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Recall that we assume throughout our base space B is connected.

1 Classification of vector bundles – continued

Last time we showed that any n-dimensional vector bundle p ∶ E Ð→ B is
isomorphic to a vector bundle obtained via pulling back the bundle
γn ∶ En Ð→ Gn as depicted below

E

p

%%JJJJJJJJJJJJ
≅ // f∗(En(k∞))

f̃ //

��

En(k
∞
)k

π //

γn

��

// k∞

B
f // Gn(k∞).

Furthermore, in such a setting, one can see that the map πf̃ι0 is a linear injection
on each fiber.

The following Theorem will be a key in the second part of the classification:

Theorem 1.1. Let B be paracompact and let p ∶ E Ð→ B×I be a vector bundle.
Then E∣X×{0} ≅ E∣X×{1}.

We first prove a couple of lemmas

Lemma 1.2. Let B be paracompact. A vector bundle p ∶ E Ð→ B × I whose
restrictions over B × [0, t] and over B × [t,1] are trivial is trivial as well.

Proof. Let h0 ∶ E0 ∶= E∣
B×[0,t]

≅

Ð→B×[0,t]×V
and h1 ∶ E1 ∶= E∣B×[t,1]

≅
Ð→ B×[t,1]×V

be isomorphisms to trivial bundles. The maps h0, h1 may not agree on E∣B×{t}

so we cannot yet glue them. Define an isomorphism h01 ∶ B × [t,1] × V Ð→

B × [t,1]×V by duplicating the map h0h
−1
1 ∶ B ×{t}×V Ð→ B ×{t}×V on each

slice B × {s}×V for t ≤ s ≤ 1 and set h1 ∶= h01h1. Then h1 is an isomorphism of
bundles and agrees with h0 on E∣B×{t}. we can now glue together h0 and h1 to
get the desired.

Lemma 1.3. For every vector bundle p ∶ E Ð→ B × I there is an open cover
{Uα}α such that each restriction E∣Uα×I Ð→ Uα × I is trivial.
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Proof. For each b ∈ B, take open neighbourhoods Ub with 0 = t0 < t1 < ... < tk = 1
such that E∣Ub×[ti−1,ti] Ð→ Ub × [ti−1, ti] is trivial. This is possible because for
each (b, t) we can find an open neighbourhood of the form Ub × Jt (where Jt is
an open interval) over which E is trivial; if we then fix b then the collection {Jt}
covers I and we can take a finite subcover J1, ..., Jk+1 and choose ti ∈ Ji ∩ Ji+1;
this way E remains trivial over Ub × [ti−1, ti]. Now, by Lemma 1.2, E is trivial
over Ub × I.

Proof of Theorem 1.1. By Lemma 1.3, take an open cover {Uα}α of B such that
E∣Uα×I is trivial. Assume first that B is compact. Then we can take a cover of
the form {Ui}

n
i=1. Take a partition of unity {hi ∶ B Ð→ I}ni=1 subordinated to

{Ui}. For i ≥ 0, set gi = h1 + ... + hi (g0 = 0, gn = 1), let Bi = Gr(gi) ⊆ B × I be
the graph of gi and let pi ∶ Ei Ð→ Bi be the restriction of E to Bi. The map
Bi Ð→ Bi−1 given by (b, gi(b)) ↦ (b, gi−1(b)) is a homeomorphism, and since
E∣Ui×I is trivial, the dotted isomorphism in the diagram below exists:

E∣Bi∩(Ui×I)

��

≅ // E∣Bi−1∩(Ui×I)

��
Bi ∩ (Ui × I)

≅ // Bi−1 ∩ (Ui × I)

(specifically: a restriction of a trivial bundle is trivial, and trivial bundles over
homeomorphic bases are isomorphic.) Since outside Ui, hi = 0, E∣Bi∩Uci

=

E∣Bi−1∩Uci
, we obtain an isomorphism of vector bundles (over different bases)

fi ∶ E∣Bi

≅
Ð→ E∣Bi−1 . The composition f = f1 ○ ... ○ fn is then an isomorphism

from E∣Bn = E∣B×{1} to E∣B0 = E∣B×{0}.
Assume now B is paracompact. Take a countable cover {Vi}i such that each

Vi is a disjoint union of opens, each contained in some Uα. This means that E is
trivial over each Vi × I. Let {hi ∶ B Ð→ I} be a partition of unity subordinated
to {Vi}i and set as before gi ∶= h1 + ... + hi and pi ∶ Ei Ð→ Bi ∶= Gr(gi) the

restriction. As before, we obtain isomorphisms fi ∶ Ei
≅
Ð→ Ei+1. The infinite

composition f = f1f2... is well-defined since for every point, almost all fi’s are
the identity. As before, f is an isomorphism from E∣B×{1} to E∣B×{0}.

In other words, Theorem 1.1 tells us that homotopic maps induce isomorphic
pullback bundles. Let VBunnk(B) be the set of isomorphism classes of rank n
k-vector bundles over B.

Corollary 1.4. A homotopy equivalence of paracompact spaces f ∶ A Ð→ B

induces a bijection f∗ ∶ VBunnk(B)
≅
Ð→ VBunnk(A). In particular, any vector

bundle over a contractible paracompact space is trivial.

Proof. If g is a homotopy inverse of f , then f∗g∗ = id∗ = id and g∗f∗ = id∗ =

id.
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We are ready to state and prove the classification theorem.

Theorem 1.5. Let B be paracompact. Then pullback along γn ∶ En(k
∞
) Ð→

Gn(k
∞
) induces a bijection

[B,Gn(k
∞
)]

≅
Ð→ VBunnk(B) (1)

[f]↦ f∗En

Proof. The map is well-defined since two homotopic maps give two isomorphic
pullback vector bundles. Proposition 5.1 of Lecture 2 gives surjectivity of 1 so
we are left with injectivity.

Assume we have two maps f0, f1 ∶ B Ð→ Gn(k
∞
) which induce isomorphic

bundles upon pullback. It would be convenient to assume we are given a vector

bundle p ∶ E Ð→ B and a couple of isomorphisms of bundles i0 ∶ E
≅
Ð→ f∗0En

and i1 ∶ E
≅
Ð→ f∗1En so that we have the following commutative diagram

f∗1En

$$

f1

  
E

i1

≅

aaCCCCCCCC

p

��

≅

i0
//

p
!!C

CC
CC

CC
CC

f∗0En
f0 //

��

En(k
∞
)

γn

��

π // k∞

B
f0 // Gn(k∞)

B

zzzzzzzzz

zzzzzzzzz
f1

55kkkkkkkkkkkkkkkkk

(2)

in which the maps f0 and f1 are obtained as pullbacks of f0 and f1 respectively.
Define g0 ∶= πf0i0 and g1 ∶= πf1i1. Then g0, g1 ∶ E Ð→ k∞ are linear injec-

tions on each fiber and satisfy f0(b) = g0(Eb) and f1(b) = g1(Eb). It will thus
be enough to find a homotopy {gt} from g0 to g1 in which all maps gt are linear
injections on each fiber since we could then define ft(b) = gt(Eb) ∈ Gn(k

∞
) to

obtain a homotopy from f0 to f1.
Composing g0 with the maps Lt ∶ k

∞
Ð→ k∞ given by

(v1, v2, ...)↦ (1 − t)(v1, v2, ...) + t(v1,0, v2,0, ...)

gives a homotopy from g0 to a map g0 through maps which are linear injections
on each fiber. The image of g0 lies in the subspace of k∞ consisting of vectors
with non-zero components only in the odd coordinates. Similarly, we can replace
g1 by a map g1 ∶ E Ð→ k∞ whose image lies in the subspace of k∞ consisting
of vectors with non-zero components only in the even coordinates.Clearly, it is
enough to construct a homotopy {gt} from g0 to g1 through maps which are
linear injections on each fiber. But this is easy now: we set gt ∶= (1 − t)g0 + tg1
and finish the argument.
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Theorem 1.5 justifies the following terminology.

Definition 1.6. The bundle γn ∶ En(k
∞
) Ð→ Gn(k

∞
) is called the universal

rank-n vector bundle.

2 Applications of the classification theorem

Let us see how the classification theorem can be used.

Example 1. The bundle γn ∶ En(k
∞
) Ð→ Gn(k

∞
) admits an inner product,

induced from an inner product on k∞. Since every rank-n vector bundle is
obtained as a pullback along γn, we deduce that any vector bundle admits an
inner product – that obtained by pulling back the one on γn. This is a shortened
proof to what you already showed in the exercise.

Example 2. Let us compute the Picard group of complex projective spaces.
By the classification theorem we have

VBun1
C(CPn) ≅ [CPn,G1(C

∞
)] = [CPn,CP∞

].

You have shown in the exercise that V1(C
∞
) Ð→ G1(C

∞
) is a fiber bundle

with fiber GL1(C). By a theorem you proved in Algebraic topology I, any fiber
bundle is a Serre fibration, so that we have a fibration sequence

GL1(C)Ð→ V1(C
∞
)Ð→ G1(C

∞
). (3)

You have seen in the exercise class that the spaces Vn(k
∞
) are contractible and

it is easy to see that GL1(C) ≃ S1 (this is so since GL1(C) = C∖{0}). Thus, the
long exact sequence for the fibration sequence 3 implies that G1(C

∞
) = CP∞ is

a K(Z,2). Now, an application of Brown’s representability theorem (which you
proved in Algebraic Topology I) implies that [CPn,CP∞

] = [CPn,K(Z,2)] ≅
H2

(CPn;Z) – i.e. the second cohomology group of CPn. Using cellular coho-
mology (this is an elementary way of calculation, given in any first course in
cohomology) we deduce from the cell structure of CPn (one cell in each even
dimension and no others) that Pic(CPn) = VBun1

C(CPn) ≅ H2
(CPn;Z) ≅ Z.

In fact, it follows from what you showed in the exercise that group structure
is given by the tensor product. Thus, there is a line bundle ζ on CPn (corre-
sponding to 1 ∈ Z) such that ζ ⊗ ... ⊗ ζ (n-times) correspond to n ∈ Z – this is
the canonical line bundle introduced in Lecture 1!
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