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Introduction

The aim of this work is to start a systematic study of idempotent functors

in the stable homotopy category and to describe certain structures that are

preserved under such functors. We translate into stable homotopy some of

the basic ideas of localization with respect to a map, which have been de-

veloped in unstable homotopy during the past decade. In order to do so, we

take o� from suggestions raised by Bous�eld in a recent article. We study

the preservation of ring spectra structures and module spectra structures

under localizations. For this, we use general properties of idempotent func-

tors in combination with suitable models for the stable homotopy category.

We describe all possible localizations of the integral Eilenberg{MacLane

spectrum HZ and, more generally, we discuss properties of localizations

of HZ-modules, motivated by a similar approach recently undertaken in

unstable homotopy.

Precedents

Localization with respect to a continuous map f is a universal construction

in the homotopy category of spaces (CW -complexes or simplicial sets) that

turns f into a homotopy equivalence. This general form of localization

specializes into previously known transformations, such as homological lo-

calizations, plus constructions, Postnikov sections, or localization at sets of

primes. A full-
edged theory was developed in the past decade by Bous�eld

[Bou94, Bou97], Farjoun [DF], and others. This theory had implications

in unstable chromatic towers, K-theory localizations of spaces, Bous�eld

classes, and other periodic phenomena in unstable homotopy.

In a recent article by Bous�eld [Bou96], the language of localization with

respect to a map is brought back to stable homotopy, in an attempt to re-
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late in a clear way stable periodicity with unstable periodicity. As a result,

a large amount of new idempotent functors become available, as generaliza-

tions of stable homological localizations and other classical constructions.

In fact, it is possible that all idempotent functors in stable homotopy can be

represented as localizations with respect to suitable maps. The analogous

question in unstable homotopy was answered by Casacuberta, Scevenels

and Smith in [CSS].

There are many algebraic structures that are preserved by localizations

in unstable homotopy and in other categories. For example, the class of

GEMs (products of abelian Eilenberg{MacLane spaces) is closed under

localization with respect to any map. A recent survey on preservation of

structures by idempotent functors was o�ered in [Cas00]. On the other

hand, it was observed in [EKMM97] that the classes of (strict) ring spectra

and (strict) module spectra are preserved by homological localizations. It

seems thus natural to believe that these and other structures are preserved

by more general localizations in stable homotopy. This consideration and

some of its consequences served as motivation for our work. Modules over

the ring spectrum HZ of ordinary homology are the precise analog of GEMs

in stable homotopy.

Structure of Contents

This work is divided in six chapters. In the �rst chapter, an introduction

if o�ered to the classical stable homotopy category of Adams [Ada74], in

view of its use in the next chapters.

In the second chapter, we de�ne stable localization with respect to a

map, following Bous�eld [Bou96] and emphasizing the analogy with the un-

stable case. We explain the key role of connective covers of function spectra

in this context. We show that, as in unstable homotopy, f -localizations are

idempotent functors and hence share many well-known properties.

Several examples of stable f -localizations are given in the third chapter,

including nulli�cations, homological localizations, and localization at sets

of primes. Postnikov sections are important examples of f -localizations

that do not commute with suspension. Our reference for many fundamen-

tal facts of stable homotopy is Rudyak's book [Rud]. Using idempotence
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properties of f -localizations, we have improved certain results of Rudyak.

The fourth chapter gives a brief presentation of model category struc-

tures for stable homotopy. We refer to the old, useful Bous�eld{Freidlander

model [BF79] and to the very recent models consisting of symmetric spectra

[HSS], S-modules [EKMM], or simplicial functors [Lyd].

The �fth chapter deals with localizations of Eilenbeg{MacLane spectra.

In this chapter, we present new results on preservation of ring spectra struc-

tures and module spectra structures under f -localizations. We recall the

de�nition of a stable GEM and prove that stable GEMs are preserved under

f -localizations. We show that the localization of any Eilenberg{MacLane

spectrum is a product of at most two Eilenberg{MacLane spectra. In the

case of the spectrum HZ of ordinary homology, each of its localizations has

at most one nonzero homotopy group. We characterize this single homo-

topy group following the approach of [CRT].

A detailed proof of the existence of f -localizations is proved in the Ap-

pendix, for simplicial model categories satisfying certain assumptions. The

argument is essentially Quillen's small object argument. It is thoroughly

discussed in Hirschhorn's manuscript [Hirsch].

Future Prospects

Our results about preservation of stable structures under localizations use

the classical (homotopical) notions of ring spectra and module spectra.

That is, the structure diagrams for the multiplication and the unit commute

up to homotopy. However, we believe that localizations also preserve strict

ring spectra and strict module spectra (in the sense allowed by the symmet-

ric monoidal category structures of spectra developed in [HSS] or [EKMM]).

There are two possible approaches to prove this claim. Namely, one could

extend the result given for homological localizations in [EKMM97] to ar-

bitrary f -localizations, or one could show that f -localizations preserve A∞
and E∞ structures (both in stable and unstable homotopy). This is not

carried out in this work, but it is one of the natural directions for further

progress. After this is done, one could use the equivalence between the

homotopy category of strict HR-module spectra (where R is any ring) and
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the homotopy category of unbounded chain complexes of R-modules, in

order to sharpen the results contained in the present work.

Another future aim is the characterization of the rings that arise as ho-

motopy groups of stable homological localizations of the integral Eilenberg{

MacLane spectrum, along the lines marked in the unstable case in [Bou82].

A more ambitious project is to study f -localizations of the sphere spectrum.
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Chapter 1

The Stable Category of Spectra

In this chapter we present some preliminaries from stable homotopy theory.

There are di�erent categories of spectra proposed by di�erent authors. Here

we describe the category of spectra proposed by Adams. The basic reference

is [Ada74]. We recall the basic properties of spectra, generalized homology

and cohomology theories and smash product of spectra.

1.1 Basic Properties of Spectra

The objects of the stable homotopy category are called spectra.

Definition 1.1.1. A spectrum E is a sequence (En; "n)n∈Z of pointed CW -

complexes En and CW -embeddings "n : �En −→ En+1. Here �En means

reduced suspension, i.e., �En = S1 ∧ En.

A subspectrum of a spectrum E is a spectrum (Fn; �n)n∈Z such that Fn
is a pointed CW -subcomplex of En and �n : �Fn+1 −→ Fn is the restriction

of "n.

If the maps "n are weak equivalences for n su�ciently large, then the

spectrum is called a �-spectrum or suspension spectrum. If the adjoint

maps "′n : En −→ 
En+1 are weak equivalences for n ≥ 0, then E is called

an 
-spectrum.
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Example 1.1.1. Given any CW -complexX, we can de�ne a spectrum �∞X

in the following way

(�∞X)n =

{
�nX if n ≥ 0

∗ if n < 0

with "n the obvious maps. The spectrum �∞X is called the suspension

spectrum of X. As a particular case we have the sphere spectrum �∞S0,

which we denote simply by S. This is an example of a �-spectrum.

Example 1.1.2. Given an abelian group A we can construct an 
-spectrum

HA which we call an Eilenberg{MacLane spectrum,

(HA)n =

{
K(A;n)X if n ≥ 0

∗ if n < 0.

The maps "′n are always weak equivalences for n ≥ 0 because 
K(A;n+1) '
K(A;n).

Given a spectrum E and an integer k, we de�ne a new spectrum �kE

by setting (�kE)n = En+k where the map �(�kE)n −→ (�kE)n+1 is "n+k.

So, we can either suspend or desuspend a spectrum arbitrarily.

We now de�ne the homotopy groups of a spectrum. These are really

stable homotopy groups. Given a spectrum E we have the following homo-

morphisms

�n+r(En) −→ �n+r+1(�En)
("n)∗−→ �n+r+1(En+1) −→ : : :

We de�ne �r(E) as the direct limit of the above direct system

�r(E) = lim
n→+∞

�n+r(En):

Example 1.1.3. For the Eilenberg{MacLane spectrum HA, we have that

�r(HA) = lim
n→+∞

�n+r(K(A;n)) =

{
A if r = 0

0 if r 6= 0.

In order to de�ne the category of spectra we need to specify what are

the maps between spectra.
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Definition 1.1.2. Let (En; "n) and (Fn; �n) be spectra. A function f : E −→ F

is a family of pointed cellular maps fn : En −→ Fn such that the diagram

�En
�fn //

"n
��

�Fn

�n
��

En+1 fn
// Fn+1

commutes for all n ∈ Z.

Definition 1.1.3. A cell of a spectrum E is a sequence (e;�e; : : : ;�ke; : : :)

where e is a cell of any En such that e is not the suspension of any cell of

En−1.

A subspectrum F of a spectrum E is co�nal in E if every cell of E is

eventually in F , i.e., for every cell of En there exists an m such that �me

belongs to Fn+m.

Definition 1.1.4. Let E and F be two spectra. We consider the set S of all

pairs (E′; f ′) such that E ′ ⊂ E is a co�nal subspectrum and f ′ : E ′ −→ F

is a function. Consider the equivalence relation ∼ on S such that (f ′; E′) ∼
(f ′′; E′′) if and only if there is a pair (E ′′′; f ′′′) with E ′′′ ⊂ E′ ∩ E ′′, E ′′′
co�nal and f ′ | E ′′ = f ′′′ = f ′′ | E ′′. Every such equivalence class is called

a map from E to F .

If (En; "n) is a spectrum and X is a CW -complex, we de�ne the spec-

trum E∧X as (E∧X)n = En∧X. We can now de�ne homotopies between

maps of spectra.

Definition 1.1.5. We say that two maps of spectra f0; f1 : E −→ F are ho-

motopic f0 ∼ f1, if there exists a map H : E ∧ I+ −→ F with h ◦ i0 = f0
and h ◦ i1 = f1, where i0 and i1 are the maps i0; i1 : E −→ E ∧ I+ induced

by the inclusions of 0 and 1 in I+, respectively.

Homotopy is an equivalence relation, so we de�ne [E;F ] to be the set

of equivalence classes of maps f : E −→ F . The fundamental property

of stable homotopy is that suspension yields a natural bijection [E;F ] ∼=
[�E;�F ]. This implies, among other things, that [E;F ] is an abelian group

for all E, F .

We can give an alternative description of the homotopy groups of a

spectrum by taking �r(E) = [�rS;E].
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Definition 1.1.6. A spectrum E is called connective if �i(E) = 0 for i < 0.

Definition 1.1.7. For any map f : E −→ F of spectra we call the sequence

E
f−→ F

i−→ Cf;

where Cf is the cone of f , a strict co�ber sequence. A sequence

X
'−→ Y

 −→ Z

is called a co�ber sequence if there exists a homotopy commutative dia-

gram

X
'

//

�

��

Y
 

//

�

��

Z




��

E
f

// F
i

// Cf

where �, � and 
 are homotopy equivalences.

Every co�ber sequence X
f−→ Y

g−→ Z yields a long co�ber sequence

: : : −→ �−1Y
�−1g−→ �−1Z −→ X

f−→ Y
g−→ Z −→ �X

�f−→ �Y −→ : : :

Theorem 1.1.4. For every spectrum E, the long co�ber sequence

: : : −→ �−1Y
�−1g−→ �−1Z −→ X

f−→ Y
g−→ Z −→ �X

�f−→ �Y −→ : : :

yields exact sequences of abelian groups

: : :←− [�−1Z;E]←− [X;E]
f∗←− [Y;E]

g∗←− [Z;E]←− [�X;E]←− : : :

: : : −→ [E;�−1Z] −→ [E;X]
f∗−→ [E; Y ]

g∗−→ [Z;E] −→ [E;�X] −→ : : :

Remark 1.1.1. The �rst of these sequences is similar to the sequence as-

sociated with a co�bration f : X −→ Y with co�ber Z, and the second

is similar to the sequence associated with a �bration f : X −→ Y with

�ber �−1Z. In the stable category, the distiction between �brations and

co�brations disappears.
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1.2 The Smash Product of Spectra

We have de�ned the smash product of a spectrum E and a CW -complex

X as (E∧X)n = En∧X with the obvious maps. It is possible to construct

a smash product of spectra as a generalization of this case. We do not

describe the construction here. A detailed de�nition of the smash product

is given by Adams in [Ada74]. We only list the properties of this smash

product of spectra.

For every three spectra E, F and G we have the following properties of

the smash product:

� It is a covariant functor of each of its components.

� There are natural homotopy equivalences:

a(E;F;G) : (E ∧ F ) ∧G −→ E ∧ (F ∧G)
�(E;F ) : E ∧ F −→ F ∧ E

l : S ∧ E −→ E

r : E ∧ S −→ E

�(E;F ) : �E ∧ F −→ �(E ∧ F )

The map � is called the twist map.

� Let {E�} be a family of spectra and let i� : E� −→ ∨�E� be the

inclusions. Then the map

{i� ∧ 1} : ∨� (E� ∧ F ) −→ (∨�E�) ∧ F

is a homotopy equivalence.

� The following diagrams that relate the natural homotopy equivalences

a, � , l, and r commute up to homotopy:

((E ∧ F ) ∧G) ∧H a // (E ∧ F ) ∧ (G ∧H) a // E ∧ (F ∧ (G ∧H))

((E ∧ F ) ∧G) ∧H a∧1 // (E ∧ (F ∧G)) ∧H a // E ∧ ((F ∧G) ∧H)

1∧a

OO
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(E ∧ F ) ∧G
a

��

�∧1 // (F ∧ E) ∧G a // F ∧ (E ∧G)

1∧�
��

E ∧ (F ∧G) � // (F ∧G) ∧ E a // F ∧ (G ∧ E)

E ∧ F
�

��

E ∧ F

F ∧ E F ∧ E

�

OO S ∧ S 1 // S ∧ S

S ∧ S � // S ∧ S

(S ∧ E) ∧ F a //

l∧1
��

S ∧ (E ∧ F )
l

��

E ∧ F E ∧ F

(E ∧ F ) ∧ S a //

r

��

E ∧ (F ∧ S)
l∧r
��

E ∧ F E ∧ F

(E ∧ S) ∧ F a //

r∧1
��

E ∧ (S ∧ F )
1∧l
��

E ∧ F E ∧ F

S ∧ E � //

l
��

E ∧ S
r

��

E E

A complete proof of all these properties can be found in [Ada74].

Given two spectra Y and Z, the functor [− ∧ Y; Z] is representable by
Brown's representability theorem. Hence, there exists a spectrum F (Y; Z)

called function spectrum obtained by right adjunction of the smash product

[X ∧ Y; Z] ∼= [X;F (Y; Z)]:

1.3 Homology and Cohomology

Let E be a spectrum. We de�ne the E-homology and the E-cohomology

of another spectrum X as follows

En(X) = �n(E ∧X) = [�nS;E ∧X];

En(X) = [X;�nE]:
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The Eilenberg{MacLane spectrum HG yields ordinary homology and

cohomology in the case G = Z. For any other abelian group G, the spec-

trum HG yields ordinary homology and cohomology with coe�cients in

G.

For any abelian group G, there exists a spectrum MG, unique up to

homotopy, with the following properties:

� �i(MG) = 0 for i < 0.

� �0(MG) ∼= G ∼= (HZ)0(MG).

� (HZ)i(MG) = 0 for i 6= 0.

We call MG the Moore spectrum of the abelian group G.

Theorem 1.3.1. Let � : S −→ E be a map inducing isomorphism in �0,

and let X be a spectrum. If �i(X) = 0 for i < n, then Ei(X) = 0 for

i < n and the map

�∗ = (� ∧X)∗ : �k(X) −→ Ek(X)

is an isomorphism for k = n and an epimorphism for k = n+ 1.

For every spectrum X we have a homomorphism

h = (� ∧X)∗ : �k(X) −→ (HZ)k(X);

where � : S −→ HZ yields the unit in �0(HZ) = Z. We call h the Hurewicz

homomorphism.

We have a Universal Coe�cient Theorem that relates ordinary homol-

ogy and cohomology with coe�cients with ordinary integral homology.

Theorem 1.3.2. For every spectrum E and every abelian group G there

are exact sequences

0 −→ Ext((HZ)n−1(E); G) −→ (HG)n(E) −→ Hom((HZ)n(E); G) −→ 0

and

0 −→ (HZ)n(E)⊗G −→ (HG)n(E) −→ Tor((HZ)n−1(E); G) −→ 0:

In particular, �0(HB ∧HA) = (HB)0(HA) ∼= A ⊗ B and [HA;HB] =

(HB)0(HA) ∼= Hom(A;B) for any two abelian groups A, B.
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Chapter 2

Localization of Spectra

2.1 Introduction

Localizations exist in simplicial model categories that satisfy suitable hy-

potheses (see Appendix A for details). We will use the Bous�eld{Fried-

lander model [BF78] that is in fact a proper simplicial model category and

satis�es the required conditions to assure that f -localization exists in stable

homotopy theory.

In the Bous�eld-Friedlander model, HOM(X;Y ) is the simplicial set

whose n-simplices are the maps X ∧ �[n]+ −→ Y of spectra, and in the

homotopy category, one has

�n(HOM(X;Y )) = [Sn;HOM(X;Y )] = [X ∧ Sn; Y ]
= [�nX;Y ] = �n(F (X;Y )) n ≥ 0;

where F (X;Y ) is the natural function spectrum obtained by right adjunc-

tion of the smash product [X ∧ Y; Z] ' [X;F (Y; Z)]. Thus, [X;Y ] =

[X ∧ S; Y ] = [S; F (X;Y )] = �0(F (X;Y )) for all spectra X and Y . So the

simplicial set HOM(X;Y ) and the spectrum F c(X;Y ) have the same homo-

topy groups, where F c(X;Y ) is the connective cover of F (X;Y ), i.e., it has

the same homotopy groups as F (X;Y ) for n ≥ 0, and �n(F
c(X;Y )) = 0

for n < 0.
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2.2 Basic Definitions and Properties

We will work in the `standard' stable homotopy category Hos (as described

in Chapter 1). This is equivalent to the homotopy category derived from

any of the model categories ([BF], [EKMM], [LYD], [HSS]) described in

Chapter 4. We begin with the de�nition of f -localization of spectra.

Definition 2.2.1. Let f : A −→ B be a map of spectra.

(i) A spectrum X is an f -local spectrum if f induces a homotopy equiv-

alence F c(B;X) ' F c(A;X), where F c(−;−) denotes the connective
cover of the function spectrum.

(ii) A map g : X −→ Y inHos is an f -equivalence if g induces a homotopy

equivalence F c(Y; Z) ' F c(X;Z) for all f -local spectra Z.

(iii) An f -localization of a spectrum X is a map lX : X −→ X̂ where X̂ is

f -local and lX is an f -equivalence.

As we recall in Chapter 4, we can endow the category of spectra with a

simplicial model structure whose homotopy category is the ordinary stable

homotopy category. Therefore, as shown in the Appendix, every spectrum

X has an f -localization LfX for every map f , and Lf can be constructed

as a homotopy functor on the category of spectra. As we next explain, LfX

is unique up to homotopy equivalence.

The following discussion uses ideas from [Ada] or [CPP]. The objects

X in Hos such that X ' LfX are precisely the f -local objects. The maps

X −→ Y such that LfX −→ LfY is a homotopy equivalence are precisely

the f -equivalences.

If we denote by Hosl the full subcategory of Hos of f -local objects,

then the localization functor Lf is left adjoint to the inclusion functor

i : Hosl −→ Hos. Moreover, the localization map lX has two characteristic

properties:

� It is initial among maps from X to f -local objects in Hos, i.e., if

g : X −→ Y is a map where Y is f -local, then there exists a unique
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h : LfX −→ Y such that g ' lX ◦ h,

X
lX //

g

��

LfX

∃!h
||zz

zz
zz

zz

Y

� It is terminal among f -equivalences with domain X, i.e., if g : X −→
Y is an f -equivalence, then there exists a unique h : Y −→ LfX such

that lX ' h ◦ g,

X
lX //

f

��

LfX

Y

∃!g

<<zzzzzzzz

Either one of these two universal properties ensures that the localization

functor Lf is unique up to homotopy, that is, if we have a map X −→ Y

which is an f -equivalence and where Y is f -local, then Y ' LfX.

The �rst universal property is proved as follows. If Y is f -local, then

using (ii) from De�nition 2.2.1,

[X;Y ] ∼= �0(F (X;Y )) ∼= �0(F
c(X;Y )) ∼= �0(F

c(LfX;Y ))

∼= �0(F (LfX;Y )) ∼= [LfX;Y ]: (2.1)

The second universal property is proved similarly. If X −→ Y is an f -

equivalence, then

[X;LfX] ∼= �0(F (X;LfX)) ∼= �0(F
c(X;LfX)) ∼= �0(F

c(Y; LfX))

∼= �0(F (Y; LfX)) ∼= [Y; LfX]:

A functor L on a category C is called idempotent if it is equipped with

a natural transformation l : Id −→ L such that Ll = lL and Ll : L −→ L2

is an isomorphism.

Proposition 2.2.1. The localization functor Lf is idempotent in the ho-

motopy category Hos.
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Proof. The localization map lX : X −→ LfX de�nes a natural transfor-

mation l : Id −→ Lf . Therefore, the following diagram commutes up to

homotopy by naturality

X
lX //

lX
��

LfX

Lf lX
��

LfX
lLfX

// LfLfX;

i.e., lLfX ◦ lX ' Lf lX ◦ lX for all spectra X. Using the universal property

2.1 of the localization functor this implies that lLfX ' Lf lX . For each

spectrum X, take the identity map of LfX and let �X be the unique map

that closes the diagram

LfX

IdLfX

��

lLfX
// LfLfX

�Xzz

LfX:

We have that �X ◦ lLfX is the identity of LfX. The universal property

(2.1) also implies that lLfX ◦ �X is the identity of LfLfX. Hence, lLfX is

an isomorphism in Hos, so the functor Lf is idempotent.

We have de�ned f -localization using the connective cover of the function

spectrum F (X;Y ) because the simplicial set HOM(X;Y ) has homotopy

groups de�ned only in positive dimensions. However, there are special

cases in which localization can be characterized using the function spectrum

F (X;Y ) instead of its connective cover.

Lemma 2.2.2. Let f : A −→ B a map of spectra. Then

(i) The class of f-local spectra is closed under �−1.

(ii) The class of f-equivalences is closed under �.

Proof. If Z is an f -local spectrum, then F c(B;Z) ' F c(A;Z). Hence,

[�nS; F (B;Z)] ∼= [�nS; F (A;Z)] for all n ≥ 0:
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We know that F (X;�−1Y ) ' �−1F (X;Y ) for every spectra X and Y , so

for all n ≥ 0,

[�nS; F (B;�−1Z)] ∼= [�nS;�−1F (B;Z)] ∼= [�n+1S; F (B;Z)]

∼= [�n+1S; F (A;Z)] ∼= [�nS;�−1F (A;Z)] ∼= [�nS; F (A;�−1Z)]:

Therefore �−1Z is f -local.

If g : X −→ Y is an f -equivalence, then F c(Y; Z) ' F c(X;Z) for every

f -local spectrum Z. Hence,

[�nS; F (Y; Z)] ∼= [�nS; F (X;Z)] for all n ≥ 0:

We know that F (�A;B) ' �−1F (A;B) for every spectra A and B, so for

all n ≥ 0,

[�nS; F (�Y; Z)] ∼= [�nS;�−1F (Y; Z)] ∼= [�n+1S; F (Y; Z)]

∼= [�n+1S; F (X;Z)] ∼= [�nS;�−1F (X;Z)] ∼= [�nS; F (�X;Z)]:

Therefore, �g is an f -equivalence.

Theorem 2.2.3. Let f : A −→ B be a map of spectra. Then the following

statements are equivalent:

(i) �LfX ' Lf�X for every spectrum X.

(ii) The class of f-local spectra is closed under �.

(iii) The class of f-equivalences is closed under �−1.

(iv) The natural map �kLfX −→ Lf�
kX is a homotopy equivalence

for every spectrum X and for all k ∈ Z.

(v) �kLfX ' Lf�kX for every spectrum X and for all k ∈ Z.

(vi) The map f induces a homotopy equivalence F (B;Z) ' F (A;Z)

for every f-local spectrum Z.

Proof. It is clear that (i) implies (ii) because X ' LfX.
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Let g : X −→ Y be an f -equivalence and suppose that the class of

f -local spectra is closed under �. Then

F c(�−1Y; Z) ' F c(�−1Y;�−1�Z) ' F c(Y;�Z) ' F c(X;�Z)

' F c(�−1X;�−1�Z) ' F c(�−1X;Z)

for every f -local spectrum Z, because if Z is f -local, then �Z is also f -local.

Hence, (ii) implies (iii).

To see that (iii) implies (iv), suppose now that the class of f -equi-

valences is closed under �−1. The map l�kX : �
kX −→ Lf�

kX is an f -

equivalence, so the same happens for the map �−kl�kX by hypothesis or

using Lemma 2.2.2 depending on whether k is positive or negative. We

have the following commutative diagram

X

l
��

�−kl
�kX// �−kLf�

kX

LfX

g

99

The map g exists because �−kLf�
kX is f -local and is a homotopy equiva-

lence. Therefore the natural map

�kLfX
�kg

// Lf�
kX

is also a homotopy equivalence.

The implications (iv)⇒(v) and (v)⇒(i) are obvious.

Now we will prove that conditions (v) and (vi) are equivalent. First

suppose that �kLfX ' Lf�
kX for all k ∈ Z. Since the object Lf�

kX is

f -local,

F c(B;Lf�
kX) ' F c(A;Lf�

kX) for all k ∈ Z:

Thus,

�n(F (B;Lf�
kX)) ∼= �n(F (A;Lf�

kX)) for all n ≥ 0, k ∈ Z.

By assumption, this is the same as

�n(F (B;�
kLfX)) ∼= �n(F (A;�

kLfX)) for all n ≥ 0; k ∈ Z:
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Now F (B;�kLfX) ' �kF (B;LfB) for all k ∈ Z, from which we infer that

�n−k(F (B;LfX)) ∼= �n−k(F (A;LfX)) for all n ≥ 0, k ∈ Z;

so F (B;LfX) ' F (A;LfX).

Conversely, suppose now that X is f -local. To prove that Lf�
kX '

�kLfX for all k ∈ Z, we have to see that �kLfX is f -local and �kX −→
�kLfX is an f -equivalence.

� �kLfX is f -local if F (B;�kLfX) ' F (A;�kLfX). This is equiva-

lent to �kF (B;LfX) ' �kF (A;LfX) for all k ∈ Z, and this is true

because LfX is f -local.

� The map �kX −→ �kLfX is an f -equivalence if F (�kLfX;Z) '
F (�kX;Z) for every f -local spectrum Z. This is equivalent to say

that �−kF (LfX;Z) ' �−kF (X;Z) for all k ∈ Z, and this is true

because the map X −→ LfX is an f -equivalence.

We say that the functor Lf commutes with suspension if these equivalent

conditions are ful�lled. We will see examples of f -localization functors that

do not commute with suspension in Chapter 3.



16 Localization of Spectra



Chapter 3

Examples of f -localizations

In this chapter we describe some classical examples of localizations in the

stable homotopy category. These examples include nulli�cations, homolog-

ical localizations and localizations at sets of primes. Each of these examples

is an f -localization for a suitable map f and we will explicitly give this map

in each case.

3.1 Nullifications

When the map f has the form f : A −→ ∗ where ∗ is the `point-spectrum',

we get an important case of f -localizations called nulli�cations. In this case

we denote the functor Lf as PA and call it A-nulli�cation.

Definition 3.1.1. Let A be a spectrum.

� A spectrum X is called A-null if F c(A;X) ' ∗.

� A map g : X −→ Y is an A-equivalence if g induces a homotopy

equivalence

F c(Y; Z) ' F c(X;Z)

for each A-null spectrum Z.

A special case of nulli�cation is when we localize with respect to the

map f : �kS −→ ∗ where S is the sphere spectrum and k ∈ Z. In the case

of nulli�cations of spaces with respect to the map Sn+1 −→ ∗ one obtains
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that PSn+1X is the n-th Postnikov section PnX (see [DF]). For spectra the

result is similar but �rst of all we have to de�ne Postnikov towers in stable

homotopy.

Definition 3.1.2. A Postnikov tower of a spectrum E is a commutative

diagram of spectra

: : : // E(n+2) // E(n+1) // E(n) // E(n−1) // E(n−2) // : : :

E

�n+2
jjTTTTTTTTTTTTTTTTTTTT

�n+1
ddHHHHHHHHH

�n

OO
�n−1

::vvvvvvvvv

�n−2
44jjjjjjjjjjjjjjjjjjjj

such that, for every n,

� �i(E(n)) = 0 for i > n.

� (�n)∗ : �i(E) −→ �i(E(n)) is an isomorphism for i ≤ n.

The spectrum E(n) is called the n-th Postnikov section of E.

Theorem 3.1.1. Given a spectrum E, the nulli�cation of E with respect

to �k+1S is the k-th Postnikov section of E, i.e. P�k+1S ' E(k).

Proof. It is enough to prove that E(k) is (�
k+1S)-null and �k : E −→ E(k)

is a (�k+1S)-equivalence (see the universal properties of Lf in Section 2.2).

� E(k) is (�
k+1S)-null because

�n(F
c(�k+1S;E(k))) ∼= �n(F (�

k+1S;E(k))) for all n ≥ 0;

and

�n(F (�
k+1S;E(k))) ∼= �n+k+1(E(k)) = 0 for all n ≥ 0:

� �k : E −→ E(k) is a (�k+1S)-equivalence. We have to prove that the

induced map F c(E(k); Z) −→ F c(E;Z) is a homotopy equivalence for

every spectrum Z that is (�k+1S)-null. A spectrum Z is (�k+1S)-null

if F c(�k+1S;Z) ' ∗ and this is equivalent to say that �i(Z) = 0 if

i > k. Now we have a co�ber sequence

F // E
�k // E(k)
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where F is the �ber of �k and and it is characterized by �i(F ) = 0 if

i ≤ k. This co�ber sequence yields an exact sequence

: : : [F;Z]oo [E;Z]oo [E(k); Z]oo [�F;Z]oo : : :oo

The term [F;Z] is zero because the obstructions for [F;Z] to be non-

zero are elements �k ∈ (H�k(F ))
k(E), but �i(F ) = 0 for i ≤ k and

�i(Z) = 0 for i > k by hypothesis. So �k = 0 for all k and then

[F;Z] = 0. For the same reason [�jF;Z] = 0 for j > 0. We get an

isomorphism [�jE;Z] ∼= [�jE(k); Z] for j ≥ 0 and so a weak equiva-

lence F c(E(k); Z)
'−→ F c(E;Z).

Remark 3.1.1. Postnikov sections are an easy example of localization func-

tors that do not commute with suspension. Consider for example a con-

nective spectrum E and the nulli�cation functor P�nS where n > 0. Then

�i(�P�nSE) =

{
�i−1(E) i ≤ n+ 1

0 i > n+ 1

�i(P�nS�E) =

{
�i−1(E) i ≤ n

0 i > n

Therefore, P�nS�E 6' �P�nSE if �n(E) 6= 0.

Now we will see that although they may seem very di�erent, there is a

close relation between f -localization functors and nulli�cation functors. An

Lf functor that commutes with suspension is the same as the nulli�cation

functor with respect to the co�ber of f .

Proposition 3.1.2. Given a co�ber sequence of spectra X
f−→ Y −→ Z,

then Lf commutes with suspension if and only if PZ commutes with

suspension.

Proof. If X
f−→ Y −→ Z is a co�ber sequence, then

F (X;E) F (Y;E)oo F (Z;E)oo
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is another co�ber sequence for every spectrum E. This new sequence yields

an exact sequence of homotopy groups

: : : −→ �n−1(�
−1F (Y;E)) −→ �n−1(�

−1F (X;E)) −→ �n(F (Z;E))

−→ �n(F (Y;E)) −→ �n(F (X;E)) −→ �n+1(�F (Z;E)) −→ : : :

The functor Lf commutes with suspension if and only if A is f -local if

F (Y;A) ' F (X;A) (by Theorem 2.2.3). Now, we have that �n(F (Y;A)) ∼=
�n(F (X;A)) for all n ∈ Z. Using the homotopy exact sequence we get

0 = �n+i(�
iF (Z;A)) ∼= �n(F (Z;A)

This is equivalent to F (Z;A) ' ∗ and this happens if and only if PZ
commutes with suspension by Theorem 2.2.3.

Proposition 3.1.3. Given a co�ber sequence of spectra X
f−→ Y −→ Z,

if the functors Lf or PZ commute with suspension, then for every

spectrum E, we have LfE ' PZE.

Proof. If Lf commutes with suspension, then PZ also does, and conversely

by Proposition 3.1.2. It is enough to prove that PZE is f -local and E −→
PZE is an f -equivalence.

� PZE is f -local if F (Y; PZE) ' F (X;PZE) and this is true because of

the homotopy exact sequence of the co�ber sequence for the function

spectrum and the fact that F (Z;PZE) ' ∗, because PZE is Z-null by

de�nition.

� E −→ PZE is an f -equivalence if F (PZE;A) ' F (E;A) for every A

that is f -local. But if A is f local, then A is Z-null (again use the

homotopy exact sequence) and F (PZE;A) ' F (E;A) since E −→
PZE is a Z-equivalence.

3.2 Homological Localizations

The theory of localizations of spectra with respect to homology is described

by Bous�eld in [Bou74]. This is a localization functor that commutes with



3.2 Homological Localizations 21

suspension. We recall the de�nition of homological localizations of spectra.

As we know any spectrum E yields a homology theory on spectra de�ned

as En(X) = �n(E ∧X).

Definition 3.2.1. Let E be any spectrum.

(i) A spectrum X is called E-acyclic if Ek(X) = 0 for all k ∈ Z or,

equivalently, E ∧X ' ∗.

(ii) A map of spectra f : X −→ Y is an E-equivalence if it induces an

isomorphism in E-homology, i.e., if the map f∗ : Ek(X) −→ Ek(Y ) is

an isomorphism for all k ∈ Z.

(iii) A spectrum Z is E-local if each E-equivalence f : X −→ Y induces

a homotopy equivalence F (Y; Z) ' F (X;Z) or, equivalently, if the

function spectrum F (X;Z) is contractible for each E-acyclic spec-

trum X.

Definition 3.2.2. An E-localization of a spectrumX is a map �X : X −→ LEX

where LEX is an E-local spectrum, and �X is an E-equivalence.

Assigning to each spectrum X its localization LEX de�nes a functor.

We call it an E-localization functor. Moreover, this functor is unique up

to homotopy and idempotent. The existence of LE for every spectrum E

is proved by Bous�eld in [Bou74].

E-localization is actually an f -localization for a suitable map f . In fact,

it is a nulli�cation.

Theorem 3.2.1. Let E be any spectrum. Then LEX ' LfX for every

spectrum X for a suitable map f .

Proof. We sketch the construction of the map f . For full details see [Bou74]

or [Nee01].

Let X be a spectrum. We denote by loc(X) the localizing subcategory

generated by X, i.e., the smallest class of spectra that contains X and is

closed by co�ber sequences and arbitrary wedges. Then for any spectrum

E there exists an E-acyclic spectrum Z such that loc(Z) equals the class

of all E-acyclic spectra. The spectrum Z is constructed as a wedge of E-

acyclic spectra, such that Z contains, up to equivalence, each E-acyclic

spectrum bellow a certain cardinality. If we take f as the map f : Z −→ ∗,
then LEX ' LfX = PZX for every spectrum X.



22 Examples of f -localizations

3.3 Localization at Sets of Primes

The localization theory of groups and spaces at sets of primes has been

widely studied (see [BK] and [HMR]). For a given family P of primes, a

simply connected space is P -local if all its homotopy groups are P -local,

i.e., Z(P )-modules, where Z(P ) denotes the integers localized at P . For every

simply connected space X, there is a (homotopy unique) map X −→ X(P )

that induces the natural homomorphism �k(X) −→ �k(X)⊗Z(P ) for all k.

Here we will recall the corresponding theory for spectra.

Let � be any subring of the rationals. Thus � = Z(P ) for some set of

primes P , possibly empty.

Definition 3.3.1. Let G be an abelian group. The �-localization of G is the

group homomorphism

lG : G −→ G⊗ �

g −→ g ⊗ 1

The group G is called �-local if lG is an isomorphism. A group ho-

momorphism f : G −→ H �-localizes G if there exists an isomorphism

g : G⊗ � −→ H such that the following diagram commutes

G
f

//

lG
��

H

G⊗ �:

g

;;vvvvvvvvv

The homomorphism l� : � −→ � ⊗ � is an isomorphism, so G ⊗ � is

�-local for every abelian group G (since (G⊗ �)⊗ � ∼= G⊗ �).

In order to give the de�nition of �-localization for spectra, which is

analogous to the de�nition given for groups, we use the smash product

instead of the tensor product, and we replace the subring � by its associated

Moore spectrum M�. Recall from Section 1.3 that given an abelian group

A, its associated Moore spectrum MA is a spectrum such that

� H0(MA) = �0(MA) = A

� �i(MA) = 0 if i < 0
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� Hi(MA) = 0 if i 6= 0

Using the unit in � = �0(M�), we get a morphism 1 : S −→M�.

Definition 3.3.2. For every spectrum E, we call �-localization of E the map

of spectra

lE : E ' E ∧ S Id∧1 // E ∧M� :

A spectrum E is called �-local if lE is an equivalence. We set E� = E∧M�.

A morphism f : E −→ F of spectra �-localizes E if there exists a homotopy

equivalence g : E� −→ F such that g ◦ lE ' f .

As it happened in the case of simply connected spaces, �-localization

of spectra �-localizes all the homotopy groups. This is even more general

because any spectrum yields a homology and a cohomology theory in the

stable homotopy category, and �-localization �-localizes both homology

and cohomology groups. (For a detailed proof of the following theorem see

[Rudyak].)

Theorem 3.3.1. Given any spectrum E, there are isomorphisms

(E�)∗(X) ∼= E∗(X)⊗ �

(E�)
∗(X) ∼= E∗(X)⊗ �

for every spectrum X. This isomorphism are natural with respect to

E and X, and the maps (lE)∗ and (lE)
∗, �-localize E∗(X) and E∗(X)

respectively. As a particular case of this theorem, we have that lE
�-localizes homotopy groups of spectra.

Given a map f : E −→ F one de�nes f� : E� −→ F� as f� = f ∧ Id.

Then one has (g ◦ f)� = g� ◦ f�, so (−)� is a functor.

For every �-local group G, the spectra MG and HG (where HG means

the Eilenberg{MacLane spectrum of G) are �-local spectra.

We have de�ned the localization of spectra at a set of primes P by

smashing with the Z(P ) Moore spectrum. This localization is indeed an f -

localization for certain map f of spectra. We will explicitly disply map

f . As we know, �(E ∧ MZ(P )) ' �E ∧ MZ(P ), so prime localization

commutes with suspension and we can use the function spectrum instead

of its connective cover to de�ne f -localization (see Theorem 2.2.3).
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Suppose we want to localize a spectrum E at a set of primes P . For each

prime q that is not in P , we have a map S −→ S inducing multiplication

by q in �0(S) ∼= Z. Let f be the wedge of all these maps for every prime q

not in P ,

f :
∨
q 6∈P

S −→
∨
q 6∈P

S:

For each of these maps S −→ S, we have that the induced map

F (S;E ∧MZ(P )) −→ F (S;E ∧MZ(P ))

is a homotopy equivalence because the corresponding map of homotopy

groups

�n(E ∧MZ(P )) −→ �n(E ∧MZ(P ))

is an isomorphism for all n. Recall that �n(E ∧MZ(P )) ∼= �n(E)⊗Z(P ) by

Theorem 3.3.1 and multiplication by q is an isomorphism in Z(P ). This is

equivalent to say that �n(E ∧MZ(P )) is a Z(P )-module. So the map

F (∨q 6∈PS;E ∧MZ(P )) −→ F (∨q 6∈PS;E ∧MZ(P ))

is a homotopy equivalence, and E ∧MZ(P ) is an f -local spectrum. Indeed,

f -local spectra are precisely those spectra Z whose homotopy groups �n(Z)

are Z(P )-modules, because if Z is f -local, then the map

F (∨q 6∈PS;Z) −→ F (∨q 6∈PS;Z)

is a homotopy equivalence or equivalently, multiplication by all primes

q 6∈ P is an isomorphism on �n(Z). This is the same as claiming that

�n(Z) is a Z(P )-module.

We also have that the map S
�−→ MZ(P ) is an f -equivalence. To see

this, we need to check that the map

F (MZ(P ); Z) −→ F (S;Z)

is a homotopy equivalence, or equivalently that the map

[�iMZ(P ); Z] −→ �i(Z)

is an isomorphism for all i ∈ Z and for f -local spectra Z. Taking a free

presentation of Z(P )

0 −→ ⊕�Z −→ ⊕�Z −→ Z(P ) −→ 0
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we have a co�ber sequence

∨��iS −→ ∨��iS −→ �iMZ(P ) −→ ∨��i+1S −→ ∨��i+1S

which yields an exact sequence

0 −→ Ext(Z(P ); �i−1Z) −→ [�iMZ(P ); Z] −→ Hom(Z(P ); �i(Z)) −→ 0:

Now, Hom(Z(P ); �i(Z)) ∼= �i(Z) because �i(Z) is a Z(P )-module and

Ext(Z(P ); �i−1(Z)) ∼= Ext
Z(P )

(Z(P ); �i−1(Z)) = 0

because Z(P ) is free over Z(P ). So, the map [�iMZ(P ); Z] −→ �i(Z) is

an isomorphism for all Z that are f -local. The spectrum MZ(P ) is f -

local because �i(MZ(P )) ∼= �i(S) ⊗ Z(P ) is a Z(P )-module for all i ∈ Z, so
LfS 'MZ(P ) and the map S

�−→MZ(P ) is the localization map for S.

If we smash � with the identity map on a spectrum E, then we have

another f -equivalence

E ∧ S ' E 1∧�−→ E ∧MZ(P )

because the localization functor commutes with suspension. We have ob-

tained the following

Theorem 3.3.2. Let P be a set of primes and let f : ∨q 6∈P S −→ ∨q 6∈PS be

a wedge of maps inducing multiplication by q in �0(S) for each prime

q not in P . Then, LfE ' E ∧MZ(P ) for every spectrum E.

Remark 3.3.1. This theorem tells us that, in order to determine, the prime

localization of a spectrum E, it is enough to know the prime localization

of the sphere spectrum S, because LfE ' E ∧ LfS. This property holds

for a special class of localization functors called smashing localizations.

Since the functor (−)� is Lf for a map f , it is idempotent in the sense

of Section 2.2. The idempotence of (−)� gives a theorem that improves

one in [Rud], in which there are connectivity conditions on spectra that

can in fact be removed. Although this theorem follows immediately from

the idempotence of (−)�, we give here another proof using only prime

localization machinery.
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Theorem 3.3.3. If F is a �-local spectrum, then, for every morphism

f : E −→ F there exists a unique morphism g : E� −→ F such that

g ◦ lE = f

E
lE //

f

��

E�

∃!g~~

F

[E;F ] ∼= [E�; F ]

Proof. Let f : E −→ F . F is �-local, so lF is an isomorphism; we can take

g = (lF )
−1 ◦f�. Now we have to proof the uniquenes of g. Suppose we have

another morphism h : E� −→ F such that h ◦ lE = f . Naturality gives us

the commutativity of the following diagram,

E�
h //

lE�
��

F

lF
��

(E�)�
h� // F�

Now,

lF ◦ h = h� ◦ lE� = h� ◦ (lE)� = f�

because (−)� is idempotent. Then h = (lF )
−1 ◦ f−1� ◦ f� = g.

�-localization also preserves multiplicative structures.

Lemma 3.3.4. For every two spectra E and F there exists an equivalence

� : (E ∧ F )� −→ E� ∧ F�

Proof. See [Rudyak].

Theorem 3.3.5. Let (E;�; �) be a ring spectrum and (F;m) a module

spectrum over E. Then

(i) E� admits a unique (up to homotopy) ring structure (E�; �; �)

and the localization map lE : E −→ E� is a ring map.

(ii) F� admits a unique (up to homotopy) module structure (F�;m)

and the localization map lF : F −→ F� is an E-module map.

Proof. This is a common property of all the f -localization functors that

commutes with suspension. For a general proof, see Theorem 5.3.1.



Chapter 4

Model Category Structures for Stable
Homotopy

4.1 Introduction

In this chapter we describe some model structures for the stable homo-

topy category. The �rst attempt to endow the stable homotopy category

a model category structure appears in the paper [BF78] by Bous�eld and

Friedlander. This category is not symmetric monoidal. At present, highly

structured models for the category of spectra are available which admits

a symmetric, associative and homotopically well behaved smash product.

Examples of these categories are the symmetric spectra of Hovey, Shipley

and Smith [HSS], the S-modules of Elmendorf, Kriz, Mandell and May

[EKMM] or the simplicial functors of Lydakis [Lyd].

4.2 The Bousfield–Friedlander Model

This is probably the simplest model category of spectra.

An object X of this category is a sequence of simplicial sets Xn and

morphisms (of simplicial sets)

�n : S1 ∧Xn −→ Xn+1
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where S1 = �[1]=@�[1]. Let us call spectra these objects. A morphism of

spectra f : X −→ Y consists of morphisms fn : Xn −→ Y n such that the

following diagram commutes

S1 ∧Xn
1∧fn

//

��

S1 ∧ Y n

��

Xn+1
fn+1

// Y n+1

HOM(X;Y ) = simplicial set whose n-simplices are morphisms X ∧
�[n]+ −→ Y of spectra.

If K is a simplicial set:

� X ∧K is a spectrum, (X ∧K)n = Xn ∧K

� hom(K;X) is a spectrum, (hom(K;X))n = hom(K;Xn)

We have a mapping space functor

HOM(−;−) : Spectop × Spect −→ SS

where Spect is the category of spectra, and SS is the category of simplicial

sets. The functor HOM(−; Y ) : Spectop −→ SS has a left adjoint

hom(−; Y ) : SS −→ Spect

and the functor HOM(X;−) : Spect −→ SS has a right adjoint

X ∧ − : SS −→ Spect:

We de�ne the following classes of morphisms in the category Spect:

� Weak equivalences: Given a morphism f : X −→ Y in Spect, f is a

weak equivalence if

f∗ : �∗(X) −→ �∗(Y )

is an isomorphism of groups, where �∗(X) = lim
→
�∗+n(X

n)
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� Cofibrations: A morphism f : X −→ Y is a co�bration if f0 : X0 −→ Y 0

and each induced map (by the pushout)

Xn+1
∐

S1∧Xn

S1 ∧ Y n −→ Y n+1

are co�brations of simplicial sets.

� Fibrations: A morphism f : X −→ Y is a �bration if it has the RLP

with respect to all trivial co�brations.

Theorem 4.2.1. Spect has a simplicial model category structure and its

homotopy category Ho(Spect) is equivalent to the usual stable homo-

topy category.

Proof. For a detailed proof see [BF78].

4.3 Symmetric Spectra

The category of symmetric spectra by Hovey, Shipley and Smith, provides

the most elementary construction of a category of spectra with a strictly

commutative and associative smash product before passing to the homo-

topy category. This category has a proper, monoidal model category struc-

ture and is Quillen equivalent to the Bous�eld-Friedlander category.

A symmetric spectrum is a sequence X0, X1; : : :, Xn of pointed sim-

plicial sets with a pointed map

� : S1 ∧Xn −→ Xn+1;

for each n ≥ 0 and a basepoint preserving left action of �n on Xn such that

the composition

�p = � ◦ (S1 ∧ �) ◦ : : : ◦ (Sp−1 ∧ �) : Sp ∧Xn −→ Xn+p

of the maps Si ∧ S1 ∧Xn+p−i+1
Si∧� // Si ∧Xn+p−i is �p × �n-equivariant

for p ≥ 1 and n ≥ 0.
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A map of symmetric spectra f : X −→ Y is a sequence of pointed

fn : Xn −→ Yn such that fn is �n-equivariant and the diagram

S1 ∧Xn
� //

S1∧fn
��

Xn+1

fn+1
��

S1 ∧ Yn
� //// Yn+1

is commutative for each n ≥ 0. Let Sp� denote the category of symmetric

spectra. De�ne

MapSp�(X;Y ) = Sp�(X ∧�[−]+; Y );

hom(−; Y ) and X ∧ − are obtained by prolongation (see [HSS] p.8) of the

S∗-functors (−)K : SS∗ −→ SS∗ and − ∧K : SS∗ −→ SS∗ respectively.

We de�ne the following classes of morphisms in Sp�:

� Stable equivalences: A map of symmetric spectra f : X −→ Y is a

stable equivalence if

E0f : E0Y −→ E0X

is an isomorphism for every injective 
-spectrum E (see [HSS] p.20).

� Level (trivial) cofibration: If each map fn : Xn −→ Yn is a (trivial)

co�bration of simplicial sets.

� Level (trivial) fibration: If each map fn : Xn −→ Yn is a (trivial) �bration

of simplicial sets.

� Stable cofibration: f : X −→ Y is a stable co�bration if it has the LLP

with respect to every level trivial �bration. (Stable trivial co�bration

= Stable co�bration + Stable equivalence).

� Stable fibration: f : X −→ Y is a stable �bration if it has the RLP

with respect to every map that is a stable trivial co�bration. (Stable

trivial �bration = Stable stable �bration + Stable equivalence).

Theorem 4.3.1. The category of symmetric spectra Sp� with the class

of stable equivalences, stable co�brations and stable �brations is a

(proper) model category that is Quillen equivalent to the [BF78] cate-

gory.



4.4 Other Models 31

4.4 Other Models

The category of S-modules of Elmendorf et al was the �rst model category

for stable homotopy with a true smash product. In the categories of spectra

considered previously to this one, the smash product was neither commu-

tative nor associative and one had to pass to the stable homotopy category

in order to obtain commutativity and associativity. The homotopy cate-

gory of this category, whose objects whose objects are called S-modules, is

equivalent to the stable homotopy category and the equivalence preserve

smash products. For a complete description of the category see [EKMM].

Lydakis' simplicial functors are another solution to the problem of �nd-

ing a model category Quillen equivalent to the model category of spectra,

and which has a symmetric monoidal product corresponding to the smash

product of spectra. With the smash product of simplicial functors, one

obtains more descriptive constructions of the model structures on spectra.

As it happens with the other categories, the stable model structure on sim-

plicial functors is Quillen equivalent to the model structure of [BF78]. For

a complete description of the category see [Lyd].
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Chapter 5

Localizations of Eilenberg–Mac Lane
Spectra

5.1 Ring Spectra and Module Spectra

In this section we recall the de�nition of a ring spectrum and a module

spectrum. Our sources of reference are [Bou], [Rud] These are spectra

equipped with a multiplication and a unit rendering certain diagrams ho-

motopy commutative.

Definition 5.1.1. A spectrum E is called a ring spectrum if it is equipped

with two maps of spectra � : E∧E −→ E (called the product) and � : S −→
E (called the unity) such that the following diagrams commute up to ho-

motopy

� Associativity:

E ∧ E ∧ E
�∧1

//

1∧�
��

E ∧ E
�

��

E ∧ E �
// E

� Unity:

S ∧ E
�∧1

//

%%KKKKKKKKKKK E ∧ E
�

��

E ∧ S
1∧�

oo

yyssssssssss

E
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where S is the sphere spectrum, and S ∧ E −→ E is the natural homo-

topy equivalence described in Section 1.2. The pair (�; �) is called a ring

structure on E.

A ring spectrum is called commutative if the following diagram com-

mutes up to homotopy

E ∧ E � //

�
##G

GG
GG

GG
GG

E ∧ E

�
{{ww

ww
ww

ww
w

E

where � is the twist map (see Section 1.2).

A ring map ' : (E;�; �) −→ (E ′; �′; �′) between ring spectra is a map

' : E −→ E ′ that is compatible with the ring structure on E and E ′, i.e.,

the following diagrams commute up to homotopy:

E ∧ E
�

��

'∧'
// E ′ ∧ E ′

�′

��

E '
// E′

S
�′

��?
??

??
??

�

����
��

��
�

E '
// E

Definition 5.1.2. A spectrum M is called a module spectrum over a ring

spectrum (E;�; �) or an E-module spectrum if it is equipped with a map

of spectra m : E ∧M −→M such that the following diagrams commute up

to homotopy:

� Associativity:

E ∧ E ∧M
�∧1

//

1∧m
��

E ∧M
m

��

E ∧M m
// M

� Unity:

S ∧M
�∧1

//

$$HHHHHHHHH E ∧M

m
zzvvvvvvvvv

M

An E-module map  : M −→ N of E-module spectra is a map that is

compatible with the map m, i.e., the following diagram commutes up to
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homotopy

E ∧M
1∧ 

//

m

��

E ∧N
m′

��

M
 

// N

Every ring spectrum E is an E-module spectrum with m = �.

Simple examples of ring spectra and module spectra are Eilenberg{

MacLane spectra. If R is a ring, the multiplication map in HR comes from

the product in R, as we next make explicit, cf.[Rud].

Proposition 5.1.1. If R is a ring and M is an R-module, then

(i) The spectrum HR is a ring spectrum.

(ii) The spectrum HM is a module spectrum over HR.

Proof. For the �rst part, we know that HR and HR ∧ HR are (−1)-
connected and using the Hurewicz homomorphism

(HZ)0(HR ∧HR) ∼= �0(HR ∧HR) = (HZ)0(HR;R)
= (HZ)0(HR)⊗R ∼= �0(HR)⊗R = R⊗R;

The product in the ring R gives us a map � : HR ∧ HR −→ HR, since

because

[HR ∧HR;HR] = (HZ)0(HR ∧HR;R)
∼= Hom((HZ)0(HR ∧HR); R) = Hom(R⊗R;R):

The unit of the ring R is an element in �0(HR) and therefore it yields

a unit � : S −→ HR on HR. Then (HR;�; �) is a ring spectrum. The

diagrams commute because of the natural isomorphism

[X;HR] ∼= Hom(H0(X); H0(HR));

if X is (−1)-connected (by Universal Coe�cient Theorem; see Theorem

1.3.2)
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The second part is proved in the same way. The R-module structure of

M yields a map m : HR ∧HM −→ HM because

[HR ∧HM;HM ] = (HZ)0(HR ∧HM ;M)

∼= Hom((HZ)0(HR ∧HM);M) = Hom(R⊗M;M):

Thus, (HM;m) is an HR-module spectrum.

Corollary 5.1.2. For every ring R, the spectrum HR is an HZ-module

spectrum.

Remark 5.1.1. If M is an E-module spectrum, then for every spectrum X,

the abelian group [X;M ] is a �0(E)-module. For every map � ∈ �0(E) and
every map f ∈ [X;M ] we obtain a map in [X;M ] smashing � with f and

composing with the E-module structure map

X ' S ∧X �∧f−→ E ∧M m−→M:

In particular, ifM is an HR-module spectrum, then �n(M) is an R-module

for all n.

5.2 Modules over Eilenberg–Mac Lane Spectra

In this section we recall a characterization of module spectra over the ring

spectrum HZ. We de�ne stable GEMs as an analog of the classical unstable

GEMs and see that HZ-modules are the same as stable GEMs. Our proof

includes ideas from [Rud]. Let R be a ring with unit.

Definition 5.2.1. A spectrum E is called a stable R-GEM if it is homotopically

equivalent to a wedge of suspensions of Eilenberg{MacLane spectra, i.e.

E '
∨
n∈Z

�nHAn;

where each An is an R-module (hence, each HAn is an HR-module spec-

trum). If R = Z, then stable Z-GEMs are called stable GEMs. Note that

the natural map ∨
n∈Z

�nHAn −→
∏
n∈Z

�nHAn

is a homotopy equivalence, because exceptionally, �i(∨n∈Z�nHAn) ∼= Ai.
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If M and N are E-module spectra, [M;N ]E-mod ⊂ [M;N ] denotes the

set of E-module maps in the stable homotopy category.

If E is a ring spectrum then E ∧ X has a natural E-module structure

given by E ∧ E ∧X �∧1−→ E ∧X for every spectrum X.

Lemma 5.2.1. Let E be any ring spectrum. Let M be an E-module, X

a spectrum and f : X −→ M any map. Then there exists a unique

E-module map ~f : E ∧X −→M such that the diagram

S ∧X ' X
f

//

�∧1
��

M

E ∧X
~f

88

commutes up to homotopy. Thus, E∧X is the `free E-module generated

by X'. This gives a natural bijection

[X;M ] ∼= [E ∧X;M ]E-mod

which relates homotopy classes of maps with homotopy classes of E-

module maps.

Proof. We give the proof in three steps:

(i) Construction of ~f . The following diagram

S ∧X
1∧f

//

�∧1
��

S ∧M
'

$$HHHHHHHHH

�∧1
��

E ∧X
1∧f

// E ∧M mM

// M

commutes. The triangle on the right commutes because M is an

E-module. So, if we de�ne ~f = mM ◦ (1 ∧ f), the diagram

S ∧X ' X
f

//

�∧1
��

M

E ∧X
~f

88rrrrrrrrrrr

commutes.
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(ii) The map ~f is a map of E-modules. We have to check the commuta-

tivity of the diagram

E ∧ (E ∧X)
1∧(1∧f)

//

'

E ∧ (E ∧M)
1∧mM //

'

E ∧M
'

(E ∧ E) ∧X(1∧1)∧f
//

�E∧1
��

(E ∧ E) ∧M �E∧1 //

�E

��

E ∧M
mM

��

E ∧X
1∧f

// E ∧M mM

// M:

The square on the lower left commutes by functoriality of the smash

product and the square on the lower right commutes becauseM is an

E-module.

(iii) There is a unique choice of ~f . Let g be a map of E-modules such that

the diagram

S ∧X ' X
f

//

�∧1
��

M

E ∧X
g

88rrrrrrrrrrr

commutes. Then in the diagram

E ∧ (S ∧X) ' //

1∧(�∧1)
��

E ∧X
1∧f
��

EDGF

@A

1

//

E ∧ (E ∧X)
1∧g

//

1∧�E
��

E ∧M
mM

��

E ∧X
g

// M

the upper square commutes by hypothesis and the lower square com-

mutes becase g is a map of E-modules, so g ' mM ◦ (1 ∧ f) ' ~f .

Lemma 5.2.2. Let MG be the Moore spectrum associated with an abelian

group G. Then, there is a natural exact sequence

0 // Ext(G;�1X) // [MG;X] // Hom(G;�0X) // 0

for each spectrum X.
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Proof. Let ⊕�Z −→ ⊕�Z −→ G be a free presentation of the group G.

There is a co�bration

∨�S // ∨�S // MG // ∨��S // ∨��S

which gives a long exact sequence

Hom(⊕�Z; �1X) −→ Hom(⊕�Z; �1X) −→ [MG;X]

−→ Hom(⊕�Z; �0X) −→ Hom(⊕�Z; �0X):

Now, let M be an HZ-module. Let Gi = �iM and for each i ∈ Z take

one map �i ∈ [�iMGi;M ] corresponding to the identity in Hom(Gi; Gi)

where MGi is the Moore spectrum corresponding to Gi. Consider the map

∨i�iMGi

∨i�i // M:

Proposition 5.2.3. For every HZ-module M , there is a map of HZ-mo-

dules HZ ∧ (∨i�iMGi)
∨i ~�i−→ M which is also a homotopy equivalence.

Proof. For each �i ∈ [�iMGi;M ] constructed as before we have a unique

HZ-module map

~�i : HZ ∧ �iMGi −→M ~�i = mM ◦ (1 ∧ �i)

by lemma 5.2.1. It is enough to prove that this map induces an isomorphism

on �i, since HZ ∧ �iMGi = �iHGi. This follows from the commutativity

of the diagram

S ∧ �iMGi

1∧�i //

�∧1
��

S ∧M
�∧1
��

'

$$HHHHHHHHHH

HZ ∧ �iMGi 1∧�i
// HZ ∧M mM

// M

and the fact that � ∧ 1 and 1∧�i are isomorphisms on �i by construction.

So ∨i~�i is a map of HZ-modules and a homotopy equivalence.

Therefore every HZ-module is homotopically equivalent to a free one.
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Corollary 5.2.4. [HA;�iHB]HZ-mod = 0 unless i = 0 or i = 1.

Proof. We know that HA ' HZ∧MA. By Lemma 5.2.1 there is a natural

bijection

[MA;�iHB] ∼= [HZ ∧MA;�iHB]HZ-mod

and the result follows directly from Lemma 5.2.2 because the homotopy

groups of �iHB are zero except in dimension i.

Proposition 5.2.3 tells us that HZ-module spectra are exactly the stable

GEMs, because HG ' HZ ∧MG. Similarly, the stable HR-modules are

exactly the stable R-GEMs because each HR-module spectrum is an HZ-
module spectrum and the homotopy groups of HR-module spectra are

R-modules (see Remark 5.1.1). But it is important to notice that the

equivalence given by Proposition 5.2.3 is need not be an HR-module map

in general.

5.3 Localizations of Ring Spectra and Module Spectra

Now we will study the interaction of f -localization functors with ring and

module structures. In the case of f -localization functors that commute with

suspension, the localization of a ring or module spectrum has a natural ring

or module structure, as we next explain.

Theorem 5.3.1. Let f : A −→ B a map of spectra. If the f-localization

functor commutes with suspension, then:

� If E is a ring spectrum, then the spectrum LfE has a unique ring

spectrum structure such that the localization map lE : E −→ LfE

is a ring map.

� If M is a module spectrum over the ring spectrum E, then the

spectrum LfM has a unique E-module structure such that the

localization map lM : M −→ LfM is an E-module map. Mo-

rover, LfM admits a unique LfE-module structure extending the

E-module structure.
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Proof. For the �rst part we need to construct a product � and a unit �

on LfE. Let � and � be the product and unit of the ring spectrum E,

respectively. We have an equivalence F (E;LfE) ' F (LfE;LfE) because

LfE is f -local and the functor Lf commutes with suspension by hypothesis.

Then,

[E ∧ E;LfE] ∼= [E;F (E;LfE)] ∼= [E;F (LfE;LfE)]

∼= [E ∧ LfE;LfE] ∼= [LfE;F (E;LfE)] ∼= [LfE;F (LfE;LfE)]

∼= [LfE ∧ LfE;LfE]

Hence, the product � : E ∧ E −→ E extends to a unique map � : LfE ∧
LfE −→ LfE rendering commutative the diagram

E ∧ E
�

//

lE∧lE
��

E

lE
��

LfE ∧ LfE
�

// LfE

lE ◦ � ' � ◦ (lE ∧ lE)

We de�ne the unit � as the composition lE ◦ �

E
lE // LfE

S

�

OO

�

==

� ' lE ◦ �

Now, (LfE;�; �) is a ring spectrum. The commutativity of the diagrams

for � and � follows from the commutativity of the diagrams for � and �

and the construction of � and �.

The second part is proved exactly in the same way. We need a map

m : E ∧LfM −→ LfM endowing LfM the structure of an E-module spec-

trum. Let m : E ∧M −→M be the E-module structure map on M . Then

[E ∧M;LfM ] ∼= [E;F (M;LfM)] ∼= [E;F (LfM;LfM)]

∼= [E ∧ LfM;LfM ] (5.1)

Hence, the mapm : E∧M −→M extends to a unique mapm : E∧LfM −→
LfM rendering commutative the diagram

E ∧M m //

1∧lM
��

M

lM
��

E ∧ LfM
m

// LfM

lM ◦ � ' m ◦ (1 ∧ lM)
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and therefore (LfM;m) is an E-module spectrum. As before, the commu-

tativity of the diagrams for m follows easily from the commutativity of the

diagrams for m and the construction of m.

Recall from the �rst part of the Theorem that if E is a ring spectrum

then LfE is also a ring spectrum. To give LfM the structure of an LfE-

module we only have to go a step further in the bijections (5.1). We have

[E ∧M;LfM ] ∼= [E ∧ LfM;LfM ] ∼= [LfM;F (E;LfM)]

∼= [LfM;F (LfE;LfM)] ∼= [LfE ∧ LfM;LfM ]

and the map m : E ∧M −→ LfM also extends to a unique map m̃ : LfE ∧
LfM −→ LfM .

E ∧M m //

lE∧lM
��

M

lM
��

LfE ∧ LfM
m̃

// LfM

lM ◦ � ' m̃ ◦ (lE ∧ lM)

giving LfM the structure of an LfE-module.

For more general f -localization functors, it is not true that they preserve

ring or module structures in general. The following example, in which we

can see that the f -localization of a non-connective ring spectrum need not

be a ring spectrum, is due to Rudyak [Rud].

Example 5.3.2. For every ring spectrum E we have a homomorphism

�0(S)⊗ (HZ=p)n(E)
�∗⊗1−→ �0(E)⊗ (HZ=p)n(E)

h⊗1−→ (HZ=p)0(E)⊗ (HZ=p)n(E)
�∗−→ (HZ=p)n(E) (5.2)

where �∗ is induced by the unit �E of the ring spectrum E, h is the Hurewicz

homomorphism induced by the unit in the ring spectrum HZ=p and the

map �∗ is de�ned as follows. An element in (HZ=p)0(E)⊗ (HZ=p)n(E) has
the form �⊗ �, where

S
�−→ E ∧HZ=p and �nS

�−→ E ∧HZ=p:

Recall that if E and F are ring spectra, then the smash product E ∧ F
is also a ring spectrum, so applying �∗ to � ⊗ � is to compose with the

product in E ∧HZ=p, �∗(�⊗ �) = �E∧HZ=p ◦ (� ∧ �),

S ' S ∧ �nS �∧�−→ (E ∧HZ=p) ∧ (E ∧HZ=p)
�E∧HZ=p−→ E ∧HZ=p:
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The homomorphism (5.2) is an isomorphism because if �E and �HZ=p are

the units of E and HZ=p respectively, then �E∧�HZ=p is the unit of the ring

spectrum E ∧HZ=p. Because of this isomorphism, if E is a ring spectrum

with (HZ=p)0(E) = 0, then (HZ=p)n(E) = 0 for all n.

Now, given a natural number n and a �xed prime p, letK(n) be the ring

spectrum corresponding to n-th MoravaK-theory. This is a non-connective

spectrum. If we take its nulli�cation P�SK(n), i.e., f -localization with

respect to the map f : �S −→ ∗, we have that (see [Rudyak]):

(HZ=p)k(P�SK(n)) =

{
0 if n = 0

6= 0 otherwise:

So, P�SK(n) cannot be a ring spectrum, although K(n) is a ring spectrum.

However, under some connectivity conditions, we �nd that the functor

Lf preserves ring structures and module structures.

Theorem 5.3.3. Let f : A −→ B be a map of spectra. Then:

� If E is a connective ring spectrum and LfE is connective, then

the spectrum LfE has a unique ring structure such that the lo-

calization map lE : E −→ LfE is a ring map.

� If M is an E-module, where E is a connective ring spectrum, then

LfM has a unique E-module structure such that the localization

map lM : M −→ LfM is an E-module map. Morover, if LfE is

connective, then LfM also admits a unique LfE-module structure

extending the E-module structure.

Proof. The proof is exactly the same as in Theorem 5.3.1, but using the

fact that, if E is connective, then we have an equivalence

F c(E;F c(X;Y )) ' F c(E ∧X;Y )

that gives a bijection

[E;F c(X;Y )] ∼= [E ∧X;Y ]:
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Using these two theorems we �nd that the localization functor restricts

to a localization functor in the following subcategories:

� In the subcategory of ring spectra and ring maps, if the localization

functor commutes with suspension.

� In the subcategory of E-module spectra and E-module maps, if the

localization functor commutes with suspension.

� In the subcategory of connective ring spectra and ring maps, if LfE

is connective for every connective ring spectra E.

� In the subcategory of E-module spectra and E-module maps, if E is

a connective ring spectrum.

To prove this, we only have to check that if g : E −→ F is a morphism

(a ring map or an E-module map) in the corresponding subcategory, then

Lfg : LfE −→ LfF is also a morphism in the subcategory. We only show

the argument for the �rst subcategory, as for the other three it is exactly

the same. Suppose that g : E −→ F is a ring map between two ring spectra

(E;�E; �E) and (F; �F ; �F ). We have the following diagram

E ∧ E g∧g
//

�E
��

lE∧lE

xxppppppppppp
F ∧ F

�F

��

lF∧lF

xxppppppppppp

LfE ∧ LfE
Lfg∧Lfg

//

�E

��

LfF ∧ LfF

�F

��

E
g

//

lE

xxppppppppppppp F
lF

xxppppppppppppp

LfE
Lfg

//LfF

In order to prove that Lfg is a ring map, we have to show that the front

side of the cube commutes. But the front side commutes because the other

�ve sides do. The left and right sides commute because LfE and LfF are

ring spectra; the back side commutes because g is a ring map; and the top

and bottom sides commute because of the naturality of l.

We can summarize in the following table all the results we have obtained
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about preservations of ring and module structures under f -localizations.

Localization

functor



Commutes with sus-

pension


Sends ring spectra to ring spectra

Sends E-module spectra to E-

module spectra

Does not commute

with suspension



Sends connective ring spectra to

connective ring spectra if LfE is

connective for every connective

ring spectrum E

Sends E-module spectra to E-

module spectra if E is connective

5.4 Localizations of Stable GEMs

In this section we will compute the localization of stable R-GEMs in some

particular cases. As we already know from Proposition 5.2.3, the HZ-
modules are precisely the stable GEMs. Using the results on f -localizations

of E-modules of Section 5.3 we have the following.

Theorem 5.4.1. If E is a stable GEM, then LfE is also a stable GEM

and the localization map lE : E −→ LfE is an HZ-module map.

Proof. A stable GEM is the same as an HZ-module and HZ is a connective

spectrum. Apply now Theorem 5.3.3.

Remark 5.4.1. This theorem is also true if we replace stable GEM by stable

R-GEM for a ring R, with the exception that the localization map need

not be an HR-module map.

We have obtained that if a spectrum E is homotopy equivalent to

∨i∈Z�iHAi where Ai is an R-module for each i ∈ Z, then LfE ' ∨i∈Z�iHGi

where each Gi is an R-module.

Next, we are going to study the case when the spectrum E is a suspen-

sion of an Eilenberg{MacLane spectrum, i.e., E ' �nHG where G is an

R-module. By Theorem 5.4.1 we know that Lf�
nHG ' ∨i∈Z�iHGi with

each Gi an R-module, because �nHG is a stable R-GEM. In fact, most of
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the R-modules Gi are zero. Consider the following commutative diagram,

where pi is the projection onto the i-th factor

�nHG
l�nHG//

))SSSSSSSSSSSSSSS Lf�
nHG ' ∨i∈Z�iHGi

pi
��

�iHGi

The spectra �nHG and ∨i∈Z�iHGi are stable R-GEMs. In particular they

are stable GEMs or, equivalently, HZ-modules, and the maps l�nHG and

pi are HZ-module maps. By Corollary 5.2.4, [�nHG;�iHGi]HZ−mod = 0

unless i = n or i = n + 1. So, the universal property (2.1) and the fact

that �iHGi is f -local (it is a retract of ∨i∈Z�iHGi) tells us that Gi = 0 if

i 6= n or i 6= n+ 1.

What we get is that the localization of any suspension of an Eilenberg{

MacLane spectrum has at most two nonzero homotopy groups.

Theorem 5.4.2. Let f : A −→ B be a map of spectra. Let G be any abelian

group and n ∈ Z. Then Lf�nHG ' �nHG1∨�n+1HG2 for some groups

G1, G2.

There are some special cases in which the localization of an Eilenberg{

MacLane spectrum is a single Eilenberg{MacLane spectrum. This is the

case of localizations of the Eilenberg{MacLane spectrum HZ for ordinary

homology.

From Theorem 5.4.2, we know that LfHZ has at most two nonzero

homotopy groups. Actually, it has at most one homotopy group. Consider

the following commutative diagram

HZ

p2◦lHZ &&NNNNNNNNNNN
lHZ // HA ∨ �HB

p2
��

�HB

where p2 is the projection onto the second factor and lHZ the localization

map. Since the maps lHZ and p2 are HZ-module maps, so is also the

composite p2 ◦ lHZ. By Lemma 5.2.1, [HZ;�HB]HZmod
∼= [MZ;�HB] and

[MZ;�HB] = 0 because Hom(Z; �0(�HB)) = 0 and Ext(Z; �1(�HB)) =
0. The map p2 is nullhomotopic as seen from the fact that �HB is f -local
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(because it is a retract of HA ∧ �HB, which is f -local) and the universal

property (2.1). Hence, B = 0.

We have proved that the localization of HZ has at most one homotopy

group. Considering now the same commutative diagram as before but now

projecting onto the �rst factor

HZ

p1◦lHZ &&NNNNNNNNNNN
lHZ // HA ∨ �HB

p1
��

HA

we can obtain information about this homotopy group A. We have a bijec-

tion of abelian groups

[HA;HA]× [�HB;HA] ∼= [HZ; HA]:

But [�HB;HA] = 0 because

[�HB;HA] ∼= (HZ)0(�HB;A) ∼= Hom((HZ)0(�HB); A)
∼= Hom(�0(�HB); A) = 0:

Hence we get

Hom(A;A) ∼= [HA;HA] ∼= [HZ; HA] ∼= Hom(Z; A) ∼= A:

So we can characterize the homotopy group that appears in f -localizations

of HZ by the property Hom(A;A) ∼= A. Therefore, if A is nonzero, then it

admits a ring structure.

Definition 5.4.1. A ring A with unit satisfying the property Hom(A;A) ∼= A

is called a rigid ring (see [CRT]).

Examples of rigid rings are Z, Q, Ẑp, Z=p. All solid rings in the sense

of [BK] are rigid rings. However, there are rigid rings of arbitrarily large

cardinality (see [CRT]).

We can summarize the results obtained for f -localizations of HZ in the

following theorem.

Theorem 5.4.3. Let f : A −→ B be a map of spectra. Then the f-locali-

zation of the spectrum HZ has at most one nonzero homotopy group,

i.e., LfHZ ' HG. Moreover, the group G has a rigid ring structure.
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Remark 5.4.2. The same can be done if we replace HZ by any suspension

�kHZ. What we get in this case is that Lf�
kHZ ' �kHA. Again the

group A has a rigid ring structure.

We give an interesting corollary. A spectrum E is smashing if the

homological localization LE with respect to E∗ satis�es

LEX ' X ∧ LES for all spectra X;

where S is the sphere spectrum. For example, the spectrumK of (complex)

K-theory and the Johnson{Wilson spectra E(n) are smashing for all n.

Theorem 5.4.4. If E is smashing, then (HZ)n(LES) = 0 if n 6= 0, and it

is a rigid ring if n = 0.

Proof. We have that

(HZ)n(LES) = �n(HZ ∧ LES) ∼= �n(LEHZ) ∼= �n(HA)

for some rigid ring A, by



Appendix A

Localization in simplicial model
categories

In this chapter we will prove the existence of a localization functor Lf for a

simplicial model category under certain hypothesis. One of these hypothe-

sis is that our category must be co�brantly generated. This fact allows us

to use Quillen's small object argument to construct a localization. We

begin with the basic de�nitions of model categories (see [Qui] or [Hov])

A.1 Simplicial Model Categories

Definition A.1.1. A closed category is a category C together with three classes

of maps: co�brations, �brations and weak equivalences, that satis�es the

properties

(CM.1) C is closed under all �nite limits and colimits

(CM.2) Suppose that the following diagram commutes in C

X
g

//

h
��

Y

f~~}}
}}

}}
}

Z

If any two of f , g and h are weak equivalences then so is the third.
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(CM.3) Given a commutative diagram

X ′
i //

f
��

X
r //

g

��

X ′

f
��

Y ′
i′ // Y

r′ // Y ′

in which r ◦ i = idX′, r
′ ◦ i′ = idY ′ (we say f is a retract of g). If g is

a weak equivalence, �bration or co�bration, then so is f .

(CM.4) Suppose that we are given a commutative solid arrow diagram

U //

i
��

X

p

��

V //

>>

Y

where i is a co�bration and p is a �bration. Then the dotted arrow

exists making the diagram commute, if either i or p is also a weak

equivalence.

(CM.5) Any map f : X −→ Y may be factored

• f = p ◦ i where p is a �bration and i a trivial co�bration.

• f = q ◦ j where q is trivial �bration and j a co�bration.

A trivial �bration (co�bration) is a map that is both a �bration (co�-

bration) and a weak equivalence.

An object X is �brant (co�brant) if the map X −→ ∗ (∗ −→ X) is a

�bration (co�bration) in C.

Definition A.1.2. A map f : X −→ Y in C has the right lifting property (or

RLP) with respect to a class of morphisms S if in every solid diagram

A //

i
��

X

f
��

B //

>>

Y

with i ∈ S the dotted arrow exists making the diagram commute. Similarly

i has the left lifting property (or LLP) with respect to S if the dotted arrow

exists where f is in S.
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Co�brations and �brations determine each other via these lifting prop-

erties.

Lemma A.1.1. Let C be a closed model category. Then we have the fol-

lowing:

� A map i : A −→ B of C is a co�bration if and only if it has the

LLP with respect to all trivial �brations.

� The map i is a trivial co�bration if and only if it has the LLP

with respect to all �brations.

� A map f : X −→ Y of C is a �bration if and only if it has the

RLP with respect to all trivial co�brations.

� The map f is a trivial �bration if and only if it has the RLP with

respect to all co�brations.

Definition A.1.3. Let SS denote the category of simplicial sets. A simplicial

category is a category C and a functor

HOMC(−;−) : Cop × C −→ SS

satisfying

(SC.1) HOMC(A;B)0 = C(A;B).

(SC.2) HOMC(A;−) has a left adjoint A ⊗ − : SS −→ C and there is

an isomorphism

A⊗ (K × L) ∼= (A⊗K)⊗ L A ∈ C and K;L ∈ SS

natural in A, K and L.

(SC.3) HOMC(−; B) has a left adjoint HomC(−; B) : SS −→ Cop

Definition A.1.4. A category C is a simplicial model category if it is a closed

model category, a simplicial category and satis�es the `simplicial model

axiom'
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(SM.7) If j : A −→ B is a co�bration and q : X −→ Y is a �bration,

then

HOMC(B;X) −→ HOMC(A;X)×HOMC(A;Y ) HOMC(B; Y )

is a �bration of simplicial sets, which is trivial if j or q is trivial.

Definition A.1.5. A proper model category C is a model category satisfying

(P.1) Given a pullback diagram

X
g′

//

��

Y

p

��

Z g
// W

of C with p a �bration, if g is a weak equivalence the so is g′.

(P.2) Given a pushout diagram

X
f

//

i
��

Y

��

Z
f ′

// W

with i a co�bration, if f is a weak equivalence then so is f ′.

A.2 Small Objects in Model Categories

The main tool to prove the existence of localization functors is the small

object argument (see [Qui], [Hov]), which tells us how to construct functo-

rial factorizations in model categories. We will need some results on in�nite

compositions.

Let C be a model category which has all limits and colimits. Fix an in�-

nite cardinal number � and let Seq(�) denote the smallest ordinal number

of cardinality �. Recall that an ordinal is the well-ordered set of all smaller

ordinals. We can think of an ordinal as a category where there is a unique

map from � to � if and only if � ≤ �.

A �-diagram is a functor E : Seq(�) −→ C. E is a �-diagram of co�bra-

tions if each of the morphisms Et −→ Es is a co�bration in C.
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Definition A.2.1. Let 
 be an in�nite cardinal. An object X ∈ C is 
-small

if for all �-diagrams of co�brations E in C with � ≥ 
 the natural map of

sets

colim
�<�

C(X;E�) −→ C(X; colim
�<�

E�)

is an isomorphism.

An object X is small is there exists 
 such that X is 
-small

For an object to X to be small means that every map from X to

colim�<�E� factors through a E� for some �.

X //

∃
��

colim�<�E�

E�

p�

99rrrrrrrrrrr

A.3 Construction of Localization Functors

Let C be a simplicial proper model category. Let f : A −→ B be a co�bra-

tion in C between co�brant objects. First of all we have to assume some

hypothesis on the category C:

� C is cocomplete.

� A, B, �[n]⊗A
∐
@�[n]⊗A @�[n]⊗B, �[n]⊗B must be small objects.

� C is co�brantly generated i.e. there is a set K of trivial co�brations

in C such that a map is a �bration if it has the right lifting property

(RLP) for all members of K. Morover all domains and codomains of

members of K must be small.

Now we will de�ne what is a localization funtor in a simplicial model

category.

Definition A.3.1 (f -local objects and f -equivalences). Let X be an object in

C, and let f : A −→ B be a co�bration between co�brant objects. Then

� X is f -local is X is �brant and the map HOM(B;X) −→ HOM(A;X)

induced by f is a weak equivalence of simplicial sets.
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� g : X −→ Y is an f -equivalence if there is a co�brant approximation

g̃ : X̃ −→ Ỹ to g such that g̃∗ : HOM(Ỹ ; Z) −→ HOM(X̃; Z) is a weak

equivalence of simplicial sets for all f -local objects Z.

Definition A.3.2 (f -localization). An f -localization is a morphism X −→ X̂

that is an f -equivalence and where X̂ is f -local.

Our main goal is to prove that f -localization exists in any simplicial

model category, for every co�bration map f : A −→ B between co�brant

objects.

We want to construct an f -local object X̂ together with a natural f -

equivalence X −→ X̂. The object X̂ must be f -local so �rst of all it must

be a �brant object, so the map X̂ −→ ∗ must have the RLP with respect

to all members of K.

If X̂ is �brant, then f∗ : HOM(B; X̂) −→ HOM(A; X̂) is a �bration (see

for example [GJ99], p. 89). Thus, if X̂ is �brant, X̂ is f -local if and only if

f∗ is a trivial �bration of simplicial sets, i.e. has the RLP with respect to

the inclusions @�[n] −→ �[n], n ≥ 0.

@�[n] //

��

HOM(B; X̂)

��

�[n] //

∃
88

HOM(A; X̂)

The adjunction SS(X;HOM(Y; Z)) ∼= C(X ⊗ Y; Z), for all X ∈ SS and for

all Y; Z ∈ C implies that this is true if and only if the dotted arrow exists

in every diagram of the form

�[n]⊗ A
∐
@�[n]⊗A @�[n]⊗B //

��

X̂

��
�[n]⊗B //

∃

55

∗

Therefore,

Proposition A.3.1. An object X̂ ∈ C is f-local if and only if the map

X̂ −→ ∗ has the right lifting property with respect to the following

families of maps:
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� Members of K;

� �[n]⊗ A
∐
@�[n]⊗A @�[n]⊗B −→ �[n]⊗B.

We call Hor(f) = {�[n]⊗A
∐
@�[n]⊗A @�[n]⊗B −→ �[n]⊗B |n ≥ 0}

the set of horns on f and Hor(f) = Hor(f)∪K the set of augmented horns

on f . Let

Horn(A;B) = {�[n]⊗ A
∐

@�[n]⊗A

@�[n]⊗B}

Horn(A;B) = Horn(A;B) ∪ {Domains of K}

Let � be an in�nite cardinal such that A, B, �[n]⊗A
∐
@�[n]⊗A @�[n]⊗

B, �[n]⊗B and all domains and codomains of morphisms in K are �-small.

We want to construct a �-sequence of co�brations

X = E0
// E1

// E2
// : : : // E� // : : : (� < �)

and let X̂ = colim�<�E�. Set E0 = X, take all the morphisms

Horn(A;B) −→ X

and form the pushout of the following diagram,∐
Horn(A;B) //

��

E0 = X

��

(
∐

�[n]⊗B)
∐
(Codomains of K) // E1

In this way we obtain E1. Now we proceed inductively; to get En, take

En−1 and form the pushout∐
Horn(A;B) //

��

En−1

��

(
∐

�[n]⊗B)
∐
(Codomains of K) // En

Let X̂ = colim�<�E�.

Lemma A.3.2. The object X̂ is f-local.
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Proof. For every map h : Horn(A;B) −→ X̂ there is an ordinal � such

that h factors trough E� −→ X̂ because elements in Horn(A;B) are small.

Thus, if the map C −→ D is in Hor(f), then the dotted arrow exists in

every solid arrow diagram of the form

C //

��

X̂

D

??

and so the map X̂ −→ ∗ has the RLP with respect to every element in

Horn(f).

It only remains to proof that X −→ X̂ is a f -equivalence.

Lemma A.3.3. Every map in Horn(f) is a co�bration.

Proof. For h ∈ K is true by de�nition of the set K. For all n ≥ 0 the map

�[n]⊗ A
∐

@�[n]⊗A

@�[n]⊗B −→ �[n]⊗B

is a co�bration by (SM.7) and the adjunction SS(X;HOM(Y; Z)) ∼= C(X ⊗
Y; Z).

Lemma A.3.4. Co�brations are closed under both pushouts and trans�-

nite compositions.

Proof. See [Hirsch] Proposition 12.2.19

Corollary A.3.5. The map X −→ X̂ is a co�bration.

Proof. The map X −→ X̂ is constructed as a trans�nite composition of

pushouts of elements in Hor(f), so the result follows from lemma A.3.3

and lemma A.3.4.

Now we have proved X −→ X̂ is a co�bration we must show that

HOM(X̂;W ) ' HOM(X;W ) for all f -local objects W .

Lemma A.3.6. Every map in Hor(f) is an f-equivalence.
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Proof. Let g be a map in Hor(f).

� If g ∈ K, then g : C −→ D is a trivial co�bration. Now, g induces a

trivial �bration of simplicial sets HOM(D;Z) −→ HOM(C;Z) if Z is

�brant, and this is true for all Z that are f -local.

� If g is a map of the form

�[n]⊗ A
∐

@�[n]⊗A

@�[n]⊗B −→ �[n]⊗B

then we have to check that there exists a map

@�[n] //

��

HOM(�[n]⊗B;Z)

��

�[n] //

44

HOM(�[n]⊗ A
∐
@�[n]⊗A @�[n]⊗B;Z)

rendering commutativity of the diagram. We can prove the existence

of this map using the adjunction SS(X;HOM(Y; Z)) ∼= C(X ⊗ Y; Z)
and the fact that if there exists a map rendering commutativity of

the diagram

@�[n] //

��

HOM(B;X)

��

�[n] //

∃
88

HOM(A;X);

then the same happens in the diagram

L //

��

HOM(B;X)

��

K ////

∃
99

HOM(A;X);

for any simplicial pair (K;L). For full details see [Hirsch] Proposition

10.3.3 and Proposition 10.3.10.

Lemma A.3.7. Every map E� −→ E�+1 is an f-equivalence for all �.
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Proof. Each map E� −→ E�+1 is a pushout of both f -local equivalences

and co�bration maps. The result follows from [Hirsch] Proposition 1.2.16.

Lemma A.3.8. If we have a diagram E0 −→ E1 −→ : : : −→ E� −→ : : : in

which each map E� −→ E�+1 is a f-equivalence then the natural map

E0 −→ colim� E� is also an f-equivalence.

Proof. If W is f -local, then W is �brant so we have trivial �brations

HOM(E�;W ) ←− HOM(E�+1;W ) because E� −→ E�+1 is a co�bration

(see [GJ] p.89) and a f -equivalence. We have

HOM(E0;W ) HOM(E1;W )'oo : : :'oo HOM(E�;W )'oo : : :'oo

so

HOM(E0;W ) ' lim
�
HOM(E�;W ) ' HOM(colim

�
E�;W )

With all these ingredients we can now state the existence theorem for

f -localizations.

Theorem A.3.9. Let C be a proper simplicial model category, then for

every co�bration map f : A −→ B between co�brant objects and every

object X ∈ C, there exists a f-localization of X.

Proof. X̂ is f -local by lemma A.3.2 and the map X −→ X̂ is a f -equiva-

lence by lemma A.3.8, so the map X −→ X̂ is a f -localization of X.

Remark A.3.1. This construction is functorial, so f -localization is a func-

tor.
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