
LECTURE 11: POSTNIKOV AND WHITEHEAD TOWERS

In the previous section we used the technique of adjoining cells in order to construct CW approx-
imations for arbitrary spaces. Here we will see that the same technique allows us to modify spaces
by killing all homotopy groups above a certain dimension. This will be used to ‘approximate’ a
connected space by a tower of spaces which have only non-trivial homotopy groups below or above
a fixed dimension where they are isomorphic to the ones of the given space. The first case gives
rise to the Postnikov tower and the second one to the Whitehead tower. Moreover, the homotopy
groups of two subsequent levels in these towers only differ in one dimension. In fact, the maps
belonging to the towers are fibrations and the fibers have precisely one non-trivial homotopy group.

1. The Postnikov tower

We know that if α : ∂en+1 → X represents an element [α] ∈ πn(X,x0), then [α] = 0 if and
only if α extends to a map en+1 → X. Thus if we enlarge X to a space X ′ = X ∪α en+1

by adjoining an (n + 1)-cell with α as attaching map, then the inclusion i : X → X ′ induces a
map i∗ : πn(X,x0) → πn(X ′, x0) with i∗[α] = 0. We say that [α] ‘has been killed’. (Naively, we
think of X ′ as a smallest extension of X that does that. Some justification for this thinking will be
provided in the exercises.) The following lemma expresses what happens to the homotopy groups
in lower dimensions. The proof is similar to the one that the inclusion of the n-skeleton of a CW
complex is an n-equivalence and will hence not be given.

Lemma 10.1. Let (X,x0) be a pointed space, and let X ′ = X ∪α en+1 be obtained from X by
adjoining an (n + 1)-cell. Then the inclusion i : X → X ′ induces a map πk(X,x0) → πk(X ′, x0)
which is an isomorphism for k < n and surjective for k = n.

It is difficult to control what happens to the higher homotopy groups. For example, since π3(S2)
is non-trivial, adding a 2-cell to an element in π1 may well add elements in π3. However, we can
‘kill’ all of πn without changing πk for k < n, by iterating the procedure of Lemma 10.1.

Lemma 10.2. Let (X,x0) be a pointed space. Then there exists a relative CW complex i : X → Y ,
constructed by adjoining (n+1)-cells only, such that i∗ : πk(X,x0)→ πk(Y, y0) is bijective for k < n
and such that πn(Y, y0) = 0.

Proof. Let A be a set of representatives α of generators [α] of the group πn(X,x0). Let Y be
obtained from X by attaching an (n+ 1)-cell en+1

α along α : ∂en+1
α → X for each α ∈ A:

A× ∂en+1 //

��

X

i

��

A× en+1 // Y.

Then by an iterated application of Lemma 10.1, the map i : X → Y induces isomorphisms in πk for
k < n, and induces the zero-map on πn. Since this map is also surjective, we conclude that πn(Y )
has to vanish. �
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For the proof of the next theorem, recall that any map f : U → V can be factored as f = p ◦ φ,

f : U
φ−→ P (f)

p−→ V,

where p is a Serre fibration and φ is a homotopy equivalence (‘mapping fibration’, see Section 5).
We say that (up to homotopy), any map ‘can be turned into a fibration’.

Theorem 10.3 (Postnikov tower). For any connected space X, there is a ‘tower’ of fibrations

P1(X) P2(X)
ψ1oo P3(X)

ψ2oo · · ·oo

and compatible maps fi : X → Pi(X) (compatible in the sense that ψn ◦ fn+1 = fn : X → Pn(X)),
with the following properties:

(i) πk(Pn(X)) = 0 for k > n.
(ii) πk(X)→ πk(Pn(X)) is an isomorphism for k ≤ n (and hence so is πkPn(X)→ πkPn−1(X)

for k < n).
(iii) The fiber Fn of ψn−1 has the property that πn(Fn) ∼= πn(X) and πk(Fn) = 0 for all k 6= n.

Remark 10.4. A space like this fiber Fn with only one non-trivial homotopy group is called an
Eilenberg-MacLane space. If Z is such a space with πk(Z) = 0 for all k 6= n and πn(Z) ∼= A, one
says that Z is a K(A,n)-space (strictly speaking one always means the space Z together with a
chosen isomorphism πn(Z) ∼= A). We will discuss these spaces in more detail in a later lecture.

With this terminology the situation of the theorem can be depicted as follows

...

��

P3(X)

ψ2

����

F3 = K(π3(X), 3)oo

P2(X)

ψ1

����

F2 = K(π2(X), 2)oo

X
f1

//

f2

44f3

99

P1(X)

where we used // // to denote a fibration.

Proof of Theorem 10.3. Let in : X → Yn be a space obtained from X by killing πk(X) for all k > n,
i.e., such that

(i) (in)∗ : πk(X)→ πk(Yn) is an isomorphism for all k ≤ n.
(ii) πk(Yn) = 0 for all k > n.

Such a space Yn can be obtained by repeated application of the procedure of Lemma 10.2,

X ⊆ Y (n+1)
n ⊆ Y (n+2)

n ⊆ . . .

where Y
(n+1)
n kills πn+1(X) by adjoining (n + 2)-cells, Y

(n+2)
n kills πn+2(Y

(n+1)
n ) by adjoining

(n+ 3)-cells to Y
(n+1)
n , and so on. The resulting space Yn =

⋃
m>n Y

(m)
n , the union endowed with

the weak topology, has the desired property, as is immediate from the fact that any map K → Yn
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with K compact (e.g., K = Sk or K = Sk× [0, 1]) must factor through some Y
(m)
n . If you see what

this construction does, then it is clear that there is a canonical inclusion φn : Yn+1 → Yn making
the following diagram commute (we need to adjoin ‘more cells’ for Yn than for Yn+1):

Yn+1

φn

��

X
in
//

in+1

==

Yn.

Thus, X is ‘approximated’ by smaller and smaller relative CW complexes

X ⊆ . . . ⊆ Yn+1 ⊆ Yn ⊆ . . . ⊆ Y2 ⊆ Y1.

Now let P1(X) = Y1, and let f1 : X → P1(X) be i1 : X → P1(X). Let P2(X) be the space fitting
into a factorization of

Y2
φ1 // Y1

id // P1(X)

into a homotopy equivalence j2 followed by a fibration ψ1. Next factor j2φ2 in a similar way as ψ2j3,
and so on, all fitting into a diagram

...

��

...

��

...

��

X

=

��

i3 // Y3
j3

'
//

φ2

��

P3(X)

ψ2

����

X

=

��

i2 // Y2
j2

'
//

φ1

��

P2(X)

ψ1

����

X
i1
// Y1 =

// P1(X).

Write fn : X → Pn(X) for the composition jnin, and denote the fiber of ψn−1 : Pn(X)→ Pn−1(X)
by Fn ⊆ Pn(X).

Now let us look at the homotopy groups. By construction we have (i) and (ii) above, and hence
the same is true for Pn(X) instead of Yn:

(i) (fn)∗ : πk(X)→ πk(Pn(X)) is an isomorphism for all k ≤ n.
(ii) πk(Pn(X)) = 0 for all k > n.

We can feed this information in the long exact sequence of the fibration Fn ⊆ Pn(X)
ψn−1→ Pn−1(X),

a part of which looks like

· · · −→ πk+1(Pn) −→ πk+1(Pn−1) −→ πk(Fn) −→ πk(Pn) −→ πk(Pn−1) −→ · · ·

where for simplicity we write Pn for Pn(X), and omit all base points from the notation. So, we
clearly have:

(i) For k > n, the group πk(Fn) lies between two zero groups, hence is itself the zero-group.
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(ii) For k < n, the group πk(Fn) lies between a surjection and an isomorphism,

• // // • // πk(Fn) // •
∼= // • ,

hence is zero again.
(iii) For k = n, the relevant part of the sequence looks like

0→ 0→ πn(Fn)→ πn(Pn)→ 0

whence πn(Fn) is isomorphic to πn(Pn) ∼= πn(X).

This tells us that Fn is a K(πn(X), n)-space and hence proves the theorem. �

Remark 10.5. Much more can be said about these Postnikov towers: under some conditions, the
fibration Pn → Pn−1 is even a fiber bundle.

2. The Whitehead tower

The Postnikov tower builds up the homotopy groups of X (together with all relations between
them, such as the action of π1 on πn) ‘from below’, by constructing for each n a space with homotopy
groups π1, . . . , πn only. There is also a construction ‘from above’, called the Whitehead tower of X,
as described in the following theorem.

Theorem 10.6 (Whitehead tower). Let X be a connected space. There exists a tower

X W1(X)oo W2(X)oo W3(X)oo · · ·oo

with the following properties:

(i) πk(Wn(X)) = 0 for k ≤ n.
(ii) The map πk(Wn(X))→ πk(X) is an isomorphism for all k > n.
(iii) The map Wn(X)→Wn−1(X) is a fibration whose fiber is a K(πn(X), n− 1)-space.

Proof. As in the proof of the Postnikov tower, X can be approximated by extensions

X ⊆ . . . ⊆ Yn+1 ⊆ Yn ⊆ . . . ⊆ Y2 ⊆ Y1,

where πk(Yn) = 0 for k > n and πk(X) → πk(Yn) is an isomorphism for k ≤ n. For X ⊆ Y , let
W̄n(X) be the space of paths in Yn from the base point to X, as in the pullback

W̄n(X) //

��

Y
[0,1]
n

��

X ∼= 1×X
x0×in

// Yn × Yn.

So W̄n(X) → X is a fibration. (Remember we used this fibration to describe relative homotopy
groups of the pair (Yn, X) in the exercises to Section 4.) These spaces fit naturally into a sequence

X W̄1(X)oo W̄2(X)
⊇
oo W̄3(X)

⊇
oo · · ·⊇

oo
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Now turn these inclusions into fibrations (by factoring into a homotopy equivalence followed by a
fibration as before) to obtain a diagram

X

=

��

W̄1(X)

=

��

oo W̄2(X)

'
��

⊇
oo W̄3(X)

'
��

⊇
oo · · ·⊇

oo

X W1(X)oooo W2(X)oooo W3(X)oooo · · ·oooo

where the lower horizontal maps are all fibrations and the vertical ones are homotopy equivalences.
Now let us look at the homotopy groups: We know πk(W̄nX) ∼= πk(WnX), and there are two

fibrations to play with, viz W̄n(X)→ X and Wn(X)→Wn−1(X). The fiber of the first one is the
loop space ΩYn of Yn, and the fiber of the second one will be denoted Gn. Then the long exact
sequence of W̄n(X)→ X looks like

· · · // πk(ΩYn) // πk(W̄nX) // πk(X) // πk−1(ΩYn) // · · ·

or equivalently

· · · // πk+1(Yn) // πk(W̄nX) // πk(X) // πk(Yn) // · · ·

But πk(Yn) = 0 for k > n and πk(X)→ πk(Yn) is an isomorphism for k ≤ n, so

πk(W̄n(X)) ∼= πk(X), k > n, and πk(W̄n) = 0, k ≤ n,

and hence the same is true for Wn instead of W̄n. Next, the long exact sequence associated
to Wn(X)→Wn−1(X) looks like

· · · // πk+1(Wn) // πk+1(Wn−1) // πk(Gn) // πk(Wn) // πk(Wn−1) // · · ·

(where we write Wn for Wn(X), etc), and we notice:

(i) if k > n then πk(Gn) is squeezed in between two isomorphisms, so πk(Gn) = 0.
(ii) if k ≤ n− 2 then πk(Gn) sits between two zero groups hence is zero itself.

(iii) for k = n we obtain πn+1(Wn) // πn+1(Wn−1) // πn(Gn) // 0 and the first map

is an isomorphism so that πn(Gn) = 0.
(iv) in the remaining case k = n − 1 the sequence looks like 0 → πn(Wn−1) → πn−1(Gn) → 0,

so that we have an isomorphism πn(X) ∼= πn(Wn−1) ∼= πn−1(Gn).

Thus, this tells us that Gn is a K(πn(X), n− 1)-space. �

Note that the spaces W̄n(X) used in the proof of the Whitehead tower are precisely the homotopy
fibers of the maps in : X → Yn constructed in the proof of the Postnikov tower. The remaining
work in the proof of Theorem 10.6 then consists of turning a certain sequence of maps between the
homotopy fibers in a sequence of fibrations and analyzing what happens at the level of homotopy
groups. This observation is sometimes referred to by saying that the Whitehead tower is obtained
from the Postnikov tower ‘by passing to homotopy fibers’.

3. Examples of Eilenberg–MacLane spaces

In the construction of the Postnikov and Whitehead towers approximating a given space, K(π, n)-
spaces naturally came up. We will conclude this lecture by giving a few of the most elementary
examples of K(π, n)-spaces.
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Remark 10.7. Recall that a K(π, n)-space, or an Eilenberg–Mac Lane space of type (π, n), is a
space (X,x0) such that πi(X,x0) ∼= ∗ for all i 6= n together with an isomorphism

πn(X,x0) ∼= π.

Here π can be a pointed set if n = 0, a group is n = 1, or an abelian group if n ≥ 2. It can be
shown that for such a π, a K(π, n)-space always exists, and is unique up to homotopy, although we
will not give the general construction in this lecture.

Example 10.8 (Examples of K(π, n)-spaces).

(i) The circle S1 is a K(Z, 1)-space. Indeed, it is a connected space with fundamental group
Z, and one way to see that the higher homotopy groups vanish is to consider the universal
covering space R→ S1. This is a fiber bundle with discrete fiber F and contractible total
space, so the long exact sequence gives us isomorphisms 0 = πi(F ) ∼= πi+1(S1) for i > 0.

(ii) The same argument applies to wedges of spheres. Consider for example the ‘figure eight’
S1 ∨ S1. Its fundamental group is the free group on two generators Z ∗Z. The universal
cover of S1 ∨ S1 can be explicitly described in terms of the ‘grid’ in the plane,

G = (Z×R) ∪ (R×Z) ⊆ R2 .

The map w : G→ S1 ∨ S1 can be described by wrapping each edge of length 1 in the grid
around one of the circles (in a way respecting orientations): say the vertical edges to the left
hand circle and the horizontal edges to the right hand one. The universal cover E of S1∨S1

is the space of homotopy classes of paths in G which start in the origin, and E → S1 ∨ S1

is the composition

E
ε1→ G

w→ S1 ∨ S1

(where ε1 is evaluation at the endpoint). The fiber of ε1 : E → G over a given grid point
(n,m) with n,m ∈ Z is the set of ‘combinatorial paths’ from (0, 0) to (n,m): a sequence of
alternating decisions: go left or go right, go up or go down, where successions of up-down
and left-right cancel each other. Since each homotopy class of paths in E has a unique such
combinatorial description, the space E is clearly contractible.

(iii) Recall that RPn, the real projective space of dimension n, is the space of lines in Rn+1. It
can be constructed as Sn/Z2 where the group Z2 = {0, 1} acts by the antipodal map on
the unit sphere

Sn = {(x0, . . . , xn) ∈ Rn+1 | x20 + . . .+ x2n = 1}.

The embedding Sn → Sn+1 sending (x0, . . . , xn) to (x0, . . . , xn, 0) sends Sn to the ‘equator’
inside Sn+1, and is compatible with this antipodal action so that we get a commutative
diagram

S0 //

��

S1 //

��

S2 //

��

. . .

RP 0 // RP 1 // RP 2 // . . .

There is a ‘natural’ CW decomposition of Sn+1, given inductively by a CW decomposition
of Sn with two (n + 1)-cells attached to it: the northern and the southern hemispheres.
This makes Sn into a CW complex with exactly two k-cells in each dimension k ≤ n. One
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can also take the union along the upper row of the diagram (with the weak topology) to
obtain the infinite-dimensional sphere

S∞ =
⋃
n

Sn,

a CW complex with exactly two n-cells in each dimension n. Note that since πi(S
n) ∼= 0 for

i < k we also obtain πi(S
∞) ∼= 0 for all i ≥ 0. In other words, S∞ is a weakly contractible

CW complex, and hence by Whitehead’s theorem is contractible. In a similar way, we can
take the union along the lower row in the above diagram to obtain

RP∞ =
⋃
n

RPn,

a CW complex, the infinite-dimensional real projective space, with exactly one n-cell in each
dimension n. The long exact sequence of the covering projection Sn → RPn with discrete
fiber Z2 shows that

πi(RPn) = 0, 1 < i < n, or i = 0, π1(RPn) ∼= Z2,

and by passing to the limit, one concludes that RP∞ is a K(Z2, 1)-space. (Alternatively,
one can show that S∞ → RP∞ is still a covering projection with fiber Z2 to conclude that
RP∞ is a K(Z2, 1).)

(iv) Recall that CPn, the complex projective space of (complex) dimension n, is the space of
(complex) lines in Cn+1. It can be constructed as (Cn+1−{0})/C× where C× = C−{0}
acts by multiplication; or, by choosing points on the line of norm 1, as the quotient of the
unit sphere in Cn+1,

CPn = S2n+1/S1,

where S1 ⊆ C again acts by multiplication. The quotient S2n+1 → CPn has enough local
sections (check this!), hence is a fiber bundle with fiber S1. The embedding

Cn+1 → Cn+2 : (z0, . . . , zn) 7→ (z0, . . . , zn, 0)

induces maps

S2n+1 //

��

S2n+3

��

CPn // CPn+1

and one can again take the union, to obtain a map S∞ → CP∞ with CP∞ the infinite-
dimensional complex projective space. The space CP∞ is a quotient of S∞ by S1, and the
map is again a fiber bundle. The spaces CPn have compatible CW complex structures,
given by exactly one k-cell in each dimension k ≤ n. One way to see this is to represent a
line in Cn+1 by a point

z = (z0, . . . , zn), zn ∈ R, zn ≥ 0, and ||z|| = z20 + . . .+ z2n = 1.

There is a unique way of doing this. Then the last coordinate t = zn is uniquely determined
by z′ = (z0, . . . , zn−1) (since t =

√
1− ||z′||), and these (z0, . . . , zn−1) form a disk of

dimension 2n. The boundary of this disk is given by ||z′|| = 1, in other words t = 0, and
this is exactly the part already in CPn−1. In any case, either of the two arguments at the
end of the previous example shows that CP∞ is a K(Z, 2)-space.


