
LECTURE 1: DEFINITION OF SINGULAR HOMOLOGY

As a motivation for the notion of homology let us consider the topological space X which is
obtained by gluing a solid triangle to a ‘non-solid’ triangle as indicated in the following picture.
The vertices and some paths (with orientations) are named as indicated in the graphic.

•x0
α

•x1

β
•x2

γ

ε
•x3

δ

Let us agree that we define the boundary of such a path by the formal difference ‘target - source’.
So, the boundary ∂(β) of β is given by ∂(β) = x2− x1. In this terminology, the geometric property
that a path is closed translates into the algebraic relation that its boundary vanishes. Moreover,
let us define a chain of paths to be a formal sum of paths. In our example, we have the chains
c1 = α+ β + γ and c2 = β + ε+ δ−1. Both c1 and c2 are examples of closed paths (this translates
into the algebraic fact that the sum of the boundaries of the paths vanishes). However, from a
geometrical perspective, both chains behave very differently: c1 is the boundary of a solid triangle
(and is hence closed for trivial reasons) while c2 is not of that form. Thus, the chain c2 detects
some ‘interesting geometry’.

The basic idea of homology is to systematically measure closed chains of paths (which might be
interesting) and divide out by the ‘geometrically boring ones’. Moreover, we would like to extend
this to higher dimensions. Let us now begin with a precise development of the theory.

Definition 1. Let n ≥ 0 be a natural number. The (geometric) n-simplex ∆n ⊆ Rn+1 is the
convex hull of the standard basis vectors of Rn+1 endowed with the subspace topology.

Let us denote these standard basis vectors by e0, . . . , en. Every point v ∈ ∆n can uniquely be
written as a convex linear combination of the ei, i.e., there is a unique expression

v = Σni=0tiei, ti ≥ 0, t0 + . . .+ tn = 1.

The coordinates ti are the barycentric coordinates of the point v. Thus, to be completely
specific, we have

∆n = {(t0, t1, . . . , tn) ∈ Rn+1 | ti ≥ 0, t0 + . . .+ tn = 1}.

Recall that a convex linear map is a map which sends convex linear combinations to convex linear
combinations. It follows that a convex linear map

α : ∆n → ∆m

is uniquely determined by its values on ei ∈ ∆n for i = 0, . . . , n. In the important case that α sends
vertices to vertices, i.e., if we have α(ei) = ea(i) for a certain map of sets a : {0, . . . , n} → {0, . . . ,m},
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2 LECTURE 1: DEFINITION OF SINGULAR HOMOLOGY

then we obtain

α(Σni=0tiei) = Σni=0tiea(i) = Σmj=0sjej with sj = Σa(i)=jti.

As a special case we have the face maps

di : ∆n−1 → ∆n, (t0, . . . , tn−1) 7→ (t0, . . . , ti−1, 0, ti, . . . , tn), 0 ≤ i ≤ n.

This map is determined by the unique injective, monotone map {0, . . . , n− 1} → {0, . . . , n} which
does not hit i. The image di(∆n−1) ⊆ ∆n is called the i-th face of ∆n. For example, the possible
face maps ∆0 → ∆1 are the inclusions of the ‘target’ or the ‘source’, namely

t = d0 : ∆0 → ∆1 and s = d1 : ∆0 → ∆1.

In the next dimension, we have three face maps

di : ∆1 → ∆2, i = 0, . . . , 2

given by the inclusions of the three ‘sides’ of the topological boundary of ∆2 ⊆ R3. We strongly
recommend the reader to draw the corresponding pictures.

For iterated face maps there is the following key relation (it is a special case of the cosimplicial
identities) which ‘lies at the heart of many kinds of homology theories’.

Lemma 2. For every n ≥ 2 and every 0 ≤ j < i ≤ n the following iterated face maps coincide

di ◦ dj = dj ◦ di−1 : ∆n−2 → ∆n.

Proof. It is immediate to verify that both maps are given by

(t0, t1, . . . , tn−2) 7→ (t0, . . . , tj−1, 0, tj , . . . , ti−1, 0, ti, . . . , tn−2).

In fact, both iterated face maps are determined by the unique monotone injection

{0, . . . , n− 2} → {0, . . . , n}

which hits neither i nor j. �

The idea of singular homology consists of studying an arbitrary space by considering formal sums
of maps defined on simplices of a fixed dimension.

Definition 3. Let X be a topological space.

(1) A singular n-simplex in X is a continuous map σ : ∆n → X.
(2) The singular n-chain group Cn(X) is the free abelian group generated by the singular n-

simplices in X. Its elements are called singular n-chains in X.

Let us recall the notion of a free abelian group generated by a set. As a motivation for the
concept we include the following reminder.

Reminder 4. Let V be a finite-dimensional vector space with basis b1, . . . , bn ∈ V and let W be a
further vector space over the same field. Then a linear map f : V → W is uniquely determined by
the values f(b1), . . . , f(bn) ∈W.

Definition 5. Let S be a set. A free abelian group generated by S is a pair (F (S), iS)
consisting of an abelian group F (S) and a map of sets iS : S → F (S) which satisfies the following
universal property: Given a further pair (A, j : S → A) with A an abelian group and j a map of
sets then there is a unique group homomorphism f : F (S)→ A such that f ◦ iS = j.
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More diagrammatically, this universal property can be depicted as follows (the reason why we split
the diagram into two parts will become more apparent later: the left part is a diagram of sets, while
the right part is a diagram of abelian groups):

S

=

iS //

∀j --

F (S)

f

��
�
�
�

F (S)

∃!f
��

A A

The next lemma establishes the existence and essential uniqueness of free abelian groups gener-
ated by a set. This motivates us to think of the free abelian group generated by a set as ‘the’ best
approximation of a set by an abelian group.

Lemma 6. (1) Let S be a set. The free abelian group (F (S), iS) exists and is unique up to a
unique isomorphism compatible with the maps from S. In more detail, given a further free
abelian group (F (S)′, i′S) then there is a unique isomorphism of groups φ : F (S) → F (S)′

which satisfies the relation φ ◦ iS = i′S:

S

=

iS //

i′S **

F (S)

φ

��

F (S)

∃! φ
��

F (S)′ F (S)′

(2) The assignment S 7→ F (S) sending a set S to a free abelian group generated by S can be
extended to a free abelian group functor from the category Set of sets to the category Ab of
abelian groups:

F : Set→ Ab

Proof. Exercise. �

The proof of this lemma will show that every element of F (S) can be written as a finite sum of
elements in S, i.e, for z ∈ F (S) we have

z = n1s1 + . . .+ nksk, ni ∈ Z, si ∈ S, i = 1, . . . , k.

Moreover, this expression is unique up to a permutation of the summands if we insist that the ni
are different from 0 and that the si are pairwise different. In particular, this applies to the singular
chain group Cn(X) associated to a topological space X. Thus, a singular n-chain can be written
as a formal sum of singular n-simplices in X.

Let f : X → Y be a map of spaces (unless stated differently all maps between spaces will be
assumed to be continuous). Given a singular n-simplex σ : ∆n → X then f ◦ σ : ∆n → Y is a
singular n-simplex in Y. The linear extension of this assignment (whose existence is guaranteed by
the last lemma) defines a group homomorphism:

Cn(f) = f∗ : Cn(X)→ Cn(Y )

Corollary 7. The assignments X 7→ Cn(X) and f 7→ f∗ define a functor, the singular n-chain
group functor Cn, from the category Top of topological spaces to the category Ab of abelian groups:

Cn : Top→ Ab
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The next aim is to relate the singular chain group functors of the various dimensions. For this
purpose, recall that we have the i-th face map di : ∆n−1 → ∆n for 0 ≤ i ≤ n. Given a singular
n-simplex σ : ∆n → X in a space X we obtain a singular (n− 1)-simplex di(σ) in X by setting:

di(σ) = σ ◦ di : ∆n−1 di→ ∆n σ→ X, 0 ≤ i ≤ n

By linear extension this gives rise to a group homomorphism

di : Cn(X)→ Cn−1(X), 0 ≤ i ≤ n,

which will also be called the i-th face map. The key definition of the entire business is the following
one.

Definition 8. Let X be a topological space.

(1) The n-th singular boundary operator ∂ is given by

∂ =

n∑
i=0

(−1)idi : Cn(X)→ Cn−1(X).

(2) The kernel Zn(X) of the boundary operator ∂ : Cn(X)→ Cn−1(X), i.e., the abelian group

Zn(X) = ker(∂ : Cn(X)→ Cn−1(X)),

is the group of singular n-cycles in X. An element of Zn(X) is sometimes also referred
to as a closed singular n-chain.

(3) The image Bn(X) of the boundary operator ∂ : Cn+1(X)→ Cn(X), i.e., the abelian group

Bn(X) = im(∂ : Cn(X)→ Cn−1(X)),

is the group of singular n-boundaries in X.

Thus, by forming the alternating sum of the face maps we obtain a map between the groups in
various dimensions and this gives rise to two subgroups

Bn(X), Zn(X) ⊆ Cn(X), n ≥ 0.

In the special case of n = 0 we define Z0(X) = C0(X), i.e., every 0-chain is by definition also a
0-cycle. A key property of these boundary maps is given in the next proposition. Once one gets
used to the calculation in its proof, one remarks that the proposition is an immediate consequence
of the cosimplicial identity in Lemma 2.

Proposition 9. Given a topological space X then the singular boundary maps define a differential
on {C•(X)}, i.e., we have the relations

∂ ◦ ∂ = 0: Cn(X)→ Cn−2(X), n ≥ 2.
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Proof. This follows from the following algebraic manipulation in which Lemma 2 plays a key role
and where the last step is given by a shift of the inner summation index.

∂ ◦ ∂ =

n−1∑
j=0

n∑
i=0

(−1)i+jdj ◦ di

=

n−1∑
j=0

j∑
i=0

(−1)i+jdj ◦ di +

n−1∑
j=0

n∑
i=j+1

(−1)i+jdj ◦ di

!
=

n−1∑
j=0

j∑
i=0

(−1)i+jdj ◦ di +

n−1∑
j=0

n∑
i=j+1

(−1)i+jdi−1 ◦ dj

=

n−1∑
j=0

j∑
i=0

(−1)i+jdj ◦ di +

n−1∑
j=0

n−1∑
i=j

(−1)i+j+1di ◦ dj

If we now interchange the roles of i and j in the –say– second sum we remark that the sums cancel
each other as intended. �

Definition 10. The singular chain complex of a topological space X is the pair (C∗(X), ∂)
consisting of the singular chain groups together with the singular boundary operators:

. . .
∂→ Cn+1(X)

∂→ Cn(X)
∂→ Cn−1(X)

∂→ . . .
∂→ C1(X)

∂→ C0(X)

We will usually abuse notation and simply write C(X) or C∗(X) for the singular chain complex.
The above proposition is very important. It implies that in each dimension n we have inclusions of
subgroups

Bn(X) ⊆ Zn(X) ⊆ Cn(X).

Moreover, since all groups occurring here are abelian, the subgroups are normal subgroups so that
the following definition makes sense.

Definition 11. Let X be a topological space. The n-th singular homology group Hn(X) of X
is the abelian group defined by

Hn(X) = Zn(X)/Bn(X).

This definition completes the program motivated by our initial example. Given a topological
space we can associate to it an abelian group which is obtained by taking the singular cycles in
a fixed dimension (which might be geometrically interesting) and by dividing out those which are
geometrically uninteresting. The result of this gives us by definition the singular homology of the
space in that fixed dimension.

Given two singular n-cycles z1, z2 ∈ Zn(X) which represent the same homology class, i.e., their
difference is a boundary, are called homologous. This will be denoted by:

z1 ∼ z2 :⇐⇒ z1 − z2 ∈ Bn(X)

For example a cycle z is a boundary if and only if z ∼ 0.

Example 12. (1) Let ∗ denote the space consisting of one point only. Then we have H0(∗) ∼= Z
and Hn(∗) ∼= 0 for n ≥ 1. (Exercise.)
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(2) The formation of singular homology is additive in the following sense. Let X be a topological
space and let Xα, α ∈ I, be its path components, then there is a (natural) isomorphism⊕

α∈I
Hn(Xα)

∼=→ Hn(X), n ≥ 0.

Thus, for many calculations it suffices to restrict attention to path-connected spaces. However,
certain statements might be nicer if we allow for more general spaces (see for example the next
proposition). We will prove the claimed additivity in a later lecture. Although one could already
easily make precise the definition of the above map we prefer to first establish the functoriality of
singular homology. Of course, the reader is invited to convince her- or himself that such a relation
should be true.

We close this lecture by the following low-dimensional identification. Associated to a connected
space X we have the following (natural) augmentation map ε. Recall that C0(X) is freely gener-
ated by the singular 0-simplices in X. Thus, an element of this group is just a formal sum of points
in X. Sending each point of X to 1 ∈ Z and then forming the linear extension gives rise to the
augmentation map

ε : C0(X)→ Z :

k∑
i=1

nixi 7→
k∑
i=1

ni.

By our convention in dimension 0 we have C0(X) = Z0(X). Now, it is easy to check that the
augmentation map vanishes on all 0-boundaries. Thus, the universal property of the quotient of
abelian groups (see the exercises) implies that we get a unique induced group homomorphism ε∗ as
indicated in:

B0(X)

=

i //

0 ..

Z0(X)

=ε

��

q
// H0(X)

ε∗ppZ

Proposition 13. (1) Let X be a path-connected topological space, then the augmentation in-
duces a (natural) isomorphism ε∗ : H0(X)→ Z.

(2) Let X be a topological space, then we have a (natural) isomorphism H0(X) ∼= Zπ0(X).

In the second statement of this proposition we use the notation ZS for the free abelian group
generated by the set S. Moreover, π0(X) denotes the set of path components of the space X. The
proof of this proposition will be given in the next lecture.

Remark 14. In algebraic topology it is very convenient to make systematical use of the language
of category theory. Since we did not wish to overwhelm the reader by too much of this language
at the very beginning we decided to slowly develop the corresponding terminology as the course
goes on. In particular, the notion of a natural transformation between functors will only be made
precise at a later stage although they already showed up in this lecture. As a compromise we wrote
‘(natural) morphism’ or ‘(natural) isomorphism’ in the corresponding situations.


