
LECTURE 8: CW COMPLEXES

In this section we introduce CW complexes, an important class of spaces which can be built
inductively by gluing ‘cells’. Here we will study basic notions and examples, some facts concerning
the point set topology of these spaces, and also give elementary constructions.

By the very definition, a CW complex is given by a space which admits a filtration such that
each next filtration step is obtained from the previous one by attaching cells. Let us begin by
introducing this process. Let en = {(x0, . . . , xn−1) ∈ Rn |

∑
x2i ≤ 1} be a copy of the (closed) n-

ball. Its boundary ∂en = Sn−1 is the (n− 1)-sphere (for n = 0 we take ∂e0 = ∅). If X is any space
and χ : ∂en → X a map, one can form the new space X ∪χ en defined as the pushout

∂en

i

��

χ
// X

��

en // X ∪χ en.

More explicitly, X ∪χ en is the space obtained from the disjoint union X t en by identifying each
i(y) ∈ en with χ(y) ∈ X for all y ∈ ∂en, and equipping the resulting set with the quotient topology.
The universal property of this quotient is as follows.

Exercise 1. (1) The maps X → X ∪χ en and en → X ∪χ en are continuous and make the
above square commutative. Moreover, the triple consisting of the space X ∪χ en and these
two maps is initial with respect to this property. In other words, for all triples (W, g, h)
consisting of a topological space W and continuous maps g : X →W and h : en →W such
that the outer square in the following diagram commutes

∂en

��

// X

�� g

��

en //

h //

X ∪χ en

∃!
$$

W

there is a unique dashed arrow X ∪χ en →W such that the two triangles commute.
(2) Define more generally the notion of a pushout for two arbitrary maps A→ X and A→ Y

of spaces with a common domain. Show that the pushout exists and is unique up to a
unique homeomorphism in a way which is compatible with the structure maps.

(3) The notion of a pushout makes sense in every category but does not necessarily exist. To
familiarize yourself with the concept, show that the categories of sets and of abelian groups
have pushouts by giving an explicit construction.

We refer to the space X ∪χ en as being obtained from X by ‘attaching an n-cell’, and call
χ : ∂en → X the attaching map, and en → X ∪χ en the characteristic map of the ‘cell’ en.
Note that this characteristic map restricts to a homeomorphism of the interior of en to its image
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in X ∪χ en, i.e., we have a relative homeomorphism (en, ∂en) → (X ∪χ en, X). The image of this
homeomorphism is called the open cell, and the image of en → X ∪χ en the closed cell of this
attachment.

Usually one attaches more than one cell, and writes eσ for the cell with ‘index σ’, sometimes
leaving the dimension implicit. If χ : ∂eσ → X is the attaching map, it is handy to freeze the
index σ, and write χ∂σ for the attaching map, χσ for the characteristic map, and refer to eσ or its
image as the cell (with index) σ.

Thus if we obtain Y from X by attaching a set Jn of n-cells, then, by considering Jn as a discrete
space, we have a pushout diagram of the form

Jn × ∂en =
⊔
σ∈Jn ∂e

n
σ

��

// X

��

Jn × en =
⊔
σ∈Jn e

n
σ

// Y.

In particular, a subset of Y is open if and only if its preimages in X and each en are open, i.e., Y
carries the quotient topology.

Definition 2. Let X be a topological space. A CW decomposition of X is a sequence of
subspaces

X(0) ⊆ X(1) ⊆ X(2) ⊆ . . . ⊆ X(n) ⊆ . . . , n ∈ N,
such that the following three conditions are satisfied:

(1) The space X(0) is discrete.
(2) The space X(n) is obtained from X(n−1) by attaching a (possibly) infinite number of n-cells
{enσ}σ∈Jn via attaching maps χσ : ∂enσ → X(n−1).

(3) We have X =
⋃
X(n) with the weak topology (this means that a set U ⊆ X is open if and

only if U ∩X(n) is open in X(n) for all n ≥ 0).

A CW decomposition is called finite if there are only finitely many cells involved. A (finite) CW
complex is a space X equipped with a (finite) CW decomposition. Given a CW decomposition of
a space X then the subspace X(n) is called the n-skeleton of X.

Remark 3. (1) Note that by the very definition a CW complex is a space together with an
additional structure given by the CW decomposition. Nevertheless, we will always only
write X for a topological space endowed with a CW decomposition.

(2) Condition (3) in Definition 2 is only needed for infinite complexes.
(3) From the definition of the weak topology it also follows that closed subsets of X can be

detected by considering the intersections with all skeleta X(n).
(4) The image of a characteristic map χσ : eσ → X is called a closed cell in X, and the image

of χσ : e◦σ → X an open cell. These need not be open in X! Every point of X belongs to
X(0) or lies in a unique open cell.

(5) Each X(n) is a closed subspace of X(n+1), and hence of X. (The open (n+1)-cells are open
in X(n+1) but not necessarily in X).

Example 4. (1) The interval I = [0, 1] has a CW decomposition with two 0-cells and one
1-cell by identifying the boundary of the unique 1-cell with the two 0-cells as expected.

(2) The circle S1 has a CW decomposition with one 0-cell and one 1-cell and no other cells. Of
course, it also has a CW composition with two 0-cells and two 1-cells.
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(3) More generally, if one identifies the boundary ∂en of the n-ball to a point, one obtains (a
space homeomorphic to) the n-sphere. Thus the n-sphere has a CW decomposition with
one 0-cell and one n-cell, and no other cells. One can also build up the n-sphere by starting
with two points, then two half circles to form S1, then two hemispheres to form S2, and
so on. Then Sn has a CW decomposition with exactly 2 i-cells for i = 0, . . . , n (draw a
picture for n ≤ 2!). If we take the coordinates (x0, . . . , xn) with

∑
x2i = 1 for Sn as before,

these two i-cells are

ei+ = {(x0, . . . , xi, 0 . . . , 0) ∈ Sn | xi ≥ 0}

and

ei− = {(x0, . . . , xi, 0 . . . , 0) ∈ Sn | xi ≤ 0}.
(4) The real projective space RPn, the space of lines through the origin in Rn+1, can be

constructed as the quotient Sn/Z2 where Z2 = Z/2Z acts on the n-sphere by the antipodal
map; in other words, by the quotient of Sn obtained by identifying x and −x. This identi-
fication maps the cell ei+ to ei−. Thus RPn has a CW decomposition with exactly one i-cell
for i = 0, . . . , n.

(5) The complex projective space CPn is the space of complex lines through the origin
in Cn+1. Such a line is determined by a point (z0, . . . , zn) 6= 0 on the line, and for any
scalar λ ∈ C − {0} the tuple (λz0, . . . , λzn) determines the same line for which we write
[z0, . . . , zn]. The line can also be represented by a point z = (z0, . . . , zn) with |z| = 1, so
that z and λz represent the same line for all λ ∈ S1. Thus CPn = S2n+1/S1 is a space of
(real) dimension 2n. There are inclusions

∗ = CP0 ⊆ CP1 ⊆ CP2 ⊆ . . .

where CPn−1 ⊆ CPn sends [z0, . . . , zn−1] to [z0, . . . , zn−1, 0]. An arbitrary point in CPn −
CPn−1 can be uniquely represented by (z0, . . . , zn−1, t) where t > 0 is the real number√

1−
∑
ziz̄i. This defines a map

e2n → CPn : z = (z0, . . . , zn−1) 7→ [z0, . . . , zn−1, t]

with t =
√

1− ||z||. The boundary of e2n (where t = 0) is sent to CPn−1. In this way, CPn

is obtained from CPn−1 by attaching one 2n-cell. So CPn has a CW structure with one cell
in each even dimension 0, 2, . . . , 2n.

(6) Every compact manifold is homotopy equivalent to a CW complex. One can even show that
every topological space is weakly homotopy equivalent to a CW complex. (Both of these
statements are theorems which we only include to indicate the generality of the notion.)

Exercise 5. (1) The torus T can be obtained from the square by identifying opposite sides.
Use an adapted CW decomposition of the square to also turn the torus into a CW complex.

(2) Similarly we can obtain the Klein bottle from the unit square by identifying (0, t) ∼ (1, t)
and (s, 0) ∼ (1− s, 1). Show that there is a similar CW decomposition of the Klein bottle.

(3) Can you come up with CW decompositions of the torus and the Klein bottle which have
the same number of cells in each dimension? In particular this shows the obvious fact that
the number of cells does not determine the space.

Lemma 6. Let X be a CW complex and let U be a subset of X. Then a subset U ⊂ X is open if
and only if U ∩X(n) is open for each n if and only if χ−1σ (U) ⊆ enσ is open for each cell σ of X.
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Proof. The equivalence of the first two statements holds true by definition of CW complexes. It
is immediate that the second condition implies the third one. We want to prove the converse
implication by induction so let us begin by observing that U ∩X(0) is open in X(0) since X(0) is
discrete. For the inductive step, let us assume that U ∩X(n−1) is open in X(n−1) for some n ≥ 1.
Recall that we then have a pushout diagram of the following form:

Jn × ∂en =
⊔
σ∈Jn ∂e

n
σ

��

// X(n−1)

��

Jn × en =
⊔
σ∈Jn e

n
σ

// X(n)

By assumption χ−1σ (U) ⊆ enσ is open for every σ ∈ Jn. But the above pushout diagram together
with the induction assumption then tells us that also U ∩ X(n) is open in X(n) concluding the
proof. �

Thus, given a CW complex X with n-cells parametrized by index sets Jn, then taking all the
attaching maps together we obtain a map

(χσ)n,σ :
⊔
n

Jn × en ∼=
⊔
n

⊔
σ∈Jn

enσ → X.

The above lemma shows that X carries the quotient topology with respect to this map.

Corollary 7. Let X be a CW complex, Y a topological space, and g : X → Y a map of sets. Then
the following are equivalent:

(1) The map g : X → Y is continuous.
(2) The restriction g | : X(n) → Y is continuous for all n ≥ 0.
(3) The map g ◦ χσ : enσ → Y is continuous for each cell enσ.

This corollary allows us to build continuous maps ‘cell by cell’. Thus, not only CW complexes
can be built inductively by attaching cells but the same holds also true for maps defined on a CW
complex. There is also a similar result for homotopies.

Exercise 8. Let X be a CW complex, Y a topological space, and H : X × I → Y a map of sets.
Then H is continuous if and only if each composition

H ◦ (χσ ×idI) : enσ × I → X × I → Y

is continuous for each cell enσ of X.

Before turning to CW subcomplexes and an adapted class of morphisms, let us establish some
more fundamental properties of CW complexes.

Exercise 9. A CW complex is normal. Thus show that disjoint closed subsets have disjoint open
neighborhoods and that points are closed.

In studying the topology of CW complexes, one often uses the following fact.

Proposition 10. Any compact subset of a CW complex is contained in finitely many open cells.

This proposition in fact immediately follows from the following statement, by choosing a point
in every open cell that intersects non-trivially the given compact subset.



LECTURE 8: CW COMPLEXES 5

Lemma 11. Let X be a CW complex and A ⊂ X a subspace. If A has at most one point in each
open cell then A is closed in X and the subspace topology on A is discrete.

Proof. We check this by induction on n and for each A∩X(n) as a subspace of X(n) (the closure then
follows by definition of the weak topology on X). For n = 0 there is nothing to prove since X(0) is
discrete. Suppose the statement has been proved for A∩X(n−1) ⊆ X(n−1). Write A∩X(n) = BtC
where B = A∩X(n−1) and C = A∩ (X(n)−X(n−1)). Then C is open in A because the open n-cells
are open in X(n), and for the same reason C is discrete. The set C is closed in X(n) because if
x ∈ C̄ then x lies in the same open cell as any point c ∈ C close to x, hence x = c. So C is
closed and discrete in X(n). Also B is closed and discrete in X(n−1) by induction hypothesis, hence
in X(n) because X(n−1) ⊆ X(n) is closed. Then B t C has the same properties, which completes
the induction step. �

Remark 12. This proposition allows us to explain the terminology ‘CW complex’. In the original
definition given by J.H.C. Whitehead, the following two properties played a more essential role:

(C): The closure of every cell lies in a finite subcomplex (‘closure finite’).
(W): A subset is open if and only if it is open in the n-skeleton for all n (‘weak topology’).

We now turn to an adapted class of morphisms between CW complexes.

Definition 13. A map f : X → Y between CW complexes is cellular if it satisfies f(X(n)) ⊆ Y (n)

for all n. It is immediate that we have a category of CW complexes and cellular maps.

Thus, such a cellular map induces commutative diagrams of the form:

X(n)

i

��

f |
// Y (n)

i

��

X
f

// Y

Let us give some examples of cellular maps. One can show that this notion is rather generic.

Example 14. (1) The vector space Rn maps injectively to Rn+1 by adding a zero as the last
coordinate, i.e., we have a map

in : Rn → Rn+1 : (t1, . . . , tn) 7→ (t1, . . . , tn, 0).

These maps restrict to maps of spheres as follows

jn = in+1 | : Sn → Sn+1

and these maps are cellular with respect to the CW decompositions on the spheres with
precisely two cells in each dimension lower or equal to the dimension of the respective sphere
(but not with respect to the other one).

(2) Since the inclusions in : Rn → Rn+1 are compatible with the actions by R×, we obtained
induced maps j′n : RPn−1 → RPn which are easily seen to be cellular with respect to the
CW decomposition of Example 4. The maps are also obtained from the maps jn of the last
example by passing to the quotient by the Z/2Z-action and these quotient maps are also
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cellular. Thus, we have a diagram of cellular maps:

S0 j0 //

q0
��

S1 j1 //

q1
��

S2 j2 //

q2
��

. . .

RP 0

j′0

// RP 1

j′1

// RP 2

j′2

// . . .

Similarly, in the case of complex numbers, we have cellular maps:

CP 0 → CP 1 → CP 2 → . . .

(3) In Example 4 we introduced two CW decompositions on the n-sphere. Let us write Sn for

the one with two cells in each dimension d ≤ n while we write Ŝn for the one with precisely

one 0-cell and one n-cell. Then the identity map id: Ŝn → Sn is cellular, while this is not

the case for id : Sn → Ŝn if n ≥ 2.


