
LECTURE 3: RELATIVE SINGULAR HOMOLOGY

In this lecture we want to cover some basic concepts from homological algebra. These prove to
be very helpful in our discussion of singular homology. The following definition abstracts the key
ingredients which were necessary to introduce the singular homology groups of a topological space.

Definition 1. A chain complex (of abelian groups) C consists of abelian groups Cn, n ≥ 0,
together with group homomorphisms ∂ : Cn → Cn−1, n ≥ 1, such that

∂ ◦ ∂ = 0: Cn → Cn−2, n ≥ 2.

The homomorphisms ∂ are called boundary homomorphisms or differentials.

Thus, a chain complex of abelian groups can be depicted as

. . .
∂→ Cn+1

∂→ Cn
∂→ . . .

∂→ C1
∂→ C0.

The elements of Cn are said to be of degree n and are called n-chains of C. Given such a chain
complex C, we call

Zn = Zn(C) = ker(∂ : Cn → Cn−1) ⊆ Cn
the subgroup of n-cycles and

Bn = Bn(C) = im(∂ : Cn+1 → Cn)

the subgroup of n-boundaries. By convention, we set Z0 = C0, i.e., we define all 0-chains to be
0-cycles. The fundamental relation ∂ ◦ ∂ = 0 implies that we have an inclusion Bn ⊆ Zn for all
n ≥ 0. The n-th homology group Hn = Hn(C) of a chain complex C is the quotient group

Hn(C) = Zn(C)/Bn(C).

Elements of Hn(C) are cosets zn+Bn(C) which satisfy zn ∈ Zn(C). Such an element is also denoted
by [zn] and is called the homology class of degree n represented by zn.

Example 2. Associated to a topological space X ∈ Top we earlier constructed the singular chain
complex C(X) = C∗(X). In degree n it is given by the free abelian group generated by the singular
n-simplices σ : ∆n → X in X. The singular boundary operator Cn(X)→ Cn−1(X) is induced by the
face maps ∆n−1 → ∆n. By definition, the homology groups of this chain complex are the singular
homology groups of our given space.

Using the universal property of free abelian groups generated by a set we saw already that the
assignment X 7→ Cn(X) is functorial. But also the singular boundary operators behave nicely with
respect to maps of spaces. Let us consider topological spaces X and Y and a continuous map
f : X → Y between them. Given a singular n-simplex σ : ∆n → X then the associativity of the
composition law for maps of spaces implies the relation

(f ◦ σ) ◦ di = f ◦ (σ ◦ di) : ∆n−1 → Y, n ≥ 1, 0 ≤ i ≤ n.
1
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By linearity, this implies that the square

Cn(X)
di //

Cn(f)

��

Cn−1(X)

Cn−1(f)

��

Cn(Y )
di

// Cn−1(Y )

commutes. Since the singular boundary operators Cn(X)→ Cn−1(X) and Cn(Y )→ Cn−1(Y ) are
obtained from these face maps by forming alternating sums this implies that the various (Cn(f))n≥0
assemble into a chain map C(X)→ C(Y ) in the following sense.

Definition 3. Let C andD be chain complexes of abelian groups. A chain map f : C → D consists
of group homomorphisms fn : Cn → Dn, n ≥ 0, which commute with the boundary operators in
the sense that

∂ ◦ fn = fn−1 ◦ ∂ : Cn → Dn−1, n ≥ 1.

Thus, if we depict chain complexes by diagrams as above, then a morphism of chain complexes
gives us a ‘commutative ladder’ as described by the next diagram:

. . . ∂ // Cn+1
∂ //

fn+1

��

Cn
∂ //

fn

��

. . . ∂ // C1

f1

��

∂ // C0

f0

��

C

f

��
. . .

∂
// Dn+1

∂
// Dn

∂
// . . .

∂
// D1

∂
// D0 D

Given chain maps f : C → D and g : D → E then it is immediate to see that the degreewise
compositions gn ◦ fn : Cn → En assemble into a chain map g ◦ f : C → E. It is similarly obvious
that the identity maps Cn → Cn assemble to a chain map id: C → C. Moreover, it follows from
the definition that a chain map sends cycles to cycles and boundaries to boundaries.

Lemma 4. (1) Chain complexes of abelian groups together with chain maps assemble into a
category which is denoted by Ch = Ch(Z).

(2) The formation of cycles, boundaries, and homology in a fixed dimension is functorial, i.e.,
for all n ≥ 0 the assignments

C 7→ Zn(C), C 7→ Bn(C), and C 7→ Hn(C)

extend to functors Zn, Bn, Hn : Ch→ Ab.

Proof. This is straightforward. Let us only mention that, given a chain map f : C → D, then the
induced map in homology is defined by

f∗ = Hn(f) : Hn(C)→ Hn(D) : [cn] 7→ [fn(cn)].

We leave it to the reader to check the details. �

Corollary 5. The singular chain group functors Cn : Top→ Ab and the singular boundary operators
together define a singular chain complex functor C : Top → Ch. In particular, there is a singular
homology functor Hn : Top→ Ab defined as the composition

Hn : Top
C→ Ch

Hn→ Ab.
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A formal consequence of having a functor Hn : Top→ Ab is that singular homology groups form
topological invariants, i.e., homeomorphic spaces have isomorphic singular homology groups (more
precisely, any such homeomorphism induces an isomorphism in singular homology). There is a
much stronger statement though: even spaces which are only homotopy equivalent have canonically
isomorphic homology groups. We refer to this statement by saying that ‘singular homology is
homotopy-invariant ’. A proof of this important result will be given later in the course.

Let us be given a (not necessarily bounded) sequence of abelian groups An together with group
homomorphisms ∂ : An → An−1 for all n. Thus, we have a diagram of abelian groups as follows:

. . .
∂→ An+1

∂→ An
∂→ An−1

∂→ . . .

Such a sequence is a chain complex if we always have ∂◦∂ = 0. In light of this more general definition,
we sometimes refer to objects considered in Definition 1 as non-negative or non-negatively graded
chain complexes. We say that such a sequence is exact at An if we have the equality of subgroups

im(∂ : An+1 → An) = ker(∂ : An → An−1) ⊆ An.
Such a sequence is called an exact sequence if it is exact at all An. Note that such an exact
sequence is, in particular, a chain complex since the relation ∂ ◦ ∂ = 0 is equivalent to the fact that
we have inclusions of subgroups

im(∂ : An+1 → An) ⊆ ker(∂ : An → An−1)

for all n. A chain complex is exact if we also have inclusions in the opposite directions, namely

im(∂ : An+1 → An) ⊇ ker(∂ : An → An−1)

for all n. Note also that this is equivalent to the vanishing of all homology groups.
A particularly important special case is given by so-called short exact sequences of abelian

groups. By definition, this is an exact sequence of abelian groups of the form

0→ A′
i→ A

p→ A′′ → 0.

The following lemma makes precise what kind of structure is encoded by such a short exact sequence.

Lemma 6. (1) The sequence of abelian groups 0 → A′
i→ A is exact at A′ if and only if i is

injective.

(2) The sequence of abelian groups A
p→ A′′ → 0 is exact at A′′ if and only if p is surjective.

(3) The sequence of abelian groups 0→ A′
i→ A

p→ A′′ → 0 is exact if and only if i is injective, p
is surjective, and we have im(i) = ker(p).

(4) The sequence of abelian groups 0→ A
f→ B → 0 is exact if and only if f is an isomorphism.

Thus, a short exact sequence basically only encodes an inclusion of a subgroup together with its
quotient map. Nevertheless, this notion proves to be very useful. It is straightforward to extend
it to chain complexes. A short exact sequence of chain complexes is a diagram of chain
complexes and chain maps

0→ C ′
i→ C

p→ C ′′ → 0

which induces a short exact sequence of abelian groups

0→ C ′n
in→ Cn

pn→ C ′′n → 0

in each degree. As in the case of abelian groups, also short exact sequences of chain complexes
basically only encode the inclusion of a subcomplex together with the corresponding projection to
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the quotient complex. Let us make these notions precise. Given a chain complex C, a subcomplex
of C is given by a family of subgroups C ′n ⊆ Cn such that the boundary operator ∂ : Cn → Cn−1
restricts to a homomorphism C ′n → C ′n−1 for all n. In this situation the family of subgroups C ′n
can be uniquely turned into a chain complex C ′ such that the inclusions of the subgroups C ′n ⊆ Cn
assemble into a morphism of chain complexes i : C ′ → C (do this as an exercise!). In particular,
given a chain map f : C → D, the kernels

ker(fn : Cn → Dn) ⊆ Cn
assemble into a chain complex ker(f), the kernel of f . As in the case of abelian groups, the kernel
of a chain map comes with a canonical map ker(f) → C which satisfies an appropriate universal
property.

Exercise 7. Define the image im(f) ∈ Ch of a chain map f : C → D. Show that any chain map
f : C → D factors as a composition

f : C → im(f)→ D.

We already discussed subobjects of chain complexes, namely subcomplexes. We now turn to the
dual concept which is given by quotient complexes.

Lemma 8. Let i : C ′ → C be the inclusion of a subcomplex and let pn : Cn → C ′′n = Cn/C
′
n be the

(levelwise) quotient map. Then there is a unique way to turn the (C ′′n)n≥0 into a chain complex C ′′

such that the (pn)n≥0 assemble into a chain map p : C → C ′′. Moreover, it follows that the sequence

0→ C ′
i→ C

p→ C ′′ → 0 is exact.

Proof. This is left to the reader as an exercise. �

The chain complex C ′′ constructed in the lemma is the quotient complex associated to the
inclusion i : C ′ → C. Similarly, using pointwise definitions, once can construct the cokernel cok(f)
of a chain map f : C → D. This is a chain complex which comes with a chain map D → cok(f)
and this pair satisfies the usual universal property.

As a punchline of this lengthy discussion you should take away that basic constructions like
kernels, cokernels, subobjects and quotient objects can be extended from abelian groups to chain
complexes by pointwise definitions. And these extended definitions still ‘behave as expected’. How-
ever, it is tremendously important to note that the formation of homology is not compatible with
these constructions. Let us be more specific about this and consider a short exact sequence

0→ C ′ → C → C ′′ → 0

of chain complexes. Since homology is functorial we obtain induced maps

Hn(C ′)→ Hn(C)→ Hn(C ′′)

and one might wonder if there are short exact sequences

0→ Hn(C ′)→ Hn(C)→ Hn(C ′′)→ 0

in each dimension n. In general, this turns out to be an unreasonable demand but there is the
following proposition.

Proposition 9. Let 0 → C ′
i→ C

p→ C ′′ → 0 be a short exact sequence of chain complexes of
abelian groups. Then there is a (natural) connecting homomorphism

δn : Hn(C ′′)→ Hn−1(C ′)
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such that the following sequence is exact:

. . .→ Hn+1(C ′′)
δn+1→ Hn(C ′)

i∗→ Hn(C)
p∗→ Hn(C ′′)

δn→ Hn−1(C ′)→ . . .

Proof. Let us begin with the construction of the connecting homomorphism δn for a given n. For
this purpose let us draw the part of the short exact sequence which is relevant in that situation:

Cn
pn //

∂n

��

C ′′n

C ′n−1 in−1

// Cn−1

Let us consider a homology class ω ∈ Hn(C ′′) and let us represent it by an n-cycle z′′n ∈ Zn(C ′′).
By the surjectivity of pn we can find an n-chain cn ∈ Cn such that pn(cn) = z′′n. For the image
∂n(cn) of cn under the boundary operator we calculate pn−1(∂n(cn)) = ∂n(pn(cn)) = ∂n(z′′n) = 0
since z′′n is a cycle. Thus, the fact that we have a short exact sequence in level n − 1 implies that
there is a unique z′n−1 ∈ C ′n−1 such that in−1(z′n−1) = ∂n(cn). This (n − 1)-chain z′n−1 is, in fact,
a cycle as the following calculation combined with the injectivity of in−2 implies:

in−2(∂n−1(z′n−1)) = ∂n−1(in−1(z′n−1)) = ∂n−1(∂n(cn)) = 0

Thus, z′n−1 represents a homology class [z′n−1] ∈ Hn−1(C ′). We define the connecting homomor-
phism δn as follows:

δn : Hn(C ′′)→ Hn−1(C ′) : [z′′n] 7→ [z′n−1]

In the construction of the connecting homomorphism some choices were made. We leave it to the
reader to check that our definition is well-defined and that δn is a group homomorphism.

Let us now turn to the exactness issues. However, we will only give the proof of the exactness
at Hn−1(C ′). In order to establish the inclusion im(δn) ⊆ ker(i∗ : Hn−1(C ′∗) → Hn−1(C∗) we will
still use the notation from the construction of δn. But his inclusion is immediate since

i∗(δn[z′′n]) = i∗[z
′
n−1] = [in−1(z′n−1)] = [∂n(cn)] = 0.

Let us assume conversely that we have a homology class ω′ ∈ Hn−1(C ′) such that i∗(ω
′) = 0. Thus,

if we represent ω′ by z′n−1 we have in−1(z′n−1) = ∂n(cn) for some cn ∈ Cn. The image z′′n = pn(cn)
of cn under pn is a cycle since:

∂n(z′′n) = ∂n(pn(cn)) = pn−1(∂n(cn)) = pn−1(in−1(z′n−1)) = 0

Hence, we can form the homology class ω′′ = [z′′n] ∈ Hn(C ′′) and it follows from the construction
of the connecting homomorphism and the fact that it is well-defined that we have ω′ = δn(ω′′).

The proofs of the exactness at Hn(C) and Hn(C ′′) are similar and are left to the reader as an
exercise. �

This long exact sequence is referred to as the long exact homology sequence induced by
a short exact sequence of chain complexes. It is a very powerful tool – both for theoretical and
computational purposes. In the case of nonnegative chain complexes, this long exact sequence ends
on

. . .→ H2(C ′′)
δ2→ H1(C ′)→ H1(C)→ H1(C ′′)

δ1→ H0(C ′)→ H0(C)→ H0(C ′′)→ 0.

The final aim in this lecture is to apply Proposition 9 in a topological context. More precisely,
let us consider a pair of spaces (X,A), i.e., a topological space X together with a subspace A ⊆ X.
Let us denote the inclusion of the subspace by i : A → X. It is immediate that the induced map
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of singular chain complexes i∗ : C(A)→ C(X) is levelwise injective and we can hence consider the
quotient complex C(X,A) = C(X)/C(A). (To be completely precise we should form the quotient
by the subcomplex i∗(C(A)) ⊆ C(X), but we allow ourselves to blur the distinction between the
isomorphic complexes C(A) and i∗(C(A)).)

Definition 10. The relative singular chain complex C(X,A) of a pair of spaces (X,A) is the
quotient complex

C(X,A) = C(X)/C(A).

The homology of C(X,A) is the relative singular homology of the pair (X,A), and it will be
denoted by

Hn(X,A) = Hn(C(X,A)), n ≥ 0.

Thus, if we have a pair of spaces (X,A), then there is by definition a short exact sequence of
chain complexes

0→ C(A)→ C(X)→ C(X,A)→ 0.

An application of Proposition 9 implies immediately the following result.

Corollary 11. Let (X,A) be a pair of spaces. Then there are (natural) connecting homomorphisms

δn : Hn(X,A)→ Hn−1(A), n ≥ 1,

such that the following sequence is exact

. . .→ H2(X,A)
δ2→ H1(A)→ H1(X)→ H1(X,A)

δ1→ H0(A)→ H0(X)→ H0(X,A)→ 0.

This is the long exact homology sequence associated to the pair of spaces (X,A).

Example 12. Let X be a space, i : A→ X the inclusion of a subspace, and let x0 ∈ X be a point.

(1) The homology of the empty space is trivial in all dimensions. Thus, the inclusion j : ∅ → X
induces isomorphisms

Hn(X)
∼=→ Hn(X, ∅), n ≥ 0.

(2) The inclusion i induces isomorphisms in homology i∗ : Hn(A)
∼=→ Hn(X), n ≥ 0, if and only

if all relative homology groups Hn(X,A), n ≥ 0, vanish, i.e.,

Hn(X,A) ∼= 0.

In particular, the homology groups Hn(X,X) vanish for all n ≥ 0.
(3) If the maps Hn(A) → Hn(X) are injective for n ≥ 0 or if the maps Hn(X) → Hn(X,A)

are surjective for all n ≥ 1, then we have short exact sequences

0→ Hn(A)→ Hn(X)→ Hn(X,A)→ 0, n ≥ 0.

In fact, in both cases the connecting homomorphisms are trivial and the result follows. This
applies, in particular, to the case of the inclusion of a retract.

(4) Let us consider the inclusion k : {x0} → X. Our earlier calculation Hn(x0) ∼= 0 for all
n ≥ 1 together with the long exact homology sequence for the pair (X,x0) implies that we
have (natural) isomorphisms Hn(X) → Hn(X,x0), n ≥ 2. Observe that H0(x0) → H0(X)
is injective since it is just the Z-linear extension of the inclusion of the path-component
of x0 in π0(X). Hence the connecting homomorphism H1(X,x0) → H0(x0) is trivial and
we obtain a short exact sequence 0 → H1(x0) → H1(X) → H1(X,x0) → 0. We conclude
from this discussion that there are natural isomorphisms

Hn(X)
∼=→ Hn(X,x0), n ≥ 1.
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More generally, if A has trivial homology in positive degrees and if the map π0(A)→ π0(X)
is injective, then we have (natural) isomorphisms Hn(X)→ Hn(X,A) for all n ≥ 1.

Let us close this lecture with a short comment on the notions introduced here. With our main
example of the singular chain complex associated to a space in mind, we decided to restrict attention
to chain complexes of abelian groups. However, the concepts of chain complexes, chain maps,
homology, and exactness make perfectly well sense in other contexts. For example, given a field k,
we could consider the category Ch(k) of chain complexes of vector spaces over k. The only difference
is that in this case all maps in sight are supposed to be k-linear. More generally, given a commutative
ring R, we can consider the category Ch(R) of chain complexes of R-modules. From this perspective,
we considered the case of the ring R = Z since the categories of abelian groups and Z-modules are
isomorphic.


