
LECTURE 9: BASIC HOMOLOGICAL ASPECTS OF CW COMPLEXES

We begin this lecture by a brief introduction to some basic aspects of CW complexes (subcom-
plexes, quotient comlexes, and the subtleties concerning products). In the remainder of the lecture
we establish a few basic homological properties of CW complexes. This will make necessary a brief
discussion of the compatibility of singular homology and directed colimits.

Recall from the previous lecture that CW complexes are spaces which can be inductively obtained
form discrete spaces by attaching cells. We now turn to subcomplexes of CW complexes.

Proposition 1. Let X be a CW complex and let Y ⊆ X be a closed subspace such that the
intersection Y ∩ (X(n) −X(n−1)) is the union of open n-cells. The filtration

Y (0) ⊆ Y (1) ⊆ . . . ⊆ Y

given by Y (n) = Y ∩X(n) then defines a CW decomposition on Y . Moreover, the inclusion Y → X
is then a cellular map.

As a special case, this proposition suggests how to define pointed CW complexes and, more
generally, pairs of CW complexes.

Definition 2. In the notation of the above proposition, we refer to Y as a CW subcomplex of X
and to (X,Y ) as a CW pair. A pointed CW complex (X,x0) is a CW complex X together
with a chosen base point x0 ∈ X(0).

In the obvious way, this gives us the category of pointed CW complexes and CW pairs whose
definitions are left to the reader.

Example 3. (1) For an arbitrary CW complex X, we have CW pairs (X,X(n)) for all n and
similarly (X(n), X(m)) for n ≥ m.

(2) We have CW pairs (Sn, Sm), (RPn,RPm) and similarly in the complex case for n ≥ m. If
we endow the unions

S∞ =
⋃
n

Sn, RP∞ =
⋃
n

RPn, and CP∞ =
⋃
n

CPn

with the weak topology then each of the three spaces carries canonically a CW structure.
Moreover, we have CW pairs (S∞, Sn), (RP∞,RPn). and (CP∞,CPn) for all n.

Exercise 4. Let (X,Y ) be a CW pair. Then the quotient space X/Y can be turned in a CW
complex such that the quotient map X → X/Y is cellular.

We will now establish a few more closure properties of CW complexes. Let us begin with a more
difficult one, namely the product. Recall that we observed that each CW complex is obtained from
a disjoint union of cells by passing to a quotient space. Namely, for a CW complex X we have a
quotient map: ⊔

n

Jn × en → X

1
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Given two CW complexes X and Y one might now try to take two such presentations⊔
n

Jn(X)× en → X and
⊔
m

Jm(Y )× em → Y

and use homeomorphisms en × em ∼= en+m to obtain a map⊔
k

Jk(X × Y )× ek → X × Y

where Jk(X×Y ) = tk′+k′′=kJk′(X)×Jk′′(Y ). However, this map is, in general, not a quotient map.
More conceptually, the problem is that the formation of products and quotients in the category of
spaces are not compatible in general. Nevertheless, under certain ‘finiteness conditions’ one can
obtain a positive result.

Proposition 5. Let X,K be CW complexes such that K is finite. Then the product X × K is
again a CW complex with the above CW decomposition.

Using the previous proposition we can establish additional closure properties for the class of CW
complexes.

Corollary 6. (1) The disjoint union of two CW complexes is again a CW complex such that
the inclusions of the respective summands are cellular.

(2) Given a CW complex X then the cylinder X × I is again a CW complex. For each n-
cell enσ of X we obtain three cells for X × I, namely two n-cells enσ × {0}, enσ × {1}, and an
(n + 1)-cell enσ × e1. Moreover, the cylinder comes with cellular maps i0, i1 : X → X × I
and p : X × I → X.

(3) Given a CW complex X, then the unreduced suspension SX is again a CW complex. In
fact, we know that the cylinder of X is a CW complex, and SX is obtained in two steps by
passing to the quotient of a subcomplex.

Proof. The first statement is immediate while the other ones follow from Proposition 5 and the
examples of the previous lecture. �

In the definition of a CW complex X, the first condition we imposed was that X(0) is to be
a discrete space and then that the higher skeleta are obtained from the lower ones by attaching
n-cells for n ≥ 1. We can also think of X(0) as being obtained from the empty space by attaching
0-cells; in fact, using the convention that ∂e0 = ∅ we have a pushout:

X(0) × ∂e0 =
⊔
σ∈X0

∂e0
σ

��

∼= // X(−1) = ∅

��

X(0) × e0 =
⊔
σ∈J0 e

0
σ ∼=

// X(0)

This observation is more than only a rather picky remark since it motivates the following general-
ization of the notion of CW complex.

Definition 7. Let (X,A) be a pair of spaces. Then X is a CW complex relative to A, if there
is a filtration of X,

A = X(−1) ⊆ X(0) ⊆ X(1) ⊆ . . . ⊆ X,
such that the following two properties are satisfied:

(1) The space X(n) is obtained from X(n−1) by attaching n-cells for n ≥ 0.
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(2) The space X is the union
⋃
n≥−1X

(n) endowed with the weak topology.

In this situation, the pair (X,A) is called a relative CW complex.

Example 8. (1) Let X be a CW complex and x0 ∈ X0. Then we have a relative CW complex
(X,x0).

(2) More generally, every CW pair is a relative CW complex.

We now turn to basic homological aspects of CW complexes. Recall that we have a good
understanding of the homology of the spheres,

Hk(Sn, ∗) ∼=
{

Z , k = n
0 , otherwise.

The n-sphere is obtained from a point by attaching an n-cell. Since CW complexes are obtained in-
ductively by attaching cells, a first step towards an understanding of the homology of CW complexes
would consist of understanding the effect of the attachment of a cell at the level at homology.

Lemma 9. Let X be obtained from A by attaching a n-cell along f : ∂en → A, X = A∪f en. Then

Hk(X,A) ∼=
{

Z , k = n
0 , otherwise.

Moreover, the attaching map applied to any orientation class of (en, ∂en) gives us a generator of
Hn(X,A).

Proof. Let N ⊆ en be a small collar around the boundary of en, e.g., N = ∂en × (1− ε, 1] for some
small ε > 0. Then by gradually shrinking this collar back to the boundary, we obtain a homotopy
equivalences (X,A) ' (X,A∪N), and hence isomorphisms Hk(X,A) ∼= Hk(X,A∪N) for all k ≥ 0
by homotopy invariance. But A ⊆ (A ∪ N)◦ so by excision the map induced by the inclusion in
homology is an isomorphism,

Hk(X −A,N −A) ∼= Hk(X,A ∪N), k ≥ 0.

Now X −A is an open ball of dimension n and N −A is a collar, so clearly by collapsing this collar
to a sphere we obtain an additional homotopy equivalence

(X −A,N −A) ' (en, ∂en).

Thus, again by homotopy invariance, we obtain isomorphisms

Hk(X −A,N −A) ∼= Hk(en, ∂en)

for all k ≥ 0, and the first statement follows by the long exact sequence associated to this latter
pair. We leave it to the reader to go through the construction and to check the statement about
the generators of Hn(X,A). �

Thus this lemma tells us that if a space is obtained by attaching an n-cell then there is a unique
copy of the integer in the corresponding homology group, and a generator is given by the cell itself.
Using this lemma, we can draw some consequences for the homology of CW complexes by ‘induction
on the number of the cells’. In this lecture we will only achieve a first step and continue with the
program in the next lecture.

As the case of finite CW complexes requires less machinery, we treat that case independently.

Proposition 10. For any finite CW complex X, Hk(X(n), X(n−1)) ∼= 0 for all k 6= n.
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Proof. The proof will be given by induction. The assertion is true if X has dimension 0. Suppose
X = A∪f ei and the assertion is true for A. We claim it also holds for X. There are three cases to
be discussed:

(1) If n < i then (X(n), X(n−1)) = (A(n), A(n−1)) and there is nothing to prove.
(2) If n > i then (X(n), X(n−1)) = (A(n) ∪χ ei, A(n−1) ∪χ ei) where χ denotes the attaching

map of the i-cell. If B is a closed ball inside the interior of ei, then the B is also contained
in the interior of X(n−1). Thus by excision we deduce that the inclusion

(X(n) −B,X(n−1) −B)→ (X(n), X(n−1))

induces isomorphisms in homology. But by gradually expanding this ball to fill ei, we
obtain a homotopy equivalence (X(n) − B,X(n−1) − B) ' (A(n), A(n−1)). The homotopy
invariance implies that the inclusion (A(n), A(n−1))→ (X(n), X(n−1)) induces isomorphisms
is homology so that the induction assumption on A establishes this case.

(3) So the remaining case is where i = n in which case there are inclusions

A(n−1) = X(n−1) ⊆ A(n) ⊆ A(n) ∪χ ei = X(n).

For this sequence of spaces, the inclusions of pairs

(A(n), A(n−1)) ⊆ (X(n), A(n−1)) = (X(n), X(n−1)) ⊆ (X(n), A(n))

induces a long exact sequence in homology (the long exact sequence of a triple)

. . .→ Hk+1(X(n), A(n))
∆→ Hk(A(n), A(n−1))→ Hk(X(n), X(n−1))→ Hk(X(n), A(n))

∆→ . . . .

We show that Hk(X(n), X(n−1)) ∼= 0 for all k 6= 0 by showing that in this range the two
groups next to it in the above long exact sequence vanish. But for k 6= n, the group
Hk(A(n), A(n−1)) is already known to vanish by induction hypothesis. In order to obtain
the vanishing of Hk(X(n), A(n)) for k 6= 0 it suffices to note that X(n) is obtained from A(n)

by attaching an n-cell. Thus we can conclude since Hk(X(n), X(n−1)) sits between zeros in
the sequence, hence must itself be zero.

This concludes the inductive step and hence the proof since our CW complexes were assumed to
be finite. �

In order to obtain a similar result for not necessarily finite CW complexes, let us first include a
short detour on directed colimits. Let us begin by establishing some terminology.

Definition 11. (1) A partially ordered set (P,≤) is directed if it is non-empty and if for
every two elements i, j ∈ P there is an element k ∈ P such that i ≤ k and j ≤ k.

(2) A directed system in a category C over a directed poset P consists of a family of objects
Ci, i ∈ P, and morphisms fij : Cj → Ci for every pair of elements i, j ∈ P , i ≥ j, which
satisfy the relations

fii = idCi
: Ci → Ci, i ∈ P, and fij ◦ fjk = fik, i ≥ j ≥ k.

(3) A directed colimit of such a directed system (Ci, fij) consists of an object C ∈ C together
with morphisms fi : Ci → C such that fj = fi ◦fij whenever i ≥ j. Moreover, this datum is
supposed to be universal with respect to this property in the following sense: whenever there
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is an object D together with morphisms gi : Ci → D which also satisfy gj = gi ◦ fij , i ≥ j,
then there is a unique morphism g : C → D such that gi = g ◦ fi.

Cj
fij

//

fj

  

gj

��

Ci
fi

��

gi

��

C

��

D

(4) A category C has directed colimits if there is a directed colimit for every directed system
in C.

(5) A morphism of directed systems (Ci, fij) → (C ′i, f
′
ij) consists of morphisms Ci → C ′i

which commute with the maps fij and f ′ij , i.e., such the following squares commute

Ci //

��

Cj

��

C ′i
// C ′j .

Exercise 12. Show that given two directed colimits (C, fi) and (C ′, f ′i) of the same directed system
(Ci, fij) then there is a unique isomorphism g : C → C ′ such that f ′i = g ◦ fi. This justifies that we
talk about the directed colimit and we write C = colimi∈PCi for it. Conclude that a morphism of
directed systems induces a morphism of directed colimits (provided both directed colimits exist).

Lemma 13. The categories of abelian groups, of chain complexes of abelian groups, and of topo-
logical spaces have directed colimits.

Proof. Let P be a directed partially ordered set and let (Ai, fij : Aj → Ai) be a directed system of
abelian groups (over P ). Then we can form the direct sum

⊕
i∈P Ai which comes with the subgroup

R generated by

fij(x)− x, i, j ∈ P, x ∈ Ai.
We define C to be the quotient of

⊕
iAi/R. The natural inclusions Aj →

⊕
Ai induce homomor-

phisms fj : Aj → C. Note that any c ∈ C can be represented as fj(aj) for suitable aj ∈ Aj . In fact,
by definition of C, every element is a coset represented by a finite sum Σnk=1aik for some aik ∈ Aik .
Since P is directed we can find an element j ∈ P such that ik ≤ j for all k = 1, . . . , n. Thus we can
consider the element Σnk=1fjik(aik) ∈ Aj and it is immediate that this element represents c ∈ C. It
follows from the definition of R that the relations fij ◦ fj = fi are satisfied.

Now, let D be an abelian group coming with similar maps gi : Ai → D such that gi ◦ fij = gj .
The induced map g = (gi) :

⊕
Ai → B sends the generators of R to zero and hence factors uniquely

through C. This concludes the construction of the colimit of the directed system.
The case of chain complexes follows more or less directly from this (using that the differentials

can be considered as defining a morphism of directed systems). The details about this case and the
category of topological spaces will be discussed in the exercises. �

From now on given a directed system (Ai, fij)i∈P of abelian groups, chain complexes, or topo-
logical spaces, we will write colimi∈P Ai for the directed colimit.
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Exercise 14. Let (Ai, fij)i∈P be a directed system of abelian groups and let fj : Aj → colimi∈P Ai
be the canonical map. Then an element xj ∈ Aj satisfies fj(aj) = 0 ∈ colimi∈P Ai if and only if
there is an element k ∈ P, j < k, such that fkj(xj) = 0 ∈ Ak.

Thus, elements which are sent to zero in the directed colimit already vanish at some finite stage.
Using this exercise we establish the following lemma.

Lemma 15. Let (A′i, f
′
ij) → (Ai, fij) → (A′′i , f

′′
ij) be morphisms of directed systems of abelian

groups. If the sequences A′i
ιi→ Ai

πi→ A′′i are exact for all i ∈ P, then also the induced sequence

colimi∈P A
′
i
ι→ colimi∈P Ai

π→ colimi∈P A
′′
i

of homomorphisms of abelian groups is exact.

Proof. We use the explicit description of elements in a directed colimit of abelian groups to prove
this result. Let us consider an element a′ ∈ colimi∈P P

′
i . Then there is an index j ∈ P such that a′

can be represented by some a′j ∈ A′j , i.e., a′ = f ′j(a
′
j) where f ′j : A′j → colimi∈P A

′
i is the canonical

map to the colimit (we will use similar notation for the canonical maps in the other two cases). By
definition of the induced maps between colimits we obtain

πι(a′) = πι(f ′j(a
′
j)) = f ′′j (πjιj(a

′
j)) = f ′′j (0) = 0,

showing that the image of ι lies in the kernel of π.
Conversely, let a ∈ colimi∈P Ai lie in the kernel of π, π(a) = 0. By definition of the induced

homomorphism we can find an element aj ∈ Aj representing the element a, fj(aj) = a, and such
that πj(aj) becomes zero in the colimit colimi∈P A

′′
i . But πj(aj) has then already to vanish at a

finite stage. More precisely, there is an index k ∈ P , j < k, such that f ′′kj(πj(aj)) = 0. But we also

have 0 = f ′′kj(πj(aj)) = πk(fkj(aj)). Using the exactness of the morphisms of directed systems in

the k-th level, we conclude that there is an element a′k ∈ A′k such that ιk(a′k) = fkj(aj). But for
the element a′ = f ′k(a′k) ∈ colimi∈P A

′
i we then calculate

ι(a′) = ι(f ′k(a′k)) = fk(ιk(a′k)) = fk(fkj(aj)) = fj(aj) = a,

as intended. �

Corollary 16. Homology of chain complexes commutes with directed colimits. More precisely, for
every n and every directed system of chain complexes (Ci, fij) there is a natural isomorphism

colimi∈PHn(Ci) ∼= Hn(colimi∈PC
i).

Proof. This follows from the previous lemma, and the reader is asked to fill in the details in the
exercises. �


