
LECTURE 6: EXCISION PROPERTY AND MAYER-VIETORIS SEQUENCE

In this lecture we will state the important excision property of singular homology which is
one of the key features of singular homology allowing for calculations. While the proof of this
excision property will only be given in the next lecture, we will here focus on some consequences
and applications. In particular, we will deduce the important Mayer-Vietoris sequence and then
calculate the homology groups of all spheres. A convenient reformulation is obtained in terms of
reduced homology groups.

Here is the important excision theorem.

Theorem 1. Let U ⊂ A ⊂ X be subspaces such that the closure Ū of U lies in the interior A◦ of A.
Then the inclusion (X\U,A\U)→ (X,A) induces isomorphisms on relative homology groups:

Hn(X\U,A\U)
∼=→ Hn(X,A), n ≥ 0

This theorem can be equivalently reformulated as follows.

Theorem 2. Let X be a space and let us consider subspaces X1, X2 ⊆ X such that X◦1 ∪X◦2 = X.
Then the inclusion (X1, X1∩X2)→ (X,X2) induces isomorphisms on all relative homology groups:

Hn(X1, X1 ∩X2)
∼=→ Hn(X,X2), n ≥ 0

Lemma 3. Theorem 1 and Theorem 2 are equivalent.

Proof. Exercise. (Hint: consider the assignments A = X2 and U = X\X1.) �

An important consequence of the second formulation of the theorem is given by the so-called
Mayer-Vietoris sequence. This result is obtained by specializing the following algebraic fact to a
certain topological situation.

Lemma 4. (Algebraic Mayer-Vietoris sequence) Let us consider the following commutative diagram
of abelian groups in which the rows are exact and all the f ′′n are isomorphisms:

. . . // C ′′n+1

δn+1
//

f ′′n+1

��

C ′n

f ′n
��

in // Cn

fn

��

pn // C ′′n

f ′′n
��

δn // C ′n−1
//

f ′n−1

��

. . .

. . . // D′′n+1
δ′n+1

// D′n jn
// Dn qn

// D′′n
δ′n

// D′n−1
// . . .

Then there is an exact sequence in which ∆n = δn ◦ f ′′−1
n ◦ qn : Dn → C ′n−1 :

. . . // C ′n
(in,f

′
n)
// Cn ⊕D′n

fn−jn // Dn
∆n // C ′n−1

// . . .

Proof. Let us give a proof of the exactness at C ′n−1. The relation (in−1, f
′
n−1)◦∆n = 0 is immediate

since we calculate for both coordinates:

in−1 ◦∆n = in−1 ◦ δn ◦ f ′′−1
n ◦ qn = 0 and f ′n−1 ◦∆n = f ′n−1 ◦ δn ◦ f ′′−1

n ◦ qn = δ′n ◦ qn = 0
1
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Conversely, let us assume that we have an element c′n−1 such that in−1(c′n−1) = 0 = f ′n−1(c′n−1).
Exactness of the upper row at C ′n−1implies that there is an element c′′n ∈ C ′′n with δn(c′′n) = c′n−1.
But

0 = f ′n−1(c′n−1) = f ′n−1(δn(c′′n)) = δ′n(f ′′n (c′′n))

shows that f ′′n (c′′n) lies in the kernel of δ′n. Finally, exactness of the lower row at D′′n implies that
there is a dn ∈ Dn such that qn(dn) = f ′′n (c′′n). But for this dn we calculate

∆n(dn) = δn ◦ f ′′−1
n ◦ qn(dn) = δn ◦ f ′′−1

n ◦ f ′′n (c′′n) = δn(c′′n) = c′n−1

as intended. Thus c′n−1 lies in the image of ∆n. The remaining two cases are left as an exercise
and can be established by similar diagram chases. �

The choice of the sign in the lemma was arbitrary. There are further choices and any of these
would be equally good and lead to a similar statement. The only constraint was to reexpress the
commutativity of the square induced by the inclusion as the vanishing of the composition of two
homomorphisms with the given domains and targets.

We want to apply this to the following topological situation. Let X = X◦1 ∪X◦2 for two subspaces
X1, X2 ⊂ X and let us consider the inclusion ι : (X1, X1∩X2)→ (X,X2) obtained from the following
commutative square

X1 ∩X2
j1 //

j2

��

X1

i1

��

X2
i2

// X.

The naturality of the long exact sequence in homology with respect to morphisms of pairs implies
that we have the following commutative ladder with exact rows:

. . . // Hn+1(X1, X1 ∩X2)
δn+1

//

ι∗∼=
��

Hn(X1 ∩X2)

j2∗

��

j1∗ // Hn(X1)

i1∗

��

// Hn(X1, X1 ∩X2)

ι∗∼=
��

// . . .

. . . // Hn+1(X,X2)
δ′n+1

// Hn(X2)
i2∗

// Hn(X) // Hn(X,X2) // . . .

Since we are in the situation of Theorem 2 we know that all induced maps ι∗ are isomorphisms.
Thus, if we denote by ∆n : Hn(X)→ Hn−1(X1 ∩X2) the homomorphism

∆n : Hn(X)→ Hn(X,X2)
ι−1
∗→ Hn(X1, X1 ∩X2)→ Hn−1(X1 ∩X2),

then the algebraic Mayer-Vietoris sequence (Lemma 4) specializes to the following result.

Theorem 5. In the above situation we have an exact sequence, the Mayer-Vietoris sequence:

. . . // Hn(X1 ∩X2)
(j1∗,j2∗)// Hn(X1)⊕Hn(X2)

i1∗−i2∗// Hn(X)
∆n // Hn−1(X1 ∩X2) // . . .

This theorem allows for inductive calculations of homology groups. We will illustrate this by the
calculation of the homology groups of spheres. Besides being interesting for its own sake, this will
provide the basis for a large class of examples to be studied in a later lecture.
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Proposition 6. The singular homology groups of the spheres are as follows:

Hn(S0) ∼=
{

Z⊕ Z , n = 0
0 , otherwise

and Hn(Sm) ∼=
{

Z , n = 0, m
0 , otherwise

if m > 0

Proof. Since S0 is just a disjoint union of two points we already calculated its homology groups.
Moreover, since all the remaining spheres are path connected we know already all the zeroth ho-
mology groups. Let us calculate the homology group of Sm for m ≥ 1. In these cases let us denote
by X1 ⊂ X = Sm the subspace obtained by removing the ‘north pole’ NP ∈ Sm. Similarly, let
X2 ⊂ Sm be obtained by removing the ‘south pole’ SP ∈ Sm. We are in the situation of the Mayer-
Vietoris sequence since the interiors of X1 and X2 cover X. Moreover, the intersection X1 ∩X2 is
homotopy equivalent to Sm−1 in these cases and the subspaces X1, X2 are contractible. Thus, the
homotopy invariance of singular homology implies that H∗(Xi) is trivial in positive dimensions and
that H∗(X1 ∩X2) ∼= H∗(S

m−1).
Let us begin by applying the Mayer-Vietoris sequence in the case of m = 1. We know already

that H1(S1) ∼= Z since the same is true for the fundamental group of S1. For Hn(S1), n ≥ 2, the
relevant part of the Mayer-Vietoris sequence is given by

. . .→ Hn(X1)⊕Hn(X2)→ Hn(S1)→ Hn−1(∗ t ∗)→ . . . .

But since both Hn(X1)⊕Hn(X2) and Hn−1(∗ t ∗) are zero the same is true for Hn(S1), n ≥ 2.
We now proceed by induction: consider m ≥ 2 and assume that the calculations of the homology

of Sk, k ≤ m− 1, are already done. For the calculation of H1(Sm) we consider the following part
of the Mayer-Vietoris sequence:

. . .→ H1(X1)⊕H1(X2)→ H1(Sm)→ H0(Sm−1)→ H0(X1)⊕H0(X2)

The path connectedness of Sm−1, X1, and X2 shows us that the last map in this sequence is
isomorphic to Z → Z ⊕ Z : c 7→ (c, c). Since this map is injective and the Xi are contractible we
conclude that H1(Sm) ∼= 0. For n ≥ 2 the interesting part of the Mayer-Vietoris sequence is:

. . .→ Hn(X1)⊕Hn(X2)→ Hn(Sm)→ Hn−1(Sm−1)→ Hn−1(X1)⊕Hn−1(X2)→ . . .

But the contractibility of the Xi implies that the outer groups are trivial so that we obtain an
isomorphism Hn(Sm) ∼= Hn−1(Sm−1) in this range. The inductive assumption allows us to conclude
the proof. �

These calculations show us that for spheres the homology groups are trivial ‘above the dimension’,
which turns out to be an important feature of singular homology theory. Let us mention the
following immediate consequences.

Corollary 7. (1) For m 6= n the spheres Sm and Sn are not homotopy equivalent.
(2) For m ≥ 0 the sphere Sm is not contractible.

Proof. This follows immediately from Proposition 6 and the homotopy invariance of singular ho-
mology. �

All vector spaces of the form Rn are contractible so that they are all homotopy equivalent. How-
ever, we can now use our above calculations to show that these vector spaces are not homeomorphic
unless they have the same dimensions.

Corollary 8. (Invariance of dimension) For m 6= n the spaces Rm and Rn are not homeomorphic.
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Proof. Let us assume we are given a homeomorphism f : Rm → Rn and let us choose an arbitrary
x0 ∈ Rm. We obtain an induced homeomorphism f : Rm\{x0} ∼= Rn\{f(x0)}. If either of the
dimensions happens to be zero then this must also be the case for the other one. So, let us assume
that both of them are different from zero. Then the domain and the target of this restricted
homeomorphism is homotopy equivalent to a sphere of the respective dimension, and we thus get a
homotopy equivalence Sm−1 ' Sn−1. By Corollary 7, this can only be the case if m = n. �

The corresponding result in the ‘differentiable category’ is much easier. A diffeomorphism
f : Rm → Rn induces an isomorphism at the level of tangent spaces dfx0 : Tx0Rm ∼= Tf(x0)Rn.
Thus, the dimensions of these vector spaces have to coincide so that we get m = n.

There are many further classical applications. For the time being, we will content ourselves with
the following one. Let us denote by Dn ⊂ Rn the closed ball of radius 1 centered at the origin.

Proposition 9. (Brouwer fixed point theorem) Every continuous map f : Dn → Dn has a fixed
point.

Proof. Let us assume that f has no fixed points at all. For each x ∈ Dn there is thus a unique
ray from f(x) through x. Each such ray has a unique point of intersection with the boundary Sn−1

of Dn which we denote by r(x). We leave it as an exercise to the reader to check that the assignment
x 7→ r(x) defines a continuous retraction r : Dn → Sn−1. Moreover, we leave it to the reader to
show that this contradicts the calculations in Proposition 6. �

In many cases it is convenient to consider a minor variant of singular homology given by reduced
singular homology. By definition, the k-th reduced homology group H̃k(X) of a space X is the

k-th homology group of the following augmented chain complex C̃(X):

. . .→ C2(X)
∂→ C1(X)

∂→ C0(X)
ε→ Z

This chain complex differs from the usual singular chain complex by the fact that in degree −1
there is an additional copy of the integers. The map

ε : C0(X)→ Z :

k∑
i=1

nixi 7→
k∑
i=1

ni

is the augmentation map which already played a role in the identification of H0. We leave it as an
exercise to show that from this definition we obtain isomorphisms:

Hk(X) ∼=
{
H̃k(X) , k > 0

Z⊕ H̃0(X) , k = 0

Thus, in positive dimensions the notions coincide while in dimension zero the reduced homology
group is obtained from the unreduced one by splitting off a copy of the integers. Let us give two
examples which follow immediately from our earlier calculations.

Example 10. (1) If X is a contractible space, then H̃k(X) ∼= 0 for all k ≥ 0.

(2) For the spheres we have H̃n(Sn) ∼= Z and H̃k(Sn) ∼= 0 for all k 6= n.

Exercise 11. For a pointed space (X,x0) there is an isomorphism H̃i(X) ∼= Hi(X,x0) which is
natural with respect to pointed maps, i.e., maps sending base points to base points.

Exercise 12. Let (X,A) be a pair of spaces. Then there is a long exact sequence

· · · → H2(X,A)→ H̃1(A)→ H̃1(X)→ H1(X,A)→ H̃0(A)→ H̃0(X)→ H0(X,A)→ 0.
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Corollary 13. For each n ≥ 1 we have isomorphisms

Hk+1(Dn+1, Sn) ∼= H̃k(Sn) ∼= Hk(Sn, ∗) ∼=
{

Z , k = n
0 , otherwise.

Proof. We already know that this description is correct for the homology of the sphere so it remains
to discuss the case of (Dn+1, Sn). But this follows immediately from the long exact sequence in
reduced homology. �

A generator of any of the groups Hn(Dn, Sn−1) ∼= Z is called a fundamental class or orienta-
tion class. Note that these classes are only well-defined up to a sign. Sometimes it is convenient
to make explicit, compatible choices for these orientation classes in all dimensions, and we will be
a bit more specific when we discuss the degree maps Sn → Sn.

Related to this notion are the local homology groups of manifolds. Let M be a topological
manifold of dimension n and let x0 ∈ M. Then the k-th local homology group of M at x0 is
Hk(M,M − {x0}). By definition of a manifold, we can find an open neighborhood x0 ∈ V and a
homeomorphism V ∼= Rn sending x0 to 0 ∈ Rn. An application of excision implies that we have
isomorphisms

Hk(V, V − {x0})
∼=→ Hk(M,M − {x0}).

Using the homeomorphism we obtain a further isomorphism Hk(V, V − {x0}) ∼= Hk(Rn,Rn − {0})
and the reader will easily show that this group is isomorphic to H̃k−1(Sn−1). Thus, the we have

Hk(M,M − {x0}) ∼=
{

Z , k = n
0 , otherwise,

and any generator
ω = ωx0

∈ Hn(M,M − {x0})
is a local orientation class of M at x0. Also these local orientation classes are only well-defined
up to a sign, and one can show that a manifold M is orientable if and only if local orientation
classes ωx0 , x0 ∈M, can be chosen in a compatible way (which we do not want to make precise).


