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Introduction

Precedents

Cellularization functors were introduced by Farjoun in 1996 in the
category of topological spaces.
Given A and X two pointed topological spaces, CellAX contains
the information on X that can be built up from A.
X is called A-cellular if CellAX ' X and it is the smallest class that
contains A and it is closed under weak equivalences and
homotopy colimits.
f : X −→ Y is an A-cellular equivalence if

f∗ : map∗(A,X ) −→ map∗(A,Y )

is a weak equivalence.
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Introduction

Precedents

Examples: n-connective covers, universal covers.

Cellularization for groups and modules has been studied by
Farjoun-Göbel-Segev-Shelah and Rodríguez-Strüngmann .

Objectives

Describe the formal properties of cellularization functors in
triangulated categories.

Study the algebraic structures preserved by these functors.
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Cellularization and nullification functors

Cellular and null objects

Let (T,Σ, [−,−]) be a triangulated category with arbitrary coproducts
and a set of generators.

Definition
Let A be any object of T.

i) A map f : X −→ Y in T is an A-cellular equivalence if the induced
map

[ΣkA,X ]
g∗−→ [ΣkA,Y ]

is an isomorphism of abelian groups for all k ≥ 0.
ii) An object Z of T is A-cellular if the induced map

[ΣkZ ,X ]
f∗−→ [ΣkZ ,Y ]

is an isomorphism for every A-cellular equivalence f : X −→ Y
and for all k ≥ 0.
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Cellularization and nullification functors

Cellular and null objects

Definition
Let A be any object of T.

i) An object X is A-null if [ΣkA,X ] = 0 for every k ≥ 0.
ii) A map g : X −→ Y is an A-null equivalence if the induced map

[ΣkY ,Z ] ∼= [ΣkX ,Z ]

is an isomorphism of abelian groups for k ≥ 0.

An A-cellularization functor is a colocalization functor (CellA, c)
such that for every object X of T, the map cX : CellAX −→ X is an
A-cellular equivalence and CellAX is A-cellular.
An A-nullification functor is a localization functor (PA, l) such that
for every object X of T, the map lX : X −→ PAX is an A-null
equivalence and PAX is A-null.
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Cellularization and nullification functors

Cellular and null objects

We say that PA or CellA are exact if they are triangulated functors.

Existence

Assume that there is a stable model category M such that
T = Ho(M). Cellularization and nullfication functors always exist if
M is a proper combinatorial model category.
Examples to keep in mind: Spectra, D(R), E-local spectra,
D(shv/X ),. . .
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Cellularization and nullification functors

Cellular and null objects

Closure properties
Let X −→ Y −→ Z be an exact triangle in T

i) If Y and Z are A-null then X is A-null.
ii) If X and Z are A-null then Y is A-null.
iii) If X and Y are A-cellular then Z is A-cellular.
iv) If X and Z are A-cellular then Y is not A-cellular in general.
v) The class of A-null objects and the class of A-cellular

equivalences are closed under desuspensions.
vi) The class of A-cellular objects and the class of A-null

equivalences are closed under suspensions.
vii) If PA and CellA are exact the above classes are closed under

suspensions and desuspensions.

Colocalization functors satisfying the analog of condition ii) are called
quasiexact.
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Cellularization and nullification functors

Exact triangles

There are natural maps

CellAX −→ X −→ PAX .

This is not an exact triangle in general.

Theorem
Let A and X be two objects of T.

i) There is an exact triangle CellAX−→X−→PAX if and only if the
morphism of abelian groups [Σ−1A,CellAX ] −→ [Σ−1A,X ] is
injective (e.g. if [Σ−1A,CellAX ] = 0).

ii) There is an exact triangle CellAX−→X−→PΣAX if and only if
[A,X ] −→ [A,PΣAX ] is the zero map (e.g. if [A,X ] = 0).

iii) If CellA or PA are exact, then CellAX−→X−→PAX is an exact
triangle.
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Cellularization and nullification functors

Exact triangles

Example
Not every nullification and cellularization functor fiting into an exact
triangle are exact.
If T is the stable homotopy category of spectra and S is the sphere
spectrum, then we have an exact triangle

CellSX −→ X −→ PSX

for every X , but neither CellS nor PS are exact.
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Cellularization and nullification functors

Colocalizations associated to nullifications

Let FAX be the fiber of the map X −→ PAX

FAX −→ X −→ PAX

The universal property of PA and the fact that PA is quasiexact make
FA a colocalization functor (augmented and idempotent).

Moreover
FA is quasiexact
FA-colocal objects are closed under suspensions
[FAX ,PAY ] = 0 for every X and Y in T.

Under Vopěnka’s principle FA = CellE for some E [Chorny, 2008]. A
construction of E in pointed spaces is possible not relying on
Vopěnka’s principle [Chacholski-Parent-Stanley, 2004].
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Vopěnka’s principle [Chacholski-Parent-Stanley, 2004].

Javier J. Gutiérrez (CRM) Cellularization in triangulated categories 10 / 21



Cellularization and nullification functors

Colocalizations associated to nullifications

Let FAX be the fiber of the map X −→ PAX

FAX −→ X −→ PAX

The universal property of PA and the fact that PA is quasiexact make
FA a colocalization functor (augmented and idempotent).

Moreover
FA is quasiexact
FA-colocal objects are closed under suspensions
[FAX ,PAY ] = 0 for every X and Y in T.
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Cellularization and nullification functors

t-structures

Definition
A t-structure on T is a pair of full subcategories (T≤0,T≥0) such that,
denoting T≤n = Σ−nT≤0 and T≥n = Σ−nT≥0, the following hold:

i) For every object X of T≤0 and every object Y of T≥1, [X ,Y ] = 0.
ii) T≤0 ⊂ T≤1 and T≥1 ⊂ T≥0.
iii) For every object X of T, there is an exact triangle

U −→ X −→ V ,

where U is an object of T≤0 and V is an object of T≥1.
The core of the t-structure is the full subcategory T≤0 ∩ T≥0. The core
is always an abelian subcategory of T.
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Cellularization and nullification functors

t-structures

Theorem
For any object A in T the full subcategory of ΣA-null objects and the
full subcategory of FA-colocal objects define a t-structure on T.

If CellA and PA fit into an exact triangle, then the t-structure is
given by the A-cellular objects and the ΣA-null objects

If CellA and PA are exact, then the associated t-structure is trivial.
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Cellularization and nullification functors

t-structures

Example
Let T be a monogenic stable homotopy category with unit S, such that
[ΣkS,S] = 0 for every k < 0. Let R denote the ring [S,S]. Then the
functors CellΣk S and PΣk S are the k -th connective cover functor and
the k -th Postnikov section functor respectively:

[ΣnS,CellΣk SX ] =

{
0 if n < k

[ΣnS,X ] if n ≥ k

[ΣnS,PΣk SX ] =

{
0 if n ≥ k

[ΣnS,X ] if n < k

We have an exact triangle

CellΣk SX −→ X −→ PΣk SX .
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Cellularization and nullification functors

t-structures

Example
The core of the associated t-structure is the full subcategory of T with
objects X such that such that [ΣnS,X ] = 0 if n 6= k and it is equivalent
to the category of R-modules. The objects in the core are called
Eilenberg-Mac Lane objects.

Note that CellΣk S is not an exact functor. For example, if
[Σk−1S,X ] 6= 0, then CellΣk SΣX 6= ΣCellΣk SX .
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Cellularization of structures

Cellularization of modules and rings

Let T be a monoidal triangulated category with tensor product ⊗, unit
S and internal hom F (−,−), such that

T is monogenic.
T is connective, i.e., [ΣkS,S] = 0 for k < 0.

An object X is called connective if CellSX ' X and if X is connective,
then

[X ,CellSF (Y ,Z )] ∼= [X ,F (Y ,Z )] ∼= [X ⊗ Y ,Z ].

A ring R in T is a monoid object and an R-module in T is a monoid
over the monoid R.
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Cellularization of structures

Cellularization of modules and rings

Theorem
If E is a connective ring object and M is an E-module, then for any
object A, the object CellAM has an E-module structure such that the
cellularization map CellAM −→ M is a map of E-modules. If CellA is
exact, we can avoid the connectivity condition.

The case for rings is more involved. If R is a ring,then CellAR will not
be a ring in general, even if CellA is exact!

S
η ???

//

η
##FFFFFFFFF CellAE

cE

��

E .

Javier J. Gutiérrez (CRM) Cellularization in triangulated categories 16 / 21



Cellularization of structures

Cellularization of modules and rings

Theorem
If E is a connective ring object and M is an E-module, then for any
object A, the object CellAM has an E-module structure such that the
cellularization map CellAM −→ M is a map of E-modules. If CellA is
exact, we can avoid the connectivity condition.

The case for rings is more involved. If R is a ring,then CellAR will not
be a ring in general, even if CellA is exact!

S
η ???

//

η
##FFFFFFFFF CellAE

cE

��

E .

Javier J. Gutiérrez (CRM) Cellularization in triangulated categories 16 / 21



Cellularization of structures

Cellularization of modules and rings

Theorem
If E is a connective ring object and M is an E-module, then for any
object A, the object CellAM has an E-module structure such that the
cellularization map CellAM −→ M is a map of E-modules. If CellA is
exact, we can avoid the connectivity condition.

The case for rings is more involved. If R is a ring,then CellAR will not
be a ring in general, even if CellA is exact!

S
η ???

//

η
##FFFFFFFFF CellAE

cE

��

E .

Javier J. Gutiérrez (CRM) Cellularization in triangulated categories 16 / 21



Cellularization of structures

Cellularization of modules and rings

Let C be the cofiber of CellAE −→ E

CellAE −→ E −→ C

Theorem
Let E be a ring object. Assume that either one of the following holds:

i) CellA commutes with suspension, the morphism π1(E) � π1(C) is
surjective and the morphism π0(C) � π−1(CellAE) is in jective or

ii) CellAE is connective, CellA is of the form FB for some B, the
morphism π1(E) � π1(PBE) is surjective and π0(PBE) = 0.

Then CellAE has a unique ring structure such that the cellularization
map is a map of rings.
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Cellularization of structures

Cellularization of modules and rings

Example
Let A = S, then CellAE is the connective cover of E . There is an exact
triangle

CellSE −→ E −→ PSE

where PS is the Postnikov section functor, i.e., it kills all the homotopy
groups in dimensions bigger or equal to zero. So π1PSE = π0PSE = 0
and by part ii) of the previous theorem we have that if E is a ring
object, then so is its connective cover CellSE .

Javier J. Gutiérrez (CRM) Cellularization in triangulated categories 18 / 21



Cellularization of Eileberg-Mac Lane objects

Some computations

How to compute CellAΣkHG for any abelian group G.

Theorem
Let G be any abelian group, n ∈ Z and A be any object in T. Then

CellAΣnHG ' Σn−1HB ∨ ΣnHC

for some abelian groups B and C. Moreover
i) Hom(B,B)⊕ Ext(B,C) ∼= Ext(B,G).
ii) Hom(C,C) ∼= Hom(C,G).
iii) Hom(B,C) ∼= Hom(B,G).

If G is divisible, then CellAΣnHG is either zero or ΣnHC for some
abelian group C.
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Cellularization of Eileberg-Mac Lane objects

Some computations

Example
For every object A in T and any interger m, we have that

CellAΣmHZ/pn ' ΣmHZ/pj ,

where 1 ≤ j ≤ n.

If A = ΣmHZ/pk , then

CellAΣmHZ/pn '
{

ΣmHZ/pk if n ≥ k
ΣmHZ/pn if n < k .

This shows that CellHZ/p is not quasiexact, since HZ/p is A-cellular but
HZ/p2 is not.
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Cellularization of Eileberg-Mac Lane objects

Some computations

Let T be the homotopy category of spectra. Let E be any spectrum and
let LE be homological localization with respect to E . Bousfield proved
that there is another spectrum A, such that LEX ' PAX for every X .
Since LE commutes with suspension there is an exact triangle

CellAX −→ X −→ PAX ,

where CellA is the E-acyclization functor (in Bousfield languaje).

Example
The cellularization CellAHZ is either zero or one of the following three
possibilities

HZ, Σ−1H(⊕p∈PZ/p∞), Σ−1H((
∏

p∈P
Ẑp)/Z).

This shows that CellA does not preserve rings in general.
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Ẑp)/Z).

This shows that CellA does not preserve rings in general.

Javier J. Gutiérrez (CRM) Cellularization in triangulated categories 21 / 21


	Introduction
	Cellularization and nullification functors
	Cellularization of structures
	Cellularization of Eileberg-MacLane objects

