for some i ≤ pk.

The set Jpk indicates which Jacobi sums we need for any character of order pk to express

τ(χ)i−σi for every i ≤ pk.

(f) Tabulate J , and also for every prime π ∈ J the pair (a, b) with a ∈ Aπ and

a + b = π, the subsets Jpk for every pk | t0, and for every π ∈ J the exponents

eπ,pk,i for every pk | t0 and every 0 < i ≤ pk; also tabulate κpk,i, for all pairs pk, i.

(2.5) Calculation of Jacobi sums.

Create a direct access file. Perform steps (a) through (d) for all odd q ∈ Q0.

A direct access file is a file which can be read and written in random access order, i.e.,

without sequentially reading the complete file to read one entry from or write one entry in
the file (as in a sequential file). Each entry in the direct access file has the same fixed size.

Using a direct access file is beneficial here, since only a few Jacobi sums will be needed for

the primality test of a particular n.
For every pair pk, q consisting of a prime q ∈ Q0 (as determined in (2.2)(e)) and a

prime power pk such that pk ‖ q − 1, in this step the Jacobi sums J(χa, χb) with a + b = π

as in (2.4)(f) are computed, for π ∈ Jpk , for a character of conductor q and order pk; notice
that p ∈ P0 (cf. (2.2)(b)). This is done by using the definition, cf. II.(8.1) :

J(χa, χb) =

q−1
∑

x=0

χa(x)χb(1 − x) that can be expressed as

φ(pk)−1
∑

i=0

cπ,q,p,i · ζi
pk ;

so we represent the Jacobi sum J(χa, χb) by the vector (cπ,q,p,i)0≤i<φ(pk).

No use is made of direct formulae for J(χa, χb) like for instance if ord(χ) = 2, because
the calculations of all Jacobi sums for a fixed conductor q are performed in parallel. Omit-

ting the calculation of a single Jacobi sum from this parallel computation hardly influences

the total computing time. For more information, see II.(8.3) and V.(3.6).

(a) Find a primitive root g modulo q.

Among others, we will use this primitive root to make a choice for a character of order pk

and conductor q; we will choose χ(g) = ζpk , where ζpk is a primitive pk-th root of unity.

(b) For all prime powers pk ‖ q−1, put cπ,q,p,i = 0 for 0 ≤ i < pk and for every π ∈ Jpk ,

as determined in step (2.4).
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Let M0 be the maximal number of integers less than q that can be stored in the

available memory. Let M = min(M0, q − 2), and let c(q) be the number of distinct

prime divisors of q− 1. If M ≥ min{q− 2, 2q/((c(q)+2) log2 q)}, then perform step

(b1), otherwise perform step (b2).

In (b1) and (b2) two methods are given for computing J. Comparing the number of oper-

ations required for each of these (see below), one arrives at the crossover point mentioned;
in practice however, the crossover point between (b1) and (b2) will depend on the imple-

mentation and is therefore best determined empirically.

(b1) Perform step (b1a) for 0 ≤ m ≤ b(q − 3)/Mc.
In the first method (for each of b(q − 3)/Mc + 1 blocks) a table is made of pairs (x, f(x))

such that 1 − gx = gf(x) for a block of length M out of the q − 2 different powers of g

modulo q. This requires about q2/M multiplications modulo q.

(b1a) Put Fi = 0 for i = m ·M + 2,m ·M + 3, . . . , (m+ 1) ·M + 1. For x = 1, 2, . . . , q− 2

in succession, do the following.

Compute γ ≡ gx mod q and δ ≡ 1 − gx mod q with 0 ≤ γ, δ ≤ q − 1. If

m ·M + 2 ≤ γ ≤ (m + 1) ·M + 1 and Fγ 6= 0, then increase cπ,q,p,ax+bFγ mod pk

by 1, for all prime powers pk ‖ q − 1 and all π ∈ Jpk ; here a+ b = π. Similarly, if

m ·M + 2 ≤ γ ≤ (m + 1) ·M + 1 and Fγ = 0 put Fγ = x. If m ·M + 2 ≤ δ ≤
(m + 1) ·M + 1 and Fδ 6= 0, then increase cπ,q,p,aFδ+bx mod pk by 1, for all prime

powers pk ‖ q−1 and all π ∈ Jpk ; here a+ b = π. If m ·M +2 ≤ δ ≤ (m+1) ·M +1

and Fδ = 0 put Fδ = x.

For a block of length at most M we find all pairs (x, f(x)) such that gx mod q or gf(x) mod q

is in the current block and gx + gf(x) ≡ 1 mod q. Each pair (x, f(x)) gives a contribution

ζaxζbf(x) to the Jacobi sum J(χa, χb) for the choice of the character as in (a). Finding all
pairs (x, f(x)) is done as follows. If γ ≡ gx mod q is in the block, we store x in Fγ , unless

Fγ 6= 0; that can only happen if γ = 1 − gy, for some y that we have dealt with before, in

which case y = Fγ and f(y) = x. Similarly, if δ ≡ 1 − gx mod q is in the block, we store x
in Fδ, unless Fδ 6= 0; that can only happen if δ = gy, for some y that we have dealt with

before, in which case y = Fδ and f(y) = x.

(b2) For all prime powers pk ‖ q − 1 put gp,i = gi(q−1)/pk

mod q for i = 0, 1, . . . , pk − 1

in succession. Perform step (b2a) for x = 1, 2, . . . , q − 2 in succession.

For the second method one first computes the c(q) powers g(q−1)/pk
; this can be done

in roughly ((c(q)/2) + 1) log2 q multiplications modulo q, if one does log2 q squarings of

g followed by assembling g(q−1)/pk
(requiring approximately (log2 q)/2 multiplications on

the average) for each of the pk. The same is later done for each of q− 2 different values for

ḡx. That adds up to (q − 1)((c(q)/2)+1) log2 q multiplications; at most q more are needed

to find the pk different powers (g(q−1)/pk
)i for all pk.

(b2a) Put ḡx = 1− gx mod q. For all prime powers pk ‖ q− 1 put ḡp,x = ḡ
(q−1)/pk

x mod q.

Next for all prime powers pk ‖ q − 1, find i such that gp,i = ḡp,x and increase
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cπ,q,p,ax+bi mod pk , by 1 for every π ∈ Jpk , where a + b = π. Finding i can for

instance be done using hashing.

A character χ of order pk is chosen as in (a). The gp,i are the powers of gp,1, a generator

for the p-Sylow subgroup (of order pk) inside
(

Z/qZ
)∗

. To evaluate χ(1 − gx), one raises

1 − gx in the power q−1
pk (to kill the non-p part) and finds from the list the gp,i to which

the result is equal. The contribution to the Jacobi sum J(χa, χb) is ζaxζbi.

(c) For every prime power pk ‖ q − 1, every i such that φ(pk) ≤ i < pk and every

1 ≤ j < p, decrease cπ,q,p,i−jpk−1 by cπ,q,p,i for all π ∈ Jpk .

Here we transform to a basis for Z[ζpk ] by using the relation ζ0+ζpk−1
+. . .+ζ(p−1)pk−1

=

0.

(d) Add the vector (cπ,q,p,i)0≤i<φ(pk) representing the Jacobi sum corresponding to π

and (a, b) to the content of the direct access file for every π ∈ Jpk and every

pk ‖ q − 1.
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3. INITIALIZATIONS.

Let n > 1 be an odd integer to be tested for primality. Suppose that files and tables are

prepared according to Section 2.

(3.1) Initialization.

Put G =
∏

p∈P0∪Q0
p mod n (cf. (2.2)(b), (e)). If G = 0 the complete factorization of n

can easily be derived, and the primality test is terminated.

As part of the primality proof for n, one has to verify that several integers are relatively

prime to n. Instead of calculating the various gcd’s, one calculates the product G modulo
n of these integers, and one checks if the product equals 0 mod n. If G ≡ 0 mod n, a factor

of n is easily derived, by taking the gcd of n and the last integer G has been multiplied

with; the algorithm will be aborted then. If G ≡ 0 mod n never occurs, gcd(G, n) will be
computed once at the end of the algorithm (in step (6)).

(3.2) Trial division.

Put Ω equal to the empty set and perform steps (a) and (b).

In this step the numbers n, n− 1, and n + 1 are checked on divisibility by all small primes

up to some bound B. In this way composite n with a small factor are easily detected, while
the algorithm determines at the same time the small prime factors of n2 −1, which may be

used in the Lucas-Lehmer part of the algorithm (cf. (3.5), (4.5), (5.3)). This step makes use
of the table of prime numbers created in step (2.1). If no divisors of n are found, the sets

F1 and F2 will contain all prime divisors up to B of n − 1 and n + 1 respectively; v1 and

v2 will be equal to the product of all prime divisors up to B of n−1 and n+1 respectively,
with their multiplicities. The value of B is highly dependent of log2 n, and should be

determined empirically (cf. Chapter VI). Finally, Ω will contain all positive integers ω for

which a factor of nω − 1 is known, and w will be equal to lcm{ω : ω ∈ Ω}. Both Ω and w
may be changed in steps (3.5) and (4.5).

(a) Set r1 and r2 equal to the largest odd factors of n−1 and n+1, respectively, and set

F1 and F2 equal to {2}. Furthermore put v1 = 2o2(n−1) and v2 = 2o2(n+1). Select

a trial division bound 1 ≤ B ≤ min(B0,
√
n) (cf. (2.1)). Perform step (a1) for all

odd primes p ≤ B, where the primes p are generated using the file created in (2.1).

(a1) Let np be the (smallest positive) remainder of the division of n+ 1 by p. If np = 1,

then p is a divisor of n, and the primality test is terminated because n is composite.

Otherwise, if np = 0, replace F2 by F2 ∪ {p}, replace v2 by v2 · pop(r2) and r2 by

r2/p
op(r2). Finally, if np = 2, replace F1 by F1 ∪ {p}, replace v1 by v1 · pop(r1) and

r1 by r1/p
op(r1).

(b) If B = b√nc, then n is proved to be prime and the test is terminated. Otherwise,

put v = v1 · v2, put w = 2 and put Ω = {1, 2}.
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(3.3) Compositeness test.

Let n − 1 = r · 2k with r odd and k ≥ 1. Select a small positive integer C, and perform

step (a) at most C times.

In this step a compositeness test is performed, see II.1. If some witness a to the compos-

iteness of n is found, the number n is proved to be composite. Recall from II.1.3 that if

n is a composite number, the probability that a random a in {2, 3, . . . , n − 1} is a witness
is at least 3/4. The number of attempts C to find a witness, could for instance be taken

equal to 4.

(a) Randomly select an integer a from {2, 3, . . . , n−2}, and compute ar = ar mod n. If

ar 6≡ ±1 mod n, then check by repeated squaring that there is an i in {1, 2, . . . , k−1}
such that a2i

r ≡ −1 mod n; if such an i does not exist the primality test is terminated

because n is composite.

(3.4) Preliminary calculations.

Perform steps (a), (b), and (c) for all primes p dividing t0 (cf. (2.2)(a)).

In this step up,k = ord(n mod pk) and o∗p,k = op(nup,k −1) for all prime powers pk dividing
t0 are calculated. The up,k will be the degrees of certain rings in which the calculations

of Section 5 will be done. The number o∗p,k of factors p in nup,k − 1 may be used in the
Lucas-Lehmer step of the algorithm.

(a) For k = 1, . . . , kp (cf. (2.2)(c)), perform step (a1).

(a1) If pk = 2, then put i = 1. Otherwise, if pk 6= 2, let np,k = n mod pk, and find

by repeated multiplication the minimal i in {1, 2, . . . , λ(pk)/2} such that ni
p,k ≡

±1 mod pk (cf. (2.2)(d)). If ni
p,k ≡ 1 mod pk, then put up,k = i. Otherwise, if

ni
p,k ≡ −1 mod pk, then put up,k = 2i.

(b) If p is odd, or n ≡ 1 mod 4, put k̄ = 1 and ū = up,k̄ = up,1. If p = 2 and

n ≡ 3 mod 4, put k̄ = 2 and ū = up,k̄ = 2. Put c = 0 and calculate o∗
p,k̄

by

performing step (b1) only once and step (b2) as long as c = 0.

In this step o∗p,k, the number of factors p in nup,k − 1, is determined. Since nup,k ≡
1 mod pk, it follows that the number of factors p in nup,k − 1 is at least k. Also, o∗p,k =

max{o∗
p,k̄

, k} for k̄ ≤ k ≤ kp, and o∗p,k = 1 for 1 ≤ k < k̄, so o∗p,k can be calculated

from o∗
p,k̄

. To determine o∗
p,k̄

one first divides n
up,k̄ − 1 = nū − 1 by pk̄. This is done

by first writing nū − 1 in base n, i.e., nū − 1 =
∑ū−1

i=0 bi · ni, and by next sequentially

dividing all coefficients bi by pk̄ while keeping track of a carry c. The bi now satisfy
∑ū−1

i=0 bi · ni = (nū − 1)/pk̄.

(b1) First put o∗
p,k̄

= k̄. Next put bi = n − 1 for i = 0, 1, . . . , ū − 1. After this, for

i = ū − 1, . . . , 0 in succession first put c′ = (c · n + bi) mod pk̄, next put bi =

b(c · n+ bi)/p
k̄c, and finally replace c by c′.
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(b2) For i = ū−1, . . . , 0 in succession first put c′ = (c·n+bi) mod p and bi = b(c·n+bi)/pc
and next replace c by c′. If c = 0 replace o∗

p,k̄
by o∗

p,k̄
+ 1.

Using the same method as in step (b1) the number
∑ū−1

i=0 bi · ni is divided by p as long

as c, the remainder of the division, is equal to zero. The resulting o∗
p,k̄

is the number of

factors p of nū − 1.

(c) Put o∗p,k = 1 for 1 ≤ k < k̄, and put o∗p,k = max{o∗
p,k̄
, k} for k̄ ≤ k ≤ kp. Put

u0 = lcm{up,k : pk ‖ t0} = lcm{up,kp
} (cf. (2.2)(c)).

(3.5) Utilization of known factors.

Perform steps (a) and (b) for every known prime factor f of nω − 1 with ω ∈ Z>0 and

either ω 6∈ Ω or f 6 |vω.
In the algorithm any prime factor f of nω−1 that is known is useful, since such a factor may

be used in the Lucas-Lehmer part of the algorithm (cf. (5.3)). Therefore any known factor
f will be stored, together with its multiplicity and ω. In the optimization step (Section 4)

it will be decided which of these factors will be used. The set Ω will contain all values ω
for which a factor is known (cf. (3.2)), w will be equal to lcm{ω : ω ∈ Ω} and vω denotes

the completely factored part of Φω(n), for ω ≥ 1, with ω ∈ Ω, where Φω denotes the ω-th

cyclotomic polynomial; that is, vω consists of the known primitive prime factors of nω − 1:
those that are not already in ni − 1 for i | ω and i 6= ω. Furthermore, v will be the product

of vω for ω ∈ Ω and finally, Fω denotes the set of prime factors found in nω − 1. Note

that in (3.2)(a1) we have found values for v1 and v2. All values and sets may be changed
in step (4.5).

(a) Let k = of (nω − 1), and c = of (ω). Put k̄ = 1 if f is odd or n ≡ 1 mod 4, and

k̄ = 2 if f is 2 and n ≡ 3 mod 4. Put o∗
f,k̄

= k − c + k̄ − 1, o∗f,i = 1 for 1 ≤ i < k̄

and o∗f,i = max{o∗
f,k̄
, i} if k̄ ≤ i ≤ k. Calculate ω̄ = min{i : i | ω, f | (ni − 1)}.

Calculating o∗f,i from o∗
p,k̄

as well as calculating ω̄ is done in the same way as in (3.4).

When calculating the values vω′ , one only has to update those values vω′ , with ω′ = ω̄ · f i,

with i ≥ 0, since the number of factors f in nω′ − 1 only changes for these values of ω′.

(b) For i = 0, . . . , c in succession, put ω′ = ω̄ · f i and perform step (b1) if ω′ 6∈ Ω, and

step (b2) if ω′ ∈ Ω.

Although fk−c+i | nω′ − 1, one should not multiply v by fk−c+i because then factors
f would be counted more than once in v. The number of factors f in Φω̄·fj1 (n), not in

Φω̄·fj2 (n) for 0 ≤ j2 ≤ j1 is equal to j1 − j2. Only these factors f may be used by the

Lucas-Lehmer part of the algorithm. Therefore one has to keep track of factors f which
are due to Φω′ (n) itself, and factors f which are due to Φω′′ (n) for some divisor ω′′ of ω′.

(b1) Replace Ω by Ω∪{ω′}, put Fω′ equal to {f}, replace w by lcm(w, ω′), put vω′ = f j,

replace v by v · f j , where j = k̄ if i = 0 and j = 1 otherwise.
If ω′ 6∈ Ω the set Fω′ and the vω′ have to be initialized. Furthermore the set Ω, and the
integers w and v are updated.

(b2) If f 6 |vω′ then replace Fω′ by Fω′ ∪ {f}, replace vω′ by vω′ · f j , replace v by v · f j,

where j = k̄ if i = 0 and j = 1 otherwise.
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4. OPTIMIZATION.

In this section we give a description of the optimization step. It should be noted that steps

(4.2)–(4.6) are not performed sequentially, but are used while executing step (4.1).

(4.1) Main optimization step.

Select a value for T̄ and perform steps (a) through (d).

The value T̄ is the time one is prepared to spend on proving the primality of the number

n.

In this step one tries to choose the values of P, Q, s, t, u, v, and w in such a way
that the time needed to perform the algorithm is (close to) minimal; if this time exceeds

T̄ , the algorithm will be aborted, since one cannot prove the primality within a reasonable

amount of time. One should keep in mind that, roughly speaking, lcm(s, v) should exceed√
n; here s forms the Jacobi sum contribution and v the Lucas-Lehmer contribution.

(a) Put B2 = 1. Set L+ and L− equal to the empty set. For all primes l dividing

lcm(u0, w) put al = 0, and define êl by lcm(u0, w) =
∏

l prime l
êl , (cf. (3.4) and

(3.5) for the definitions of u0 and w). Perform step (4.2) for every prime power lêl .

Perform steps (a1) and (a2).

The variable B2 indicates up to which bound factors have been searched for in step (4.6).

It will be changed in step (4.6).
The sets L+ and L− will be used to indicate which extensions have been found. If at

least one extension of degree le that can be used in the algorithm for testing n has been
found, then le will be put in L+. If no suitable extension of degree le has been found, then

le will be put in L−.

The variable al is used to indicate whether or not step (4.2) has been performed for
any power of the prime l. If al 6= 0 then certain conditions in step (4.2) have been checked

for some power of l. For more information, we refer to step (4.2).

(a1) For all t | t0 put Qt equal to {q ∈ Q0 : q − 1 | t} and put Tt equal to {(q, p, h) : h =

op(up,op(q−1)) with q ∈ Qt and prime p | q − 1}.
The set Qt contains the prime factors of e′i(t), (cf. (2.2)(g)). We get a contribution q to s,

if we perform Jacobi sum tests for all triples (q, p, h) in Tt, where q is the conductor and

pop(q−1) is the order of the character involved. This test can be performed in an extension
of degree up,op(q−1) = ph · up,1. These sets are calculated in advance, since in step (4.3)

one needs to compare the costs of using t and (subsets of) Qt and Tt quickly. For all prime

powers pk dividing t0 the up,k have been defined as ord(n mod pk) (cf. (3.4)).

(a2) For all q ∈ Q0 calculate c1(q) = (
∑

p|q−1 u
2
p,op(q−1))/ log2(q). Order the elements

q ∈ Q0 in such a way that c1(q) is decreasing (cf. III.(3.17)).

Given a value for t, a quick and reliable method is needed to delete the most expensive q’s

from Qt (and all corresponding triples (q, p, h) from Tt). The ordering of q’s according to

c1 assumes that the costs for using q’s are independent; in fact this is not true, since Jacobi
sum tests for different conductor may be combined. Therefore c1 is not guaranteed to give

the optimal ordering, but experiments have shown that it hardly differs from this. This

ordering is used in step (4.3), to reject most values for t as being too expensive. Possibly
better, but more expensive ways of ordering are used in step (4.3).
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(b) Let v and w be as found in (3.5). Find initial values P ′, Q′, T ′, s′, t′, u′, v′, w′, µ′,

and an initial estimate C ′ for the running time of the steps of the algorithm described

in Sections 5 and 6, by performing step (4.3) with C∗ = −1, B∗ = d√n/v1e, z∗ = 0,

and µ∗ = 1
2 . Next put P ′ = P∗, Q′ = Q∗, T ′ = T ∗, s′ = s∗, t′ = t∗, u′ = u∗,

v′ = v1, w
′ = 1, and µ′ = 1

2
. Finally put C ′ = C∗.

In this step initial values for P ′, Q′, T ′, s′, t′, u′, v′, w′, and µ′ are chosen in such a
way, that it hardly takes any time to find them, and that the time to perform the steps of

Sections 5 and 6 with these values is close to minimal. These values will be improved in

the next steps of (4.1). Throughout the rest of step (4.1), the P ′, Q′, T ′, s′, t′, u′, v′, w′,
and µ′ will denote the values that give the minimal cost C ′ found so far.

Initially, the value C∗ is negative to indicate that step (4.3) has not yet been per-

formed.
The flag z∗ is used to indicate which kind of optimization should be performed in

(4.3). For further comments on this subject we refer to that step. The value µ′ indicates
which final trial division will be used in Section 6. During the final trial division it will be

checked whether there exist divisors of n in the residue classes r ≡ ni mod lcm(s′, v′) for

i = 1, . . . , lcm(t′, w′), where lcm(s′, v′) > nµ′
.

(c) Put T = min(T̄ , C ′) and put P = T − T0, where T0 is the minimal time needed to

perform the rest of step (c). If P > 0, repeat for µ = 1
2

as well as for µ = 1
3

steps

(c1) through (c6) until either P < 0 or T < 0 in step (c4); as soon as this happens,

we jump to step (d). Otherwise, if P ≤ 0, perform step (4.3) with C∗ = C ′,

B∗ = dnµ/v1e, z∗ = 2, and µ∗ = µ.

In this step a further effort is made to optimize C ′. It may be that if more factors are

found in step (4.3), the total running time (including the time needed to find these factors)
is less than the minimal running time found up till now.

The time left to be spent is denoted by T ; if T0 exceeds T , then optimization only

consists of performing step (4.3)(b) for the current value of t′. The value for T0 should be
determined empirically.

(c1) First put x̂ = dnµ/v1e, and perform step (4.3) with C∗ = C ′, B∗ = x̂, z∗ = 1, and

µ∗ = µ. Next put f ′(x̂) = C∗, f ′′(x̂) = 0, f(x̂) = f ′(x̂) + f ′′(x̂). If f(x̂) < C ′, then

put C ′ = f(x̂) and put P ′ = P∗, Q′ = Q∗, T ′ = T ∗, s′ = s∗, t′ = t∗, u′ = u∗,

v′ = v1, w
′ = 1, and µ′ = µ∗.

In this step (and steps (c2) through (c6)) an attempt is made to find a value x̃, for which

the sum f(x̃) of the cost f ′(x̃) of performing a Jacobi sum test with s ≈ x̃, and the cost
f ′′(x̃) of performing a Lucas-Lehmer test with v ≈ nµ/x̃, is minimal. This is done by

varying the amount of time spent on looking for more factors for the Lucas-Lehmer part
and estimating the consequences. As soon as f(x̃) < C ′, it is expected to be profitable to

search for more factors in order to change P ′, Q′, T ′, s′, t′, u′, v′, w′, µ′, and C′.

(c2) Put W# = max{ord(n mod pk) : p prime, pk ‖ lcm(t′, v′)}. Let A1 be an approxi-

mate solution for A in the equation

A

logA
=

C ′

(log2 n+W#)
+

B2

logB2
.
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Let x̌ be an approximate solution for x in the equation

x · v′ ·
(

A1 + B2

2

)W#(log log A1−log log B2)

= nµ.

Perform (4.3) with C∗ = C ′, B∗ = x̌, z∗ = 0, and µ∗ = µ, and next put f ′(x̌) = C∗.
If we spend time equal to C ′ in looking for additional Lucas-Lehmer factors, we will find all
prime factors up to the expected bound A1 of ni−1, where 1 ≤ i ≤ W#. If all these factors

are used in a Lucas-Lehmer test, then a Jacobi sum test with s ≈ x̃ would be sufficient to
complete the primality proof. The time necessary to perform the Jacobi sum test is about

the value of f ′ calculated here. The x̌ serves as lower bound for values of x that will be

taken into consideration.

(c3) Select a value for ε. The machine dependent functions cd and cn must be known

(cf. (4.4)). Find an approximate minimum x̃ between x̌ and x̂ to the function

f ′′(x) +

(

f ′(x̂) − f ′(x̌)

log2 x̂− log2 x̌

)

· (log2 x− log2 x̌) + f ′(x̌).

The function f ′′(x) is approximated by

C3(w
′)+

∑

ω≤W#

ω 6|lcm(u∗,w′)

ω2 log2 n · cn(log2(n))+

(

A2

logA2
− B2

logB2

)

· (W# + cd(log2(n), log2(M))),

where A2 is an approximate solution for A in

x · v′ ·
(

A+B2

2

)W#(log log A−log log B2)

= nµ,

M is the largest integer representable in single precision, and C3 is a function defined

in (4.4). Perform step (c3a) until x̌ = x̂, but at most 5 times. Put x̃ = x̌.

We minimize the sum of the cost f ′′(x) of searching for Lucas-Lehmer factors (which is
decreasing with increasing x) and the cost f ′(x) of finishing the primality proof using a

Jacobi sum test with s ≈ x, under the assumption that the latter is approximately linear

in log x.
For fixed t, the cost f ′(x) of the Jacobi sum test grows almost linearly as a function

of log s; changing to another value of t however, introduces a discontinuity. As a result the

function f ′ will be almost piecewise linear in log x. Here the assumption is made that no
discontinuities on the interval (x̌, x̂) exist; in (c3a) this assumption is verified.

The approximation for f ′′(x) consists of a contribution C3(w′) for generating the
proper roots of unity (as in (4.4)(c)) for the known Lucas-Lehmer factors, an approximation

for the costs of generating roots of unity for the Lucas-Lehmer factors expected to be found,

and finally the costs of searching for these factors up to the bound A2.
Notice that in the approximation of f ′′(x) above, the first two terms are independent

of x, so minimization of f in fact only includes minimization of the sum of the third term

of f ′′(x) and the linear approximation of the costs of the Jacobi sum test.
The value ε is the maximal relative error that is tolerated in f ′. A suitable value for
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ε is for instance 0.5. The machine dependent constant c∗0 is given by the ratio of the costs
of division and multiplication of single precision integers. Minimization is done using the

methods described in [15].

(c3a) Calculate f ′(x̃) by performing (4.3) with C∗ = C ′, B∗ = x̃, z∗ = 0, and µ∗ = µ,

and by putting f ′(x̃) = C∗. If
∣

∣

∣

∣

f ′(x̃) − f ′(x̌)

log2(x̃) − log2(x̌)
− f ′(x̃) − f ′(x̂)

log2(x̃) − log2(x̂)

∣

∣

∣

∣

< ε

then put x̌ = x̃ and x̂ = x̃. Otherwise, if

f ′(x̃) − f ′(x̌)

log2(x̃) − log2(x̌)
>

f ′(x̃) − f ′(x̂)

log2(x̃) − log2(x̂)

then put x̂ = x̃ and x̃ = (x̂+ x̌)/2. Otherwise, if

f ′(x̃) − f ′(x̌)

log2(x̃) − log2(x̌)
<

f ′(x̃) − f ′(x̂)

log2(x̃) − log2(x̂)

then put x̌ = x̃ and x̃ = (x̂+ x̌)/2.

If f ′ is approximately linear in log x on the interval (x̌, x̂), then f assumes its minimum at

the initial value of x̃; if f ′ contains a discontinuity on the interval (x̌, x̂), then we apply a
few bisection steps in order to approximate the abscissa of this discontinuity from below.

(c4) First approximate f ′′(x̃) by calculating

C3(w
′) + c∗3 ·

∑

ω≤W#

ω 6|lcm(u∗,w′)

(ω log2 n)3 + c∗0 ·
(

A2

logA2
− B2

logB2

)

· (W# + log2 n),

where A2 is an approximate solution for A in

x̃ · v′ ·
(

A+B2

2

)W#(log log A−log log B2)

= nµ,

and where c∗0, c
∗
3 are machine dependent constants (cf. c3)). Next put f(x̃) =

f ′(x̃) + f ′′(x̃).

Put P equal to C ′ − f(x̃). If P > 0 then first perform step (4.6) with W# =

max{ord(n mod pk) : p prime, pk ‖ lcm(t′, v′)}, and with B# = A2.

Next replace T by

T − c∗0 ·
(

A2

logA2
− B2

logB2

)

· (log2 n+W#).

If either P ≤ 0 or T ≤ 0, proceed with step (d).

The expected profit P of performing steps (c2)–(c4) is determined by calculating P (P ′,
Q′, s′, t′, u′, v′, w′, µ′), which gives the difference between the running time of the rest of
the algorithm (calculated in step (4.4)) with the present values of P ′, Q′, s′, t′, u′, v′, w′,
µ′, and the sum of the expected time necessary to find better values P∗, Q∗, s∗, t∗, u∗,

v∗, w∗, µ∗, and the expected time C∗ to run the rest of the algorithm with these. If the
expected profit is positive, it is expected to be beneficial to search for additional factors.
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If the cost to use additional factors is larger than the cost to use the optimal values
found up till now, the complete interval where profit could be found has been examined,

and the optimization is terminated.

(c5) Perform step (4.3) with C∗ = C ′, B∗ = x̃, z∗ = 1, and µ∗ = µ, and next put

P ′ = P∗, Q′ = Q∗, T ′ = T ∗, s′ = s∗, t′ = t∗, u′ = u∗, µ′ = µ∗, and f ′(x̃) = C∗.

Next put C ′ = f ′(x̃) + f ′′(x̃).

Using the new factors found in the previous step, the values of P ′, Q′, T ′ s′, t′, u′, v′, w′,
and µ′ are updated, as well as C ′.

(c6) For all primes l dividing lcm(u′, w′), let êl be such that lcm(u′, w′) =
∏

l prime l
êl .

Put al = 0 for all primes l | lcm(u′, w′) with l 6∈ L− ∪ L+. Next perform step (4.2)

for every lêl 6∈ L− ∪ L+.

For lêl 6∈ L− ∪ L+ one has to find extensions that can be used in Sections 5 and 6. This

can only happen for those lêl | w′ with lêl 6 |u0, (cf. (4.1)(a)).

If l 6∈ L− ∪ L+ then step (4.2) has not yet been performed for any power of l; this is
indicated by putting al = 0.

(d) If C ′ ≤ T̄ , then put P = P ′, Q = Q′, T = T ′, s = s′, t = t′, u = u′, v = v′, w = w′,

and µ = µ′, and proceed with Section 5; if C ′ > T̄ the algorithm is aborted.

If the running time C ′ for the rest of the algorithm with the present values of P ′, Q′, s′,
t′, u′, v′, w′, and µ′ is “acceptable”, i.e., at most T̄ , then the algorithm will be finished

with these values. Otherwise the algorithm is aborted since the primality of n cannot be

proved within a reasonable amount of time.

(4.2) Finding good extensions.

A value for lêl must have been specified. Perform steps (a) through (c).

For all prime powers le | lêl all entries in the table made in (2.3) that are useful in the test

of n are retrieved, and the conductors are put in M+(le); if there is at least one, le is put

in the set L+, and else it is put in the set L−. If le ∈ L−, an extension of degree le can
only be used in Sections 5 and 6 if it is created in step (5.1).

(a) If al = 0, put e0 = 0 and perform step (a1). Otherwise, let e0 < êl be the largest e

for which le ∈ L− ∪ L+ and perform step (a2).

Initially, the sets L+ and L− are empty. Step (a1) is performed only once per l.

(a1) Put M+(le) equal to the empty set for 1 ≤ e ≤ êl. For every prime m such that

m ∈ M(l) (cf. (2.3)) and n(m−1)/l 6≡ 1 mod m replace M+(l) by M+(l) ∪ {m}.
Next, for every e = 2, 3, . . . , êl in succession, replace M+(le) by {m ∈ M+(le−1) :

le | m− 1}. Finally, for 1 ≤ e ≤ êl put le in L+ if M+(le) is non-empty.

One checks whether the extensions that were precomputed in step (2.3) can be used for

testing n; an extension of degree le and prime conductor m can be used if n(m−1)/l 6≡
1 mod m (cf. II.(4.8)). Note that this condition does not involve e.
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(a2) Put M+(le) equal to the empty set for e0 +1 ≤ e ≤ êl. For e = e0 +1, e0 +2, . . . , êl

in succession, do the following. Replace M+(le) by {m ∈ M+(le−1) : le | m − 1};
if M+(le) is non-empty put le in L+.

If the extension of degree le0 and prime conductor m can be used, then one can also use
the extension of degree le and conductor m provided that le | m − 1.

(b) If l = 2 perform step (b1), if l is odd perform step (b2).

In this step the case that the conductor is a power of the prime l is considered; one has to

distinguish between the case that l = 2 and the case that l is odd.

(b1) If a2 = 0 then perform step (b1a) through (b1c). Otherwise, if a2 > 0, perform step

(b1c).

If a2 = 0 then step (4.2) has not yet been performed for any power of 2. Otherwise, if

a2 > 0 then step (4.2) has been performed for powers of 2, with a2 as maximal value for
êl. Finally, if a2 < 0 then it has been checked that no extension of degree 2e with prime

power conductor can be used, since n 6≡ ±3 mod 8.

(b1a) If n ≡ ±3 mod 8 put a2 = 1, replace M+(2) by M+(2) ∪ {8}, and replace L+ by

L+ ∪ {2}. If n 6≡ ±3 mod 8 put a2 = −1.

In the case that l = 2 and e ≥ 1, one can use an extension of degree 2e with conductor

m = 2e+2 if n ≡ ±3 mod 8 holds.
One has to check this condition only once; if it holds one can add 2e+2 to M+(2e)

for every e (cf. (2.4)(b3) and II.(4.10)).

(b1b) Check if n ≡ 3 mod 4. If this holds, replace M+(2) by M+(2) ∪ {4}, and replace

L+ by L+ ∪ {2}.
If n ≡ 3 mod 4 holds, one can use the extension Q(ζ4) with conductor m = 4 (cf. (2.4)(b3)

and II.(4.10)).

(b1c) If a2 > 0, then replace M+(2e) by M+(2e) ∪ {2e+2} and L+ by L+ ∪ {2e} for

e = a2 + 1, a2 + 2, . . . , êl, and next put a2 = êl.

(b2) If al = 0 then perform step (b2a). Otherwise, if al > 0 then perform step (b2b).

In the case that l is odd, one can use an extension of degree le with conductor m = le+1 if

nl−1 6≡ 1 mod l2 holds.
If al = 0 then step (4.2) has not yet been performed for any power of l. Otherwise, if

al > 0 then step (4.2) has been performed for powers of l, with al as maximal value for êl.

Finally, if al < 0 then it has been checked that no extension of degree le with conductor
le+1 can be used, since nl−1 ≡ 1 mod l2.

(b2a) Check whether nl−1 6≡ 1 mod l2; if this holds, replace M+(le) by M+(le) ∪ {le+1}
and L+ by L+ ∪ {le} for e = 1, . . . , êl. Next put al = êl. Otherwise, if nl−1 ≡
1 mod l2, put al = −1.

One has to check this condition only once; if it holds one can add le+1 to M+(le) for every
e.

(b2b) For e = al + 1, . . . , êl replace M+(le) by M+(le) ∪ {le+1}, and next put al = êl.
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If al > 0 then nl−1 6≡ 1 mod l2, so one can add le+1 to M+(le).

(c) For every e such that 1 ≤ e ≤ êl and M+(le) is empty, put le in L− and do the

following. Let e∗ be the smallest e for which M+(le) is empty. If e∗ = 1 check

whether n is an lth power; if this is the case the primality test is terminated. If n is

not an lth power, for e = e∗, . . . , êl in succession find the smallest prime m such that

both le | m − 1 and n(m−1)/l 6≡ 1 mod m, and replace M+(le
′
) by M+(le

′
) ∪ {m}

for 1 ≤ e′ ≤ e.

If n is an l-th power, then one will never succeed in finding a conductor with the correct
properties. If this is not the case, then there exist prime conductors m with n(m−1)/l 6≡
1 mod m. In practice, these m are not very hard to find.

(4.3) Finding good sets P∗, Q∗, and T ∗ and good values for s∗, t∗, and u∗.

Values for B∗, C∗, z∗, and µ∗ must have been specified. Select values for b1 and b2.

If C∗ < 0 and z∗ = 0 then perform step (a). If z∗ = 2, then perform step (b) with

t̃ = t′. In all other cases perform step (b), first for t̃ = t′ and next for all other divisors t̃

of t0 satisfying e′
i(t̃)

≥ B∗ and c5(e
′
i(t̃)
, t̃, ord(n mod t̃), 1, 1, µ∗) < C∗ (cf. (4.4)(e)).

Given values for B∗, C∗ (representing the minimal costs found up till now), and z∗, values
for P∗, Q∗, T ∗, s∗, t∗, u∗ are chosen in this step in such a way, that the costs C∗ to

perform Jacobi sum tests for these particular values is (close to) minimal and such that
s∗ ≥ B∗. The flag z∗ is used to indicate if the (expensive) step (b2) should be performed

after performing step (b1). The values b1 and b2 are used in steps (a) and (b2). Possible

values are b1 = 1.05 and b2 = 1.05. For further comments we refer to steps (a) and (b2).

(a) Put t∗ equal to the value t in the table made in step (2.2)(g) for which e′i(t∗) is

equal to min{e′i(t) : e′i(t) > b1 · B∗}. Next put P∗ = {p : p | t∗}, Q∗ = Qt∗ ,

s∗ =
∏

q∈Q∗ q, u∗ = lcm{up,k : pk ‖ t∗} (cf. (2.4)), and T ∗ = Tt∗ (cf. (4.1)(a1)).

Finally, calculate C∗ = C(P∗,Q∗, T ∗, s∗, t∗, u∗, v1, 1, µ∗) by performing step (4.4)

with P̃ = P∗, Q̃ = Q∗, T̃ = T ∗, s̃ = s∗, t̃ = t∗, ũ = u∗, ṽ = v1, w̃ = 1, and µ̃ = µ∗.

If C∗ < 0, a first estimate for the running time, C∗, and initial values for s∗, t∗, u∗, P∗,

Q∗ will be found in this step. It is known that the time needed to perform the steps of
Sections 5 and 6 with this particular choice for s∗, t∗, u∗, P∗, and Q∗ may happen to be

not so very close to the minimum. Its main purpose is to find very quickly an upper bound
for the running time needed to perform the steps of Sections 5 and 6. In this way we can

speed up the other optimization steps of (4.3). This is the case because some parts of the

steps of Sections 5 and 6 may be even too expensive for particular values of t̃. These values
can then be rejected, without doing any expensive optimization steps.

For fairly small n however, the choices made in this step may be the final choices,

since any choice which gives approximately the minimum will be fine.
Experiments have shown that values of t̃ with e′

i(t̃)
≈ B∗ do not give a very good

approximation for the minimum time needed for the steps of Sections 5 and 6. Better
values of t̃ have values of e′

i(t̃)
which seem to be at least some offset times the specified

value of B∗. The value b1 is equal to the offset needed to get a better value for t̃.
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(b) First put Q̃ = Qt̃, P̃ = {p prime : p | t̃}, T̃ = Tt̃ (cf. (3.4)), s̃ =
∏

q∈Q̃ q,

ũ = ord(n mod t̃). If z∗ ≥ 1 put C∗∗ = C∗ and perform steps (b1) and (b2).

Otherwise, if z∗ = 0, perform step (b1).

In this step one tries to find the best values for P∗, Q∗, T ∗, s∗, t∗, and u∗. This is done

by checking for all values t̃ | t0 if a subset of Qt̃ containing the least expensive q’s results

in a better value for C∗. Since it is easy to estimate the time needed to perform the final
trial division, this is used as criterion to reject too expensive values (cf. (6.1), (4.4)(e)).

(b1) Put Q̂ = Q̃, P̂ = P̃, T̂ = T̃ , ŝ = s̃, t̂ = t̃, and û = ũ, µ̂ = µ̃, and perform steps

(b1a) and (b1b).

Given initial sets P̃, Q̃, and T̃ , and initial values for s̃, t̃, ũ, ṽ, and w̃, one tries to find
subsets Q̂ and T̂ of Q and T respectively, and ŝ | s, such that the running time to perform

the Jacobi-sum tests and the final trial division for these values is (possibly) smaller than

the running time for the present values, while ŝ is still large enough.
Since one might perform two optimization steps, a copy has to be made of all values

in order to start the second optimization step with the same values. In the first optimiza-
tion step all q ∈ Q are weighted according to c1(q) = (

∑

p|q−1 u2
p,op(q−1)

)/ log2(q) (cf.

(4.1)(a2)). So the q with c1(q) = max{c1(q)} is regarded as being the most expensive q.

(b1a) For qi, with qi ∈ Q̃, i = 1, 2, . . . in succession, if s/qi ≥ B∗, then replace Q̃ by

Q̃\{qi}, T̃ by T̃ \{(qi, p, h) : p | qi − 1, h = op(up,op(qi−1))}, and s̃ by s̃/qi.

In this step the qi’s were ordered according to step (4.1)(a2).

(b1b) Calculate C̃ = C(P̃, Q̃, T̃ , s̃, t̃, ũ, 1, 1, µ̃) by performing step (4.4). If C̃ < C∗ or

C̃ = C∗ and s∗ < s̃, replace Q∗, P∗, T ∗, s∗, t∗, u∗, µ∗, and C∗ by Q̃, P̃ , T̃ , s̃, t̃, ũ,
µ̃, and C̃ respectively.

(b2) If C̃ < b2 ·C∗∗ or C∗∗ < 0 then put Q̃ = Q̂, P̃ = P̂, T̃ = T̂ , s̃ = ŝ, t̃ = t̂, and ũ = û,

µ̃ = µ̂ and perform steps (b2a) and (b2b).

In the second optimization step all q ∈ Q̂ are weighted according to c2(q) = Cq/ log2(q),

were

Cq = C(Q̃, P̃, T̃ , s̃, t̃, ũ, 1, 1, µ̃) − C(Q̃\{q}, P̃, T̃ \{(q, p̃, h̃) ∈ T̃ }, s̃/q, t̃, ũ, 1, 1, µ̃).

That is, Cq is the additional cost of performing the necessary Jacobi sum test for conductor
q, if all other tests in T̃ have been done.

This optimization step is more expensive than the one described in step (b1), and is
only performed when indicated by the flag z∗. If the time needed to perform the steps of

Sections 5 and 6 with the present values for P̃, Q̃, T̃ , s̃, t̃, and ũ, found in step (b1), is

close to the minimum up till now (within a margin determined by a blow-up factor b2),
or if C∗∗ < 0 (indicating that no initial values of s∗, t∗, u∗, P∗, Q∗, and T ∗ have been

found) one tries this possibly better (but more expensive) optimizing procedure to find the

minimum.

(b2a) For all q ∈ Q̃ let Cq be defined as the difference between C(Q̃, P̃, T̃ , s̃, t̃, ũ, 1, 1, µ̃)
and C(Q̃\{q}, P̃, T̃ \{(q, p̃, h̃) ∈ T̃ }, s̃/q, t̃, ũ, 1, 1, µ̃). Perform steps (b2a1) through

(b2a3) as long as there exists a q ∈ Q̃ with Cq > 0 and s̃/q ≥ B∗.

(b2a1)For all q ∈ Q̃ calculate Cq and c2(q) = Cq/ log2(q) by performing step (4.4).
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(b2a2)Find q̄ such that c2(q̄) = max{c2(q) : q ∈ Q̃, Cq 6= 0, lcm(s̃/q, ṽ) ≥ B∗}.
(b2a3)Replace Q̃ by Q̃\{q̄}, T̃ by T̃ \{(q̄, p, h) : p | q̄ − 1, h = op(up,op(q̄−1))}, and s̃ by

s̃/q̄. Finally replace C̃ by C̃ − Cq̄.

(b2b) If C̃ < C∗ or C̃ = C∗ and s < s̃, replace Q∗, P∗, T ∗, s∗, t∗, u∗, µ∗, and C∗ by Q̃,

P̃, T̃ , s̃, t̃, ũ, µ̃, and C̃ respectively.

(4.4) Running times.

Values for P̃, Q̃, T̃ , s̃, t̃, ũ, ṽ, w̃, and µ̃ must have been specified. The machine dependent

functions cm, cd, cn and cf must be known. Perform steps (a) through (f).

On input P̃, Q̃, T̃ , s̃, t̃, ũ, ṽ, w̃, in this step an estimate of the running time C(P̃, Q̃, T̃ , s̃, t̃, ũ,

ṽ, w̃) of the steps of Sections 5 and 6 is computed.

The function cm(a) denotes the time needed to perform a multiplication of two inte-
gers of size (binary logarithm) a. The function cd(a, b) denotes the time needed to perform

a division of an integer of size a by an integer of size b. The function cn(a) denotes the

time needed to perform a multiplication of two integers modulo n, where dlog2(n)e = a and
finally the function cf (a) denotes the time needed to perform the final trial division for n

with log2(n) = a if µ = 1
3

for one residue class. Each function will be an approximation
of the time needed to perform the operation averaged over several cases of n; it should be

determined empirically and will be specified in Chapter VI for some machines.

(a) Put

C1 =
∑

lêl∈L−

c1(n, l
êl,ml),

with c1(n, l
êl,ml) = (l3êl + m2

l · lêl) · cn(log2(n)), where ml is the smallest m ∈
M+(lêl).

This is the time needed to perform step (5.1), i.e., the time needed to compute additional

Galois extensions. These extensions only have to be computed for prime powers lêl ∈ L−,
since for all lêl ∈ L+, the extensions have been generated in advance in step (2.3). The time

needed for this step is dominated by the time needed for the operations in step (5.1)(b8)
and (5.1)(b9).

(b) Put

C2 =
∑

lêl‖lcm(ũ,w̃)

c2(n, l
êl),

where c2(n, l
êl) = (lêl)3 · cn(log2(n)).

This is the time needed to perform step (5.2), i.e., the time needed to select cyclic rings

and to create the transition matrices. The time needed for this step is dominated by the
time needed for the operations in step (5.2)(b4).

(c) Put c = 0 and for each ω ∈ Ω with ω | w̃ put Tω equal to max{ p
p−1

: p | vω}. First

perform step (c1) as long as there exists an ω ∈ Ω with ω | w̃ such that Tω > 0.

Next put C3 = c.
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This is an estimate of the time needed to perform step (5.3), i.e., the time needed to
calculate cyclotomic extensions. The time needed for this step is dominated by the time

needed for the operations in steps (5.3)(d3) and (5.3)(d4). A more accurate estimate could

be calculated by dynamic programming techniques.

(c1) Put ω̄ = max{ω ∈ Ω, ω | w̃ : Tω > 0}. Replace c by c + Tω̄ · (2ω̄3 · log2 vω + ω̄2 ·
log2 n) · cn(log2(n)), and replace for all ω ∈ Ω with ω | ω̄ the value Tω by Tω − Tω̄

(cf. V.(4.3)).

(d) Perform (4.5) to compute c4(T̃ ), and set C4 = c4(T̃ ) · log2 n · cn(log2(n)).

This is the time needed to perform step (5.4), i.e., the time needed to perform the Jacobi
sum tests. The time needed for this step is dominated by the time needed for the operations

in step (5.4)(d).

(e) Put C5 = c5(s̃, t̃, ũ, ṽ, w̃, µ̃), where

c5(s̃, t̃, ũ, ṽ, w̃, µ̃) =tf · (1 +
√
n/sf ) · (cm(log2(sf ))+

cd(2 log2(sf ), log2(sf ))),

if µ̃ = 1
2
, and

c5(s̃, t̃, ũ, ṽ, w̃, µ̃) = tf/2 · cf (log2(n))

if µ̃ = 1
3 , with tf = lcm(t̃, ũ, w̃) and sf = lcm(ṽ, s̃ ·∏p|t̃ p

op(nũ−1)−op(s̃)).

This is the time needed to perform step (6.1), i.e., the time needed to perform the final

trial divisions.

(f) Put C(P̃ , Q̃, T̃ , s̃, t̃, ũ, ṽ, w̃, µ̃) = C1 + C2 + C3 + C4 + C5.

(4.5) Finding an optimal set of combined Jacobi sum tests.

The set T̃ must have been specified.

Let Q̄ = {q : ∃p, h with (q, p, h) ∈ T̃ }, P̄ = {p : ∃q, h with (q, p, h) ∈ T̃ }, and

H̄p = {h : ∃q with (q, p, h) ∈ T̃ } for all p ∈ P̄.

Assume that the set T̃ of triples (q, p, h) is given, where each triple (q, p, h) represents a

Jacobi sum test (cf. (5.4)) for a character χ with cond(χ) = q, ord(χ) = pop(q−1), and

h = op(ord(n mod pop(q−1))). In this step a method is described that determines how
these tests can be combined in an optimal way. A combination consists of a subset S ⊂ T̃
of triples, S = ∪i{(qi, pi, hi)} such that pi 6= pj for (qi, pi, hi), (qj, pj , hj) ∈ S with i 6= j

(cf. II.(8.9) and III.(3.12)). The optimal set ST̃ of such combinations S is found, i.e., the

set of combinations for which the cost of performing step (5.4) with this T̃ is minimal. This

cost will be calculated as well, and is denoted by c4(T̃ ).
This is done as follows. Each Jacobi sum test, represented by a triple (q, p, h), involves

an exponentiation in an extension of degree up,1 · ph, where the exponent is roughly of the

same magnitude as n. The time needed to do such an exponentiation is proportional to
(up,1 ·ph)2 · log3

2(n). With hardly any extra work, one is able to perform a number of Jacobi

sum tests at the same time, thereby saving much time. Two (or more) Jacobi sum tests

can be done together in an extension of degree which is the least common multiple of the
original degrees. If the degree for one test divides that for another test, both can be done
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in the extension of the largest degree, in about the same time as performing the Jacobi sum
test in the largest extension. Thus one can perform the Jacobi sum tests in extensions of

degrees dividing u together in (almost) the same time as that for the single test in degree

u itself. Performing tests together can however only be done if the orders of the characters
involved are relatively prime, i.e., the primes p of the triples representing these tests should

be relatively prime. These observations suggests a greedy strategy: find the largest degree,

and next find all degrees dividing this degree (and relatively prime orders), and perform the
tests together. As shown in III.3 this will give (under reasonable assumptions, cf. III.(2.17)

and III.(3.1)) an optimal solution.

(a) For all p ∈ P̄ and all h ∈ H̄p, let dp,h = #{q : q ∈ Q̄, (q, p, h) ∈ T̃ }. Put ST̃ equal

to the empty set, and c4(T̃ ) = 0. Put b = 0. Perform steps (a1) and (a2) as long

as dp,h 6= 0 for some p ∈ P̄ and some h ∈ H̄p.

Each Jacobi sum test is represented by a triple (q, p, h), and consists of an exponentiation

in an extension of degree up,1 · ph, where the exponent is roughly of the same magnitude
as n (and with up,1 as in (3.4)(b)). Two such tests will be combined only if the degree in

which one extension has to be performed divides the degree of the other extension. The

value dp,h gives the number of Jacobi sum tests left for a character of order pk (for some
k) to be done in an extension of degree up,1 · ph.

(a1) Let ū = max{up,1 · ph : dp,h 6= 0, p ∈ P̄ , h ∈ H̄p}. Find p̄ and h̄ such that

ū = up̄,1 · p̄h̄. If more than one choice is possible, any choice with up̄,1 · p̄h̄ = ū

will do; to increase the speed of this step one can take a choice with dp,h maximal.

Put d̄ = dp̄,h̄. Let Q̄′ = {q : (q, p̄, h̄) ∈ T̃ }, and order the elements qi ∈ Q̄′ such

that {qi}d̄
i=1 is increasing. Put Sb+i = {(qi, p̄, h̄) : (qi, p̄, h̄) ∈ T̃ , (qi, p̄, h̄) 6∈ Sf ,

0 ≤ f < b + i}, for 1 ≤ i ≤ d̄. For all p ∈ P̄ for which p 6= p̄, first put j = 0 and

next perform step (a1a).

In this step one finds all triples (q, p̄, h̄) such that the degree up̄,1 · p̄h̄ in which the Jacobi
sum test has to be performed is maximal. All of these d̄ tests have to be put in different

combinations Sb+i because the p’s are the same.

(a1a) Find h̃ ∈ H̄p such that h̃ = max{h : dp,h 6= 0 and up,1 · ph | ū}. If such a h̃ can

be found let d = min{dp,h̃, d̄ − j} and let Q̄′ = {q : (q, p, h̃) ∈ T̃ }, and order the

elements qi ∈ Q̄′ such that {qi}d
i=1 is increasing. For 1 ≤ i ≤ d, replace Sb+j+i by

Sb+j+i ∪ {(qi, p, h̃) : (qi, p, h̃) ∈ T̃ }, replace dp,h̃ by dp,h̃ − d and j by j + d. Repeat

this step if j < d̄ and {(q, p, h) : (q, p, h) ∈ T̃ , dp,h 6= 0, h < h̃ and up,1 · ph | ū} is

not empty.

In this step as many tests as possible with degrees dividing up̄,1 · p̄h̄ are added to the

combinations Sb+i created in step (a1).

(a2) Replace ST̃ by ST̃ ∪ {Sb+i} for 1 ≤ i ≤ d̄, and increase c4(T̃ ) by d̄ · ū2. Replace b

by b+ d̄ and replace d̄ by zero.

At this point, no triple (q, p, h) with degree dividing up̄,1 · p̄h̄ can be found. Therefore the
combinations Sb+i are added to ST̃ . The time needed to perform a combination of tests is
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dominated by the time to do the exponentiation, which takes place in an extension of the
maximal degree (up,1ph), and takes about (up,1 · ph)2 · (log2 n)3 operations.

(4.6) Trial division for Lucas-Lehmer step.

The positive integers W# and B# must have been specified.

Set a new trial division bound B1 = min(B0,
√
n,B#) (cf. (2.1)). First perform steps

(a) through (d), and next put B2 = B1.

In this step an attempt is made to increase the value of v (cf. (3.2) and (3.5)) by finding

factors of nω − 1 for small ω up to the bound B1. The choice made in step (2.1) implies
an upper bound for B1. So far all prime factors up to B2 of nω − 1 have been found

for ω ≤ W#; initially we have B2 = 1. By vω is denoted the product of the prime
power factors of nω − 1, not dividing nω′ − 1 for any ω′ | ω with ω′ < ω. Furthermore,

o∗p,k = op(nord(n mod pk) − 1) (cf. (3.4) and (3.5)).

(a) For all ω ≤W# and for i = 0, 1, . . . , ω − 1 put rω,i equal to n− 1.

In this step one writes nω − 1 in base n, i.e., nω − 1 =
∑ω−1

i=0 rω,i · ni.

(b) Perform step (b1) for all ω ≤W#.

(b1) If ω ∈ Ω then divide
∑ω−1

i=0 rω,i · ni, which is initially nω − 1, by vω. This can

be done as follows. Put c = 0, and for i = ω − 1, . . . , 0 in succession put c′ =

(c · n + rω,i) mod vω, put rω,i = b(c · n + rω,i)/vωc, and replace c by c′. If ω 6∈ Ω

then put Fω equal to the empty set.

If ω ∈ Ω, then factors of nω − 1 have already been found. The product of all the factors of
nω − 1, which is vω, will be divided out of

∑ω−1
i=0 rω,i · ni This is done in this step, and is

basically the same as step (3.4)(b). For further comments, we refer to this step.

(c) If 2 ≤ B2 continue with step (d). Otherwise, if B2 < 2 ≤ B1, let o2(n− 1) = a, let

o2(n+ 1) = b, and do the following. If 2a 6 |v1 then replace v by v · 2a, v1 by v1 · 2a,

and put o∗2,1 = a. If 2b 6 |v2 then replace v by v ·2b, v2 by v2 ·2b, and put o∗2,2 = a+ b.

Perform step (c1) for all ω = 2k ≤W#, with k ≥ 2.

(c1) If ω 6∈ Ω then replace Ω by Ω ∪ {ω}. If 2a+b+k−1 6 |vω then divide
∑ω−1

i=0 rω,i · ni by

2a+b+k−1 using the same method as in (b1), replace Fω by Fω∪{2}, w by lcm(w, ω),

v by v · 2, and vω by vω · 2, and put o∗2,o2(ω) = a+ b+ k − 1.

(d) Perform step (d1) for all primes p with B2 < p ≤ B1 (where the primes p are

generated using the file created in (2.1)), but only as long as v ≤ √
n.

In this step it is checked if nω − 1 is divisible by p, for some ω ≤ W #. If such an ω can be

found, then
∑ω−1

i=0 rω,i · ni is actually divided by p to find the multiplicity of p in nω − 1.

(d1) Let np = n mod p. Calculate nω
p mod p for ω = 1, 2, . . . in succession until nω

p ≡
1 mod p or ω = W#. If nω

p ≡ 1 mod p for some ω ≤W#, then perform steps (d1a)

through (d1d).
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If nω
p ≡ 1 mod p, then p is a divisor of nω − 1 and op(nω − 1) should be calculated.

(d1a) Put e = 0, m = 0, and perform (d1a1) until m 6= 0.

(d1a1)Put e = e + 1 and let c = 0. For i = ω − 1, ω − 2, . . . , 0 in succession, first

put c′ = (c · n + rω,i) mod p and rω,i = b(c · n + rω,i)/pc, and next replace m by

(m · np + rω,i) mod p and c by c′.
In this step nω − 1 is divided op(nω − 1) times by p. This is done differently from other
multi-divisions (such as in (3.4)(b)), since one not only keeps track of a carry c, but also of

a variable m, which has the value (nω −1)/pe+1 mod p. So m is used to check whether e =

op(nω −1). After every call to step (d1a) the rω,i satisfy
∑ω−1

i=0 rω,i ·ni = (nω −1)/(vω ·pe)
and m is equal to nω − 1 mod pe+1.

(d1b) If ω 6∈ Ω then replace Ω by Ω ∪ {ω} and w by lcm(w, ω). If p6 |vω then replace vω

by vω · pe and v by v · pe, and put o∗p,e = e.

(d1c) For all ω′ = ω · pk ≤ W#, k ≥ 1, do the following. If ω′ 6∈ Ω then replace Ω

by Ω ∪ {ω′} and w by lcm(w, ω′). If p6 |vω′ then replace vω′ by vω′ · p and put

o∗p,e+k = e+ k.

(d1d) For all ω′ ≤ W#, with ω · pk | ω′ and k ≥ 1, divide
∑ω′−1

i=0 rω′,i · ni by pe+k using

the same method as in (b1).
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5. LUCAS-LEHMER AND JACOBI SUM TESTS.

In this section the actual Lucas-Lehmer tests and Jacobi sum tests are described.

(5.1) Generation of additional Galois extensions.

Perform steps (a) and (b) for every prime power u = le ∈ L−.

As explained in step (2.3), one will have to compute in certain extension rings of Z/nZ,

which can be constructed from rings of integers of cyclic subfields of cyclotomic extensions.
For all prime power degrees le dividing λ(t0), a list of extensions is precalculated in step

(2.3). As explained in Section 4, an extension can only be used, if the conductor m of the

corresponding field extension satisfies the correct condition (cf. (4.2) and II.(4.6)). It may
be that none of the extensions on the list for le satisfies this condition.

Secondly, for ω with le | ω and le 6 |λ(t0), it may be decided during the optimization
step in Section 4, that using a factor of nω − 1 (and therefore using an extension of degree

ω), would reduce the running time of the algorithm.

In both cases, the degree le was added to the set L− during the optimization step. In
this step one generates an additional Galois extension for every prime power le ∈ L−. This

step is basically the performance of step (2.3)(b) for all prime powers le in L−. Explanation

can be found there. Here we will only comment on the differences.

(a) Find the smallest m ∈ M+(u) such that m | s (cf. (4.2)); if none such m exists take

the smallest m ∈ M+(u).

(b) If u = 2 and m ∈ {4, 8} perform steps (b1), (b2), (b3), and (b10). If u = 2 and

u | m − 1, perform steps (b1), (b2), (b4), (b5) and (b10). If u = 2e with e > 1, or

u = le with l odd and e ≥ 1 perform steps (b1), and (b5) through (b10).

(b1) Put r = 1 if m is prime, and put r = 0 if m is not prime.

(b2) Put D = 1. If m is prime put

S =

(

−1 1
−1 0

)

and S∗ =

(

0 −1
1 −1

)

.

If m ∈ {4, 8} put S and S∗ both equal to the 2 × 2 unit matrix.

(b3) If m = 4 put g = 3 and f = X2 + 1; if m = 8 put g = 5 and f = X2 − 2.

(b4) Put f = X2 +X + (4 · bm+1
4 c −m) · bm+1

4 c.
(b5) If m is odd, find a primitive root g modulo m, for instance by trying all g ≥ 2 with

gcd(m, g) = 1 in succession. If m = 2e+2, put g = 5.

(b6) Let bi,j = 0 for 0 ≤ i < u and 0 ≤ j < m. Put j = 1. If m is odd, for

i = 0, 1, . . . , φ(m) − 1 in succession replace bi mod u,j by 1 and j by j · g mod m.

If m = 2e+2, for i = 0, 1, . . . , 2e − 1 in succession replace bi mod u,j and bi mod u,m−j

by 1 and j by j · g mod m. Define η =
∑m−1

j=0 b0,j · ζj
m and, for i = 0, 1, . . . , u− 1,

its conjugates σi
g(η) =

∑m−1
j=0 bi,j · ζj

m. The σi
g(η) will be represented by the vectors

(bi,j)
m−1
j=0 .
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(b7) Determine the polynomial f =
∏u−1

i=0 (X − σi
g(η)) ∈ Z[X] by calculating suffi-

ciently close approximations ci ∈ C to
∑m−1

j=1 bi,j · ζj
m for 0 ≤ i < u, with ζm =

e2π
√
−1/m,and by rounding the coefficients of the polynomial

∏u−1
i=0 (X − ci) to the

nearest integers.

(b8) If m is prime, define ςg,k,u for 0 ≤ k < u by

ςg,k,u = σk
g (ηu) = σk

g (η).

If m is not prime, define ςg,k,u for 0 ≤ k < u by ςg,0,u = 1, and

ςg,k,u = σ(k−li−1)
g (ηli),

with i such that 1 ≤ i ≤ e and li−1 ≤ k < li. Compute a u× u dimensional integer

matrix S by performing steps (b8a) through (b8c).

(b8a) Determine di,j such that ηi =
∑m−1

j=0 di,j · ζj
m for i = 2, 3, . . . , u− 1, by computing

the consecutive powers of the polynomial
∑m−1

j=0 bi,j · T j modulo the polynomial

Tm − 1.

(b8b) Perform step (b8b1) if m is prime and perform step (b8b2) for k = 1, . . . , e in

succession if m is not a prime.

(b8b1)First put h = 1 and for j = 0, 1, . . . , u − 1 in succession first put sj,i = di,h − di,0

for 0 ≤ i < u and next replace h by h · g mod m.

(b8b2)Put h = 1 and for j = lk−1, . . . , lk − 1 in succession first put h′ = (hm/lk) mod m,

next put sj,i = di,h′ for 0 ≤ i < u and finally replace h by h · g mod m. For

j = lk, . . . , lk + lk−1 − 1 in succession first put h′ = (hm/lk) mod m, next put

s(j−zlk−1),i = s(j−zlk−1),i−di,h′ for z = 1, . . . , l−1 and 0 ≤ i < u and finally replace

h by h · g mod m.

(b8c) Put s0,i = di,0 for 0 ≤ i < u. Let S be the matrix having the (sj,i)
u−1
j=0 as columns,

for 0 ≤ i < u.

(b9) Compute the u×u dimensional integer matrix S∗ and D ∈ Z>0 such that D−1 ·S∗ =

S−1 and D is minimal. This can efficiently be done using a variant of the Gaussian

elimination method. See V.6 for more details.

Since n is known, one can perform these operations in Z/nZ, thereby reducing the length

of the integers involved.

(b10) Tabulate u, mu = m, ru,m = r, gu,m = g, fu,m = f , Su,m = S, S∗
u,m = S∗, and

Du,m = D.
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(5.2) Selection of cyclic rings and creation of transition matrices.

Let t and v be as determined in step (4.1), and let lcm{up,k̂ : p prime, pk̂ ‖ lcm(t, v)} =
∏

l prime l
êl . Perform steps (a) and (b) for all prime powers û = lêl .

In steps (1.3) and (5.1) cyclic extensions Z[ηû]/nZ[ηû] of degree û over Z/nZ were found;
here η = ηû is a zero of fû,m and equals

∑

ζj
m where j ranges over the powers of gû modulo

m, where g is a primitive root modulo m. The matrix Sû,m converts an element expressed

on the basis (η0, η1, . . . , ηû−1) to its representation on the basis (ςg,0,û, ςg,1,û, . . . , ςg,û−1,û).
If ml is prime then ςg,k,û is defined by

ςg,k,û = σk
g (ηû) = σk

g (η),

for 0 ≤ k < û. If ml is not prime then ςg,kû is defined by ςg,0,û = 1 and

ςg,k,û = σ
(k−li−1)
g (ηli )

for li−1 ≤ k < li and i = 1, . . . , êl. Here the map σg acts via σg(ζm) = ζg
m. In-

stead of the automorphism σg , one needs σn in steps (5.3) and (5.4), where σn acts via
σn(ζm) = ζn

m. Therefore, if n 6≡ g mod û, the matrix Sû,m and its inverse are trans-

formed in such a way that they perform the transformations with respect to the basis

(ςn,0,û, ςn,1,û, . . . , ςn,û−1,û). Finally a matrix S#
û,m is calculated, such that for any ele-

ment x ∈ Z[η]/nZ[η] which is represented as a û-dimensional column vector over Z/nZ,

the element σn(x) equals S#
û,m · x.

(a) Retrieve the smallest mû ∈ M+(û) with mû | s from the list made in (4.2). If no

such mû exists, take the smallest mû from the list. Put ml = mû.

The set M+(û) as constructed in step (4.2) contains those conductors m that satisfy the

correct condition (cf. (4.2) and II.(4.8)). In step (4.1) and step (5.1) the sets M+(û)

are constructed in such a way that they will not be empty. By choosing m one fixes the
extension of degree le which will be used in steps (5.3) and (5.4).

(b) Put m = ml and replace G by (G ·m) mod n. If G = 0 then n is composite and

the primality test terminates. For 1 ≤ e ≤ êl put u = le and perform steps (b1)

through (b4).

If a cyclic extensions of degree le, 1 ≤ e < êl is needed, the le-th degree subextension of
the extension of degree lêl is used for this; here lêl is the largest l-th power degree that will

be used. This means in particular that the same conductor m is taken for all extensions of

degree le with 1 ≤ e ≤ êl. By construction the extension of degree u1 is now contained in
the extension of degree u2 whenever u1 | u2. Furthermore it has to be checked that n and

m are relatively prime.

(b1) Retrieve ru,m, gu,m, fu,m, Su,m, S∗
u,m, and Du,m from the table made in (1.3) and

(5.1).

(b2) Replace S∗
u,m by D−1 ·S∗

u,m mod n; if D−1 mod n does not exist, then n is composite

and the primality test is terminated.

After reducing the matrix S∗ modulo n and multiplying it by D−1 mod n, the matrix S∗

converts an element expressed in terms of (ςg,0,u, ςg,1,u . . . , ςg,u−1,u), to its representation
in terms of ηj with 0 ≤ j < u.
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(b3) Find i∗ ∈ {1, . . . ,m − 2} such that gi∗
u,m ≡ n mod m by trying i∗ = 1, 2, . . . in

succession. Perform steps (b3a) and (b3b) if i∗ 6= 1.

If i∗ 6= 1, the matrices Su,m and S∗
u,m as calculated in steps (1.3) or (5.1) are different from

the matrices needed in the algorithm. In this case the rows of Su,m and the columns of
S∗

u,m have to be changed. This is much faster then recalculating them by using for instance

step (5.1).

(b3a) Introduce a matrix S ′
u,m = (s′i,j)

u−1
i,j=0 ∈ Zu×u and initially put s′i,j = 0 for 0 ≤ i < u

and 0 ≤ j < u. Perform step (b3a1) if ml is prime and for k = 1, . . . , e perform

step (b3a2) if ml is not a prime. Finally replace Su,m by S′
u,m.

(b3a1)Put the matrix S ′
u,m equal to the whose j-th row equals the (i∗ · j mod u)-th row

of Su,m, for 0 ≤ j < u.

The matrix Su,m, as constructed in step (1.3) or (5.1) converts an element expressed in

terms of ηj , 0 ≤ j < u, to its representation in terms of (ςg,0,u, ςg,1,u, . . . , ςg,u−1,u) =

(σ0
g(η), σ1

g(η), . . . , σu−1
g (η)), where the map σg acts via σg(ζm) = ζ

g
m. The map σn, which

will be used in the sequel, acts via σn(ζm) = ζn
m = σi∗

g (ζm). This implies that if the matrix

Su,m is to convert an element expressed in terms of ηj , 0 ≤ j < u, to its representation

in terms of (ςn,0,u, ςn,1,u, . . . , ςn,u−1,u) = (σ0
n(η), σ1

n(η), . . . , σu−1
n (η)), which is in fact

(σ0·i∗
g (η), σ1·i∗

g (η), . . . , σ
(u−1)·i∗
g (η)), one has to replace the matrix Sg = Su,m by a matrix

Sn. This is done by permuting the 0-th through the (u − 1)-nd row of Sg.

(b3a2)For j = lk−1, . . . , lk − 1 first put j′ = (i∗ · (j − lk−1) mod lk) + lk−1 and next if

j′ < lk put the j-th row of S′
u,m equal to the j′-th row of Su,m; if j′ ≥ lk then put

the j-th row of S′
u,m equal to −1 times the sum of the (j ′− z · lk−1)-th rows of Su,m

with z = 1, . . . , l− 1.

The matrix Su,m converts an element expressed in terms of ηj , 0 ≤ j < u, to its representa-

tion in terms of (ςg,0,u, ςg,1,u, . . . , ςg,u−1,u). By changing from g to n mod ml the elements

ςg,li−1,u, . . . , ςg,li−1,u are permuted such that ςn,j,u = ςg,j′,u, where j′ is defined above,

for j = lk−1, . . . , lk − 1 and k = 1, . . . , e. During the permutation elements ςg,j′,u with

j′ ≥ lk may be introduced in the basis. These can be represented by −
∑l−1

z=1 ςg,j′−z·lk−1,u.

(b3b) Similarly as in step (b3a), the matrix S∗
u,m will be replaced by a permuted version.

Introduce a matrix S′
u,m = (s′i,j)

u−1
i,j=0 ∈ Zu×u and initially put s′i,j = 0 for 0 ≤ i < u

and 0 ≤ j < u. Perform step (b3b1) if ml is prime and for k = 1, . . . , e perform

step (b3b2) if ml is not a prime. Finally replace S∗
u,m by S′

u,m.

The matrix S∗
u,m, as constructed in step (5.2)(b2) converts an element expressed in terms

of (ςg,0,u, ςg,1,u, . . . , ςg,u−1,u), to its representation in terms of ηj , 0 ≤ j < u, where the

map σg (used in the definition of ςg,k,u) acts via σg(ζm) = ζg
m. Since the matrix S∗

u,m is to
convert an element expressed in terms of (ςn,0,u, ςn,1,u, . . . , ςn,u−1,u), to its representation

in terms of ηj , 0 ≤ j < u, one has to replace the matrix S∗
g = S∗

u,m by a matrix S∗
n. This is

done in the same way as in step (b3a) by replacing the row operations by the corresponding

column operations.

(b3b1)Put the matrix S′
u,m equal to the whose j-th row equals the (i∗ · j mod u)-th row

of Su,m, for 0 ≤ j < u.
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(b3b2)For j = lk−1, . . . , lk − 1 first put j′ = (i∗ · (j − lk−1) mod lk) + lk−1 and next if

j′ < lk put the j-th column of S′
u,m equal to the j′-th column of Su,m; if j′ ≥ lk

then put the j-th column of S′
u,m equal to −1 times the sum of the (j ′− z · lk−1)-th

columns of Su,m with z = 1, . . . , l − 1.

(b4) Let Su,m = (si,j)
u−1
i,j=0 and S∗

u,m = (s∗i,j)
u−1
i,j=0. Perform step (b4a) if ml is prime and

for k = 1, . . . , e perform step (b4b) if ml is not prime. Finally put S#
u,m = (s#i,j)

u−1
i,j=0.

(b4a) Put s#i,j =
∑u−1

k=0 s
∗
i,k · s(k−1) mod u,j for 0 ≤ i, j < u.

For any element x ∈ Z[ηu]/nZ[ηu], which is represented as a u-dimensional column vector

over Z/nZ, the element σn(x) will equal S#
u,m · x. In order to apply σn to an element in

Z[ηu]/nZ[ηu] in an easy way, the element will be transformed to its representation with

respect to (ςn,0,u, ςn,1,u, . . . , ςn,u−1,u); in this representation the mapping σn is simply

a shift of the coordinates. By transforming the result back to the representation with
respect to ηj , 0 ≤ j < u, one gets the final result. Instead of applying Su,m, performing

a shift and applying S∗
u,m, one computes the complete transformation in advance, by

multiplying Su,m by a ‘shifted’ version of S∗
u,m to get S#

u,m. This is done as follows. By

multiplying the element x =
∑u−1

j=0 xjηj by S, one gets its representation (y0, y1, . . . , yu−1)

with respect to the basis (ςn,0,u, ςn,1,u, . . . , ςn,u−1,u) = (σ0
n(η), σ1

n(η), . . . , σu−1
n (η)). So

yi =
∑u−1

j=0 si,j · xj . Next σn is applied, giving a representation with respect to the

basis (σ1
n(η), σ2

n(η), . . . , σu−1
n (η), σ0

n(η)) = (ςn,1,u, ςn,2,u, . . . , ςn,u−1,u, ςn,0,u). So σn(x) =
yu−1 · ςn,0,u +

∑u−2
j=0 yj · ςn,j+1,u. Expressing this in terms of (ςn,0,u, ςn,1,u, . . . , ςn,u−1,u),

one gets σn(x) = yu−1 · ςn,0,u +
∑u−1

j=2 yj−1 · ςn,j,u. To represent this element on the basis

ηj with 0 ≤ j < u, one has to multiply it by S∗, giving (σn(x))i =
∑u−1

j=0 s∗i,j ·y(j−1) mod u.

Substituting yi =
∑u−1

j=0 si,j · xj , gives the result above.

(b4b) Put s#i,j =
∑e

k=1

∑lk−1
z=lk−1+1 s

∗
i,z · s(z−1),j −∑e

k=1

∑l−1
z=0 s

∗
i,lk−1 · s(lk−zlk−1−1),j for

0 ≤ i, j < u.

In this step essentially the same operations are performed as in step (b4a). The only difficult

part is the representation of basis elements that are introduced in the basis. Basically, the

rules described in step (b3b) are used to solve these problems.

(5.3) Calculation of cyclotomic extensions.

Let t and v be as determined in step (4.1) and introduce for all primes p | lcm(t, v) a

boolean variable fp and put fp initially equal to false. Furthermore, let k̂p be such that

pk̂p ‖ lcm(t, v) for all primes p | lcm(t, v). Perform steps (a) through (e) as long as there

exists at least one p | lcm(t, v) with fp equal to false.

In this step one generates for each prime-divisor p of lcm(t, v) a pk(p)-th root of unity in

an extension of degree u, where k(p) = max(1, op(t)) and u = ord(n mod pk̂p). This is

done by trying the (nu − 1)/pk(p)-th power of random elements. Every random choice has
a probability p−1

p
of success if n is prime. Instead of generating a root of unity for each

prime p | lcm(t, v) separately, one can try to generate roots of unity for a number of primes

simultaneously. Let û be such that û = max{up,k̂p
: p | lcm(t, v)} and let p̂ be such that

up̂,k̂p̂
= ord(n mod p̂k̂p̂) = û. While generating a p̂k(p̂)-th root of unity, it is conceivable
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that one generates pk(p)-th roots of unity with u
p,k̂p

| û at the same time. First take the

product r of all prime powers pk(p) | lcm(t, v) for which u
p,k̂p

| û. Next take a random

element to the power (nû − 1)/r, and for each p raise the result to the power r/pk(p). This
will be a pk(p)-th root of unity if its pk(p)−1-th power is not equal to 1. For each such p

one has a probability p−1
p

of success to find a pk(p)-th root of unity independent of finding

any other root of unity. In fact, as explained in II.(4.15), finding a p-th root of unity in an

extension of degree ord(n mod pk̂p) in this way is sufficient for the proof that a pk̂p -th root

of unity exists in this extension; the reason for actually constructing the pk(p)-th root of
unity for primes p dividing t is that these are needed in step (5.4). For primes p dividing v

(and not t), one only constructs a p-th root unity in the extension of degree u
p,k̂p

to prove

the existence of a pk̂p -th root of unity. The variable fp indicates whether a pk(p)-th root
of unity has been found.

(a) Put û = max{up,k̂p
: p | lcm(t, v), fp = false}. Find p̂ | lcm(t, v) with fp̂ =false and

up̂,k̂p̂
= û. Put r = p̂ if p̂6 |t and put r = p̂op̂(t) if p̂ | t.
For primes p not dividing t, only a p-th root of unity is constructed, which is by construction

sufficient for the proof of the existence of a pk̂p -th root of unity.

(b) For all p 6= p̂ with p | lcm(t, v), fp =false, and up,k̂p
| û, replace r by r · p if p6 |t, and

replace r by r · pop(t) if p | t.
The variable r will be equal to the product of all primes p with ord(n mod pk̂p) | û. Finding

pk(p)-th roots of unity, with k(p) = max(1, op(t)), will be attempted simultaneously for all
these primes.

(c) Put a = b(n− 1)/rc and let c = 0. For i = û− 1, û− 2, . . . , 0 in succession perform

step (c1).

In this step nû − 1 is divided by r. This was done by writing nû − 1 in base n, i.e.,
nû − 1 =

∑û−1
i=0 bi · ni and next sequentially dividing all coefficient bi by r and keeping

track of a carry c. The bi now satisfy
∑û−1

i=0 bi ·ni = (nû −1)/r. In order to raise a random

element to the power (nû − 1)/r, the base-n representation of this exponent is used, since

one can replace the single large exponentiation by a few smaller exponentiations with
exponents bi and a few applications of σn (which can be done by applying the matrices

S#, computed in step (5.2)).

(c1) First put bi = b(c ·n+n−1)/rc, and next replace c by (c ·n+n−1) mod r. Finally

put b1,i = bbi/rc and b2,i = bi mod r.

In this step each element bi of the base-n representation of nû −1 is written as b1,i ·a+b2,1,

where a = b(n − 1)/rc. In this way one can replace each exponentiation with exponent bi

by two exponentiations with relatively small exponents b1,i and b2,i and by one common

exponentiation with exponent a. For more information on this, see V.(4.3).

(d) For all prime powers ū = lē ‖ û let ηū be a zero of fū,ml
, with ml as in (5.2)(a) and

fū,ml
retrieved from the tables as in (5.2)(b1). Perform steps (d1) through (d4).

In this step a random element α will be taken to the power (nû − 1)/r. Furthermore it will

be checked that αn = σn(α) which should be the case if n is prime (see II.(2.3)).

(d1) Let α be a non-zero random multivariate polynomial in all the ηū’s over Z/nZ.
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Although any non-zero choice is allowed in this step, one can take α =
∑

ū ηū as a possible
first choice.

(d2) Put β = α and perform step (d2a) for all prime powers ū = lē ‖ û.
If n is prime, the mapping σn is equal to n-th powering (cf. II.(2.3)). In this step one

calculates σn(α), where α is the random element chosen in step (d1).

(d2a) Write β as a ū-dimensional column vector, i.e., write β as a polynomial in ηū.

Replace β by S#
ū,ml

· β (cf. (5.2)(b4)).

For any element x ∈ Z[η]/nZ[η], which is written as a ū-dimensional column vector over

Z/nZ, the element σn(x) equals S#
ū,ml

· x. In this step one calculates σn(α), where α is

the random element chosen in step (d1).

(d3) Check that αn = β. If equality does not hold, then n is composite and the primality

test is terminated.

If σn does not give the same result as n-th powering, the number n cannot be prime.

(d4) Put β = αa, i = û− 1 and γ = αbi . For i = û− 2, û− 3, . . . , 0 in succession replace

γ by σn(γ) · βb1,iαb2,i , where σn(γ) is computed using the matrices S#.

In this step one calculates γ = α(nû−1)/r =
∏û−1

i=0 αni·bi =
∏û−1

i=0 αni·(b1,i·a+b2,i) by
means of a Horner-scheme. Instead of raising an element to the power n, one uses the

image under σn which is now known to give the same result for powers of α, at least.

It is possible to combine the exponentiations in this step with the exponentiation in
step (d3), to speed up this step of the algorithm. Basically the exponentiations are done

in the way as described in [29, Remark (3.6)].

(e) For all primes p | r perform steps (e1) and (e2).

In this step, the individual pk(p)-th roots are extracted from the result of the huge expo-
nentiation in step (d), where k(p) = max(1, op(t)). In fact the result γ of step (d) is taken

to the power r/p. If the result of the exponentiation is unequal to 1, then this attempt to

find a pk(p)-th root of unity has been successful. Otherwise another attempt to find a root
of unity should be made.

(e1) If p6 |t perform step (e1a) and if p | t perform steps (e1b) and (e1c).

(e1a) Put γp,1 = γr/p.

(e1b) First put k(p) = max(1, op(t)), put γ∗ = γr/pk(p)

. Next put γp,k = γ∗. For all prime

powers ū = lē ‖ û perform step (e1b1) if ū does not divide up,k(p).

The element γ∗ is constructed as an element in an extension of degree û over Z/nZ. It can
however also be represented as an element in an extension of degree up,k(p) over Z/nZ.

For each prime l | û with ol(up,k(p)) < ol(û), let u = le ‖ up,k(p). The element γ∗ is
written as a ū-dimensional column vector, i.e., as a polynomial in ηū. By applying Sū,ml

to this vector, one writes γ∗ as a combination of (ςn,0,ū), ςn,1,ū), . . . , ςn,u−1,ū)). Since γ∗

is known to live in a subextension, this representation has a repetitive character if ml (cf.
(2.3)) is prime. If ml is not prime, then only the first u coordinates of this representation

are non-zero. By taking only the first u coefficients and applying S∗
u,ml

to these, one gets

the representation of γ∗ as a polynomial in ηu, both in the case that ml is prime and in
the case that ml is not prime.

177



IV. Algorithm 5. Lucas-Lehmer and Jacobi sum tests

(e1b1) Let e be such that le ‖ up,k(p), and let u = le. Represent γ∗ as a ū-dimensional

column vector, i.e., write γ∗ as a polynomial in ηū. Apply S∗
u,ml

to the vector

consisting of the first u coordinates of the vector Sū,ml
· γ∗, and replace γ∗ by the

result (cf. (5.2)(b3a) and (5.2)(b3b)). Put γp,k(p) = γ∗.

(e1c) For i = k(p) − 1, k(p) − 2, . . . , 1 in succession first compute γp,i = γp
p,i+1 and next

perform step (e1c1) for those prime powers ū = lē ‖ up,i+1 such that ū does not

divide up,i.

The elements γp,j , for j = 1, 2, . . . , k(p), will be the pj-th roots of unity if n is prime, which

will be used in step (5.4).

(e1c1) Let e be such that le ‖ up,i, and let u = le. Represent γ∗ as a ū-dimensional column

vector, i.e., write γ∗ as a polynomial in ηū. Apply S∗
u,ml

to the vector consisting

of the first u coordinates of the vector Sū,ml
· γ∗, and replace γ∗ by the result (cf.

(5.2)(b3a) and (5.2)(b3b)). Put γp,i = γ∗.

This step will only be performed for those prime powers ū which are not divisors of up,i;
in particular if up,i+1 = up,i this step is skipped. This is in fact the same transformation

as performed in step (e1b). Explanation can be found there.

(e2) Put δ = γp,1 − 1. If δ 6= 0, select any non-zero coefficients a of α and d of δ, and

replace G by (G · a · d) mod n. If G = 0 a factor of n can easily be derived and the

primality test is terminated. Otherwise, if G 6= 0, put fp =true.

If δ is not equal to zero, the γp,k are really pk-th roots of unity.

(5.4) Jacobi sum tests.

Let ST be as constructed in step (4.1). Perform steps (a) through (d) for all S ∈ ST .

Each set S ∈ ST contains a set of triples (q, p, h) for which a combined Jacobi sum test
will be performed. Each triple (q, p, h) represents a Jacobi sum test for a character χ of

order pk, where k = op(q − 1), and conductor q in an extension of degree up,1 · ph. The

sets S ∈ ST have been determined in step (4.1).
In this step one proves that

∏

(q,p,h)∈S
τ(χp,q)n/τ(χn

p,q)

is a power of an r-th root of unity, where r is defined by

r =
∏

(q,p,h)∈S
pop(q−1)

and χp,q is a character of order pk and of conductor q. This is done by expressing

τ(χp,q)n−σn in terms of Jacobi sums, for all (q, p, h) ∈ S and showing that the prod-

uct of all τ(χp,q)n−σn is equal to a power of an r-th root of unity. The Jacobi sums, and
their exponents have been calculated in advance in step (1.4).
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(a) Let u∗ = lcm{up,1 · ph : (q, p, h) ∈ S} =
∏

l prime l
ẽl . For all prime powers u = le,

with 1 ≤ e ≤ ẽl, let ηu denote a zero of fu,ml
; here ml is as in step (5.2)(a), and

fu,ml
is as in (5.2)(b1).

By construction, u∗ will be one of the up,1 · ph for some (q, p, h) ∈ S.

(b) Let r =
∏

(q,p,h)∈S p
op(q−1). Let c = bn/rc and nr = n − r · c. Set α, β, and γ

equal to 1; these should be regarded as multivariate polynomials in all the ηũ’s over

Z/nZ, for ũ = lẽl ‖ u∗.
For each element (q, p, h) ∈ S a Jacobi test for a character χ of order pk and conductor
q in an extension of degree up,1 · ph should be performed. These tests involve a large

exponentiation in an extension of degree up,1 ·ph. Since for all elements (p, q, h) ∈ S about

the same exponentiation has to be carried out, the common part of the exponentiations is
done simultaneously, to save time. The exponent of this common part is equal to c.

(c) Perform steps (c1) through (c5) for all triples (q, p, k) such that (q, p, h) ∈ S and

k = op(q − 1).

In this step the elements needed for the final huge exponentiation are calculated. These
elements are

α =
∏

p|r
τ(χp,q)nr−σnp ,

and

β =
∏

p|r
τ(χp,q)

r,

respectively, where np ≡ nr mod pk and 0 ≤ np < pk.

(c1) Let np ≡ nr mod pk and 0 ≤ np < pk. For every J ∈ Jpk retrieve eπ,pk,np
and

eπ,pk,pk , which were tabulated in step (2.4)(f).

For those J ∈ Jpk for which eπ,pk,np
6= 0 or eπ,pk,pk 6= 0 retrieve J ∈ Z[ζpk ] from

the direct access file created in (2.4) and transform these J to Z[ζpk ]/nZ[ζpk ] by

taking their coefficients modulo n.

Compute

J∗ =
∏

J∈J
pk

e
π,pk,np

6=0

J
e

π,pk,np ∈ Z[ζpk ]/nZ[ζpk ]

and

J# = χ(−1) · q ·
∏

J∈J
pk

e
π,pk,pk 6=0

Je
π,pk,pk ∈ Z[ζpk ]/nZ[ζpk ],

where χ(−1) = −1 if q ≡ 3 mod 4 and p even, and χ(−1) = 1 if q ≡ 1 mod 4 or p

odd.
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In this step the elements J∗ = τ(χ)np−σnp and J# = τ(χ)pk
are calculated as elements of

Z[ζpk ]/nZ[ζpk ].

(c2) Let J∗ = (a∗i )0≤i<φ(pk) and J# = (a#
i )0≤i<φ(pk). Put γ∗ = γp,k, where γp,k is as in

(5.3)(e1).

The γp,k are pk-th roots of unity, calculated in step (5.3)(e1).

Put i = φ(pk)−1, and put Jα = a∗i and Jβ = a#
i . For i = φ(pk)−2, φ(pk)−3, . . . , 0

in succession, replace Jα by Jα · γ∗ + a∗i and Jβ by Jβ · γ∗ + a#
i .

The elements J# and J∗ have to be transformed to elements in an extension of degree

up,k of Z/nZ. This is done by performing a Horner-scheme, substituting γ∗ for ζpk . The

resulting expressions, Jα and Jβ are elements in an extension of degree up,k of Z/nZ, where

Jα equals τ(χ)np−σnp and Jβ equals τ(χ)pk
.

(c3) Put α∗ = Jα · (Jβ)bnr/pkc, and β∗ = (Jβ)r/pk

.

The element α∗ equals τ(χ)np−σnp+nr−np = τ(χ)nr−σnp and β∗ equals τ(χ)r.

(c4) For all ũ = lẽl ‖ u∗ perform steps (c4a) and (c4b) if ũ does not divide up,k and if l

divides up,k.

In this step the elements α∗ and β∗, which are elements in an extension of Z/nZ of degree
up,k will be transformed to elements in a possibly larger extension of Z/nZ of degree u∗.

The huge exponentiation, mentioned in (4.4)(a), will be performed in the extension of

degree u∗. The transformation will be done in the following way. For all prime powers
ũ = lẽl ‖ u∗ with ũ6 |up,k and l | up,k let u = le ‖ up,k. First the element ηu is lifted to the

extension of degree ũ. If ml is prime then

ηu =
∑

0≤i<ũ
i≡1 mod u

σi
n(ηũ) =

∑

0≤i<ũ
i≡1 mod u

ςn,i,ũ.

In this case one simply has to apply S∗
ũ,ml

to a ũ-dimensional vector with only elements

equal to 1 at the coordinates with index equivalent to 1 mod u. All other coefficients will
be equal to 0. If ml is not prime then

ηu = σ0
n(ηu) = ςn,u/l,u = ςn,u/l,ũ.

In this case one simply has to apply S∗
ũ,ml

to a ũ-dimensional vector with only elements
equal to 1 at the coordinate i = u/l. All other coefficients will be equal to 0. Next α∗ and

β∗ are written as polynomials of ηũ by applying a Horner-scheme.

(c4a) Let e ≥ 1 be such that le ‖ up,k, and let u = le. If ml is prime let y = (yi)
ũ−1
i=0

be such that yi = 1 if i ≡ 1 mod u and yi = 0 otherwise. If ml is not prime let

y = (yi)
ũ−1
i=0 be such that yi = 1 if i = u/l and yi = 0 otherwise. Replace y by

S∗
ũ,ml

· y (cf. (4.2)(b3)).

(c4b) For δ∗ = α∗, β∗ do the following. First, write δ∗ as a u-dimensional vector (δ∗i )u−1
i=0 ,

i.e., write δ∗ as a polynomial in ηu. Next, put δ = δ∗u−1, and for i = u−2, u−3, . . . , 0

in succession, replace δ by δ · y + δ∗i . Finally, replace δ∗ by δ.

(c5) The elements α∗ and β∗ are now elements in an extension of degree u∗ of Z/nZ.

Replace α and β by α · α∗ and β · β∗, respectively.
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The α∗ and β∗ now satisfy

α∗ =
∏

p|r
τ(χp,q)

nr−σnp ,

and

β∗ =
∏

p|r
τ(χp,q)

r,

where χp,q is the character of order pk̂p and conductor q such that (q, p, h) ∈ S, with
h = op(u

p,k̂p
).

(d) Compute δ = α · βc (cf. (b)). Perform steps (d1) and (d2) for all pk ‖ r.
The element δ satisfies

δ =
∏

p|r
τ(χp,q)

r·c+nr−σnp =
∏

p|r
τ(χp,q)

n−σnp =
∏

p|r
τ(χp,q)n−σn .

In this step one has to check that δ is a power of an r-th root of unity.

(d1) Compute δ∗ = δr/pk

and next perform step (d1a) for those prime powers ū = lē ‖ u∗

such that ū does not divide up,k.

(d1a) Let e be such that le ‖ up,k, and let u = le. Represent δ∗ as a ū-dimensional column

vector, i.e., write δ∗ as a polynomial in ηū. Apply S∗
u,ml

to the vector consisting

of the first u coordinates of the vector Sū,ml
· δ∗, and replace δ∗ by the result (cf.

(5.2)(b3a) and (5.2)(b3b)). Put δ̄ = δ∗.
This step will only be performed for those prime powers ū which are not divisors of up,k;

in particular if u∗ = up,k this step is skipped. This is in fact the same transformation as
performed in step (5.3)(e1b). Explanation can be found there.

(d2) Put γ̄ = γp,k, where γp,k is as in (5.3)(e1). Check that δ̄ = γ̄i for some i ∈
{0, 1, . . . , pk − 1}; if such an integer i does not exist, then n is composite and the

primality test is terminated.

By taking δ to the power r/pk, one kills all other τ(χ)n−σn in δ, for χ 6= χp,q, since these

will then be units in Z/nZ. The exponent j in τ(χ)n−σn = γj
p,k will then be equal to

j = i · (r/pk)−1 mod pk.
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6. FINAL TRIAL DIVISIONS.

Let s, t, u, v, and w be as determined in step (4.1). Let s1 = s/
∏

p|t p
op(s) and

t2 =
∏

p|t p
op(nu−1) (cf. (3.4)). Put s̄ = lcm(s1 · t2, v), and t̄ = lcm(t, u, w). Check

that gcd(G, n) = 1. If this does not hold, then n is composite and the primality test is

terminated. If µ = 1
2

perform step (a), and if µ = 1
3

perform step (b).

If the number n passed all tests described in Sections 3–5, one can prove that all divisors
of n that are congruent to ni mod s̄ for i ∈ {1, 2, . . . , t̄}, as shown in II.7. The chance that

n passed all tests in steps 3–5 without being prime is practically zero. Therefore checking

the remaining possibilities for the divisors of n will usually not yield any non-trivial factor
of n, but is needed to complete the proof of the primality of n.

All gcd-operations, which were necessary in the course of the algorithm, are done

simultaneously, by performing only one gcd. The result of this gcd cannot be 0, since every
time one changes G, it is checked that G mod n 6= 0. So, if gcd(G,n) 6= 1 (which is not

very likely), then one is able to find a non-trivial divisor of n.
In the optimization part of the algorithm, it is determined which type of final trial

division will be performed in this section. If µ = 1
2
, the algorithm will examine all numbers

r ≡ ni mod s̄, for i = 1, . . . , t̄. If µ = 1
3
, the algorithm presented in [88] will be used to find

all divisors in the residue classes r ≡ ni mod s̄, for i = 1, . . . , t̄, (cf. II.9).

(a) Let s̄ and t̄ be as above. Put ñ = n mod s̄ with 1 ≤ ñ < s̄ and let r = ñ. Repeat

step (a1) until ñ = 1 but at most t̄ times.

In this way a divisor which is at most
√

n, if it exists, will be found. Since ord(n mod s1)

divides t, ord(n mod t2) = u, ord(n mod v) = w, and lcm(s1, t2, v) = lcm(s1 · t2, v) = s̄, it
follows that ord(n mod s̄) divides lcm(t, u, w) = t̄, and that step (a1) will be performed at

most t̄ times.

(a1) If r = 1, then n is prime and the primality test is terminated. Otherwise, if r ≤ √
n,

check if r | n; if so, then n is composite and the primality test is terminated. Replace

r by (ñ · r) mod s̄ in such a way that the new value of r satisfies 0 ≤ r < s̄.

If n is composite, at least one divisor does not exceed
√

n. So in order to find a divisor in

this step, one only has to check those values r, which do not exceed
√

n. This observation
speeds up this step considerably. The value of r is probably of the same magnitude as s̄.

Therefore it probably does not make sense to incorporate the value of r in G; otherwise
one has to reduce G modulo n each time it is multiplied by a value of r.

(b) Let s̄ and t̄ be as above. Put ñ = n mod s̄ and put n̄ = n−1 mod s̄ with 1 ≤ ñ, n̄ < s̄

and let r = ñ, r∗ = n̄ and r′ = 1.

Find the first K odd primes that do not divide s̄ and group them into products

mj , such that mj <
√
M/3, where M is the maximal representable single precision

integer. Let k denote the number of products mj , and h =
∏k

j=1mj . Next, for

each product mj , put fj,l = 0 if l is a square modulo mj , and put fj,l = 1 if l

is not a square modulo mj , for l = 0, . . . ,mj − 1, and put nj = n mod mj and
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s̄j = s̄ mod mj , for j = 1, . . . , k.

For l = 1, . . . , bt̄/2c perform steps (b1) through (b3) until ñ = 1.
The most expensive part of the final trial division using the method presented by [88] is

solving a system of two equations in two variables. Solving such a system of equations
can be reduced to solving a single quadratic equation in one variable. Therefore finding a

solution can essentially be done by applying Newton’s method. Before applying Newton’s

method on a number, it is cheaper to first determine if the number is a perfect square
modulo a few small primes. To determine this, a table of all squares modulo these primes,

or in fact modulo a product of these primes will be determined.

A divisor which is congruent to r ≡ nl mod s̄, if it exists, will be found. A divisor
which is congruent to r modulo s̄ also implies that there exists a divisor congruent to

r′ ≡ r∗ · n mod s̄. Since ord(n mod s1) divides t, ord(n mod t2) = u, ord(n mod v) = w,
and lcm(s1, t2, v) = lcm(s1 · t2, v) = s̄, it follows that ord(n mod s̄) divides lcm(t, u, w) = t̄.

Secondly, since r ≡ nl mod s̄ and r′ ≡ nt̄+1−l mod s̄, that divisor would also be found in

the (̄t + 1 − l)-th step. Therefore we have that the (non-)existence of divisors congruent
to nl mod s̄ for l = 1, . . . , t̄/2 implies the (non-)existence of divisors congruent to nl mod s̄

for l = 1, . . . , t̄.

(b1) Put rj = r mod mj and r′j = r′ mod mj , for j = 1, . . . , k, by first reducing r and r′

modulo h and next reducing its result modulo all the mj , for j = 1, . . . , k.
Since one does not expect to find any divisors, the expensive step of finding the actual
divisors is preceded by a step to check whether it is plausible that n has any divisors.

Therefore all operations first will be performed modulo small products of primes.

(b2) Put a0 = s̄, b0 = 0 and c0 = 0, a1 = r′ · r∗ mod s̄ with 0 < a1 ≤ s̄, b1 = 1 and

c1 = ((n − r · r′)/s̄) · r∗ mod s̄, with 0 ≤ c1 < s̄. Next put ai,j = ai mod mj ,

bi,j = bi mod mj and ci,j = ci mod mj for j = 1, . . . , k and i = 0, 1.

Perform step (b2d) for i = 0 and i = 1, and steps (b2a) through (b2d) until ai = 0.
In this step we will perform the Euclidean-like algorithm to find the divisors that are
congruent r = nl mod s̄ as described in [88]. This comes down to solving for each triple

(ai, bi, ci) the system of equations

ai · x + bi · y = ci

(x · s̄ + r) · (y · s̄ + r′) = n.

(b2a) Put q = bai−2/ai−1c and ai = ai−2 − q · ai−1. If ai = 0 and i is odd, replace ai by

ai + ai−1 and q by q − 1. Next put bi = bi−2 − q · bi−1 and ci = ci−2 − q · ci−1. Put

q̄ = bci/s̄c and replace ci by ci − q̄s̄. If ci < 0 then replace ci by ci + s̄ and q̄ by

q̄ − 1.

(b2b) If q <
√
M/3 put qj = q mod mj for j = 1, . . . , k. Otherwise put qj = q for

j = 1, . . . , k. If q̄ <
√
M/3 put q̄j = q̄ mod mj for j = 1, . . . , k. Otherwise put

q̄j = q̄ for j = 1, . . . , k.

If q and q̄ are less than
√

M/3, all operations modulo the mj can be done without reducing
q and q̄ modulo the mj .

(b2c) For j = 1, . . . , k, put ai,j = (ai−2,j − qj · ai−1,j) mod mj , put bi,j = (bi−2,j − qj ·
bi−1,j) mod mj , and put ci,j = (ci−2,j − qj · ci−1,j − q̄j · s̄j) mod mj .
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This step performs the same operations as in step (b2a) modulo the mj .

(b2d) If i is odd, perform steps (b2d1) and (b2d2) for z = 0 and z = 1.

If i is even and ci = 0 perform steps (b2d1) and (b2d2) for z = 0 and in the case

that i is even and ci > 0 perform steps (b2d1) and (b2d2) for z = 0 and z = −1.

In this step all possible values for c will be checked modulo the mj , for j = 1, . . . , k. In

fact, for i odd only values for c with 2ai · bi ≤ ci ≤ n2/s + ai · bi are possible. This implies

that there is at most one value in this range. It seems to be faster to check first if a c
possibly gives rise to a solution and next to check whether c is in the correct range than

vice versa.

(b2d1)For j = 1, . . . , k calculate d1,j = ((ci,j + z · s̄j) · s̄j + ai,jrj + bi,jr
′
j) mod mj and

d2,j = ai,jbi,j mod mj , put ej = (d2
1,j − 4 · d2,j · n) mod mj , and check if fj,ej

= 0.

If fj,ej
6= 0 for some j ≤ k then terminate step (b2d) for this value of z.

In this step it is checked whether the system of two equations gives rise to a solution. This
is done by checking if (c · s̄ + ai · r + bi · r′)2 − 4ai · bi · n is a square modulo all mj , for

j = 1, . . . , k. Here c is equal to ci + z · s̄. If the expression is not a square then no solution
can be found in this step.

(b2d2)Calculate d2 = ai·bi. If i is even or if both i is odd and 2·d2 ≤ c+z·s̄ ≤ n2/s̄+d2, try

to find a positive integer e such that e2 = d2
1−4·d2·n, with d1 = (di+z·s̄)·s̄+air+bir

′.

If such an integer exists, check whether (d1 + e)/(2ai) or (d1 − e)/(2ai) are non-

trivial divisors of n. If one of these possibilities is a non-trivial divisor of n, then n

is composite and the primality test is terminated.

In this step an attempt to find an actual candidate for a divisor of n is made. This is
done by solving the system of equations. By identifying u with ai · (x · s̄ + r) and v with

bi · (y · s̄+r′), solving the system of equations comes down to finding values for u or v which

are the positive roots of the quadratic polynomial X2 − (c · s̄ + ai · r + bi · r′)X + ai · bi ·n.

(b3) Replace r by r · ñ mod s̄, r′ by r∗, and r∗ by r∗ · n̄ mod s̄, with 1 ≤ r, r∗ < s̄.
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1. PRELIMINARIES.

(1.1) Introduction. In this chapter we will analyze the complexity bounds of the algo-

rithm described in the previous chapters. The heuristics and methods needed to obtain

these complexity bounds, will also be presented here, at least if they have not yet been

presented in the description of the algorithm itself.

Although the optimization part of the algorithm is a vital part of the algorithm, we will

not analyze the complexity bounds and heuristics concerning this part of the algorithm

here, since these have been discussed in detail in Chapter III.

In Section 2 we will analyze the size of the parameters. These parameters include the

parameters s0, t0, and u0 as well as the parameters s, t, u, v, and w, as chosen in the

optimization part of the algorithm.

In Section 3 we will discuss the complexity bounds for the first part of the algorithm, the

generation of all tables. These tables will be used for each primality test of integers n less

than or equal to some bound N , where the value of N will be determined in advance. The

complexity bounds for the generation of the tables will be expressed in terms of parameters

s0, t0, and u0. By expressing these parameters in terms of N , which will be done in Section

2, completes the expression of the complexity bounds for the generation of these tables as

functions of N .

In all other parts of the algorithm, one is able to express the complexity bounds of the

methods in terms of the parameters s, t, u, v, and w, chosen in the optimization part of

the algorithm. This will be done in Section 4. The parameters used in this section depend

on n, the number that is subjected to the primality test. To complete that part of the

analysis, the complexity bounds as functions of n will be given in Section 2.

In Section 5 we will give an indication about the structure of the proof given by the

algorithm, and in the last section we will discuss the analysis of inverting an integer

matrix. The results of Section 6 will be used in Section 3.

In order to analyze the complexity bounds of the algorithm in the next sections we will

use some notations, which will be defined below. Two of them were already introduced

earlier (cf. I.(2.1), I.(2.7)), but for the sake of completeness, they will also be defined here.

(1.2) Definitions.
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Definition 1. For functions f and g the symbol O in f(x) = O(g(x)) is used if there

exists a positive constant c such that the inequality

|f(x)| ≤ c · g(x)

holds for all x.

Definition 2. For functions f and g the symbol Ω in f(x) = Ω(g(x)) is used if there exists

a positive constant c such that the inequality

|f(x)| ≥ c · g(x)

holds for all x.

Definition 3. For functions f and g the symbol Θ in f(x) = Θ(g(x)) is used if there exist

positive constants c1, c2 such that the inequality

c1 · g(x) ≤ |f(x)| ≤ c2 · g(x)

holds for all x.

Definition 4. For functions f and g the symbol ∼ in f(x) ∼ g(x) is used if

lim
x→∞

f(x)/g(x) = 1

holds.

Definition 5. For functions f and g the symbol o in f(x) = o(g(x)) is used if

lim
x→∞

f(x)/g(x) = 0

holds.

(1.3) Notation.

In a number of cases, we will have to use complexity bounds for elementary operations on

ordinary integers, or elements in extensions of Z/nZ. In the case of multiplication (and

division) of integers the number of elementary bit operations depends on whether or not

we employ the fast multiplication techniques as for instance introduced by Schönhage and

Strassen (cf. [140]). As explained in for instance [64, pp. 278-301], the time needed to

multiply two elements of size B is equal to O(B2) if we use näıve multiplication techniques

(as we usually do) and O(B1+ε), for any ε > 0, if we employ the fast multiplication

techniques. To avoid the necessity of specifying both bounds each time we give a complexity

bound, we will present the following notation.
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Notation. The complexity bound for multiplying two elements of size B is equal to

O(Bρ). In the case that we use the näıve way to multiply the elements, ρ is equal to 2; in

the case of employing fast multiplication techniques we have that for each ε > 0 and for

B > B0(ε) that 1 ≤ ρ < 1 + ε.
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3. ANALYSIS OF THE PREPARATION OF THE TABLES.

(3.1) Introduction. In this section we will analyze the complexity bounds for the gen-

eration of the tables used by our algorithm. The bounds will be expressed in terms of the

parameters t0, s0, and u0. In the previous section these parameters have been expressed

in terms of N , being the upper bound for the numbers n which can be handled by our

algorithm using these tables. In this section we will discuss the complexity bounds of the

generation of the following five tables:

(i) The table of primes up to a fixed bound B.

(ii) The table containing all even divisors of t0, which may be used as admissible values

of t, all orders pk | t0 and all conductors q with q − 1 | t0.
(iii) The table containing matrices and related data needed to generate the extensions

that may be used by the algorithm.

(iv) The table containing all exponents needed to express Gauss sums in terms of Jacobi

sums.

(v) The table of Jacobi sums needed for the set of characters of order pk | t0 and

conductor q with q − 1 | t0.

The analysis and heuristics concerning the preparation of each of these tables will be

discussed; this will be done separately for each table.

(3.2) The prime table.

The most common way to create a table containing all primes up to a bound B, is by

using Eratosthenes’ sieve. It is possible to perform the algorithm in a sequential way, i.e.,

one does not have to store the complete table in memory, but one can sieve intervals of

say length
√
B, by using the prime table of the primes less than

√
B.

This heuristic does not influence the asymptotic behavior of the method. For each

prime p <
√
B we have to delete its multiples from the table, which can be done in

∑

p<
√

B
p prime

B

p

additions. Since

∑

p<
√

B
p prime

log p

p
= log(

√
B),
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(cf. [50, Theorem 425]) we have that the number of binary operations is Θ(B logB). In

[126] a method is presented to find all primes p ≤ B in Θ(B logB) binary operations using

only o(
√
B) bits of memory. In order not to dominate the time needed to generate all the

tables this should be done in at most (logN)c log log log N binary operations. This implies

that B should be at most t0/(log t0). In practice B will be taken constant.

Instead of storing primes in the table, one can store differences between primes, since

these differences are considerably smaller. Using the information about maximal gaps

between consecutive primes, one is able to store several differences in one computer word.

In [132, p. 85] one can find a table of maximal gaps between consecutive primes. For

instance, for primes less than 106 the maximal gap is 114. This implies that each difference

between two adjacent primes less than 106 can be expressed in at most 7 bits.

(3.3) The table containing all even divisors of t0, the sets of primes Q0 and P0.

Suppose a value for t0, depending on N , and the factorization
∏

p∈P0
pkp = t0 is given.

One has to determine

(a) the values φ(pk) for all prime power divisors pk|t0, where φ is the Euler phi-function,

(b) the exponent λ(t0) of (Z/t0Z)∗, and its factorization
∏

l∈L0
lel = λ(t0),

(c) the set of primes q ∈ Q0 with q − 1 | t0,
(d) the values op(q − 1) representing the number of times that a prime p occurs in the

prime factorization of q − 1 for q ∈ Q0 and p ∈ P0,

(e) for i = 0, . . . ,#{t : t | t0, 4 | t} − 1 all pairs (t, log e′i(t)), with t such that i(t) = i.

Each pair consists of a divisor t of t0 with 4 | t, and the logarithm of

e′i(t) =
∏

q−1|t
q prime

q.

The index function i(t) is used in order to easily update values related to t. The

function is defined by

i(t) =
∑

p∈P0

o′p(t)
∏

p′>p

p′∈P0

(kp′ + 1)

for each t | t0, with o′p(t) defined by o′2(t) = o2(t) − 2 and o′p(t) = op(t) for odd p.

The function op(t) represents the number of times a prime p occurs in the prime

factorization of t. The reason why the function i(t) is used will be explained below.

Remark. In principle it is sufficient to start with t0 and next calculate the factorization
∏

p∈P0
pkp of t0, but in order not to factor at this stage of the algorithm, we assume that
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the factorization of t0 is known. In practice one starts by selecting a suitable set of primes

in P0, and a value for kp for each p ∈ P0. In this way, we do not need to factor t0 at all.

The set of primes Q0 can be generated by subsequently checking all the values 1 +
∏

pk′
p

with p ∈ P0 and k′p ≤ kp. Since we also need to find all divisors t of t0, we can combine

the search for the prime q ∈ Q0 with the search for all these divisors, since q − 1|t0 for all

q ∈ Q0. Furthermore the calculation of e′i(t) can be done at the same time. Here we make

the following observation.

For any prime q with q−1 | t0 we have that q−1 divides those t with o′p(t) ≥ o′p(q−1)

for every p ∈ P0. Since i(t) is expressed in terms of o′p(t), one can very easily generate the

values of i(t′) for all t|t′.
Starting with a value of i(t), one can very easily generate the values of i(t′) for all t|t′,

since i(t′) is an index generated from the factorization of t′ in primes. If t+ 1 is prime, all

values of e′i(t′) for all t|t′ should be updated by adding the value of log(t+ 1) to it. Even

without the knowledge of the value of all t′, the values of e′i(t′) for all t|t′ can be updated

during the generation of all values of t.

These observations suggest the following strategy. First put log(e′i) = 0 for all i ≤
∏

p∈P0
(kp + 1). Next for all t =

∏

p∈P0
pk check whether t + 1 is prime or not. If this is

the case, then update all values log(e′i(t′)) for all t′ with t | t′, by adding log(t+ 1) to each

log(e′i(t′)).

Heuristics. The calculations in steps (a), (b), and (d) are straightforward and take at

most time polynomial in log t0. The most expensive part of this stage is the determination

whether or not q is prime, for all possible even divisors q − 1 of t0 in step (c).

Since the factorization of t0 is completely known, it is straightforward to find the

factorization of q − 1 for each individual q. In for instance [125] it is shown that if the

complete factorization of q − 1 is known, one can prove the primality of q in O((log q)4)

binary operations. In [2, Theorem 3] it is shown that

N c1 <
∏

q−1|t0
q prime

(q − 1) ≤
∏

t|t0

t < N c2

where c1 and c2 are positive absolute effectively computable constants. This immediately

implies that
∑

t|t0 log t = Θ(logN). Using this bound one can show that finding all primes

q with q − 1 | t0 can be done in at most O((logN)4) basic operations.

The calculations in step (e) are polynomial in log t0 and are, apart from the fact that

they are performed simultaneously with the calculations of step (c), dominated by the time
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needed to perform (c).

(3.4) The extension table.

The extension table contains for each prime power u = le|λ(t0) a set of conductors m = mu

and for each pair (u,m) the table contains a flag r = ru,m indicating whether mu is a prime

or not, an element g = gu,m having maximal order in (Z/mZ)∗, a minimal polynomial

f = fu,m of degree u generating the cyclic field of degree u, two matrices S = Su,m and

S∗ = S∗
u,m which will provide an easy way to switch from one representation in the cyclic

field to another, and a denominator D = Du,m such that (S∗ · S)/D is equal to the u× u

identity matrix.

If the proper conditions (cf. II.(4.5)–II.(4.8)) are met, the algorithm is able to construct

from these data in the table a cyclic extension of Z/nZ of degree u and conductor m, for

each n ≤ N .

For fixed values of u and m, the time needed to calculate all other elements is dom-

inated by the time needed to calculate the two matrices S and S∗. The matrix S is

calculated by first determining the powers of the generator η of the cyclic field, expressed

in terms of the powers of ζm, i.e., as polynomials of degree φ(m), and next expressing the

powers of η in terms of the conjugates of η, which can be easily determined. Calculating

ηi from ηi−1, for i = 2, . . . , u can be done in O((i− 1)φ(m) log(φ(m))) binary operations,

generating elements of size O((i− 1) log(φ(m))). So the total number of binary operations

is

O(φ(m)u2 log(φ(m))),

generating elements of size at most O(u log(φ(m))).

As shown in (2.2), u is O(log t0). By taking m = O(log t0) we get that for a single

choice of u and m the number of binary operations can be bounded by

O((log t0)
3(log log t0)) = O((log logN)3+ε),

generating integers of size O((log logN)3+ε), for any ε > 0.

The entries of S will have the same magnitude as the coefficients that have been

generated in the process analyzed above, being of size O((log logN)1+ε).

The calculation of S∗ is the same as inverting the matrix S. In Section 6 it is

shown that inverting a u × u integer matrix containing entries of size at most M can

be done O(u3(u(M + log u))1+ρ+ε) binary operations, for any ε > 0. Using this bound
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gives O((log logN)4+ρ+ε) binary operations to generate all elements for a fixed u and a

fixed m, for any ε > 0.

In order to calculate the number of operations to generate the extension table, bounds

are needed for the number of pairs (u,m). In Section 2 it is shown that the number of

prime power divisors of u0 is O(log t0).

In II.4 it is shown that for fixed u = le the set of conductors contains the prime conduc-

tors m with m ≡ 1 mod u as well as m = le+1 if l is odd and m = le+2 if l = 2. The number

of values of m can then be bounded by the number of primes less than c log t0 for some

constant c, which is O(log t0/ log log t0). This implies that the generation of all elements

in the extension table can be done in O((log t0)
2(log logN)4+ρ+ε) = O((log logN)6+ρ+ε)

binary operations, for any ε > 0.

Remark. As stated above, in order to generate an extension of degree u = le of Z/nZ

for a particular value of n < N , the conductor m should meet the conditions mentioned

in II.(4.5)–(4.8). If no such m can be found in the table, the algorithm should generate

entries for another m that does meet the required conditions. Since in this case the value

of n is known, all operations can then be done modulo n. In this way the size of the

elements involved can be bounded.

We will examine the probability that for a particular n ≤ N no proper conductor m

can be found. Although for each degree u there is one entry in the table with m being a

prime power instead of a prime, we will only examine the probability that for a particular

n ≤ N no proper prime conductor m can be found in the table. The condition that an

entry with prime conductor m can be used is

n(m−1)/l 6≡ 1 mod m.

The probability that such an extension of degree u = le cannot be used is equal to 1/l.

This implies that for each u = le the expected number of conductors in the table necessary

to find a conductor that meets the restrictions is l/(l− 1) ≤ 2.

The number πd,a(x) of primes congruent to a modulo d less than or equal to x for

arbitrary x and d, and for a < d with gcd(a, d) = 1, is given by a theorem due to de la

Vallée Poussin (cf. [129, p. 214] and [56, Ch. 16, §1]) and based on Dirichlet’s theorem:

πd,a(x)
def
= {p prime p ≤ x, p ≡ a mod d} ∼ x

φ(d) · log x
.

This implies that if the table contains only extensions of conductor m ≤ C · lel , then at

most C ·lel−e+1/((l−1)·el ·log l) extensions of degree u = le will be in the table. Combining
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this with the fact that one cannot use an extension of degree u = le with probability 1/l

gives a probability of exp(−C·lel−e+1

(l−1)·el
) that the table does not contain a proper extension

of degree le. This is a negligible probability.

(3.5) The “Jacobi-sum-exponent” table.

In order to be able to complete the primality test for a particular value of n ≤ N , one

needs to compute the quotient of Gauss sums

τ(χ)i

τ(χi)

for each character χ of prime power order ord(χ) = pk dividing the parameter t|t0, where

i is equal to either pk or n mod pk.

This implies that in order to be able to complete the primality test for each n ≤ N

one should be able to compute τ(χ)i/τ(χi) for each character χ of prime power order pk

dividing t0 and for i = pk as well as for each i < pk relatively prime to p.

For each character χ of order pk and prime conductor q a Gauss sum τ(χ) is an

element of the ring Z[ζpk , ζq]. In order to speed up the operations on these Gauss sums

one can replace the quotients of Gauss sums mentioned above by a product of Jacobi sums

J(χa, χb), which live in the considerably smaller rings Z[ζpk ]. To express the quotients of

Gauss sums in terms of Jacobi sums one needs a table of exponents eπ,pk,i such that

τ(χ)i

τ(χi)
=
∏

π∈J
J(χa, χb)e

π,pk,i .

In this product the set J consists of the values π = a + b representing all Jacobi sums

J(χa, χb) needed by the algorithm to complete the primality test for all n ≤ N . Fur-

thermore eπ,pk,i =
∑

j∈(Z/pkZ)∗ zjσj with zj ∈ Z≥0 for every π ∈ J , every pk | t0 and

1 ≤ i ≤ pk with p6 |i and J(χa, χb)zjσj = J(χaj , χbj)zj .

By using

τ(χ)ord χ

τ(χord χ)
= χ(−1) · q · τ(χ)ord(χ)−1

τ(χord(χ)−1)

one can show that one does not need to calculate exponents for τ(χ)ord χ/τ(χord χ), (cf.

Corollary II.(8.8)).

Since the exponents eπ,pk,i depend on the Jacobi sums being used, one does not only

need to determine a set of exponents, but also one has to determine which Jacobi sums

J(χa, χb) in terms of the values a and b = π − a will be used.
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3. Analysis of the preparation of the tables V. Analysis

In Lemma II.(8.7) it is shown that

τ(χ)i

τ(χi)
=

i−1
∏

j=1

J(χ, χj).

This implies that J = {π ∈ Z>0 : π < maxpk|t0(ord(Z/pkZ)∗)} and eπ,pk,i = 1 for

all π ∈ J , all pk | t0 and all i ∈ (Z/pkZ)∗ with i < ord(Z/pkZ)∗ would be a solution.

This solution however, would need many Jacobi sums, and since one needs to generate a

table of all these Jacobi sums, it is beneficial to attempt to minimize the number of Jacobi

sums needed, both with respect to the storage used by them, as well as with respect to the

time needed to generate them. The solution above only gives us an upper bound for the

number of Jacobi sums needed by the algorithm. The number of Jacobi sums for a fixed

conductor q and fixed order pk will be at most pk−2. In Example II.(8.12) it is shown that

it is possible to use only Jacobi sums of characters of prime order. This implies an upper

bound π(pk − 2) for the number of Jacobi sums needed, where π(pk − 2) is the number of

primes less than pk − 2. In II.(8.12) it is shown that this bound is not strict. We will try

to find a better bound. This will be done by the algorithm described in IV.(2.4).

Using this algorithm sequentially on all prime powers pk less than or equal to 4096 we

can tabulate the number of Jacobi sums that have to be introduced to express all Gauss

sums in terms of Jacobi sums. We will list these quantities only for those pk for which new

Jacobi sums had to be introduced, i.e., only the smallest pk for which a new Jacobi sum

had to be introduced is tabulated. In this table we also list which Jacobi sum J(χa, χb),

represented by π = a+ b, had to be introduced for ord(χ) = pk.

#J π pk #J π pk #J π pk

1 2 3 16 53 607 31 107 2371
2 3 7 17 61 729 32 181 2401
3 5 16 18 47 811 33 131 2551
4 7 37 19 71 941 34 127 2699
5 11 64 20 109 971 35 157 2801
6 13 81 21 83 1024 36 151 2963
7 17 125 22 67 1151 37 149 3041
8 19 151 23 89 1231 38 139 3209
9 23 191 24 101 1291 39 167 3307

10 29 233 25 73 1481 40 137 3347
11 43 373 26 79 1531 41 179 3643
12 31 401 27 103 1931 42 227 3851
13 37 443 28 97 1949 43 193 4049
14 41 499 29 233 2083 44 163 4073
15 59 509 30 113 2221 45 199 4096

195



V. Analysis 3. Analysis of the preparation of the tables

Depicting the number of Jacobi sums needed to express all Gauss sums of characters

χ with ord(χ) = pk ≤ P into these Jacobi sums as a function of P results in the picture

given below. The solid line in this picture represents the number of Jacobi sums needed,

while the dotted line is the function (
√
P )/1.45, which is the result of curve-fitting.

Based on this empirical evidence, we will assume from this point on that the function

of the expected number of Jacobi sums needed for a character χ of order pk behaves

approximately as c
√

pk, i.e., #J = Θ(
√

pk). This function is determined by including all

prime powers less than 4096. This is far beyond the scope of the algorithm: using these

prime powers should suffice to prove the primality of numbers n with logn ≥ 10100.
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#J as a function of P , with 0 ≤ P ≤ 5000 and 0 ≤ #J ≤ 50.

Summing the expected number of Jacobi sums needed for a character χ of order pk over all

conductors q with q − 1 | t0 and all orders pk|t0, one would get that the expected number

of Jacobi sums needed to be calculated would be equal to
∑

q−1|t0
q prime

∑

pk‖q−1
p prime

c
√

pk ≤
∑

q−1|t0
q prime

log2 q
√

log t = log2 s
√

log t

and

∑

q−1|t0
q prime

∑

pk‖q−1
p prime

c
√

pk ≥
∑

q−1|t0
q prime

log2 q = log2 s.
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3. Analysis of the preparation of the tables V. Analysis

Therefore the total expected number of Jacobi sums is O(log s
√

log t) and Ω(log s). Since

the exponents do not depend on the conductor q, the number of exponents needed to

express quotients of Gauss sums in terms of Jacobi sums is independent of the number of

conductors. Using these bounds we can analyze the time needed to generate the table of

exponents. Assuming that the generation of the exponents needed to express the Gauss

sum τ(χ)i/τ(χi) into Jacobi sums will be done for i in increasing order, it suffices to express

it into Jacobi sums and Gauss sums τ(χ)j/τ(χj) with j < i.

Roughly speaking, one tries to express the Gauss sum τ(χ)i/τ(χi) with character χ

of order pk into Jacobi sums by two different strategies. Both strategies try to express

τ(χ)i/τ(χi) in terms of τ(χ)i′/τ(χi′) with i′ < i and Jacobi sums.

The first strategy, uses the expression

τ(χ)i

τ(χi)
=

(

τ(χ)i/π

τ(χi/π)

)π

·
(

τ(χ)π

τ(χπ)

)σi/π

.

This strategy can only be applied when i is divisible by some π ∈ J . Since both i/π and π

are smaller than i, we have that τ(χ)i/π

τ(χi/π)
and τ(χ)π

τ(χπ)
are already expressed in terms of Jacobi

sums. Using the formula above enables one to express τ(χ)i

τ(χi) in terms of Jacobi sums as

well.

In the second method, let i1 ≡ b((jpk − i)/a) mod pk and i2 ≡ a((jpk − i)/b) mod pk

for j = 0, . . . ,max(a, b) − 1 and a+ b = π ∈ J . If for some j < a we have that a divides

jpk − i and i1 < i then

τ(χ)i

τ(χi)
=
τ(χ)i1

τ(χi1)
· τ(χ)i−i1

τ(χi−i1)
· J(χa, χb)σ

(jpk−i)/a .

Here both i1 and i − i1 are smaller than i, which enables us to express τ(χ)i

τ(χi) in terms of

Jacobi sums.

If, on the other hand, we have that for some j < b we have that b divides jpk − i and

i1 < i then

τ(χ)i

τ(χi)
=
τ(χ)i2

τ(χi2)
· τ(χ)i−i2

τ(χi−i2)
· J(χa, χb)σ

(jpk−i)/b .

Here i2 as well as i− i2 are smaller than i, enabling us to express τ(χ)i

τ(χi) in terms of Jacobi

sums.

If both strategies fail, one has to introduce a new Jacobi sum J(χa, χb) with a+ b = i

prime. It follows from II.(8.12) that this only occurs when i is prime. Finally, one chooses

the expression which uses the least number of Jacobi sums.
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In finding the best expression for a fixed order pk and fixed i only a constant number

of operations are performed. At the end, however, the complete exponent has to be built

up, keeping track of the coefficients for each Jacobi sum. For each coefficient one has to

perform only a constant number of operations. Since we need O(
√

pk) Jacobi sums for

fixed pk, this implies that the total number of operations needed to generate this table is

∑

pk|t0
p prime

∑

i<pk

p6|i

c
√

pk =
∑

pk|t0
p prime

cφ(pk)
√

pk < c2(log t0)
2 log log t0

for some constant c2. This implies that this table can be generated in

O((log logN)2+ε)

binary operations, for any ε > 0.

(3.6) The Jacobi sum table.

The last table that has to be generated is the table containing all Jacobi sums

J(χa, χb) =

q−1
∑

x=0

χa(x)χb(1 − x)

for all characters χ having conductor q with q − 1 | t0 and having order pk with pk ‖ q− 1

and for all Jacobi sums represented by π ∈ Jpk . As explained in the previous subsection

for each π ∈ Jpk a pair (a, b) is chosen such that a+ b = π.

The generation of these Jacobi sums is done in the following way. For each prime

power pk ‖ q − 1, we will store the contribution of ζ i
pk in cπ,q,p,i for all π ∈ Jpk . These

values are initially set to zero. Next a table of pairs (x, f(x)) with 1− gx ≡ gf(x) mod q is

made. Since each pair (x, f(x)) gives a contribution ζ
ax+bf(x)

pk to the Jacobi sum J(χa, χb),

we will increase cπ,q,p,ax+bf(x) by 1 for each 1 ≤ x ≤ q − 2. At this stage, J(χa, χb) is

expressed in terms of ζi
pk with 0 ≤ i < pk. In order to represent J(χa, χb) in terms of ζi

pk

with 0 ≤ i < φ(pk), one has to use the relation

ζ0
pk + ζpk−1

pk + . . .+ ζ
(p−1)pk−1

pk = 0.

Therefore, for each prime power pk ‖ q − 1, every i such that φ(pk) ≤ i < pk and every

1 ≤ j < p, decrease cπ,q,p,i−jpk−1 by cπ,q,p,i for all π ∈ Jpk .

Suppose that the maximum number of integers less than q that can be stored in

memory is equal to M0. Let M = min(M0, q−1) and c(q) be the number of distinct prime

divisors of q − 1.
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3. Analysis of the preparation of the tables V. Analysis

In IV.(2.5) two methods are described in detail to compute the Jacobi sums. In both

cases, all the Jacobi sums with fixed conductor q are computed simultaneously.

In the first method a table is made of pairs (x, f(x)) with 1 − gx ≡ gf(x) mod q for a

block of length M out of the q − 2 different powers of g modulo q. This method requires

about q2/M multiplications modulo q, since we have to calculate all the q − 2 powers of g

at most q/M times.

In the second method one first computes the c(q) powers g(q−1)/pk

; this can be done

in roughly ((c(q)/2) + 1) log2 q multiplications modulo q, if one does the squarings of

g followed by assembling g(q−1)/pk

(requiring approximately log q
2 multiplications on the

average) for each of the pk. Next for each positive x < q − 1 one computes the c(q)

powers ḡ
(q−1)/pk

x , where ḡx = 1 − gx mod q. Finally one has to find i < pk such that

gi(q−1)/pk ≡ ḡ
(q−1)/pk

x mod q, which can for instance be done by hashing. This method

requires (q − 1)((c(q)/2) + 1) log2 q multiplications modulo q for all powers ḡ
(q−1)/pk

x . At

most q more multiplications are needed to find the pk different powers (g(q−1)/pk

)i for all

pk. In order to minimize the number of operations needed to perform this step, we will

perform the first method as long as q2/M < (q−1)((c(q)/2)+1) log2 q+q. This is the case

when M ≥ min(q − 2, 2q/((c(q) + 2) log2 q)). Otherwise the second method is performed.

Asymptotically, i.e., for q → ∞, one will make use of the second method, since for

sufficiently large q the condition M ≥ min(q − 2, 2q/((c(q) + 2) log2 q)) will not be met.

In the case that one uses the first method, the complexity bound of the second method

serves as an upper bound for the complexity bound of the first method. Therefore this

step takes at most (q − 1)((c(q)/2) + 1) log2 q + q multiplications modulo q, which implies

O(qc(q)(log q)1+ρ) binary operations.

Since c(q) is at most log q, we have that for the calculation of all Jacobi sums for

one single value of q one needs O(q(log q)2+ρ) binary operations. This bound has to be

summed over all primes q for which q − 1 | t. We can bound this expression from above

by using the following observations. First of all we have that q ≤ t0 and the number of

primes q with q − 1 | t0 is at most O(log s0). Therefore at most
∑

q−1|t0
q prime

c · q(log q)2+ρ ≤ c · t0 · (log s0)
2+ρ

binary operations are needed to generate the complete table of Jacobi sums. Using the

asymptotic bounds for t0 and s0 gives (logN)Θ(log log log N) binary operations.

Notice that the generation of this table is not polynomial in the size of N .
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V. Analysis 4. Analysis of the Jacobi sum part of the algorithm

4. ANALYSIS OF THE JACOBI SUM PART OF THE ALGORITHM.

(4.1) Introduction.

Suppose the optimization part of the test has given appropriate values for s, t, u, v, and

w. To calculate the cost of the Jacobi sum part of the test, we have to analyze

(i) the cost to generate additional extensions and transition matrices, (cf. IV.(5.1),

IV.(5.2)),

(ii) the cost of the generation of the pk-th roots of unity, for all pk ‖ lcm(t, v), (cf.

IV.(5.3)), and

(iii) the cost of performing all Jacobi sum tests for all primes q with q − 1 | t and all

primes p with p | q − 1, (cf. IV.(5.4)), and possibly a few additional Jacobi sum

tests (cf. II.(7.1)).

We will analyze the cost for these parts separately. It can be easily seen that the

calculations of the last two parts dominate the total cost of the Jacobi sum part.

(4.2) Generation of additional extensions and transition matrices.

Since we already discussed the complexity of generating extensions in (3.4) we can refer

to this part for the asymptotic bounds of this step, by replacing s0 by s, t0 by t, and

N by n. The generation of transition matrices is equivalent to one matrix multiplication

modulo n, for each prime power extension that has been found. As has been shown in (3.4),

there are O(log t) prime power extensions and each prime power degree can be bounded

by log t. Therefore this step takes O((log t)2(log logn)4+ρ+ε) binary operations, giving

O((log logn)6+ρ+ε) binary operations, for any ε > 0.

(4.3) Generating roots of unity.

Suppose one has to generate a pk-th root of unity ζpk in an extension of Z/nZ of degree

up = ord(n mod pk). Although there are several strategies to do so (cf. [87]), we choose

to do this by taking a random element α in the extension of degree up and calculating its

(nup − 1)/pk-th power γ. If, amongst other conditions (which are automatically true if n

is prime, but which are checked always) (cf. Proposition II.(4.12)), γpk−1 6= 1, then γ is a

pk-th root of unity. Following this strategy, the cost of generating a pk-th root of unity in

an extension of degree up is proportional to the cost of taking an element of size up · logn

to the power nup . This exponentiation takes about O((up · logn)1+ρ) binary operations.

This strategy has, however, a probability of 1/p to fail, in which case we have to choose

another element α. This implies that the expected number of binary operations needed
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4. Analysis of the Jacobi sum part of the algorithm V. Analysis

to generate a pk-th root of unity successfully in an extension of degree up is O( p
p−1 (up ·

logn)1+ρ).

In the case that at least two different roots of unity have to be generated, there exists

a strategy to generate several roots of unity simultaneously. Suppose that one has to

generate a p1
k1 -th root of unity in an extension of degree u1, and a p2

k2 -th root of unity

in an extension of degree u2. Then it is possible to generate both the p1
k1 -th and the

p2
k2 -th root of unity by taking a random element α in an extension of degree lcm(u1, u2)

and raising it to the power
(

nlcm(u1,u2) − 1
)

/(p1
k1 · p2

k2). By raising the resulting element

to the power p1
k1 and to the power p2

k2 respectively, one gets possible candidates for the

p1
k1 -th and the p2

k2 -th roots of unity γ1 and γ2. To prove that γ1 and γ2 are really roots

of unity, one needs to show that γ
p

k1−1

1
1 6= 1 and γ

p
k2−1

2
2 6= 1. The probabilities that these

elements are roots of unity are equal to p1−1
p1

and p2−1
p2

respectively. Notice that whether

or not γ2 is a root of unity is independent of the fact whether or not γ1 is a root of unity.

As has been shown in the Chapter III, it is only beneficial to combine the generation

of several roots of unity, if the least common multiple of the degrees involved is attained

by one of the degrees. In any case the complexity bound for the time to generate all roots

of unity is equal to the product of the number of roots that have to be generated and the

maximum complexity bound for the time needed to generate one root of unity. Whether

or not the generation of a root of unity fails is independent of the success or failure to

generate any other root in the same combination. Therefore, if the generation of a root of

unity fails, only the generation of this particular root of unity has to be performed again.

The maximum number of roots to be generated can be bounded by log tv which is

proportional to logn. The complexity bound for the time needed to generate a pk-th root

of unity in an extension of degree up is O( p
p−1 (up · logn)1+ρ).

Since p
p−1

can be bounded by 2, and up is O(log t), we have that the average case com-

plexity bound, expressed in the number of bit operations, for the generation of all the roots

of unity is equal to O(logn · (log t · logn)1+ρ) = O((logn)2+ρ((log logn)(log log logn))1+ρ).

An alternative approach. There exists a method, which is in most cases faster than

the one described above.

Suppose that a P -th root of unity in an extension of Z/nZ of degree uP has to be

generated. Here P may be a prime power, or a product of prime powers. In order to do so,

one has to take the (nuP − 1)/P -th power of a random element in the extension of degree

uP .
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Let D be equal to b(n − 1/P )c and r < P be such that n − 1 = P · D + r. We will

show that (nuP − 1)/P can be written as

(nuP − 1)/P =

uP −1
∑

i=0

ai · ni =

uP −1
∑

i=0

(bi ·D + ci) · ni,

where bi and ci will be smaller than P . In doing so, one is able to do the (nuP − 1)/P -th

powering as

uP −1
∏

i=0

αai·ni

=

uP −1
∏

i=0

((αD)bi · αci)ni

=

uP −1
∏

i=0

σi((αD)bi · αci).

This is considerably faster than the previous method, if P is relatively small in comparison

with n.

Writing nuP − 1 in base n gives
∑uP −1

i=0 (n− 1) ·ni. Dividing this expression by P can

be done as follows:

(1) Put ruP
= 0.

(2) For i = uP − 1, . . . , 1, 0 perform step (2a).

(2a) Put ai = bri+1 · n+ (n− 1)/P c and put ri = ri+1 · n+ (n− 1) − ai · P .

In this way we get (nuP − 1)/P =
∑uP −1

i=0 ai · ni, with 0 ≤ ai < n for 0 ≤ i < uP .

Since ri is a carry that arises from the division of ri+1 ·n+n−1 and P we have that ri

is less than P . In fact it is even less than P − 1; otherwise n and P would not be coprime.

If we divide ri · n + n − 1 = (ri + 1) ·D · P + ri · (r + 1) + r by P to get ai, we get

ai = (ri + 1) ·D + b(ri · (r + 1) + r)/P c.
Since ri < P − 1 and r < P we have that b(ri · (r + 1) + r)/P c is less than P . So ai

can be written as (ri + 1) · D + ci with ci < P . Furthermore, since ri < P − 1, we have

that ai can be written as bi ·D + ci with bi < P and ci < P .

These observations suggest the following strategy to calculate the (nuP − 1)/P -th

power of a random element α:

(a) First calculate x = αD

(b) Next calculate xi = xbi and yi = αci for i = 0, . . . , uP − 1.

(c) Finally calculate
∏uP −1

i=0 σi(xi · yi), using a Horner scheme. Here the automorphism

σ is as in IV.(5.3).

In this way the number of binary operations needed to perform the exponentiation

is equal to O(uρ+1
P (logn)ρ logP + uρ

P (logn)ρ+1) compared to O((uP logn)ρ+1) for the

previous method. If logP is significantly smaller than logn, the method given above

is much faster than the previous one. To find the total number of binary operations
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needed in this step one has to sum the above expression over all divisors of w and all

prime powers pk ‖ t. As has been shown in (2.1) summing over all divisors of w gives

O(w1+ρ(logn)ρ +wρ(logn)1+ρ) binary operations. Taking the sum over all maximal prime

power divisors of t gives O((log t)2+ρ(logn)ρ + (log t)1+ρ(logn)1+ρ) binary operations.

(4.4) Performing the Jacobi sum tests.

Suppose one has to perform a combined Jacobi sum test represented by S where each triple

(q, p, h) in S represents a Jacobi sum test for a character χ of order pk, where k = op(q−1),

and conductor q. The element h in each triple indicates that such a test could be performed

in an extension of degree up,1 · ph (cf. IV.(5.4)). Suppose that the combined test will be

performed in an extension of Z/nZ of degree ū. Essentially this test comes down to raising

an element in an extension of Z/nZ of degree ū to a power e, where e = Θ(n).

In Chapter III, it has been shown that several tests can be combined into one test, if

certain restrictions have been met. It might be possible that the tests cannot be combined

at all. Therefore the number of Jacobi sum tests #s,t is at most equal to the number of

pairs (p, q) with q | s and p | q − 1. So

#s,t =
∑

q|s
#{p : p | q − 1} ≤

∑

q|s
log2 q ≤ log2 s

The number of tests is at least equal to the number of primes q that divide s, since for

each odd q one has to perform a Jacobi sum test with order equal to a power of 2. These

tests cannot be combined, since the orders of the characters involved are not coprime.

Therefore we have #s,t is at least (log s)/(log t) being equal to Ω((log s)1−ε). Even if we

fix pk ‖ t, the number of tests that have to be performed for characters of order pk is

Ω(#s,t/φ(pk)) = Ω((log s)1−ε). Here we used the theorem, due to de la Vallée Poussin (cf.

[129, p. 214] and [56, Ch. 16, §1]), based on Dirichlet’s theorem, which is also given in

Section (3.4). Using this result, one can show that the number of tests of order pk where

the exponent of (Z/pkZ)∗ is maximal is Ω((log s)1−ε). In (2.1) it is shown that u = O(log t)

and that the average order of n modulo pk is Ω(((p− 1)pk−1)1−ε).

The time needed to perform a Jacobi sum test in an extension of degree u is propor-

tional to Θ(log n · (u · logn)ρ). Using these expressions, the complexity bounds, expressed

in the average number of bit operations for the performance of all Jacobi sum tests is

O(logn · log s · (log t · logn)ρ) = O((logn)2+ρ+ε) and Ω(logn · (log s)1−ε · (log t · logn)ρ−ε) =

Ω((logn)2+ρ−ε) for any ε > 0.
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(4.5) Analysis concerning the final trial division.

The final trial division consists of checking all remaining divisors in the residue classes

ni mod lcm(s, v), for i = 1, . . . , lcm(t, w) − 1. We will discuss two possibilities: lcm(s, v)

exceeds
√
n or lcm(s, v) exceeds 3

√
n.

In the case that lcm(s, v) exceeds
√
n, at most lcm(t, w) − 1 powers of n modulo

lcm(s, v) have to be calculated for which has to be checked whether or not the result is a

divisor of n. The cost of the final trial division is Θ(t · (logn)
ρ
) binary operations. Since

t = (logn)
Θ(log log log n)

, the cost of the final trial division will be (logn)
Θ(log log log n)

binary

operations, (cf. Theorem II.(6.21)).

In the case that s exceeds 3
√
n, at most t−1 powers of nmodulo s have to be calculated.

For each power ri ≡ ni mod s we have to employ the algorithm described in [88] to find

all possible divisors of n in the residue class ri mod s (cf. Section II.9).

The cost of performing the algorithm described in [88] and II.9 is proportional to

O((logn)
1+ρ

). It follows that the cost of the final trial division will be O(t·logn1+ρ) binary

operations. Again by using that t = (logn)
Θ(log log log n)

, for some effectively computable

constant c (cf. Theorem II.(6.21)), we find that the cost of the final trial division will be

(logn)
Θ(log log log n)

binary operations.

Heuristics. In the final trial division stage we have to check all possible integers of the

form ni mod lcm(s, v), where i = 1, . . . , lcm(t, w).

The probability that a composite number will not be detected by one of the previous

stages is negligible. Therefore we do not expect to find any divisors, during this stage.

Using this expectation, we can try to minimize the number of trial divisions that have to

be performed in this step.

In the case that we use that lcm(s, v) >
√
n this leads to the following heuristic. If

n is composite, then at least one divisor is less than or equal to
√
n. This proves, that

it suffices to check only those integers ni mod lcm(s, v) which are smaller than
√
n. If

lcm(s, v) ≈ √
n then almost all integers of the form ni mod lcm(s, v) are smaller than

√
n.

By taking lcm(s, v) somewhat larger, however, the number of candidates less than
√
n will

be reduced considerably.

The probability that ni mod lcm(s, v) is less than
√
n is assumed to be to

√
n

lcm(s,v) .

Apart from the fact that for each i < t one has to perform one reduction modulo lcm(s, v)

the number of trial divisions of n can be reduced. The expected number of divisions in

this stage will be equal to lcm(t, w) ·
(

1 +
√

n
lcm(s,v)

)

. The phrase “expected” is because
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nt′ mod lcm(s, v) might be equal to 1 for some divisor t′ of lcm(t, w). In that particular

case, all the trial divisions have been performed using only t′ ·
(

1 +
√

n
lcm(s,v)

)

divisions.

Since the reduction and the division have comparable complexities, this indicates that the

number of operations can be reduced by a factor of almost 2.

It is not clear that the same kind of heuristic can be performed in the case that we

use that lcm(s, v) > 3
√
n.

In the case that we use lcm(s, v) > 3
√
n, there exist at least three possibilities to reduce

the number of operations needed for the final trial division.

In the case lcm(s, v) > 3
√
n the algorithm of [88] (cf. II.9) is used to prove that there do

not exist any divisors in the residue classes ri ≡ ni mod lcm(s, v) for i = 1, . . . , lcm(t, w).

Finding a divisor r in the residue class ri immediately implies that the residue class ri′ ,

with i′ = lcm(t, w)+1− i contains a divisor r′. If our algorithm does not find any divisors

in the residue classes ri for i = 0, . . . , lcm(t, w)/2 the remaining residue classes cannot

contain any divisors. This observation immediately produces a speed up factor of 2 in the

final trial division.

For the second improvement we will make the following observation: the most ex-

pensive part of the final trial division is the calculation of exact square-root of integers of

length O(log s) using Newton’s method. Williams and Dubner (cf. [38]) noticed that it is

beneficial to check if the number is a quadratic residue modulo a number of small primes

before employing Newton’s method to determine if the number is a perfect square. If this

is not the case, one can circumvent the calculation of the square-root. The number of

primes depends on the ratio of the cost of the square-root and the reduction of the number

modulo the product of all the small primes involved.

Suppose that one tries to find the divisors of n in the residue class r modulo s, and

suppose that 0 ≤ r′ < s is defined by r′ · r ≡ n mod s. In the algorithm of [88] for each

triple (ai, bi, ci) the system of equations

ai · x+ bi · y = ci

(x · lcm(s, v) + r) · (y · lcm(s, v) + r′) = n

is solved. The elements ai, bi, and ci are created during a Euclidean-like algorithm, and

are all less than or equal to lcm(s, v). If the solution of the system of equations is a pair

of non-negative integers (x, y), then n is composite. The method to solve the system of

equations involves the extraction of a square-root using Newton’s method.
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Without solving the system of equations the algorithm has the same complexity as

the Euclidean algorithm, which is O((log s)2).

Trying to solve the system of equations modulo a small prime p not dividing 2·lcm(s, v)

can be done if ai mod p, bi mod p, and ci mod p are known. By only reducing a0, b0, and

c0 modulo p, and updating ai, bi, and ci by using the reduction of the (i−1)-th convergent

of the Euclidean-like algorithm (which is on average small) modulo p this can be done in

O(log s · (log p)2) binary operations. Checking whether the system of equations can be

solved modulo p is equivalent to a few multiplications modulo p and a simple look-up,

taking another O(log s · (log p)2) operations.

We will determine how many primes should be taken in order to get the expected

number of calls of Newton’s method less than (log s)/B, where log s is the expected number

of iterations of the Euclidean-like algorithm. The probability that solving the system

modulo p is possible is 1/2: only half of the elements in (Z/pZ)∗ are squares modulo p.

Therefore logB primes should be taken.

The expected number of operations for the algorithm is now

O((log s)2 + (log s)3/B + log s ·
log B
∑

j=1

(log pj)
2) =

= O((log s)2 + (log s)3/B + log s · (logB log logB)2).

Taking B = log s gives a quadratic algorithm in log s. The constraint that the primes p

do not divide 2 · lcm(s, v) is no serious restriction.

Therefore the algorithm for checking all residue-classes ri ≡ ni mod lcm(s, v) takes

O(lcm(t, w)(log s)2)

binary operations.

Instead of performing all operations modulo pi, for i = 1, . . . , logB, it is also possible

to use suitable products of primes pi. This last improvement gives another constant speed

up factor.
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5. GENERATED PROOF.

(5.1) Introduction.

In this section we will discuss the length of the primality proof. If the length of the

primality proof cannot be bounded by a polynomial as a function of the number of bits of

the prime number involved, then it is also not possible to verify the proof in polynomial

time.

As has been shown by Pratt, O((logn)4) binary operations suffice to show that a

number is prime (cf. [125], I.(11.2)). This result has been improved by Pomerance, who

showed that O((logn)3) binary operations are sufficient (cf. [121], I.11).

This does not prove however that there exists an algorithm that can prove the primal-

ity of a prime number in polynomial time. This only proves that, given the correct type of

certificate, one is able to verify the validity of the certificate in polynomial time. We will

now analyze the structure and the length of the proof produced by our algorithm. Almost

all parts of the proof can be proved to be polynomially bounded. Only the length of the

last part of the proof can be proved to be not polynomially bounded.

(5.2) The structure of the primality proof.

The proof consists of 5 parts:

(a) The parameters. This part contains the parameters s, t, u, v, w provided by the

optimization part of the algorithm. These parameters are chosen in such a way that

t = exp(Z/sZ)∗, u = ord(n mod t), w = ord(n mod v) and finally lcm(s, v) > nµ, where µ

may be 1
2 or 1

3 .

(b) The extensions. This part contains for each prime power divisor le ‖ u, the conductor

m as well as the minimal polynomial fle,m of degree le of the extension used by the

algorithm.

(c) The roots of unity. This part contains tuples of the form (vi, ki, wi, li, ζvi
li ), where

lcm(t, v) =
∏

i vi
ki . In this tuple vi is a prime factor of lcm(t, v) in (5.2)(a) and ki is the

number of prime factors vi in lcm(t, v), and finally wi = ord(n mod vi
ki). The number li

indicates, that a vi
li -th root of unity has been found in an extension of Z/nZ of degree

wi. If vi|t, then li will be equal to the number of factors vi in t; otherwise li will be equal

to 1. This is because of the fact that generating a vi-th root of unity (or a vi
ki -th root of
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unity) in an extension of degree wi by the method described in IV.(5.3) suffices to show

that a vi
li -th root of unity exists in an extension of degree wi (cf. II.(4.12)–(4.16)). Finally

ζvi
li will be equal to the root of unity, that has been found. It will be represented by wi

integers of length O(logn).

(d) The Jacobi sum tests. This part contains quadruples (qi, pi, ki, ei), where pi
ki ||qi−1.

Each quadruple contains the information regarding one single Jacobi sum test. This Jacobi

sum test shows that τ(χ)n−σn is equal to the ei-th power of ζpi
ki , where χ is a character

of order pi
ki and conductor qi, and τ(χ) is the Gauss sum of this character. The ζpi

ki will

be a power of one of the roots of unity in (5.2)(c).

(e) Remaining residue classes. This part contains an element of each residue class,

that remains to be tested for divisors of n, when the Lucas-Lehmer type tests and all the

Jacobi sum tests have been performed.

As shown in Theorem II.(7.1), this list contains the lcm(t, w) integers ri ≡ ni mod

lcm(s, v), with 0 ≤ ri < lcm(t, w).

(5.3) The length of the proof.

(a) The parameters. Since lcm(s, v) > nµ, but certainly lcm(s, v) < n, we have that

the length of this part is O(logn).

(b) The extensions. Each prime power divisor le of u as well as each conductor m is of

order O(log t).

(c) The roots of unity. Since
∏

i vi|v and v < n, and the fact that every vi only occurs

in one tuple, we have that this list contains at most O(logn) tuples. Every tuple has length

O(wi logn). Since w can serve as an upper bound for wi, we have that the length of this

part is O(w(logn)2).

(d) The Jacobi sum tests. The number of quadruples (qi, pi, ki, ei) is at most equal to

the number of pairs (pi, qi) with qi | s and pi | qi − 1. So this is

∑

qi|s
#{p : p | qi} ≤

∑

qi|s
log2 qi ≤ log2 s.

Each entry is dominated by the size of qi which is O(log t). Combining these results gives

that the length of this part is O((log s)(log t)) = O((logn)1+ε).
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Remark. If one would include the Jacobi sums used by the test in the proof, each entry

would be dominated by the size of the Jacobi sums involved. Each Jacobi sum test uses

only O(
√

pk) Jacobi sums with φ(pki
i ) entries which are in absolute value less than or

equal to
√
qi = O(log t). Since pki

i is conjectured to be O(log t) we get that combining

these results gives that the length of this part is O((log s)(log3 t)) = O((logn)1+ε).

(e) Remaining residue classes. The number of residue classes that have to be checked

for divisors of n is equal to lcm(t, w). Each integer ri is less than lcm(s, v) and therefore

has binary length O(logn); since lcm(t, w) = (logn)
Θ(log log log n)

, for some effectively com-

putable constant c, we have that the length of this part is (logn)
Θ(log log log n)

. Note that

this is not polynomially bounded.

(5.4) Time to verify the primality proof.

In the worst case, the time needed to verify the proof is proportional to the time needed

to check all remaining candidate-divisors, as listed in (5.2)(e). This can be done in time

O(t(logn)ρ).

In the best possible case we have that t|w. In that particular case we have that the

time needed to verify the proof is proportional to the time needed to verify (5.2)(c). Since

this is polynomial in O(logn), the best possible case gives a proof, which can be verified

in polynomial time.

In the average case, the time needed to verify the proof is dominated by the time

needed to verify (5.2)(e), which is nΘ(log log log n).
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6. INVERTING AN INTEGER MATRIX.

In order to invert an integer matrix, we will distinguish here two different kinds of methods

exist. The first kind uses congruence techniques, i.e., modular arithmetic, to perform

elimination steps and derives the exact inverse from these results. The second kind of

method uses a variant of an elimination technique, known from the theory of inverting real

matrices, and performs this method in long integer arithmetic.

(6.1) A method using modular arithmetic.

Although some modifications of this method are known, cf. [64], we will describe a simple

variant of this method. To invert a u × u non-singular matrix A = (aij)
u
i,j=1 using the

“modular” method, one has to perform steps (1) and (2).

(1) Put d◦ = 0 and A◦ = I, where I is the u× u identity matrix.

(2) Perform step (2a) and step (2b) for k = 1, . . ., as long as A · A◦ 6= d◦ · I. As soon

as A ·A◦ = d◦ · I we have A◦ = d◦ ·A−1, and the process is terminated.

(2a) Let pk be the k-th prime. Perform a Gaussian elimination to calculate d∗k with

0 ≤ d∗k < pk and the matrix A∗
k containing only non-negative entries which are less

than pk, such that d∗ ≡ det(A) mod pk and A · A∗
k ≡ d∗k · I mod pk, where I is the

u× u identity matrix.

(2b) If d∗ 6= 0 and d◦ = 0 perform step (2b1); if d∗ 6= 0 and d◦ 6= 0 perform step (2b2).

If d∗ = 0 then step (2b) is completely skipped.

(2b1) Put A◦ = A∗
k, and d◦ = d∗k.

(2b2) Put A′ = A◦, d′ = d◦, P ′ = P ◦, and P ◦ = P ′ · pk. Use the Chinese remainder

algorithm, (cf. [64]), to calculate A◦ such that (aij)
◦ ≡ (aij)

′ mod P ′, and (aij)
◦ ≡

(aij)
∗
k mod pk for 1 ≤ i, j ≤ u and to calculate d◦ such that d◦ ≡ d′ mod P ′, and

d◦ ≡ d∗k mod pk. Calculate A◦ and d◦ in such a way that all entries are in absolute

value less than P ◦/2.

The basic idea of this method is to sequentially solve the problem modulo a list of

primes, that are sufficiently small. In this way, one can perform all arithmetic operations

in step (2b) in relatively small precision. Long integer arithmetic is only needed to check

the solution in step (2), and in step (2b2), using the Chinese remainder algorithm.

By using the Chinese remainder algorithm, one can find the unique solution, where

all entries of A◦ and d◦ have absolute values less than P ◦/2.

Since one can calculate an upper bound for the size of the entries of the inverse of
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A as well as for the size of det(A) by using Hadamard’s inequality (cf. [64]), this process

terminates after a finite number of steps.

(6.2) Complexity of the “modular” method.

Suppose that all primes pi involved in this method are less than C. Since every elimination

in step (2a) involves at most 1
3u

3 multiplications and u divisions modulo a prime of size

less than logC, we have that each elimination step takes O( 1
3
u3(logC)ρ+u(logC)ρ) binary

operations (cf. (1.7) for the definition of ρ). The exponent 3 in u3 can be improved by

using techniques presented for instance in [20].

Furthermore, in the k-th step A◦ contains only entries of size O(logPk) = O(k logC).

To perform the Chinese remainder algorithm to calculate the u2 entries of A◦ and the

value of d◦, takes u2 + 1 times O((k logC)ρ) binary operations. Checking the solution

in each step takes O(u3(k logC)ρ) binary operations. Therefore each step takes about

O(u3(k logC)ρ) binary operations. This implies that at most O(u3k1+ρ
0 (logC)ρ) binary

operations are needed to perform the complete algorithm, where k0 is an upper bound for

the number of steps.

To get an upper bound for k0, we assume that the set of primes involved in this method

are the first k0 primes, with their product larger than M . By taking k0 = Θ(logM), we

have that the product exceeds M , and that C = O(logM · log logM).

Since it suffices to have M larger than the upper bound for the absolute value of the

entries of A−1, we can choose M =
∏u

i=1

(
∑u

j=1 a
2
ij

)
1
2 , by using Hadamard’s inequality (cf.

[64]). So log(M) = O(u(logB+log u)), where logB is a bound on the size of the entries in

A. Combining this with the upper bound for the total number of binary operations we get

that the algorithm takes O(u3(u(logB + logu))1+ρ+ε) binary operations, for any ε > 0.

(6.3) A method using long integer arithmetic.

We will describe a method to invert the integral matrix A = (aij)
u
i,j=1, which is similar to

Gaussian elimination for real matrices.

For real matrices, the Gaussian elimination method can be regarded as decomposing

the original matrix A in a product of a lower triangular matrix L, a diagonal matrix D

and an upper triangular matrix U , i.e.,

A = L ·D · U.

In order to obtain numerical stability, row and/or column interchanges can (should)

be applied. In this case we get
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P ·A ·Q = L ·D · U,

where P and Q are permutation matrices reflecting the row and column interchanges

respectively. In practice, one only applies row interchanges (i.e., Q = I, the identity

matrix). This variant is called Gaussian elimination with partial pivoting on rows (i.e.,

P ·A = L ·D · U).

In the case of inverting integer matrices, or more generally exact inverting, the problem

of numerical stability is replaced by the problem to bound the growth of the elements

involved.

For some variants of the Gaussian elimination one is able to construct matrices, for

which the size of elements generated during the Gaussian elimination grows exponentially.

One can even construct matrices such that both the matrix itself as well as its inverse matrix

have small entries, but such that the elements created in the intermediate computations

have a size exponential in the size of the input, see [64], [135].

The method for integral matrices will express the matrixA as the productD−1·L·U ·P ,

where D is a diagonal matrix, L is a lower triangular matrix, U is an upper triangular

matrix and P is a permutation matrix to limit the growth of the size of the elements

generated during the decomposition. All matrices have integral coefficients.

We will describe the decomposition process in u steps. For step k = 1, . . . , u, integral

matrices D(k), L(k), U (k) and P (k) will be generated. During each step of the reduction

process, the equation A = (D(k))−1 · L(k) · U (k) · P (k) remains preserved, for k = 1, . . . , u.

To invert a u × u matrix A = (aij)
u
i,j=1 using a method similar to the Gaussian

elimination of real matrices, one has to perform steps (1) through (3).

(1) Initially put L(1) = A and D(1) = U (1) = P (1) = I, where I is the u × u identity

matrix.

(2) For k = 1, . . . , u− 1 perform steps (2a) to (2f).

(2a) Find the smallest non-zero element among |L(k)
kk |, . . . , |L

(k)
uk |. Suppose that |L(k)

ik | is

the smallest element, with i > j. Replace L(k) by the matrix that is generated by

exchanging the i-th and the k-th column of L(k). In the same way replace P (k) by

the matrix that is generated by exchanging the i-th and the k-th row of P (k).

(2b) Calculate g(k) = gcd{L(k)
ik : k ≤ i ≤ u}.

(2c) Put D
(k+1)
ii = D

(k)
ii for i ≤ k and D

(k+1)
ii = D

(k)
ii · L(k)

kk /g
(k) for i > k.

(2d) Put U
(k+1)
ij = U

(k)
ij for i 6= k. Put U

(k+1)
kj = L

(k)
kj for j ≥ k and put U

(k+1)
kj = 0 for

j < k.
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(2e) First put L
(k+1)
ij = L

(k)
ij for 1 ≤ i < k and 1 ≤ j ≤ u as well as for i = k and j < k.

Next put L
(k+1)
kk = 1 and put L

(k+1)
kj = 0 for j > k. Put L

(k+1)
ij = L

(k)
ij · L(k)

kk /g
(k)

for k ≤ i ≤ u and 1 ≤ j < k. Put L
(k+1)
ik = L

(k)
ik for k < i ≤ u, and finally put

L
(k+1)
ij = (L

(k)
ij · L(k)

kk − L
(k)
ik · L(k)

kj )/g(k) for k < i, j ≤ u.

(2f) Put P (k+1) = P (k).

(3) Calculating the inverse of A can now be done by sequentially solving the systems

L ·X = D, U ·Y = X, P ·Z = Y , where X, Y , and Z are u×u matrices. These are

straightforward operations, since L(u) is a lower triangular matrix, U (u) is an upper

triangular matrix, D(u) is a diagonal matrix and P (u) is a permutation matrix.

Remark. As explained before, Gaussian elimination for real matrices can be performed

using row and/or column interchanges to obtain numerical stability. This method is often

referred to as Gaussian elimination with complete pivoting. The variant for inverting

integral matrices described above can be seen as a variant of Gaussian elimination with

partial pivoting. In a somewhat more complicated way, one can also describe a variant

similar to Gaussian elimination with complete pivoting.

(6.4) Complexity of the “long integer” method.

As can be verified quite easily, the i-th reduction step takes O((u− i) · u) multiplications

and divisions and O(i) applications of a Euclidean algorithm.

Suppose that the entries in the i-th reduction step can be bounded by Bi, we get that

the number of operations in this step will be equal to O((u− i)u(logBi)
ρ + i(logBi)

ρ).

The most simple upper bound for logBi is equal to 2i logB, where logB is an upper

bound for the size of the entries of A. This gives an overall upper bound for the “long

integer” method of

O(u3(2u logB)
ρ

+ u2(2u logB)
ρ
)

binary operations.

(6.5) Conclusion.

For large u, the first method is definitely preferable over the second one, since the growth

of the elements involved in the second method is hard to control. However, for small

u, it seems that the growth of the elements does not yet play an important role in the

complexity bounds.
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It is possible to improve the second method in such a way that the size of the elements

involved in the Gaussian elimination can be bounded by a polynomial in the size of the

input. Instead of keeping track of a denominator for the complete inverse matrix, as

has been done above, one should express each element as a rational, having its private

numerator and denominator. In doing so, one can show that all the elements involved

have a size that is bounded by a polynomial in the size of the input.

In the precomputation part of the primality test, one needs to generate the inverse of

the matrices used to map the conjugates of a generator of a cyclic extension to the powers

of the generator (cf. IV.(2.3)). The dimension of the matrices involved runs through all

prime power divisors of λ(t0), the exponent of (Z/t0Z)∗. Even for fairly large values of t0,

these prime power values are small.

Since only matrices of small size will be inverted in the primality test, the second

method is preferred over the first method. If the sizes of the matrices involved tend

to grow, i.e., when the size of N grows beyond 6000 decimal digits (cf. IV.2), it seems

worthwhile to use the first method.

Since the inversion most of the time takes place in the preliminary part of the algo-

rithm, the calculation of the inverse matrices is done once and for all.
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1. INTRODUCTION.

In this chapter we will discuss the performance of the new primality test, as well as related

results.

For two widely used computers, the SUN-4
�

and the DEC-3100
�

, some basic arith-

metic operations used by the primality test have been written in assembly language in

order to speed up the primality test (cf. [34], [150]). The timings for these basic routines

are used to give an estimate of the time needed to perform the complete test. They are

given in the second section.

In the third section we will present the performance of the test on numbers up to 200

digits. This will include, apart from a table of timings, performed on 20 randomly chosen

probable primes of various sizes, a discussion about the optimal choices for the parameters

fed to our test.

Next we will present an example of a proof for (23539 + 1)/3 to show the capabilities

of our test for larger numbers. This particular prime has 1065 decimal digits, and it was

proved to be prime by F. Morain, (cf. [110]). It is the first prime of more than a thousand

digits, proved to be prime by a general purpose primality test.

In the final section we will compare the test with its two major competitors, namely

the old Jacobi sum test due to H. Cohen, A.K. Lenstra and H.W. Lenstra, Jr. (cf. [29]

and [30]) and the complex multiplication test due to A.O.L. Atkin and F. Morain (cf. [108]

and [109]). These were the two fastest general purpose primality tests known so far.
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2. APPROXIMATE FUNCTIONS FOR BASIC OPERATIONS.

In IV.4 functions are given to determine the time needed for the various stages of the

algorithm. These functions depend on the value for n, and the parameters s, t, u, v, w,

µ, as determined in the optimization step of the algorithm, and some machine dependent

constants and functions.

To determine the time needed by the various stages as accurately as possible, one

needs the time needed to perform the most frequently used operations on two multi-length

integers, i.e., multiplication, division, and multiplication modulo n. The last operation is

performed by a method of [107] and is applied quite frequently in the algorithm.

Another function that is determined is an approximation function for the time needed

to perform the final trial division, with µ = 1
3
. In order to determine the time needed

to perform the final trial division, one needs to determine the number of prime products

which are used during the final trial division stage. These prime products are needed to

check if a system of equations is solvable, without actually solving the system. See II.9,

IV.6, and V.(4.5) for more details.

Given these functions, the value for n, as well as the values for s, t, u, v, and w, and

the value for µ, the time needed for the primality test to complete the primality proof can

be accurately predicted.

(2.1) Arithmetical operations.

First we will determine the functions that specify the time needed for multiplication,

division, and multiplication modulo n. Clearly, the timing functions will be a function of

the length of the integers involved. Usually, length signifies the binary logarithm but in this

case we use the number of computer words needed to represent the integers. The functions

will be determined for a SUN-4 and a DEC-3100. Both computers have a computer-word

length of 32 bits. For various reasons, only 30 bits in each word will be used to store

the multi-length integers. Consequently the length l(n) of a multi-length integer n will be

equal to blog2(n)/30c + 1. Calculating the time needed for multiplication, division and

multiplication modulo n for two multi-length integers was done by taking 100 times a

random choice of two multi-length integers of length a and length b and performing the

appropriate operation 100 times on these integers.

The time needed to perform multiplication modulo n of two multi-length integers only

depends on the length l(n) of n (cf. Remark (2.2)). The time tm(a, b), td(a, b) and tn(l(n))
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2. Approximate functions for basic operations VI. Performance

for multiplication, division and multiplication modulo n of two multi-length integers re-

spectively is measured in seconds per 10000 operations.

For the SUN-4 we obtain the following results:

tm(a, b)

(a, b) 1 2 3 4 5 6 7 8 9 10 11 12 13

1 0.14

2 0.22 0.35

3 0.28 0.45 0.61

4 0.32 0.52 0.72 0.77

5 0.37 0.64 0.85 1.10 1.32

6 0.46 0.69 0.98 1.29 1.53 1.88

7 0.46 0.79 1.14 1.46 1.76 2.09 2.44

8 0.53 0.93 1.24 1.58 1.98 2.34 2.72 3.04

9 0.57 0.98 1.40 1.82 2.27 2.58 3.01 3.43 3.77

10 0.67 1.05 1.49 1.88 2.44 2.87 3.31 3.78 4.19 4.64

11 0.69 1.16 1.63 2.10 2.64 3.04 3.57 4.06 4.51 5.11 5.63

12 0.71 1.24 1.78 2.31 2.84 3.35 3.88 4.39 5.01 5.42 6.00 6.53

13 0.78 1.32 1.91 2.46 3.05 3.62 4.15 4.67 5.30 5.88 6.40 6.99 7.62

14 0.81 1.44 2.07 2.65 3.24 3.73 4.43 5.12 5.69 6.27 6.92 7.48 8.12

15 0.73 1.49 2.15 2.79 3.48 4.09 4.75 5.43 6.06 6.73 7.36 8.00 8.64

16 0.92 1.62 2.30 2.99 3.69 4.34 5.10 5.73 6.40 7.24 7.99 8.97 9.62

17 0.95 1.73 2.45 3.10 3.83 4.61 5.42 6.04 6.72 7.53 8.26 9.04 9.80

18 1.00 1.78 2.59 3.34 4.10 4.89 5.64 6.43 7.23 7.99 8.79 9.63 10.40

19 1.07 1.94 2.76 3.51 4.36 5.14 6.00 6.75 7.58 8.49 9.19 9.97 10.90

20 1.14 2.00 2.80 3.68 4.51 5.42 6.28 7.12 7.86 8.88 9.80 10.55 11.39

30 1.59 2.88 4.19 5.37 6.74 7.98 9.31 10.57 11.78 13.06 14.18 15.76 17.03

40 2.12 3.82 5.54 7.25 9.04 10.58 12.30 14.07 15.98 17.38 19.06 20.38 22.19

50 2.63 4.69 6.70 8.83 10.87 13.06 15.00 17.23 19.26 21.31 23.43 25.47 27.42

60 3.09 5.64 8.25 10.67 13.17 15.72 18.11 20.65 23.21 25.72 28.21 30.75 33.25

70 3.60 6.51 9.67 12.39 15.33 18.13 21.09 23.99 27.07 30.17 32.86 35.68 38.65

80 4.06 7.37 10.65 13.92 17.30 20.60 23.95 27.15 30.52 33.77 37.03 40.57 43.73

90 4.63 8.35 12.08 15.92 19.67 23.35 27.12 30.78 34.62 38.16 42.06 45.77 49.48

100 5.04 9.13 13.29 17.35 21.52 25.66 29.72 34.06 38.36 42.49 46.77 50.84 54.92

120 6.03 10.98 15.84 20.84 25.71 30.74 35.61 40.56 45.47 50.41 55.30 60.28 65.57

140 7.03 12.85 18.65 24.46 30.31 36.06 41.88 47.65 53.49 59.25 65.06 70.88 76.65

160 8.07 14.72 21.36 28.03 34.68 41.34 47.99 54.63 61.19 67.97 74.65 81.26 87.83

180 9.09 16.53 24.05 31.50 38.94 46.46 54.00 61.37 68.88 76.36 83.91 91.28 98.71

200 10.01 18.36 26.71 34.90 43.22 51.65 59.96 68.07 75.75 84.03 92.11 100.93 109.72

217



VI. Performance 2. Approximate functions for basic operations

tm(a, b)

(a, b) 14 15 16 17 18 19 20 30 40 50

14 8.70

15 9.41 9.93

16 10.11 10.87 11.26

17 10.44 11.29 11.86 12.73

18 11.13 11.76 12.57 13.39 14.18

19 11.71 12.41 13.33 14.13 15.05 15.79

20 12.23 13.03 13.92 14.95 15.51 16.48 17.24

30 18.23 19.53 20.58 22.07 23.40 24.71 25.66 38.28

40 24.19 25.85 27.32 29.12 30.85 32.27 33.74 50.70 67.68

50 29.79 31.65 34.13 35.93 37.86 39.89 42.04 63.26 84.42 105.42

60 35.72 38.22 40.71 43.24 45.81 48.34 50.83 75.84 101.05 126.50

70 41.89 44.05 47.00 50.34 53.02 55.74 58.74 87.70 116.50 145.32

80 46.96 50.22 53.46 56.94 60.23 63.61 67.47 100.93 134.01 167.40

90 53.21 56.97 60.69 64.38 68.21 71.92 76.19 112.85 149.38 186.32

100 59.13 63.32 67.54 71.63 75.69 79.85 83.99 125.58 167.04 208.54

120 70.80 75.76 80.75 85.70 90.67 95.69 100.65 150.42 200.22 249.94

140 82.45 88.28 94.09 99.86 105.72 111.53 117.28 175.28 233.31 291.29

160 94.57 100.72 106.81 113.42 120.70 127.71 134.37 200.84 267.27 333.92

180 105.31 112.65 120.22 128.74 136.20 143.68 151.13 225.95 300.57 375.30

200 118.00 126.28 134.73 142.88 151.38 159.38 168.31 251.06 332.24 417.20

tm(a, b)

(a, b) 60 70 80 90 100 120 140 160 180 200

60 151.73

70 174.27 203.29

80 200.61 233.95 267.20

90 223.37 260.78 297.61 334.69

100 250.05 291.58 333.12 374.62 414.61

120 299.81 349.48 399.28 448.96 496.49 595.19

140 349.38 407.72 463.88 525.16 583.33 696.69 815.85

160 400.29 463.67 533.19 599.70 663.22 798.85 930.86 1063.16

180 446.92 524.89 599.52 671.98 748.15 898.62 1045.00 1194.57 1346.13

200 499.91 583.33 664.47 752.86 828.09 999.46 1162.90 1332.37 1495.11 1659.36
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2. Approximate functions for basic operations VI. Performance

td(a, b)

(a, b) 1 2 3 4 5 6 7 8 9 10 11 12 13

1 0.29

2 0.50 0.43

3 0.65 0.66 0.50

4 0.69 0.86 0.72 0.55

5 0.80 1.03 1.02 0.78 0.57

6 0.96 1.28 1.27 1.13 0.92 0.63

7 1.08 1.47 1.51 1.47 1.22 1.02 0.64

8 1.19 1.67 1.79 1.72 1.61 1.35 1.09 0.60

9 1.35 1.96 2.04 2.04 2.00 1.79 1.47 1.15 0.70

10 1.47 2.12 2.32 2.33 2.32 2.24 1.92 1.58 1.25 0.79

11 1.60 2.28 2.53 2.62 2.75 2.59 2.38 2.19 1.72 1.29 0.79

12 1.75 2.55 2.83 2.94 2.97 2.94 2.93 2.54 2.32 1.95 1.31 0.77

13 1.87 2.80 3.03 3.21 3.38 3.34 3.31 3.07 2.80 2.46 1.95 1.46 0.75

14 1.96 2.94 3.35 3.59 3.73 3.65 3.76 3.54 3.35 3.09 2.59 2.22 1.53

15 2.09 3.11 3.60 3.89 4.09 4.19 4.20 4.06 3.91 3.58 3.34 2.90 2.22

16 2.28 3.41 3.84 4.20 4.41 4.61 4.71 4.62 4.51 4.22 3.91 3.52 3.04

17 2.43 3.64 4.09 4.49 4.82 4.95 5.12 5.10 5.02 4.82 4.55 4.12 3.75

18 2.51 3.85 4.42 4.90 5.18 5.39 5.52 5.66 5.52 5.42 5.15 4.97 4.51

19 2.58 4.01 4.61 5.15 5.48 5.73 6.00 6.08 6.12 5.99 5.87 5.46 5.20

20 2.76 4.24 4.84 5.46 5.80 6.20 6.42 6.51 6.71 6.59 6.50 6.27 5.98

30 4.00 6.39 7.53 8.54 9.43 10.26 10.96 11.53 12.12 12.50 12.91 13.16 13.26

40 5.31 8.50 10.10 11.55 13.03 14.25 15.37 16.48 17.53 18.33 19.21 19.94 20.62

50 6.52 10.70 12.74 14.65 16.47 18.20 19.93 21.49 22.91 24.30 25.57 26.72 27.88

60 7.77 12.61 15.11 17.52 19.86 22.01 24.21 26.32 28.46 30.22 32.04 33.74 35.21

70 9.07 14.83 17.84 20.81 23.71 26.20 28.83 31.39 33.80 36.27 38.17 40.54 42.56

80 10.30 16.80 20.25 23.65 26.78 30.04 33.45 36.43 39.22 41.89 44.82 47.40 49.95

90 11.64 19.13 22.95 26.84 30.70 34.23 37.75 41.29 44.77 47.89 50.65 53.84 56.91

100 12.80 21.17 25.72 29.86 34.21 38.29 42.36 46.24 50.02 53.95 57.53 61.22 64.20

120 15.39 25.31 30.83 36.08 41.33 46.23 51.36 56.23 61.01 65.07 69.53 74.08 78.68

140 17.95 29.67 36.01 42.23 48.33 54.36 60.23 66.07 71.72 77.55 82.89 88.64 93.94

160 20.46 33.88 41.12 48.32 55.29 62.49 69.43 76.09 82.69 89.36 95.81 102.26 108.45

180 22.67 37.78 46.14 54.45 62.46 70.47 78.32 85.90 93.60 101.31 108.62 116.20 123.27

200 25.51 42.16 51.63 60.66 69.64 78.27 86.66 95.20 104.12 112.73 121.56 130.12 138.08
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VI. Performance 2. Approximate functions for basic operations

td(a, b)

(a, b) 14 15 16 17 18 19 20 30 40 50

14 0.78

15 1.59 0.84

16 2.38 1.75 0.92

17 3.04 2.54 1.75 0.90

18 3.90 3.37 2.67 1.87 0.96

19 4.80 4.17 3.49 2.76 1.86 0.95

20 5.54 4.98 4.40 3.58 2.88 1.98 1.01

30 13.40 13.21 13.13 13.06 12.47 12.09 11.65 1.30

40 21.06 21.53 21.92 22.07 22.24 22.48 22.32 16.69 1.61

50 28.92 29.62 30.67 31.14 31.78 32.10 32.85 31.75 21.43 1.98

60 36.73 38.15 39.33 40.37 41.60 42.79 43.50 47.43 41.89 26.76

70 44.52 46.47 48.18 49.80 51.35 52.77 54.14 62.76 61.37 51.22

80 52.16 54.51 56.87 59.14 60.98 63.05 64.79 78.14 82.22 76.41

90 59.59 62.29 65.68 68.23 70.96 73.18 75.61 93.67 102.22 101.37

100 67.17 70.59 74.04 77.14 80.40 83.40 86.12 108.88 122.36 126.27

120 83.56 87.79 92.25 95.92 99.77 103.65 107.66 139.73 162.75 175.79

140 99.17 104.23 109.15 113.35 118.41 124.02 128.80 170.76 202.82 225.64

160 114.22 119.80 125.92 132.72 138.83 144.33 150.21 201.02 243.59 275.52

180 131.06 137.42 144.53 149.83 156.89 165.10 172.92 231.58 282.84 326.38

200 146.53 154.50 162.22 170.27 177.35 184.12 192.58 263.70 323.41 375.57

(a, b) 60 70 80 90 100 120 140 160 180 200

60 2.22

70 31.41 2.59

80 61.13 37.15 2.88

90 91.25 71.04 41.93 3.37

100 120.62 105.90 81.00 47.24 3.20

120 179.72 172.69 158.32 135.23 100.83 3.86

140 238.84 243.03 235.58 221.03 197.88 120.02 4.54

160 295.48 311.13 315.02 309.74 294.45 236.17 138.68 4.99

180 356.39 382.84 394.82 394.70 391.28 352.67 274.92 159.97 5.85

200 414.58 446.91 474.10 485.67 489.84 464.23 410.29 313.33 180.75 5.95

tn(l(n))

l(n) 1 2 3 4 5 6 7 8 9 10 11

0.54 0.95 1.68 2.26 3.19 4.23 5.51 6.89 8.44 10.16 12.01

l(n) 12 13 14 15 16 17 18 19 20 30 40

14.17 16.44 18.72 21.21 23.85 26.78 29.86 33.04 36.37 78.90 138.39

l(n) 50 60 70 80 90 100 120 140 160 180 200

216.05 310.64 422.84 554.99 702.85 863.01 1244.95 1689.91 2202.07 2781.43 3568.37
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2. Approximate functions for basic operations VI. Performance

For the DEC-3100 we get:

tm(a, b)

(a, b) 1 2 3 4 5 6 7 8 9 10 11 12 13

1 0.12

2 0.14 0.17

3 0.15 0.23 0.31

4 0.19 0.28 0.38 0.45

5 0.21 0.30 0.41 0.52 0.63

6 0.22 0.35 0.47 0.58 0.75 0.82

7 0.25 0.38 0.50 0.65 0.79 0.93 1.09

8 0.27 0.41 0.58 0.72 0.88 1.02 1.17 1.32

9 0.30 0.45 0.61 0.79 0.93 1.12 1.28 1.45 1.62

10 0.37 0.49 0.66 0.86 1.07 1.21 1.41 1.58 1.73 1.95

11 0.33 0.53 0.73 0.92 1.13 1.31 1.49 1.71 1.89 2.09 2.29

12 0.35 0.57 0.78 0.98 1.22 1.39 1.63 1.79 2.04 2.23 2.46 2.66

13 0.38 0.60 0.81 1.05 1.27 1.52 1.71 1.95 2.16 2.41 2.60 2.85 3.07

14 0.41 0.64 0.87 1.11 1.35 1.59 1.84 2.07 2.32 2.55 2.77 3.02 3.26

15 0.43 0.72 0.93 1.19 1.44 1.70 1.96 2.21 2.43 2.71 3.02 3.25 3.47

16 0.45 0.71 0.99 1.25 1.52 1.79 2.06 2.33 2.59 2.86 3.12 3.38 3.67

17 0.46 0.76 1.16 1.32 1.59 1.88 2.17 2.44 2.73 3.03 3.27 3.59 3.88

18 0.49 0.79 1.09 1.38 1.68 2.00 2.27 2.52 2.88 3.14 3.44 3.78 4.06

19 0.50 0.84 1.14 1.47 1.77 2.06 2.38 2.68 3.01 3.32 3.65 4.00 4.26

20 0.54 0.87 1.18 1.52 1.85 2.14 2.49 2.84 3.15 3.45 3.81 4.09 4.44

30 0.76 1.23 1.70 2.18 2.64 3.10 3.60 4.00 4.55 5.00 5.50 5.98 6.46

40 0.99 1.59 2.23 2.82 3.46 4.09 4.73 5.32 5.96 6.55 7.17 7.80 8.46

50 1.21 1.98 2.75 3.51 4.27 5.06 5.83 6.61 7.35 8.12 8.87 9.64 10.39

60 1.44 2.34 3.26 4.17 5.10 6.03 6.92 7.81 8.75 9.66 10.58 11.47 12.41

70 1.63 2.73 3.80 4.85 5.89 6.96 8.05 9.07 10.11 11.24 12.30 13.31 14.42

80 1.87 3.10 4.29 5.48 6.70 7.92 9.11 10.32 11.49 12.75 13.93 15.19 16.36

90 2.13 3.47 4.80 6.16 7.50 8.88 10.24 11.62 12.98 14.33 15.62 17.02 18.34

100 2.33 3.82 5.33 6.83 8.30 9.81 11.30 12.78 14.31 15.80 17.31 18.82 20.35

120 2.84 4.55 6.35 8.14 9.95 11.73 13.54 15.32 17.11 18.91 20.69 22.46 24.25

140 3.23 5.31 7.41 9.49 11.60 13.66 15.71 17.81 19.87 22.03 24.10 26.15 28.27

160 3.67 6.00 8.42 10.81 13.19 15.58 17.98 20.35 22.68 25.09 27.45 29.85 32.22

180 4.12 6.80 9.47 12.14 14.78 17.47 20.15 22.82 25.49 28.17 30.81 33.48 36.20

200 4.56 7.52 10.51 13.46 16.41 19.38 22.35 25.33 28.31 31.21 34.13 37.13 40.10
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VI. Performance 2. Approximate functions for basic operations

tm(a, b)

(a, b) 14 15 16 17 18 19 20 30 40 50

14 3.52

15 3.73 4.01

16 3.93 4.20 4.46

17 4.14 4.41 4.72 5.01

18 4.34 4.66 4.93 5.25 5.58

19 4.58 4.86 5.22 5.48 5.80 6.16

20 4.77 5.09 5.45 5.79 6.08 6.41 6.76

30 6.92 7.40 7.88 8.35 8.81 9.27 9.75 14.55

40 9.04 9.72 10.29 10.89 11.51 12.14 12.79 18.98 25.24

50 11.18 11.95 12.74 13.47 14.26 15.03 15.81 23.39 31.09 38.84

60 13.30 14.21 15.13 16.03 16.90 17.91 18.78 27.94 37.08 46.27

70 15.44 16.50 17.67 18.70 19.72 20.76 21.73 32.45 42.91 53.49

80 17.58 18.74 20.06 21.21 22.52 23.66 24.85 36.96 48.84 60.90

90 19.73 21.05 22.45 23.82 25.16 26.45 27.91 41.38 54.98 68.28

100 21.87 23.43 24.88 26.32 27.86 29.39 30.81 45.84 60.84 75.86

120 26.07 27.87 29.68 31.48 33.26 35.04 36.85 54.75 72.66 90.56

140 30.40 32.49 34.53 36.57 38.62 40.83 42.81 63.65 84.55 105.27

160 34.66 37.02 39.40 41.76 44.09 46.50 48.91 72.70 96.48 120.33

180 38.81 41.52 44.18 46.83 49.50 52.15 54.81 81.52 108.24 134.90

200 43.05 46.04 49.00 52.02 55.11 58.12 61.05 90.65 120.53 150.17

tm(a, b)

(a, b) 60 70 80 90 100 120 140 160 180 200

60 55.47

70 64.07 74.83

80 73.03 85.00 97.29

90 81.76 95.48 108.88 122.38

100 90.86 105.66 120.55 135.56 150.63

120 108.43 126.38 144.35 162.68 180.98 216.45

140 126.15 146.96 167.78 188.86 209.68 251.48 293.18

160 144.12 167.84 191.74 215.45 239.27 286.72 334.03 381.47

180 161.54 188.35 215.15 241.67 268.51 322.60 376.26 429.51 481.84

200 179.56 208.99 238.92 268.71 298.20 357.80 416.87 476.23 535.15 594.56
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2. Approximate functions for basic operations VI. Performance

td(a, b)

(a, b) 1 2 3 4 5 6 7 8 9 10 11 12 13

1 0.16

2 0.28 0.29

3 0.37 0.47 0.32

4 0.45 0.62 0.51 0.34

5 0.51 0.75 0.68 0.54 0.35

6 0.58 0.96 0.86 0.73 0.60 0.40

7 0.69 1.10 1.05 0.95 0.79 0.63 0.40

8 0.77 1.25 1.23 1.12 1.07 0.84 0.68 0.40

9 0.84 1.39 1.41 1.30 1.20 1.11 0.91 0.69 0.39

10 0.92 1.56 1.59 1.52 1.43 1.36 1.16 0.96 0.72 0.47

11 1.00 1.73 1.74 1.73 1.69 1.56 1.44 1.22 1.05 0.77 0.47

12 1.17 1.92 1.93 1.93 1.92 1.80 1.68 1.55 1.36 1.10 0.81 0.47

13 1.16 2.09 2.17 2.12 2.10 2.04 1.93 1.85 1.64 1.44 1.15 0.86 0.51

14 1.23 2.27 2.32 2.38 2.33 2.25 2.21 2.07 1.93 1.75 1.47 1.26 0.92

15 1.31 2.39 2.50 2.55 2.57 2.56 2.50 2.38 2.23 2.01 1.88 1.55 1.23

16 1.41 2.55 2.72 2.80 2.83 2.79 2.75 2.64 2.51 2.38 2.17 2.00 1.64

17 1.49 2.75 2.85 2.99 2.98 3.05 3.01 2.93 2.86 2.71 2.54 2.31 1.98

18 1.57 2.88 3.04 3.15 3.21 3.29 3.29 3.27 3.10 3.00 2.82 2.65 2.40

19 1.64 3.06 3.22 3.34 3.43 3.51 3.55 3.50 3.44 3.27 3.18 3.00 2.75

20 1.73 3.23 3.38 3.54 3.64 3.77 3.78 3.82 3.75 3.60 3.55 3.43 3.16

30 2.54 4.86 5.25 5.59 5.88 6.20 6.42 6.62 6.83 6.84 6.94 7.00 6.98

40 3.34 6.45 6.98 7.61 8.20 8.62 9.03 9.48 9.79 10.11 10.42 10.59 10.77

50 4.14 8.05 8.90 9.61 10.34 10.99 11.64 12.28 12.75 13.26 13.80 14.19 14.55

60 4.96 9.71 10.69 11.64 12.60 13.46 14.24 15.05 15.92 16.48 17.22 17.83 18.36

70 5.78 11.30 12.48 13.70 14.87 15.90 16.87 17.84 18.80 19.75 20.50 21.46 22.17

80 6.57 13.01 14.34 15.68 17.02 18.30 19.60 20.83 21.75 22.84 24.11 25.03 26.11

90 7.39 14.55 16.16 17.78 19.26 20.72 21.98 23.55 24.88 26.09 27.35 28.73 29.93

100 8.19 16.13 18.00 19.73 21.48 23.21 24.81 26.37 27.83 29.41 30.77 32.35 33.62

120 9.80 19.42 21.67 23.83 25.98 28.00 30.05 32.10 33.93 35.83 37.52 39.40 41.40

140 11.45 22.69 25.29 27.87 30.36 32.90 35.16 37.59 39.79 42.27 44.33 46.70 48.98

160 13.04 25.93 28.96 32.00 34.72 37.92 40.54 43.32 45.97 48.61 51.36 53.82 56.51

180 14.64 29.13 32.42 35.96 39.23 42.68 45.73 48.84 52.07 55.24 58.23 61.14 64.17

200 16.26 32.37 36.12 39.77 43.73 47.40 50.86 54.53 57.89 61.52 65.06 68.42 71.55
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VI. Performance 2. Approximate functions for basic operations

td(a, b)

(a, b) 14 15 16 17 18 19 20 30 40 50

14 0.57

15 0.97 0.54

16 1.35 1.00 0.57

17 1.72 1.38 1.02 0.58

18 2.15 1.80 1.43 1.04 0.61

19 2.53 2.20 1.88 1.51 1.10 0.63

20 2.92 2.67 2.28 1.92 1.55 1.12 0.61

30 6.91 6.82 6.73 6.58 6.34 6.05 5.85 0.86

40 10.87 11.09 11.14 11.08 11.13 11.19 11.05 8.02 1.11

50 14.89 15.12 15.50 15.79 15.97 15.97 16.44 15.21 10.17 1.35

60 18.93 19.41 19.92 20.41 20.75 21.13 21.42 22.31 19.38 12.37

70 23.00 23.73 24.37 25.07 25.48 26.02 26.51 29.52 28.50 23.63

80 26.82 27.75 28.67 29.65 30.12 31.06 31.73 36.69 37.79 34.59

90 30.92 31.95 33.20 34.32 35.20 36.11 37.09 43.87 46.92 45.82

100 34.82 36.27 37.81 38.79 39.81 41.20 42.20 50.98 56.12 57.09

120 42.94 44.64 46.41 48.11 49.41 51.03 52.80 65.50 74.55 79.33

140 50.97 52.99 55.23 57.24 59.21 61.16 63.11 80.08 92.90 101.56

160 59.12 61.43 63.88 66.46 68.66 71.01 73.68 93.92 111.52 124.13

180 67.04 69.90 72.78 75.57 77.94 81.14 83.90 108.58 129.75 146.31

200 75.33 78.25 81.78 85.09 87.78 91.33 94.19 123.57 148.58 168.96

td(a, b)

(a, b) 60 70 80 90 100 120 140 160 180 200

60 1.48

70 14.53 1.64

80 27.64 16.88 1.88

90 41.25 31.88 18.96 2.19

100 54.30 47.22 36.05 21.38 2.18

120 80.30 77.25 70.51 59.65 44.51 2.64

140 106.37 107.67 104.39 97.19 86.85 52.82 3.10

160 132.66 137.69 138.49 135.79 128.63 103.36 61.54 3.44

180 159.38 168.34 172.42 173.93 170.88 152.92 119.59 70.25 3.88

200 185.53 198.66 208.00 212.81 213.59 203.80 178.11 136.54 78.39 4.22

tn(l(n))

l(n) 1 2 3 4 5 6 7 8 9 10 11

0.36 0.54 0.78 1.06 1.47 1.88 2.36 2.92 3.53 4.24 4.93

l(n) 12 13 14 15 16 17 18 19 20 30 40

5.69 6.53 7.47 8.42 9.43 10.50 11.68 12.87 14.12 30.08 51.81

l(n) 50 60 70 80 90 100 120 140 160 180 200

79.57 113.18 152.98 198.55 249.96 307.47 440.28 596.74 777.02 981.12 1208.62
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2. Approximate functions for basic operations VI. Performance

To find a function which gives an approximation for the time needed to perform these

operations one has to solve a least squares problem, which can numerically be done by

for instance using a routine from [54]. Doing so for these routines, one gets the following

functions

SUN-4 tm(a, b) 0.0415 · a · b+ 0.0032 · a+ 0.0005 · b+ 0.4040
SUN-4 td(a, b) 0.0474 · a · b− 0.0474 · b2 + 0.1137 · a− 0.0841 · b+ 0.3719
SUN-4 tn(l(n)) 0.0892 · (l(n))2 + 0.3830

DEC-3100 tm(a, b) 0.01467 · a · b− 0.00001 · b2 + 0.00772 · a+ 0.03324 · b+ 0.06065
DEC-3100 td(a, b) 0.0200 · a · b− 0.0200 · b2 + 0.1173 · a− 0.0981 · b+ 0.2314
DEC-3100 tn(l(n)) 0.0297 · (l(n))2 + 0.1020 · l(n) + 0.2060

(2.2) Remark. The time to perform multiplication modulo n is independent of a and b,

since this operation is performed on integers which have approximately the same length

as the length l(n) of n. For more details about this modular multiplication method, see

[107].

(2.3) Remark. If we graphically display these least squares functions, along with the

original data, we get that the curves of the data and the curves of the functions deter-

mined by solving the least squares problem are approximately the same. The pictures are

displayed below. The values a and b are equal to the lengths of the integers involved.
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multiplication on the SUN multiplication on the DEC

tm(a, b) with b = a as a function of a, where 0 ≤ a ≤ 200 and 0 ≤ tm(a, b) ≤ 3500.
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multiplication modulo n on the SUN multiplication modulo n on the DEC
tn(l(n)), where 0 ≤ l(n) ≤ 200 and 0 ≤ tn(l(n)) ≤ 3500.

(2.4) Final trial division.

In the final trial division with µ = 1
3

the most expensive part is solving a system of

equations. In order to reduce the time needed for this stage, one uses a number of prime

products to perform certain operations modulo these prime products instead of much larger

numbers. See II.9, IV.6, and V.(4.5) for more details. The time needed for the final trial

division will be a function of the length of n and the number k of prime products used in

this stage. By varying the number k of prime products for 40 randomly selected values n

of length d = blog2(n)/30c+ 1 one can determine the time needed to try and find divisors

of n in the residue classes ri ≡ ni mod s for i = 1, . . . , 100 for each value of n. Here s is
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2. Approximate functions for basic operations VI. Performance

chosen approximately 3
√
n. The average of these 4000 residue classes will be scaled to 1000

residue classes in the table. For the SUN-4 we obtain the following results

k

d 1 2 3 4 5 6 7 8 9 10

1 4.93 4.06 3.98 4.27 4.42 4.54 4.69 4.96 5.26 5.46

2 10.96 8.00 6.65 6.46 6.96 7.21 7.72 8.19 8.69 9.33

3 17.44 12.33 9.33 9.02 9.79 10.09 10.56 11.39 11.98 12.83

4 31.50 19.32 13.79 12.37 12.96 13.66 14.49 15.08 15.98 16.89

5 44.33 25.69 16.85 15.49 15.67 16.29 17.51 18.33 19.59 20.46

6 59.85 31.74 21.30 18.59 18.65 19.29 20.62 21.78 23.00 24.09

7 85.42 46.23 26.95 22.87 22.16 22.54 24.24 25.66 27.13 28.32

8 115.82 70.08 32.96 26.18 24.87 25.47 26.88 28.79 30.39 32.05

9 155.85 68.59 40.74 30.94 28.63 28.71 30.37 32.16 34.12 35.84

10 178.07 84.11 48.83 34.35 32.38 32.81 34.20 36.07 38.20 40.59

11 97.33 57.25 39.40 35.33 35.57 37.46 39.19 41.53 44.01

12 119.26 66.12 42.99 38.99 39.33 40.37 42.55 44.99 47.65

13 143.53 75.86 49.45 43.01 43.60 44.93 46.29 48.78 51.21

14 88.99 55.84 47.95 46.08 47.99 49.98 52.72 55.56

15 99.23 64.59 51.92 49.64 50.53 52.76 55.65 58.44

16 112.58 72.14 57.75 54.21 55.48 58.35 60.69 63.75

17 130.71 78.25 61.83 58.81 60.52 61.63 64.45 67.58

18 143.04 87.84 66.37 60.25 62.18 65.38 67.48 70.63

19 153.89 88.07 71.64 66.77 66.83 69.40 72.86 76.44

20 201.29 102.58 76.32 69.85 70.80 73.76 76.68 80.39

25 141.02 100.38 91.89 93.45 96.60 98.80 102.85

30 200.58 142.84 119.17 114.01 116.69 119.71 125.52

35 337.10 193.35 147.32 139.06 141.73 146.58 152.01

40 375.82 232.09 178.32 164.37 166.01 172.02 182.41

45 447.92 270.01 210.44 192.74 193.38 196.73 205.40

50 380.03 279.06 263.99 229.61 233.56 234.90

60 520.03 331.16 296.18 285.58 286.56 298.96

70 660.68 431.40 372.22 358.83 363.35 373.09

80 608.88 455.71 439.04 440.43 444.62

90 727.30 563.90 515.81 520.44 526.72

100 979.65 674.31 616.76 607.72 619.61

110 1180.74 787.20 701.99 699.89 711.98

120 1415.85 935.66 812.66 796.68 809.34

130 1781.11 1078.48 993.95 916.77 927.13

140 1996.71 1317.54 1136.80 1049.68 1054.38

150 2201.46 1419.66 1209.56 1143.21 1145.66

By fixing d and varying k one can observe that there exists a local minimum for each d.
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This minimum is made bold in the table. For the DEC-3100 we get

k

d 1 2 3 4 5 6 7 8 9 10

1 2.65 2.20 2.11 2.21 2.37 2.54 2.69 2.86 3.05 3.31

2 6.04 4.51 3.74 3.68 3.86 4.12 4.40 4.67 4.98 5.32

3 10.27 6.65 5.47 5.30 5.43 5.75 6.06 6.46 6.81 7.22

4 16.61 10.75 8.09 7.61 7.78 8.09 8.52 8.98 9.57 10.06

5 23.61 14.66 10.34 9.52 9.59 9.93 10.45 10.96 11.55 12.15

6 30.25 17.92 12.82 11.31 11.29 11.75 12.30 12.90 13.61 14.31

7 45.27 24.65 16.18 13.86 13.62 13.87 14.65 15.42 16.21 16.97

8 58.61 30.42 19.72 16.22 15.48 15.84 16.62 17.45 18.28 19.18

9 66.16 36.50 22.85 18.14 17.47 17.80 18.59 19.62 20.48 21.48

10 83.51 43.52 27.06 20.96 19.98 20.30 21.05 22.07 23.07 24.39

11 56.29 30.89 23.71 22.18 22.38 23.10 24.29 25.32 26.67

12 62.53 35.09 26.26 24.07 24.38 25.16 26.50 27.61 29.00

13 75.43 41.60 29.75 26.83 26.84 27.81 29.10 30.38 31.83

14 49.34 32.91 29.61 28.99 29.92 31.38 32.59 34.19

15 52.13 37.08 31.86 31.20 32.11 33.60 35.02 36.70

16 60.75 40.58 34.65 33.93 35.03 36.54 37.93 39.79

17 68.10 43.66 37.53 36.29 37.31 38.87 40.31 42.29

18 78.27 47.53 39.93 38.51 39.61 41.26 42.91 44.82

19 83.46 52.70 43.15 41.94 42.53 44.24 45.86 47.94

20 91.96 58.07 45.82 44.23 44.89 46.52 48.29 50.42

25 85.63 62.21 58.81 58.94 60.80 62.92 65.50

30 115.40 83.11 73.87 73.20 75.09 77.69 80.60

35 164.11 106.01 91.07 89.41 91.42 94.14 97.60

40 198.04 127.66 109.88 107.46 109.19 112.14 115.92

45 261.89 160.03 131.19 124.35 126.02 129.40 133.51

50 197.56 153.42 143.65 145.75 149.09 153.85

60 299.76 216.18 188.44 187.13 190.72 195.69

70 384.30 267.79 238.35 234.66 238.05 244.21

80 332.02 293.99 284.12 287.31 293.71

90 401.67 350.96 339.33 341.26 348.07

100 523.67 420.85 400.60 401.76 409.30

110 651.25 496.69 465.39 463.75 470.69

120 735.69 585.71 532.93 530.86 537.31

130 899.75 675.35 607.85 604.01 610.86

140 1025.96 757.96 689.95 677.46 685.03

150 1187.95 897.31 775.78 760.70 763.50

Using this information, one can easily choose the optimal value of k for each value of d.

Fixing k to these optimal values, one can determine the least squares function tf (d) which
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2. Approximate functions for basic operations VI. Performance

gives an approximation for the the time needed for 1000 final trial divisions on integers n

of length d. Using the least squares method gives tf (d) = 0.032 · d2 + 2.848 · d+ 0.362 for

the SUN-4 and tf (d) = 0.022 · d2 + 1.831 · d− 0.643 for the DEC-3100.
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3. PERFORMANCE OF THE TEST.

Using the results from the previous section, makes it possible to give an accurate approx-

imation of the time needed to complete the primality test, without performing the test

itself.

This observation will be used to determine parameters which have to be fed to the

algorithm. In particular, a trial division bound B# and an upper bound W# for ω in

nω − 1 will be determined. In this way we can determine these bounds as a function of the

size of n. The algorithm first tries to find all divisors less than a bound B# in nω − 1, for

ω = 1, . . . ,W#, before trying to find the best values for the parameters in the algorithm.

We will now describe the method to find the optimal values of B#, W# and µ.

Suppose we fix choices for B#, W#, and µ. We can estimate the time needed by the

algorithm by taking the sum of the time needed to find all prime divisors less than B# of

nω −1 for ω = 1, . . . ,W# and the expected time for the test with the optimal values of the

parameters s, t, u, v and w found by the optimization stage of the algorithm. This will be

done for 20 randomly chosen probable primes n with log10(n) = 100, 120, 140, 160, 180, 200.

For fixed choices of log10(n), W#, and µ we can express the time needed by the algorithm

to complete the test as a function of B#. Taking the choices for which the minimal time

needed for the test is expected to be found, gives good initial values for B#, W#, and µ.

This minimization-method will be performed for a SUN-4.

The reason that we perform the test for values of log10(n), instead of blog2(n)/30c
as we did in the previous section to determine machine dependent functions, is mainly

historical. All previously introduced primality tests express the CPU-time as a function

of log10(n).

The list of “randomly chosen probable primes” is generated by taking 20 times a

random odd integer n0 of the proper size, checking if this integer is divisible by primes

less than 106, and performing four Miller-Rabin probabilistic compositeness tests on the

number. If such an integer is not proved to be composite by these tests, then it is added

to the list of “randomly chosen probable primes”. If the number is proved to be composite

by one of the compositeness tests, the tests are repeated on the integers n1 = n0 + 2, n2 =

n0 + 4, . . ., until an integer ni for some i ≥ 0 is found that is not proved to be composite

by any of four compositeness tests; ni will then be added to the list.

The results on these “probable primes” are graphically presented by separate pictures

for each size of n. In these pictures each line gives the expected time for the complete test
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as a function of the trial division bound B#. For each line in the picture we have a fixed

choice of W# and µ.

The results are for log10(n) = 100:

200000 400000 600000 8000000 1e+06

50

100

150

0

200

W#=6,µ= 1
3

W#=4,µ= 1
2

W#=4,µ= 1
3

W#=3,µ= 1
3

The time T needed to complete the test (in seconds CPU) as a function of B# for several pairs (µ, W #)
where 0 ≤ B# ≤ 106 and 0 ≤ T ≤ 200. The minimum is attained for (B#,W#, µ) = (100000, 4, 1

3
).

for log10(n) = 120:

200000 400000 600000 8000000 1e+06

150

200

250

100

300

W#=6,µ= 1
3

W#=3,µ= 1
3

W#=4,µ= 1
3

The time T needed to complete the test (in seconds CPU) as a function of B# for several pairs (µ, W #)
where 0 ≤ B# ≤ 106 and 100 ≤ T ≤ 300. The minimum is attained for (B#, W#, µ) = (500000, 4, 1

3
).
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for log10(n) = 140:

200000 400000 600000 8000000 1e+06

300

400

500

200

600

W#=6,µ= 1
2

W#=4,µ= 1
3

W#=6,µ= 1
3

W#=8,µ= 1
3

The time T needed to complete the test (in seconds CPU) as a function of B# for several pairs (µ, W #)
where 0 ≤ B# ≤ 106 and 200 ≤ T ≤ 600. The minimum is attained for (B#, W#, µ) = (500000, 8, 1

3
).

for log10(n) = 160:

200000 400000 600000 8000000 1e+06

700

800

900

600

1000

W#=4,µ= 1
3

W#=6,µ= 1
3

W#=8,µ= 1
3

The time T needed to complete the test (in seconds CPU) as a function of B# for several pairs (µ, W #)
where 0 ≤ B# ≤ 106 and 600 ≤ T ≤ 1000. The minimum is attained for (B#, W#, µ) = (1000000, 8, 1

3
).
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for log10(n) = 180:

200000 400000 600000 8000000 1e+06

1000

1200

800

1400

W#=4,µ= 1
3

W#=6,µ= 1
3

W#=8,µ= 1
3

The time T needed to complete the test (in seconds CPU) as a function of B# for several pairs (µ, W #)
where 0 ≤ B# ≤ 106 and 800 ≤ T ≤ 1400. The minimum is attained for (B#, W#, µ) = (1000000, 8, 1

3
).

for log10(n) = 200:

200000 400000 600000 8000000 1e+06

1600

1800

1400

2000

W#=4,µ= 1
3

W#=6,µ= 1
3

W#=8,µ= 1
3

The time T needed to complete the test (in seconds CPU) as a function of B# for several pairs (µ, W #)
where 0 ≤ B# ≤ 106 and 1400 ≤ T ≤ 2000. The minimum is attained for (B#,W#, µ) = (1000000, 8, 1

3
).
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Remark. Notice that for the last few examples the minimum is found at B# = 1000000.

This does not need to be a global minimum; it might only be a minimum on the boundary.

This is due to the fact that the prime table which is generated in the preliminary stage

and which is used in the trial division step does not contain more primes.

At this point we are able to present a table of the actual performance of our algorithm on

the 20 randomly chosen probable primes of size log10(n) = 100, 120, 140, 160, 180, 200. For

each stage we will list the average time, the standard deviation, the maximum time as well

as the minimum time measured in seconds of elapsed CPU-time.

number Trial 4 Miller- Optimi- Cyclo- Jacobi Final Total

of division Rabin zation tomic sum trial running

digits tests step extensions tests division time

100 1.40 2.16 7.11 22.57 42.74 31.92 108.65

0.02 0.08 2.50 14.79 30.43 16.69 45.92

1.46 2.25 12.92 45.80 113.64 68.19 223.40

1.32 2.00 3.45 5.11 7.40 15.23 64.72

120 7.53 3.61 10.23 37.74 70.13 61.98 190.83

0.02 0.04 3.75 25.05 47.87 41.22 74.22

7.69 3.68 18.48 94.90 185.60 150.59 253.07

7.41 3.53 4.36 7.72 3.50 0.30 47.15

140 23.67 5.38 10.76 78.57 169.45 129.32 418.03

0.07 0.05 2.45 54.14 73.24 52.29 132.51

24.23 5.48 14.82 224.06 371.88 294.75 700.30

23.43 5.27 5.29 15.91 62.41 54.69 174.15

160 47.69 7.73 11.35 117.12 290.87 195.78 671.45

0.00 0.06 4.52 79.27 179.31 125.82 293.23

47.93 7.89 24.49 297.21 837.30 433.32 1385.09

47.44 7.61 4.75 38.51 63.85 1.87 388.81

180 49.64 10.79 12.27 173.43 428.05 342.72 1017.89

0.00 0.08 4.28 152.59 201.79 197.34 367.25

49.79 10.88 22.91 669.98 807.32 796.77 1620.49

49.21 10.57 6.94 40.61 90.42 60.37 460.72

200 52.69 15.03 18.06 242.73 642.29 487.06 1458.87

0.38 0.16 7.97 170.06 320.59 212.34 491.69

53.03 15.32 30.61 450.48 1327.81 775.79 2169.14

52.22 14.61 5.42 34.25 187.71 208.33 884.21

Remark. The results mentioned in the table above are within a few percent of the estimate

made by the optimization stage of the algorithm.

234



3. Performance of the test VI. Performance

For the DEC-3100 we get CPU-times which are about half the size of the CPU-times

on the SUN-4. This is what we expected, since this machine is about twice as fast as a

SUN-4.

In order to indicate how the method behaves for larger values of log10(n), we will present

a table of the estimated time on a SUN-4 calculated by the optimization routine of the

algorithm. This will be done for 20 randomly chosen probable primes of size log10(n) =

300, 400, 500. The optimization routine gives for each probable prime a choice for all the

parameters which have to be used by the algorithm, and an accurate estimate (within a

few percent) of the time needed for the algorithm to prove the primality of this probable

prime using these parameters. For log10(n) = 300 the optimization routine found its

best solution at (B#,W#, µ) = (1000000, 8, 1
3
), for log10(n) = 400 its best solution was

(B#,W#, µ) = (1000000, 10, 1
3 ), and finally for log10(n) = 500, the solution found by the

optimization routine was (B#,W#, µ) = (1000000, 10, 1
3
).

For each stage (apart from the optimization step and the probabilistic compositeness

tests) we will list the average time, the standard deviation, the maximum time as well as

the minimum time measured in seconds of expected elapsed CPU-time.

number Trial 4 Miller- Cyclo- Jacobi Final Total

of division Rabin tomic sum trial running

digits tests extensions tests division time

300 59.60 48.31 689.50 4220.56 2776.08 7794.05

0.25 0.40 399.18 1800.18 906.87 2239.20

59.99 48.91 1511.90 7648.55 4404.94 12006.24

59.19 47.47 321.45 1593.77 2776.08 3856.59

400 94.57 110.29 2237.43 17779.19 13107.72 33329.21

0.30 0.88 1866.61 6724.21 4131.92 8245.22

94.92 112.27 9070.41 30441.17 18629.44 47600.09

93.73 108.72 563.21 4728.48 13107.72 21674.76

500 105.70 211.98 5081.86 52171.18 28813.95 86384.67

0.32 1.99 3509.75 19358.62 8499.59 24060.33

105.99 215.33 12608.43 91082.17 37756.21 140442.95

104.80 207.94 881.35 13534.23 28813.95 51161.01
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4. A LARGE EXAMPLE.

(4.2) Introduction.

In this section we will present a primality proof for n = (23539+1)/3 to show the capabilities

of our test for larger numbers. This particular prime has 1065 decimal digits, and it was

proved to be prime by F. Morain, (cf. [110]). In fact, it is the first prime of more than one

thousand digits proved to be prime by a general purpose primality test.

Before presenting our proof, which will be done in the format presented in V.3, we

will first informally discuss the properties of the number n, as well as the time needed

for the various stages of the primality test. We will not present the final part of the

primality proof, i.e., the enumeration of all residue classes ri ≡ ni mod lcm(s, v) for i =

1, . . . , lcm(t, w), since the number of residue classes takes too much space to specify here.

Since µ will be 1
3 in this proof, the enumeration of the residue classes ri ≡ ni mod lcm(s, v)

for i = 1, . . . , lcm(t, w)/2 would be sufficient, but this is also too much. For each of these

residue classes, one needs to show that it does not contain an actual divisor d of n. For

each residue class this can be done in polynomial time.

The test has been performed on a DEC-3100, a machine which is approximately twice

as fast as a SUN-4 and about 6 times as fast as a SUN-3/60.

First we will present the product of divisors Pi of ni − 1, which were found for i =

1, . . . , 20:

P1 = 2 · 59 · 233 · 1103 · 2089 · 3539 · 3033169 · 39232883 · 2278390627 · 114219291889

P2 = P1 · 22 · 33 · 19 · 787 · 1049 · 2593 · 82531 · 87211 · 198073 · 4744297 · 57384289,

P3 = P1 · 7,

P4 = P2 · 2 · 5 · 90529 · 171049,

P5 = P1 · 31 · 521,

P6 = P2 · (P3/P1) · 3 · 321169,

P7 = P1 · 29 · 16073,

P8 = P4 · 2,

P9 = P3 · 6823,

P10 = P10 = P5 · (P2/P1) · 11,

P16 = P8 · 2,

P18 = P9 · (P6/P3) · 3, and

P20 = P10 · (P4/P2) · 5.
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In fact, Pi for 10 < i ≤ 20 were generated by multiplication of only trivial factors that

were already found in Pj , for j = 1, . . . , 10. Finding all these divisors took less than a day.

The rest of the test consists of:

— Finding all roots of unity:

total 92774 seconds

— The Jacobi sum tests:

20 tests in an extension of degree 10: ≈ 20 · 34800 = 696000 seconds

41 tests in an extension of degree 4: ≈ 41 · 5840 = 239440 seconds

37 tests in an extension of degree 3: ≈ 37 · 3480 = 128760 seconds

total 1064200 seconds

— Final trial division:

1580040 residue classes in ≈ 74600 sec/100000 residue classes

total 1178710 seconds

grand total 2335684 seconds

(≈ 27 days)

(4.2) Remark. To prove the primality of n = (23539 + 1)/3, Morain needed 12 SUN

workstations, among which four 3/50, seven 3/60 and one 3/160 with a special chip de-

signed for 512-bit multiplication. These machines together consumed 319 days of CPU

time. Since one DEC-3100 is about 6 times faster than one of these machines, we may

state that our test has proven the primality of n = (23539 + 1)/3 substantially faster than

the test of Morain.

(4.3) Remark. The test on n = (23539 + 1)/3 has been performed with an early version

of the program. If all improvements made ever since would have been incorporated in the

program, the test would have taken only about two weeks.

(4.4) Remark. In the proof which follows on the next pages, the information regarding

each individual Jacobi sum test needs some explanation. Each first line contains 8 entries,

referring to the 8 different primes pi in t0, for i = 1, . . . , 8. If the i-th entry in the first

line is non-zero, it is equal to the value of the conductor q of the character whose order

is a power of pi. If the i-th entry is zero, this indicates that no test is performed for a

character whose order is a power of pi.
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P_r_i_m_a_l_i_t_y_ _C_e_r_t_i_f_i_c_a_t_e_ _o_f_ _(_2__̂3_5_3_9_+_1_)_/_3_
n is
737960982013072251717827114247527699664069926110661926761160893989171826141119\
521929101931369383490982766847861989655122674917393968130587829514313057964897\
260666603966014551135454876960320216137860473967819079126559583788823053318306\
935359861441837366855882806862688379176110552962626629416447849146630431273272\
995724167758732603285383186777757585738831334876769323045488159378902977467713\
837514310434260339455526629562477584638188948029810999272419754692499619209623\
001613278324156579182194830724641306437197442253758831506979191793352123575900\
078074622075861772974340085081499946707336416327925893771446279902695718233584\
641686166117068880549847126723693094451226465616453469916241963304631414866552\
321857691895960230071117582088132687611887380755935649761769000294914373494533\
422904682091065786979568675767012114940615503154724612851260976803588566734355\
505597767200432478724025353578867345462382931420365933103311751585395715447345\
608189334178143604853988249079586934366138135363609181014186399426964456547292\
271975820619495426338199733732972086304686486497963

P_a_r_a_m_e_t_e_r_s_
s 
815255541870520878744200739051019183269977342218220964296307483283540022488522\
394194945590326690669350591791443319220986260492554136570962975902227027251927\
309950779325925670263769913498822631606866850472584826406357191420571966424543\
7778254368368929
t 3160080
u 60
v 
141190424735824435339708555547840960043155165112394474431212872914358486891626\
5384841506151011431494317040
w 60
lcm(t, w) 3160080
lcm(s, v)
115106276224933544725190441176588798011191923244413529429374449435074502102615\
484917446691777532232278084400540231943415238514982495573423866726689479275145\
068902710991341607351612770279071016403466956850146515139623167087525675649756\
127628029257449541354607868210976502304579786811572722886888880677726654691784\
96108152482293977651452517979966597611250160

E_x_t_e_n_s_i_o_n_s_
u = 2 m = 5 f = x^2 + x - 1
u = 4 m = 5 f = x^4 + x^3 + x^2 + x + 1
u = 3 m = 7 f = x^3 + x^2 - 2x - 1
u = 5 m = 11 f = x^5 + x^4 - 4x^3 -3x^2 + 3x + 1

R_o_o_t_s_ _o_f_ _U_n_i_t_y_
(5, 1, 4, 1, zeta_5) = (5, 1, 4, 1, (
0,
0,
1,
0))

(2, 4, 4, 4, zeta_16) = (2, 4, 4, 4, (
259263455133166599441423707965572776210925082003438386757283323469744839779616\
129413309211489251326801881322966314143432139243647876366833791105653190720001\
433868044082633527373702558839531115118389459962058890123347425078021640370102\
817077096675051970641863173655087482598594673870625315993334955689987233661732\
136658022314903024275997361933645261074767512658808392200291287818074991934548\
542067795381316425111515741365669852419327254334670355958646408750337346075109\
299518767615344575876257908786587666629315949382088297159184932678689454467078\
552000075656406079112481924223573249252814591394521380683003137180783364517799\
914078661584512854928349885363596196756648342366178339320855419614963320156333\
908789789083837969792461696139011765771777451050304642921760371164490016053649\
156026486820038504227660293454984726500957353182961307519764883091496991477843\
334897857781302506282544346107663879013012638420113364999147505328184490223788\
362190371509356791274586434092246166074491692820462385332186838002501212140713\
020061395604299703801214500242570533247984185656115,
518526910266333198882847415931145552421850164006876773514566646939489679559232\

258826618422978502653603762645932628286864278487295752733667582211306381440002\
867736088165267054747405117679062230236778919924117780246694850156043280740205\
634154193350103941283726347310174965197189347741250631986669911379974467323464\
273316044629806048551994723867290522149535025317616784400582575636149983869097\
084135590762632850223031482731339704838654508669340711917292817500674692150218\
599037535230689151752515817573175333258631898764176594318369865357378908934157\
104000151312812158224963848447146498505629182789042761366006274361566729035599\
828157323169025709856699770727192393513296684732356678641710839229926640312667\
817579578167675939584923392278023531543554902100609285843520742328980032107298\
312052973640077008455320586909969453001914706365922615039529766182993982955686\
669795715562605012565088692215327758026025276840226729998295010656368980447576\
724380743018713582549172868184492332148983385640924770664373676005002424281426\
040122791208599407602429000485141066495968371312230,
717493653263796867863099000461332305016121211113195088357249228585662796005814\
000533308899232457953791610079326862011415236552941956662548671954671040660564\
782454606148553096880329004878839966526128826605302565938095103434571325185249\
771714356680221092080204348813916841559525502541154912427509725569849665915342\
212409689749441572239949479080653202972918877424895453211762076975939767406332\
490938061328440825740561828750296861473224599678581393574540877396076654546297\
843583608411095809827572704424027222408191807697753643893604231498349377358793\
133590322900397156370709528281298099654740423824753517280518172595812042031515\
558623794890547478852140834690107470196508544574527575039468763169183557904821\
224198100406347371610943171616640143874630581686165631050269821345351032919198\
599821178823244376402649663471485696817274747643704154900256167133456782904292\
674841407873718150312032365470965458174979525820154927464892291946042741727397\
895777144590400948359522417978746755489757439012306592167631541645540854075916\
689364585434849663680376916031707108684497286490853,
538994239015608582737575529717340947069798879004343611918478312342998709694537\
780222411455115428190794919414467755930571716851747764201706739770948398744335\
345948085982728509002530989760542479848510567286634293435159330510295008873262\
797799698111720216059404805358946502813774398162722348975608034956755232681395\
056630522639097079597428431564394904915447482769490654234308658039113193930478\
430711839868452363937996283543520428003618857020570317615171694797097656813543\
757067205143749921107137943873789417287637533320181781931744825652381655151264\
048484450488276774828594405247348345558225175292215137856934381668450405237668\
911219694395547111554406062760778017768014605774282573518484039365374497274398\
915239169657288798045097802749516075280811701170379304555019921278543372682633\
135136476907898419032239599205495871125255461876943072990534575853125766785749\
500552074889319340977081680323229645313428682440437735636714470295721954167524\
436792932606456239043638699285332511025364081992227359510928533786426026752801\
622734026393245170260251818186406044116157571319340))

(19, 1, 2, 1, zeta_19) = (19, 1, 2, 1, (
245911395712065214433484089888357782703394237145336852724124936072660706636258\
735797834710076473930421526830147270805756324415456434016152997987272739291406\
219542041358148095796508835765337579937934923207830852633499496695816783475635\
462636947851947343986058753231445082945223874047990281637657807643999564163614\
225528950843355059458391295016131378777145232782455236900456702968126562934356\
198639906014384567888493198713950543475202822262969455818880454866989218313015\
023479513041214313692185167263857551012298507623351691098104565095555617499479\
232372160803538484012996802394938723926744406144867238991308314794689259105974\
890985847862181128358589224790993018636151641742845949371661806359723706201920\
657660282166420626599568130032046896130599050890018424205729534006523789441890\
458327674998539750343169394658860243477731045067633432709654057660158493386317\
093018360667747348591905839349062726830051100443387823920148513389000543421735\
999041134113852463693699387802923452829248198405112485735429631194317327126889\
484858381673939651981448009054618519074854172639610,
286318820240682224163784485400527521295870294543831539044059092183742582319064\
502077165547402508927738236841781139045103351268582225742355391611088480976096\
365316129798504997409216204703649210617308432999011188376717268089908550058281\
355739262105003445275686877434332352615670317888176144176769690285280479700144\
730970679077956223383788357025960165861208422432730884219948929927725036511663\
391599026187333396052269388661089383463214061438535497778886889645036953917643\
547278974018723460490840261292385122430575518663130798673768800175853473122231\
890251492241413687010074254206864315583266592167171366926443487335926834963029\
097746875685882791681394060909370725361511864843996751383750127564657740691096\
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490928744832702959579969850541334438614080534711027708972983816851404009190706\
344592840515387205358221953781499601748664467595684228374422316542571266102775\
408352156444410490332736970986384452056844167481947209114921844021128403719156\
889000986942214831030364031567912195475684378079264532334009525973570115215645\
986218926414565250024740777297679556723780784575896))

(59, 1, 1, 1, zeta_59) = (59, 1, 1, 1, (
361297136568996482986040934080255140499807653597740317627779857824348903252735\
173645592763889205141218101945443032192051735398798223114594717482462659880985\
356865179380543105610480840830549335024596951429338433853060006326522635814193\
191967826856526215181628347172407044164387349959788775867358649322184328965463\
200727983464963336960006462303948082634335117879373860951002208559871705605204\
395597971268717925707322747899523895184065085142531738778955301018351979821726\
000531720774748555484350771130643135391897247098351374322410146907785134773438\
514151186600091425705151850159141894676630986758296171393774915064244168918513\
987319330601299981617367580378162438461336737443946441074985523211236639125682\
135658859294006503765543508935949192671076508070987252024457652546511561704320\
408500316714340000562569539724422176151420163447584082345721729174683170699727\
626504175289078649058927132783349521770117180594006857614477029087646158299405\
514679554091175273485071988822027071027272715282803005781700907896813566131689\
079771446855127387411375124679443668816080006952688))

(233, 1, 1, 1, zeta_233) = (233, 1, 1, 1, (
927707049308971998000393038857354560267723496532732190329258661445311287923746\
375452933974571233102121191498786306554236191844920549694127998843830168193770\
778592113652313083337786665223273208646010836988212089211228321746665091372768\
913603153613524034227941928419678757275889784409123278496251720347010877983948\
318803313069578407060690808484057452334551269601887609468885747296109727353397\
604667607443587128466243806060623875822387367091842400702171606994195788726258\
950143004497167075158071342510910985807884007197465836053640708596122188082383\
102946119233650115978591086527032494244665938224793832726151419477132834625770\
372947315479311950396777067411179179658280623057551490093352419466549397233544\
918192228048360934127051209486959241256325675755884780331259601921459999918757\
674988182473136360258880843313971517970909028695851350671672737181291144248090\
756033738862496661215911330348144751099452144354583205457629696172841051474734\
854028013419662598449212561966880625193702522716946954575080967530881281707324\
5875726043145594874115165762825738558530399866467))

(787, 1, 2, 1, zeta_787) = (787, 1, 2, 1, (
373031640218081603335126951273854799724664194284462597069500015019500409794811\
841556344527609756194424975020161860249222787652246897269132511290535399275084\
228561953548601349203410045416524099051391479581100516670144115403350378887461\
440216977799588369856569776760397939457801708698385991648146120886289488814183\
510226101257296012783897444031586925092540722939210689908368993782558814329980\
292401293475815381053838862359488687311386648011098943697539803267074936431800\
874957708396235169184251527832827709421795795873132830149985231238992837688614\
608790721911955067871912234819076370344367607230007431619279198599601900835136\
031303059834040570124308235918385038558132251872121547417439858255326542376620\
887730760780833031731218543812598424706874271040227111140586634091977062685154\
743588883957186738020125720664253579840251895112472791731465890876288203968884\
745082386524175752833358832256105685143421212960243446676233301550226856957671\
315835656543906086638373742559517401447124657248756420298896379305784902783386\
253189554283893278786083081213988591939965991212472,
155955795075547857263825241577799376118999721813396604335543735277898654680735\
699925763443178221591427409457243609657540571680352743569491038806249646055140\
710277840420291145646950358320479651235865176326778504884121620197171660918847\
464882857070150290165879660321515228445283753340299452209132638544687354121813\
821096753927585888411219618151963802985579264466022262945142038818424793501265\
608502750586817112084147091231125671003492453199745526129575776379256777216296\
064457051917597182363106090882836842858696031640357144495010948910774032836648\
929444775169178633509689775425203649540723902362401591209884613662224940101099\
705838086655127090357876022982639838189940390920811588403077339004606442623726\
300136970564838172481975897869996468621955477357012200774718258661192120325117\
126144704338457291645263373612758831931593248972990443310541968625401734210563\
100149683119056884378878471322232027729368436889966346789225983223456934994148\
009152675938288156123036629976002623595343377142518411783926199487690839216083\

54823125808818023446720762504140345597746284020842))

(1049, 1, 2, 1, zeta_1049) = (1049, 1, 2, 1, (
656811407197910832585210816537826397189910510329351037276225981176478690271756\
813228868635076204272257554586696737762993788113471376970641104901587392284692\
990941545900609326104108643257942943817378314527347130111664726139578069086869\
831250925694461327242397619634932082485370898719771799820687174572391677610506\
124134350035185835633667341432357342123084719522800368367699878826972030876019\
243648287888671207898530318290285273783857869820464740403608637866176472234778\
856937109164538446468042107741215360810364530911291623601429440727465238801755\
175314126409438639764631812450608883459641698356852734533341283824125042526410\
550914761148526824923565877245919335309731280598143605556534993380934879378571\
553291201429002276652367629605786819591199883438473661439186882417860001503035\
152214629285043805316799979827636387940345660744311889457684786192329436114665\
507732605811854454339313159620213995746449883034520640467571561445579904096928\
267604357400666119750375890684774145614492581301769208876636668344734665476195\
087768635191125421784645949190855477436555307094634,
162140013646059887070112220655484834047299822177412763574336010487327397561058\
175711678185067411225679125274197893340573854962964188670527312651198250404027\
157458574160471812343306615592923784580298826241850975094564772667496539045085\
910891086504405233888664676029191123919937480664049056862860531165132728337931\
406324434040914024675363412673490174000073897839415628728160939985517525114090\
284024865073658408576205908698592354950625018445751544948592498145456245562415\
891207714129531553559859576805214911138033365168624578035977193113250785163759\
113920511244544222865221038813908408592376881211776633133836346012858822129738\
822852227454331888687592982755515373798020752802367525437541974121927863857304\
730551275932477550319776629272968644688256648558478095205040996152874295059236\
724032367488358524484092023535505594545218579269360236225550255304780930083072\
032339497581559787255874587705059525188729610646750303730458782610065000031112\
616641700941668408195639181588020316120778980455011357505078289037608816799080\
311371259364761649776661539501321485188519718139044))

(1103, 1, 1, 1, zeta_1103) = (1103, 1, 1, 1, (
278302544730744203384165247268655510595180335336160133158733559236532283738835\
483601096730052690126283947144274768187414537083860570087689320512517730697751\
171173283383589119167014147710535370655019742096587720866626358575315076057153\
830192001425676486995025999909767395076838781120410514634250085571441518904321\
444051867623328718398840971380538109868953721045823719431699952758375736521305\
130066694047647942782363777714562480760161753371429065386000060053013305410735\
289642392651726123950357630277919001778953642517418635567275579063934677922954\
641793748954808388731818486248057869473534120292835052682072066188505277010711\
270868525754240944502713057912081516659421192464114848850176980558510483425784\
499596744006809761826722822478983579098887919082037305262941668198492400801401\
738322966399973994626315499433748511002498217492049739043527593103398499344383\
699467937177762950322239834799939059045851509318778102089586743386277332719768\
852564862988271779375274254890660776430831001404703841468611564973310563481658\
919946368143046118523681659313643115103529347591692))

(2089, 1, 1, 1, zeta_2089) = (2089, 1, 1, 1, (
612928436016315525583082049457785046183040748263293271520290913946483678157679\
761618476875872430128512304997437389546244488164211743366916437612328232999561\
259693971036842735200551970731500200339905044970170099901761586510666587815231\
449735036330324879952208270351634657523086526724723386460634539711828563275236\
492022200360422927447188406815120777904213064204557788711600510849060304835725\
698837704264151168086850904714139594177950422304495620515500029386377741030874\
698942566790770358563616082807087303897037291101074618761547076855602451190852\
105138200138844458563142002191267948716944725323737652261642716763568910461095\
032436723809653574143117655159547244662209001267998900666507732100381636546968\
184364958918425888092650907775086358403645373831184865834849502719663711066774\
333023915751975821774581514218065755792970122330710320909363102677208429126872\
534074481307905554559475393745452375562824671834193117624426328026425847701105\
426355534196468825933142550786375329547710572837948439749921004694279279736811\
873155808095584233603238997552429849214851865431441))

(3539, 1, 1, 1, zeta_3539) = (3539, 1, 1, 1, (
737960982013072251717827114247527699664069926110661926761160893989171826141119\
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521929101931369383490982766847861989655122674917393968130587829514313057964897\
260666603966014551135454876960320216137860473967819079126559583788823053318306\
935359861441837366855882806862688379176110552962626629416447849146630431273272\
995724167758732603285383186777757585738831334876769323045488159378902977467713\
837514310434260339455526629562477584638188948029810999272419754692499619209623\
001613278324156579182194830724641306437197442253758831506979191793352123575900\
078074622075861772974340085081499946707336416327925893771446279902695718233584\
641686166117068880549847126723693094451226465616453469916241963304631414866552\
321857691895960230071117582088132687611887380755935649761769000294914373494533\
422904682091065786979568675767012114940615503154724612851260976803588566734355\
505597767200432478724025353578867345462382931420365933103311751585395715447345\
261605622413041747406686476061701471436583500941632109117876451850136793071589\
069095823818732408890937559831601910858207864728235))

(25939, 1, 2, 1, zeta_25939) = (25939, 1, 2, 1, (
579183231071630383626088430618242845325233166426833676454820718852231024829082\
460680905788957722011549560139361976467148353978327124346134729621671362224823\
133207139395944664321197345940189165222754245939826838529525930742533535822639\
880007217504244160146603538337828426967066044842065746807086820955188666890169\
071680482656460112358388228206796557644686885347812253155358297878171843880106\
292640745753387393345158759149621993644390869644262737363401892924403974625283\
642664873988064683458082017556443303173933156228980796350618540128889778780004\
481483054470972600640605631653442174823451622247448650797481569321842802640599\
170560775543324570579238891640904999436324858788342777177114952801561651933322\
903921244277563130771783563960209025428374425707146743334634926672354847275631\
105151239037547426443240208489816022797084387779892238601677205559134250002610\
259008978509957226730986889244882824206116254392346086294080536018221337324779\
928776351001614147004129866759539239064595188908288710085484323884651303145365\
520745786959512439776005202749486722678613853172071,
656116608232561352181581747422273110203721407280308044201528171655244608842020\
007692552539726834849755976400569127595854947251557607856401137865925341910618\
630085304753022646712863069441882666923018645701055891103642770240008113552728\
646030769425998501018181208578297294727589397331700138293613838137243615939288\
630983754710353537661319282000247951318975052523449046088672988886870467518760\
112826351945877912094177557049907057902566446923891704254473763749429933323959\
205917447149780818795979418449496910672577999831158175988887338483268972481631\
664990200145102628824155813505677930310337114076779168070978990490298480482374\
586936443116209686374525649773725109080137707281703111466650235388760452136445\
509112251597894141851945826410149296264541420888563330313952204805563657844192\
884039668793602403085718716194789108736050195584090295900380267128977609897447\
338345466290557418937068939748701173452783118510094748968052178665076656722941\
790514035557292593824133063611955173391158778281838307695305722848267859936354\
000504709902379188392738808512335427600436176450213))

(82531, 1, 2, 1, zeta_82531) = (82531, 1, 2, 1, (
292960710951419573570044152673536403327936852127845626194177288973780344192643\
032265014102189215417389340746966217403369055215646583838965967590105356163240\
448048603537227835363631421809037089845285447336633283389922077280573382476838\
866012786663907663105898742254431083967822646361738924166734677450066787903154\
857806707918537663287744028611457980356183546191700725263771473186055338364577\
418352905912592383244916676544036351667746817147769679523327870040091362296390\
381852724262828662010874149642514958560249275117672421350121435860058615727744\
426885406120195760676513702870645783931741489839038268339861599536049117035405\
559700878631515676215399358264997664764875399135022039247761014930641421939632\
369780702529390435315284405854440255349910718164567093599354116333252352670369\
998628375719892300808746340823556954343864581380317555052876800951664802627773\
347953698882663894723861051593429409722304060762133427824494932570174022364073\
578403828114222243947007063023137774894031693136026950626960280196741798120075\
514982037553482662748254681534219688400281500819009,
104804997500818651174771144835639638725675426722873240029025408729475431233731\
360226623250256075002609985533316689987236380440039573992614303548701720919135\
805483424479615446102499887247957428889894037925229577165640412063502888065353\
424312841022675088573940976521024505796484589151519378958565023598398535259627\
833973255211970305196069629861362773340167267037064754822041099487837251409503\
383364807717858548886832728556792271113439265383931919630497731084654304206651\
578973652764137330815828184719643762113656882375552638936540156830025707844370\

189578785089969533250169221249085938084323615375229581213981945029138203639467\
671268458517699611264090860042113468342690920589428894949858098914139221592129\
653460603125507088208838634752671020945518556951531310342396459065547284045752\
409642863225080387348995071710807549518157394361291889918800887972921091175098\
538526141841730430725245587630656600648711222369355392387034664688070535267895\
673357650294788510312113175219939273674684710260706549043254434321088396962343\
628639697949481817518589859812971135118739512842902))

(87211, 1, 2, 1, zeta_87211) = (87211, 1, 2, 1, (
304727026911587030949214551109217966045337677199294525829798418034397600917737\
954400700856092344058429497158054413658788742204435790671723229670194925601115\
351788737862902772179041338377321160479805192406956474975659368700797014523124\
531251529969952708790761395326597342850232632614963357866407967906299047729685\
088110743736857181707685449802427450729185114185501437983293580244091513733141\
872125762663785215601298252922766108656437852832835503543518365590304664900471\
141898125905030180701499673204646502595613912681987372393581323158433615318551\
367425500896655670525549721107336105745425459456162132243596978006668404743635\
216153243970288386138134677039552901237906650439341139849833569962287647927755\
864598868509843501955267544084786541853951545915503654166058098145838289757093\
253318469615075137185508190393474321495782983815911978642495629607223516247407\
098814512056731361664595584506678935221032781367590575990413101456118339923537\
684394626202104470986779595119677692466564644911620534860539435289688107755226\
167643069182671088102541857303252004200944102903079,
410544718188159881804795723567850260624624519863066181993150108317110312470103\
042719608671038966316071706485266941745406258246350177678034460162018998939042\
960156559236277013555395169846698102181758630628285500051812734851204010564174\
759889609373912139884790027805480579289202444364463035240565836298017272163165\
681942561236561976664262452385694647612369560421177151892523087850050066384427\
002677278868547700672296773197831897404476136436551472011997304654531339805080\
006959593576381042310779315876158747393093088101226663228286783924460857339292\
577027964026608684721916045484438259594266622696646178909618946159117108739339\
514989215884206203519323537917380614008044727033213557802591980091620902985117\
440716102256678138702177669412489395972761319651644083917910578630189973705925\
043206952306028572743741697961342248303684920297993127371822409145309063498847\
604032785509226947670730379351619895953793180935315956571506118757218048380992\
896731370765145283377324416449595622510844990988395828061587423711490617381784\
438040307789362021073982813507141896411029928527094))

(90529, 1, 4, 1, zeta_90529) = (90529, 1, 4, 1, (
575183221458834892784060607246115915351802474185880397062180091375472949865692\
796091993176099777042380270108190373602615276469317154399378294178762658392256\
672526496879055658543282184478062216773893073813831694177223520108314887551364\
372835790624345142324361901109858412386164571092849727367468697367777039460741\
330507418340041509565528576878974697109346759530346151357807054838272838328149\
514419152158702512182919023840845204933372919405428650864470186403979896421877\
929977615859801462323067662439857723708546994370305972006328295285900604484079\
001182345615041139899430847480904858194564036196612443004695465452866389071290\
887515284912778592072236013818022188408560713541303408025107088187908577223780\
625423866395933722572455905829527009894578680165178812200391052535745603407455\
430811791593651405207461960509451642287424467682987362463023226436945072298420\
266598054919910509979975087068461705749191839359742917503753337660066516792924\
455633158504664004733336207471914649007584374323769356689096710122942661801401\
175217461564176814091705198494685593206418920503004,
550359620187005160695077031628446824409742505866063045341263226349939146097287\
492862890092034271910696709161325569611045610583028368117585525874755306340426\
247138790342378573991445483974216988885033470193744064261664901866322633849637\
248698882464276537436037847476819543320460195106384512658364184479721427426548\
722869684324013354909556105705878313202577191709793266905948586380528233445894\
843042575013688391150957778468271427707176847470742997121938878876776649222588\
606352507515922705782774568766885128967883560890583388562171702272671030075014\
646379731116057405224736140741992827121092718568709651224028999373878974687932\
875859108807927351068995543301175773189087176866445589459841557884813701942910\
649102593343432812168219657198512055936250259674283626307566758482026740596967\
826503688066314052994310112089959488852581529901532083345669314155388633746210\
071198548285284611744258658382966230159871559764922244617174945239324335857862\
530936838295085244930527576904039530545270761276870908001170410526319878601157\
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383230362163644854072877906881711179751037562830622,
148208960064653083077374392684022847163869533140649691560849161057734627243691\
694396794458669617307917169613732228178994369365439595894048418722142226024716\
325354276500639930933824441105038853695326319131582875337700377199517581823371\
175693916984328517698797886535428004086166263865971352605126450384608228476852\
519192028380734276712304084404718045456187006730061916127985127338934056575402\
679559996901598559532794242392053286908816169814029077864003882423226469622250\
330016626118432531540514917157863828882037895203589910896229718136802733448397\
296683297269194740644260618784858417983513820532040229687112195813672492390006\
599080741389162412277196009096996540705399578256410538375598997913720814949181\
369294047177945664855367678829728335254098970662814640175252700455407581774333\
182553139870276129208894973106891822258260764113725707143151610254766683607705\
945701082634323985848527451536165946784530014361365855522097920402298817202035\
968877219717219337417727346710897314428034316054802535983261625754964950679107\
980929789338671478929111677456123830058179745319044,
388188674650065899110279165040712515875531965489219053278437474602969460663684\
412046856046977955685870651771640927351055042577476829183089964273258625563516\
902457036336452131518386063751841609758121385413624302550184166270916775677454\
695073379267134561292440678099196189898287524997469214421488878250768548696670\
730464348759572493888045328713206675189724402751869484777889024275870658073860\
249738132067565408239545250697256904582065028372474984440711843065096771626457\
590072352250180837076990590336159570358382882209018638236735432235029234756609\
630272692861371477216279286342043035690833596160066455635115966919592574630189\
844952867867495079875077604283810334119117375501271445630015844325839002932636\
896795985368964659545499956792763100457940590181936292892514562981110424832622\
220435735963345060112044854431392630786814016910412371290269693977638506367705\
098118254106232340768459481015588997881864477240910961888358055424809084155567\
153740561449146622761800761342882966494834391798597270811411788242876225777547\
862416949291268548293319715656434642166662009618193))

(171049, 1, 4, 1, zeta_171049) = (171049, 1, 4, 1, (
202757732306544917338837143836201596648901685708622020816328351198929898255862\
924256067158938128567413743576985390930824118641227675773481833288032139718937\
032402219523768751501792934349480987533630423155833199061253077698517988394680\
670782253953425908066929229462779473214030795735204865789462053885845814673985\
977812754392261678848827942625454020587251261145246865309785593410880345843241\
787493046925938579837671839089463701777220729093687814328243131529724005111274\
091234049703650471275937899687971117666827491025306366470699677387682622449512\
912031586800805442273192468074443686189225572355248132166247096225852369148308\
005223254831749228140627142346978724714466612956985132698599750678692963435428\
492714648524318457108049155675597392801284333480163931751017213156874049442838\
931275455552820104075701062093714001229530670415078750696952120519927812190824\
067076410040565235986051434850716123455141158947663805017624262223414030817238\
632385978849826164493458293741560036804098376932690057860845077363594253881803\
640634625313597501587371181492627993280764410950721,
492172937810643458039998901385926308690333504736978765669725645779374493832285\
777487892164457040945568244488251919851543846801501190640747402199564742988980\
701143512259304787178059773055991996802838810218890625091257195163294503200077\
681989485185708913312023376429414597749649894605073124050415086035085517944782\
618280462019984254754448223269001180729790550636098037069966981757803888432445\
108945950815301009472336185909943044240841748681431321078733468685725947630227\
622529149883231560471091411041746573201689298247702180811648215477633401064483\
024701497915801424753795168348445596380373205330557188516962073311184670497196\
353106995813961758895984204489877970077075671882705545660966102014229685503444\
405191161049295678109159050504819046943964637184897698423211083722622430036328\
149451888513648441829668692543777046746442002368634429345458571807007738941686\
369657438788467873287231205276447457694290428923955568670474441418119527474813\
085010353707640526843682795962948129995759728443706673979211548601864821513167\
173833631609591026853802975171812418016125081061943,
825404177988488595033831386255585390418323609176400869467898987990990990115196\
599215086868235091038208520885777456078167247702617811770089279748571006327577\
690119394312328461041062151846135914828971077284460075796790996644420257044782\
223042983855916271716023065160220038168436162767621684921625003299394387751159\
675260887110275472334991004424222790025683602258689777218726685507088390630125\
751023030475112704928374544634161720656228812172631248314958395298650205493296\
845249901692515889861687295987993148767847973298121731398163551283931628385228\

683484127441994987761675909036184952304390486049265630980712667982760116550980\
705462174347511333426932371008184793340703620647099588849084732036036034965932\
242415389119065861578799191239603692477806544385472141081235120706103299363803\
769633873904007903895078613676842845633317413363976094974096669180318269103382\
715648352324653844720024705018715142045514770184938235072681505230371706704026\
081323496158767566786203746605679822869231265796029993727070960192793226059101\
23770260189731013128906686288727135070844066887563,
517184022719143105343952286120550974500594082370541360933764865272817784910165\
333014221403567418896700587219198127203500809050104980893124428333232156059366\
136607325989688298995095267842465728442849807680977522952207501105788771344056\
745675842561308340723817188405957027429963992624559455942175640213420709600555\
678764749759998128542453021385494134974712784730351771230483610650822680987169\
102767322081500743825387070420450745879824238047316830058301266380889189473704\
039824614188328204927750475883279161789112902049129936783460743339806283769098\
882827104389721486248952912806628033223310307149049848204222262666405852680276\
945083774705702474130404653892332180335435917383618538701416284785380488038687\
970811815930759712182761761764224808583995083105313908792389598248005368806763\
262532111245926945335149741885161134391365938919401914668743596045368011467093\
824651480536681437868889617662200289586081103249923081667885594248241464910110\
352083217226345061721484728971407455077567219852354029544629027165830325165490\
623104604540664205281594476986427404178035638230900))

(198073, 1, 2, 1, zeta_198073) = (198073, 1, 2, 1, (
736378659777280583682611141193765715722175251188985426839548681668109266159217\
197356225741551129739438992623839410116186635858665606032559533273015431837762\
205883845572633633903755319607319523617282338547731056829473082757695713543372\
128855415385290510270092119744932863286634904709998636269934338820433478634747\
539546874600199577385653895481251731423872763080191012936933906162523591918250\
805256075619587154636518475441370420536086307002650398581843021577315503288609\
387085912685388322445516909985467134260529190325119710441301947860081761423423\
661027341468110354190180273198783928539011488230722469770757593683340847843839\
367103958279228381504477060304406274602804325044295872131433346316188085139871\
105868188300094666837294571520348694684972597772369492976612617787216464516030\
962056628992074416401035892432725226749846726230438853389870736001018400935731\
255426864235933692221098603600846070201569888772838442943963038544761091513103\
966151579441243234318897792166651379637247374055462202756133944557908271857424\
373240271080983225138348326237076782412358234880421,
401409174882355630624011181568518572647463378042509506656257829754908563703606\
007475077364690949792652264649441678568900199726529512954146593688757936692557\
056114055103574536216095187295101383057602632063499536361736004890624129020276\
641257097737350877509657570158899264141334840501629168968019253512071039937481\
327541189549615398676686063170312724796086145584933906281870202127478487854501\
980548405660920734407413155898627482427357047943635603617103855638379406050133\
490175743955314554829968388186691048585945370178803034556759674890509849154970\
314274039798760745026181236307925578492794890252724522656132227423957585554419\
689836514818776622399732654342561767594389293431793176361853363542935836299481\
960435821517266495772393115433343974073869282759869670229972338813339789518132\
787959796129509552082175165456504822693204649373460081002440301234761608417125\
913628551653999965551768972790334590716205734959933518049257570298483522025970\
998934449569533980216995558548382053653458712539627219105242881334285863281928\
892520068307655713169657834674092445765399715612481))

(3033169, 1, 1, 1, zeta_3033169) = (3033169, 1, 1, 1, (
333491460140195254763427767951592723647768441917910403337453606096438542634046\
710613828786105386748287600282878911134389134861502664737071117218088418912464\
422755395580117158082057030870282234014973135200726452213695094956161594427426\
681152153299714253508687852858170199975238749711714833284870297816343444013530\
023250641979729759808098357766163296897928252868874624966338512872934966902401\
332971179635472605010867100814416591127074944427291483282023571196091041876088\
023221655946483132448993466037264422873295273009784528036389918096582177532686\
948743447147545946244682273529584026362350496334427816777119182367453662665299\
094110132726585758680696357782613669174814814231075161194388422822708170453899\
913561723887640941799509651600942668354239197169290888956707018859077552705786\
424882333044903697228949399283253853890572482796321246393714039348851460086271\
123032559349016502707882593620235005531219755361105884053127747128771981221627\
865454021928451663139912214376829252587333474149844724340617034970378226225088\
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863545449977730395950092945784401357130860357768617))

(39232883, 1, 1, 1, zeta_39232883) = (39232883, 1, 1, 1, (
530388486055030592363512696200067569375587984320430252109456468824798107342915\
155567262481383306186233318354741472580437696632371789749010037102800236701314\
352219827985825271612372303065929385317235711573675263661376211118047904362973\
752589596922342821390094326441987922075700792761605450234421321252198334550432\
961315003971799721728145825835705641970779624978249977457784351415958003914223\
127835495049408916925762388285119084371069825161464484980590066725126571961311\
049179612997065391473060441159023787442298319534773447982853049855054383168621\
912444279156390641790966860646510712121223550525020547458960572012311608143735\
701620020517209605783505804859027018109193558651482617991629645407423361907752\
661795632929231770501733982531752498182790960058232587189726511475479022769989\
381389098541032185597204175442369341242541904915910442582151292114618702548977\
107370676612835806200352602359740432066887957008292776971997701898180477985443\
769279331280509018631356767250462471193709844952495082318718845716500530934039\
357180549720984123830972833476195613267254495291569))

(7, 1, 3, 1, zeta_7) = (7, 1, 3, 1, (
345242149345423746953085855207540015034088982295189256081564990499145185123721\
512957184819990647827232961163475162937373886346646787753449778729230125003843\
214834110089430996357199408783046837657602372615047083836713926992067231055354\
684082694655978493233485777440668138927068196796118990612026336454342034050088\
925363308986816175727016167165544904997715036584298106438882935278625105538125\
991725571792502613623434604013856654454734689807368998061440335450503536487313\
357220468204977967502830877977659925197946818672284432035527035189244951313863\
815512999462991503880963537599934175204679223559788895730784869446789799542806\
013194945327971894882021879783906017778934610035731686736818151185835570300213\
288231320545877187693698594320606319122865885679572080050869556142273007953334\
125815072432579546154405946841689520129382806131506935951559587177533955789356\
860441523957455807307247236333986200234020790634660731088379401921940341416234\
742749693636697603629427617212907519353462921753967141804845287304793235616243\
454205963768755267281239684919643191349022480260923,
392718832667648504764741259039987684629980943815472670679595903490026641017398\
008971917111378735663749805684386826717748788570747180377138050785082932961054\
045832493876583554778255468177273378480258101352771995289845656796755822262952\
251277166785858873622397029422020240249042356166507638804421512692288397223184\
070360858771916427558367019612212680741116298292471216606605224100277871929587\
845788738641757725832092025548620930183454258222442001210979419241996082722309\
644392810119178611679363952746981381239250623581474399471452156604107172262036\
262561622612870269093376547481565771502657192768136998040661410455905918690778\
628491220789096985667825246939787076672291855580721783179423812118795844566339\
033626371350083042377418987767526368489021495076363569710899444152641365541199\
297089609658486240825162728925322594811232697023217676899701389626054610944998\
645156243242976671416778117244881145228362140785705202014932349663455374031110\
865439640541446001224560631866679415012675213609642039209341112122171220931048\
817769856850740159056960048813328894955664006237040,
376893271560240252160856124429171794764683623308711532480252265826399489052839\
176967006347582706384910857510749605457623821162713716169241960099798663641983\
768833032614199368637903448379197864872706191773530358138801746861859625193753\
062212342742565413492759945428236206475050969709711422740289787279639609498819\
022028342176883010281250068796656755493315877723080179884031127826393616465767\
227767683025339355095872885037032838273881068750751000161133057978165233977310\
882002029481111730287186261157207562558816021945077743659477116132486431945978\
780212081562910680689238877521021906069997869698687630604035896786200545641454\
423392462302055288739224124554493390374506107065725084365221925141142419810963\
785161354415347757482845523285219685366969625277433073157556148149185246345244\
239998097249850675934910468230778236583949400059314096583654122143214392559784\
716918003481136383380267823607916163563581690735357045039414700416283696492818\
824542991573196535359516293648755449792937782991083740074509170516378559159447\
029915225823411861798386594182100327086783497578334))

(3, 3, 2, 3, zeta_3) = (3, 3, 2, 3, (
520735149430736100873866170802187478550708069500954397585286001117561849505468\
550538085512006125157372073275532686585872567822799475096279842643857080520639\
112908176220701560097027441025251585773075521598934343278573411920835198185522\

157570918623392804069509819434309101193368870288437547244822521356217867081255\
955044429975252015687102588889363828357910912746402309316366990521275053531799\
314523615057909358606059498212480766334987336977919518044648706066160544197229\
527873423794739588802481149019560212379523229072773695268958729307182595459827\
995482840380335758459046448864909860731766412429182048418547943983149163891257\
653997410590731997241781538850478245844492260482673343685009458696838915125926\
259277797406210550479600145617768256014476940253008657394257875697314852590372\
467514206755449420189338360248298668162905520113590201931791204977151271369616\
288021642266241021387119168050689258623557852573418193001710505577884601146969\
930418578673949818555286658972851403161121479294774919778695038899912692914623\
139669539570756611569831778215201963574888211355246,
477100815205619295739202444464251885919437380007038306447327934362390614873344\
171271926490253060327066797076300818990292288126460701341857735150394679699485\
790663088243282479421162394814757525296989151011932954569713010409381709699337\
251244105651860456404596956043607220755099922143539712573197936498601654275422\
138852465235582267704316366668087066930293868962947761874046276158960314695875\
712205701223935302646068747825340548372588206838155685939714330107451590376884\
651353546165746743737086586830095180233652785969592963545520541336503247040787\
577235333247657645391780500953277844559726756196048075533948889662514279355370\
729683731497462430849866916024627724952299870341551426485790033774158137440125\
325221245141972336474650166795098169139873021329618503080753371712978623603296\
029553214380178520303221742446503098501901961385353454921167630718673838890078\
650041237663381432098481265481529480786697349214085043639695600107056383407710\
698484897772325684376312445367734780949961249240848322901436410609473931405183\
2197713946691664856830906002036048178783555291744))

(4744297, 1, 2, 1, zeta_4744297) = (4744297, 1, 2, 1, (
572627932076062973265756498717534273743203781680659831665692405285911510100245\
806669363112983311504227207341376040600210662022696281633081977963207856737579\
922645627078949823393274964663268580376104968474042904030799895374213186566744\
995445051830761533449073370442340351113021571016488083615520702623593925857366\
863366025799907301279650073799398892151978768520622059476458665858556650705288\
578412951756218055846475388075800900881697019421043927338653490812616185508135\
452703925001407151716111240053616002622880414918440418462877846277808921321227\
538305812929780635803708530333602673229370474362797093122392412011373664022714\
474548039558092331873953535217343547029550663982344358212531148913693903387151\
489683415001167255696519043436353808576063411379343300912480136861318155443829\
374509051940465590896201709073748354636211199170046082329890467497277366448307\
174314915409461199516020796084786887961986995351033013321006569131741994235751\
058235203979896601783515267689208776110183528311662161004338523189098035637898\
247980111191779517734744687815872084640304818379870,
253011545950372215250431016992572831148589754518377826318554480673044385758763\
503386254509417998076762321932312284590131158453422444788470457479093871377573\
018125951388123087891864570536535080785151605117753167913425903140851242323591\
683967857527540332762068320944592436874197304610291297655257062053369456326930\
959766605305423210295637636621835242987013141967114103145049407054868458819616\
130477752698315013404423257583691865394140722790038056302040258074258050512451\
210517140285406891260398166682130873229091416245976162155572953408240098397616\
412164627995531483873766392399737151185264915856446181867341331914329118915450\
243858445434595214547141110072850670635447996610123387843734448877997372851609\
803131022445331082125646235960650103256709825918529453852223393163148783001748\
520611712943927218727902846026137170476295946774002215293904814822278524800772\
291683524315405850947583878258197733669259686340392520225649410544207998353459\
321312504423668775689428840945489224206431191757095606302066437948136165018497\
997088080075004738893251025415621962525494809548297))

(57384289, 1, 2, 1, zeta_57384289) = (57384289, 1, 2, 1, (
211270470774881981024520648415499946035909491102095535210104000128639202782824\
932105544018032822218313794840668959935787260199365015156297754704396076280731\
808267203721828539931475496274510142803835062800834494946521891857296099285575\
928901369017892974010253140397035259857063915902339874766138537334174608977450\
120407837867519142483590219044761341265007889065866600676089250017446904995339\
410633135817887750346202082607771605260019716563490023175883754955857175463639\
500494792323773043233850132506247698039868225638576756837551410511047978332590\
205877157593544938410149796027056231353613916037923171682812671794658218082173\
874589755150976092103830383820664015642671354422051270795322262398193034823096\
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005190594610164026865751955618082074273750790767920848002591639015613683978376\
222133460061853695422239109032607503427034507213833400284069057356973666372298\
073241840301500867358943220304906743347142159235749753403147780241271274631059\
061169887534584479318926365968858602233019958269168135552320557108029324222037\
80480379625019015074112738770722912578485342089203,
264788484086520813737188757823310305836506219494706667457774312383719676935724\
895159619722114727751236778275687196656134668760875197220797671892551894635707\
472303751233298473293344659469213115788113242218883643834485928128256912572645\
233146120280688221046090601946619395454656044554316318719071485668304032476095\
435568564161936291243342771570547868436911783658760976089955347001810241962926\
571473131431805903911635081924060111615750946356247026603237071706372198623593\
609259048788460779623331514552179895327535951836619992523973488654633804471419\
420272066651978249333845365452413820459912817855030014533884748236798177802473\
022867830796860716131088515623330387431060933754491880319841186773205932415217\
872090987294831234705899365111379967413199315460396819023020948422911109391915\
963552813654131400169803279268072730410149694650338596307832085158606110293648\
676265379898517769884772604728809593236496251734150381971691823132320112603189\
156739857568315507873367123163122841762505977384635097593566184516033648880979\
974121851124453269029454467264010517334950183018729))

(2278390627, 1, 1, 1, zeta_2278390627) = (2278390627, 1, 1, 1, (
526176397456288300691925679197674957881539897831784285750502961604203475957374\
514503894312561503896760013485102959702580868956567554991317580954626225218445\
205100366526790982832305013265304353717826191877002645633781477155508980855504\
703985204173023674254687985583769374219740191899667149050078496265503708077303\
827059244710797330970548161332349467811414114028617766058183603925384046991861\
178275604815666479444282004695447226024831319776871734480288458807626333207598\
745558807060295261027981286649983262743061908694805218104656660898923040337137\
373619217790047304329533499977949321188816031967711169698729668402138026037512\
994694325779354369823018908212090819544723097521793096635153062517951085602208\
228034780436799255651387834936096645246241138384517355790242944077859388638469\
138192949827165503410878026904767407162410513864483109155690427672212600973229\
289977144778334016897942395654288955818556537801867946184230895865288264168894\
063930423271602946006730499748019384702081765614964816726870142467452091235020\
811191044145238694695772421841656694603701558663776))

(114219291889, 1, 1, 1, zeta_114219291889) = (114219291889, 1, 1, 1, (
122796921204928003155575824739265198203026440287577712775174483577153708519403\
908048761825057304824727404403984868462574657484281394955109235015954668707204\
980474994074329039432980181941242118713596919168965001917595193979443559348863\
770190641851183974224005960183645541012360899276883583085912213153086188369167\
820602914955838568760451240029565753473477965733993622348461195607599670459216\
946076378774937785737683609075365514547987866895669888987045748131024866298771\
707628723350688218176307328442507361536108385556876285742045862535781226618294\
602964171985414996438559407578741977973766034501874690932824352966828444201621\
636685456956131712923190253003021162423466808583361708631107781070980701627201\
131140084341082070272162035611364836150961676960842309274934862330769529377198\
488444837352793661699324367937393186388222302803260395474615470766104136042697\
649577499092487376890434148862834576532048425697655881024177749383312716415101\
240567556782705505090506298770116468782921085709791390184204627176482976217472\
58399896117025830942602860363803466093670896309865))

(11, 1, 10, 1, zeta_11) = (11, 1, 10, 1, (
zeta_11
(
104336804378885946260911769261950442813130531006877125778303804559865788486418\
593279052383200959651299365383107103980325199225394883843837717745906273841749\
568132454576089569959283467278710773388808323311086754500520694999255694061061\
574496239830256618193629365296898867894827083435477233488872571032702441306116\
689174974116070190893512449630421162269468552401641338158192669941226351978776\
684355223473462727958304397430522034518163637158423406373822538372383435066967\
289106738648027465115643116289598101892616540617259965788637502513907584837387\
225325523252557076735947947109718165109579619422179309472311561680600738568935\
630503741711664946129669518743765681202192406147520625522461185193783700100160\
113014522750483341709515052667684299073434042736477264247130180631825957379633\
391555715083014793908928945373653470181883776448174900387742061372817337747594\

374373379624357229272738317567353633474897895189647208224081567916716929986700\
841623565279870767227357548849968039344418934375976553263639814238538708852340\
880144058186420518320033835473982615324212544039678,
421148893195979098989369441754739071238600228558769526269732349274518807313769\
057604077157285171571141066115484546817723937071394425987212773630109665903323\
414399529271052060547369172119515494763334398639452916813540139394039373689684\
254928050636046992524756086079793623535468818199051931452660210089666436289694\
842449570937401397089447818204089374004149943639205330601840414660064664723245\
260934766953861533706915513496499809578176292594117202823121146532441527138295\
145360008486092022148918973507119704164906991435509398647808347153629854206643\
651700072664209424855144016095609055908458017875052601621878920791648228401260\
136094953914366913339758322733729387826709435881987047719351574249207557483356\
217436107323221785890316317377908493342660711746206457004449590463370165437083\
407230198587040290444248810570332792561249639801449756619501519088202952240974\
939985573412394853998381835573110489468640413305006570663696659751056322717023\
224906449729007186040672898964777486855278534869792867138913106832751582699816\
576059939402957972329116784603477350814449515268820,
421148893195979098989369441754739071238600228558769526269732349274518807313769\
057604077157285171571141066115484546817723937071394425987212773630109665903323\
414399529271052060547369172119515494763334398639452916813540139394039373689684\
254928050636046992524756086079793623535468818199051931452660210089666436289694\
842449570937401397089447818204089374004149943639205330601840414660064664723245\
260934766953861533706915513496499809578176292594117202823121146532441527138295\
145360008486092022148918973507119704164906991435509398647808347153629854206643\
651700072664209424855144016095609055908458017875052601621878920791648228401260\
136094953914366913339758322733729387826709435881987047719351574249207557483356\
217436107323221785890316317377908493342660711746206457004449590463370165437083\
407230198587040290444248810570332792561249639801449756619501519088202952240974\
939985573412394853998381835573110489468640413305006570663696659751056322717023\
224906449729007186040672898964777486855278534869792867138913106832751582699816\
576059939402957972329116784603477350814449515268818,
0,
158406044408546576364228836246394314212734848775946200245714272357326509413675\
232162512387042105959920850366188721418699368922999771071687527942101696030786\
923133537347481245294042852420402360687263037664183081156509722197391839814311\
340215905402895187165563360391447377820320867381787348981893819528481997491789\
076637298410665603097967684286834105867340695618781996221823872359419156372234\
288289771740199402874305558032988887530006327717846898224649304080029046035663\
928126634919032278516637928608760801136145225409124716429585422319861134684628\
213187274705826174059598034492945445399439199226436646074783679555523744916162\
252795606101350983605044401994981853312258514867233211098445194527711928691598\
052210792286369222090400632355112097134613334504864596378659704915772104028725\
007837241752012748267659932598339661189682931676637428115879728857692807246690\
282806096894018812362821759002878427996871259057679681219807545917169696365161\
191641442224568209406657675057404723755429800246908156937636646297106436923737\
847957940608268727004541474564747367745118485614572,
208673608757771892521823538523900885626261062013754251556607609119731576972837\
186558104766401919302598730766214207960650398450789767687675435491812547683499\
136264909152179139918566934557421546777616646622173509001041389998511388122123\
148992479660513236387258730593797735789654166870954466977745142065404882612233\
378349948232140381787024899260842324538937104803282676316385339882452703957553\
368710446946925455916608794861044069036327274316846812747645076744766870133934\
578213477296054930231286232579196203785233081234519931577275005027815169674774\
450651046505114153471895894219436330219159238844358618944623123361201477137871\
261007483423329892259339037487531362404384812295041251044922370387567400200320\
226029045500966683419030105335368598146868085472954528494260361263651914759266\
783111430166029587817857890747306940363767552896349800775484122745634675495188\
748746759248714458545476635134707266949795790379294416448163135833433859973401\
683247130559741534454715097699936078688837868751953106527279628477077417704681\
760288116372841036640067670947965230648425088079354,
104336804378885946260911769261950442813130531006877125778303804559865788486418\
593279052383200959651299365383107103980325199225394883843837717745906273841749\
568132454576089569959283467278710773388808323311086754500520694999255694061061\
574496239830256618193629365296898867894827083435477233488872571032702441306116\
689174974116070190893512449630421162269468552401641338158192669941226351978776\
684355223473462727958304397430522034518163637158423406373822538372383435066967\
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289106738648027465115643116289598101892616540617259965788637502513907584837387\
225325523252557076735947947109718165109579619422179309472311561680600738568935\
630503741711664946129669518743765681202192406147520625522461185193783700100160\
113014522750483341709515052667684299073434042736477264247130180631825957379633\
391555715083014793908928945373653470181883776448174900387742061372817337747594\
374373379624357229272738317567353633474897895189647208224081567916716929986700\
841623565279870767227357548849968039344418934375976553263639814238538708852340\
880144058186420518320033835473982615324212544039677,
104336804378885946260911769261950442813130531006877125778303804559865788486418\
593279052383200959651299365383107103980325199225394883843837717745906273841749\
568132454576089569959283467278710773388808323311086754500520694999255694061061\
574496239830256618193629365296898867894827083435477233488872571032702441306116\
689174974116070190893512449630421162269468552401641338158192669941226351978776\
684355223473462727958304397430522034518163637158423406373822538372383435066967\
289106738648027465115643116289598101892616540617259965788637502513907584837387\
225325523252557076735947947109718165109579619422179309472311561680600738568935\
630503741711664946129669518743765681202192406147520625522461185193783700100160\
113014522750483341709515052667684299073434042736477264247130180631825957379633\
391555715083014793908928945373653470181883776448174900387742061372817337747594\
374373379624357229272738317567353633474897895189647208224081567916716929986700\
841623565279870767227357548849968039344418934375976553263639814238538708852340\
880144058186420518320033835473982615324212544039677,
0,
316812088817093152728457672492788628425469697551892400491428544714653018827350\
464325024774084211919841700732377442837398737845999542143375055884203392061573\
846267074694962490588085704840804721374526075328366162313019444394783679628622\
680431810805790374331126720782894755640641734763574697963787639056963994983578\
153274596821331206195935368573668211734681391237563992443647744718838312744468\
576579543480398805748611116065977775060012655435693796449298608160058092071327\
856253269838064557033275857217521602272290450818249432859170844639722269369256\
426374549411652348119196068985890890798878398452873292149567359111047489832324\
505591212202701967210088803989963706624517029734466422196890389055423857383196\
104421584572738444180801264710224194269226669009729192757319409831544208057450\
015674483504025496535319865196679322379365863353274856231759457715385614493380\
565612193788037624725643518005756855993742518115359362439615091834339392730322\
383282884449136418813315350114809447510859600493816313875273292594212873847475\
695915881216537454009082949129494735490236971229143))

S_e_t_s_ _o_f_ _J_a_c_o_b_i_ _s_u_m_ _t_e_s_t_s_
TEST NR: 1   
q       29       43        0        0     8779        0        0      191
p^k      4        3                         11                         19
e        0        1                          0                          9

TEST NR: 2   
q      229     8779        0        0    43891        0        0     8779
p^k      4        3                         11                         19
e        3        0                          1                         10

TEST NR: 3   
q     1597       31        0        0   131671        0        0      571
p^k      4        3                         11                         19
e        0        0                          7                          2

TEST NR: 4   
q       61      571        0        0    11287        0        0    43891
p^k      4        3                         11                         19
e        3        1                          8                          5

TEST NR: 5   
q      421      211        0        0    56431        0        0    11971
p^k      4        3                         11                         19
e        0        1                          7                         17

TEST NR: 6   
q       37    43891        0        0    22573        0        0   131671

p^k      4        3                         11                         19
e        3        2                          4                         15

TEST NR: 7   
q     4789      127        0        0   790021        0        0    11287
p^k      4        9                         11                         19
e        2        1                          8                         14

TEST NR: 8   
q      181      631        0        0   105337        0        0    56431
p^k      4        9                         11                         19
e        2        2                          0                         13

TEST NR: 9   
q      109    11971        0        0   526681        0        0    35911
p^k      4        9                         11                         19
e        2        2                          4                         17

TEST NR: 10   
q     2053   131671        0        0    16633        0        0      229
p^k      4        9                         11                         19
e        1        2                          3                         11

TEST NR: 11   
q    22573    11287        0        0   225721        0        0     1597
p^k      4       27                         11                         19
e        0       22                          7                         16

TEST NR: 12   
q      757      379        0        0  1580041        0        0     4789
p^k      4       27                         11                         19
e        0        0                          0                          5

TEST NR: 13   
q      541      271        0        0   117041        0        0     2053
p^k      4       27                         11                         19
e        3       21                          0                          0

TEST NR: 14   
q    71821    56431        0        0   351121        0        0    22573
p^k      4       27                         11                         19
e        0       19                          1                          5

TEST NR: 15   
q   790021    35911        0        0    30097        0        0    71821
p^k      4       27                         11                         19
e        2       12                          7                          3

TEST NR: 16   
q       41      229        0        0    55441        0        0   790021
p^k      8        3                         11                         19
e        6        1                          2                         15

TEST NR: 17   
q      761     1597        0        0  1053361        0        0      761
p^k      8        3                         11                         19
e        5        0                         10                          1

TEST NR: 18   
q      281       61        0        0    90289        0        0      457
p^k      8        3                         11                         19
e        6        2                          2                         18

TEST NR: 19   
q      457      421        0        0    23761        0        0     2281
p^k      8        3                         11                         19
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e        1        2                          1                          2

TEST NR: 20   
q     2281       37        0        0   451441        0        0   105337
p^k      8        9                         11                         19
e        4        7                          8                         13

TEST NR: 21   
q       17     4789      191        0        0        0        0     6841
p^k     16        9        5                                           19
e       13        3        3                                            0

TEST NR: 22   
q      113      181       31        0        0        0        0    47881
p^k     16        9        5                                           19
e        7        1        2                                           13

TEST NR: 23   
q     2129      109      571        0        0        0        0   526681
p^k     16       27        5                                           19
e        9        7        1                                            6

TEST NR: 24   
q   117041     2053      211        0        0        0        0    28729
p^k     16       27        5                                           19
e        4        2        1                                           10

TEST NR: 25   
q      337    22573    43891        0        0        0        0    20521
p^k     16       27        5                                           19
e       12        2        3                                            7

TEST NR: 26   
q      241      757      631        0        0        0        0   225721
p^k     16       27        5                                           19
e        4       22        3                                            4

TEST NR: 27   
q     4561      541    11971        0        0        0        0  1580041
p^k     16       27        5                                           19
e       12       19        4                                           10

TEST NR: 28   
q   351121    71821   131671        0        0        0        0     2129
p^k     16       27        5                                           19
e        5        8        4                                           18

TEST NR: 29   
q    30097   790021      271        0        0        0        0   117041
p^k     16       27        5                                           19
e        3       22        4                                            1

TEST NR: 30   
q     1009      457    56431        0        0        0        0     4561
p^k     16        3        5                                           19
e        9        1        3                                            6

TEST NR: 31   
q    13681     2281    35911        0        0        0        0   351121
p^k     16        3        5                                           19
e       13        1        4                                           13

TEST NR: 32   
q    55441       73       61        0        0        0        0    30097
p^k     16        9        5                                           19
e        1        4        3                                           12

TEST NR: 33   
q  1053361   105337      421        0        0        0        0    13681
p^k     16        9        5                                           19
e        5        3        4                                            4

TEST NR: 34   
q      433     6841      181        0        0        0        0  1053361
p^k     16        9        5                                           19
e       13        8        2                                           16

TEST NR: 35   
q     8209     2521      541        0        0        0        0     8209
p^k     16        9        5                                           19
e        8        7        3                                            1

TEST NR: 36   
q    90289    47881    71821        0        0        0        0    90289
p^k     16        9        5                                           19
e        5        6        3                                           14

TEST NR: 37   
q    57457   526681   790021        0        0        0        0    57457
p^k     16        9        5                                           19
e        1        1        2                                           16

TEST NR: 38   
q     2161    28729       41        0        0        0        0   451441
p^k     16       27        5                                           19
e       13       17        3                                            0

TEST NR: 39   
q    23761    16633      761        0        0        0        0   287281
p^k     16       27        5                                           19
e        9        7        3                                            9

TEST NR: 40   
q   451441    20521      281        0        0        0        0        0
p^k     16       27        5
e        9        6        2  

TEST NR: 41   
q    15121   225721     2281        0        0        0        0        0
p^k     16       27        5
e        0        4        1

TEST NR: 42   
q   287281     7561     6841        0        0        0        0        0
p^k     16       27        5
e        0       26        0

TEST NR: 43   
q       73  1580041     2521        0        0        0        0        0
p^k      8       27        5
e        7        3        4

TEST NR: 44   
q   105337      337    47881        0        0        0        0        0
p^k      8        3        5
e        5        1        0

TEST NR: 45   
q     6841      241   526681        0        0        0        0        0
p^k      8        3        5
e        6        0        2
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TEST NR: 46   
q     2521     4561    20521        0        0        0        0        0
p^k      8        3        5
e        2        2        2

TEST NR: 47   
q    47881   351121   225721        0        0        0        0        0
p^k      8        3        5
e        5        2        0

TEST NR: 48   
q   526681    30097     7561        0        0        0        0        0
p^k      8        9        5
e        2        1        3

TEST NR: 49   
q    28729     1009  1580041        0        0        0        0        0
p^k      8        9        5
e        3        2        4

TEST NR: 50   
q    16633    13681   117041        0        0        0        0        0
p^k      8        9        5
e        1        2        0

TEST NR: 51   
q    20521    55441      241        0        0        0        0        0
p^k      8        9        5
e        3        3        1

TEST NR: 52   
q   225721  1053361     4561        0        0        0        0        0
p^k      8        9        5
e        1        7        3

TEST NR: 53   
q     7561      433   351121        0        0        0        0        0
p^k      8       27        5
e        1        0        3

TEST NR: 54   
q  1580041     8209    13681        0        0        0        0        0
p^k      8       27        5
e        7       25        4

TEST NR: 55   
q      191    90289    55441        0        0        0        0        0
p^k      2       27        5
e        1        7        0

TEST NR: 56   
q       43    57457  1053361        0        0        0        0        0
p^k      2       27        5
e        0       20        1

TEST NR: 57   
q     8779     2161     2161        0        0        0        0        0
p^k      2       27        5
e        1       18        1

TEST NR: 58   
q       31    23761    23761        0        0        0        0        0
p^k      2       27        5
e        0       22        4

TEST NR: 59   

q      571   451441   451441        0        0        0        0        0
p^k      2       27        5
e        0       21        2

TEST NR: 60   
q      211    15121    15121        0        0        0        0        0
p^k      2       27        5
e        1       15        4

TEST NR: 61   
q    43891   287281   287281        0        0        0        0        0
p^k      2       27        5
e        0        1        1

TEST NR: 62   
q      127        0        0       43        0        0        0        0
p^k      2                          7
e        1                          5

TEST NR: 63   
q      631        0        0     8779        0        0        0        0
p^k      2                          7
e        1                          6

TEST NR: 64   
q    11971        0        0      211        0        0        0        0
p^k      2                          7
e        0                          0

TEST NR: 65   
q   131671        0        0    43891        0        0        0        0
p^k      2                          7
e        0                          2

TEST NR: 66   
q    11287        0        0      127        0        0        0        0
p^k      2                          7
e        1                          6

TEST NR: 67   
q      379        0        0      631        0        0        0        0
p^k      2                          7
e        1                          2

TEST NR: 68   
q      271        0        0    11971        0        0        0        0
p^k      2                          7
e        0                          3

TEST NR: 69   
q    56431        0        0   131671        0        0        0        0
p^k      2                          7
e        0                          4

TEST NR: 70   
q    35911        0        0      379        0        0        0        0
p^k      2                          7
e        1                          1

TEST NR: 71   
q        0        0        0    35911        0        0        0        0
p^k                                 7
e                                   5

TEST NR: 72   
q        0        0        0       29        0        0        0        0
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p^k                                 7
e                                   5

TEST NR: 73   
q        0        0        0     1597        0        0        0        0
p^k                                 7
e                                   5

TEST NR: 74   
q        0        0        0      421        0        0        0        0
p^k                                 7
e                                   3

TEST NR: 75   
q        0        0        0     4789        0        0        0        0
p^k                                 7
e                                   3

TEST NR: 76   
q        0        0        0      757        0        0        0        0
p^k                                 7
e                                   1

TEST NR: 77   
q        0        0        0    71821        0        0        0        0
p^k                                 7
e                                   2

TEST NR: 78   
q        0        0        0   790021        0        0        0        0
p^k                                 7
e                                   5

TEST NR: 79   
q        0        0        0      281        0        0        0        0
p^k                                 7
e                                   5

TEST NR: 80   
q        0        0        0   105337        0        0        0        0
p^k                                 7
e                                   6

TEST NR: 81   
q        0        0        0     2521        0        0        0        0
p^k                                 7
e                                   6

TEST NR: 82   
q        0        0        0    47881        0        0        0        0
p^k                                 7
e                                   3

TEST NR: 83   
q        0        0        0   526681        0        0        0        0
p^k                                 7
e                                   2

TEST NR: 84   
q        0        0        0    28729        0        0        0        0
p^k                                 7
e                                   6

TEST NR: 85   
q        0        0        0    16633        0        0        0        0
p^k                                 7

e                                   0

TEST NR: 86   
q        0        0        0     7561        0        0        0        0
p^k                                 7
e                                   6

TEST NR: 87   
q        0        0        0  1580041        0        0        0        0
p^k                                 7
e                                   4

TEST NR:  88  
q        0        0        0      113        0        0        0        0
p^k                                 7
e                                   4

TEST NR: 89   
q        0        0        0     2129        0        0        0        0
p^k                                 7
e                                   2

TEST NR: 90   
q        0        0        0   117041        0        0        0        0
p^k                                 7
e                                   1

TEST NR: 91   
q        0        0        0      337        0        0        0        0
p^k                                 7
e                                   1

TEST NR: 92   
q        0        0        0   351121        0        0        0        0
p^k                                 7
e                                   3

TEST NR: 93   
q        0        0        0     1009        0        0        0        0
p^k                                 7
e                                   4

TEST NR: 94   
q        0        0        0    55441        0        0        0        0
p^k                                 7
e                                   0

TEST NR: 95   
q        0        0        0  1053361        0        0        0        0
p^k                                 7
e                                   3

TEST NR: 96   
q        0        0        0    57457        0        0        0        0
p^k                                 7
e                                   6

TEST NR: 97   
q        0        0        0    15121        0        0        0        0
p^k                                 7
e                                   0

TEST NR: 98   
q        0        0        0   287281        0        0        0        0
p^k                                 7
e                                   4
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5. COMPARISON.

In this section we will compare the test with its two major competitors, namely the old

Jacobi sum test (cf. [29], [30]) and the complex multiplication test (cf. [108], [109]). These

were the two fastest general purpose primality tests.

(5.1) The Jacobi sum test of Cohen and Lenstra.

In [29] an implementation of the Jacobi sum test is presented. To prove the primality of

a number n, the program runs through seven stages. First the program looks for possible

factors of n less than 106. If no factors are found, four Miller-Rabin compositeness tests

are performed. If n is a pseudoprime for all four compositeness tests, the remaining five

stages, together forming the actual Jacobi sum test, are performed on the number n. The

computations were initially done on a CDC 170/750 computer.

number Trial 4 Miller- Lucas- Selection Jacobi Addi- Final Total

of division Rabin Lehmer of t sum tional trial running

digits up to 106 tests test and s tests tests division time

100 7.965 0.567 2.211 0.017 37.334 0.000 2.336 50.442

0.039 0.015 0.936 0.003 15.696 0.000 1.379 15.203

8.019 0.602 3.930 0.023 62.705 0.000 6.216 75.416

7.824 0.544 0.724 0.011 12.426 0.000 1.099 26.031

120 7.972 0.759 2.419 0.017 78.151 0.000 8.468 97.797

0.025 0.023 0.777 0.003 24.042 0.000 7.062 28.274

8.010 0.803 4.348 0.024 113.357 0.000 27.571 147.259

7.887 0.723 0.864 0.012 34.503 0.000 2.442 51.077

140 7.963 0.957 3.705 0.016 130.251 0.000 13.525 156.429

0.027 0.029 1.547 0.003 42.919 0.000 5.257 43.122

8.022 0.999 6.371 0.023 186.919 0.000 28.782 210.756

7.904 0.906 0.480 0.012 52.947 0.000 2.546 77.316

160 7.951 1.292 5.086 0.015 205.347 0.000 26.501 246.204

0.047 0.054 2.722 0.002 45.350 0.000 8.301 44.144

8.010 1.387 12.615 0.019 252.452 0.000 33.927 298.144

7.778 1.181 2.147 0.011 64.833 0.000 16.045 111.888

180 7.973 1.558 5.354 0.014 308.475 0.000 36.341 359.728

0.016 0.059 2.031 0.002 56.701 0.000 0.658 55.833

7.999 1.680 9.494 0.020 392.170 0.000 37.930 439.039

7.926 1.472 1.365 0.011 206.021 0.000 35.280 259.021

200 7.950 1.998 6.653 0.015 438.143 0.000 40.978 495.748

0.035 0.127 2.214 0.002 80.472 0.000 1.606 80.025

8.000 2.191 10.469 0.020 560.381 0.000 43.292 614.254

7.859 1.552 2.834 0.012 205.896 0.000 35.761 258.859
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Above a table from [29] is presented, where for each stage the average time, the

standard deviation, the maximum time as well as the minimum time measured in seconds

of elapsed CPU time is listed.

About two years later, an especially dedicated version of the program was designed

by A.K. Lenstra on a Cray-1 at AT&T-Bell Labs. A table of the elapsed CPU time on the

Cray-1 measured in seconds is listed below, cf. [81].

number Trial 4 Miller- Lucas- Selection Jacobi Addi- Final Total

of division Rabin Lehmer of t sum tional trial running

digits up to 106 tests test and s tests tests division time

50 1.997 0.021 0.101 0.001 0.318 0.005 0.089 2.538

0.020 0.000 0.054 0.001 0.266 0.022 0.063 0.259

2.049 0.021 0.226 0.002 0.912 0.098 0.303 3.087

1.973 0.021 0.027 0.000 0.000 0.000 0.000 2.139

60 2.050 0.026 0.110 0.001 0.827 0.000 0.139 3.160

0.012 0.000 0.043 0.001 0.389 0.000 0.092 0.390

2.071 0.026 0.214 0.002 1.601 0.000 0.338 3.825

2.031 0.025 0.047 0.000 0.000 0.000 0.000 2.300

70 2.130 0.033 0.131 0.002 1.389 0.000 0.223 3.914

0.013 0.000 0.031 0.001 0.651 0.000 0.100 0.676

2.161 0.033 0.195 0.002 2.312 0.000 0.371 4.976

2.121 0.032 0.089 0.001 0.345 0.000 0.090 2.823

80 2.178 0.039 0.158 0.002 1.886 0.000 0.306 4.576

0.011 0.000 0.042 0.000 0.741 0.000 0.284 0.702

2.206 0.040 0.245 0.002 3.450 0.000 1.099 6.009

2.168 0.039 0.104 0.001 0.444 0.000 0.090 2.984

90 2.248 0.046 0.194 0.002 3.130 0.000 0.346 5.972

0.008 0.000 0.064 0.000 1.104 0.000 0.239 1.059

2.262 0.047 0.342 0.002 5.414 0.000 1.217 8.290

2.240 0.046 0.061 0.001 1.072 0.000 0.108 4.016

100 2.337 0.058 0.234 0.002 3.888 0.000 0.522 7.047

0.015 0.001 0.082 0.000 1.466 0.000 0.366 1.549

2.362 0.061 0.395 0.002 6.144 0.000 1.354 9.174

2.307 0.057 0.121 0.002 0.852 0.000 0.242 3.822

110 2.368 0.066 0.276 0.002 6.545 0.000 0.895 10.159

0.015 0.001 0.110 0.000 2.095 0.000 0.839 2.558

2.408 0.068 0.514 0.002 10.438 0.000 2.751 15.784

2.354 0.066 0.085 0.001 3.465 0.000 0.131 6.847

120 2.462 0.081 0.322 0.002 8.999 0.000 1.867 13.740

0.025 0.001 0.176 0.000 2.440 0.000 1.241 3.028

2.553 0.082 0.782 0.003 12.377 0.000 3.259 18.228

2.446 0.080 0.102 0.001 4.262 0.000 0.281 8.636
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number Trial 4 Miller- Lucas- Selection Jacobi Addi- Final Total

of division Rabin Lehmer of t sum tional trial running

digits up to 106 tests test and s tests tests division time

130 2.504 0.092 0.355 0.002 11.186 0.000 2.536 16.682

0.009 0.001 0.130 0.000 3.102 0.000 1.703 4.016

2.525 0.093 0.637 0.002 17.413 0.000 7.018 23.901

2.493 0.092 0.127 0.001 3.953 0.000 0.607 8.852

140 2.599 0.112 0.407 0.002 15.966 0.000 4.326 23.417

0.021 0.002 0.141 0.000 4.225 0.000 1.755 4.265

2.660 0.120 0.597 0.002 23.988 0.000 7.673 30.610

2.586 0.110 0.134 0.001 4.614 0.000 0.697 11.561

150 2.665 0.126 0.451 0.002 21.450 0.000 4.214 28.916

0.032 0.001 0.166 0.000 5.287 0.000 1.328 5.253

2.776 0.131 0.749 0.002 28.411 0.000 7.909 35.349

2.634 0.124 0.203 0.001 10.715 0.000 2.000 17.475

160 2.746 0.149 0.492 0.002 27.136 0.000 5.137 35.670

0.018 0.002 0.206 0.000 5.990 0.000 1.721 5.206

2.790 0.155 1.024 0.002 37.494 0.000 8.563 44.974

2.727 0.146 0.238 0.001 19.432 0.000 4.216 28.674

170 2.787 0.167 0.479 0.002 32.589 0.000 6.875 42.907

0.013 0.001 0.137 0.000 8.555 0.000 2.355 8.600

2.809 0.168 0.708 0.002 43.430 0.000 9.408 55.805

2.772 0.166 0.188 0.001 11.769 0.000 4.502 19.963

180 2.816 0.186 0.678 0.002 35.584 0.000 8.589 47.862

0.008 0.001 0.263 0.000 7.976 0.000 1.934 8.613

2.841 0.187 1.327 0.002 52.153 0.000 9.996 65.327

2.810 0.185 0.218 0.001 18.338 0.000 4.800 27.051

190 2.926 0.217 0.777 0.001 50.340 0.000 9.722 63.991

0.016 0.001 0.241 0.001 7.323 0.000 1.552 7.448

2.977 0.219 1.204 0.002 64.763 0.000 10.705 78.540

2.912 0.215 0.465 0.001 35.841 0.000 5.164 50.891

200 2.965 0.240 0.888 0.002 53.542 0.000 10.724 68.369

0.013 0.001 0.320 0.000 15.458 0.000 1.182 15.827

3.005 0.243 1.772 0.002 76.681 0.000 11.416 90.975

2.959 0.239 0.323 0.001 25.895 0.000 5.814 40.960

210 3.056 0.277 1.011 0.002 63.687 0.000 11.605 79.646

0.003 0.001 0.385 0.000 20.628 0.000 1.355 20.822

3.064 0.279 2.078 0.002 92.904 0.000 12.399 108.821

3.052 0.275 0.507 0.001 24.337 0.000 5.999 40.411

220 3.113 0.298 0.980 0.002 79.242 0.000 12.226 95.932

0.013 0.002 0.278 0.001 17.781 0.000 0.263 17.747

3.137 0.303 1.429 0.002 104.506 0.000 12.757 121.736

3.098 0.295 0.447 0.001 47.260 0.000 11.811 64.061
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(5.2) The complex multiplication test.

In [108] an algorithm is presented to prove the primality of a number n using elliptic curves

over Z[i] and quadratic forms. For further details concerning the theory of this algorithm,

we refer to [108] and to I.10. This algorithm is called the complex multiplication test.

Although this test is called “Elliptic Curve Primality Proving (ECPP) algorithm” in [109],

we prefer the name “complex multiplication test” in order to make a distinction between

this test and the Elliptic Curve Primality Proving algorithm of [46], and because the

“complex multiplication test” does not solely uses elliptic curves, in the way the algorithm

in [46] does.

To prove the primality of a number n, the program runs through three stages. First

the program looks for possible factors of n less than 104. If no factors are found four

probabilistic compositeness tests are performed on the number n. If n is a probable prime

for all four probabilistic compositeness tests, the complex multiplication test is performed

on the number n.

The computations of Morain were done on a SUN-3/60. Below we present a table from

[108], where for each stage we list the average time, the standard deviation, the maximum

time, as well as the minimum time measured in seconds of elapsed CPU time.

number
of digits 50 100 120 140 160 180 200

0.7 0.8 0.8 0.8 0.8 0.9 0.9
Trial 0.0 0.0 0.0 0.0 0.0 0.0 0.0

division 0.8 0.8 0.8 0.9 0.9 0.9 0.9
up to 104 0.7 0.8 0.8 0.8 0.8 0.8 0.8

four 1.7 6.1 9.4 13.2 17.1 21.8 27.7
probabilistic 0.1 0.4 0.6 1.0 1.4 1.5 2.0

compositeness 1.9 6.9 10.5 14.7 20.4 24.9 30.9
tests 1.6 5.6 8.4 12.0 15.3 19.6 24.9

383.6 4108.1 6567.8 10917.0 17762.5 27404.4 36905.6
complex 192.4 2181.7 1965.2 4648.3 6423.1 9327.9 11212.0

multiplication 715.6 10407.1 10504.4 16651.3 33091.7 43803.5 66597.8
test 76.9 1441.3 2637.2 4862.9 8391.4 13113.8 18436.8

In [109] a comparison is made between the complex multiplication test and the Jacobi sum

test. In these the average time needed for the two primality tests is compared to the time

needed by both algorithms to perform four Miller-Rabin probabilistic compositeness tests.

In the comparison as presented by [109] the time needed for the complex multiplication

test to prove the primality of 100-digit numbers is a factor 3.781 faster than the results
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from [108] as given above. No data are given for numbers of any other size. Nevertheless

we will mention this comparison.

old Jacobi sum complex multiplication

test 4×MR ratio test 4×MR ratio
mean 50.442 0.567 88.96 1086.3 4.4 246.88

standard dev. 15.203 0.015 355.9 0.4
maximum 75.416 0.602 1948.4 5.0
minimum 26.031 0.544 546.2 4.0

Since the tests are performed on different machines having different sizes for one

computer-word, it is hard to compare these tests with each other. The time needed by

the basic routines to multiply, divide and add multiple length integers have an enormous

impact on the time needed for the complete tests. These are also influenced by the word

lengths.

However both in the tests as well as in the probabilistic compositeness test long

integer routines are used. This implies that, regardless of the basic routines that are used

the ratio of the time needed by the tests and the time needed to perform four probabilistic

compositeness tests indicates which method is faster. If we would compare these ratios

above, one could easily conclude that for numbers of 100 digits the old Jacobi sum test is

superior to the complex multiplication test.

If we would use the table from [108] to compare the ratios of the mean time needed

for both tests of Cohen and Lenstra, the complex multiplication test as well as our new

Jacobi sum test and the mean time needed for four probabilistic compositeness tests for

log10(n) = 100, 120, . . . , 200 we get

digits 100 120 140 160 180 200

old Jacobi test 50.442 97.797 156.429 246.204 359.728 495.748

sum test 4×MR 0.567 0.759 0.957 1.292 1.558 1.998

Cyber-170/750 ratio 88.962 128.849 163.457 190.560 230.885 248.122

old Jacobi test 7.047 13.740 23.417 35.670 47.862 68.369

sum test 4×MR 0.058 0.081 0.112 0.149 0.186 0.240

Cray-1 ratio 121.500 169.629 209.080 239.396 257.323 284.870

complex test 4108.100 6567.800 10917.000 17762.500 27404.400 36905.600

multiplication 4×MR 6.100 9.400 13.200 17.100 21.800 27.700

SUN-60/3 ratio 673.459 698.702 827.045 1038.742 1257.082 1332.332

new Jacobi test 108.650 190.83 418.030 671.450 1017.890 1458.870

sum test 4×MR 2.160 3.610 5.380 7.730 10.790 15.030

SUN-4 ratio 50.404 52.86 77.744 86.874 94.345 97.096
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This table seems to indicate that the ratio of the time needed for the primality test

of [29] and the time needed for four compositeness tests grows faster than the ratio of the

time needed for the complex multiplication test and the time needed for four compositeness

tests. The cross-over point, probably around 3500 decimal digits, seems to be beyond the

capabilities of both methods, although this is a somewhat premature conclusion.

Comparing the old Jacobi sum test and the test of [108] to our test, the table given

above indicates that our test is the fastest test for each size. Furthermore, if we compare

our test with the test of [108] we do have the advantage that the computer-word-length

for the SUN-3/60 is the same as for a SUN-4 (as well as for the DEC-3100). Therefore it

is possible to compare the performance of the complex multiplication test directly to our

test. Since the SUN-4 is about three times as fast as a SUN-3/60 (and the DEC-3100 is

about six times as fast as a SUN-3/60) this gives us another indication that our test is

superior to the complex multiplication test. Even for very large examples (cf. VI.4) our

test is superior to the complex multiplication test.

Remark. Very recently new information about the performance of the complex multi-

plication method was published in [6]. The timings mentioned in [6] are faster than the

timings of the complex multiplication method that were mentioned above. There are two

reasons however that the new results are hard to compare with the results of the other

methods. First of all, this paper does not supply information about the CPU-time for

compositeness tests, which were used to compare the different methods. The second ob-

jection is that the new results are given as a function of the number of words (usually a

block of 30 or 32 bits) needed to represent a prime. This differs from the earlier results

of the complex multiplication method as well as from the results of all the Jacobi sum

tests. However if we discard all these problems, and try to estimate the time needed for

compositeness tests in [6], by using earlier results we find that the complex multiplication

test is still inferior to the old Jacobi sum test, and therefore also inferior to the new Jacobi

sum test.

Remark. There is one aspect for where our algorithm is inferior in comparison to the

complex multiplication method. The complex multiplication method is able to provide a

proof that can be verified in polynomial time. As mentioned in V.5, our algorithm is not

able to do so.
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VII. INSTRUCTIONS FOR USE.

1. Introduction. 266
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5. Restarting or parallelizing the primality test. 283

1. INTRODUCTION.

This chapter is intended to provide guidance to a user who, having all the sources of the

primality testing program, wants to run the program. Before using the program itself,

one has to change the program in such a way that it is suitable to be run on one’s own

favorite computer. The changes that have to be made to the program are mainly a change

of parameters that depend on the computer’s hardware.

The program has been written in standard Fortran-77, since this language is available

on most computers.

The Fortran programming language has, as most programming languages, some lim-

itations for integers which it can represent. These integers, which we will call Fortran

integers (not to be confused with integers in mathematics), have a limited range. The

Fortran-program is initially set up to execute the primality-test on a computer with 32-bits

Fortran-integers and 8-bits bytes; it is assumed that the maximal representable Fortran-

integer is equal to 231 − 1. Integers larger than 230 − 1 are represented as arrays with each

entry at most 230 − 1. The length of these arrays is at most 200. In particular this implies

that the computer program is initially set up to execute the primality-test for numbers of

up to around 200 · log10(2
30 − 1) ≈ 1806 decimal digits.

The amount of memory needed by the program is highly dependent on the magnitude

of various parameters, which are dependent on the size of integers one likes to handle

in the primality test. Since Fortran needs upper bounds of arrays to be fixed, i.e., not

dynamically determined during execution of the program, this implies that the amount of

memory needed to execute the program is independent of the size of the number n handled

by the primality test, and only dependent on the size of N , the maximal number that can

possibly be handled by the primality test.

For integers of up to 1806 decimal digits, the program needs, apart from the memory
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space needed to load the program itself, approximately 2 megabytes (= 2 · 106 bytes) of

memory. This amount of memory is almost linear in logN .

In Fortran, input and output operations are read from or written to “units”. In our

program, the input is assumed to be on standard unit 5, and the output will be put on

unit 6. This is the Fortran-standard on most computers. If you are not familiar with these

terms, please consult a local expert.

To change the parameters in such a way that it is suited for the machine’s hardware

is straightforward. To change the parameters in such a way that the program needs less

memory is not recommended to users with little experience on computers.

Next, after all parameters have been changed in the proper way, a few files containing

various tables have to be generated which will be used by the program (except if one tries

to prove the primality of a number less than or equal to 2).

Although the program has not been written to run on a particular computer or for one

particular operating system, we will assume in our exposé that we try to use the program

on a system running under the UNIX©R operating system. It should not be difficult to

replace typical UNIX-commands by commands in any other operating system.

The source of the computer program for primality testing is divided into several parts

in order not to load all the routines into one large executable file. This is also done

because not all of the routines and functions are needed while executing various parts of

the program. The source consists of 5 files containing programs:

extgn.f . . . . . . . . . . . . . . . . . . Program to generate cyclic extensions

jgen.f . . . . . . . . . . . . . . . . . . . . Program to generate Jacobi sums

pqgn.f . . . . . . . . . . . . . . . . Program to generate p-primes and q-primes

prmgen.f . . . . . . . . . . . . . . . . . Program to generate a table of primes

test.f . . . . . . . . . . . . . . . . . . . . . . . . . . . The primality test

and 20 files containing various functions and subroutines:

bufop.f . . . . . . . . . . . . . . . . . . . . . . . . Buffered output routines

cyclic.f . . . . . . . . . . . . . Routines to generate cyclic extensions of Z/nZ

cyclotomic.f . . . . . . . . . . . . . . . . Routines to generate roots of unity

ftrt23.f . . . . . . . . . . . . . . . . . . Routines for the final trial division

gnop1a.f . . . . . . . . . . . . . . . . . . . . . . Operations on Jacobi sums

gnop1b.f . . . . . . . . . Routines to express Gauss sums in terms of Jacobi sums

©R UNIX is a registered trademark of AT&T.
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ibasic.f . . . . . . . . . . . . . . . . . . . . Elementary routines on integers

init.f . . . . . . . . . . . . . . . . . . . . . . . . . Initialization routines

jpqbas.f . . . . . . . . . . Basic routines for p-primes, q-primes and Jacobi sums

jstst.f . . . . . . . . . . . . . . . . . . . . Routines for the Jacobi sum test

lbas.f . . . . . . . . . . . . . . . . . . . Elementary routines on long integers

lop.f . . . . . . . . . . . . . . . . . . . . . . . . Operations on long integers

lopje.f . . . . . . . . . . . . . . Operations to speed up the operations in lop.f

mchdep.f . . . . . . . . . . . . . . . . . . . . . Machine dependent routines

nop.f . . . . . . . . . . . . . . . . . . . Operations on long integers modulo n

optim.f . . . . . . . . . . . . . . . . . . . . . . . . . Optimization routines

pop.f . . . . . . . . . . . . . . . . . . . Operations on polynomials modulo n

millerrabin.f . . . . . . . . . . . . . . . . . Miller-Rabin’s compositeness test

ran.f . . . . . . . . . . . . . . . . . . . . . . . . . . . Random generators

sort.f . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sorting routines

Finally there are a few files with helpful programs, subroutines and functions:

btoi.f . . . . . . . . . . . . . . . . . Conversions of binary files to integer files

chkmch.f . . . . . . . . . . . . . Routines to check machine-dependent constants

itob.f . . . . . . . . . . . . . . . . . Conversion of integer files to binary files

jaccheck.p . . . . . . . . . . . . . . . . . . Program to validate a Jacobi sum

In order not to generate the Jacobi sum table once more, the file:

deci.19 . . . . . . . . . . . . . . . . . . . . Decimal coded file of Jacobi sums

has been added to the set of source files. The reason why will be explained in VII.2.

(1.1) Remark. For those machines having the UNIX operating-system a Makefile is

provided which performs all the necessary operations on these Fortran source files.
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2. SETTING UP.

In this section we will describe how to modify the sources of the primality test in order

to run it on your own computer. First we will describe how to modify parameters that

depend on the machine’s hardware. Next we will describe how to modify the program in

such a way that it needs less memory. Most users will not be interested in that section.

Moreover modifying the program to save memory space needs great care, since the values

of various parameters should be changed in such a way that they do not conflict. Changing

these parameters is not recommended to users having little experience in programming.

Finally, it is explained how to generate the files containing tables needed by the

primality program.

(2.1) Changing the parameters depending on the machine’s hardware.

In order to change the parameters needed by the program to make the program suited for

your computer, one has to modify the contents of the file mchdep.f. This file contains two

routines:

real function second()

and

subroutine getcon(maxint, iwords)

Since there does not exist a standard Fortran routine to calculate the elapsed time that

the program resides in the computer, there is no standard way to measure the computing

time used by the program.

In order to enable the program to calculate the elapsed time one has to provide

a function such that the difference of two values provided by two subsequent calls to the

function second() gives the elapsed computing time between two calls. On most computers

there is a built-in function which performs this task. These functions are mostly called

time or etime. In these cases one can solve the problem by writing a function second()

that uses this built-in function.

If the built-in function is called second, of course one does not have to provide a

function second that calls this built-in function. If one is not able to write such a function,

which is very unlikely, then a dummy function:
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real function second()

second=0.0

return

end

will do. In this case the program will not be able to calculate the time it needs to run,

but it will be able to minimize the time needed for the test to complete, although the

minimization will be done using time-functions which will not be especially suited for the

machine one is using.

In the second routine one has to change the machine dependent constants maxint and

iwords. The constant maxint should have the value of the maximal representable integer

on your machine. Usually, this is 2k−1−1, where k is the number of bits in a machine-word.

This is not always the case, however. Unfortunately, there is no standard way to calculate

this constant.

Another constant, which cannot be routinely calculated is the constant iwords, which

specifies the number of bytes which is used to store an integer.

For some machines (a VAX, a Sun-3, a Sun-4, a DEC-3100, and some CDC-models),

these constants have already been specified. These are the only machine dependent changes

one has to make to run the programs on your own machine.

(2.2) Saving memory space.

As has been indicated in VII.1, the memory used by the algorithm is almost linear in

logN . Therefore the easiest way to save memory is to change the upper bounds of the

arrays used to represent the multiple-length integers. This reduces the bound on logN ,

which implies that the program is only capable of performing the test on smaller numbers.

The upper bound of the arrays used to represent the multiple-length integers is called

maxml. This constant is initiated in almost all routines handling multiple-length integers.

Each initialization of maxml (having the value 200) should be changed.

Any other change to save memory is not recommended.

(2.3) Generating the tables.

In order to use the primality test, a few files containing tables have to be generated. The

generation of these files will be discussed separately.

Generating the prime table.
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In order to generate the same file as described in IV.2, no changes have to be made. If

one wishes to generate more (or less) primes, we have to make a few changes in the file

prmgen.f. In the program a call is made to a subroutine prgen having parameters pbound,

gapbnd and dbnd.

The parameter pbound represents the bound on the primes that have to be generated.

This should be a single precision integer, i.e., pbound should be at most maxint.

The parameter gapbnd represents the bound on the maximal gap between two con-

secutive primes at most pbound. A table containing these gaps can for instance be found

in [132].

Finally the parameter dbnd represents the number of differences that have to be packed

in one computer word. It should be at most blog(maxint)/ log(gapbnd)c.
If these parameters are set to the proper values, one can compile the files prmgen.f

and mchdep.f and execute the binary program, generating a binary-formatted prime file

on standard unit 13. This file is usually called fort.13 or tape13. On the standard output

all primes up to pbound are listed.

Generating the table containing all information about the values of t, the p-

primes, and the q-primes.

In order to generate the same file as described in IV.2, no changes have to be made.

By compiling the files pqgn.f, bufop.f, lbas.f, lop.f, lopje.f, mchdep.f, init.f, and

sort.f and executing the binary program, a binary-formatted file is generated on standard

unit 17 (usually called fort.17 or tape17). On the standard output the maximal value

t0 for t and its factorization is listed, and for all primes q with q − 1 | t0 the factorization

of q − 1 and the index of q is listed.

Generating the Jacobi sum table (first method).

In order to generate the same Jacobi sum file as described in IV.2, no changes have to be

made. By compiling the files jgen.f, bufop.f, ibasic.f, init, jpqbas.f, lbas.f, lop.f,

lopje.f and mchdep.f and executing the binary program, a file is generated on standard

unit 19 (usually called fort.19 or tape19). The program is able to generate Jacobi sums

for a sequence of q-primes, or to restart the generation just for one single q-prime, to list

the Jacobi sums for specified primes, to clear the contents of the Jacobi sum file, and to

list Jacobi sums in TEX©R-format. The program uses the information of the table stored

©R TEX is a registered trademark of the American Mathematical Society.
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on unit 17. Apart from specifying what listing should be made the program needs and

asks as input the indices of the first and the last q-prime in the sequence.

In case of the generation of the Jacobi sums the program will list for each prime q

with q − 1|t and each prime p|q − 1 all Jacobi sums on the standard output.

Remark. The program takes a considerable amount of time to generate the Jacobi sums

for the largest q-primes. If t0 = 6983776800, generation of the Jacobi sums for the largest

q-prime takes about twenty days on a SUN-4. Therefore a second method will be specified

to generate this file.

Generating the Jacobi sum table (second method).

The Jacobi sum file generated on standard unit 19 by the method described above is

formatted in a binary format. This implies that a file generated on one machine cannot

always be used on another machine. However first converting the binary file into a text-file,

specifying all integers in text-format, next transferring the file to another machine, and

finally converting it back to its original form, makes it possible to use the Jacobi sum file

generated on another machine. Since we did generate this file, we converted it to text

format by the program on the files btoi.f and mchdep.f to a text-file deci.19. The user

who wants to use this file simply has to use the program from the compiled source-files

itob.f and mchdep.f to convert deci.19 into the binary file fort.19 or tape19.

Generating the extension table.

In order to generate the same extension file as described in IV.2, no changes have to be

made. By compiling the files extgn.f, bufop.f, ibasic.f, init, lbas.f, lop.f, lopje.f

and mchdep.f and executing the binary program, a binary-formatted file is generated on

standard unit 23 (usually called fort.23 or tape23).

The program does not need any input and while generating the binary extension file

it will list all extensions of prime power degree u = 2k2 , 1 ≤ k2 ≤ 4, of prime power

degree u = 3k3 , 1 ≤ k3 ≤ 2, and of degree u = 5. The corresponding conductors m will

be less than 160. For each pair (u,m), the minimal polynomial f of the generator, the

discriminant of f , the matrices S and S∗ and the denominator D (cf. IV.2) will be listed.

This is sufficient for t0 = 6983776800 and its divisors.

Generating the primality testing program.

The last setting up that has to be done is the generation of the binary primality test-

ing program. By compiling the main program test.f and the files bufop.f, optim.f,

cyclic.f, cyclotomic.f, frt23.f, gnop1b.f, gnop1a.f, ibasic.f, init.f, jpqbas.f,
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jstst.f, lbas.f, lop.f, lopje.f, mchdep.f, nop.f, pop.f, millerrabin.f, and ran.f,

we will get a binary program that can perform the primality test. This concludes all the

setting up we have to do in order to be able to run the primality test.
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3. RUNNING A PRIMALITY TEST.

To show how to run the primality test, we will give an example and show what occurs and

what information has to be given.

In order to run the program, all the files of which the generation has been described in

the previous section have to be locally present. In UNIX-terms this means that these files

should be in the current working directory. Suppose that the primality testing program

has been called PRIT. We will execute PRIT in an interactive environment, i.e., input is

tranferred to the standard input (logical unit 5), which is the keyboard, and output is

tranferred to the standard output (logical unit 6), which is the terminal-screen. Suppose

that we would like to prove the primality of 4899633286613100914950380950653312638379,

which is a 40-digit number that is found by a procedure which randomly chooses a 40-digit

number and checks if the number fails to pass 4 compositeness tests.

If we execute the program PRIT, the program prompts

enter n (number to be tested prime)

By typing in

4899633286613100914950380950653312638379

the program prompts with

enter start=0/restart=1

Since we would like to start, we type

0

Restarting the program will be discussed in VII.5.

Next the program finds the maximal powers of 2 in nw − 1, where w ≤ 20. So

2 ^ 1 | n ^ 1 - 1

2 ^ 3 | n ^ 2 - 1

2 ^ 4 | n ^ 4 - 1

2 ^ 5 | n ^ 8 - 1

2 ^ 6 | n ^ 16 - 1

Next, the program needs a trial division bound and prompts with

enter trial division bound

Any bound ≤ 1000000 can be specified. Any larger bound will be changed into 1000000.

Here we take

10000
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Furthermore the program needs an upper bound for ω in nω − 1, i.e., which cyclotomic

polynomials have to be examined. This upper bound is at most 20.

enter search limit for w

which will here be given as

4

in this case. The factors that will be found are

3 ^ 1 | n ^ 1 - 1

3 ^ 2 | n ^ 3 - 1

3 ^ 3 | n ^ 9 - 1

5 ^ 1 | n ^ 2 - 1

5 ^ 2 | n ^ 10 - 1

7 ^ 1 | n ^ 2 - 1

7 ^ 2 | n ^ 14 - 1

17 ^ 1 | n ^ 4 - 1

29 ^ 1 | n ^ 1 - 1

43 ^ 1 | n ^ 3 - 1

139 ^ 1 | n ^ 3 - 1

193 ^ 1 | n ^ 2 - 1

trial division of n^i-1 (1 <= i <= 4) up to 10000 in 0.270 seconds

no factor of n found

Fortunately, no factors have been found of n, which is what we expected, since we

chose a prime number as input.

enter number of Miller-Rabin tests

Next we may specify the number of Miller-Rabin compositeness tests. Any positive in-

teger ≤ 231 − 1 will do, but since this number already failed to pass four Miller-Rabin

compositeness tests during the procedure of finding this probable prime, we give

0

Suppose that we know any nice factors of some nω −1, then we can specify them here.

enter any known factors div^k of n^w-1

enter w, if no known factors: w = 0

No factors are known, so we type

0

At this point the program will list the values of n mod pk, where pk is a prime power
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divisor of t0 = 6983776800 = 25 · 33 · 52 · 7 · 11 · 13 · 17 · 19, as well as the order of n

modulo these prime powers. Among these prime powers might be some additional factors

of nord n mod t0 − 1 not known before. Next all the factors will be listed again, including

their multiplicities and the smallest power w of n for which nw − 1 is divisible by a power

of these prime factors. The product of all factors found at this point is

62145623604411547200

which is a 20-digit number. This implies that using the generation of roots of unity, the

program is able to complete the proof that n is indeed prime. The rings in which the

generation of roots of unity has to be performed may have very large order, so that there

may be a faster way to prove the primality of n. Therefore the program tries to find a faster

way to complete the proof. In order to perform the optimization the program needs to

know which final trial division will be chosen (cf. IV.6). This depends on whether lcm(s, v)

is at least 2
√
n or 3

√
n. When the program prompts

enter e2or3

one may only specify 2 of 3 for one of these methods. In order to make the optimization

procedure not too time consuming, we enable the user to choose a proper value instead of

the program. We choose

2

Now the program starts to optimize. One may influence this optimization, by forcing

the program to perform the optimization stage more than once. This will be discussed in

VII.4. Here we will assume that this will not take place. So when the program prompts

optimize?(0=no more iterations/1=more iterations)

we simply type

0

and the program will display the best solution found up till this point, i.e., without doing

any further optimization. This will be a better solution than the solution to use only

the generation of roots of unity. First it will display which Jacobi sum tests have to be

performed according to the optimal solution.

final constants

take 6 of 2

take 2 of 1

This means that 6 tests have to be performed in an extension of degree 2, and 2

tests have to be performed in an extension of degree 1. Next the Jacobi sum tests for
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combinations of characters will be displayed.

set of combinations, expressed in terms of q primes

( 13 43 11 71 0 0 0 0 )

( 61 31 71 43 0 0 0 0 )

( 421 211 31 211 0 0 0 0 )

( 11 13 211 421 0 0 0 0 )

( 71 61 61 0 0 0 0 0 )

( 43 421 421 0 0 0 0 0 )

( 31 0 0 0 0 0 0 0 )

( 211 0 0 0 0 0 0 0 )

Each entry represents the conductor of a character in the test. Furthermore in the

first column tests with characters of 2-power order are listed, the second column tests of

3-power order, in the third column tests of 5-power order, etc. The parameters that belong

to the optimal solution are

s is 73336287640759

t is 420

u is 2

v is 4701480

w is 2

Next the factorization of t is given.

set of p-primes and their powers

2 4

3

5

7

The factorization of lcm(t, v) in prime powers is given. For these prime powers the program

should generate roots of unity or prove the existence of these roots of unity.

prime factors and their maximum multiplicity

maximum multiplicity=3, prime factor=2

maximum multiplicity=1, prime factor=3

maximum multiplicity=1, prime factor=5

maximum multiplicity=1, prime factor=7

maximum multiplicity=1, prime factor=29
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maximum multiplicity=1, prime factor=193

product of all factors :

4701480=lcm(t,v)

orders, multiplicities and prime factors

w=2, multiplicity=3, prime factor=2

w=1, multiplicity=1, prime factor=3

w=2, multiplicity=1, prime factor=5

w=2, multiplicity=1, prime factor=7

w=1, multiplicity=1, prime factor=29

w=2, multiplicity=1, prime factor=193

This means that the factors 9|n3 − 1, 27|n9 − 1, 25|n10 − 1, 49|n14 − 1, 17|n4 − 1,

17|n4−1, 43|n3−1 and 139|n3−1 will not be used by the test. The generation of the roots

of unity corresponding to these factors takes too much time. The only thing that remains

to be done is to perform the test. First, the cyclic extension of degree 2 will be generated.

Next the roots of unity have to be generated. In this case ζ8, ζ5, ζ7, and ζ193 have to be

generated in an extension of degree 2. Furthermore ζ3 and ζ29 have to be generated in

Z/nZ.

Only ζ8, ζ3, ζ5, and ζ7 will be needed to perform the Jacobi sum test, for the other

roots of unity the test only needs the proof of their existence. If n would not be prime

and if no Rabin-Miller tests would have been performed, then the test will most likely

detect that n is composite during the generation of the roots of unity. This would mean

that no factor would be found. In this case, since n will be prime, all rots of unity will

be generated. After being generated, these roots of unity will be given on the standard

output.

All these roots are generated simultaneously. Unfortunately, the generation of ζ3 and

ζ7 have to be performed once more, since the random elements chosen in this part of the

test (which are generated by using our own pseudo-random generator), did not suffice to

find these roots of unity. The other roots of unity were found in the first attempt.

After all roots of unity have been generated, the Jacobi sum tests will be performed.

We will only list their results, by giving the exponent e, which signifies what power of ζpk

is equal to τ(χ)n−σn .

Test nr 1:

pk 4 3 5 7
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q 13 43 11 71

e 1 1 3 3

Test nr 2:

pk 4 3 5 7

q 61 31 71 43

e 1 1 0 0

Test nr 3:

pk 4 3 5 7

q 421 211 31 211

e 2 0 3 1

Test nr 4:

pk 8 3 5 7

q 11 13 211 421

e 1 2 4 1

Test nr 5:

pk 2 3 5

q 71 61 61

e 1 1 4

Test nr 6:

pk 2 3 5

q 43 421 421

e 0 2 2

Test nr 7:

pk 2

q 31

e 1

Test nr 8:

pk 2

q 211

e 1

Finally, the final trial division has to be performed, to exclude the only remaining 420

candidate-divisors of n. If n would not be prime, it is not very likely at all, that n will

reach this stage, since the test would probably detect the compositeness of n during the
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generation of the roots of unity; therefore, the chance of finding a factor of n in this stage

is small.

final division started;

lcm(t, w) is 420

lcm(s, v) is 344789089617275623320

>>>final test: 420 trial divisions in 0.100 seconds

>>>final division

>>>did not produce any divisors

>>>n is prime

This concludes the primality-proof of 4899633286613100914950380950653312638379.

Remark. If one chooses not to run the program interactively, but to run the program

PRIT by supplying an input file, this input file consists in the most simple form of

4899633286613100914950380950653312638379 . . . . . . . . . . The number n

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . No restart

10000 . . . . . . . . . . . . . . . . . . . . . . . . . Trial division bound

4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Upper bound for w

0 . . . . . . . . . . . . . . . . . . . . . . . . . . No extra factors known

2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . lcm(s, v) > 2
√
n

0 . . . . . . . . . . . . . . . . . . . . . . . . . . No further optimization
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4. HELPING YOUR PRIMALITY TEST.

There are two ways to assist the primality test in generating a primality proof. The first

method is by supplying known prime factors of nω − 1 for small ω. The second method is

by interfering with the optimization stage of the test.

(4.1) Supplying extra prime factors.

It might occur that, before starting the primality test for a number n, properties of n are

already known. Suppose for instance that someone already invested a lot of computing

time in order to get factors of nω − 1 for some ω. In these cases one would like to benefit

from these factors by supplying them to the primality test. This is made possible in our

test.

After the test did find all the factors of nw − 1 less than a given trial division bound,

where w is also less than a requested bound, the program prompts

enter any known factors div^k of n^w-1

enter w, if no known factors: w = 0

In the case of the example discussed in the previous section, we happened to know that

524201 | n1 − 1. So we might type

1

The program next prompts for the prime divisor. These divisors might be arbitrary long

integers but should be prime. This is not checked.

enter div

So we type

524201

Finally, the program asks for the exponent of the divisor

enter k

1

After verifying that 524201 is indeed a divisor of n1 − 1, the program responds with

524201 ^ 1 | n ^ 1 - 1

enter w, if no known factors: w = 0

Since we do not know any more factor, we type

0

In this case the program is able to complete the primality test in roughly 60% of the time

it should need if the factor was not given to the program. Initially searching for factors up

269



VII. Instructions for use 4. Helping your primality test

to say 600000 would take a considerable part of the time needed to complete the primality

test.

(4.2) Interfering with the optimization.

In the ideal situation the primality test should find the optimal solution by itself. In-

terfering with the optimization would only slow down the total running time. The user

of the test, may however possess information about special properties of the number n

(for instance additional factors) which would be hard to find by the test. In these cases,

interfering might speed up the test.

In these cases one could force the test to invest more time in the optimization test. It

tries to find a better solution by performing more iterations and it might try to find more

divisors of nw − 1 for some w. So after the prompt

optimize?(0=no more iterations,1=more iterations)

one types

1

to force the primality test to spend more time in optimizing and to display after this

extended optimization stage the best solution found. The option of forcing the test to

spend more time during the optimization stage may be repeated. Since the optimization

might be expensive in this case, this seems only to be beneficial for large values of n. For

smaller values of n, the initial solution should be good enough to complete the test using

this solution. For instance if one would perform the optimization test on the example given

in VII.3, the test finds the additional factor mentioned in VII.(4.1). The time to complete

the test using this “improved” final solution is less then the time needed by the solution

mentioned in VII.3. This is because of the fact that the optimization consumes in this case

too much time, as well as the fact that finding the factor takes more time.
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5. RESTARTING OR PARALLELIZING THE PRIMALITY TEST.

(5.1) Restarting the primality test. If a primality test stops at a preliminary stage (for

instance, when the computer crashes), it would be beneficial to restart the primality test

at a suitable point, and to feed all the information obtained from the previous execution

to the test. In this way these do not have to be recalculated.

Especially when executing the primality test for large numbers, this is of vital impor-

tance, since one cannot expect that the computer system will not be restarted during a

long execution-run of the primality test. The information obtained from the output of the

previous execution will be put in the input of the new run.

At the start of the test (after specifying the number n), the program prompts

enter start=0/restart=1

Contrary to the discussion in VII.3, we will now specify

1

The program now runs along the same stages as it did the first time. Eventually we could

specify all important factors of nw − 1 which were found in the previous run, in the same

way as in VII.(4.1). As soon as the generation of the roots of unity is started, the program

demands for any known roots of unity.

enter v of previously generated root of unity

0 if none

negative to prevent generation

Suppose that we already generated a root of unity ζpk in the previous run. Then we only

have to specify the prime p here. So for instance for an 8th root of unity, we have to specify

2

If for some reason we want to prevent the generation of a pk-th root of unity (cf. VII.(5.2)),

we have to specify -p. If no further root of unity is known, we specify 0. In case of a positive

answer (in our case 2), the program prompts for the root of unity

trying to check cyclotomic extension for

prod = 8 which is the product of v^k with

k = 3 v = 2

w = 2

enter gamma

By specifying the root of unity, generated and given by the program during the previous

run, this root does not have to be generated again. The program will check if the input is
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correct.

gamma is ok

If the input was not correct, one can give the input again, or one can let the program

generate the root of unity for itself. When all roots of unity have been generated (or

specified), the Jacobi sum tests have to be performed. Each test can be specified by its

index. During a restart run, the user is allowed to specify which tests have to be performed.

The program asks for the starting index and the last index.

enter istart

enter iend

If all the tests have to be performed then istart = 1 and iend = −1. If all tests with

index ≥ 5 have to be performed, then istart = 5 and iend = −1. If no tests have to be

performed, then istart = −1 and iend = −1.

These indices were displayed in previous executions of the program.

For the final trial division the user is allowed to specify which residue classes modulo

lcm(s, v) have to be checked for divisors of n. This can be done for both final trial division

methods. Again the program asks for the starting index and the last index

enter istart

enter iend

If all the tests have to be performed then istart = 1 and iend = lcm(t, w) or larger. If

no tests have to be performed, then istart should be larger than iend.

(5.2) Parallelizing the primality test.

Parallelizing the program, i.e., sharing the various tasks of the program among different

processors, can be regarded as restarting the program on all these processors with different

inputs. The input will specify which particular task has to be done. All other tasks can

be skipped in the same way as has been described in the previous section.

In this way, the generation of roots of unity, performing the Jacobi sum tests and the

final trial division can all be performed in parallel.

In the sequential method, the generation of roots of unity is performed in such a

way that, during the generation of a root of unity, roots living in sub-extensions can be

generated almost for free.

If the generation of each such set of roots is performed on a different processor, the

generation of the roots of unity can be completed in the time needed to do the generation

of the set of roots in the largest extension ring of Z/nZ.
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Each Jacobi sum test is independent of any other Jacobi sum test. So each Jacobi

sum test can be performed by another processor. In this way the Jacobi sum test part of

the algorithm can be completed in the time needed to perform the Jacobi sum test in the

largest extension of Z/nZ.

The final trial division can also be shared among several processors, by specifying for

each processor, for which set of exponents i in ni mod lcm(s, v) the processor has to check

whether ni mod lcm(s, v) is an actual divisor of n. For instance each processor can get an

equally large range in the range 1, . . . , lcm(t, w) − 1. In this way k processors can do the

task k times as fast as one processor.

Of course there is a restriction to this approach. The Jacobi sum tests can only be

performed when the particular roots of unity used in the test have already been generated.

This does not mean however that all the roots of unity have to be generated before the first

Jacobi sum test can be started. After having performed the optimization routine, one can

exactly determine which roots are necessary for a particular Jacobi sum test. This is the

only restriction that we have to obey. The final trial division for instance can be performed

in parallel with the generation of the roots of unity and the performance of the Jacobi sum

tests. The same applies to the generation of roots of unity and the performance of Jacobi

sum tests that do not depend on these roots.

So when the optimization routine has been performed, one can generate specific inputs

for the various tasks. This has to be done very carefully, in order not to get wrong results.
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Tables Values of log10 e(t)

TABLES.

1. Values of t and log10(e(t)). 288

In this table, which is generated using the methods described in IV.(2.2), for

all 1920 even divisors t of t0 = 6983776800 = 25 · 33 · 52 · 7 · 11 · 13 · 17 · 19 the

values of

log10(
∏

q prime
q−1|t

q) =
∑

q prime
q−1|t

log10 q

and

log10(e(t)) = log10(2 ·
∏

q prime
q−1|t

qoq(t)+1)

are tabulated. Here oq(t) denotes the number of factors q in t.

2. Extensions (minimum polynomials, matrices). 301

In this table, which is generated using the methods described in IV.(2.3), we

tabulate the data necessary to generate Galois extensions of prime power degree

le | 720. For each le and for all primes m ≤ 160 we tabulate:

(a) the element g of maximal order modulo m;

(b) the minimum polynomial f of the generator η of the cyclic ring;

(c) the value of D, being the denominator of the matrix S−1 (cf. IV.(2.3));

(d) the transition matrix S between the bases consisting of powers of the

generator η of the ring (see II.(4.11)) and that consisting of the elements

ςg,i,le for i = 0, . . . , le − 1. The value of the transition matrix S∗ is not

tabulated here, since the entries of these matrices are very large for some

of the larger values of le and m.

3. Gauss sums as products of Jacobi sums. 312

In this table, which is generated using the methods described in IV.(2.4), we

tabulate for each prime power pk | t0 all formulae that are needed to express the

quotient of Gauss sums τ(χ)i/τ(χi) in terms of Jacobi sums, for i = 1, 2, . . . , pk.

Here χ denotes a character of order pk. These formulae do not depend on the

conductor q of χ, except that q∗ = q · χ(−1) occurs for i = pk.
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t log10(
∏

q) log10(e(t)) t log10(
∏

q) log10(e(t)) t log10(
∏

q) log10(e(t))
2 0.778 1.380 144 9.376 11.836 408 10.197 11.878
4 1.477 2.380 150 6.334 7.414 416 4.431 6.237
6 1.623 2.702 152 1.477 2.681 418 4.762 5.364
8 1.477 2.681 154 2.139 2.741 420 17.649 20.574

10 1.819 2.421 156 9.253 11.748 432 14.050 16.987
12 3.436 4.816 160 5.361 7.866 440 7.442 10.386
14 0.778 1.380 168 6.531 9.058 442 3.424 4.026
16 2.707 4.212 170 1.819 2.421 450 7.613 9.169
18 2.901 4.458 176 6.018 7.523 456 8.455 10.137
20 2.518 4.120 180 12.858 15.415 462 9.110 11.034
22 2.139 2.741 182 0.778 1.380 468 12.100 15.072
24 3.436 5.117 190 4.100 4.702 476 5.317 6.220
26 0.778 1.380 198 8.388 9.944 480 14.966 17.948
28 2.939 3.842 200 6.135 8.737 494 0.778 1.380
30 4.155 5.235 204 5.448 6.829 504 13.346 16.349
32 2.707 4.513 208 4.431 5.936 510 6.168 7.247
34 0.778 1.380 210 9.964 11.889 520 10.689 12.592
36 6.283 8.140 216 10.183 12.819 528 9.803 11.785
38 0.778 1.380 220 3.880 6.523 532 2.939 3.842
40 4.131 6.034 224 6.222 8.029 540 20.062 23.095
42 3.256 5.180 228 5.795 7.176 544 4.844 7.880
44 2.838 3.741 234 4.799 6.355 546 7.892 9.816
48 4.666 6.648 238 3.156 3.758 550 3.181 4.824
50 1.819 2.421 240 12.979 15.660 560 13.177 15.381
52 3.201 4.104 252 11.482 14.185 570 9.193 10.272
54 2.901 4.935 260 6.359 7.962 572 4.563 5.466
56 2.939 4.143 264 8.573 10.254 594 8.388 10.422
60 7.754 9.833 266 0.778 1.380 600 16.329 19.408
66 4.810 5.890 270 7.867 9.901 608 2.707 4.513
68 1.477 2.380 272 4.844 7.579 612 13.570 15.427
70 3.670 4.272 280 9.893 11.796 616 9.040 10.244
72 8.146 10.304 286 2.139 2.741 624 12.979 16.076
76 1.477 2.380 288 11.363 14.124 630 16.147 18.548
78 3.520 4.599 300 11.937 14.715 646 3.588 4.191
80 5.361 7.565 304 2.707 4.212 650 3.936 4.538
84 6.531 8.757 306 7.401 8.958 660 16.282 19.402
88 4.788 5.992 308 4.301 5.204 672 17.157 20.286
90 5.434 6.990 312 11.749 14.544 680 6.267 8.171
96 6.653 8.936 330 9.863 11.984 684 8.642 11.778

100 4.522 6.823 336 12.343 15.170 700 10.682 12.983
102 3.636 4.715 340 2.518 4.120 702 4.799 6.832
104 3.201 4.405 342 2.901 5.736 714 7.647 9.572
108 8.320 10.654 350 3.670 4.272 720 19.947 23.105
110 3.181 4.824 352 8.566 10.372 728 4.663 5.867
112 6.222 7.728 360 16.334 19.192 748 2.838 3.741
114 1.623 2.702 364 4.663 5.566 756 18.977 22.157
120 9.366 11.747 374 2.139 2.741 760 9.293 11.196
126 6.639 9.040 378 9.217 12.096 770 5.032 6.675
130 3.936 4.538 380 4.799 6.401 780 15.689 18.882
132 6.623 8.004 390 8.170 9.250 792 18.181 20.339
136 3.613 4.817 396 14.368 16.225 798 3.256 5.180
140 5.832 7.434 400 9.969 12.872 800 9.969 13.173
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t log10(
∏

q) log10(e(t)) t log10(
∏

q) log10(e(t)) t log10(
∏

q) log10(e(t))
816 11.427 14.640 1428 14.078 16.303 2288 7.742 9.248
836 5.460 6.364 1430 5.298 6.941 2310 21.701 24.667
840 21.711 24.936 1440 21.934 25.393 2340 27.231 30.902
850 1.819 2.421 1456 7.947 9.452 2376 23.594 26.230
858 9.642 10.721 1482 6.691 7.771 2380 11.587 13.189
864 16.037 19.275 1496 6.924 8.129 2394 6.639 10.319
880 11.617 14.863 1512 20.841 24.321 2400 27.611 31.292
884 5.847 6.750 1520 10.524 12.728 2448 21.412 25.102
900 17.042 20.297 1530 13.119 14.675 2464 14.872 16.678
910 8.747 9.349 1540 7.193 9.837 2470 6.217 6.819
912 9.686 11.668 1560 22.514 26.008 2508 11.605 12.986
918 10.365 12.398 1584 19.411 21.871 2520 36.984 40.687
924 12.385 14.610 1596 12.095 14.320 2550 11.754 12.833
936 19.431 22.703 1632 13.414 16.928 2574 13.220 14.776
950 4.100 4.702 1638 11.274 13.676 2584 6.424 7.628
952 10.433 11.637 1650 12.042 14.163 2600 15.808 18.410
988 3.201 4.104 1672 7.410 8.614 2618 4.518 5.120
990 16.437 19.034 1680 29.904 33.430 2640 29.522 33.245

1008 22.161 25.465 1700 4.522 6.823 2652 17.036 19.530
1020 12.776 14.855 1710 10.472 13.307 2660 8.113 9.715
1026 2.901 6.214 1716 15.375 17.869 2700 24.245 27.978
1040 11.920 14.124 1760 14.165 17.712 2720 10.632 14.367
1050 15.165 17.089 1768 7.984 9.188 2730 23.113 25.037
1056 14.338 16.621 1800 26.552 30.108 2736 14.396 18.134
1064 2.939 4.143 1820 12.633 14.235 2772 22.233 24.936
1080 23.538 26.872 1824 11.673 13.956 2800 24.077 26.980
1092 18.126 21.465 1836 18.571 20.905 2808 21.468 25.218
1100 5.884 9.226 1848 17.125 19.651 2850 14.827 15.906
1120 13.177 15.682 1870 6.453 8.096 2856 25.261 27.788
1122 9.874 10.953 1872 23.934 27.507 2860 11.178 13.821
1140 15.151 17.230 1890 21.159 24.037 2912 7.947 9.753
1144 6.512 7.716 1900 10.082 12.383 2926 8.228 8.830
1170 12.518 14.074 1904 13.717 16.452 2964 14.784 17.279
1188 16.405 18.740 1938 6.446 7.526 2970 22.343 25.417
1190 6.049 6.651 1950 13.640 14.719 2992 8.155 10.890
1200 25.624 29.004 1976 3.201 4.405 3024 32.292 36.074
1224 20.182 22.340 1980 29.280 32.878 3040 14.007 16.512
1232 12.324 13.829 2002 5.441 6.043 3060 29.826 32.382
1248 18.063 21.460 2016 30.280 33.886 3080 15.994 18.939
1254 7.433 8.512 2040 19.137 21.517 3094 5.802 6.404
1260 27.658 31.059 2052 13.992 17.605 3120 29.621 33.416
1292 4.287 5.191 2080 15.238 17.743 3150 21.348 23.749
1300 11.478 13.779 2090 8.084 9.727 3168 27.447 30.207
1320 22.965 26.386 2100 27.700 31.323 3192 14.755 17.281
1326 11.302 12.382 2128 9.551 11.056 3230 6.911 7.513
1330 5.951 6.553 2142 16.848 19.249 3276 23.077 26.893
1350 10.046 12.080 2160 33.122 36.757 3300 23.983 27.803
1360 10.632 14.066 2184 20.621 24.262 3344 8.640 10.145
1368 13.166 16.603 2200 9.446 13.090 3360 38.245 42.073
1386 14.791 17.192 2210 6.583 7.185 3366 15.938 17.495
1400 14.743 17.345 2244 11.687 13.067 3400 8.272 10.874
1404 14.138 17.586 2280 25.663 28.044 3420 20.256 24.091
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Values of log10 e(t) Tables

t log10(
∏

q) log10(e(t)) t log10(
∏

q) log10(e(t)) t log10(
∏

q) log10(e(t))
3432 23.356 26.151 5016 16.215 17.896 7072 9.214 12.251
3458 0.778 1.380 5040 48.181 52.185 7106 7.572 8.174
3510 18.496 20.529 5100 24.073 26.851 7140 35.134 38.058
3536 9.214 11.950 5130 12.905 16.217 7150 9.152 10.796
3570 17.908 19.833 5148 23.120 26.091 7182 9.217 13.375
3600 35.847 39.705 5168 7.655 10.390 7200 37.834 41.992
3640 19.411 21.314 5200 19.641 22.544 7280 22.695 24.899
3672 28.748 31.383 5236 10.398 11.301 7344 32.614 36.781
3696 26.504 29.331 5280 37.779 41.803 7392 37.735 40.863
3740 7.152 9.795 5304 24.279 27.075 7410 20.249 21.328
3744 29.017 32.892 5320 15.056 16.959 7480 16.725 19.669
3762 11.010 13.845 5400 33.756 37.789 7524 19.350 22.486
3780 40.319 44.198 5434 4.762 5.364 7560 53.524 57.704
3800 14.576 17.179 5460 37.757 41.795 7600 18.410 21.313
3808 13.717 16.753 5472 16.383 20.422 7650 18.705 20.261
3850 8.618 10.261 5544 28.836 31.840 7700 15.629 18.971
3876 14.208 15.588 5600 24.077 27.281 7722 17.107 19.141
3900 26.277 30.169 5610 18.198 20.319 7752 25.505 27.187
3952 4.431 5.936 5616 28.608 32.658 7800 35.881 40.074
3960 37.826 41.725 5700 29.824 32.603 7854 16.551 18.475
3978 15.068 16.625 5712 31.072 35.130 7904 4.431 6.237
3990 15.002 16.926 5720 17.457 20.401 7920 44.384 48.583
4004 9.327 10.230 5814 10.212 13.047 7956 25.157 28.128
4080 25.883 29.795 5850 21.754 23.310 7980 28.250 31.174
4104 18.515 22.430 5852 10.389 11.292 8008 17.970 19.174
4158 20.989 23.867 5928 19.940 22.735 8160 31.782 35.994
4180 8.783 11.426 5940 39.956 44.031 8190 36.278 38.679
4200 38.164 42.088 5950 6.049 6.651 8208 26.297 30.512
4256 9.551 11.357 5984 10.703 13.739 8316 37.267 40.447
4284 27.634 30.337 6006 23.759 25.684 8360 15.226 18.171
4290 16.812 18.933 6048 40.412 44.494 8398 6.235 6.837
4320 35.108 39.045 6120 41.837 44.694 8400 55.487 59.712
4368 26.433 30.374 6160 22.223 25.469 8550 16.106 18.941
4400 16.225 20.169 6188 9.688 10.591 8568 40.681 43.684
4420 12.651 14.253 6240 38.022 42.118 8580 34.541 38.775
4446 11.618 14.453 6270 21.320 23.441 8736 38.285 42.528
4488 18.384 20.066 6300 41.508 45.608 8778 19.142 21.066
4522 9.622 10.224 6384 23.894 26.721 8800 18.773 23.018
4550 8.747 9.349 6426 26.198 29.077 8840 19.118 21.021
4560 32.935 35.616 6460 7.610 9.212 8892 25.228 29.478
4576 10.290 12.096 6552 34.224 38.341 8976 19.615 22.828
4590 22.177 24.211 6600 33.445 37.566 9044 11.784 12.687
4620 35.871 39.837 6630 15.952 17.032 9100 20.597 22.898
4680 38.892 42.863 6650 5.951 6.553 9120 38.405 41.387
4752 27.461 30.398 6688 15.013 16.820 9180 47.617 50.651
4760 20.764 22.667 6732 28.534 30.391 9240 51.759 56.026
4788 20.726 24.707 6800 15.239 19.373 9282 22.020 23.944
4862 4.786 5.388 6840 36.466 40.603 9350 6.453 8.096
4896 23.399 27.390 6864 24.586 27.682 9360 49.271 53.543
4914 13.853 16.731 6916 8.503 9.406 9450 26.359 29.238
4940 8.641 10.243 6930 33.179 36.622 9504 35.497 38.734
4950 22.310 24.908 7020 37.980 42.128 9520 31.160 34.595
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q) log10(e(t)) t log10(
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q) log10(e(t)) t log10(
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q) log10(e(t))
9576 25.249 29.531 13090 10.682 12.326 17290 15.266 15.868
9690 14.017 15.096 13104 46.311 50.730 17442 17.417 20.729
9724 7.209 8.112 13200 45.686 50.107 17550 31.977 34.010
9828 34.564 38.858 13260 30.125 33.319 17556 27.980 30.205
9880 15.852 17.755 13300 16.242 18.543 17680 27.730 31.164
9900 44.672 48.969 13338 15.743 19.056 17784 35.219 39.770

10010 13.410 15.054 13464 37.095 39.254 17850 30.767 32.692
10032 17.445 19.427 13566 18.246 20.170 17952 24.149 27.663
10080 59.827 64.132 13600 15.239 19.674 18018 29.441 31.842
10098 22.906 24.939 13650 31.604 33.528 18088 21.157 22.361
10200 33.213 36.292 13680 47.874 52.311 18200 27.375 29.977
10260 30.772 35.084 13728 36.355 39.752 18360 63.194 66.528
10296 35.935 39.208 13832 8.503 9.707 18480 70.732 75.300
10336 11.669 14.706 13860 53.773 58.216 18564 35.409 38.748
10374 11.063 12.987 14040 49.641 54.089 18700 13.428 16.770
10400 22.960 26.164 14212 8.271 9.174 18720 57.672 62.246
10450 8.084 9.727 14280 54.534 57.759 18810 27.894 31.770
10472 20.254 21.458 14300 20.151 23.493 18900 54.169 58.747
10608 25.510 29.837 14364 31.533 35.991 19040 31.160 34.896
10640 21.667 23.871 14560 30.176 32.681 19152 37.392 41.975
10710 37.124 39.525 14586 20.475 21.554 19380 30.860 32.939
10800 49.022 53.356 14630 13.402 15.045 19448 11.295 12.499
10868 7.185 8.088 14688 34.601 39.069 19656 45.711 50.306
10920 47.031 51.370 14820 34.298 37.491 19760 17.082 19.286
11050 6.583 7.185 14850 32.388 35.463 19800 63.550 68.147
11088 41.219 44.524 14960 24.034 28.510 19890 30.271 31.827
11220 27.626 30.746 15048 25.823 29.260 19950 23.658 25.582
11232 33.691 38.043 15120 74.872 79.352 20020 25.054 27.698
11286 15.063 18.375 15200 21.893 25.097 20064 25.805 28.088
11400 43.115 46.195 15300 41.123 44.379 20196 37.539 39.873
11424 35.887 40.246 15400 28.618 32.261 20400 45.642 50.253
11440 21.632 24.878 15444 29.045 32.493 20520 51.295 55.908
11550 34.550 37.516 15470 13.772 14.374 20592 44.752 48.325
11628 22.329 25.465 15504 26.736 29.949 20748 35.017 38.356
11700 45.655 50.024 15600 52.863 57.357 20790 45.282 49.202
11704 15.129 16.333 15708 26.701 28.926 20900 14.066 17.409
11856 21.170 24.266 15840 56.142 60.643 20944 23.537 26.273
11880 51.879 56.255 15912 41.438 44.710 21216 30.593 35.221
11900 16.437 18.738 15960 41.211 44.436 21280 25.150 27.655
11934 18.032 20.065 16016 21.253 22.759 21318 19.636 20.715
11970 25.263 28.943 16150 6.911 7.513 21420 64.449 67.850
12012 33.994 37.333 16302 15.435 16.515 21450 26.136 28.256
12240 52.671 57.060 16380 62.331 66.846 21600 55.343 59.979
12320 24.771 28.317 16416 32.499 37.015 21736 13.471 14.675
12350 6.217 6.819 16632 51.467 54.948 21840 63.057 67.698
12376 18.896 20.101 16720 19.402 22.647 22100 17.770 20.071
12540 34.197 37.317 16796 8.658 9.561 22176 59.256 62.862
12600 64.592 68.994 16800 63.828 68.354 22230 28.244 31.079
12768 28.709 31.837 16830 34.670 37.268 22440 47.282 50.704
12852 46.010 49.189 17100 34.929 39.463 22572 33.106 36.719
12870 26.454 29.052 17136 53.730 58.265 22610 14.796 15.398
12920 14.241 16.144 17160 49.972 54.507 22800 56.070 59.450

278



Values of log10 e(t) Tables

t log10(
∏

q) log10(e(t)) t log10(
∏

q) log10(e(t)) t log10(
∏

q) log10(e(t))
22880 27.498 31.045 30030 44.865 47.830 38896 12.526 15.261
22950 27.763 29.796 30096 31.532 35.270 39270 35.968 38.934
23100 57.089 61.753 30240 90.998 95.780 39312 65.030 69.926
23256 35.490 38.927 30600 59.169 62.725 39520 28.480 30.985
23400 63.349 68.019 30800 40.897 44.841 39600 75.790 80.688
23408 21.741 23.246 30888 45.237 48.986 39780 57.912 61.582
23562 32.423 34.824 30940 29.170 30.772 39900 53.392 57.015
23712 26.254 29.651 31008 32.737 36.251 40040 40.476 43.420
23760 68.783 73.460 31122 22.587 26.267 40392 53.041 55.677
23800 29.991 32.593 31200 61.265 66.060 40698 32.057 35.737
23868 34.536 37.984 31350 26.954 29.075 40800 56.152 61.063
23940 46.017 50.697 31416 42.624 45.150 40950 48.536 50.937
24024 48.668 52.308 31824 45.941 50.745 41040 72.588 77.502
24310 11.216 12.860 31920 56.391 59.918 41184 60.022 63.896
24480 62.958 67.648 32032 23.801 25.607 41496 40.173 43.813
24570 49.225 52.104 32130 52.569 55.447 41580 77.447 82.367
24700 17.038 19.339 32300 12.893 15.194 41800 25.131 28.774
24752 22.180 24.916 32604 23.528 26.023 41888 26.085 29.122
25080 49.779 53.201 32760 83.658 88.474 41990 11.675 12.277
25194 17.284 18.364 33150 29.349 30.428 42636 27.397 28.777
25200 84.919 89.622 33264 66.487 70.268 42840 97.532 101.235
25650 18.539 21.851 33440 29.258 32.805 42900 57.134 62.067
25704 62.621 66.102 33592 10.795 11.999 43472 14.702 16.207
25740 58.388 63.099 33660 60.624 64.222 43680 85.918 90.859
25840 23.017 26.452 34034 10.466 11.068 43758 31.180 32.737
26180 19.940 22.583 34200 57.174 62.009 43890 45.211 48.177
26208 65.887 70.607 34272 66.384 71.220 44200 28.882 31.484
26334 24.823 28.503 34320 60.024 64.860 44460 53.438 58.387
26400 53.943 58.665 34580 22.991 24.593 44880 56.974 61.927
26520 41.699 45.193 34650 54.262 57.705 45144 42.955 46.869
26600 23.185 25.787 34884 34.884 38.497 45220 20.334 21.936
26676 34.703 39.431 35100 60.648 65.494 45600 61.539 65.221
26928 38.326 42.015 35112 35.380 37.906 45900 58.915 62.647
27132 33.828 36.053 35360 31.048 34.783 46200 83.566 88.532
27170 10.201 11.845 35530 18.718 20.361 46410 45.461 47.385
27300 54.212 58.949 35568 44.273 49.125 46512 36.721 41.689
27360 57.781 62.519 35700 56.551 60.174 46800 83.604 88.576
27664 15.115 16.620 35910 34.830 38.987 46816 32.784 34.590
27720 74.926 79.670 36036 48.399 52.215 47124 53.355 56.057
27846 35.665 38.067 36176 27.769 30.504 47520 85.218 90.196
28050 28.232 30.353 36400 36.709 39.612 47600 46.437 50.571
28080 70.439 75.189 36720 84.564 89.430 47736 59.060 62.810
28424 12.358 13.562 36960 89.212 94.081 47880 72.758 77.739
28560 69.840 74.596 37050 29.173 30.252 48048 62.729 66.670
28600 26.430 30.073 37128 53.181 56.821 48450 23.058 24.137
28728 40.515 45.274 37400 23.001 26.644 48620 20.742 23.385
29070 20.968 23.803 37620 47.195 52.072 48906 27.350 30.186
29172 30.673 33.167 37800 81.132 86.011 49140 86.921 91.913
29260 15.563 18.206 38038 16.110 16.712 49400 24.249 26.851
29640 54.495 57.989 38304 45.512 50.396 49504 22.180 25.217
29700 59.520 64.294 38610 44.380 47.455 49742 17.073 17.675
29920 31.058 35.835 38760 50.010 52.390 50050 25.550 27.193
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50160 59.996 63.719 64600 24.334 26.936 82992 49.312 53.253
50388 28.966 31.460 65208 38.506 41.301 83160 110.075 115.296
50400 96.565 101.569 65450 14.268 15.911 83538 45.015 47.894
50490 51.206 54.280 65520 110.777 115.895 83600 31.910 35.854
51300 45.445 50.456 66300 57.170 61.062 83980 17.743 19.345
51408 78.307 83.319 66528 89.347 93.429 84150 48.399 50.996
51480 83.365 88.378 66690 38.348 41.660 85272 40.644 42.325
51680 30.515 34.250 67184 12.025 14.761 85680 124.164 129.397
51870 44.145 46.069 67320 85.931 89.829 85800 75.344 80.578
52360 42.450 45.394 67830 33.545 35.469 86450 15.266 15.868
52668 41.509 45.490 68068 18.071 18.974 86944 21.075 22.881
53040 56.187 61.213 68400 74.264 79.400 87210 39.208 42.520
53200 40.573 43.476 68640 78.833 83.971 87516 57.103 60.074
53352 49.421 54.449 69160 32.651 34.554 87780 69.042 73.008
53550 54.712 57.113 69300 91.020 96.162 88400 40.097 44.230
53856 51.092 55.083 69768 51.610 55.524 88920 82.305 87.555
54054 39.526 42.405 70200 83.189 88.336 89760 73.619 78.873
54264 55.818 58.345 70224 48.087 50.914 90090 63.324 66.767
54340 16.081 18.724 70686 54.246 57.124 90288 60.170 64.385
54600 74.625 79.664 71060 19.417 22.060 90440 36.650 38.553
55328 15.115 16.921 71136 49.356 54.509 91800 85.489 89.522
55440 101.647 106.691 71400 86.729 90.654 92378 10.219 10.821
55692 53.410 57.227 71820 71.402 76.559 92400 116.635 121.901
56100 55.911 59.730 72072 76.582 80.700 92820 82.749 86.787
56160 78.841 83.892 72352 36.642 39.679 93024 42.722 47.992
56430 42.604 46.957 72800 44.191 47.395 93366 29.290 33.448
56848 13.588 16.324 72930 35.779 37.900 93600 96.977 102.250
57120 82.093 87.150 73150 16.987 18.631 94050 37.223 41.099
57200 33.208 37.153 73440 94.851 100.018 94248 71.141 74.145
57456 63.968 69.028 74100 60.246 64.138 95200 46.437 50.872
58140 47.910 51.745 74256 63.863 69.034 95472 66.200 71.481
58344 43.402 46.197 74800 32.913 38.088 95760 95.079 100.361
58520 27.246 30.190 75240 68.476 73.654 96096 90.118 94.361
58786 17.038 17.640 75582 29.577 32.412 96900 52.647 55.426
59280 70.033 73.829 75600 111.610 116.790 97240 38.019 40.964
59400 81.774 86.849 76076 23.835 24.738 97812 48.550 52.800
59670 47.650 49.683 77220 81.084 86.273 98280 112.126 117.420
59850 33.918 37.599 77350 18.660 19.262 98800 33.077 35.981
60060 77.685 82.764 77520 69.717 73.629 99450 47.434 48.990
60192 43.392 47.432 77792 15.073 18.110 99484 22.953 23.856
61200 75.686 80.774 78540 68.293 72.258 100100 45.158 48.500
61600 43.444 47.690 78624 84.606 89.802 100320 75.562 79.585
61776 56.690 60.740 79002 35.073 39.231 100776 42.759 45.554
61880 45.157 47.060 79200 92.447 97.646 100980 90.897 94.972
62244 55.738 60.833 79560 87.210 91.181 102102 45.947 47.871
62700 57.186 61.006 79800 77.657 81.581 102600 72.002 77.314
62832 52.003 56.061 80080 46.704 49.950 102816 90.961 96.274
63648 55.828 60.933 80784 56.908 61.075 102960 101.003 106.317
63840 73.021 76.848 81396 55.674 59.656 103740 76.679 80.717
63954 25.700 28.535 81510 35.310 37.431 103950 75.554 79.474
64260 95.615 99.494 81900 95.334 100.549 104720 55.791 60.267
64350 43.240 45.837 82080 86.710 91.925 105336 55.794 60.076
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106080 68.500 73.827 135660 69.342 72.266 172900 34.235 36.536
106400 44.056 47.260 135850 19.189 20.832 174420 78.196 82.508
106590 46.374 48.494 136136 35.922 37.126 175032 78.869 82.141
106704 65.026 70.355 136800 84.171 89.608 175560 93.829 98.096
107100 99.424 103.524 138320 39.263 41.467 176358 40.559 42.483
108108 76.347 80.641 138600 134.416 139.858 176800 43.415 47.850
108528 69.993 74.051 139230 80.402 82.803 177650 18.718 20.361
108680 29.579 32.523 139536 64.536 69.982 177840 115.053 120.604
109200 109.013 114.353 140400 119.011 124.459 179550 43.485 47.643
110880 131.978 137.324 140448 72.962 76.090 180180 124.376 129.932
111150 40.936 43.771 141372 88.123 91.303 180576 76.246 80.762
111384 84.035 88.153 142120 31.871 34.815 180880 54.787 58.221
112200 78.346 82.467 142800 111.165 116.621 183600 112.541 118.106
112860 74.342 79.695 143640 110.792 116.251 184756 12.642 13.545
113050 19.849 20.451 144144 101.233 105.652 184800 135.115 140.683
113696 23.975 27.012 145350 30.008 32.843 185640 116.722 121.062
114114 41.543 43.467 145860 69.792 74.026 186732 79.935 85.507
114400 39.074 43.320 146300 27.278 30.620 188100 77.875 83.450
114912 81.363 86.725 146718 44.582 47.895 188496 87.758 92.293
116280 76.545 80.681 148200 88.392 92.585 190190 30.598 32.242
116688 49.699 54.026 148512 80.887 86.360 190944 76.087 81.669
117040 41.871 45.116 149226 41.511 43.435 191520 119.450 125.033
117572 24.764 25.667 149600 39.937 45.413 191862 40.962 44.274
117810 74.148 77.591 150150 74.734 77.700 193050 74.867 77.942
118560 86.515 90.611 150480 87.307 92.786 193800 79.387 82.466
118800 109.436 114.812 151164 49.563 53.813 194480 49.576 54.052
119340 88.403 92.550 151200 137.251 142.731 195624 68.363 72.914
119700 80.036 85.415 152152 36.816 38.020 196350 60.923 63.889
120120 111.304 116.684 154440 109.438 114.928 196560 163.733 169.327
121550 15.071 16.714 154700 42.023 44.324 197600 44.476 47.680
122094 45.648 49.805 155040 83.113 87.326 198900 98.090 102.460
122400 95.672 101.060 155610 69.528 73.209 198968 37.066 38.270
122850 65.727 68.606 157080 117.659 121.926 200200 70.068 73.712
123552 77.051 81.403 158004 68.261 72.720 201552 43.990 48.316
123760 59.801 63.235 159120 109.059 114.561 201960 128.450 132.826
124488 74.640 80.037 159600 106.693 110.918 203490 61.448 65.128
125400 80.169 84.289 160160 56.733 60.280 204204 67.520 70.860
125664 63.234 67.593 160650 75.362 78.241 205200 104.290 109.903
125970 30.842 31.921 161568 74.883 79.351 205920 123.314 128.929
127908 44.244 47.380 162792 79.528 83.810 207480 104.641 108.981
128520 141.251 145.431 163020 68.880 73.115 207900 123.882 129.501
128700 96.507 101.917 163800 135.157 140.672 209440 68.135 72.912
129200 35.714 39.848 165984 61.165 65.407 209950 11.675 12.277
130416 39.737 42.833 166320 151.322 156.844 210672 75.984 80.567
130900 32.647 35.990 167076 85.379 89.673 213180 75.464 78.584
131040 146.479 151.897 167200 41.766 46.011 213408 74.325 79.955
131274 42.036 44.069 167960 27.091 28.994 214200 150.642 155.043
131670 65.886 70.608 168300 96.599 100.896 216216 117.463 122.057
132600 76.168 80.361 170170 21.707 23.351 217056 89.019 93.377
133380 71.624 77.051 170544 41.874 45.087 217360 39.091 42.337
134368 21.168 24.205 171360 148.645 154.180 218400 137.213 142.854
134640 99.710 105.140 171600 95.272 100.807 218790 64.260 66.857
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219450 66.856 69.822 284240 43.592 48.068 369512 21.065 22.269
222300 87.221 92.869 285600 128.029 133.786 371280 154.550 160.420
222768 105.227 110.876 287280 157.396 163.155 373464 108.022 113.896
224400 99.071 104.723 288288 139.847 144.567 376200 114.108 119.984
225720 108.665 114.319 290700 75.161 79.695 376992 115.062 119.897
226100 33.516 35.817 291720 108.649 113.185 377910 59.264 62.099
226746 40.907 44.219 292600 53.235 56.879 380380 46.082 48.725
228228 65.497 68.836 293436 75.485 80.212 383724 69.209 72.823
232050 76.385 78.309 293930 31.526 32.128 386100 132.905 138.793
232560 104.476 110.144 296400 118.801 123.295 387600 104.776 109.387
233376 61.468 66.096 298350 69.058 71.091 388960 65.508 70.285
234080 56.397 59.944 298452 60.812 63.037 391248 91.801 96.653
235144 38.229 39.434 300300 129.147 134.926 392700 114.345 119.010
235620 128.371 132.814 300960 116.290 122.069 393120 209.509 215.405
237600 135.104 140.781 302328 77.874 82.425 395010 91.349 96.548
238680 131.322 135.771 304304 43.428 44.933 397800 138.068 142.738
239400 125.437 131.117 306306 70.905 73.306 397936 43.678 46.413
240240 142.792 148.473 308880 141.871 147.662 400400 82.347 86.292
243100 39.372 42.715 309400 67.032 69.634 403104 58.216 62.843
244188 81.604 86.062 311220 121.102 126.896 403920 157.141 163.048
244530 53.290 57.166 314160 149.241 155.040 406980 116.634 121.315
245700 124.168 129.860 316008 94.602 99.362 407550 53.222 55.342
247520 67.282 71.018 318240 130.564 136.368 408408 97.471 101.111
248710 30.069 31.712 319200 128.827 133.353 410400 128.360 134.274
248976 94.607 100.304 319770 62.845 66.722 414960 132.428 137.069
250800 96.068 100.489 321300 141.303 145.880 415800 184.372 190.292
251940 64.823 68.016 325584 100.941 106.754 417690 114.179 117.057
252450 69.106 72.181 326040 102.020 106.555 419900 26.141 28.442
255816 59.355 62.792 327600 180.638 186.454 421344 107.664 112.548
257040 182.598 188.309 332640 201.155 206.978 426360 107.909 111.331
257400 137.226 142.938 333450 60.807 64.119 428400 192.035 197.968
258400 43.211 47.646 334152 124.248 128.842 432432 154.980 159.876
259350 56.090 58.015 335920 40.115 43.550 434720 56.862 60.409
260832 55.331 58.728 336600 132.237 136.835 436050 48.249 51.561
261800 63.721 67.365 339150 60.443 62.367 437580 127.520 132.232
262548 74.374 77.822 340340 48.583 51.226 438900 115.489 120.154
263340 99.822 105.544 341088 54.249 57.763 444600 127.293 133.242
265200 100.532 106.256 342342 65.589 69.269 445536 144.963 150.913
266760 109.530 115.258 343200 114.081 119.918 447678 61.992 65.672
269280 134.406 140.137 345800 43.894 46.496 448800 125.979 131.932
270270 97.270 101.189 348840 114.709 119.322 450450 110.849 114.291
271320 105.788 109.013 350064 92.753 97.557 451440 152.367 158.323
271700 33.466 36.808 351120 130.403 134.971 452200 64.675 67.277
272272 39.206 41.941 352716 71.257 74.596 453492 70.621 75.348
276640 54.824 57.329 353430 105.538 109.458 456456 92.828 96.468
277134 33.408 34.487 355300 28.972 32.314 461890 29.146 30.789
277200 175.232 180.975 355680 135.972 141.824 464100 130.166 134.903
278460 135.373 139.888 359100 110.976 116.833 465120 126.698 132.667
279072 80.198 85.945 360360 179.617 185.475 466830 91.156 95.313
280800 136.718 142.468 361760 67.144 70.879 470288 44.841 47.577
282150 56.104 60.458 364650 57.478 59.599 471240 197.094 201.838
282744 117.072 120.552 367200 142.427 148.293 477360 173.834 179.814
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478800 167.294 173.275 628320 181.431 187.530 831402 57.329 60.164
480480 184.912 190.895 629850 47.693 48.773 831600 244.789 251.010
486200 61.295 64.939 632016 131.058 136.118 835380 198.465 203.457
488376 113.481 118.240 639540 108.462 113.338 839800 50.869 53.471
489060 115.693 121.684 642600 210.036 214.915 850850 38.735 40.379
491400 172.715 178.708 646646 32.370 32.972 852720 130.561 135.514
497420 39.326 41.970 651168 133.619 139.734 856800 226.215 232.449
497952 114.183 120.181 652080 131.655 136.492 864864 203.509 208.706
501600 117.334 122.056 655200 226.649 232.767 872100 105.447 110.458
503880 93.657 97.151 656370 103.408 106.483 875160 188.813 193.826
504900 136.747 141.521 658350 101.584 106.306 877800 165.856 170.821
510510 83.407 86.372 666900 120.999 127.124 881790 81.860 83.785
511632 70.773 75.741 668304 152.671 158.797 889200 174.912 181.162
514080 217.271 223.283 671840 60.656 64.392 895356 101.708 105.689
514800 164.740 170.753 673200 162.878 169.007 900900 210.270 216.526
518700 113.095 117.832 678300 116.433 120.057 902880 190.242 196.498
523600 83.113 88.288 680680 92.627 95.571 904400 93.588 97.721
525096 107.760 111.509 684684 110.887 115.982 906984 111.902 116.931
526680 149.134 155.156 691600 66.277 69.180 912912 110.217 114.158
529074 71.834 75.514 696150 119.821 122.223 918918 96.615 99.494
530400 123.180 129.206 697680 168.079 174.223 923780 38.671 41.314
532950 65.589 67.709 700128 123.403 128.508 928200 184.301 189.339
533520 156.613 162.641 702240 170.815 175.684 933660 167.812 174.083
540540 184.650 190.684 705432 99.835 103.476 940576 58.843 61.880
542640 142.418 147.175 706860 184.407 189.327 942480 244.746 251.021
543400 51.585 55.228 710600 50.857 54.501 950950 47.871 49.514
544544 41.753 44.790 718200 169.027 175.184 954720 195.340 201.621
554268 55.298 57.792 720720 231.256 237.414 957600 203.150 209.432
554400 210.461 216.506 729300 133.559 138.492 959310 97.367 101.721
556920 198.920 203.737 733590 95.177 99.530 972400 75.455 80.630
564300 114.945 120.997 739024 22.296 25.031 976752 151.348 157.639
565488 142.077 147.089 742560 186.494 192.666 978120 162.215 168.506
568480 67.694 72.471 746130 83.983 86.949 982800 253.823 260.117
570570 88.948 91.914 746928 143.894 150.068 994840 68.975 71.919
574560 195.523 201.583 752400 138.622 144.799 1007760 125.879 130.905
581400 114.641 119.476 755820 110.663 115.611 1009800 189.594 194.669
583440 131.149 137.216 760760 68.722 71.666 1017450 93.075 96.755
585200 78.637 82.581 767448 91.261 95.175 1021020 157.114 162.194
586872 103.401 108.429 772200 181.847 188.036 1023264 91.379 96.649
587860 50.765 52.367 775200 122.783 127.695 1027026 95.030 99.188
589050 112.066 115.509 778050 91.132 94.813 1029600 202.933 209.247
592800 135.283 140.078 782496 116.790 121.943 1037400 168.286 173.324
596700 132.825 137.672 785400 178.678 183.643 1047200 95.458 100.933
596904 87.542 90.068 790020 155.275 161.473 1050192 124.280 129.561
600600 189.173 195.253 795600 175.693 181.895 1053360 208.093 214.416
604656 86.928 93.010 795872 63.595 66.632 1058148 120.541 125.636
608608 60.255 62.062 800800 98.280 102.526 1065900 130.791 134.610
610470 90.630 94.788 807840 201.722 207.931 1067040 181.747 188.076
612612 118.547 122.363 813960 181.190 186.171 1081080 256.702 263.037
617760 179.741 185.833 815100 116.764 121.697 1085280 177.170 182.228
618800 87.726 91.859 816816 127.381 132.553 1086800 68.695 72.640
622440 174.728 180.823 829920 168.174 173.115 1093950 99.459 102.057
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1108536 84.958 87.753 1493856 172.745 179.221 2042040 249.859 255.239
1113840 256.162 262.510 1504800 184.381 190.859 2054052 171.128 176.700
1128600 170.272 176.626 1511640 166.537 171.787 2074800 230.471 235.811
1130976 179.412 184.725 1521520 88.684 91.930 2088450 169.369 172.247
1133730 96.005 99.317 1531530 141.953 145.396 2100384 165.230 170.812
1141140 148.970 154.049 1534896 119.330 124.776 2106720 270.271 276.895
1162800 148.255 154.621 1544400 234.378 240.868 2116296 172.548 177.944
1166880 163.936 170.305 1556100 185.035 191.528 2131800 175.446 179.567
1170400 93.163 97.409 1570800 229.707 236.204 2162160 342.839 349.475
1173744 138.346 143.676 1580040 236.385 242.884 2173600 92.804 97.049
1175720 73.890 75.793 1587222 89.551 93.708 2187900 224.491 229.901
1178100 206.283 211.424 1591200 217.593 224.096 2217072 97.601 101.928
1193400 196.234 201.381 1598850 85.755 89.632 2227680 320.323 326.972
1193808 105.285 109.342 1627920 233.282 239.795 2238390 142.320 147.042
1201200 250.068 256.448 1630200 162.474 167.709 2257200 230.045 236.699
1209312 105.958 112.341 1633632 166.156 171.629 2267460 163.827 169.254
1220940 169.707 174.864 1662804 103.884 108.134 2282280 217.632 223.013
1222650 84.751 88.627 1663200 309.036 315.558 2309450 38.133 39.777
1225224 166.208 170.326 1670760 290.845 296.138 2325600 180.175 186.843
1237600 95.207 99.642 1679600 71.491 75.624 2334150 122.528 126.685
1243550 38.708 40.351 1701700 83.233 86.575 2347488 172.642 178.272
1244880 227.545 233.941 1705440 164.284 169.538 2351440 102.646 106.080
1259700 113.327 117.219 1711710 134.970 139.692 2356200 301.625 307.067
1264032 182.938 188.300 1744200 157.767 163.079 2386800 259.670 266.349
1279080 156.500 161.677 1750320 222.988 229.532 2387616 144.370 148.728
1285200 266.145 272.555 1755600 221.251 226.518 2402400 309.811 316.493
1293292 43.815 44.718 1763580 155.449 159.487 2441880 255.586 261.044
1304160 162.370 167.508 1767150 157.851 161.771 2445300 191.578 198.268
1312740 184.784 189.973 1778400 200.802 207.353 2450448 210.943 216.592
1316700 173.195 179.616 1790712 141.577 145.859 2487100 60.366 63.708
1333800 174.956 181.383 1801800 308.982 315.538 2489760 286.964 293.661
1336608 192.406 198.833 1808800 112.202 116.636 2494206 85.770 89.083
1343034 92.109 96.266 1813968 138.911 145.470 2519400 165.491 169.684
1346400 217.824 224.254 1825824 157.034 161.277 2552550 140.157 143.122
1351350 163.513 167.433 1837836 182.094 186.387 2558160 197.563 204.272
1356600 179.026 182.950 1847560 63.167 66.112 2570400 332.006 338.717
1361360 110.215 114.691 1856400 240.490 247.059 2586584 70.261 71.465
1369368 167.981 173.378 1867320 245.085 251.657 2625480 274.799 280.289
1383200 81.839 85.043 1884960 307.871 314.448 2633400 259.739 266.460
1385670 76.660 78.781 1889550 86.159 88.994 2645370 150.508 154.189
1392300 214.395 219.610 1901900 74.597 77.940 2667600 253.795 260.522
1395360 199.961 206.407 1918620 164.387 169.741 2686068 152.436 156.895
1410864 118.881 124.053 1939938 89.715 91.639 2702700 295.695 302.428
1413720 278.585 283.806 1944800 91.387 96.863 2713200 229.512 234.968
1421200 65.182 70.357 1953504 198.748 205.340 2722720 135.631 140.408
1436400 240.478 246.937 1956240 223.444 230.037 2738736 210.582 216.280
1441440 294.762 301.222 1965600 319.424 326.019 2771340 157.306 161.540
1458600 186.004 191.239 1975050 136.235 141.434 2784600 305.460 310.976
1467180 170.017 176.484 1989680 95.125 99.601 2821728 155.244 160.717
1469650 41.468 42.070 2015520 155.415 160.742 2827440 351.081 357.833
1478048 37.812 40.848 2019600 240.222 246.828 2842400 89.283 94.759
1492260 150.481 154.446 2034900 187.825 193.204 2852850 132.747 135.712
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2872800 305.218 311.978 4176900 298.765 304.456 6395400 244.743 250.619
2917200 223.731 230.497 4232592 213.282 220.210 6466460 97.571 100.214
2934360 240.775 247.543 4263600 209.132 214.784 6520800 249.732 255.569
2939300 71.950 74.251 4324320 448.962 455.899 6563700 301.159 307.047
2984520 223.368 227.635 4375800 312.335 318.047 6651216 195.445 201.527
3023280 220.056 226.838 4408950 133.467 135.391 6683040 462.765 469.891
3043040 121.073 124.620 4434144 122.338 126.966 6715170 203.079 208.278
3052350 133.947 138.105 4476780 252.609 258.330 6806800 176.259 181.434
3063060 270.095 275.652 4514400 294.643 301.599 6846840 369.144 376.280
3069792 154.806 160.553 4534920 242.363 248.090 6928350 112.674 114.794
3088800 298.955 305.746 4564560 282.645 288.327 6976800 279.226 286.371
3112200 273.245 280.039 4594590 211.399 215.319 7054320 286.554 292.424
3141600 278.656 285.454 4618900 65.714 69.056 7068600 426.151 432.071
3160080 334.612 341.413 4668300 252.892 259.862 7162848 244.571 250.685
3174444 169.460 175.032 4702880 132.209 135.945 7207200 487.039 494.198
3197700 176.942 182.518 4712400 380.183 387.158 7335900 276.702 283.869
3233230 66.855 68.499 4773600 311.470 318.449 7351344 314.285 320.411
3255840 290.513 297.327 4796550 124.449 128.802 7390240 127.208 131.985
3260400 206.980 212.515 4883760 347.513 354.503 7461300 250.672 255.337
3281850 152.309 155.384 4890600 263.634 270.624 7469280 415.291 422.466
3325608 148.061 152.612 4900896 286.506 292.456 7558200 273.077 279.026
3341520 382.818 389.642 4974200 119.132 122.775 7607600 152.547 156.492
3359200 92.031 96.466 4988412 146.406 151.133 7657650 227.126 230.569
3403400 145.787 149.431 5038800 219.286 225.010 7674480 329.294 336.481
3423420 241.532 248.368 5105100 270.964 276.743 7759752 191.139 194.780
3488400 222.132 228.976 5116320 259.252 266.262 7900200 385.753 392.952
3500640 284.475 291.321 5135130 210.154 215.353 7936110 208.203 212.360
3511200 279.413 284.981 5173168 76.873 79.609 8139600 369.753 376.964
3527160 216.258 220.597 5250960 340.733 347.754 8168160 405.951 413.164
3534300 287.923 293.542 5266800 343.199 350.222 8216208 319.437 325.612
3581424 176.745 182.559 5290740 261.043 266.838 8314020 255.075 261.066
3603600 390.027 396.884 5335200 293.848 300.876 8353800 435.393 441.385
3627936 174.161 181.022 5372136 214.656 219.415 8465184 278.170 285.398
3667950 145.862 150.216 5405400 421.682 428.716 8527200 258.818 264.771
3675672 250.931 255.526 5426400 280.636 286.392 8558550 221.153 225.875
3695120 84.473 88.949 5477472 274.517 280.516 8751600 373.465 380.708
3712800 294.678 301.549 5542680 223.806 228.342 8817900 246.155 250.893
3730650 140.617 143.583 5569200 392.596 399.643 8953560 382.383 388.406
3734640 336.521 343.394 5654880 451.380 458.434 9069840 337.707 344.965
3779100 190.618 196.266 5668650 132.668 135.980 9129120 357.078 363.061
3803800 116.814 120.458 5705700 235.664 241.443 9189180 401.775 407.809
3837240 240.921 246.576 5819814 142.526 146.206 9237800 110.211 113.854
3879876 134.341 137.680 5834400 279.272 286.339 9336600 369.595 376.867
3912480 280.062 286.956 5868720 338.093 345.163 9424800 470.055 477.330
3950100 255.740 262.637 5878600 120.487 123.089 9593100 248.494 254.547
3979360 140.677 145.454 5969040 286.889 292.687 9699690 175.227 178.193
4039200 314.952 321.860 6046560 270.003 277.086 9767520 436.647 443.938
4069800 292.493 298.173 6104700 270.436 276.292 9781200 346.724 354.016
4084080 326.235 333.147 6126120 407.657 413.514 9948400 156.058 161.233
4108104 250.340 256.213 6224400 372.935 380.030 9976824 206.931 211.959
4149600 283.678 289.319 6320160 431.670 438.772 10077600 259.157 265.183
4157010 130.552 134.429 6348888 245.699 251.573 10210200 405.302 411.381

285



Tables Values of log10 e(t)

t log10(
∏

q) log10(e(t)) t log10(
∏

q) log10(e(t)) t log10(
∏

q) log10(e(t))
10270260 366.736 374.049 18139680 403.875 411.434 36951200 188.187 193.663
10346336 107.703 110.740 18378360 592.825 599.159 37346400 660.666 668.539
10501920 430.010 437.332 18475600 139.115 144.290 38372400 486.295 494.180
10533600 440.185 447.508 18673200 530.783 538.355 38798760 466.689 472.070
10581480 376.428 382.523 19186200 363.089 369.442 39680550 308.251 312.408
10744272 276.987 283.278 19399380 318.235 323.315 39907296 353.256 360.117
10810800 553.441 560.776 19562400 444.731 452.323 40840800 656.428 664.340
11085360 281.537 287.604 19896800 207.868 213.343 41081040 737.765 745.679
11138400 489.061 496.409 19953648 277.224 283.784 41570100 425.984 432.673
11191950 224.785 229.506 20420400 523.268 530.879 42325920 606.516 614.443
11337300 259.374 265.499 20540520 548.947 556.560 44767800 611.050 617.771
11411400 363.967 370.047 20785050 192.430 196.307 45349200 521.664 529.621
11639628 237.816 242.911 21162960 486.702 494.329 45645600 604.545 611.227
11737440 421.555 428.926 21488544 375.667 382.259 45945900 638.812 645.544
11757200 165.014 169.147 21621600 709.073 716.709 46558512 441.206 448.134
11938080 367.574 373.674 22170720 341.127 347.495 48498450 275.433 278.399
12209400 401.389 407.547 22383900 415.419 421.839 48837600 674.686 682.676
12252240 512.505 519.894 22674600 374.304 380.730 49884120 534.221 540.990
12448800 460.768 468.164 22822800 481.784 488.164 51351300 593.102 601.114
12471030 215.994 220.348 22972950 334.178 338.098 51731680 269.329 274.106
12697776 320.845 328.250 23279256 340.314 345.710 52509600 695.000 703.021
12790800 302.668 310.076 23514400 208.206 212.640 52907400 601.877 608.672
12932920 153.091 156.035 24418800 523.797 531.486 53721360 727.678 735.709
13127400 427.535 433.724 24504480 648.990 656.680 55426800 449.488 456.254
13226850 222.778 226.459 24942060 373.696 380.163 58198140 535.781 542.617
13302432 244.956 251.340 25395552 407.014 414.719 58687200 666.321 674.390
13430340 356.433 362.632 25581600 403.892 411.601 59690400 588.077 594.875
13613600 207.579 213.055 25675650 327.988 333.187 61261200 811.901 819.989
13693680 484.338 491.776 25865840 195.197 199.673 62355150 297.097 301.451
13856700 264.218 269.151 26254800 530.647 538.367 63488880 723.270 731.374
14108640 350.721 356.893 26453700 412.641 419.134 64664600 246.194 249.838
14137200 534.629 542.080 26860680 545.299 551.799 66512160 582.852 590.976
14671800 383.893 391.360 27387360 616.393 624.131 67151700 583.848 590.746
14702688 404.971 411.398 27713400 364.833 370.067 68468400 797.865 806.001
14922600 371.155 376.120 28274400 683.163 690.916 69837768 484.290 490.163
15116400 354.070 361.551 29099070 295.793 300.514 70543200 597.958 604.829
15215200 197.177 201.423 29343600 525.032 532.801 73513440 958.682 966.850
15315300 451.884 458.140 29845200 458.848 465.345 76744800 622.578 630.764
15348960 410.530 418.017 30232800 424.412 432.193 77597520 603.645 610.557
15519504 235.759 240.931 30630600 648.102 654.659 79361100 564.540 571.510
15800400 518.869 526.369 31039008 313.300 318.773 82162080 934.882 943.097
15872220 361.493 367.764 31600800 673.361 681.162 83140200 585.339 592.330
16166150 94.070 95.713 31744440 539.782 546.355 87297210 435.637 440.836
16279200 461.636 469.149 32332300 145.686 149.028 89535600 759.552 767.805
16432416 408.664 415.140 33256080 465.379 473.202 90698400 623.739 631.997
16628040 359.434 365.725 33415200 702.139 709.964 91891800 917.717 924.751
16707600 568.399 575.923 33575850 306.423 311.621 93117024 574.098 581.326
17117100 406.088 413.622 34234200 610.403 618.238 96996900 508.972 514.750
17459442 191.834 195.991 34918884 337.898 343.470 99768240 717.351 725.651
17503200 485.920 493.464 35271600 485.795 492.365 102702600 868.534 876.847
17635800 366.850 371.889 35814240 631.332 639.187 105814800 784.807 793.133
17907120 489.572 497.126 36756720 754.888 762.754 107442720 942.457 950.789
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Values of log10 e(t) Tables

t log10(
∏

q) log10(e(t)) t log10(
∏

q) log10(e(t)) t log10(
∏

q) log10(e(t))
110853600 543.869 550.936 193993800 771.350 777.430 436486050 667.983 673.182
116396280 790.130 797.267 199536480 885.903 894.504 465585120 1291.766 1300.735
122522400 1030.044 1038.433 205405200 1157.572 1166.186 498841200 1094.146 1103.145
124710300 581.108 588.274 211629600 975.868 984.494 537213600 1453.816 1462.848
126977760 887.140 895.545 232792560 1028.035 1036.703 581981400 1270.468 1278.304
129329200 319.016 324.191 249420600 828.172 835.639 634888800 1398.685 1407.788
134303400 877.466 884.665 258658400 419.018 424.494 698377680 1523.645 1532.790
136936800 1013.581 1022.018 268606800 1119.129 1127.859 775975200 1244.929 1252.841
139675536 635.938 643.343 279351072 811.335 819.041 872972100 1233.655 1241.667
145495350 462.476 467.198 290990700 870.603 878.137 997682400 1376.302 1385.602
155195040 747.367 754.580 317444400 1120.091 1128.893 1163962800 1641.613 1650.980
158722200 833.412 840.684 332560800 938.282 947.105 1396755360 1904.157 1913.604
166280400 736.928 745.450 349188840 1150.434 1158.048 1745944200 1820.718 1829.031
174594420 777.189 784.502 367567200 1492.926 1501.792 2327925600 2073.179 2082.847
179071200 986.620 995.174 387987600 995.654 1003.265 3491888400 2378.628 2388.472
183783600 1163.210 1171.776 410810400 1475.039 1483.954 6983776800 3000.728 3010.873
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Tables Extensions

le m g f D S

2 3 2 x2 + x+ 1 1

(−1 1

−1 0

)

2 5 2 x2 + x− 1 1

(−1 1

−1 0

)

2 7 3 x2 + x+ 2 1

(−1 1

−1 0

)

2 11 2 x2 + x+ 3 1

(−1 1

−1 0

)

2 13 2 x2 + x− 3 1

(−1 1

−1 0

)

2 17 3 x2 + x− 4 1

(−1 1

−1 0

)

2 19 2 x2 + x+ 5 1

(−1 1

−1 0

)

2 23 5 x2 + x+ 6 1

(−1 1

−1 0

)

2 29 3 x2 + x− 7 1

(−1 1

−1 0

)

2 31 3 x2 + x+ 8 1

(−1 1

−1 0

)

2 37 2 x2 + x− 9 1

(−1 1

−1 0

)

2 41 6 x2 + x− 10 1

(−1 1

−1 0

)

2 43 3 x2 + x+ 11 1

(−1 1

−1 0

)

2 47 5 x2 + x+ 12 1

(−1 1

−1 0

)

2 53 2 x2 + x− 13 1

(−1 1

−1 0

)

2 59 2 x2 + x+ 15 1

(−1 1

−1 0

)

2 61 2 x2 + x− 15 1

(−1 1

−1 0

)

2 67 2 x2 + x+ 17 1

(−1 1

−1 0

)

2 71 7 x2 + x+ 18 1

(−1 1

−1 0

)

2 73 5 x2 + x− 18 1

(−1 1

−1 0

)

2 79 3 x2 + x+ 20 1

(−1 1

−1 0

)

2 83 2 x2 + x+ 21 1

(−1 1

−1 0

)
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Extensions Tables

le m g f D S

2 89 3 x2 + x− 22 1

(−1 1

−1 0

)

2 97 5 x2 + x− 24 1

(−1 1

−1 0

)

2 101 2 x2 + x− 25 1

(−1 1

−1 0

)

2 103 5 x2 + x+ 26 1

(−1 1

−1 0

)

2 107 2 x2 + x+ 27 1

(−1 1

−1 0

)

2 109 6 x2 + x− 27 1

(−1 1

−1 0

)

2 113 3 x2 + x− 28 1

(−1 1

−1 0

)

2 127 3 x2 + x+ 32 1

(−1 1

−1 0

)

2 131 2 x2 + x+ 33 1

(−1 1

−1 0

)

2 137 3 x2 + x− 34 1

(−1 1

−1 0

)

2 139 2 x2 + x+ 35 1

(−1 1

−1 0

)

2 149 2 x2 + x− 37 1

(−1 1

−1 0

)

2 151 6 x2 + x+ 38 1

(−1 1

−1 0

)

2 157 5 x2 + x− 39 1

(−1 1

−1 0

)

le m g f D S

4 5 2 x4 + x3 + x2 + x+ 1 1















−1 1 0 0

−1 0 1 0

−1 0 0 0

−1 0 0 1















4 13 2 x4 + x3 + 2x2 − 4x+ 3 3















−1 1 0 −5

−1 0 1 −3

−1 0 2 −6

−1 0 0 −3















4 17 3 x4 + x3 − 6x2 − x+ 1 2















−1 1 −4 9

−1 0 −2 1

−1 0 −3 3

−1 0 −4 3















4 29 2 x4 + x3 + 4x2 + 20x+ 23 7















−1 1 2 9

−1 0 3 13

−1 0 0 12

−1 0 2 15














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Tables Extensions

le m g f D S

4 37 2 x4 + x3 + 5x2 + 7x+ 49 21















−1 1 2 0

−1 0 1 6

−1 0 2 −2

−1 0 4 3















4 41 6 x4 + x3 − 15x2 + 18x− 4 2















−1 1 −10 39

−1 0 −6 18

−1 0 −7 21

−1 0 −8 22















4 53 2 x4 + x3 + 7x2 − 43x+ 47 13















−1 1 2 −42

−1 0 3 −32

−1 0 6 −42

−1 0 2 −33















4 61 2 x4 + x3 + 8x2 + 42x+ 117 39















−1 1 4 21

−1 0 3 33

−1 0 2 22

−1 0 6 27















4 73 5 x4 + x3 − 27x2 − 41x+ 2 8















−1 1 −13 9

−1 0 −12 −18

−1 0 −14 −14

−1 0 −16 −18















4 89 3 x4 + x3 − 33x2 + 39x+ 8 8















−1 1 −19 81

−1 0 −14 40

−1 0 −16 48

−1 0 −18 48















4 97 5 x4 + x3 − 36x2 + 91x− 61 2















−1 1 −22 129

−1 0 −18 87

−1 0 −17 85

−1 0 −16 81















4 101 2 x4 + x3 + 13x2 + 19x+ 361 95















−1 1 6 0

−1 0 9 10

−1 0 6 −6

−1 0 4 15















4 109 6 x4 + x3 + 14x2 − 34x+ 393 105















−1 1 6 −41

−1 0 9 −27

−1 0 8 −48

−1 0 4 −27















4 113 3 x4 + x3 − 42x2 − 120x− 64 8















−1 1 −19 −27

−1 0 −20 −68

−1 0 −22 −66

−1 0 −24 −72















4 137 3 x4 + x3 − 51x2 − 214x− 236 2















−1 1 −22 −81

−1 0 −26 −134

−1 0 −27 −135

−1 0 −28 −138















4 149 2 x4 + x3 + 19x2 − 121x+ 635 155















−1 1 8 −114

−1 0 11 −90

−1 0 12 −120

−1 0 6 −95















4 157 5 x4 + x3 + 20x2 − 206x+ 517 111















−1 1 8 −183

−1 0 7 −159

−1 0 14 −182

−1 0 10 −153














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Extensions Tables

le m g f D

S

8 17 3 x8 + x7 − 7x6 − 6x5 + 15x4 + 10x3 − 10x2 − 4x+ 1 1









































−1 1 −2 3 −6 10 −20 35

−1 0 −2 1 −6 5 −20 21

−1 0 −2 0 −6 0 −20 0

−1 0 −2 0 −6 0 −20 1

−1 0 −2 0 −5 0 −14 0

−1 0 −2 0 −6 1 −20 7

−1 0 −1 0 −2 0 −5 0

−1 0 −2 0 −6 0 −19 0









































8 41 6 x8 + x7 + 3x6 + 11x5 + 44x4 − 53x3 + 153x2 − 160x+ 59 853738









































−1 1 0 3 12 −95 191 −462

−1 0 2 0 16 −60 31 −56

−1 0 1 3 12 −70 65 −196

−1 0 2 3 18 −85 30 −147

−1 0 0 0 29 −85 141 −357

−1 0 0 6 6 −50 81 −406

−1 0 0 3 16 −54 66 −343

−1 0 0 7 16 −65 60 −489









































8 73 5 x8 + x7 + 5x6 − 17x5 − 46x4 − 136x3 + 320x2 + 512x+ 4096 12288









































−1 1 1 −9 −11 15 261 −609

−1 0 2 −6 −18 26 246 −174

−1 0 0 −6 −28 −30 260 −350

−1 0 0 −12 −8 −20 176 −252

−1 0 2 −6 −18 −30 302 −462

−1 0 2 −12 −30 20 210 −588

−1 0 2 −8 −14 0 346 −168

−1 0 0 −6 −20 10 308 −462









































8 89 3 x8 + x7 + 6x6 + 46x5 − 143x4 − 575x3 + 1160x2 + 16x+ 512 17152









































−1 1 1 9 −127 −215 2145 5705

−1 0 2 16 −94 −400 1282 8912

−1 0 2 24 −134 −480 1394 12264

−1 0 0 12 −80 −340 1136 6412

−1 0 0 24 −64 −520 672 8792

−1 0 2 12 −102 −380 1506 8316

−1 0 4 12 −116 −524 2180 10332

−1 0 0 12 −88 −300 1216 6300









































8 97 5 x8 + x7 − 42x6 − 59x5 + 497x4 + 719x3 − 1792x2 − 2295x+ 193 2374833









































−1 1 −10 9 −156 10 −2963 −3339

−1 0 −10 −9 −174 −359 −3748 −11865

−1 0 −11 −12 −198 −495 −4419 −16156

−1 0 −10 −9 −182 −380 −4075 −12894

−1 0 −12 −9 −219 −410 −4824 −14301

−1 0 −10 −3 −162 −185 −3253 −7287

−1 0 −12 −11 −224 −465 −5017 −15708

−1 0 −10 −6 −158 −260 −3199 −9015









































291



Tables Extensions

le m g f D

S

8 113 3
x8 + x7 − 49x6 + 16x5 + 511x4 − 367x3+

−1499x2 + 798x+ 1372
9296









































−1 1 −14 51 −479 2540 −20483 123509

−1 0 −10 13 −264 870 −10037 47250

−1 0 −12 18 −338 1140 −12982 61418

−1 0 −12 27 −378 1626 −15513 83762

−1 0 −11 21 −326 1295 −13059 67676

−1 0 −12 15 −350 1090 −13469 60998

−1 0 −14 30 −444 1830 −18054 95172

−1 0 −14 21 −440 1470 −17369 81270









































8 137 3
x8 + x7 + 9x6 + 105x5 + 954x4 + 3767x3+

+9149x2 + 12828x+ 7607
2561927876









































−1 1 4 33 302 385 −7259 −72366

−1 0 0 37 436 1595 −2522 −81725

−1 0 3 39 440 1350 −5127 −90278

−1 0 0 36 468 1736 −2553 −85120

−1 0 0 12 331 1525 459 −49595

−1 0 4 45 408 1115 −6558 −93177

−1 0 2 39 444 1420 −4358 −88277

−1 0 4 48 440 1100 −7165 −98756









































le m g f D

S

16 17 3
x16 + x15 + x14 + x13 + x12 + x11 + x10 + x9 + x8 + x7+

x6 + x5 + x4 + x3 + x2 + x+ 1
1































































































−1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

−1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

−1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

−1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

−1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

−1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

−1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0






























































































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Extensions Tables

le m g f D

S

16 97 5

x16 + x15 − 45x14 − 98x13 + 650x12 + 2183x11 − 2576x10+

−17205x9 − 9748x8 + 44003x7 + 63779x6 − 18576x5+

−86644x4 − 43324x3 + 15475x2 + 17690x+ 3721

187125655

07118089































































































−1 1 −4 3 −30 −20 −360 −945

−1 0 −6 −12 −90 −359 −1990 −9569

−1 0 −5 −6 −56 −160 −945 −3850

−1 0 −6 −9 −74 −240 −1350 −5845

−1 0 −6 −12 −89 −340 −1884 −8813

−1 0 −6 −12 −90 −360 −2019 −9765

−1 0 −6 −11 −78 −285 −1510 −6909

−1 0 −6 −12 −90 −355 −1974 −9471

−1 0 −6 −12 −90 −350 −1949 −9247

−1 0 −6 −12 −90 −350 −1944 −9177

−1 0 −6 −12 −86 −325 −1770 −8197

−1 0 −4 −6 −42 −140 −720 −3150

−1 0 −6 −9 −74 −240 −1350 −5845

−1 0 −6 −12 −84 −320 −1710 −7973

−1 0 −6 −12 −90 −355 −1959 −9331

−1 0 −6 −12 −86 −325 −1770 −8217

−6370 −25914 −142131 −676434 −3537215 −17800848 −92329341 −474317467

−50134 −254202 −1320489 −6809880 −35383194 −183601626 −955138105 −4968588947

−20174 −94995 −487226 −2431847 −12500828 −63908117 −330215717 −1705718742

−30274 −146361 −750545 −3788213 −19510182 −100228466 −518714027 −2685339851

−46024 −230277 −1192146 −6110203 −31671441 −163862972 −851205368 −4421638594

−51618 −263064 −1374036 −7110708 −37062806 −192725676 −1004362645 −5231049172

−35097 −173472 −885146 −4505412 −23185800 −119498626 −618552311 −3206383127

−49706 −252264 −1312026 −6774108 −35228127 −182946465 −952274609 −4956148481

−48502 −244662 −1270881 −6541898 −33983906 −176221825 −916612605 −4766961847

−47978 −240840 −1247451 −6400108 −33179630 −171712111 −892004217 −4633801827

−42378 −210585 −1083896 −5532538 −28584533 −147547673 −765100907 −3969286552

−15610 −75396 −378866 −1905552 −9724440 −49812308 −256709557 −1326508092

−30254 −146171 −749079 −3778269 −19449330 −99868249 −516679995 −2674031631

−40858 −203754 −1045376 −5344372 −27585756 −142489893 −738715158 −3833578864

−48594 −244866 −1266126 −6504773 −33699006 −174474144 −906105549 −4707582317

−42588 −212241 −1095306 −5603334 −29005602 −149941922 −778443159 −4042098032






























































































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Tables Extensions

le m g f D

S

16 113 3

x16 + x15 + 4x14 + 20x13 + 110x12 + 525x11+

325x10 − 425x9 + 12062x8 − 21729x7+

64244x6 − 119403x5 + 154492x4+

−132177x3 + 210865x2+

−281708x+ 132937

23550755868325548454

5564323362469978248































































































−1 1 0 3 16 75 −429 −1036

−1 0 0 1 18 150 −300 −476

−1 0 2 0 28 115 −345 −1939

−1 0 0 6 4 126 −160 −1519

−1 0 0 3 24 80 −264 −1043

−1 0 2 6 18 125 −390 −2016

−1 0 0 9 12 135 −340 −1400

−1 0 0 6 24 155 −165 −1792

−1 0 0 0 5 145 −15 −1707

−1 0 2 0 24 70 −234 −1701

−1 0 0 0 24 175 −355 −833

−1 0 0 3 28 50 −78 −1190

−1 0 1 3 12 110 −105 −1428

−1 0 0 0 36 135 −119 −1078

−1 0 0 3 34 85 −30 −1890

−1 0 0 6 36 105 −204 −1988

4592 −32565 99240 82038 483912 −2475759 9593857 −58629855

778 −27438 17235 161876 556534 −502489 13123448 −48536157

3780 −29285 41055 323972 523908 −1580241 6547282 −44916519

1464 −20844 34115 83688 1128139 −2102022 7273630 −35100047

1261 −25203 58335 134530 557425 −673582 5643275 −46952499

1288 −21579 50362 287188 944262 −2287506 4144049 −55322665

896 −27282 61825 126335 1154373 −2116906 9138129 −60263719

−308 −33102 41350 184525 1371690 −479414 8200192 −55353177

6132 −35571 21072 50391 936003 −2091180 14210378 −15742399

3228 −21978 34335 257598 376157 −1100528 3111668 −30282551

1778 −35865 24315 233432 638550 −609115 15316548 −57982439

1492 −29970 65295 70972 626604 344149 4063696 −37620245

2136 −24324 20227 127985 831403 −1009931 7627074 −27373825

490 −38058 28230 181797 756624 1234454 10603490 −47141155

2604 −35460 52125 129635 894939 99164 5515993 −32785077

28 −32919 70306 218856 1109020 −190632 3399865 −59182367































































































294



Extensions Tables

le m g f D S

3 7 3 x3 + x2 − 2x− 1 1









−1 1 −2

−1 0 −2

−1 0 −1









3 13 2 x3 + x2 − 4x+ 1 1









−1 1 −4

−1 0 −3

−1 0 −2









3 19 2 x3 + x2 − 6x− 7 1









−1 1 −4

−1 0 −5

−1 0 −4









3 31 3 x3 + x2 − 10x− 8 2









−1 1 −7

−1 0 −6

−1 0 −8









3 37 2 x3 + x2 − 12x+ 11 1









−1 1 −10

−1 0 −7

−1 0 −8









3 43 3 x3 + x2 − 14x+ 8 2









−1 1 −11

−1 0 −8

−1 0 −10









3 61 2 x3 + x2 − 20x− 9 3









−1 1 −14

−1 0 −15

−1 0 −12









3 67 2 x3 + x2 − 22x+ 5 3









−1 1 −16

−1 0 −13

−1 0 −16









3 73 5 x3 + x2 − 24x− 27 3









−1 1 −16

−1 0 −18

−1 0 −15









3 79 3 x3 + x2 − 26x+ 41 1









−1 1 −20

−1 0 −17

−1 0 −16









3 97 5 x3 + x2 − 32x− 79 1









−1 1 −20

−1 0 −23

−1 0 −22









3 103 5 x3 + x2 − 34x− 61 3









−1 1 −22

−1 0 −22

−1 0 −25









3 109 6 x3 + x2 − 36x− 4 4









−1 1 −25

−1 0 −26

−1 0 −22









3 127 3 x3 + x2 − 42x+ 80 2









−1 1 −31

−1 0 −26

−1 0 −28









3 139 2 x3 + x2 − 46x+ 103 1









−1 1 −34

−1 0 −29

−1 0 −30









3 151 6 x3 + x2 − 50x− 123 3









−1 1 −32

−1 0 −33

−1 0 −36









3 157 5 x3 + x2 − 52x+ 64 4









−1 1 −37

−1 0 −36

−1 0 −32









295



Tables Extensions

le m g f D

S

9 19 2
x9 + x8 − 8x7 − 7x6 + 21x5 + 15x4 − 20x3 − 10x2+

5x+ 1
1

















































−1 1 −2 3 −6 10 −20 35 −70

−1 0 −1 0 −2 0 −5 0 −14

−1 0 −2 0 −5 0 −14 0 −42

−1 0 −2 0 −6 0 −20 0 −69

−1 0 −2 1 −6 5 −20 21 −70

−1 0 −2 0 −6 0 −19 0 −62

−1 0 −2 0 −6 0 −20 1 −70

−1 0 −2 0 −6 1 −20 7 −70

−1 0 −2 0 −6 0 −20 0 −70

















































9 37 2
x9 + x8 − 16x7 − 11x6 + 66x5 + 32x4 − 73x3 − 7x2+

7x+ 1
1333

















































−1 1 −4 9 −36 100 −393 1197 −4576

−1 0 −3 0 −20 5 −175 126 −1764

−1 0 −4 3 −35 50 −364 707 −4052

−1 0 −4 3 −36 50 −379 707 −4227

−1 0 −4 0 −36 10 −365 252 −3892

−1 0 −2 0 −12 1 −100 43 −980

−1 0 −4 0 −30 5 −280 154 −2884

−1 0 −4 0 −32 10 −310 238 −3262

−1 0 −4 1 −32 25 −310 413 −3304

















































9 73 5
x9 + x8 − 32x7 − 11x6 + 278x5 − 34x4 − 427x3 + 150x2+

−8x− 1
49053

















































−1 1 −8 21 −138 460 −2688 10325 −55776

−1 0 −6 6 −96 196 −1779 5236 −35686

−1 0 −8 9 −134 290 −2555 7707 −52142

−1 0 −6 3 −86 100 −1409 2730 −25276

−1 0 −6 3 −84 105 −1394 2912 −25480

−1 0 −8 6 −128 220 −2314 6118 −45380

−1 0 −8 4 −124 165 −2180 4838 −41599

−1 0 −8 6 −119 180 −1998 4634 −36728

−1 0 −7 6 −112 190 −2015 5068 −39114

















































9 109 6
x9 + x8 − 48x7 − 73x6 + 660x5 + 1454x4 − 2149x3 − 8350x2+

−7432x− 2008
29632996

















































−1 1 −10 9 −186 160 −4188 3073 −102331

−1 0 −12 −12 −248 −370 −6002 −11172 −155306

−1 0 −12 −9 −238 −245 −5593 −7105 −141678

−1 0 −11 −12 −226 −350 −5455 −10227 −140714

−1 0 −10 −12 −188 −344 −4348 −9778 −110528

−1 0 −10 −9 −172 −215 −3675 −5453 −88270

−1 0 −10 −6 −187 −115 −4198 −2835 −102898

−1 0 −12 −8 −234 −230 −5374 −6846 −134308

−1 0 −10 −15 −190 −445 −4455 −12621 −114492

















































296



Extensions Tables

le m g f D

S

9 127 3
x9 + x8 − 56x7 − 118x6 + 573x5 + 1249x4 − 1582x3+

−2700x2 + 1576x+ 32
33536

















































−1 1 −11 9 −299 −295 −11243 −32599 −485035

−1 0 −10 −20 −306 −1380 −13442 −78036 −651698

−1 0 −12 −24 −396 −1680 −17428 −96600 −838332

−1 0 −14 −30 −482 −2070 −21474 −118902 −1035026

−1 0 −14 −24 −478 −1800 −20894 −107240 −992094

−1 0 −14 −24 −478 −1840 −20918 −109368 −996014

−1 0 −12 −18 −408 −1434 −17720 −87290 −835624

−1 0 −12 −18 −376 −1370 −16104 −81850 −761192

−1 0 −14 −36 −510 −2420 −23358 −136388 −1140734

















































le m g f D S

5 11 2
x5 + x4 − 4x3 − 3x2+

3x+ 1
1





















−1 1 −2 3 −6

−1 0 −1 0 −2

−1 0 −2 0 −5

−1 0 −2 1 −6

−1 0 −2 0 −6





















5 31 3
x5 + x4 − 12x3 − 21x2+

x+ 5
5





















−1 1 −4 3 −30

−1 0 −6 −8 −62

−1 0 −6 −9 −64

−1 0 −4 −6 −41

−1 0 −5 −6 −52





















5 41 6
x5 + x4 − 16x3 + 5x2+

21x− 9
9





















−1 1 −8 25 −140

−1 0 −5 6 −68

−1 0 −6 12 −93

−1 0 −6 9 −90

−1 0 −8 12 −122





















5 61 2
x5 + x4 − 24x3 − 17x2+

41x− 13
29





















−1 1 −10 21 −210

−1 0 −9 4 −190

−1 0 −12 0 −253

−1 0 −8 −3 −156

−1 0 −10 0 −208





















5 71 7
x5 + x4 − 28x3 + 37x2+

25x+ 1
23





















−1 1 −14 63 −472

−1 0 −9 28 −262

−1 0 −10 30 −289

−1 0 −12 39 −354

−1 0 −12 36 −352





















5 101 2
x5 + x4 − 40x3 + 93x2+

−21x− 17
17





















−1 1 −20 117 −1026

−1 0 −17 78 −776

−1 0 −14 66 −645

−1 0 −16 75 −734

−1 0 −14 64 −636




















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Tables Extensions

le m g f D S

5 131 2
x5 + x4 − 52x3 − 89x2+

109x+ 193
79





















−1 1 −20 15 −886

−1 0 −21 −30 −972

−1 0 −24 −38 −1129

−1 0 −18 −33 −820

−1 0 −22 −24 −1018





















5 151 6
x5 + x4 − 60x3 − 12x2+

784x+ 128
32





















−1 1 −25 57 −921

−1 0 −24 16 −800

−1 0 −24 24 −856

−1 0 −22 18 −746

−1 0 −26 30 −934




















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Gauss sums as products of Jacobi sums Tables

ord(χ) = 2

τ(χ)1−σ1 = 1

τ(χ)2 = q∗

ord(χ) = 3

τ(χ)1−σ1 = 1

τ(χ)2−σ2 = j(χ, χ)

τ(χ)3 = q∗ j(χ, χ)

ord(χ) = 4

τ(χ)1−σ1 = 1

τ(χ)3−σ3 = j(χ, χ)2

τ(χ)4 = q∗ j(χ, χ)2

ord(χ) = 5

τ(χ)1−σ1 = 1

τ(χ)2−σ2 = j(χ, χ)

τ(χ)3−σ3 = j(χ, χ)1+σ2

τ(χ)4−σ4 = j(χ, χ)2+σ2

τ(χ)5 = q∗ j(χ, χ)2+σ2

ord(χ) = 7

τ(χ)1−σ1 = 1

τ(χ)2−σ2 = j(χ, χ)

τ(χ)3−σ3 = j(χ, χ) j(χ, χ2)

τ(χ)4−σ4 = j(χ, χ)2+σ2

τ(χ)5−σ5 = j(χ, χ)2+σ2 j(χ, χ2)

τ(χ)6−σ6 = j(χ, χ)2+σ3 j(χ, χ2)2

τ(χ)7 = q∗ j(χ, χ)2+σ3 j(χ, χ2)2

ord(χ) = 8

τ(χ)1−σ1 = 1

τ(χ)3−σ3 = j(χ, χ) j(χ, χ2)

τ(χ)5−σ5 = j(χ, χ)2+σ3 j(χ, χ2)

τ(χ)7−σ7 = j(χ, χ)3+σ3 j(χ, χ2)2

τ(χ)8 = q∗ j(χ, χ)3+σ3 j(χ, χ2)2
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Tables Gauss sums as products of Jacobi sums

ord(χ) = 9

τ(χ)1−σ1 = 1

τ(χ)2−σ2 = j(χ, χ)

τ(χ)4−σ4 = j(χ, χ)2+σ2

τ(χ)5−σ5 = j(χ, χ)2+σ2+σ4

τ(χ)7−σ7 = j(χ, χ)3+2σ2+σ4

τ(χ)8−σ8 = j(χ, χ)4+2σ2+σ4

τ(χ)9 = q∗ j(χ, χ)4+2σ2+σ4

ord(χ) = 11

τ(χ)1−σ1 = 1

τ(χ)2−σ2 = j(χ, χ)

τ(χ)3−σ3 = j(χ, χ) j(χ, χ2)

τ(χ)4−σ4 = j(χ, χ)2+σ2

τ(χ)5−σ5 = j(χ, χ)2+σ2 j(χ, χ2)σ6

τ(χ)6−σ6 = j(χ, χ)2+σ3 j(χ, χ2)2

τ(χ)7−σ7 = j(χ, χ)3+σ2+σ4 j(χ, χ2)

τ(χ)8−σ8 = j(χ, χ)4+2σ2+σ4

τ(χ)9−σ9 = j(χ, χ)3+σ3 j(χ, χ2)3+σ3

τ(χ)10−σ10 = j(χ, χ)4+2σ2+σ5 j(χ, χ2)2σ6

τ(χ)11 = q∗ j(χ, χ)4+2σ2+σ5 j(χ, χ2)2σ6
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Gauss sums as products of Jacobi sums Tables

ord(χ) = 13

τ(χ)1−σ1 = 1

τ(χ)2−σ2 = j(χ, χ)

τ(χ)3−σ3 = j(χ, χ) j(χ, χ2)

τ(χ)4−σ4 = j(χ, χ)2+σ2

τ(χ)5−σ5 = j(χ, χ)2 j(χ, χ2)1+σ8

τ(χ)6−σ6 = j(χ, χ)2+σ3 j(χ, χ2)2

τ(χ)7−σ7 = j(χ, χ)2+σ3+σ6 j(χ, χ2)2

τ(χ)8−σ8 = j(χ, χ)4+2σ2+σ4

τ(χ)9−σ9 = j(χ, χ)3+σ3 j(χ, χ2)3+σ3

τ(χ)10−σ10 = j(χ, χ)4+σ5 j(χ, χ2)2+2σ8

τ(χ)11−σ11 = j(χ, χ)4+σ2+σ3 j(χ, χ2)3+σ3

τ(χ)12−σ12 = j(χ, χ)4+2σ3+σ6 j(χ, χ2)4

τ(χ)13 = q∗ j(χ, χ)4+2σ3+σ6 j(χ, χ2)4

ord(χ) = 16

τ(χ)1−σ1 = 1

τ(χ)3−σ3 = j(χ, χ) j(χ, χ2)

τ(χ)5−σ5 = j(χ, χ)2 j(χ, χ2) j(χ2, χ3)

τ(χ)7−σ7 = j(χ, χ)3 j(χ, χ2)1+σ9 j(χ2, χ3)

τ(χ)9−σ9 = j(χ, χ)3+σ3 j(χ, χ2)3+σ3

τ(χ)11−σ11 = j(χ, χ)4+σ3+σ5 j(χ, χ2)3 j(χ2, χ3)

τ(χ)13−σ13 = j(χ, χ)5+σ3+σ5 j(χ, χ2)3 j(χ2, χ3)2

τ(χ)15−σ15 = j(χ, χ)6+σ5 j(χ, χ2)3+σ5 j(χ2, χ3)3

τ(χ)16 = q∗ j(χ, χ)6+σ5 j(χ, χ2)3+σ5 j(χ2, χ3)3
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Tables Gauss sums as products of Jacobi sums

ord(χ) = 17

τ(χ)1−σ1 = 1

τ(χ)2−σ2 = j(χ, χ)

τ(χ)3−σ3 = j(χ, χ) j(χ, χ2)

τ(χ)4−σ4 = j(χ, χ)2+σ2

τ(χ)5−σ5 = j(χ, χ)2 j(χ, χ2) j(χ2, χ3)

τ(χ)6−σ6 = j(χ, χ)2+σ3 j(χ, χ2)2

τ(χ)7−σ7 = j(χ, χ)3+σ2 j(χ, χ2)1+σ10

τ(χ)8−σ8 = j(χ, χ)4+2σ2+σ4

τ(χ)9−σ9 = j(χ, χ)4+2σ2+σ4+σ8

τ(χ)10−σ10 = j(χ, χ)4+σ2+σ7 j(χ, χ2)2+σ10

τ(χ)11−σ11 = j(χ, χ)5+2σ2+σ4 j(χ, χ2)1+σ3

τ(χ)12−σ12 = j(χ, χ)4+2σ3+σ6 j(χ, χ2)4

τ(χ)13−σ13 = j(χ, χ)6+3σ2+2σ4+σ8

τ(χ)14−σ14 = j(χ, χ)6+2σ2+σ7 j(χ, χ2)2+2σ10

τ(χ)15−σ15 = j(χ, χ)7+4σ2+2σ4+σ8

τ(χ)16−σ16 = j(χ, χ)8+4σ2+2σ4+σ8

τ(χ)17 = q∗ j(χ, χ)8+4σ2+2σ4+σ8
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Gauss sums as products of Jacobi sums Tables

ord(χ) = 19

τ(χ)1−σ1 = 1

τ(χ)2−σ2 = j(χ, χ)

τ(χ)3−σ3 = j(χ, χ) j(χ, χ2)

τ(χ)4−σ4 = j(χ, χ)2+σ2

τ(χ)5−σ5 = j(χ, χ)2 j(χ, χ2) j(χ2, χ3)

τ(χ)6−σ6 = j(χ, χ)2+σ3 j(χ, χ2)2

τ(χ)7−σ7 = j(χ, χ)2+σ3 j(χ, χ2)2+σ6

τ(χ)8−σ8 = j(χ, χ)4+2σ2+σ4

τ(χ)9−σ9 = j(χ, χ)3+σ3 j(χ, χ2)3+σ3

τ(χ)10−σ10 = j(χ, χ)3+σ3+σ9 j(χ, χ2)3+σ3

τ(χ)11−σ11 = j(χ, χ)5+2σ2+σ4+σ8 j(χ, χ2)

τ(χ)12−σ12 = j(χ, χ)4+2σ3+σ6 j(χ, χ2)4

τ(χ)13−σ13 = j(χ, χ)4+2σ3+σ6 j(χ, χ2)4+σ6

τ(χ)14−σ14 = j(χ, χ)4+2σ3+σ7 j(χ, χ2)4+2σ6

τ(χ)15−σ15 = j(χ, χ)7+3σ2+2σ4+σ8 j(χ, χ2)

τ(χ)16−σ16 = j(χ, χ)8+4σ2+2σ4+σ8

τ(χ)17−σ17 = j(χ, χ)8+4σ2+2σ4+σ8 j(χ, χ2)

τ(χ)18−σ18 = j(χ, χ)6+2σ3+σ9 j(χ, χ2)6+2σ3

τ(χ)19 = q∗ j(χ, χ)6+2σ3+σ9 j(χ, χ2)6+2σ3
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Tables Gauss sums as products of Jacobi sums

ord(χ) = 25

τ(χ)1−σ1 = 1

τ(χ)2−σ2 = j(χ, χ)

τ(χ)3−σ3 = j(χ, χ) j(χ, χ2)

τ(χ)4−σ4 = j(χ, χ)2+σ2

τ(χ)6−σ6 = j(χ, χ)2+σ3 j(χ, χ2)2

τ(χ)7−σ7 = j(χ, χ)3 j(χ, χ2) j(χ2, χ3)1+σ9

τ(χ)8−σ8 = j(χ, χ)4+2σ2+σ4

τ(χ)9−σ9 = j(χ, χ)3+σ3 j(χ, χ2)3+σ3

τ(χ)11−σ11 = j(χ, χ)5+2σ2+σ4 j(χ, χ2)1+σ14

τ(χ)12−σ12 = j(χ, χ)4+2σ3+σ6 j(χ, χ2)4

τ(χ)13−σ13 = j(χ, χ)4+2σ3+σ6+σ12 j(χ, χ2)4

τ(χ)14−σ14 = j(χ, χ)6+2σ2+σ4+σ11 j(χ, χ2)2+σ14

τ(χ)16−σ16 = j(χ, χ)8+4σ2+2σ4+σ8

τ(χ)17−σ17 = j(χ, χ)7+2σ2+σ3+σ4+σ8 j(χ, χ2)3+σ3

τ(χ)18−σ18 = j(χ, χ)6+2σ3+σ9 j(χ, χ2)6+2σ3

τ(χ)19−σ19 = j(χ, χ)6+3σ3+2σ6+σ12 j(χ, χ2)6

τ(χ)21−σ21 = j(χ, χ)9+3σ2+σ3+2σ4+σ8 j(χ, χ2)3+σ3

τ(χ)22−σ22 = j(χ, χ)10+4σ2+2σ4+σ11 j(χ, χ2)2+2σ14

τ(χ)23−σ23 = j(χ, χ)10+4σ2+σ3+2σ4+σ8 j(χ, χ2)3+σ3

τ(χ)24−σ24 = j(χ, χ)8+4σ3+2σ6+σ12 j(χ, χ2)8

τ(χ)25 = q∗ j(χ, χ)8+4σ3+2σ6+σ12 j(χ, χ2)8
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Gauss sums as products of Jacobi sums Tables

ord(χ) = 27

τ(χ)1−σ1 = 1

τ(χ)2−σ2 = j(χ, χ)

τ(χ)4−σ4 = j(χ, χ)2+σ2

τ(χ)5−σ5 = j(χ, χ)2 j(χ, χ2) j(χ2, χ3)

τ(χ)7−σ7 = j(χ, χ)3+σ2 j(χ, χ2) j(χ2, χ3)σ10

τ(χ)8−σ8 = j(χ, χ)4+2σ2+σ4

τ(χ)10−σ10 = j(χ, χ)4+σ5 j(χ, χ2)2 j(χ2, χ3)2

τ(χ)11−σ11 = j(χ, χ)5+2σ2+σ4 j(χ, χ2)1+σ8

τ(χ)13−σ13 = j(χ, χ)6+3σ2+σ4 j(χ, χ2)σ4+σ14

τ(χ)14−σ14 = j(χ, χ)6+3σ2+σ4+σ13 j(χ, χ2)σ4+σ14

τ(χ)16−σ16 = j(χ, χ)8+4σ2+2σ4+σ8

τ(χ)17−σ17 = j(χ, χ)7+σ2+σ5+σ10 j(χ, χ2)3 j(χ2, χ3)2+σ10

τ(χ)19−σ19 = j(χ, χ)9+4σ2+2σ4+σ8 j(χ, χ2)1+σ8

τ(χ)20−σ20 = j(χ, χ)9+4σ2+σ4+σ13 j(χ, χ2)σ2+σ4+σ7+σ14

τ(χ)22−σ22 = j(χ, χ)10+4σ2+2σ4+σ11 j(χ, χ2)2+2σ8

τ(χ)23−σ23 = j(χ, χ)11+5σ2+3σ4+σ8 j(χ, χ2)1+σ8

τ(χ)25−σ25 = j(χ, χ)12+6σ2+3σ4+σ8 j(χ, χ2)1+σ8

τ(χ)26−σ26 = j(χ, χ)12+6σ2+2σ4+σ13 j(χ, χ2)2σ4+2σ14

τ(χ)27 = q∗ j(χ, χ)12+6σ2+2σ4+σ13 j(χ, χ2)2σ4+2σ14
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Tables Gauss sums as products of Jacobi sums

ord(χ) = 32

τ(χ)1−σ1 = 1

τ(χ)3−σ3 = j(χ, χ) j(χ, χ2)

τ(χ)5−σ5 = j(χ, χ)2 j(χ, χ2) j(χ2, χ3)

τ(χ)7−σ7 = j(χ, χ)2+σ3 j(χ, χ2)2 j(χ2, χ3)σ19

τ(χ)9−σ9 = j(χ, χ)3+σ3 j(χ, χ2)3+σ3

τ(χ)11−σ11 = j(χ, χ)4+σ5 j(χ, χ2)2+σ21 j(χ2, χ3)2

τ(χ)13−σ13 = j(χ, χ)4+2σ3 j(χ, χ2)4+σ19 j(χ2, χ3)σ19

τ(χ)15−σ15 = j(χ, χ)6+σ5 j(χ, χ2)3+σ5 j(χ2, χ3)3

τ(χ)17−σ17 = j(χ, χ)7+σ5+σ15 j(χ, χ2)3+σ5 j(χ2, χ3)3

τ(χ)19−σ19 = j(χ, χ)6+3σ3+σ13 j(χ, χ2)6+σ19 j(χ2, χ3)σ19

τ(χ)21−σ21 = j(χ, χ)6+3σ3+σ7 j(χ, χ2)6+σ7 j(χ2, χ3)3σ19

τ(χ)23−σ23 = j(χ, χ)7+3σ3+σ7+σ9 j(χ, χ2)7+σ3 j(χ2, χ3)2σ19

τ(χ)25−σ25 = j(χ, χ)10+2σ5 j(χ, χ2)5+σ5 j(χ2, χ3)5+σ5

τ(χ)27−σ27 = j(χ, χ)9+3σ3+σ9 j(χ, χ2)9+3σ3+σ9

τ(χ)29−σ29 = j(χ, χ)9+5σ3+σ13 j(χ, χ2)9+2σ19 j(χ2, χ3)2σ19

τ(χ)31−σ31 = j(χ, χ)13+2σ5+σ15 j(χ, χ2)6+2σ5 j(χ2, χ3)6

τ(χ)32 = q∗ j(χ, χ)13+2σ5+σ15 j(χ, χ2)6+2σ5 j(χ2, χ3)6
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[139] P. Samuel, Théorie algébrique des nombres, Paris: Hermann 1971 (2). II.4

[140] A. Schönhage, V. Strassen, Schnelle Multiplikation grosser Zahlen, Computing 7

(1971), 281–292. I.2, V.1

[141] R. Schoof, Elliptic curves over finite fields and the computation of square roots mod

p, Math. Comp. 43 (1985), 483–494. I.10

315



Bibliography Bibliography

[142] R. Schoof, Non-singular plane cubic curves over finite fields, J. Combin. Theory

(Ser. A) 46 (1987), 183–211. I.10

[143] A. Shamir, Factoring numbers in O(logn) arithmetic steps, Inform. Process. Lett.

8 (1979), 28–31. I.2
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LIST OF SYMBOLS.

This list of symbols consists of three parts. The first list contains the symbols denoting

the parameters for the primality test. The second one contains most of the Latin symbols

from the text in alphabetical order. The third list comprises the Greek symbols that are

most frequently used.

Looking up a symbol in the lists below may help clarify its meaning in two ways.

Either the summarized, informal definition in the second column may help the reader, or

helpful information should be found on one of the pages referred to in the third column.

Numbers refer to a page where the symbol is defined, where it occurs for the first

time, or where it plays an important role. For important symbols that are not used very

frequently, all occurrences have been listed.

Parameters.

The symbols listed in this part occur very frequently, some on virtually every page. The summary below

is intended to provide a superficial idea of the role they play in the algorithm, and to indicate the pages

where more precise information can be found. The introductions to Chapter III (110–113), Chapter IV

(142–144) and Chapter V (188–197) also contain an overview of the meaning of most of the parameters

below. The example run on pages 274–282 may be enlightening too.

n the odd positive integer to be tested for primality 2–285

pk a power of the small prime p, dividing t or v; if pk divides v the existence of a pk-th root of unity

must be established (a Lucas-Lehmer test), but if it divides t, also a Jacobi sum test for a character

of order pk must be performed 90, 114, 145–146, 157–180, 198–200, 209–211

q a prime dividing s and the conductor of a character in the Jacobi sum test; q − 1 is built up from

primes p dividing t 90, 114, 157–180, 198–200

s the product of primes q; it divides s0 and should be large: to complete the test we need roughly

sv >
√

n 90, 122–129, 157–180, 198–200

s0 the product of all primes q for which q − 1 is built up from primes p in t0 142, 145, 186

s1 maximal factor of s that is coprime to t 90, 93, 181

t integer built up from powers of small primes p; it divides t0 and should not be too large since the

number of trial divisions in the final stage is proportional to t 60, 90–92, 130–132

t0 integer that is chosen in advance and determines the size of s0 and hence the size of the integers n

that can be tested by (the Jacobi sum part of) the test 91, 130, 142, 145, 198–200

t1 maximal divisor of nu − 1 that is built up from primes in t only 88–91, 93, 181

u the multiplicative order 0f n modulo t; determines the total degree of the extension in which all

Jacobi sum tests could take place (in fact they will usually take place in smaller extensions, with

degrees built up from powers of primes l in u) 60, 77, 93, 110–113, 157–180

u0 multiplicative order of n modulo t0 130, 156, 186

v the product of all prime factors found in nw − 1; forms the Lucas-Lehmer contribution towards

reaching sv >
√

n (compare s above) 93, 133–139, 154, 156

w total degree of the extension in which all Lucas-Lehmer tests could be performed (in fact they will

usually take place in sub-extensions, compare u above) 93, 133–139, 154, 156, 169
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Latin symbols.

a, b coefficients in Weierstrass form of elliptic curve 43–45

a, b pair of integers with sum π representing a Jacobi sum J(χa, χb) 105–106, 149–152, 203–207

ai, bi, ci integer sequences connected with Euclidean-like algorithm 108, 182–183, 214

A ring with 1 64–69, 98

A lower bound for factor search 136–137, 159–161

B upper bound for factor search 136–137, 154, 159–161, 167–169, 198, 241–246

C field of complex numbers 148, 171

cd(a, b) machine dependent cost function for division of integers of length a and b 160, 166

cf (a) machine dependent cost function for final trial division for integers of length a 166

cm(a) machine dependent cost function for multiplication of integers of length a 166

cn(a) machine dependent cost function for modular multiplication of two integers 160, 166

c1 first cost function for conductors q 127, 158, 165

c2 second cost function for conductors q 127, 165

cond conductor of a character 65

d(x) degree function 115–125

D discriminant of an elliptic curve 42–45

D denominator of transition matrix S 147–148, 170–174, 287, 302–312

det determinant of a matrix 61

ex exponential function 8, 148, 171

e(t) maximal modulus for given exponent 89–92, 123, 130, 146, 194, 287–300

ei recurrent sequence in Lucas-Lehmer test for Mersenne numbers 27, 82

eπ,pk,i exponents in the product of Jacobi sums expressing Gauss sums 149–152, 178, 203

Ea,b elliptic curve with coefficients a and b 42–48

exp the exponent of a group 64

f minimal polynomial 73, 147, 170–171, 288, 302–312

Fω set of prime factors of nω − 1 154–156, 168

Fq finite field of q elements 43–44, 59–60

g (almost) primitive root 147, 152, 170–171, 287, 302–312

G group 64

G product of integers for which gcd with n must be determined 154, 172, 181

G(u) cost of multiplying ring elements on u coordinates 115–127

Gal Galois group 57

gcd greatest common divisor 84

Hom group of homomorphisms 64, 85–86

Ī set of orders of characters to be combined 124–129

id identity homomorphism 81

index index of a subring in a ring 73

J̄ set of conductors of characters to be combined 124–129
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P set of primes from which t is built up 145, 158, 163–167

P0 set of primes from which t0 is built up 145, 199–200

P complexity class of polynomial time problems 7

q prime conductor (see also above) 90, 114, 157–180, 198–200
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Q set of primes q from which s is built up 145, 158, 163–167

Q0 set of primes from which s0 is built up 145, 199–200
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√
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t see above 60, 90–92, 130–132

t∞ sufficiently large product of primes dividing t 84, 123

t0 see above 91, 130, 142, 145, 188, 198–201

t1 see above 88–91, 93, 181
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T (n) time needed to complete the primality test for n 159–162, 189–192
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Wh combination of Jacobi sum tests 115–127
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z unit in OL/nOL 86, 88, 90, 93, 100
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√
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αp non-p-th power in OL/nOL 78–80, 175–178

βp p-th root of unity minus 1 in OL/nOL 78–79, 175–178

γp pk-th root of unity in OL/nOL 78–79, 175–178, 181

∆ discriminant of a quadratic number field 24–32, 47

∆L discriminant of a number field L 60, 70

∆(f) discriminant of a minimal polynomial 73

ε arbitrarily small postive real number 8, 187

ζ root of unity; in particular in a cyclotomic constellation 60, 64–69, 78, 80, 111

ζm primitive m-th root of unity 38, 57

η generator of cyclic field 72–79, 147–148, 172–174

ηu generator of cyclic field of degree u 72–79, 148
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λ(n) Carmichael lambda function 19, 145, 198

µ(n) Möbius function 67
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µχ 86 88, 93

π prime in J 149–152, 203–207
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ρ0 120

σ automorphism; in particular in a cyclotomic constellation 24–31, 57, 60, 111

ς basis element 148, 172–174

τ(χ) Gauss sum 39, 66, 98–105, 149–152, 203–206
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τa(χ) Gauss sum 66–69

φ(n) Euler phi function 19, 77, 143, 196

φn Artin symbol 57, 61, 75, 78, 85, 90, 83
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ω extension degree for Lucas-Lehmer test 133–135, 139, 155–157, 169
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Ω(g(x)) complexity bound 187

Ω̄ set of extension degrees allowed for Lucas-Lehmer tests 133–135
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for factorization, 8.
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of number field, 60, 70, 72, 78, 90.

of polynomial, 24, 73.
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efficient (algorithm), 6.
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hyper–, 47.

method for factorization, 8, 194.
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over ring, 42.

primality proving, 47, 247, 262.

reduction, 43, 44.
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Weierstrass form, 43.
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Euler’s criterion, 20, 24, 34.
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factorization, 2, 111.
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factorization algorithm, 8, 12.

deterministic, 8.

difference of squares, 12.

elliptic curve method, 8, 194.

number field sieve, 9.

probabilistic, 8.

sum of squares, 14.

trial division, 10, 193.

fast Fourier transform, 6.

fast multiplication, 6, 49, 187.

Fermat number, 20.

Fermat’s theorem, 10, 18.

converse, 18–23, 34–37.

file, 267–269.

Make–, 268.

standard unit 13, 271.

standard unit 17, 271.

standard unit 19, 271–272.
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Fortran, 266.

“free” factors, 133–134.

fundamental theorem of arithmetic, 2.
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Gauss sum test, 9, 38.

Gaussian elimination, 220–222.

generalized Riemann hypotheses, 7, 8, 9.

genus of quadratic forms, 17.

Hadamard inequality, 220.

idoneal numbers, 16.

induced character, 65.

invariant field, 70.

inverse
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matrix, 201, 219.

Jacobi sum, 98, 99–105.

calculating, 152–153, 207–208.

Jacobi sum test, 90, 90–, 112, 114, 143, 177–180,

211, 245–246.

choosing, 124, 166.

combining, 100, 114–121, 132, 143, 144.

Jacobian, 47.

knapsack, 123.

Kronecker-Weber, 61, 74.

L-series, 7, 17, 37.

Lucas-Lehmer factors, 110, 133, 136.

Lucas-Lehmer test, 27, 31, 80–83, 93, 97, 111, 133,
143, 177.

combining with Jacobi sum test, 93–97, 111, 143.

Lucas pseudoprimes, 26.

Lucas sequences, 31.

Lucas’s theorem, 27.

Makefile, 268.

matching algorithm, 118.

matching characters, 119, 132.

matching problem, 117.

2-dimensional, 116.

3-dimensional, 116.

bipartite, 116.

weighted bipartite, 116.

matrix inversion, 201, 219–223.

memory, 266, 270.

Mersenne numbers, 28, 82.

Möbius function, 67.

multiplication, 116, 121, 187.

exponent, 121, 187.

fast, 6, 187.

non-deterministic polynomial time, 6.

norm, 59, 70.

in quadratic field, 24.

NP, 6.

NP-complete, 117, 121, 123.

“old” algorithm, 9, 142, 143, 259–264.

operation

arithmetic, 5.

bit, 6.

optimal (values of t), 91, 195.

optimization, 110–139.

order (of a character), 39, 65.

P, 6.

parallelizing, 282–284.

Pepin’s theorem, 20, 21, 81.

pivoting, 221–222.

Pocklington’s theorem, 22, 44, 81.

Pollard-Strassen, 8.

polynomial time (algorithm), 7.

non-deterministic, 6.

“primality” (is in NP), 7.

primality proof, 2, 49, 216, (see also certificate).

verification, 3, 49, 216, 218.

324



Index Index

primality prover, 2, 54.

primality proving, 4, 8.
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complex multiplication –, 47, 247, 259–264.

conditional, 4, 7, 9, 37.

converse of Fermat’s theorem 18–23, 34–37.

cyclotomy, 0, 95, 142–184.

deterministic, 3, 9.

difference of squares, 12.

efficient, 4.

Gauss sum, 9, 38.

idoneal numbers, 16.

Jacobi sum, 9, 90.

Lucas’s theorem, 27.

Lucas-Lehmer, 27, 31, 38, 80–83, 97, 133.

Pepin’s theorem, 20, 81.

Pocklington’s theorem, 22, 81.

probabilistic, 3, 9, 46, 47.

Proth, 21, 81.

random curve method, 45.

sum of squares, 14.

trial division, 10.

primality testing, 2, see also primality proving.

primality testing algorithm, see primality test.

prime certificate, 3, 7, 49, 216.

prime factor decomposition, 2.

prime shop, 4.

prime table, 10, 136, 145, 198, 270.

primitive

character, 65.

prime power factor, 111, 133.

set in a ring, 42.

principal character, 64, 65, 98.

probable prime, 3, 241.

probabilistic primality test, 3, 9.

probabilistic algorithm, 3.

for factorization, 8.

projective point, 43.

proper representation, 14.

Proth’s theorem, 21, 81.

pseudoprimes, 26, 34, 37.

Carmichael numbers, 19, 27, 34.

elliptic, 45.

Euler, 34, 36.

Lucas, 26, 27.

strong, 36.

to the base a, 34.

quadratic character, 73, 76–77, 91.

quadratic exclusion, 12.

quadratic field, 24.
discriminant, 24.

norm, 24.

quadratic forms, 14.
class of, 17.

discriminant, 14.

equivalent, 16, 17.
genus of, 17.

rationally equivalent, 17.
strictly equivalent, 16.

representation by, 14.

random curve method, 45.

rationally equivalent, 17.

representation by quadratic forms, 14.
essentially unique, 14.

proper, 14.
Riemann hypothesis, 7.

extended, 7.

generalized, 7, 8, 9, 37.
root of unity (finding), 79, 131, 133, 143, 174–177,

209–211.

sieve, 9, 10, 198.

Eratosthenes, 10, 198.

number field, 9.
size of an integer, 5.

source, 266–268.
modification, 269–272.

“special” characters, 96, 122, 124.

standard unit, 271–272.
strictly equivalent, 16.

strong pseudoprime, 36.

sum of squares, 14.

tensor product, 77.
trace, 71.

trial division, 3, 10, 12, 107, 132, 142, 154, 167,

181–183, 193, 212, 237, 245–246.
bounds, 11.

UNIX, 267–268.

Vandermonde determinant, 61, 62, 73, 99.

verify, 3, 49, 216, 218.

Weierstrass form, 43.

wheel methods, 10.

witness, 7, 35, 54.
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SAMENVATTING.

Primaliteit bewijzen met cyclotomie

Wanneer een positief geheel getal priem is, laat zich dat doorgaans met aan zekerheid

grenzende waarschijnlijkheid vaststellen met behulp van een samengesteldheidstest. Echte

zekerheid verkrijgt men echter pas door een bewijs voor primaliteit te geven, en daartoe

past men een primaliteitstest toe: een algoritme waarmee primaliteitsbewijzen gegenereerd

kunnen worden.

In 1981 hebben Adleman, Rumely en Pomerance een nieuwe primaliteitstest gepubli-

ceerd, waarvan de berekeningscomplexiteit weliswaar niet polynomiaal in de lengte van de

invoer is, maar die efficiënter was dan alle voorgaande methoden om primaliteit te bewij-

zen. Nadere analyse van de voorgestelde methode bracht H. Cohen en H. W. Lenstra, Jr.,

er toe theoretische verbeteringen te suggereren die later door H. Cohen en A. K. Lenstra

zijn verwerkt in een computerprogramma. De resulterende Jacobisom-test is een algemene

methode. Hiermee wordt bedoeld, dat de test niet afhankelijk is van speciale eigenschappen

van het priemgetal voor het genereren van een bewijs. De benodigde rekentijd voor het

verkrijgen van een primaliteitsbewijs is vrijwel uitsluitend afhankelijk van de orde van

grootte van het priemgetal. Dit in tegenstelling tot de speciale methoden, zoals de tests

van het Lucas-Lehmer type, die de bijzondere eigenschappen van een kleine klasse van

priemgetallen zeer efficiënt uitbuiten.

In dit proefschrift is een groot aantal verbeteringen aangebracht aan bovengenoemde

Jacobisom-test. Na het oplossen van een aantal, zowel vanuit het oogpunt van de alge-

bräısche getaltheorie als vanuit algoritmisch oogpunt, interessante problemen, werd een

aanmerkelijk verbeterde methode verkregen, die gezien mag worden als de snelste, thans

bekende, algemene primaliteitstest. Met deze methode is in de praktijk de primaliteit van

getallen van meer dan 1000 decimalen vastgesteld. Asymptotisch is de complexiteit van de

algoritme dezelfde als die van de vroegere Jacobisom-test. In het bijzonder betekent dit

dat de methode (nog steeds) niet polynomiaal is in de lengte van de invoer.

Dit proefschrift bevat zeven hoofdstukken gevolgd door een appendix. Het eerste

hoofdstuk geeft een historisch overzicht over primaliteitstests. Het tweede hoofdstuk be-

handelt de wiskundige theorie die aan de methode ten grondslag ligt. In het bijzonder wordt

bewezen dat de condities waaraan een getal moet voldoen teneinde de test te doorstaan,

primaliteit garanderen. De keuze van de parameters in de primaliteitstest bëınvloedt in
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hoge mate de tijd die nodig is om het bewijs te voltooien. In het derde hoofdstuk wordt in-

gegaan op de problemen die optreden in dit optimalisatieprobleem, en worden de gekozen

oplossingen gepresenteerd. Hoofdstuk vier bevat een gedetailleerde beschrijving van de

algoritme. Op basis van deze beschrijving is een computerprogramma gemaakt, dat in

staat is een primaliteitsbewijs te genereren. Het vijfde hoofdstuk bevat een analyse van de

complexiteit van de algoritme, alsmede enige heuristieken die in deze analyse van belang

zijn. Hoofdstuk zes geeft een overzicht van de resultaten die kunnen worden bereikt met de

methode. Het zevende hoofdstuk bestaat uit een beknopte handleiding voor de installatie

en het gebruik van het computerprogramma. De appendix bevat een drietal tabellen, die

gebruikt worden door de algoritme. Bovendien is een lijst van symbolen, een index, en een

uitgebreide bibliografie toegevoegd.
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