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To my parents



Preface

This thesis marks the end of an era. After having been a student for nearly
a decade, the time has come to move on.

While I was preparing for my last exams in August, it became clear to
me that I wanted to graduate in computer algebra under the supervision of
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Introduction

The subjects of finite projective planes and Latin squares have a lot of sim-
ilarities. The first of these similarities is the age; both are hundreds of
years old. The second is their beauty; Latin squares and finite projective
planes are relatively easy to define and comprehend, but the many ques-
tions they give rise to are often difficult to answer. Furthermore, for both
subjects, there exists a growing number of open problems, some of which
are almost as old as the subject itself. Finally, the subjects of Latin squares
and finite projective planes are strongly connected to each other as well
as to many other mathematical subjects. These subjects include the the-
ory of quasi-groups and loops, difference sets, nets, combinatorial designs,
error-correcting codes and finite fields. We will be exploring the connection
between classes of paratopic Latin squares and classes of isomorphic finite
projective planes.

In Chapter 1 we explore the subject of finite projective planes. We give
some relevant definitions and properties, and define isomorphism between
finite projective planes. Then we give a short survey of the progress made
in this field and give constructions for the finite projective planes of order
9. In the final section of Chapter 1, we state the goal of this thesis, which
is to review, understand, reproduce, generalize and perhaps even improve
Lam’s method [11] for an exhaustive search for all classes of isomorphic finite
projective planes of order 9.

Chapter 2 is on Latin squares. The important concept of transversals
is explored and equivalences are treated. An invariant for Latin squares
under paratopy is constructed and with this, a method for generating a
representative Latin square for each main class is explained.

In the third and final chapter, we reveal a beautiful correspondence be-
tween Latin squares of order n − 1 and finite projective planes of order n.
Using a backtrack program, we generate all finite projective planes of order
less than 9 by means of this correspondence.

As an encore, the fingerprint invariant for finite projective planes is given
in Appendix A. Some of the more relevant programs used and other data
can be found in the appendices as well.

1
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Chapter 1

Finite Projective Planes

Summary

We define finite projective planes and describe properties such as duality
and isomorphism. A short survey is given on related findings from the past
century and we give constructions for the four ‘distinct’ finite projective
planes of order 9. The goal of this thesis is formulated in the final section
of this chapter.

1.1 Introduction

Well over 2000 years ago, Euclid wrote his Elements, in which he attempted
to deductively organize mathematics. He axiomatized plane geometry by
five well known postulates of which four seem obvious. The fifth postulate
in its best known form (Playfair’s Axiom) states that for every line and
every point not on this line, there exists a unique line parallel to the given
line and passing through the given point. For years, people have tried to
deduce this fifth postulate from the other four, but failed. The reason they
all failed was that it cannot be deduced.

In the beginning of the nineteenth century, mathematicians realized that
consistent geometries could be created in which Euclid’s fifth postulate does
not hold. This was the birth of non-Euclidean geometry, the study of con-
sistent geometries with a set of postulates different from Euclid’s. One of
these non-Euclidean geometries has been developed by the German mathe-
matician Bernhard Riemann. In this geometry there exist no parallel lines.
We will work with planes in such a geometry, the so-called projective planes.

1.2 Finite Projective Planes

A plane can intuitively be seen as a set of points and a set of lines which
are related in some way. We will use lower-case letters for points (usually

3
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p, q, r, s, a, b, c, d) and denote the set of points by P. Lines will be denoted
by capital letters (usually L,M,N) and the set of lines will be denoted by
L. All we need now is a relation between the points and the lines. For this
we will use the incidence set I. The incidence set I will be a subset of P×L
and the pair (p, L) will be an element of I if and only if p and L are incident.
Being incident in this context means that the point p “lies on” the line L

and the line L “passes through” the point p. Furthermore, we will assume
that a line is not a point and vice versa. Thus P

⋂

L = ∅. Now a proper
definition of a plane can be given.

Definition 1 A plane Σ is a triple (P,L, I) such that P,L and I are sets,
P

⋂

L = ∅, P
⋃

L 6= ∅, and I ⊆ P × L.

We defined that a point p and a line L are incident if and only if (p, L) ∈
I, but we will more often use the phrases “p lies on L” and “L passes through
p” in this case.

Definition 2 Two or more points are collinear when they lie on a common
line. Two or more lines are concurrent when they pass through a common
point.

Definition 3 Two lines L and M are parallel when they are not concurrent.

Definition 4 If p, q, r, s are four points no three of which are collinear, then
the quadruple p, q, r, s is called a four-point.

We now have a large enough vocabulary for the definition of a projective
plane. Equivalent definitions will be omitted here, because they are of little
relevance for this thesis. We will mention only the best known alternative
definition here, which is that projective planes arise from the addition of a
special line at infinity to an affine plane, in which parallel lines exist. The
formal definition we will use is the following.

Definition 5 A projective plane π is a plane (P,L, I) such that

P1: There is a unique line passing through two given points.

P2: There is a unique point lying on two given lines.

P3: There exist four distinct points, no three of which lie on the same line
(i.e. there exists a four-point).

It can be shown that the postulates P1, P2 and P3 imply the following
redundant postulate (P4).

(P4): There exist four distinct lines, no three of which pass through the same
point.
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Notice that interchanging the words “point(s)” by “line(s)” and “lie on”
by “pass through” and “lying on” by “passing through” in the definition
of a projective plane gives exactly the same postulates (albeit in a different
order). This phenomenon is called duality .

Duality is a principle often used in mathematics and it has many ap-
plications. In this case, a consequence of duality is that the logical values
of a proper statement and its dual statement are the same. We will use it
to prove the following theorem which shows that in a projective plane, the
number of lines passing through an arbitrary point equals the number of
points lying on an arbitrary line.

In projective planes, every two points p, q lie on a unique line, which we
will denote by pq or qp.

Theorem 1 Let p and p′ be two points and let L and L′ be two lines of a
projective plane π. Then there exist bijections between the points on L and
the points on L′, between the lines through p and the lines through p′, and
between the points on L and the lines through p.

Proof. Let L and L′ be two distinct lines of a projective plane π. There
exists a point r of π not on L or L′. (For if all points of π are on L or L′,
then there are points a, b on L and points c, d on L′ such that a, b, c, d is a
four-point. But this implies that the lines ac and bd pass through a common
point not on L or L′). Now from this point r we may establish a bijection
between the points on L and the points on L′. For if p is a point on L, then
the unique line rp passes through a unique point p′ on L′. This mapping is
a bijection between all points on L and all points on L′.

Note that the second assertion of the theorem is the dual of the first
one. We know that the principle of duality holds for the class of projective
planes, so the second assertion of the theorem holds also.

Now for the third assertion let r be a point of π not on L. Then there
is a bijection between the points on L and the lines through r by definition.
This is also valid if the point is on L because of the second assertion of the
theorem. �

Note that it follows from the proof of Theorem 1 that at least three
distinct points are on each line of π and at least three distinct lines pass
through each point of π. We will prove that when there are a finite number
of points on a line of a projective plane, this number determines the number
of points on any line, the number of lines through any point and the number
of lines and points of a projective plane completely.

Definition 6 A finite projective plane is a projective plane (P,L, I) for
which P

⋃

L is finite.
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Let n ∈ {2, 3, . . .} and let L be a line of the finite projective plane π with
exactly n+1 points on it. It follows from Theorem 1 that each line of π has
also exactly n+1 points on it and each point of π lies on exactly n+1 lines.

Definition 7 For a finite projective plane π with a line L on which there
lie exactly n + 1 points, the order of the finite projective plane π is defined
as the integer n.

Theorem 2 Let π be a finite projective plane of order n. Then the total
number of points on an arbitrary line of π as well as the total number of
lines through an arbitrary point of π equals n+1. Moreover, π has a totality
of n2 + n + 1 points and n2 + n + 1 lines.

Proof. The first assertion of the theorem follows immediately from Theo-
rem 1 and the definition of order.

Let p be a point of π. Then there are exactly n + 1 lines through p and
there are exactly n points on each of these lines in addition to p. Hence π

has a totality of n(n + 1) + 1 = n2 + n + 1 points.

The dual statement gives us that π has a totality of n2 + n + 1 lines. �

Theorem 3 The following statements are equivalent for n ≥ 2:

i) π is a finite projective plane of order n.

ii) π is a plane in which:

– Every line contains n + 1 points.

– Every point lies on n + 1 lines.

– Any two distinct lines intersect in exactly one point.

– Any two distinct points lie on exactly one line.

Proof. The equivalence follows easily from the definitions and Theorem 2.
�

An alternative and very useful way to represent a finite projective plane
π is by means of an incidence matrix Aπ. This is a square (0, 1)-matrix1 of
which the rows correspond to the lines and the columns correspond to the
points of π. The entry (Aπ)ij is 1 if and only if point j is on line i. This
representation depends on a chosen numbering of the lines and points of π.
When we speak of the incidence matrix Aπ of a finite projective plane π, we
assume a fixed numbering. Further on, it will become clear that different
numberings result in isomorphic planes.

1A matrix over Z with only entries 0 and 1.
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The following theorem gives the connection between a finite projective
plane π and the incidence matrix Aπ. Here we use the word weight for the
number of 1’s in a row or a column. The inner product is the standard inner
product for row or column vectors over Q.

Theorem 4 A finite projective plane π has order n if and only if its inci-
dence matrix Aπ is a square matrix of size n2 +n+1, all columns and rows
of Aπ have weight n + 1 and the inner product of any two distinct rows or
any two distinct columns in Aπ is 1.

Proof. The proof follows easily from the definitions. �

Figure 1.1: The finite projective plane of order 2, the Fano plane.

An easy way to verify that an arbitrary square (0, 1)-matrix of size n2 +
n + 1 is an incidence matrix of a finite projective plane is given by the
following theorem. In the proof we will use Theorem 13 which will be proved
in Chapter 3.

Theorem 5 Let A be a square (0, 1)-matrix of size n2 +n+1, where n ≥ 2.
Then A is the incidence matrix of a finite projective plane of order n if and
only if AAT = nI+J where I and J are the identity matrix of size n2+n+1
and the all-ones matrix of size n2 + n + 1 respectively.

Proof. Suppose A is a square (0, 1)-matrix of size n2 + n + 1, where n ≥ 2
and A is the incidence matrix of a finite projective plane of order n. Let
1 ≤ i, j ≤ n2+n+1. Rows i and j of A have inner product 1, so (AAT )ij = 1
if i 6= j. The inner product of a row of A with itself is n+1, so (AAT )ii = n+1
for 1 ≤ i ≤ n2 + n + 1. Hence AAT = nI + J .

Suppose A is a square (0, 1)-matrix of size n2 + n + 1, where n ≥ 2 and
AAT = nI + J . From this equality we have that the inner product of any
row of A with itself is n+1 which can only mean that it contains n+1 ones.
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Also, the inner product of any two distinct rows of A is 1. By the dual of
Theorem 13 we find that each column of A contains exactly n + 1 ones and
the inner product of any two distinct columns is exactly 1. Hence A is the
incidence matrix of a finite projective plane of order n. �





















1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1





















Figure 1.2: An incidence matrix of the Fano plane.

We earlier mentioned and used the principle of duality, but have not yet
formally defined the dual of a plane. We will do this here.

Definition 8 Let Σ = (P,L, I) be a plane. Then the triple (L,P, I−1)
(where I−1 = {(L, p) : (p, L) ∈ I}) is called the dual plane of Σ. We denote
this by Σd.

The dual πd of a finite projective plane π can very easily be given if you
have an incidence matrix Aπ of the plane π. By interchanging the roles of
points and lines, we interchange the roles of the columns and rows of Aπ.
Thus the finite projective plane πd is the plane with incidence matrix AT

π .

By now, the question arises whether or not for every order n there exists
such a finite projective plane. Furthermore, if a finite projective plane does
exist for certain order, is it the only one? We will therefore need a way to
determine if two finite projective planes are ‘different’ or ‘alike’ in some sense.
For this purpose we introduce the mathematical property of isomorphism.

Definition 9 Finite projective planes π = (P,L, I) and π ′ = (P ′,L′, I ′)
are isomorphic if and only if there exist mappings f and F such that f

is a bijection between P and P ′ , F is a bijection between L and L′, and
(p, L) ∈ I if and only if (f(p), F (L)) ∈ I ′.

We indicate the fact that two planes π and π ′ are isomorphic by writing
π ∼ π′. The isomorphism is the ordered pair (f, F ). We can also formulate
an equivalent definition of isomorphism using only one map f mapping the
points of π onto the points of π′.
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Remark 1 Let π and π′ be finite projective planes. There exists a bijective
mapping f between P and P ′ preserving collinearity if and only if π and π ′

are isomorphic.

It is immediately clear that the relabeling of points and lines in a finite
projective plane correspond to row and column permutations in the inci-
dence matrix. Therefore, two finite projective planes are isomorphic when
their incidence matrices can be transformed into each other by row and
column permutations. If a finite projective plane is isomorphic to its dual
plane, it is called self-dual .

It follows that a finite projective plane is self-dual if its incidence matrix
can be transformed into a symmetric incidence matrix by row and column
permutations.

The Fano plane as given in figure 1.1 on page 7 and figure 1.2 on page 8
is self-dual, because mirroring the incidence matrix in the fourth row (which
just takes some row permutations) gives a symmetric incidence matrix. Fig-
ure 1.3 and figure 1.4 show two more self-dual finite projective planes.

Figure 1.3: The finite projective plane of order 3.

Figure 1.4: The finite projective plane of order 4.
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1.3 Survey/Overview

In 1899, David Hilbert was one of the first to coordinatize finite projective
geometries by means of vector spaces over finite fields. By means of this
coordinatization for every finite field of order q, a finite projective plane of
order q can be constructed. Due to this construction an infinite family of
finite projective planes of any prime power order is known. These are the
Desarguesian2 or so-called classical finite projective planes.

One year later, in 1900, a French amateur mathematician named Gaston
Tarry proved that there does not exist a pair of orthogonal Latin squares of
order 6. The non-existence of such a pair strengthened the conjecture, made
by Leonhard Euler in 1782, stating that there exists no pair of orthogonal
Latin squares of order n if n ≡ 2 mod 4. The importance of Tarry’s work
and Euler’s conjecture for the theory of finite projective planes will become
clear in a moment.

Using the algebraic constructions of Leonard Dickson in 1905, Oswald
Veblen and Joseph Wedderburn were the first to create non-Desarguesian
finite projective planes in 1907. Similar algebraic ideas have resulted in the
discovery of more finite projective planes over the years, among which were
the three non-Desarguesian planes of order 9. These are the left nearfield
plane, the right nearfield plane and the Hughes plane, which will be con-
structed in the following section.

In 1938, the connection between Latin squares and finite projective
planes was made. It was the Indian Raj Chandra Bose who proved that
there exists a finite projective plane of order n ≥ 2 if and only if there
exists a complete set of n − 1 mutually orthogonal Latin squares of order
n. Together with Tarry’s result, this proves the non-existence of a finite
projective plane of order 6. If Euler’s conjecture were true, Bose’s theorem
would also prove the non-existence of finite projective planes with orders
n = 10, 14, 18, 22, . . ..

In 1949, an important step was made by Richard Bruck and Herbert
Ryser. Together they showed that a finite projective plane of order n ≡
1, 2 mod 4 can only exist if n is the sum of two integer squares. This theorem
only leaves a small, but infinite set of orders we know nothing about.

Ten years later, in 1959, Bose and Sharad-Chandra S. Shrikhande dis-
proved Euler’s conjecture by finding a pair of orthogonal Latin squares of
order 22. Later that same year, Ernest Tilden Parker found a pair of or-
thogonal Latin squares of order 10 and together with Bose and Shrikhande
he proved that Euler’s conjecture was false for all n > 6.

After Clement Lam had shown in 1988 that the four finite projective
planes of order 9 are the only ones, he announced his proof of the non-

2Desarguesian planes satisfy Desargues’ Theorem. Planes satisfying this theorem con-
tain a Desargues configuration, which has 10 points and lines, and every point lies on 3
lines and on every line are 3 points.
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existence of a finite projective plane of order 10 in 1989. In both cases he
used supercomputers for his computations.

Table 1.1 gives the number of finite projective planes (up to isomor-
phisms) of small order, as far as we know them.

order relevant # of planes of order n important
n decomposition up to isomorphism contributors

2 21 1 −

3 31 1 −

4 22 1 −

5 51 1 −

6 2 mod 4 0 Bose,Tarry[16]

7 71 1 −

8 23 1 −

9 32 4 Lam-Kolesova-Thiel[11]

10 12 + 32 ≡ 2 mod 4 0 Lam-Thiel-Swiercz[10]

11 111 ≥ 1 −

12 − ≥ 0 −

13 131 ≥ 1 −

14 2 mod 4 0 Bruck-Ryser[1][14]

15 − ≥ 0 −

16 24 ≥ 22 Dempwolff-Reifart

17 171 ≥ 1 −

18 32 + 32 ≡ 2 mod 4 ≥ 0 −

19 191 ≥ 1 −

20 − ≥ 0 −

21 1 mod 4 0 Bruck-Ryser[1][14]

22 2 mod 4 0 Bruck-Ryser[1][14]

23 231 ≥ 1 −

24 − ≥ 0 −

25 52 ≥ 193 Czerwinski-Oakden

26 12 + 52 ≡ 2 mod 4 ≥ 0 −

27 33 ≥ 13 Dempwolff

28 − ≥ 0 −

29 291 ≥ 1 −

30 2 mod 4 0 Bruck-Ryser[1][14]

31 311 ≥ 1 −

Table 1.1: The number of finite projective planes of small order.
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1.4 Constructions

In this section we will give constructions for the four finite projective planes
of order 9. We will not prove that they are indeed finite projective planes,
for it is a tedious work which brings no greater understanding of the subject.
In fact, this entire section can be skipped as it is not essential for the rest
of this thesis and is given here for the sake of completeness.

The first construction gives us the Desarguesian plane and can easily be
generalized for all prime power orders.

Constructing πF9

πF9 is the Desarguesian finite projective plane of order 9. It can be con-
structed from a field with 9 elements.
We form the plane πF9 as follows:

P = {[x, y, z] : x, y, z ∈ F9 and not x = y = z = 0} where

[x, y, z] = [x′, y′, z′] ⇐⇒ ∃r ∈ F∗
9 such that x = rx′, y = ry′, z = rz′.

L = {〈a, b, c〉 : a, b, c ∈ F9 and not a = b = c = 0} where

〈a, b, c〉 = 〈a′, b′, c′〉 ⇐⇒ ∃s ∈ F∗
9 such that a = sa′, b = sb′, c = sc′.

I 3 ([x, y, z], 〈a, b, c〉) ⇐⇒ ax + by + cz = 0.

Constructing πH9

This plane πH9 is usually referred to as the “Hughes plane” of order 9.
We construct the plane πH9 as follows:

P = {ai, bi, ci, di, ei, fi, gi : i = 0, . . . , 12}

L = {Li : i = 0, . . . , 90} where :

L7i = {ai, ai+3, ai+4, ai+11, bi, ci, di, ei, fi, gi}

L7i+1 = {ai, bi+1, bi+6, bi+12, ei+4, ei+5, fi+3, fi+7, gi+8, gi+11}

L7i+2 = {ai, ci+1, ci+6, ci+12, gi+4, gi+5, ei+3, ei+7, fi+8, fi+11}

L7i+3 = {ai, di+1, di+6, di+12, fi+4, fi+5, gi+3, gi+7, ei+8, ei+11}

L7i+4 = {ai, ei+1, ei+6, ei+12, bi+4, bi+5, ci+3, ci+7, di+8, di+11}

L7i+5 = {ai, fi+1, fi+6, fi+12, di+4, di+5, bi+3, bi+7, ci+8, ci+11}

L7i+6 = {ai, gi+1, gi+6, gi+12, ci+4, ci+5, di+3, di+7, bi+8, bi+11}

I = {(p, L) : p ∈ P, L ∈ L and p ∈ L}
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Constructing πN9

The right nearfield plane πN9 is occasionally referred to as the Veblen-
Wedderburn plane of order 9 since the right nearfield (N9,+, ·) it is related
to is a Veblen-Wedderburn system. The right nearfield satisfies all field
axioms, except for the left distributivity and commutativity of the multipli-
cation. Table 1.2 gives the addition (which is the same as for F9) and the
multiplication in this right nearfield where N9 = {0, 1, 2, a, b, c, d, e, f}.

+ 0 1 2 a b c d e f · 0 1 2 a b c d e f

0 0 1 2 a b c d e f 0 0 0 0 0 0 0 0 0 0
1 1 2 0 b c a e f d 1 0 1 2 a b c d e f

2 2 0 1 c a b f d e 2 0 2 1 d f e a c b

a a b c d e f 0 1 2 a 0 a d 2 e b 1 f c

b b c a e f d 1 2 0 b 0 b f c 2 d e a 1
c c a b f d e 2 0 1 c 0 c e f a 2 b 1 d

d d e f 0 1 2 a b c d 0 d a 1 c f 2 b e

e e f d 1 2 0 b c a e 0 e c b d 1 f 2 a

f f d e 2 0 1 c a b f 0 f b e 1 a c d 2

Table 1.2: Addition and multiplication in the right nearfield.

The right nearfield plane of order 9 can now be constructed in the fol-
lowing manner:

P = {[x, y, 1] : x, y ∈ N9} ∪ {[1, x, 0] : x ∈ N9} ∪ {[0, 1, 0]}

L = {〈m, 1, k〉 : m, k ∈ N9} ∪ {〈1, 0, k〉 : k ∈ N9} ∪ {〈0, 0, 1〉}

I = {([x, y, z], 〈m,n, k〉) : xm + yn + zk = 0}

Constructing πN ′
9

The plane πN ′
9

is the left nearfield plane of order 9. The construction is the
same as for the right nearfield plane except that it is constructed over a left
nearfield in which the multiplication does not satisfy right distributivity and
commutativity.

This left nearfield is isomorphic to the dual of the right nearfield, which
is not self-dual. Therefore, dualization of the right nearfield plane is another
way of constructing a plane isomorphic to the left nearfield plane.
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1.5 Stating my Goal

In their paper “A computer search for finite projective planes of order 9” [11]
dating from 1991, Lam, Kolesova and Thiel reported on their exhaustive
search for finite projective planes of order 9. By means of a computer search
they showed that every finite projective plane of order 9 is isomorphic to
one of the four known planes of order 9. Their search started by generating
all 283, 657 non-isomorphic Latin squares of order 8. They showed that each
Latin square determines 27 columns of the incidence matrix which they first
tried to complete to 40 columns. Only 21 of these 283, 657 partial incidence
matrices could be completed to 40 columns, which gave rise to 326 matrices
of 40 columns and 91 rows. 325 of these matrices could be completed to
a 91 × 91 incidence matrix of a finite projective plane of order 9. They
compared the these planes with the four known planes and found no new
ones. Furthermore, they gave evidence for the correctness of their methods
and programs.

The goal I set myself was to review, understand, repro-

duce, generalize and perhaps even improve this method.

Actually, the paper that drew my attention to finite projective planes was
another publication by C.W.H. Lam, the celebrated article “The search for
a finite projective plane of order 10” [10]. In this paper he describes the
search for a finite projective plane of order 10, and how he proved3 after
years of heavy computing on supercomputers that such a plane does not
exist. Despite the excellent exposition, the method used in the article gives
no clear leads on how to reproduce his findings. The main reason for this
is that many computations have been done by different persons spread over
many years. Lam’s article [11] concerning the planes of order 9 did give some
leads on how to arrange a search method on the one hand, but left enough
space for my own ideas on the other. This has resulted in the re-invention
of the wheel on several occasions, but also in my own optimized program
which, in principle4, can handle every order n.

3This is not a proof in the traditional mathematical sense. It is impossible for any
human to check all the calculations. Furthermore, programming mistakes are easily made
and untraceable random computing errors are likely to occur during such long computa-
tions.

4Given enough time and computational power.



Chapter 2

Latin Squares

Summary

In this chapter we explore Latin squares, using two different representations,
and define equivalence relations between them. We define transversals and
use these to construct an invariant for Latin squares under paratopy. With
this invariant we generate a list of representative Latin squares.

2.1 Introduction

The subject of Latin squares is already very old and there are many un-
solved problems concerning them. The name Latin square dates from the
time of Euler, of whom we will tell more in one of the following sections.
The mathematical attention for Latin squares has increased a lot in the
past century, because of the realization of connections with many branches
of mathematics. Practical applications such as the formation of statistical
designs and the construction of error-correcting codes have given this atten-
tion an extra impulse. The reason for us to study them, is the remarkable
way they appear in incidence matrices of finite projective planes.

2.2 Latin Squares

Definition 10 A Latin square of order n is an n-by-n array L with the prop-
erty that each row and each column contains each of the symbols 1, 2, . . . , n
exactly once.

A Latin square is said to be a reduced Latin square when the symbols in
the first row and in the first column appear in natural order. Sometimes we
will not use the above defined square representation for Latin squares, but
work with the orthogonal array representation which is defined as the set of
n2 ordered triples (i, j, Lij) with 1 ≤ i, j ≤ n and Lij ∈ {1, . . . , n}.

15
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2 4 3 1
1 2 4 3
3 1 2 4
4 3 1 2

















1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1









{(1, 1, 2), (1, 2, 4), (1, 3, 3), (1, 4, 1), (2, 1, 1), (2, 2, 2), (2, 3, 4), (2, 4, 3),

(3, 1, 3), (3, 2, 1), (3, 3, 2), (3, 4, 4), (4, 1, 4), (4, 2, 3), (4, 3, 1), (4, 4, 2)}

Figure 2.1: A Latin square, a reduced Latin square and an orthogonal represen-
tation of the first.

It is easily seen that swapping some rows in a Latin square will again
result in a Latin square. This property also holds for swapping columns and
swapping symbols. Latin squares that can be transformed into each other by
permuting rows, permuting columns and permuting symbols are equivalent
in some sense. Let us formalize this property.

Definition 11 Two Latin squares are said to be isotopic if one can be
transformed into the other by rearranging rows, rearranging columns and
permuting symbols. These n!3 operations are called isotopies or isotopy op-
erations and this isotopic relation divides the Latin squares into equivalence
classes, called the isotopy classes.













1 2 3 4 5
2 3 5 1 4
3 5 4 2 1
4 1 2 5 3
5 4 1 3 2

























1 2 3 4 5
2 4 5 3 1
3 5 2 1 4
4 3 1 5 2
5 1 4 2 3













Figure 2.2: Two isotopic reduced Latin squares.(permute row 2 and 3, column 2
and 3, symbol 2 and 3).

Transposing is an operation which has a similar effect on Latin squares.
It will always result in a Latin square. Taking a closer look at this transpose
operation reveals us that nothing really happened to the square, except for
rows and columns changing roles. Translating this to a Latin square in
the orthogonal array representation, we see that for every triple in it, the
first and second element have been permuted. More generally, permuting the
three elements in a triple and permuting all the other triples in the same way,
yields a Latin square. These 3! operations (including the identity) merge
isotopy classes into even larger classes called main classes. These operations
are called the conjugacy operations and two squares from the same main class
are called paratopic. These operations can be denoted as a permutation of
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the symbols r,c,s which stand for rows, columns and symbols respectively.
This way, transposing the Latin square can be denoted1 in shorthand by rc.









2 4 3 1
1 2 4 3
3 1 2 4
4 3 1 2

















2 1 3 4
4 2 1 3
3 4 2 1
1 3 4 2

















2 3 4 1
1 2 3 4
3 4 1 2
4 1 2 3

















2 1 3 4
3 2 4 1
4 3 1 2
1 4 2 3

















4 1 2 3
1 2 3 4
3 4 1 2
2 3 4 1

















4 1 3 2
1 2 4 3
2 3 1 4
3 4 2 1









Figure 2.3: The identity, rc, rs, rsc, rcs, cs.

2.3 Transversals

In 1782 Euler posed the following question: “Can 36 officers be arranged in
a 6 by 6 square so that each of six regiments and each of six ranks appear
in each row and column exactly once?”2. We can translate his question into
the question whether or not two Latin squares L and L′ of order 6 exist,
with the property that the set of n2 ordered pairs (Lij, L

′
ij) are all different.

Two Latin squares of equal order with this property are called orthogonal
(mates) and the pair is called a Graeco-Latin square 3. A set of two or more
Latin squares which are pairwise orthogonal is known as a set of mutually
orthogonal Latin squares, or MOLS for short.

This theory will lead us to the definition of a (partial) transversal. We
consider the n locations or cells of a Latin square of order n which are filled
with a fixed symbol, say k. We know from the definition of a Latin square
that k occurs in each row and each column exactly once. A Latin square
orthogonal to this one will need to have n different symbols in each of these
cells. Such a “path” through a Latin square which visits each row, each
column and each symbol exactly once, is called a transversal.

Definition 12 A transversal of a Latin square of order n is a set of n or-
dered triples such that in each position of the triple the numbers in {1 . . . n}
occur exactly once.

1rsc means that rows become symbols, symbols become columns and columns become
rows (read from left to right). In this notation rc=cr and rsc=scr=crs etc.

2No. Tarry [16]. See also page 10
3Euler denoted the 6 ranks by the Greek letters α, β, γ, δ, ε, ζ and the 6 regiments by

the Latin letters a, b, c, d, e, f .
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1 2 3 4 5

2 3 5 1 4

3 5 4 2 1

4 1 2 5 3

5 4 1 3 2















t1 = {(1, 1, 1), (2, 2, 3), (3, 3, 4), (4, 4, 5), (5, 5, 2)}

t2 = {(1, 2, 2), (2, 4, 1), (3, 3, 4), (4, 5, 3), (5, 1, 5)}

t3 = {(1, 5, 5), (2, 2, 3), (3, 4, 2), (4, 1, 4), (5, 3, 1)}

Figure 2.4: A Latin square with 15 transversals of which 3 are given.

It is immediately obvious from the remarks at the beginning of this
section that a Latin square has an orthogonal mate if and only if it has n

disjoint transversals. Furthermore, we shall see that a set of MOLS of order
n can contain at most n − 1 Latin squares. Such a set of n − 1 MOLS of
order n is called complete.

Theorem 6 Let L1, L2, . . . , Lm be a set of m mutually orthogonal Latin
squares of order n ≥ 3. Then

m ≤ n − 1.

Proof. Let L1, L2, . . . , Lm be a set of m orthogonal Latin squares of order
n ≥ 3. We begin by permuting the symbols of each of the Latin squares
so that the first row of each of the squares is in natural order. This does
not destroy the orthogonality of the set. Now consider the m symbols that
are in the (2, 1) position of the Latin squares. These m symbols must be
distinct, for otherwise there are at least two squares with the same symbol,
say k, in position (2, 1) but this symbol is also in position (1, k) for both
of the squares, which contradicts the orthogonality of the set. Nor can this
symbol be 1, because for each of the squares there is already a 1 in the first
column. Hence m ≤ n − 1. �

At this point we will give the first connection between finite projective
planes and Latin squares. This connection is not the one we will be using
later on, and is well known. A proof of the following theorem can be found
in [5][14][7].

Theorem 7 There exists a finite projective plane of order n if and only if
there exists a complete set of n − 1 mutually orthogonal Latin squares of
order n.
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For now, we will give orthogonality a rest and return to transversals. We
will define a variant on transversals, the k-s-transversal.

Definition 13 Let 0 ≤ k < n. A k-s-transversal of a Latin square of order
n is a set of n ordered triples such that in the first (r) and second (c)
position of the triple the numbers in {1 . . . n} occur exactly once. In the
third (s) position, exactly n − k distinct symbols are required.

Again some examples to clarify this definition:











1 2 3 4

2 4 1 3

3 1 4 2

4 3 2 1





















1 2 3 4

2 4 1 3

3 1 4 2

4 3 2 1





















1 2 3 4

2 4 1 3

3 1 4 2

4 3 2 1











Figure 2.5: Two 1-s-transversals, two 2-s-transversals and two 3-s-transversals.

Notice that the Latin square in figure 2.5 has no 0-s-transversals, which
are the ordinary transversals. Some questions that come to mind are: How
many transversals does a Latin square have? Do paratopic Latin squares
have the same number of transversals?

The following theorem shows that the answer to the last question is
positive for the ordinary (0-s-)transversals.

Theorem 8 Latin squares in the same main class have the same number
of transversals.

Proof. Let L and L′ be two paratopic Latin squares of order n. Assume
that L has m transversals, which we defined as a set of n ordered triples.
Recall that by definition the numbers 1, . . . , n appear exactly once in each of
the three positions. The isotopy operations permute the numbers in each of
the three positions amongst themselves. Hence the resulting set of triples is
also a transversal. The 6 conjugacy operations permute the three positions
for each triple in the same way. This also results in a transversal, so the
paratopic operations transform each transversal of L into a transversal of
L′. Thus paratopic Latin squares have the same number of transversals. �

Theorem 8 shows us that the paratopic operations do not change the
number of transversals of a Latin square. The number of transversals of
Latin squares is said to be invariant under the paratopic operations. Let us
give a formal definition of invariance in this context.
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Definition 14 Consider the collection of Latin squares L with an equiva-
lence relation r on it. A map V on L is said to be invariant under r if for
all L,L′ ∈ L the following holds: if LrL′, then V (L) = V (L′).

It is easily seen that the number of k-s-transversals is not invariant under
the paratopic operations if k > 0. In the following section we describe
a way of creating an invariant under the paratopic operations out of k-s-
transversals. The purpose of all this is to be able to distinguish the 283657
main classes.

2.4 Constructing an Invariant

Suppose someone gives you two Latin squares of order n and asks if they
belong to the same isotopy class. The first thing that comes to mind is
to start doing row, column and symbol permutations and see if you can
transform one into the other. Obviously, this can be a lot of work, especially
for large n.

If you were asked if they are from the same main class, you would have
had an even bigger problem, because of the 6 conjugacy operations.

Further on in this thesis, we will need one Latin square from every main
class. To generate such a list of representatives, we will need a way of rec-
ognizing paratopic Latin squares. For this reason, we will return to the
transversals and build sufficiently strong invariants out of them. We will
use the k-s-transversals, which include the ordinary transversals for k = 0.

Consider a Latin square L with m k-s-transversals. These k-s-transversals
can be seen as monomial matrices, a generalization of permutation matri-
ces where the non-zero entries can differ from 1. When we throw away the
symbol information, this gives us m permutation matrices Pi. Consider the
multiset4 of entries of M =

∑m
i=1 Pi. The sum of permutation matrices M

tells us for each cell of L, in how many k-s-transversals it occurs.















1 2 3 4 5

2 4 1 5 3

3 5 4 2 1

4 1 5 3 2

5 3 2 1 4



























1 0 0 1 1
1 0 1 1 0
0 0 1 1 1
1 0 1 0 1
0 3 0 0 0













{∗012, 112, 3∗}

Figure 2.6: A Latin square L with three 0-s-transversals, its 0-s-matrix M0(L)
and M(M0(L)).

4Example: The multiset of [37, 0, 4, 37] is {∗01, 41, 372∗}
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This multiset is obviously invariant under isotopy, but not yet under
conjugacy operations. We see that it is invariant under 2 of these conjugacy
operations, namely under the identity and under the transposing of the
square rc. We can include the other 4 by constructing multisets of the
remaining conjugates of L in the same manner and considering a set of
these 5 multisets. This number can even be further reduced to a set of 3
multisets when we realize that again rc does not change the multiset and
that all conjugacy operations can be expressed as products of rc, rs and
cs. Let us formalize this.

Definition 15 Let n ≥ 1 and m ≥ 0 and 0 ≤ k < n. Let L be a Latin
square of order n with m k-s-transversals t1, . . . , tm . Let Pl be the square
permutation matrix of order n with (Pl)ij = 1 if and only if (i, j, •) ∈ tl, for
1 ≤ i, j ≤ n and 1 ≤ l ≤ m. We define the k-s-matrix of L as:

Mk(L) =

{ ∑m
l=1 Pl m > 0
0 · In m = 0

From now on we will use the notation Lrc for the transpose of L, and in
the same way use Lrs, Lcs, Lrcs, Lrsc. Furthermore, we will use the notation
M(M) for the multiset of entries of the matrix M .

Definition 16 Let L be a Latin square of order n and 0 ≤ k < n. We define
the k-s-structure of L , notation Sk(L), as the set of multisets of entries of
Mk(L),Mk(L

rs) and Mk(L
cs).

So
Sk(L) = {M(Mk(L)) , M(Mk(Lrs)) , M(Mk(L

cs))}.

Remark 2 If L is a Latin square of order n then:

S0(L) is a set containing a single multiset.

Sn−1(L) = {{∗1n2
∗}}.

Lemma 1 The k-s-structure of a Latin square is invariant under isotopy.

Proof. Let n > 0 and 0 ≤ k < n. Let L be a Latin square of order n and
Sk(L) its k-s-structure. Consider the cell of L with position (i, j), where
1 ≤ i, j ≤ n. Suppose this cell occurs in exactly m k-s-transversals of L,
where m ≥ 0. Row, column and symbol permutations relocate this cell
in the Latin square, but do not change the fact that it occurs in m k-s-
transversals. This holds for every Latin square, in particular for Lrs and
Lcs.

We have that Mk(L),Mk(Lrs) and Mk(L
cs) may change under isotopy,

but their multisets will not. Thus Sk(L) is invariant under isotopy. �
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Lemma 2 Let n > 0 and 0 ≤ k < n. For every Latin square L of order n

we have that M(Mk(L
rc)) = M(Mk(L)).

Proof. Let L be a Latin square of order n and 0 ≤ k < n. Notice that
transposing L also permutes the rows and columns in its k-s-transversals.
Therefore, Mk(L

rc) = (Mk(L))T . Now, it is clear that M(Mk(L
rc)) =

M((Mk(L))T ) = M(Mk(L)). �

Lemma 3 For a Latin square, the following equalities hold:

i) L = (Lrs)rs = (Lrc)rc = (Lcs)cs = (Lrsc)rcs = (Lrcs)rsc

ii) Lrs = (Lrsc)rc = (Lrcs)cs = (Lcs)rsc = (Lrc)rcs

iii) Lrc = (Lrcs)rs = (Lrsc)cs = (Lrs)rsc = (Lcs)rcs

iv) Lcs = (Lrsc)rs = (Lrcs)rc = (Lrc)rsc = (Lrs)rcs

v) Lrsc = (Lcs)rs = (Lrs)rc = (Lrc)cs = (Lrcs)rcs

vi) Lrcs = (Lrc)rs = (Lcs)rc = (Lrs)cs = (Lrsc)rsc

Proof. The proof of this lemma is a straightforward but tedious check of
identities between permutations of three elements. �

Lemma 4 The k-s-structure of a Latin square is invariant under conjugacy.

Proof. Let n > 0 and 0 ≤ k < n. Let L be a Latin square of order n and
Sk(L) its k-s-structure. Let us consider the k-s-structure of Lrcs:

Sk(L
rcs) = {M(Mk(Lrcs)) , M(Mk((Lrcs)rs)) , M(Mk((L

rcs)cs))}
lem. 3

= {M(Mk((Lcs)rc)) , M(Mk(Lrc)) , M(Mk(L
rs))}

lem. 2
= {M(Mk(Lcs)) , M(Mk(L)) , M(Mk(L

rs))}

= Sk(L)

We see that the k-s-structure of Lrcs is the same as the k-s-structure of
L. The other five cases follow from similar arguments. Hence Sk(L

rcs) =
Sk(L

rsc) = Sk(L
sc) = Sk(L

rc) = Sk(L
rs) = Sk(L). Thus the k-s-structure

of a Latin square is invariant under conjugacy. �

Theorem 9 The k-s-structure is an invariant for Latin squares under paratopy.

Proof. This follows directly from Lemma 1 and Lemma 4. �
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L =

2

6

6

6

6

6

6

6

4

1 2 3 4 5 6 7
2 3 1 7 4 5 6
3 1 6 5 7 4 2
4 6 2 1 3 7 5
5 7 4 2 6 3 1
6 5 7 3 1 2 4
7 4 5 6 2 1 3

3

7

7

7

7

7

7

7

5

S0(L) = {{∗02 , 14, 210, 317, 48, 52, 65, 7∗}}

S1(L) = {{∗55, 572, 58, 59, 612, 62, 633 , 64, 658, 674 , 682, 698 , 70, 712, 736 , 753, 76, 772∗},

{∗55, 57, 58, 59, 61, 623, 633, 643 , 65, 665, 675 , 683, 696 , 702, 712 , 723, 733, 752, 76, 77, 79∗},

{∗562 , 57, 58, 592, 61, 62, 633 , 642, 653 , 662, 677, 684, 693, 702, 712, 724, 733, 742, 75, 76, 77, 79∗}}

Figure 2.7: A Latin square of order 7 and its 0-s-structure and 1-s-structure.

2.5 Generating Representatives

In the previous section we constructed an invariant for Latin squares un-
der paratopy. Here, we will use this k-s-structure for generating our own
list of representative Latin squares. We start by noticing that every main
class contains a Latin square in reduced form. Our approach for generating
representatives will be by generating these reduced Latin squares and using
our k-s-structure for distinction between main classes. A big problem with
this approach is the large number of reduced Latin squares, as can be seen
in table 2.1.

n red. Latin Sq. main classes S0(L) (S0(L),S1(L)) (S0(L),S1(L),S2(L))

1 1 1 1 - -
2 1 1 1 1 -
3 1 1 1 1 1
4 4 2 2 2 2
5 56 2 2 2 2
6 9408 12 6 12 12
7 16942080 147 147 147 147
8 535281401856 283657 283503 283636 283657

Table 2.1: Discriminatory abilities of the k-s-structure.

The program I wrote for the generation of all reduced Latin squares is
a backtrack program. It completes the first incomplete row from the top
and then starts on the next one. During this completion, it will ensure
that the first column always is in natural order. The input when searching
for all reduced Latin squares of order 8 is (8,[[1,2,3,4,5,6,7,8]]), with
in the first position the order and in second the square known so far. All
Latin squares with reduced first column would be given when the input
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was (8,[[]]). A way of reducing the search for our representatives is to
decrease the number of Latin squares we need to search through. Using
the isotopic operations, we can narrow down the number of possible second
rows (beginning with a 2) to 13 for Latin squares of order 8. These 13 cases
start deeper in the search tree and give more restrictions, therefore we gain
a lot. Each of these cases yield approximately 250 million Latin squares
and therefore we ‘only’ have to search in 3.25 billion Latin squares instead
of 535 billion reduced Latin squares. Using our k-s-structures and the fact
that the number of main classes are known for small order, we can generate
a list of representative Latin squares. Appendix C gives such lists for Latin
squares up to order 7 as generated by Brendan McKay.



Chapter 3

Exhaustive Searching for
Planes

Summary

A connection between the incidence matrix of a finite projective plane of
order n and Latin squares of order n − 1 is explored. We show how non-
paratopic Latin squares can be used when searching an incidence matrix of
a finite projective plane. The program is explained and results are given.

3.1 Introduction

Latin squares and finite projective planes are strongly related to each other.
We saw in Theorem 7 the well-known connection between a complete set of
mutually orthogonal Latin squares of order n and a finite projective plane
of the same order. Searching for such sets is very time-consuming, partly
because of the fact that the number of Latin squares grows extremely fast
when increasing the order. Fortunately there is also a less well known tie
between Latin squares of order n− 1 and finite projective planes of order n

for us to explore and exploit.

3.2 The Partial Incidence Matrix

In section 1.2 we showed how a finite projective plane π can be represented
by an incidence matrix Aπ. We will now show that this incidence matrix can
be transformed into normalized form Nπ by permuting rows and permuting
columns. Such permutations yield a renaming of lines and points in the
plane π, which results in an isomorphic plane.

Consider a finite projective plane π of order n and its incidence matrix
Aπ. Recall that every row and every column has length n2 +n+1, contains

25
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n+1 ones, and every two rows and every two columns have exactly one 1 in
the same column and row respectively. We can permute rows and columns

in such a way, that the 3× 3 sub-matrix in the top left corner is
( 0 1 1

1 1 0
1 0 1

)

. By

permuting all but the first three columns and all but the first three rows,
we can obtain the following form:

n n 2n 2n 3n n2+
1 2 3 4 +2 +3 +1 +2 3n +1 . . . n + 1

1 0 1 1 1 . . . 1
2 1 1 0 1 . . . 1 0
3 1 0 1 1 . . . 1

4 1
... ? ? ? ?

n+2 1

n+3 1
... ? ? ? ?

2n+1 1

2n+2 1
... ? ? ? ?

3n 1

3n+1

0 ? ? ? ?

4n-1
4n

.

.

.

... ? ? ? ?

n2 + 2

n2 + 3

0 ? ? ? ?

n2 + n + 1

Figure 3.1: Normalizing the partial incidence matrix.

In the same manner, by observing incidences and weights, we can fix
even more entries of this matrix. For instance, rows 4 to n + 2 are incident
with rows 2 and 3 in the first column. Therefore, these rows can have only
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zeros in columns n+3 to 3n, because otherwise they would have more than
one 1 in the same column as row 2 or 3. In the related plane this would
mean that two lines intersect in more than one point, which is not allowed.
On the other hand, these lines have not yet intersected with line 1 and the
only place for them to do so is in columns 4 to n + 2. Continuing this
way, we can bring the incidence matrix in the following form only using row
permutations and column permutations.

n n 2n 2n 3n n2+
1 2 3 4 +2 +3 +1 +2 3n +1 . . . n + 1

1 0 1 1 1 . . . 1
2 1 1 0 1 . . . 1 0
3 1 0 1 1 . . . 1

4 1 1
...

. . . 0 0 ?

n+2 1 1

n+3 1 1
... 0 0

. . . ?

2n+1 1 1

2n+2 1 1
... 0

. . . 0 ?

3n 1 1

3n+1 1 1

0
...

. . . B1 ?

4n-1 1 1

4n

.

.

.

...
...

...
... ?

n2 + 2

n2 + 3 1 1

0
...

. . . Bn−1 ?

n2 + n + 1 1 1

Figure 3.2: A partial incidence matrix in normal form.
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We now see that we can bring each incidence matrix of a finite projective
plane of order n into this normalized form. In this normalized form, the
columns 1 to 3n are completely known, except for the n − 1 sub-matrices
Bi. But we can deduce some information about these n− 1 square matrices
of size n − 1.

Consider one of these sub-matrices, say Bi. Each of its rows must inter-
sect row 3 once, so each row of Bi contains exactly one 1. Likewise, each
of the columns 2n + 2 to 3n must intersect once with column 3 + i, so each
column of Bi contains exactly one 1. Hence Bi is a permutation matrix.
Furthermore, we can show that adding these n − 1 permutation matrices
results in an all-ones matrix.

Consider the k-th column in the range 2n + 2 to 3n. The intersections
with the columns n+3 to 2n+1 gives us that in all Bi k-th columns must be
distinct. This argument holds for all columns 2n + 2 to 3n. Thus, the Bi’s
are n − 1 square permutation matrices of size n − 1 which, when summed,
form the all-ones matrix Jn−1.

In the next section we will see that the sequence of these sub-matrices
can be identified with a Latin square of order n − 1 and vice versa.

3.3 Paratopic Squares vs. Isomorphic Planes

There are several ways to associate the sequence B1, . . . , Bn−1 with a Latin
square. One obvious way, which we will not be using, is defining the Latin
square L as 1 ·B1 +2 ·B2 + · · ·+(n− 1) ·Bn−1. The correspondence we will
be using can be given as follows:

(Bi)kj = 1 ⇐⇒ (L)ij = k.

Thus, there is a 1 in row k, column j of Bi if and only if there is a k in row
i and column j of the Latin square.
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Figure 3.3: An example of how the sub-matrices Bi of order 3 relate to a Latin
square of order 3.
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We now have that every finite projective plane π of order n can be
translated into an incidence matrix Aπ which can be normalized into Nπ

which represents a plane isomorphic to π. This normalized incidence matrix
contains n − 1 permutation matrices which can be interpreted as a Latin
square of order n−1. Trying to reverse this chain gives us a way to generate
all projective planes of a certain order.

Suppose we know a normalized incidence matrix only up to column 3n
and do not know the n−1 permutation matrices. If we fill this gap with the
permutation matrices belonging to an arbitrary Latin square of order n− 1,
this gives us a partial incidence matrix which possibly can be extended to a
complete incidence matrix. Trying all Latin squares of order n− 1 will give
us all possible normalized incidence matrices and thus, up to isomorphisms,
all finite projective planes of order n.

Because of the large number of Latin squares, trying all of them out
would be too hard for high orders. We will show now that paratopic Latin
squares will give isomorphic finite projective planes. Therefore we only have
to try one Latin square from each main class, a so-called representative.
This reduces our search enormously.

Theorem 10 Partial incidence matrices from isotopic Latin squares can be
transformed into each other by row permutations and column permutations.
Therefore, if a Latin square gives rise to a complete incidence matrix of a fi-
nite projective plane, an isotopic Latin square will give rise to an isomorphic
plane.

Proof. Let L1 and L2 be two isotopic Latin squares of order n− 1, and N L1

and NL2 the partial incidence matrices belonging to these squares. L1 can
be transformed into L2 by permuting rows, columns and symbols. Permut-
ing rows in L2 means permuting blocks Bi in NL2 , which can be achieved
by permuting related row blocks. Re-transforming the partial matrix in its
normal form without changing the blocks Bi can now be done by permuting
columns in the range 4 to n+2 and rows 4 to n+2. Permuting columns in the
Latin square results in permutations of columns in the blocks Bi. These can
be achieved by permuting columns in the partial incidence matrix. Restor-
ing the normal form can be done by permutations in the rows 4 to n + 2.
Restoring normality after symbol permutations can be done by permuting
columns in the range n + 3 to 2n + 1 and rows 2n + 2 to 3n. All operations
used to bring back the partial incidence matrix into its normal form are row
permutations or column permutations. Therefore, if N L1 can be completed,
NL2 can be completed to an isomorphic finite projective plane. �
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Theorem 11 Partial incidence matrices from paratopic Latin squares can
be transformed into each other by row permutations and column permuta-
tions. Therefore, if a Latin square gives rise to a complete incidence matrix
of a finite projective plane, an isotopic Latin square will give rise to an
isomorphic plane.

Proof. Let L1 and L2 be two paratopic Latin squares of order n − 1, and
NL1 and NL2 the partial incidence matrices belonging to these squares. In
the partial incidence matrix, permuting columns 1 and 3 translates to the
Latin square as rows and symbols changing roles, rs. Consider a partial
incidence matrix with columns 1 and 3 swapped. To restore the normal
form, we subsequently permute rows 1 and 2, column blocks 4 to n + 2 and
n+3 to 2n+1, row blocks 4 to n+2 and 2n+2 to 3n. Finally, we permute
rows 3n + 1 to n2 + n + 1 to obtain the normal form. When doing this
we notice that every k-th row of the i-th permutation block becomes the
i-th row of the k-th block. Hence (Bi)kj −→ (Bk)ij , which translates to the
Latin squares as (L)ij = k −→ (L)kj = i. This is rs. The other cases can
be shown in a similar manner. �

3.4 Backtracking

Summarizing the previous sections, we see that every Latin square can be
embedded in a partial incidence matrix, which can possibly be completed to
an incidence matrix belonging to a finite projective plane. Furthermore, we
proved that Latin squares from the same main class yield, if any, isomorphic
finite projective planes.

The idea for the exhaustive generation of finite projective planes is as
follows. Take one Latin square from each main class and embed it in a
partial incidence matrix. Try to complete this incidence matrix and if this
yields a complete incidence matrix, check for isomorphism with known finite
projective planes of that order.

Below, we first describe the basic structure of our program and then we
take a look at each stage in greater detail.

1. Generate or recall a list of possible ‘append-able’ columns to the (un-
embedded) partial incidence matrix of order n.

2. Get a Latin square of order n− 1 from a list of main class representa-
tives.

3. Prune the generated list with the extra restrictions given by the em-
bedded Latin square.

4. Generate a so-called compatibility matrix H.
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5. Use backtracking to complete the partial incidence matrix by append-
ing possible columns.

6. If any complete incidence matrices are found, check for isomorphism
with the known planes of order n.

1. Generating possible columns.

Once we have fixed the plane order n, we know exactly what the partial
incidence matrix looks like, except for the n − 1 blocks in which we will
embed our Latin squares.

Based on this partial incidence matrix, we can deduce some restrictions
on the columns we want to try to append. We already know that such a
column must contain exactly n + 1 ones. The following restrictions can be
found also: In the range 1 to 3 there can only be zeros, in the range 4 to n+2
there is exactly one 1 (because of incidence with the first column), say in
the i-th position of this range. Likewise, there is exactly one 1 in the range
n + 3 to 2n + 1, say in the j-th position of this range, and exactly one 1 in
the range 2n + 2 to 3n, say in the k-th position of this range. Furthermore,
the range belonging to the i-th block cannot contain a 1, neither can each
k-th position in the block ranges. All these restrictions reduce the number
of possible rows from the total number of rows with n + 1 ones, which is
(

n2+n+1
n+1

)

, to (n − 1)3 · (n − 2)! possible rows.
Because of the small number of non-zeros in these rows, we used a dif-

ferent way to store and represent them. We translated each possible column
into an element of {0, 1, . . . , n− 1}n+2 in the following way. Consider a col-
umn without its first three zeros and divide it in (n−1)-blocks. These n+2
blocks relate to the n + 2 positions of the alternative representation, which
we will call a reduced column. This position contains a zero if the related
block contains only zeros, and otherwise it contains the row number of the
one in that block. A small example for n = 4 is given below.

(0, 0, 0; 0, 1, 0; 1, 0, 0; 1, 0, 0; 0, 1, 0; 0, 0, 0; 0, 0, 1)T = [2, 1, 1, 2, 0, 3]T

In theory, generating these possible columns only needs to be done once
per order. In practice, reading in these 2580480 columns for n = 9 takes
considerably more time than generating them, which takes under 5 minutes.

2. Choosing a representative square.

In Section 2.5 we explained a method of generating a list of Latin squares,
each of which represents a main class. This was done by using invari-
ants. This phase of the program is nothing more than reading the first
non-processed Latin square from this list.
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3. Pruning the list of possible columns.

We now can translate the chosen Latin square into the permutation ma-
trices Bi, and deduce some more restrictions on the possible columns. For
example, a 1 in the (1, 1) position of B1, results in rejection of reduced
columns with a one in the second and fourth position. Maximal usage of
such restrictions yields us a relatively small set of possible columns. For
n = 9 this number varies from 3000 to 4500. The set of columns is sorted
lexicographically for convenient usage later on.

4. Creating the compatibility matrix.

The compatibility matrix H is a (0, 1)-matrix in upper triangle form. Its
size equals the number of possible columns found in stage 3. For j > i,
there is a 1 in position (i, j) of the matrix H if and only if the i-th and j-th
column from the sorted set have inner product 1. Because of this matrix,
we do not have to calculate any inner products during the backtrack any
more, but merely a lookup in our compatibility matrix.

5. Backtracking for a complete incidence matrix.

Backtracking can be a really time-consuming process. The most difficult
part is finding a balance in reducing the number of nodes by adding tests
on the one hand, and reducing the time spent in a node by decreasing the
number of tests on the other. In our case, we do not have to worry about
this, because of the following theorem.

Theorem 12 Let n ∈ N>0. If N is a (0, 1)-matrix with n2 +n+1 rows and
at least n + 2 columns, with the property that each column contains n + 1
ones and any two distinct columns have inner product 1, then

1. Each row contains n + 1 ones at most.

2. The inner product of any two distinct rows is at most 1.

Proof. 1. Suppose there exists a row which contains at least than n + 2
ones. Consider n + 2 columns K1,K2, . . . ,Kn+2 that contain these ones.
Each of these columns has n remaining ones, which can be located in any
of the remaining n2 + n positions. We notice that there are n(n + 2) ones
in n2 + n possible positions. Because of the pigeonhole principle are there
at least two ones in the same row. But we already had a row where these
two columns both had ones. Contradiction. Therefore, each row contains at
most n + 1 ones.
2. Suppose there exist two distinct rows with inner product exceeding 1.
Now, there must be two distinct columns with twice a one in the same row.
Contradiction. We see that the inner product of any two distinct rows is at
most 1. �



3.4. BACKTRACKING 33

We see now that we can append any column, as long as it has weight
n + 1 and inner product 1 with all columns of the partial incidence matrix.
The set of reduced columns we created earlier has these properties. This
means we can append the first column from this set, then append the first
column from this set which has inner product 1 with it, then append the first
column from this set which has inner product 1 with both of them, and so on.
Checking the columns for their inner products is done by means of a search
in the compatibility matrix H. There are two possible outcomes when using
this method, the first being completion of the incidence matrix to n2 +n+1
columns, and the second is exhaustion of the set of possible columns which
fulfill the increasing number of restrictions. In both these cases we go back
a step and try the next possible column, the actual backtracking. We do not
really have to continue until the set of columns is completely empty, but can
stop when there are fewer possible columns left than columns are needed to
complete the incidence matrix. Finally, when a complete incidence matrix
has been found, we need to be sure that it has all the properties needed for
a finite projective plane.

Theorem 13 Let n ∈ N>0. If N is a square (0, 1)-matrix of size n2 +n+1
with the property that each column contains n+1 ones and any two distinct
columns have inner product 1, then

1. Each row contains exactly n + 1 ones.

2. The inner product of any two distinct rows is exactly 1.

Proof. 1. Suppose there exists a row, say i, which contains k < n + 1 ones.
There are (n2 + n + 1) columns with each n + 1 ones, so there are a total of
(n + 1)(n2 + n + 1) ones in the matrix. The rows which are not i together
have a total of (n + 1)(n2 + n + 1) − k ones. These ones are divided over
n2 + n rows. By applying the pigeonhole principle we see that there must

be a row which contains d (n+1)(n2+n+1)−k

n2+n
e = d(n + 1) + (n+1−k)

n2+n
e > n + 1

ones. This contradicts Theorem 12, so there exists no row with less than
n + 1 ones. From Theorem 12 we know that there exists no row with more
than n + 1 ones either. Therefore, every row contains exactly n + 1 ones.
2. Suppose there exist two rows, say i and j, with inner product 0. Let
k1, . . . , kn+1 be the n +1 columns containing the ones of row i. These n+ 1
columns each have n remaining ones, which gives a total of n(n + 1) ones.
These ones can be in arbitrary rows, but not in row i and j. This leaves
us with n2 + n − 1 rows. Applying the pigeonhole principle once more, we
see that there must be two columns from k1, . . . , kn+1 with ones in the same
row. But there already were two ones in row i, which gives a contradiction.
Therefore there can not exist two rows with inner product 0. Together with
Theorem 12 we now see that the inner product of any two distinct rows is
exactly 1. �
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Because of Theorem 13, we know that if our program returns a com-
pleted matrix, then it must be an incidence matrix of a finite projective
plane. The only thing we still need to know is which class of isomorphic
finite projective planes it belongs to.

6. Isomorphism testing.

The final stage in the program is to test the finite projective planes we
found, against known finite projective planes of that order for isomorphism.
This is a feature in Magma which I used. A different way would be by
means of the fingerprint-invariant which is explained in Appendix A. The
problem with using this invariant is that it will possibly not distinguish two
non-isomorphic planes with order n ≥ 11.

3.5 Results

In this section we will first analyze the results of our computer programs.
Afterwards, we will compare the overall outcome of this thesis with the goal
stated in Section 1.5. We also give some suggestions for further research in
this field.

Computational Results

The Latin squares of order 2 have one main class. It takes approximately
0.020 seconds to run the program as described in Section 3.4 and one com-
plete incidence matrix is found. Isomorphism testing shows that it is iso-
morphic to the Desarguesian finite projective plane of order 3. See table 3.1.

Latin Sq. of order 2 Latin Sq. of order 3
sq. # poss. # gen. sq. # poss. # gen.
nr. col. planes nr. col. planes
1 4 1 1 9 1

Table 3.1: Information on the search with Latin squares of order 2 and 3.

The Latin squares of order 3 have one main class. It takes approximately
0.030 seconds to run the program and one complete incidence matrix is
found. It is isomorphic to the Desarguesian finite projective plane of order
4. See table 3.1.

The Latin squares of order 4 have two main classes. It takes approx-
imately 0.050 seconds to run the program for a single representative and
for one class (number 2), two complete incidence matrices are found. Both
are isomorphic to the Desarguesian finite projective plane of order 5. See
table 3.2.
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Latin Sq. of order 4 Latin Sq. of order 5
sq. # poss. # gen. sq. # poss. # gen.
nr. col. planes nr. col. planes
1 32 0 1 75 0
2 32 2 2 79 0

Table 3.2: Information on the search with Latin squares of order 4 and 5.

The Latin squares of order 5 have two main classes. It takes approx-
imately 0.230 seconds to run the program for a single representative. No
complete incidence matrices are found. We see again that there are no finite
projective planes of order 6. See table 3.2.

The Latin squares of order 6 have 12 main classes. It takes approxi-
mately 6 seconds (depends on the number of possible columns) to run the
program for a single representative and for one class (number 4), two com-
plete incidence matrices are found. Both are isomorphic to the Desarguesian
finite projective plane of order 7. See table 3.3.

Latin Sq. of order 6

sq. # poss. # gen.
nr. col. planes

1 248 0
2 216 0
3 324 0
4 288 2
5 264 0
6 264 0
7 288 0
8 296 0
9 308 0
10 304 0
11 280 0
12 288 0

Table 3.3: Information on the search with Latin squares of order 6.

The Latin squares of order 7 have 147 main classes. It takes approxi-
mately 20 minutes to run the program for number 38 which gives the fewest
possible columns and 26 minutes for number 37 which gives the most pos-
sible columns. For one class (number 38), two complete incidence matrices
are found. Both are isomorphic to the Desarguesian finite projective plane
of order 8. See table 3.4 on page 37.
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Latin squares of order 8 are partitioned into 283657 main classes. The
first representative allows 3072 possible columns. Some educated guessing
led to the approximation of 10 days of computation time on ‘Bommel’ for
this first case. Therefore we ran it on ‘Sickbock’ which has much less mem-
ory, but a faster processor. The program finished in approximately 3.5 days
and found no complete incidence matrices for the first of the 283657 repre-
sentatives. Figure 3.4 gives the time spent in seconds in each of the 3072
branches of the search tree.
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Figure 3.4: Time spent in each of the 3072 branches.
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Latin Sq. of order 7
sq. # poss. # gen. sq. # poss. # gen. sq. # poss. # gen.
nr. col. planes nr. col. planes nr. col. planes
1 1113 0 50 1075 0 99 1068 0
2 1101 0 51 1084 0 100 1078 0
3 1095 0 52 1057 0 101 1088 0
4 985 0 53 1072 0 102 1092 0
5 1077 0 54 1094 0 103 1097 0
6 1057 0 55 1098 0 104 1083 0
7 1098 0 56 1089 0 105 1089 0
8 1097 0 57 1109 0 106 1083 0
9 1082 0 58 1066 0 107 1079 0
10 1100 0 59 1105 0 108 1096 0
11 1079 0 60 1077 0 109 1072 0
12 1090 0 61 1119 0 110 1107 0
13 1100 0 62 1074 0 111 1079 0
14 1089 0 63 1087 0 112 1095 0
15 1098 0 64 1074 0 113 1082 0
16 1112 0 65 1091 0 114 1094 0
17 1093 0 66 1093 0 115 1077 0
18 1107 0 67 1091 0 116 1068 0
19 1075 0 68 1085 0 117 1074 0
20 1123 0 69 1069 0 118 1083 0
21 1091 0 70 1062 0 119 1096 0
22 1094 0 71 1096 0 120 1104 0
23 1114 0 72 1103 0 121 1096 0
24 1087 0 73 1082 0 122 1104 0
25 1045 0 74 1102 0 123 1073 0
26 1080 0 75 1108 0 124 1073 0
27 1087 0 76 1093 0 125 1097 0
28 1120 0 77 1088 0 126 1122 0
29 1098 0 78 1078 0 127 1090 0
30 1117 0 79 1077 0 128 1101 0
31 1105 0 80 1076 0 129 1083 0
32 1095 0 81 1119 0 130 1073 0
33 1102 0 82 1067 0 131 1117 0
34 1100 0 83 1081 0 132 1107 0
35 1045 0 84 1093 0 133 1090 0
36 1087 0 85 1081 0 134 1109 0
37 1125 0 86 1106 0 135 1097 0
38 931 2 87 1104 0 136 1091 0
39 1143 0 88 1067 0 137 1048 0
40 1093 0 89 1079 0 138 1074 0
41 1091 0 90 1089 0 139 1065 0
42 1089 0 91 1091 0 140 1073 0
43 1055 0 92 1096 0 141 1103 0
44 1103 0 93 1057 0 142 1094 0
45 1108 0 94 1057 0 143 1065 0
46 1092 0 95 1093 0 144 1077 0
47 1073 0 96 1118 0 145 1078 0
48 1073 0 97 1095 0 146 1083 0
49 1092 0 98 1037 0 147 1089 0

Table 3.4: Information on the search with Latin squares of order 7.
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Personal Results

Let us return to the goal I set for myself. This was to review, understand,
reproduce, generalize and perhaps even improve this method. While working
on this master’s thesis I have studied various books and articles on the
subject of finite projective planes and Latin squares. These are both subjects
with many mathematical facets some of which I have neglected completely
and others studied in greater detail. On the subject of projective planes,
books by Stevenson [15], Dembowski [3], Hughes and Piper [7], Ryser [14]
and articles by Lam [11][10], Parker and Killgrove [13], Hall, Swift and
Killgrove [6], and Bruck and Ryser [1] were consulted most. Books on Latin
squares used are by Dénes and Keedwell [5][4] and the articles by Kolesova,
Lam, Thiel [9] and Tarry [16]. Books and articles that were consulted for
computational reasons are by McKay [12], Knuth [8] and the online Magma-
Help.

This research has given me more insight in both subjects, and has in
particular increased my knowledge on the connection between (incidence
matrices of) finite projective planes and Latin squares. Once the subject
was more familiar, I started implementing some of the algorithms in Magma
and could easily generalize them to work for every order n. In my eyes, the
greatest (computational) breakthrough was made when I realized that most
of the tests in the backtrack program were unnecessary, and was able to
prove this.

The question whether or not I improved Lam’s method remains. On
the one hand, Lam was able to compute all 283657 Latin square represen-
tatives of order 8 within reasonable time whereas I needed almost 4 days
to compute a single representative, which is not really an improvement. On
the other hand, Lam used a supercomputer and their program was modi-
fied to optimize the vectoring capability of such a supercomputer. This will
speed up computations a lot. Furthermore, my program works best when
it is instructed to search for a complete incidence matrix. Although it can
just as easily compute incidence matrices up to a fixed number of columns
by means of a variable, as Lam does first, this reduces1 the effectiveness of
my program. I see no purpose in doing this the way Lam did, but then I
only know the basic outlines of his program. This leads me to the following
conclusion on my achievement.

I think I did a pretty good job, I learned a lot, I tackled most hurdles
on my own and this has resulted in something I am proud of. Yet the
infeasibility for the finite projective planes of order 9 stings a bit.

1A set of m possible append-able columns can be rejected if there are more than m

columns to be done. Therefore, the lower the bound, the less you throw away. We see
that when the bound is set lower than maximal, the search tree can contain more nodes
than in the case with the maximal bound.
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Suggestions for Further Research

The partial incidence matrix for a finite projective plane of order n we used
for our programs is divided in square blocks of size n − 1 (except for the
first three rows and columns). When a complete incidence matrix is found,
by adding columns in lexicographical order, we see that this block structure
occurs in the entire matrix, as can be seen in figure 3.5.

0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0
0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0

0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0

Table 3.5: A completed incidence matrix of a finite projective plane of order 5.

Let us denote these square sub-matrices of size n− 1 by Ci,j, where 1 ≤
i, j ≤ n+2. The blocks C1,1 up to Cn+2,3 were fixed by the normalized form,
and include the chosen Latin square. The blocks C1,4 up to C2,n+2 follow
automatically from the lexicographical order of appending the columns.

In a similar way as was done on page 28, we can now show that, for all
4 ≤ l ≤ n + 2, the blocks Ck,l with 3 ≤ k ≤ n + 2 are also permutation
matrices. Furthermore, they give Latin squares in a manner that is almost
similar to the one of page 28. The same thing holds for the row blocks.
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The question that arises is the following. Do these ‘new found’ Latin
squares relate to the Latin square that was used in the search for the plane?
Our guess is that they do. When looking at some small order examples,
it appeared that the completed incidence matrices of the Desarguesian fi-
nite projective planes had even more structure. The aforementioned blocks
were the exact same permutation blocks as formed our Latin square (and
of course the all-zero block). When this is the case, the blocks C3,3 up to
Cn+2,n+2 form a block-Latin square of order n.

The biggest problems in the field of finite projective planes remain the
following. Must every finite projective plane have prime power order? Must
every plane of prime power order be Desarguesian?

In the field of Latin squares, the question for a formula for the number
of Latin squares of order n remains unanswered. Lower bounds and upper
bounds are known, but they are far apart for large n.



Appendix A

Encore: Fingerprinting

Here, we will give an isomorphism invariant for finite projective planes, the
so-called fingerprint. The definition of this invariant is due to J.H. Conway.
More on this fingerprint can be found in [2].

Given a finite projective plane π of order n, let B be the square matrix
of size n2 + n + 1 with entries Bij defined as follows. For each line i we
choose an arbitrary labeling 1, 2, . . . , n+1 of the n+1 points on i. Likewise,
for each point j choose an arbitrary labeling 1, 2, . . . , n + 1 of the n + 1
lines through j. Now each line and each point has n + 1 labels. For each
non-incident line-point pair (i, j) the incidence relation and the labelings
provide a bijection between the n+1 points on i and the n+1 lines through
j. Relative to the chosen labeling, this gives a permutation σij of order
n + 1. We define Bij to be the sign1 of the permutation σij if j is not on i,
and 0 if j is on i. In shorthand, using the incidence matrix Aπ:

Bij =

{

0 : (Aπ)ij = 1
sgn(σij) : (Aπ)ij = 0

Definition 17 Let π be a finite projective plane of order n. The fingerprint
F(π) of π is the multiset of absolute values of entries of BBT .

Lemma 5 The fingerprint F(π) of a finite projective plane π of order n is
independent of the labeling of points and lines described above.

Proof. Let π be a finite projective plane of order n with points j and lines i,
where j, i ∈ {1, 2, . . . , n2+n+1}. Let, for each j, an arbitrary labeling of the
lines through j be given and, for each i, an arbitrary labeling of the points
on i be given. Consider the matrix B and the matrix BBT for this given
labeling. The k-th column of B corresponds to the point k and contains
sgn(σik) in the i-th position if line i and point k are non-incident, and 0 if

1The sign of a permutation σ of order n+1 is defined as (−1)#{(k,l):1≤k<l≤n+1,σ(k)>σ(l)}.
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they are incident. Consider two arbitrary lines through k. Both these lines
have been labeled by point k. Suppose we interchange these two labels.
This results in a transposition in the permutations σ•k. It is a well-known
fact that a transposition changes the sign of a permutation, therefore this
exchange of labels results in a change of sign for all sgn(σik) with line i

non-incident with point k. We see that interchanging the labeling of two
arbitrary lines results in a change of sign for all entries in a certain column
(the point in which they meet and gave them their label) of B. It is easily
verified that this does not change BBT and therefore does not change the
fingerprint F(π).

In a similar manner we see that interchanging the labels of two points
results in a change of sign for all entries in a certain row of B corresponding
to the line that contains both points and gave them their label. Suppose this
happens in the k-th row of B. Now BBT has changed, entries in the k-th
row and k-th column have changed sign except for the (k, k)-entry. This has
not changed the fingerprint F(π), because this is the multiset of the absolute
values of entries of BBT .

We now remark that any two arbitrary labelings can be transformed into
each other by the described transpositions of line-labels and point-labels.
Therefore the fingerprint F(π) is independent of the chosen labeling. �

Theorem 14 The fingerprint is an isomorphism invariant of finite projec-
tive planes.

Proof. Let π1 and π2 be two isomorphic finite projective planes of order n.
Choose an arbitrary labeling of π1. There exists a bijective mapping from
the points of π1 onto the points of π2 that preserves collinearity (Remark 1
page 9). Applying this mapping to π1 and all its labels gives us π2 and a
valid labeling on it.

With Lemma 5 we see now that π1 and π2 have the same fingerprint.
The fingerprint is an isomorphism invariant of finite projective planes. �

F(πF2) {∗042, 47∗} F(πF8) {∗565256, 6473∗}
F(πF3) {∗0156, 913∗} F(πF9) {∗08190, 8191∗}
F(πF4) {∗12420, 1621∗} F(πH9) {∗0858, 81404, 125616, 72312, 8191∗}
F(πF5) {∗0930, 2531∗} F(πN9) {∗686480, 721710, 8191∗}
F(πF7) {∗03192, 4957∗} F(πN ′

9
) {∗3680, 561620, 726490, 8191∗}

Table A.1: Fingerprints of all finite projective planes up to order 9.
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I wrote a program in Magma to compute fingerprints of finite projective
planes and tested it on all known planes of order up to 27. We compared our
results with known2 fingerprints and were even able to correct some minor
mistakes. In table A.1 we give fingerprints of all the finite projective planes
up to order 9.

2See http://www.uwyo.edu/moorhouse/pub/planes/
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Appendix B

Magma Code

In this appendix, some of the Magma code is given and briefly explained.
We shall do this by walking through the program and functions in order
of appearance when computing a small example. This example will be the
fourth Latin square from a list of 12 non-paratopic representative Latin
squares, see Appendix C.

We start by calling our main function expandtoK with parameters
(6,4,57), which are the order of the Latin square, the number of the chosen
Latin square and the number of columns the incidence matrix should be
completed to, respectively.

function expandtoK(lsqorde,nummer,K);

lijstdun,INC:=initializer(lsqorde,nummer);

Sort(~lijstdun);

lijst2:=[];

print "creating hulpmatrix";

H:=hulpmatrix(lijstdun);

indexset:=[1..#lijstdun];

trackerK(lsqorde+1,K,~lijst2,~H,indexset,[]);

return [converter(w,INC,lijstdun): w in lijst2];

end function;

The first thing this function does is call the function initializer with
parameters (6,4), the order and the number.

function initializer(lsqorde,nummer);

L:=readsquare(lsqorde,nummer);

print "created latin square";

INC:=square2inci(L);

print "created partial incidence matrix";

print "now creating list of possible columns";

list:=COLGEN(lsqorde+1);

print "found ",#list,"continue with first flushing";

list:=uitdunnen(L,list);

print #list,"left, creating final list";
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list:=superdunner(L,list);

print "done, found ",#list;

return list,INC;

end function;

The readsquare function reads the data for the fourth Latin square of
order 6 from the list and returns the 6 × 6 Latin square L in matrix form.
The function square2inci returns INC, the partial incidence matrix, when
L is inputed. Then colgen is called with input 7.

function COLGEN(n);

R:=[];

list:=[];

n1:=[1..n-1];

n2:=[1..n-2];

SS:=SymmetricGroup(n-2);

for k in n1 do

E:=Exclude(n1,k);

for e in [[E[s^g] : s in n2 ]:g in SS] do

for i in n1 do

for j in n1 do

list cat:=[[i,j,k] cat Insert(e,i,0)];

end for;

end for;

end for;

end for;

return list;

end function;

colgen(7) returns a list of 25920 columns that can possibly be ap-
pended, based on the unembedded partial incidence matrix. Next, the func-
tion uitdunnen with input (L,list) prunes the list of columns to 11124
columns, and the function superdunner reduces this number even further
to a maximum of 288 possible columns.

function uitdunnen(L,lijst);

R:=[];

n:=NumberOfRows(L)+1;

n1:=[1..n-1];

for t in [1..#lijst] do

l:=lijst[t];

for j in n1 do

if l[2] eq j then

for i in n1 do

if l[3+i] eq L[i][j] then

continue t;

end if;

end for;

end if;

end for;

R cat:=[t];
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end for;

return lijst[R];

end function;

function superdunner(L,lijstdun);

shortcodedL:=generatecolumns(L);

Z:=[l : l in lijstdun | codedLinprod(l,shortcodedL)];

return Z;

end function;

function codedLinprod(R,shortcodedL);

C:=[];

numc:=#shortcodedL[1];

for i in Exclude([1..#shortcodedL],R[2]) do

c:=shortcodedL[i];

w:=0;

for j in [1..numc] do

if (R[3+j] eq c[j]) then

w+:=1;

if w gt 1 then

return false;

end if;

end if;

end for;

if w eq 1 then

continue i;

else

return false;

end if;

end for;

return true;

end function;

The function generatecolumns creates from L a list of its 6 columns,
which codedLinprod uses to reject possible columns which do not fulfill
the correct inner product requirements.

We now return to our function expandtoK where we sort our list of 288
lexicographically, create an empty list lijst2 in which we store the gener-
ated completed incidence matrix (if any) and call the function hulpmatrix
which returns the compatibility matrix H.

function hulpmatrix(lijst);

N:=#lijst;

r:=#lijst[1];

hulpmat:=SparseMatrix(N,N);

for i in [1..#lijst] do

R:=lijst[i];

for j in [i+1..#lijst] do

w:=0;



48 APPENDIX B. MAGMA CODE

Q:=lijst[j];

for t in [1..r] do

if (R[t] eq Q[t]) and (R[t] ne 0) then

w +:=1;

end if;

if w gt 1 then

continue j;

end if;

end for;

if w eq 1 then

hulpmat[i][j]:=1;

end if;

end for;

end for;

return hulpmat;

end function;

Instead of working with the actual list of columns, we only work with
their number in the sorted list, for this we use indexset. With the compat-
ibility matrix H we have all the information we need. We call the backtrack
procedure trackerK with input (7,57,~ lijst2,~ H,indexset,[]).

procedure trackerK(n,K,~leeg,~H,indexset,added);

NC:=3*n+#added;

if (NC eq K) then

Append(~leeg,added);

print " ",#leeg;

else

for i in indexset do

indexset2:=[k : k in indexset | H[i][k] eq 1];

if (K-NC-1) le #indexset2 then

trackerK(n,K,~leeg,~H,indexset2,Append(added,i));

end if;

end for;

end if;

end procedure;

Within 5 seconds, trackerK finished its search and found 2 complete
incidence matrices. The referenced variable leeg has become an array of
two arrays of column numbers.

[ [ 1, 12, 19, 30, 37, 48, 56, 62, 69, 76, 83, 89, 99, 105, 116, 125, 136, 142,
149, 155, 168, 169, 182, 188, 196, 207, 213, 220, 226, 237, 241, 252, 258, 271,
277, 288 ],

[ 7, 13, 24, 25, 36, 42, 49, 60, 66, 79, 85, 96, 104, 111, 117, 124, 130, 137,
150, 156, 167, 170, 181, 187, 195, 208, 214, 219, 225, 238, 243, 250, 259, 270,
279, 286 ] ]

The function converter reconstructs the actual completed incidence
matrices.



49

function converter(V,INC,lijstje);

W:=Matrix(INC);

for v in V do

l:=lijstje[v];

NULCOL:=ZeroMatrix(Integers(),#INC,1);

for i in [1..#l] do

if l[i] ne 0 then

NULCOL[3+l[i]+(#lijstje[1]-3)*(i-1)][1]:=1;

end if;

end for;

W:=HorizontalJoin(W,NULCOL);

end for;

return W;

end function;
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One out of two completed incidence matrices of a finite projective plane of
order 7 the program returns.

0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0



Appendix C

Data

These are the used representative Latin squares for the orders 4 to 7 as
generated and stored1 by Brendan McKay, encoded in the obvious way.

1 1234214334124321
2 1234241331424321

1 1234523514354214125354132
2 1234524153354214153253214

1 123456214365356142465231531624642513
2 123456231564312645465132546213654321
3 123456231564312645465321546132654213
4 123456231645312564465213546132654321
5 123456231645345261416523562314654132
6 123456245163312645436512561234654321
7 123456245163312645456231564312631524
8 123456245163356241461325514632632514
9 123456245163364215436521512634651342
10 123456256314362145435261541632614523
11 123456264315356124435261541632612543
12 123456264531342615451263536124615342

1 1234567214375637561424321675561732465724137465231
2 1234567215734635261744362715547162367432517615432
3 1234567217563436427154723156546137263574217516243
4 1234567231574631264754657231547361267421537561324
5 1234567231674531254764657213574263164713527563124
6 1234567231675431276454675213576243165413727453126
7 1234567231745631657424621375574263165731247456213
8 1234567231764531254764756231564271365713247463152
9 1234567231764537264514175236564271364531727561324
10 1234567234167537621544153726547621365274317615342
11 1234567234175634276154756231516347265721437615324
12 1234567234175635674124173625542637167152347652143
13 1234567234567135274164162753571632464712357653142
14 1234567234571636274514173625541637267521347561243
15 1234567234617537652144153726567243165173427421653
16 1234567234715635716244613275542671367524317165342
17 1234567234761535764214163752561237467512437425136
18 1234567235174636274154562173571623464753217143652
19 1234567235617436427514715623547321661273457561432
20 1234567235617436724154763251541763265217437145326
21 1234567235647131476254763152547231665217437615234
22 1234567235647137256144512736516724364731257641352
23 1234567235671435271464612375574162364732517165432
24 1234567235671435271464615273574263164713527163425
25 1234567235741631657244513672567234167412357426153
26 1234567235764131457264673152576241365213747416235
27 1234567236147536457124753126547263165172437126354
28 1234567236175435271464675321514267367534127416235
29 1234567236517437214564652713547632161472357513642
30 1234567236571435416724627351571324661724357456123
31 1234567236714535467124175236562147367123547453621
32 1234567237165434621754625731574621365173427153426
33 1234567237514637564124167235561237464217537543621

34 1234567237561437461254152736562347164173527561243
35 1234567237615437452164652731542167365173427163425
36 1234567237645136257144563172574123664173257152643
37 1234567241537636427154376152576342161572437521634
38 1234567241567331724564526731564731267531247361245
39 1234567241675337651244351672567234161274357543216
40 1234567241735631726454526173564173267534217365214
41 1234567241735637561244673215536247161257437541632
42 1234567245367131472564615732576132463721457526413
43 1234567245367131657244376152564721367214357512346
44 1234567245617335617244372615562743167153427143256
45 1234567245671336274514712635534127665731247165342
46 1234567245673136712544512376536741267231457145623
47 1234567245673136712544715326516347265271437342615
48 1234567245713635614724673215574632163127547125643
49 1234567246175335476214623175571234661752347356412
50 1234567246317537564214521736564731261752437312654
51 1234567246375135416724715236562741363721457156324
52 1234567246537135716424357126562371467124357146253
53 1234567246715331462754715326567143263527417523614
54 1234567246715331562744573612571243663457217621345
55 1234567246715337416254652731531627465734127125346
56 1234567247135631426754765123561743265237417356214
57 1234567247135635476124613275516274367251347356421
58 1234567247135635624714127635561374267451237356214
59 1234567247135635674124352671571623461257437643125
60 1234567247163537251464562371514672363174527653214
61 1234567247361531562744765321562174365471327312456
62 1234567247613537526414613752534721665214737165324
63 1234567247631536571424512673516372467254317341256
64 1234567251367431257464367125574621364713527652431
65 1234567251367436417524376215576234164571237125436
66 1234567251374637461254167352567243163512747425613
67 1234567251637431572464623751574162364751327362415
68 1234567251637437621454357216547362161457327621453
69 1234567251673436451724367215517234667234517451623
70 1234567251734631264754652713537162467452317463152
71 1234567251734636521744375612576342164217537146235
72 1234567251743634762154625173536174267423517153624
73 1234567251764337514264376215546237161457327623154
74 1234567254617331276454362751567341267512347415326
75 1234567254637136721544315726516724367514327423615
76 1234567254713636712544753621512674363124757465312
77 1234567254713637652144176352562147363527417413625
78 1234567254761337621544176325562347163517427415236
79 1234567254763136217454365172571342661723547456213
80 1234567256317434756214317256564271367214357156342
81 1234567256371436751424157326534627167214357412653
82 1234567256371437462514357126542167361724357615342
83 1234567256714331452764752631562371464713527316425
84 1234567256741331426754726351547123663157427653124
85 1234567257134631564724623751571263463471257465213

1http://cs.anu.edu.au/~bdm/data/
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86 1234567257134636521744763215541673263274517145623
87 1234567257143636527414367152572631461452737413625
88 1234567257361431674254716253564137264257317352146
89 1234567257364131562744725136564271363174527461325
90 1234567257613434217564312675516724367534217645312
91 1234567257631431576424315726546327167214537642135
92 1234567257631437614254652173514723663257417413652
93 1234567257631437624514623175514762363157427451236
94 1234567257631437624514623175531724661457237451632
95 1234567261573435724164167325542167367532417346152
96 1234567261734534561724723651534271665714237165234
97 1234567261734535461724761253517243664537217325614
98 1234567261743531657244376152572164364523717543216
99 1234567264175337651244357216541367261724357526341
100 1234567264175337651244527631531647264732157152346
101 1234567264537134761524152736572361463174257561243
102 1234567264573131672454512673537641267231547451326
103 1234567264715335716244316275546371267524317125346
104 1234567264735135726144365172572143664137257156243
105 1234567264735137216454165723537241665132747456132
106 1234567265173431264754762153534761264753217513246
107 1234567265173437456124562371517342663172457426153
108 1234567265347134752164716325516274363471527521634
109 1234567265714334716254713256536247161457327526314
110 1234567265714335427164325671571623461734527461325
111 1234567265743135427164765123541637263712547123645
112 1234567267135437251464563712514267363574217416235
113 1234567267143537526414365172542731665137247146253
114 1234567267315435614724725613514723663527417416325
115 1234567267534134517264716253514763265231747362415
116 1234567271364536714524125736546732165421737356214
117 1234567271534634671254156273562371463724517541632

118 1234567271563431527464376125546731265234717641253
119 1234567271563434672154573126512647363427517651342
120 1234567271635431674254652173547123663257417543612
121 1234567271643536751424127653536172464532717542316
122 1234567274163531652744653721537241665271437416352
123 1234567274163534562714613752537241665271437165324
124 1234567274513634612754572613562734161537247316452
125 1234567274531636274514516273536174264721357153624
126 1234567274561335672414312756567132464231757156432
127 1234567274613531526744675312536742164217537513246
128 1234567274613536712544365721542731665134727152643
129 1234567274615335714264365712542763161532747612345
130 1234567274631535716424365271561273461274537453126
131 1234567274635135217464372615561327464571237165432
132 1234567275164335761244367215514273664153727623451
133 1234567275364131764524615273536172464271357542316
134 1234567275364134271564612375537641265417237165234
135 1234567275641335217464317625564237161732547465132
136 1234567275641336752414317625514273665213747463152
137 1234567275643134216754672153534721665137247165342
138 1234567276134534567124625173517342663472517512634
139 1234567276134536721544156732541762365234717345216
140 1234567276135435461724652731517324663174257425613
141 1234567276145335726414356172562371464172357145326
142 1234567276341534561724175326561723463427517521643
143 1234567276345134572164516723562137463721457145632
144 1234567276513436524714526713541732663712457143652
145 1234567276514335764214357612562173461423757413256
146 1234567276534135427164623175547162363172547156432
147 1234567276543135267144652173537124664173257143652
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List of Notations

Notation Description

Aπ An incidence matrix for π 6
Bi A square submatrix relating to a Latin square 28
H The compatibility matrix 30
Lrc The transpose of L 21
Mk(L) The k-s-matrix of L 21
Nπ The normalized incidence matrix of π 25
Σ A plane (P,L, I) 4
Σd The dual of the plane Σ 8
L The collection of Latin squares 20
F(π) The fingerprint of a finite projective plane π 41
I The incidence set 4
I−1 The dual incidence set. 8
L Set of lines 4
M(M) The multiset of entries of the matrix M 21
P Set of points 4
Sk(L) The k-s-Structure of L 21
sgn(σ) The sign of the permutation σ 41
π ∼ π′ Two isomorphic finite projective planes 8
π A finite projective plane 4
πd The dual of π 8
πF9 The Desarguesian plane of order 9 12
πH9 The Hughes plane of order 9 12
πN ′

9
The left nearfield plane of order 9 13

πN9 The right nearfield plane of order 9 13
σij Permutation induced by line i and point j 41
{∗ . . . ∗} A multiset 20
rc Rows and columns interchanging roles 17
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Index

Class
isotopy, 16
main, 16

Collinear, 4
Complete, 18
Concurrent, 4
Conjugacy

operations, 16

Dual
plane, 8
self-, 9

Duality, 5

Fingerprint, 41
Finite projective plane, 5
Four-point, 4

Graeco-Latin square, 17

Incidence matrix, 6
Invariant, 20
Isomorphic, 8
Isomorphism, 8
Isotopic, 16
Isotopy, 16

classes, 16
operations, 16

k-s-Matrix, 21
k-s-Structure, 21
k-s-Transversal, 19

Latin square, 15
isotopic, 16
orthogonal, 17
paratopic, 16
reduced, 15

Main classes, 16
Matrix

(0, 1)-, 6
k-s-, 21
monomial, 20

MOLS, 17
Monomial matrix, 20
Multiset, 20

Order, 6
Orthogonal, 17
Orthogonal array representation, 15

Parallel, 4
Paratopic, 16
Plane, 4

dual, 8
finite projective, 5
order of, 6
projective, 4

Projective plane, 4

Reduced, 15
Reduced column, 31

Self-dual, 9
Structure

k-s-, 21

Transversal, 17
k-s-, 19

Weight, 7
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