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1 The Gauss hypergeometric function

The Gauss hypergeometric equation is the second order differential equation

[θ(θ + c− 1)− z(θ + a)(θ + b)]f = 0 (1)

in the complex plane C with θ = zd/dz and a, b, c three complex parameters. It
is regular outside z = 0, 1 and ∞. The singular points are regular singular with
local exponents given by the Riemann scheme

z = 0 z = 1 z = ∞
0 0 a
1− c c− (a+ b) b

The first line contains the three singular points and the next two lines give the
local exponents at these points. The Gauss hypergeometric function

F (a, b, c; z) =

∞
∑

n=0

(a)n(b)n
(c)nn!

zn = 1 +
ab

c1!
z +

a(a+ 1)b(b+ 1)

c(c+ 1)2!
z2 + · · · (2)

is the holomorphic solution of the hypergeometric equation around z = 0 with
exponent 0 and normalized by F (a, b, c; 0) = 1. It is well defined if c /∈ −N, is
convergent for |z| < 1 and terminates if a ∈ −N or b ∈ −N. The third way of
defining the hypergeometric function is the Euler integral

F (a, b, c; z) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

ta−1(1 − t)c−a−1(1− tz)−bdt (3)

valid for ℜc > ℜa > 0. All three characterizations of the hypergeometric func-
tion, through the differential equation, the power series and the integral formula
are in fact due to Euler.

In the next sections we shall sketch a multivariable generalization of the
hypergeometric function in the context of root systems. It turns out that es-
sentially all aspects of the one variable case have suitable generalizations with
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the exception of the Euler integral. In the general root system context inte-
gral representations still remain a mystery, apart from a hand full of isolated
examples.

Consider the pull-back under the map C× ∋ t 7→ z ∈ C given by

z = (12 − 1
4 (t+ 1/t)) = − 1

4 (t
1
2 − t−

1
2 )2

of the hypergeometric equation. The transformation t 7→ z has degree 2 and
ramification points t = 1,−1 lying above z = 0, 1 respectively. It is the quotient
map for the action of the group S2 = {±1} acting by t 7→ t±1.

b b b

b b

b

b

0 1 ∞

0
−11

∞
t

z

The pull-back of the hypergeometric equation under t 7→ z takes the form

[ϑ2 + k1
1 + t−1

1− t−1
ϑ+ 2k2

1 + t−2

1− t−2
ϑ+ (12k1 + k2)

2 − λ2]f = 0 (4)

(with ϑ = td/dt and) with the linear relations

a = λ+ 1
2k1 + k2 , β = −λ+ 1

2k1 + k2 , γ = 1
2 + k1 + k2

between the two parameter sets. Note the visible symmetry under t 7→ 1/t.
This equation has four regular singular points t = 1,−1, 0,∞ with Riemann
scheme

t = 1 t = −1 t = 0 t = ∞
0 0 a a
2− 2c 2c− 2(a+ b) b b

as is clear from the ramification picture and the Riemann scheme of the Gauss
hypergeometric equation.

The multiplicative group C× with the action of the group S2 = {±1} by
z 7→ z±1 together with the pull-back of the hypergeometric equation has a
natural generalization. Let T be a maximal torus in a simply connected complex
simple Lie group with Weyl group W . Instead of C× with the action of S2

we consider the complex torus T ∼= (C×)n with the action of W . It turns
out that on the quotient space W\T there is an integrable system, in fact
the eigenvalue system for a commutative algebra of linear partial differential
operators, which can be viewed as a natural multivariable generalization of the
Gauss hypergeometric equation.

Initial steps in this direction for rank 2 were taken by Koornwinder [41].
In general such a multivariable theory of hypergeometric functions associated
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with root systems was established by the authors [29],[25],[57],[58],[59],[60]. The
original arguments used transcendental methods, but this all changed with the
fundamental paper of Dunkl [17]. The extension of Dunkl operators from the
rational to the trigonometric setting was obtained by Heckman [26] with further
simplifications by Cherednik [7] and Opdam [61]. Dunkl operators are now the
corner stone for obtaining the hypergeometric equations associated with root
systems. Additional survey articles on this subject were written by Heckman
[27] and Opdam [63].

2 Root systems

In this section we set up the notation, and give a brief exposition of the the-
ory of root systems. Standard references for the theory are Bourbaki [5] and
Humphreys [33].

Let V be a finite dimensional Euclidean vector space. The inner product of
two vectors λ, µ in V will be denoted (λ, µ). For α a nonzero vector in V let
α∨ = 2α/(α, α) be the covector of α, and denote by

sα : V → V , sα(λ) = λ− (λ, α∨)α

the orthogonal reflection with mirror the hyperplane Vα perpendicular to α.
The transformation sα is called the reflection with root α.

Definition 2.1. A root system R in V is a finite subset of nonzero vectors
spanning V , such that sα(β) ∈ R and (β, α∨) ∈ Z for all α, β ∈ R. The group
W generated by the reflections sα for α ∈ R is called the Weyl group. The
second property is called the crystallographic condition.

In Chapter 7 by Dunkl the concept of root system is used without the crys-
tallographic condition. However, in this chapter a root system will always be
crystallographic, as customary in semisimple Lie theory.

We do not require that Qα∩R = {±α} for all α ∈ R, and so R need not be
reduced. It is obvious that R∨ = {α∨;α ∈ R} is again a root system, called the
coroot system. The lattice Q = ZR is called the root lattice of R, and the lattice
P dual to the coroot lattice Q∨ = ZR∨ is called the weight lattice of R. Vectors
in the weight lattice P are called weights. The root lattice is contained in the
weight lattice by the crystallographic condition, and both lattices are invariant
under W . It is easy to see that for α ∈ R one has either Qα ∩ P = Zα or
Qα ∩ P = Z1

2α, and in the latter case we say that the root α is twice a weight.
Let T = Hom(P,C×) be the complex torus with character lattice P . We

have the polar decomposition

T = TvTu , Tv = Hom(P,R>0) , Tu = Hom(P, {z ∈ C×; |z| = 1}) (5)

with Tv the real vector subgroup and Tu the real compact torus. Since the
weight lattice P is equal to Hom(T,C×) the group algebra C[P ] gets identified
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with the algebra C[T ] of regular functions (or Laurent polynomials) on T . This
defines T as a complex algebraic torus.

As a complex manifold T = t/2πiQ∨ with t = C ⊗ V the Lie algebra of T .
Extend the inner product (·, ·) on V to a symmetric bilinear form on t. For
µ ∈ P the regular function tµ on T , defined by

tµ = e(µ,log t)

with log t a representative in t for t ∈ t/2πiQ∨, is called a Laurent monomial.
Addition on t induces an Abelian group structure on T , and so T becomes
a complex torus. For a root α the submanifold Tα = {t ∈ T ; tα = 1} is a
subgroup of T , called a toric mirror. It consists of one or possibly two connected
components, depending on whether α is not or is twice a weight.

Fix once and for all a decomposition R = R+ ∪R− in positive and negative
roots. The cone of dominant weights P+ = {µ ∈ P ; (µ, α∨) ∈ N, ∀α ∈ R+} has a
basis over N of fundamental weights ̟1, · · · , ̟n, which is just dual to the basis
of simple coroots α∨

1 , · · · , α
∨
n of R∨

+. The corresponding simple roots α1, · · · , αn

are a basis of simple roots for the root subsystem R◦ = {α ∈ R; 2α /∈ R} of
inmultiplyable roots. The corresponding simple reflections s1, · · · , sn generate
the Weyl group W as a Coxeter group.

For µ ∈ P+ the regular function

mµ(t) =
∑

µ∈Wµ

tµ

is called the monomial invariant function with highest weight µ. Define a partial
ordering ≤ on P by ν ≤ µ if (µ − ν) ∈ NR+, which explains the name highest
weight µ for mµ. It is easy to show that

mµmν = mµ+ν + · · ·

with · · · denoting a linear combination of mλ with λ ∈ P+ and λ < µ+ν. Since
the monomial invariant functions are a basis of C[T ]W one can derive that
C[T ]W is equal to the polynomial algebra C[z1, · · · , zn] with zj the fundamental
monomial invariant function with highest weight ̟j . In turn this implies that
W\T is isomorphic to the linear space Cn. The quotient map T → W\T for
the action of W on T has degree equal to the order of the Weyl group, and is
ramified along the toric mirror arrangement ∪αTα. The hypergeometric system
is an integrable system of linear partial differential equations with polynomial
coefficients on W\T ∼= Cn. Although in the rank one case of the previous
section, with W of order 2 acting on C× by t 7→ 1/t and with quotient map
C× → C, t 7→ (t + 1/t) a degree two covering, this might seem odd, for higher
rank the only sensible approach is never to work on the quotient space W\T ,
but perform slick constructions on T with suitable equivariance under the Weyl
group W .
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3 The hypergeometric system

The complex torus T with character lattice the weight lattice P of our given
root system R has Lie algebra t with the trivial Lie bracket. We have natural
isomorphisms St ∼= P t∗ ∼= U t of the symmetric algebra St of t, the algebra P t∗ of
polynomial functions on t∗ and the universal enveloping algebra U t of invariant
linear differential operators on T . We denote for p a polynomial function on
t∗ the corresponding invariant linear differential operator on T by ∂(p). The
characters t 7→ tµ = eµ(log t) are eigenfunctions for U t, so

∂(p)tµ = p(µ)tµ (6)

for all µ ∈ P . The root system R, the root lattice Q and the weight lattice P
are naturally considered as subsets of the dual space t∗.

Let us denote by Treg = T−∪Tα the complement of the toric mirror arrange-
ment, and by C[Treg] the algebra of regular functions on Treg generated by C[T ]
and the functions t 7→ 1/(1− t−α) for α ∈ R. Denote by D(Treg) = C[Treg]⊗U t

the corresponding algebra of linear differential operators on Treg. Clearly C[Treg]
is a natural left module for D[Treg]. The Weyl group algebraC[W ] acts on C[Treg]
by left multiplication (so w(eµ) = ewµ for all µ ∈ P ) and on D[Treg] by conju-
gation in a compatible way. There is a unique associative algebra structure on
D[Treg]⊗ C[W ] turning C[Treg] into a left module for D[Treg]⊗ C[W ].

Lemma 3.1. The natural map D[Treg] ⊗ C[W ] → Hom(C[T ],C[Treg]) is an
injection.

Definition 3.2. Let us call the linear space

K = {k ∈ CR; k = (kα), kwα = kα∀w ∈ W,α ∈ R} (7)

the space of multiplicity (or coupling) parameters for R. For ξ ∈ t and k ∈ K
the expression

T (ξ, k) = ∂(ξ)− ρ(k)(ξ) +
∑

α>0

kαα(ξ)(1 − t−α)−1 ⊗ (1 − sα) (8)

(viewed as element of D[Treg] ⊗ C[W ]) is called the Dunkl–Cherednik operator
or just the (trigonometric) Dunkl operator with

ρ(k) = 1
2

∑

α>0

kαα ∈ t∗ (9)

the Weyl vector for the multiplicity parameter k ∈ K.

The Dunkl operator acts as a linear operator on C[Treg] leaving the linear
subspace C[T ] →֒ C[Treg] invariant. Indeed for µ ∈ P with µ(α∨) = m ∈ Z we
have

tµ − tsαµ

1− t−α
= tµ

1− t−mα

1− t−α
=











tµ(1 + e−α + · · ·+ e−(m−1)α) m > 0

0 m = 0

−tµ(eα + · · ·+ e−mα) m < 0

which in turn implies that T (ξ, k) : C[T ] → C[T ] for all k ∈ K.
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Lemma 3.3. In case kα ≥ 0 for all α ∈ R (denoted k ∈ K+) we can define a
Hermitian inner product 〈·, ·〉k on C[T ] by

〈f, g〉k = |W |
−1
∫

Tu

f(t)g(t)
∏

α>0

|t
1
2
α − t−

1
2
α|

2kαdut (10)

with dut the normalized Haar measure on the compact torus Tu. Moreover the
Dunkl operator satisfies

〈T (ξ, k)f, g〉k = 〈f, T (ξ, k)g〉k (11)

with the bar for complex conjugation on t with respect to the real form tv. In
particular T (ξ, k) is selfadjoint on C[T ] with respect to 〈·, ·〉k for all ξ ∈ tv.

If f(t) =
∑

cµt
µ (sum over µ in P ) is a Laurent polynomial on T then

the constant term c0 is equal to
∫

f(t)dut (integration over t in Tu). So the
Hermitian inner product 〈·, ·〉k is defined in algebraic terms for k ∈ K ∩ NR,
since

δ(k) :=
∏

α>0

|t
1
2
α − t−

1
2
α|

2kα =
∏

α>0

(2− tα − t−α)kα ∈ C[T ]

for t ∈ Tu. In turn this implies that our proof of the theorem below on the
commutativity of the Dunkl operators is algebraic.

Lemma 3.4. Recall the standard partial ordering ≤ on P defined by ν ≤ µ if
µ − ν ∈ NR+. For µ ∈ P let µ+ ∈ P+ be the unique dominant weight in the
orbit Wµ. Define a new partial ordering E on P by

ν E µ if either ν+ < µ+ or ν+ = µ+ ∧ µ ≤ ν. (12)

So µ+ is the smallest and w0µ+ is the largest element in the orbit Wµ in this
new ordering E. Here w0 ∈W is the longest element. Then the Dunkl operators
are upper triangular with respect to the basis tµ of C[T ] partially ordered by E.
More precisely, writing dots for lower order terms with respect to ⊳, we have

T (ξ, k)tµ = µ̃(ξ)tµ + · · ·

for all µ ∈ P , with

µ̃ = µ+ 1
2

∑

α>0

kαǫ(µ(α
∨))α (13)

and ǫ : R → {±1} defined by ǫ(x) = +1 if x > 0 and ǫ(x) = −1 if x ≤ 0.

For k ∈ K+ = {k ∈ K; kα ≥ 0 ∀ α} define a new basis E(µ, k) for µ ∈ P of
C[H ] by the conditions

E(µ, k) = tµ + · · · , 〈E(µ, k), tν〉k = 0

for all ν ∈ P with ν⊳µ. This new basis is obtained from the original monomial
basis by an upper unitriangular transformation, so that the inverse transfor-
mation is again upper unitriangular. Therefore the Dunkl operators are also
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upper triangular with respect to the new basis E(µ, k) for µ ∈ P . Since
〈E(µ, k), E(ν, k)〉k = 0 for all ν ∈ P with ν ⊳ µ it follows from Lemma 3.3
that the Dunkl operators with fixed multiplicity parameter k ∈ K are simul-
taneously diagonalized by the basis E(µ, k). Hence Dunkl operators commute,
and we have proven the following theorem.

Theorem 3.5. We have T (ξ, k)T (η, k) = T (η, k)T (ξ, k) for all ξ, η ∈ t and all
k ∈ K.

The equality in the theorem is polynomial in k ∈ K, and so it follows for
all k ∈ K once it is known on the Zariski dense subsets K ∩ NR ⊂ K+ of K.
Due to the commutativety of the Dunkl operators we can extend the linear map
t → D[Treg]⊗ C[W ], ξ 7→ T (ξ, k) to an algebra homomorphism

p 7→ T (p, k)

from the symmetric algebra St into D[Treg]⊗C[W ], such that the induced natural
action of St on C[Treg] via higher order Dunkl operators preserves the linear
subspace C[T ]. It is clear that

T (p, k)E(µ, k) = p(µ̃)E(µ, k) (14)

for all µ ∈ P and all k ∈ K+. The following definition goes back to Drinfeld [16]
and Lusztig [47].

Definition 3.6. The degenerate affine Hecke algebra H = H(R+, k) is the
unique associative algebra satisfying

• H = St⊗ C[W ] as a vector space over C,

• St → H, p 7→ p ⊗ 1 and C[W ] → H, w 7→ 1 ⊗ w are algebra homomor-
phisms, and so we will identify St and C[W ] with their images in H via
these maps,

• p · w = p⊗ w with · denoting the algebra multiplication in H,

• si · p − si(p) · si = −ki(p − si(p))/α
∨
i with w(p) the natural transform of

p ∈ St under w ∈W , and ki =
1
2kαi/2 + kαi

.

Note that the last item of this definition holds if and only if the item holds
for all p = ξ ∈ t homogeneous of degree one, in which case it boils down to

si · ξ − si(ξ) · si = −kiαi(ξ) (15)

for all ξ ∈ t. If W ∋ w = si1 · · · sip is written as a shortest word in the simple
reflections then p = l(w) is called the length of this Weyl group element. By
induction on the length l(w) one can show that

w · ξ · w−1 = w(ξ) +
∑

α∈R+∩wR−

kαα(w(ξ))sα (16)

for all ξ ∈ t and w ∈ W . In turn this implies that the centralizer of t in H is
equal to St. Using the last item of the above definition it is straightforward to
describe the center of the degenerate affine Hecke algebra H.
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Proposition 3.7. The center Z(H) of H is equal to StW .

It is easy to check from the definition of the Dunkl operator (just a rank one
computation) that

siT (ξ, k)− T (siξ, k)si = −kiαi(ξ) (17)

for all ξ ∈ t. Therefore the conclusion is that the action of the Weyl group and
the Dunkl operators on C[T ] define a representation of the degenerate affine
Hecke algebra H(R+, k) on the function space C[T ].

Definition 3.8. The representation via Dunkl operators

p 7→ T (p, k), w 7→ w : H(R+, k) → EndC(C[T ])

is called the Dunkl representation of the degenerate affine Hecke algebra.

Hence for p ∈ StW the Dunkl operator

T (p, k) =
∑

w

D(w, p, k)⊗ w ∈ D[Treg]⊗ C[W ]

commutes with all elements from W , and therefore the linear differential oper-
ator

D(p, k) :=
∑

w

D(w, p, k) (18)

lies in D[Treg]
W . It is also clear that

D(p, k)D(q, k) = D(pq, k) ∀p, q ∈ StW (19)

and so {D(p, k); p ∈ StW } is a commutative algebra of differential operators
on Treg. By definition D(p, k) is the unique element of D[Treg]

W which has the
same restriction to C[T ]W as the Dunkl operator T (p, k). In particular D(p, k)
preserves the space C[T ]W .

Definition 3.9. Fix k ∈ K and λ ∈ t∗. The system of differential equations

D(p, k)f = p(λ)f ∀p ∈ StW (20)

on Treg ⊂ T is called the hypergeometric system associated with the root system
R with multiplicity parameter k ∈ K and spectral parameter λ ∈ t∗.

An explicit expression for the linear differential operator D(p, k) is only
manageable for p equal to the quadratic invariant.

Theorem 3.10. If ξ1, · · · , ξn is a real orthornormal basis of t then

D(
∑

i

ξ2i , k) =
∑

i

∂(ξi)
2 +

∑

α>0

kα
1 + t−α

1− t−α
∂(α) + (ρ(k), ρ(k)) (21)

with ∂(p)tµ = p(µ)tµ for p ∈ St and µ ∈ P ⊂ t∗.
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Proof. For p ∈ StW homogeneous the leading symbol of D(p, k) is equal to ∂(p)
while the constant term equals p(ρ(k)). The intermediate linear terms require
a small computation.

Example 3.11. In case R = {±1,±2} ⊂ R is a rank one root system with
C[T ] = C[t, t−1] and ϑ = td/dt the natural basis vector of t the hypergeometric
equation associated with R becomes

[ϑ2 + k1
1 + t−1

1− t−1
ϑ+ 2k2

1 + t−2

1− t−2
ϑ+ (12k1 + k2)

2 − λ2]f = 0

and after elimination of the symmetry t 7→ t±1 reduces in the new coordinate
z = 1

4 −
1
2 (t+ t−1) to the Gauss hypergeometric equation, as has been discussed

in Section 1.

The algebra of invariants C[T ]W is a polynomial algebra C[z1, · · · , zn] in the
monomial invariant functions zi with highest weight the fundamental weight
̟i ∈ P+. Hence we have constructed for each k ∈ K a commutative subalgebra
of the Weyl algebra C[z1, · · · , zn, ∂1, · · · , ∂n] of maximal rank n. In these alge-
braic coordinates the hypergeometric system associated with a rank one root
system becomes the Gauss hypergeometric equation. However in higher rank
the algebraic coordinates become intractible [41], [57], and it is best to work on
the torus T in an equivariant way for W .

4 Jacobi polynomials

Throughout this section we will assume that k ∈ K+, which implies that 〈·, ·〉k
is a Hermitian inner product on C[T ]. The monomial invariant functions mµ

for µ ∈ P+ form a basis of the vector space C[T ]W .

Definition 4.1. The Jacobi polynomials P (µ, k) for µ ∈ P+ form a basis of
C[T ]W satisfying

P (µ, k) = mµ + · · · , 〈P (µ, k),mν〉k = 0

for all ν ∈ P+ with ν < µ. Here the dots denote lower order terms in the
standard partial ordering ≤ on P+.

This Gram–Schmidt type definition is similar to the definition of the basis
E(µ, k) for µ ∈ P of C[T ]. From this definition it follows that the Jacobi poly-
nomials P (µ, k) are simultaneous eigenfunctions for the commutative algebra
{T (p, k); p ∈ StW }. The E(µ, k) ∈ C[T ] are generally referred to as the non-
symmetric Jacobi polynomials. It is clear that P (µ, k) = E(w0µ, k) + · · · with
w0 ∈ W the unique element interchanging positive and negative roots, and the
dots denote lower order terms for the partial ordering E on P relative to the
basis E(ν, k) of C[T ]. Hence

D(p, k)P (µ, k) = p(µ+ ρ(k))P (µ, k) ∀p ∈ StW , ∀µ ∈ P+ (22)
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with ρ(k) = 1
2

∑

kαα the Weyl vector for the multiplicity parameter k. Since
real Dunkl operators acting on C[T ] are selfadjoint with respect to 〈·, ·〉k and
the algebra StW separates the points of the real locus P+ + ρ(k) we find that

〈P (µ, k), P (ν, k)〉k = 0

for all µ, ν ∈ P+ with µ 6= ν. The conclusion is that the Jacobi polynomials
are a set of orthogonal polynomials for C[T ]W with respect to 〈·, ·〉k. Our
normalization of the Jacobi polynomials is by leading coefficient at infinity equal
to 1.

4.1 Jacobi polynomials and zonal spherical functions

For special values of the multiplicity parameters the Jacobi polynomials have
a group theoretical meaning. Let G be a noncompact real semisimple group
with Cartan subgroup A and Cartan decomposition G = KAK. Let AC ⊂ GC

be the complexification of A inside GC, with polar decomposition AC = AAu,
and let U ⊂ GC be the corresponding compact real form of GC. The compact
dual of the noncompact real Riemannian globally symmetric space X = G/K
is denoted Xu = U/K, and X and Xu are both real forms of the same complex
symmetric space XC = GC/KC. We shall assume that XC is both connected
and simply connected.

If T = ACKC ⊂ XC then T ≃ AC/F where F ⊂ AC is the 2-torsion subgroup.
If T = TvTu is the polar decomposition then Tv ≃ AK ⊂ G/K is a maximal
flat subspace of X and Tu ≃ AuK ⊂ U/K is a maximal flat subspace of the
compact dual Xu. The map AC/F ∋ aF

∼
−−→ a2 ∈ AC identifies AC/F ⊂ XC

with AC. Let Σ ⊂ a∗ = Lie(A) be the restricted root system of G, and let
R ⊂ a∗ = 2Σ be the corresponding set of characters of T = AC/F via the above
identification map. Choose k2α ∈ 1

2Z+ such that for all α ∈ Σ, mα = 2k2α
is equal to the multiplicity of the restricted root α of G. Then the density
function δu of the Weyl measure on Tu is the density function of the defining
orthogonality measure of the Jacobi polynomials on Tu as in Lemma 3.3.

It follows that there exists a close relationship between the Jacobi polyno-
mials P (µ, k) with the above parameters kα and the zonal spherical functions of
the Gelfand pair (U,K) on the compact Riemannian symmetric space Xu. The
zonal spherical functions of Xu form a complete set of orthogonal polynomials
on L2(K\U/K) ≃ L2(W\Tu, δudut) (cf. [48], [31]). Therefore the restriction of
a zonal spherical function on Xu to Tu is a Jacobi polynomial P (µ, k), up to
normalization, and all Jacobi polynomials are obtained in this way. The leading
coefficient at infinity of the zonal spherical function is by definition equal to
corresponding the Harish-Chandra c-function. More precisely, the restrictions
to Tu of the zonal spherical functions on Xu are the Laurent polynomials of the
form (with µ ∈ P+):

φ(µ, k)|Tu
= c(µ+ ρ(k), k)P (µ, k) (23)

It is a basic property of zonal spherical functions that their evaluation at eK is
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equal to 1. Hence we find

P (µ, k; e) =
1

c(µ+ ρ(k), k)
(24)

for the normalization at the identity element of T .
Let d(µ, k) denote the dimension of the irreducible K-spherical represen-

tation of U associated to the zonal spherical function φ(µ, k). Another basic
aspect of the theory of zonal spherical functions is the following formula for
their square L2-norm:

(φ(µ, k), φ(µ, k)) = d(µ, k)−1Vol(Xu) (25)

According to a remarkable formula of Vretare we can also express d(µ, k) in
terms of the Harish-Chandra c-function:

d(µ, k) = lim
ǫ→0

c(−ρ(k) + ǫ, k)

c(µ+ ρ(k), k)c(−µ− ρ(k) + ǫ, k)
(26)

In addition, if we normalize the volume of Tu to be equal to 1, then the volume
Vol(Xu) can also be expressed in terms of the close relatives of the Harish-
Chandra c-function. By Weyl’s integration formula we have

Vol(Xu) = |W |−1

∫

Tu

δudut = |W |−1

∫

Tu

∏

α>0

|eα/2 − e−α/2|2kαdut (27)

A closed formula for this integral was conjectured by I.G. Macdonald, not only
for kα equal to the half the restricted root multiplicities of a Riemannian sym-
metric space, but for arbitrary complex parameters kα with Re(kα) > 0 de-
pending only on the length of the root α. This “constant term conjecture” of
Macdonald stimulated much of the research on hypergeometric functions for
root systems and double affine Hecke algebras. More generally the evaluation
and norm formulas for zonal spherical functions onXu as discussed above extend
holomorphically to arbitrary complex parameters kα.

All these closed formulae are expressible in terms of generalizations of the
Harish-Chandra c-function, as we will see in the next subsection.

4.2 Norm and evaluation formulas

The c-functions for the zonal spherical functions on a Riemannian symmetric
space are expressible, by a famous formula of Gindikin and Karpelevich [22], as
a product over the positive roots of rank one c-functions. This product formula
is used to define the generalized c-functions for arbitrary complex parameters
kα. In this section we will compute the square norms 〈P (µ, k), P (µ, k)〉k and
their evaluation P (µ, k, e) at the identity element e of T , in terms of these
generalized c-functions. In particular, these numbers are explicitly computable
as a product taken over the positive roots of quotients of Γ-factors. This is one of
the remarkable features of the theory of zonal spherical functions on semisimple
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symmetric spaces which generalizes to the theory of hypergeometric functions.
In fact this feature even holds true for the more general non-symmetric Jacobi
polynomials. Since the formulations as well as the proofs become somewhat
easier when we exploit the extra freedom this generalization offers we will discuss
these results at this level of generality.

For w ∈W we define a function δw : R+ → {0, 1} by

δw(α) = 0 if w(α) > 0

= 1 if w(α) < 0

and we define

c∗w(λ, k) =
∏

α∈R+

Γ
(

−λ(α∨)− 1
2kα/2 − kα + δw(α)

)

Γ
(

−λ(α∨)− 1
2kα/2 + δw(α)

)

and

c̃w(λ, k) =
∏

α∈R+

Γ
(

λ(α∨) + 1
2kα/2 + δw(α)

)

Γ
(

λ(α∨) + 1
2kα/2 + kα + δw(α)

)

For brevity we will write

c̃(λ, k) := c̃e(λ, k), c
∗(λ, k) := c∗w0

(λ, k) (28)

The Harish-Chandra c-function is defined by

c(λ, k) =
c̃(λ, k)

c̃(ρ(k), k)
(29)

which in the Riemannian symmetric space case is just the celebrated Gindikin-
Karpelevich [22] formula.

Theorem 4.2 ([59], [61]). Let λ ∈ P+. We denote by Wλ the isotropy subgroup
of λ in W , and by wλ the longest element of Wλ. Let Wλ be the set of shortest
length representatives for the left cosets of Wλ in W , and let w ∈ Wλ. Then

(i)

‖E(wλ, k)‖2k =
c∗wwλ

(−(λ+ ρ(k)), k)

c̃wwλ
(λ+ ρ(k), k)

(ii)

E(wλ, k, e) =
c̃w0

(ρ(k), k)

c̃wwλ
(λ+ ρ(k), k)

(iii)

‖P (λ, k)‖2k = |W |
c∗ (−(λ+ ρ(k)), k)

c̃(λ+ ρ(k), k)

(iv)

P (λ, k, e) =
1

c(λ+ ρ(k), k)

12



Proof. It is clearly enough to prove these assertions for a Zariski-dense subset of
the parameter space. Therefore, without loss of generality, we may assume that
all kα are nonnegative integers. We may also assume without loss of generality
that R is irreducible, since the general case easily reduces to this case.

Consider the subspace E(λ, k) ⊂ L2(Tu, δ(k)dut) spanned by the functions
E(uλ, k) with u ∈ W . Recall from Proposition 3.7 that the center Z(H) = StW

of the degenerate affine Hecke algebra H := H(R+, k) acts on C[T ] via the
operators T (p, k) (with p ∈ StW ). By Lemma 3.4 we see that E(λ, k) is the
Z(H)-eigenspace of the central character StW ∋ p→ p(λ+ρ(k)). By Lemma 3.3
it follows that the subspaces E(λ, k) are mutually orthogonal H-submodules of
C[T ]. Let Hλ ⊂ H be the “parabolic subalgebra” Hλ := C[t]⊗C[Wλ] ⊂ H. The
algebraHλ has a one dimensional trivial representationCλ̃ given by t ∋ ξ → λ̃(ξ)
and Wλ ∋ w → idC. Let Vλ,k be the induced H-module

Vλ,k := IndHHλ
Cλ̃ = H⊗Hλ

Cλ̃

We show by induction on the length l(w) of w ∈ Wλ that Vλ contains a nonzero
C[t] eigenvector vw with eigenvalue wλ̃. The induction proces starts with the
eigenvector ve := 1 ⊗ 1 with eigenvalue λ̃. Now let w ∈ Wλ and let si be a
simple reflection such that l(siw) < l(w). Then siw ∈ Wλ. By induction we
may assume that there exists a nonzero eigenvector vsiw ∈ Vλ,k with eigenvalue

siwλ̃. Then it is easy to see that

vw :=
siwλ̃(α

∨
i )

siwλ̃(α∨
i ) + ki

(

si +
ki

siwλ̃(α∨
i )

)

vsiw ∈ Vλ

is a nonzero eigenvector with eigenvalue wλ̃ for the action of C[t]. Since Vλ,k
obviously has dimension |Wλ| it follows that Vλ,k has a one-dimensional C[t]-

eigenspace with eigenvalue wλ̃ for every w ∈ Wλ. In particular, by Frobenius
reciprocity, it is clear that Vλ,k is irreducible. By Frobenius reciprocity there
exists a unique nonzero H-module homomorphism

jλ : Vλ,k → L2(Tu, δ(k)dut)

such that j(ve) = E(λ, k). In particular, Vλ,k admits a nondegenerate Hermitean
form which turns Vλ,k into a ∗-representation for H when we equip H with the
∗-structure t ∋ ξ → ξ∗ := ξ and w∗ := w−1. By the irreducibility of Vλ,k, this
Hermitean inner product is unique up to normalization, and the basis {vw}w∈Wλ

of eigenvectors we constructed is orthogonal. It is clear that such a form is
definite (since it comes from the inner product on L2(Tu, δ(k)dut)). It is an
easy matter to prove that such Hermitean inner product must be of the form

(vw , v
′
w) = a(λ, k)δw,w′

∏

α∈R0
+

(

1−
kα + 1

2kα/2

wλ̃(α∨)

)−1

(30)

for some a(λ, k) 6= 0. The eigenvector vw is mapped via j to a multiple of
E(wλ, k). The constant of proportionality is easily determined inductively by
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comparing the normalization in the E(µ, k)-polynomials and the basis vw; we
find

j(vw) =
∏

α∈R+∩w−1R−

(

λ̃(α∨) + 1
2kα/2 + kα

λ̃(α∨) + 1
2kα/2

)

E(wλ, k)

=
∏

α∈R0
+
∩w−1R0

−

(

1 +
kα + 1

2kα/2

λ̃(α∨)

)

E(wλ, k)

Therefore the proof of (i) reduces to the determination of the constant a(λ, k)
such that j becomes an isometry. Recall the following well known formula of
Macdonald expressing |Wλ| in terms of the heights of the roots of R0

λ,+:

|Wλ| =
∏

α∈Rλ,+

(

ρ(k)(α∨) + kα + 1
2kα/2

ρ(k)(α∨) + 1
2kα/2

)

=
∏

α∈R0
λ,+

(

1 +
kα + 1

2kα/2

ρ(k)(α∨)

)

(31)

An elementary calculation using (31) shows that (i) is equivalent to proving
that

a(λ, k) = |Wλ|
2 c

∗ (−(λ+ ρ(k)), k)

c̃(λ + ρ(k), k)
(32)

The proof of (32) is an inductive argument on the parameter k, where the
induction step is based on a generalization of Weyl’s character formula. First we
observe that (i) (hence (32)) holds if k = 0. Before discussing the induction step,
let us point out a remarkable and extremely useful property of the polynomials
E(λ, k). Suppose that R′ ⊂ R is a subsystem of roots such that kα = 0 for
α ∈ R\R′. It follows directly from the definitions that the Dunkl operators
T (ξ, k) for R and R′ are the same for such parameters. As a consequence the
polynomials E(λ, k) for R and R′ are equal in this situation. This allows us to
delete the roots from R on which k is zero. Therefore to prove (32) it suffices
to show that if (32) is true for a parameter k it is also true for k + 1, where 1
denotes the characteristic function of the set R0 ⊂ R of roots α ∈ R such that
2α 6∈ R. Let ∆ be the Weyl denominator, i.e. ∆ = eδ

∏

α∈R0
+
(1− e−α) where δ

is the Weyl vector of R0
+. If λ ∈ P++ is regular we define

P−(λ, k) :=
∑

w∈W

ǫ(w)Ew(λ, k)

Then P−(λ, k) spans the subspace of W -skew invariant polynomials in E(λ, k).
From the Gram-Schmidt type of definition of the E(µ, k) we obtain the following
generalization of Weyl’s character formula:

P (λ, k + 1) = ∆−1P−(λ+ δ, k) (33)

for all λ ∈ P+. In particular, we have

‖P (λ, k + 1)‖2k+1 = ‖P−(λ+ δ, k)‖2k (34)
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On the other hand, via j the Jacobi polynomial P (λ, k + 1) corresponds to the
vector |Wλ|

−1
∑

w∈W wve ∈ Vλ,k+1. It is not very difficult to show that this
vector has square norm equal to |W ||Wλ|

−2a(λ, k + 1). Similarly, P−(λ + δ, k)
corresponds via j to the vector

∑

w∈W ǫ(w)wve ∈ Vλ+δ,k, and the square norm
of this expression can be shown to be

|W |a(λ+ δ, k)
∏

α∈R0
+

(

(λ+ ρ(k) + δ)(α∨) + kα + 1
2kα/2

(λ+ ρ(k) + δ)(α∨)− kα − 1
2kα/2

)

Hence (34) implies that

a(λ, k + 1) = a(λ+ δ, k)|Wλ|
2
∏

α∈R0
+

(

(λ+ ρ(k) + δ)(α∨) + kα + 1
2kα/2

(λ+ ρ(k) + δ)(α∨)− kα − 1
2kα/2

)

(35)

Using the induction hypothesis and easy manipulations we see that the right
hand side of (35) is equal to the right hand side of (32) (with k replaced by
k + 1) as desired. This finishes the proof of (i) and (iii).

The proof of (ii) and (iv) uses a similar type of inductive argument but we
will skip the details.

4.3 Hypergeometric shift operators

Let ǫ+ ∈ C[W ] denote the central idempotent of the trivial character and
ǫ− ∈ C[W ] the central idempotent of the sign character. The relations of the
degenerate affine Hecke algebra H (see Definition 3.6) easily imply that the
elements

π±(k) :=
∏

α∈R0
+

(α∨ ± (kα +
1

2
kα/2)) (36)

satisfy the relations π±ǫ± = ǫ∓π± in H. The Dunkl representation yields oper-
ators

T (π±(k), k) =
∑

w

D±(w, k)⊗ w ∈ D[Treg]⊗ C[W ]

on the algebra C[T ]. Similar to the construction of the W -invariant differen-
tial operators D(p, k) (with p ∈ StW ) we introduce the associated differential
operators

D±(π±(k), k) :=
∑

w∈W

(±1)l(w)D±(w, k) ∈ D[Treg]
−W

Here D[Treg]
−W denotes the space of W-skew invariant algebraic linear partial

differential operators on Treg. This gives rise to the following two W -invariant
linear partial differential operators on Treg:

G+(k) : = ∆−1D+(π+(k), k)

G−(k + 1) : = D−(π−(k), k)∆
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where 1 denotes the multiplicity parameter which is equal to 1 on R0 and equal
to 0 on R\R0. We have for λ ∈ P+:

G+(k)P (λ+ δ, k) : =
∏

α∈R0
+

((kα +
1

2
kα/2)− (λ+ ρ(k + 1))(α∨))P (λ, k + 1)

(37)

G−(k + 1)P (λ, k + 1) : =
∏

α∈R0
+

((kα +
1

2
kα/2) + (λ+ ρ(k + 1))(α∨))P (λ + δ, k)

Indeed, the generalized Weyl character formula (33) and the skewW -invariance
of the D±(π±(k), k) imply that these formulas hold up to some constant factor.
The upper unitriangularity of the action of the Dunkl operators on monomials
tλ of C[T ] implies that we may easily determine the coefficients of the monomial
tw0λ in both the left and the right hand side, which determines the precise form
of the constant. Because the Jacobi polynomials form a basis of the complex
vector space C[T ] we obtain:

Corollary 4.3. The differential operator G±(k) is in fact the pull-back of a
polynomial differential operator (also denoted G±(k)) on the affine space W\T .

From (22) and (37) we see that these operators satisfy for all p ∈ StW :

G+(k)D(p, k) = D(p, k + 1)G+(k) (38)

G−(k)D(p, k) = D(p, k − 1)G−(k)

The hypergeometric shift operators G±(k) derive their name from these rela-
tions.

These translations in the multiplicity parameters of the hypergeometric sys-
tem along integer multiples of 1 ∈ K can be further generalized to include the
translations in K by vectors in the full lattice KZ ⊂ K consisting of the elements
l ∈ K such that lα ∈ Z for all α ∈ R and lα/2 ∈ 2Z for all α ∈ R. The transla-
tions in these lattice vectors can all be realized by similar hypergeometric shift
operators.

Apart from these translations there exist fundamental reflection symmetries
in the parameter space of the hypergeometric system. We again only discuss
the principal instance of such a symmetry here. This symmetric originates from
the following formula: for all p ∈ StW one has:

D(p, 1− k) = δ(k −
1

2
) ◦D(p, k) ◦ δ(

1

2
− k) (39)

This fundamental formula can be established by direct computation for p = p2
equal to the quadratic invariant of W , using Theorem 3.10; it then follows for
arbitrary p because the commutation relation

D(p2, k)D(p, k)−D(p, k)D(p2, k) = 0 (40)
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together with the assertion D(p, k) = ∂(p) +
∑

µ<0 e
µ∂(pµ) yields a recurrence

relation on the pµ which determines D(p, k) completely. Similarly one proves
the symmetry relation

G+(−1/2− k) ◦ δ(k + 1) = δ(k) ◦G−(3/2 + k) (41)

Let us introduce the rational Dunkl operator T rat(ξ, k) ∈ EndC(C[t]) by the
formula

T rat(ξ, k) = ∂(ξ) +
∑

α∈R0
+

(kα + kα/2)
α(ξ)

α
(1− sα) (42)

which are discussed in Chapter 7 by Dunkl. These operators have homogeneous
degree −1. If f denotes a holomorphic germ at e ∈ T of vanishing order at least
v ≥ 0 let us write f = fv(1+O(1)). Then the relation between the trigonometric
and rational Dunkl operators is expressed by the formula

(T (ξ, k)(f))v−1 = T rat(ξ, k)(fv) (43)

Observe that this implies that the rational Dunkl operators T rat(ξ, k) are mutu-
ally commutative. Hence there exists a unique unital C-algebra homomorphism
p→ T rat(p, k) from St → EndC(C[t]) extending the map ξ → T rat(ξ, k). We see
that for any holomorphic germ f at e ∈ T we have:

G−(k)(f)(e) = f(e)T rat(π∨, k)(π) (44)

where π∨ :=
∏

α∈R0
+
α∨ ∈ St and π :=

∏

α∈R0
+
α ∈ C[t]. Combining this formula

with Theorem 4.2(iv) and equation (37) one deduces that

Corollary 4.4.

T rat(π∨, k)(π) =
c̃(ρ(k), k)

c̃(ρ(k + 1), k + 1)

This result has important consequences. By applying (41) to the constant
function 1 and using Corollary 4.4 one can prove the following result which was
conjectured by Yano and Sekiguchi [71].

Corollary 4.5. Let k = s.1 ∈ K, and let A be the Weyl algebra of polynomial
linear partial differential operators on the affine space W\t. Let D ∈ A ⊗ C[s]
be defined by Df = π−1T rat(π∨,− 1

2 − k)f for all f ∈ C[t]W . Then

Dπ2(s+1) = |W |b(s)π2s (45)

where b(s) is the Bernstein-Sato polynomial of the discriminant π2 ∈ C[t]W .

Moreover b(s) is explicitly given by b(s) :=
∏n

i=1

∏di−1
j=1 (di(s+

1
2 )+ j) where the

di denote the primitive degrees of W .

Also one may use Corollary 4.4 to prove the Macdonald-Mehta conjecture
for crystallographic Weyl groups:
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Corollary 4.6. Let γ denote the Gaussian measure on the Euclidean vector
space a, i.e. dγ(x) = (2π)−

n
2 e−

1
2
|x|2dx where dx denotes the Lebesque measure

on a. Let us denote by π(x; k) :=
∏

α∈R+
(α̃2(x))kα . where α̃ =

√
2

|α|α. Then for

all k ∈ K such that Re(kα) ≥ 0 we have:

∫

a

π(x; k)dγ(x) =
|W |

c̃(ρ(k), k)
(46)

5 The Calogero–Moser system

In this section we shall view the weight function of the hypergeometric system

δ(k; t) =
∏

α>0

(t
1
2
α − t−

1
2
α)2kα =

∏

α>0

(tα + t−α − 2)kα

just formally as a multivalued function of determination order one. Since we
shall only conjugate linear differential operators by the square root of δ the
multivaluedness is of no concern. Alternatively one could work on the regular
part of the real vector subgroup Tv where (tα + t−α − 2) is positive.

Theorem 5.1. If ξ1, · · · , ξn is an orthonormal basis of tv then conjugation
of the quadratic operator L(k) = D(

∑

i ξ
2
i , k) by the square root of the weight

function δ(k) is given by

δ(k; t)
1
2 ◦ L(k) ◦ δ(k; t)−

1
2 =

∑

i

∂(ξi)
2 +

∑

α>0

kα(1 − kα − 2k2α)(α, α)

(t
1
2
α − t−

1
2
α)2

as equality in D[Treg].

Proof. For ξ ∈ t we have

δ(k)−
1
2 ◦ ∂(ξ) ◦ δ(k)

1
2 = ∂(ξ) + 1

2∂(ξ)(log δ(k))

δ(k)−
1
2 ◦ ∂(ξ)2 ◦ δ(k)

1
2 = ∂(ξ)2 + ∂(ξ)(log δ(k))∂(ξ) + δ(k)−

1
2 ∂(ξ)2(δ(k)

1
2 )

with

1
2∂(ξ)(log δ(k)) =

∑

α>0

1
2kαα(ξ)

t
1
2
α + t−

1
2
α

t
1
2
α − t−

1
2
α

the constant term of the first expression. In turn we get

∑

i

∂(ξi)(log δ(k))∂(ξi) =
∑

α>0

kα
t
1
2
α + t−

1
2
α

t
1
2
α − t−

1
2
α
∂(α)

which is precisely the first order term of the differential operator D(
∑

ξ2i , k) in
Theorem 3.10. If we write � =

∑

∂(ξi)
2 then

1
2�(log δ(k)) = −

∑

α>0

kα(α, α)

(t
1
2
α − t−

1
2
α)2

18



and so

δ(k)−
1
2�(δ(k)

1
2 ) = −

∑

α>0

kα(α, α)

(t
1
2
α − t−

1
2
α)2

+
∑

α,β>0

1
4kαkβ(α, β)

(t
1
2
α + t−

1
2
α)(t

1
2
β + t−

1
2
β)

(t
1
2
α − t−

1
2
α)(t

1
2
β − t−

1
2
β)

.

We rewrite the second term on the right hand side as

(ρ(k), ρ(k)) +
∑

α,β>0

1
4kαkβ(α, β)

2(t
1
2
(α−β) + t−

1
2
(α−β))

(t
1
2
α − t−

1
2
α)(t

1
2
β − t−

1
2
β)

or equivalently as

(ρ(k), ρ(k)) +
∑

α>0

kα(kα + 2k2α)(α, α)

(t
1
2
α − t−

1
2
α)2

+
∑

α,β>0,α≁β

1
4kαkβ(α, β)

2(t
1
2
(α−β) + t−

1
2
(α−β))

(t
1
2
α − t−

1
2
α)(t

1
2
β − t−

1
2
β)

with α ≁ β meaning that α and β are not proportional.
We claim that the third term of this last expression vanishes identically.

Indeed it is invariant under W and has simple poles along the zero locus ∪Tα
(union over α ∈ R0

+) of the Weyl denominator ∆. Hence its product with ∆
becomes skew invariant under W and is a regular function on T . Since this
product if of the form

∑

cµt
µ with cµ = 0 unless µ < δ we conlude that the

third term is zero. Here δ = 1
2

∑

α is the Weyl vector of R◦
+. The theorem

follows by collection of the various terms.

If we switch from the coupling constant k ∈ K to g ∈ K by the substitution

g2α = 1
2kα(kα + 2k2α − 1)(α, α)

then the differential operator

S(g) = 1
2

∑

i

∂(ξi)
2 −

∑

α>0

g2α

(t
1
2
α − t−

1
2
α)2

is called the Schrödinger operator for the periodic Calogero–Moser system. If
we denote by D[Treg]

W,L(k) the commutant of L(k) in D[Treg]
W and likewise

D[Treg]
W,S(g) for the commutant of S(g) then the conjugation map

D[Treg]
W,L(k) → D[Treg]

W,S(g) , D 7→ δ(k)
1
2 ◦D ◦ δ(k)−

1
2

is an isomorphism of algebras, which are both isomorphic to StW . The con-
clusion is that the Calogero–Moser system is a completely integrable quantum

19



system, and the results of the previous section are just an exact solution of this
integrable quantum system.

An element D(p, k) ∈ D[Treg]
W,L(k) for p ∈ D[Treg]

W,L(k) has an asymptotic
expansion of the form

D(p, k) =
∑

µ≤0

tµ∂(pµ)

for pµ ∈ St. In the previous section we have shown that the constant term
p0 ∈ St ∼= P t∗ is given by p0(λ) = p(λ+ ρ(k)) for all λ ∈ t∗. Likewise after con-

jugation by δ
1
2 the operator δ

1
2 ◦D(p, k)◦δ−

1
2 in D[Treg]

W,S(g) has an asymptotic
expansion

δ
1
2 ◦D(p, k) ◦ δ−

1
2 =

∑

µ≤0

tµ∂(qµ)

with qµ ∈ St and constant term given by

q0(λ) = p0(λ− ρ(k)) = p(λ)

for p ∈ P (t∗)W . These convergent asymptotic expansion are valid in the interior
of the positive chamber in the vector group Tv. Because the constant term
corresponds to the case g = 0 of a free particle the Calogero–Moser system is
called asymptotically free.

The commutation relation [D,S(g)] = 0 for D ∈ D[Treg]
W,S(g) of the form

∑

µ≤0 t
µ∂(qµ) amounts to a system of recurrence relations

(2λ+ µ, µ)qµ(λ) = −2
∑

α>0

g2α
∑

j≥1

j{qµ+jα(λ− jα)− qµ+jα(λ)}

by a direct verification. Apparently one can pick the initial polynomial q0 ∈
P (t∗)W freely for the constant term, and then solve the qµ ∈ P (t∗) recurrently.
Evidently these recurrence relations can be solved uniquely for chosen q0 inside
the algebra of rational functions on t∗ with poles on certain hyperplanes. The
amazing fact of the integrability of the Calogero–Moser system is that all divi-
sions can be carried out in the algebra P (t∗), which is not at all clear from the
recurrence relations. However there is one nontrivial conclusion we can draw
from these recurrence relations, namely that all differential operators in the com-
mutant D[Treg]

W,S(g) of S(g) must have polynomial dependence on the coupling
constants g2 ∈ K. This was not clear before since the substition K ∋ k 7→ g ∈ K
is algebraic.

Example 5.2. For the root system of type An given by

tv = {(x0, · · · , xn) ∈ Rn+1;
∑

j

xj = 0} , R = {α ∈ tv ∩ Zn+1; (α, α) = 2}

all the roots are conjugated under the symmetric group W = Sn+1 and we
have just one coupling parameter g2 = k(k − 1). On the compact torus Tu the
Schrödinger operator becomes

S(g) = − 1
2

∑

j

∂(yj)
2 +

∑

j<k

g2

4 sin2(12 (yj − yk))
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using complex coordinates zj = xj + iyj. Since

|eiyj − eiyk |
2
= 4 sin2(12 (yj − yk))

the periodic Calogero–Moser system describes a system of n+1 identical particles
on the unit circle R/2πZ in C with an inverse square potential. This was the
original example studied by Calogero [6] and Moser [52].

Since T is a complex torus the cotangent bundle T ∗Treg is canonically isomor-
phic to the direct product Treg× t∗. The Hamiltonian of the periodic Calogero–
Moser system is defined by

H(g, t, λ) = − 1
2 (λ, λ)−

∑

α>0

g2α

(t
1
2
α − t−

1
2
α)2

viewed as a function of (g, t, λ) ∈ K × Treg × t∗. The commutative algebra

C[K]⊗ C[Treg]⊗ St

of functions on K× Treg × t∗ ≃ K× T ∗Treg has a natural Poisson bracket (with
K taken as space of constant parameters). This Poisson bracket is derived from
the filtration on the differential operator algebra

C[K]⊗ C[Treg]⊗ U t

by taking the sum of the polynomial degrees in C[K] and U t ≃ St as the to-
tal degree. The associated graded of the commutative algebra of (twisted by

conjugation with δ(k)
1
2 ) hypergeometric differential operators yields a Poisson

commutative algebra containing the Calogero–Moser Hamiltonian H(g, t, λ) as
homogeneous function of degree 2. In other words, the quantum integrability
of the Calogero–Moser system gives the classical integrability of the Calogero–
Moser system by taking the classical limit.

The original proof by Moser [52] of the classical integrability for root system
type An established integrability through realization as a Lax pair, and this
proof was extended (under a linear parameter constraint) for the other classical
root systems by Olshanetsky–Perelomov [56]. However, for the exceptional root
systems the only known proof of the classical integrability of the Calogero–Moser
system is the above approach through quantum integrability.

6 The hypergeometric function

Recall the system of hypergeometric differential equation on Treg of Definition
3.9. If Re(kα) ≥ 0 for all α ∈ R, and λ = µ + ρ(k) ∈ t∗ then the Jacobi
polynomial P (µ, k) ∈ C[T ]W is a solution of (20). For other values of the spectral
parameter λ ∈ W\t∗ the solutions of (20) do not extend holomorphically to all
of T . Remarkably, there always exists a unique solution F (λ, k) of (20) which
extends to a W -invariant holomorphic function on a tubular neighborhood of
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Tv ⊂ T and which is normalized by F (λ, k; e) = 1. This solution of (20) is called
the hypergeometric function for root systems. Before we look at the general
theory establishing the existence and uniqueness of this function, let us consider
its meaning in the context of Riemannian symmetric spaces. Just like the Jacobi
polynomials P (λ, k) for a root system R with multiplicity parameters k ∈ K
could be viewed as a generalization of the elementary zonal spherical functions
on a compact Riemannian symmetric space Xu = U/K, these hypergeometric
functions can be thought of as a natural generalization of Harish-Chandra’s
spherical functions on the noncompact dual X = G/K of Xu.

6.1 Hypergeometric functions and spherical functions

Recall the setup of paragraph 4.1. In this subsection we shall discuss the relation
between the hypergeometric functions for special multiplicity parameters and
the theory of spherical functions on Riemannian symmetric spaces. A standard
reference for the latter theory is Helgason’ s text book [31]. Let G have Iwasawa
decomposition G = NAK, and let G ∋ g → a(g) denote the associated Iwasawa
projection onto the split maximal Abelian subgroup A ⊂ G. Let a denote the
Lie algebra of A, and let λ ∈ a∗

C
. In the harmonic analysis on X one defines the

Harish-Chandra spherical function φλ on X by the integral formula

φλ(gK) :=

∫

K

a(kg)λ+ρdk (47)

where dk is the normalized Haar measure of K, and ρ := 1
2

∑

α∈Σ+
mαα the

Weyl vector, where Σ ⊂ a∗ denotes the restricted root system of G and mα the
multiplicity of the restricted root α. This function is obviously bi-K-invariant as
a function of g ∈ G and satisfies φλ(eK) = 1. It is well known that it is a joint
eigenfunction of the algebra D(X) of G-invariant differential operators on X .
More specifically, if γ : D(X) → StW denotes the Harish-Chandra isomorphism
then we have for all ∆ ∈ D(X):

∆φλ = γ(∆)(λ)φλ (48)

Using the K-invariance of φλ and of the system we can separate the variables
in this system of differential equations and reduce to A ∼= AK ⊂ G/K. Taking
the radial component of elements of D(X) yields an embedding of D(X) into
the algebra of W -invariant partial linear differential operators on Areg. Let us
denote its image by R(X). We factor the Harish-Chandra homomorphism γ via
the radial component isomorphism D(X) → R(X) and (by abuse of notation)
denote the resulting algebra isomorphism also as γ : R(X) → StW . Hence for
all D ∈ R(X) we have:

D(φλ|Areg
) = γ(D)(λ)φλ|Areg

(49)

This is a system of eigenfunction equations for the commutative algebraR(X) of
W -invariant linear partial differential operators on Tv,reg = Areg. It follows from
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the material in paragraph 4.1 that the Jacobi polynomials P (µ, k) diagonalize
the algebra R(X). It can be easily seen that R(X) is nothing but the algebra
of the W -invariant differential operators D(p, k) with p ∈ StW where we make
the same identifications as in paragraph 4.1, i.e. we take R = 2Σ(g, a) (with
Σ = Σ(g, a)) and mα = 2k2α for all α ∈ Σ. The system of eigenfunction
equations (49) identifies with the hypergeometric system (20) in this way, and
we have therefore established the existence of a W -invariant solution φλ|Tv

on
Tv of (20) in this special situation. It is easy to see that φλ actually extends
holomorphically to the W -invariant tubular neighborhood Tvexp(πiΩ) ⊂ T ,
where Ω ⊂ a is defined by Ω := {X ∈ a; |α(X)| < 1 for all α ∈ R}.

When we consider the hypergeometric system (20) for more general multi-
plicity parameters kα we loose the group theoretical techniques considered above
to construct solutions. Yet it turns out that the essential features of the space
of solutions of (20) remain intact.

6.2 Asymptotic freedom and monodromy

The first important observation is the generic asymptotic freedom of solutions
of the system (20) as a function of t ∈ Treg when |t| ∈ T+

v is deep in the positive
chamber. Indeed, when we plug in (following Harish-Chandra in the group case)
an asymptotic series of the form

Φ(λ− ρ(k), k; t) =
∑

κ∈Q−

Γκ(λ, k)t
λ−ρ(k)+κ (50)

(with λ ∈ t∗, |t| ∈ Tv,+, and Γ0(λ, k) = 1) into the single eigenfunction equation

D(

n
∑

i=1

ξ2i , k)Φ(λ− ρ(k), k; t) = (λ, λ)Φ(λ − ρ(k), k; t) (51)

we obtain the recurrence relations

−(2λ+ κ, κ)Γκ(λ, k) = 2
∑

α>0

kα
∑

j≥1

(λ− ρ(k) + κ+ jα, α)Γκ+jα(λ, k) (52)

for the Γκ(λ, k) which have a unique solution in the field of rational functions in
λ and k. The coefficients Γκ(λ, k) may possible have poles along the hyperplanes
(2λ+ κ, κ) = 0 for some κ ∈ −NR+. This is a locally finite collection of affine
hyperplanes in the spectral parameter space t∗. If λ is in the complement of the
collection of hyperplanes then we can evaluate the coefficients of Φ(λ−ρ(k), k; t)
at λ to obtain a formal solution of (51). It is not hard to show that such formal
solutions are always convergent for all t with |t| ∈ Tv,+.

The fundamental group Π of the the regular orbit space W\Treg has the
following description. Consider the sequence of unramified covering maps

treg → Treg →W\Treg
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with treg = {x ∈ t;α(x) /∈ 2πiZ ∀α ∈ R◦} the regular points in t for the
action of the affine Weyl group with translation lattice 2πiQ∨. Choosing a
base point ∗ inside a fundamental alcove (with the origin in its closure) in
tu,reg the line segment [0, 1] ∋ t 7→ (1 − t) ∗ +tw∗ hits the singular locus in
a finite number of points, and going around them through the complex upper
half plane (with coordinate t) we obtain elements Tw ∈ Π with Tw1

Tw2
= Tw3

if w1, w2, w3 = w1w2 ∈ 2πiQ∨ ⋊W and the lengths add up. In fact this gives
a presentation of Π as the affine braid or affine Artin group. For translations
over 2πiQ∨,+ in the direction of the positive chamber containing the alcove the
lengths add up, and so 2πiQ∨,+ reproduces itself as an Abelian monoid inside
Π. Another presentation of Π generated by this Abelian group, which can be
thought of as the fundamental group of Treg, and the Artin group for the finite
Weyl groupW was obtained by van der Lek and Looijenga [45]. Using the theory
of torus compactifications (more specifically the fact that a mirror intersects a
one dimensional boundary stratum normally) it is in fact easy to show that

TsiTx = TxTsi (53)

for all x ∈ 2πiQ∨,+ which are fixed by si, and the presentation of van der Lek
and Looijenga is a further refinement of these relations.

Proposition 6.1. For λ ∈ t∗ generic and k ∈ K+ the solution

c̃(λ, k)Φ(λ − ρ(k), k; t) + c̃(siλ, k)Φ(siλ− ρ(k), k; t) (54)

of the hypergeometric system (20), which is a priori defined as a holomorphic
function for |t| ∈ Tv,+, has a holomorphic continuation over the wall of Tv,+
corresponding to the simple reflection si ∈ W , and is near the wall invariant
under the transformation si of T .

Proof. For λ ∈ t∗ generic the series Φ(wλ − ρ(k), k; t) for |t| ∈ Tv,+ are a basis
of the solution space of the hypergeometric system (20) as w runs over the Weyl
group W . The commutation relations (53) imply that the span of the two basis
vectors with indices w and siw are invariant under the monodromy operator of
Tsi . By asymptotics along this wall the monodromy calculation of Tsi in these
two basis vectors can be reduced to the monodromy calculation for the rank
one Gauss hypergeometric system. This ultimately follows from the Kummer
continuation formula for the Gauss hypergeometric function

F (α, β, γ; z) =
Γ(γ)Γ(β − α)

Γ(β)Γ(γ − α)
(−z)−αF (α, α − γ + 1, α− β + 1; 1/z)

+
Γ(γ)Γ(α− β)

Γ(α)Γ(γ − β)
(−z)−βF (β, β − γ + 1, β − α+ 1; 1/z)

by holomorphic continuation in z along the negative real axis (−∞, 0). In
turn, this shows that the given linear combination in (54) extends over the
wall to a meromorphic function invariant under si. A computation of the local
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exponents of the hypergeometric system along the wall gives 0 and 1− γi (with
γi =

1
2 + kαi/2 + kαi

) both with multiplicity |W |/2. Therefore the expresssion
(54) extends in fact holomorphically over the wall.

Using Hartog’s theorem the holomorphic extension over the walls in codi-
mension one implies in fact a holomorphic continuation to a suitable tubular
neighborhood of Tv in T .

Corollary 6.2. The function F̃ (λ, k; t) =
∑

w c̃(λ, k)Φ(wλ − ρ(k); t) extends
from Tv,+Tu to a holomorphic W -invariant function on the tubular neighborhood

Tv exp(πiΩ) , Ω = {x ∈ tv; |α(X)| < 1 ∀α ∈ R}

of Tv in T = TvTu.

So far λ ∈ t∗ has been a generic parameter, but the various functions have
in fact meromorphic behaviour in λ ∈ t∗ and k. By a careful analysis of the loci
of poles in λ of c̃(λ, k) and of Φ(wλ− ρ(k), k) (via the recurrence relations (52)
it can be shown that [58]:

Theorem 6.3. The function

(λ, k, t) 7→ F̃ (λ, k; t)

has a holomorphic extension to t∗×K×Tv exp(πiΩ) as a W -invariant function
both in the spectral variable λ and the space variable t.

For reasons which will become clear in Section 6.4 we renormalize this so-
lution by a multiplying with a factor c̃(ρ(k), k)−1 (see (29)) and denote this
renormalized function by F (λ, k; t). By (29) and Corollary 6.2 the asymp-
totic expansion formula for F (λ, k) in terms of the asymptotically free solutions
Φ(wλ − ρ(k), k; t) becomes

F (λ, k; t) =
∑

w

c(λ, k)Φ(wλ − ρ(k), k; t) (55)

Definition 6.4. The function F (λ, k) is called the hypergeometric function for
the root system R with multiplicity parameter k ∈ K and spectral parameter
λ ∈ t∗.

Using Theorem 6.3 we see simply that one has:

Proposition 6.5. The function F extends to a meromorphic function on t∗ ×
K × Tv exp(πiΩ) which is holomorphic on t∗ ×K+ × Tv exp(πiΩ).

6.3 Knizhnik-Zamolodchikov and Matsuo’s isomorphism

The commuting Dunkl operator T (ξ, k) of Definition 3.2 are deformations of the
constant vector fields ∂(ξ) on Treg. This deformation satisfies the Leibniz rule

T (ξ, k)(fg) = (∂(ξ)(f))g + f(T (ξ, k)(g)) (56)
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if f is a W -invariant function on Treg. This shows that we can think of the
operators T (ξ, k) as the covariant differentiations of a W -equivariant integrable
connection on W\Treg on the free C[Treg]

W -module C[Treg]. If λ ∈ t∗ then
exactly similar considerations apply to the operators T (ξ, k)− λ(ξ).

To compute the connection form of such integrable connections explicitly,
let us choose a point Wt ∈ W\Treg. We define a tangent vector at Wt by fixing
a element t ∈Wt and choosing a tangent vector ξ ∈ t, viewing t as the tangent
space at t ∈ Treg in the usual way, by identifying elements of t as constant vector
fields on Treg. Let us denote this tangent vector at Wt by (t, ξ), then obviously

(wt, wξ) = (t, ξ) for all w ∈ W . Let us denote by Ôt the completed local ring
of t ∈ Treg, and by OW

Wt, the completed local ring of Wt ∈ W\Treg. Then

ÔWt := ÔW
Wt ⊗C[Treg ]W C[Treg] is isomorphic to ⊕w∈W Ôwt as Ô

W
Wt[W ]-algebra,

by the Chinese remainder theorem. After fixing t ∈ Wt (as we did above) we
can thus identify a germ φ ∈ ÔWt with a collection of germs (φw)w∈W with
φw ∈ Ôwt for all w ∈ W via this isomorphism. With this notation we define an
isomorphism Lt : ÔWt → Ôt ⊗ C[W ] of ÔW

Wt[W ]-modules by

Lt : φ = (φw)w∈W →
∑

w∈W

wφw−1 ⊗ w (57)

The W action on ÔWt corresponds via Lt with the right regular action of W
on the right tensor leg C[W ] of Ôt ⊗ C[W ], and multiplication by an element
(fw)w∈W ∈ ÔW

Wt in ÔWt corresponds with the multiplication on the left by

fe ∈ Ôt. The inverse of this isomorphism Lt maps ψ ⊗ w ∈ Ôt ⊗ C[W ] to
w−1

ψ ∈ Ôw−1t ⊂ ÔWt. Hence the integrable connection ∇(λ, k) on Ôt ⊗ C[W ]
whose covariant derivative with respect to the tangent vector (t, ξ) at Wt is
given by the operator ⊕w∈W (T (wξ, k)− λ(wξ)) on ÔWt = ⊕w∈W Ôwt satisfies

∇(t,ξ)(λ, k)(ψ ⊗ w) = Lt((T (w
−1ξ, k)− wλ(ξ))(w

−1

ψ)) (58)

A straightforward computation shows that

∇(t,ξ)(λ, k) =∂ξψ ⊗ id− id⊗D(λ, ξ)

+
1

2

∑

α∈R+

kαα(ξ)

(

1 + e−α

1− e−α
⊗ (1− rα) + id⊗ rαǫα

)

where ǫα(w) = −sgn(w−1α)w and D(λ, ξ)(w) = wλ(ξ)w.
It is easy to see that the connection ∇(λ, k) does not depend on the choice

of t ∈ Wt, and that ∇(λ, k) is equivariant with respect to the diagonal action
of W on O(Treg)⊗ C[W ] (where we act via the left regular action of W on the
right tensor leg C[W ]).

Definition 6.6. The integrable, W -equivariant connection ∇(λ, k) on O(Treg)⊗
C[W ] we just defined is called the (trigonometric) Knizhnik-Zamolodchikov con-
nection (KZ-connection in the sequel).
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For a further discussion of KZ-equations see Chapter 11 by Tarasov and
Varchenko.

Corollary 6.7 (Matsuo’s isomorphism [51], [7], [61]). Assume that for all α ∈
R0

+ we have λ(α∨) 6= kα + 1
2kα/2. The D-module on W\Treg defined by the W -

equivariant integrable connection ∇(λ, k) on the trivial vector bundle O(Treg)⊗
C[W ] over Treg is equivalent to the cyclic D module on W\Treg defined by the

hypergeometric system (20) via the map Ôt ⊗ C[W ] ∋ ψ ⊗ w → ψ ∈ Ôt.

Proof. It is enough to show that this map restricts to an isomorphism between
the sheaf of flat sections of ∇(λ, k) and the sheaf of solutions of (20). By (58)
we see that a flat section of ∇(λ, k) is of the form Lt(ψ) where ψ ∈ ÔWt is
a joint eigenfunction of the T (ξ, k) satisfying T (ξ, k)ψ = λ(ξ)ψ. When we
extend the corresponding image under the Matsuo map of this flat section in
a W -invariant way we simply obtain ψ :=

∑

w∈W
wψ ∈ ÔW

Wt. Observe that

ÔWt is an H-module via the Dunkl representation, and that ψ (and hence also
ψ) as above belong to the submodule S(λ, k) of ÔWt on which Z(H) ≃ StW

acts by the central character Wλ. Recall the minimal principal series module
M(λ) = H⊗C[t] Cλ of the degenerate affine Hecke algebra H. This module has
central character Wλ and always contains a one dimensional subspace M(λ)W

of W -invariant vectors. If λ(ξ) 6= ±(kα + 1
2kα/2) for all α ∈ R0 then this W -

dimensional module of H is known to be irreducible by a well known Theorem
of Shinichi Kato [37]. If M(λ) is irreducible then it is easy to see that the
joint t-eigenspace M(λ)λ is one dimensional, and that the symmetrization map
∑

w w with respect to W defines an isomorphism from M(λ)λ to M(λ)W . By
a dimension count it follows, using Definition 3.6 and Proposition 3.7, that
the quotient algebra Hλ by the maximal Z(H)-ideal of the point Wλ ∈ W\t∗

has dimension |W |2. Hence by Kato’s theorem, if λ(ξ) 6= ±(kα + 1
2kα/2) for

all α ∈ R0 then Hλ is isomorphic to the finite dimensional simple C-algebra
End(M(λ)). Hence S(λ, k) is semisimple in this case, and isomorphic to M(λ)d

where d = dim(S(λ, k)W . In particular, the symmetrization map
∑

w w defines
a linear isomorphism from the space S(λ, k)λ of joint eigenfunctions ψ of the
T (ξ, k) with joint eigenvalue λ onto S(λ, k)W . Recall that S(λ, k)W is equal to
the local solution space at Wt of the hypergeometric system (20), and via the
map Lt defined above the space S(λ, k)λ is isomorphic the space of flat sections
of ∇(λ, k) locally at t. Via Lt the symmetrization map

∑

w w corresponds to
Matsuo’s map on this space of flat sections. Therefore Matsuo’s map defines
an isomorphims onto S(λ, k)W if λ(ξ) 6= ±(kα + 1

2kα/2) for all α ∈ R0. Its
inverse can be written down explicitly as differential operator using Dunkl’s
operators; this even shows that this Matsuo’s map is an isomorphism whenever
λ(ξ) 6= kα + 1

2kα/2 (see [61]).

Corollary 6.8. The hypergeometric system (20) is holonomic of rank |W | and
is regular singular on W\Treg.

Proof. It is not difficult to prove the claim that the system (20) is always holo-
nomic of rank |W | using the fact that the commuting differential operators
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D(p, k) with p ∈ StW are of the form ∂(p) + l.o.t.. When λ(α∨) 6= kα + 1
2kα/2

then Matsuo’s isomorphism proves that the system is equivalent to an alge-
braic integrable connection on the trivial vector bundle with fibre C[W ] on the
smooth quasi-projective variety W\Treg, exhibiting simple poles only. Hence
the system is clearly regular singular in that case. Since the holonomic rank of
the system is constant equal to |W | in the parameters, the regularity is detected
by the regularity of the restrictions of a rank |W | connection with holomorphic
dependence on the parameters (λ, k) on punctured disks such that generically in
(λ, k) the connection is regular singular at the puncture. By rewriting the first
order system of ordinary differential equations for the flat sections of this con-
nection on the punctured disk as a higher order ordinary differential equation
with holomorphic coefficients and holomorphic dependence on (λ, k) it is clear
that the generic regularity in (λ, k) of the singularity implies the regularity for
all values of (λ, k).

6.4 Normalization at e and summation formulae

We have introduced the hypergeometric function F (λ, k) of Definition 6.4 via
its asymptotically free expansion deep in the Weyl chamber. However its nor-
malization is motivated by its evaluation at e, as we will see in this section. We
begin with a Lemma for later reference.

Lemma 6.9. Recall that F (λ, k) is a holomorphic family for k ∈ K+. If k ∈ K+

then F (λ, k) 6= 0 (i.e. F (λ, k) does not vanish identically as a function of
z ∈ Tv exp(πiΩ)).

Proof. Suppose that the zero locus of F contains an irreducible component of
the form H × Tv exp(πiΩ) with H ⊂ t∗ × K+ a hypersurface. Suppose that H
does not contain any points (λ, k) ∈ t∗×K+ such that (55) is well defined and the
points wλ are distinct modulo Q when w varies inW . That would imply that H
is contained in the locally finite collection of hyperplanes defined by an equation
of the form (λ, κ∨) + 1 6= 0 for some κ ∈ Q\{0}, or H is a root hyperplane.
Thus H would have to be an affine hyperplane which intersects the subspace
k = 0. But this is not possible since (as one easily checks) F (λ, 0; e) = 1. Hence
H contains points (λ, k) for which (55) is well defined and the points wλ are
distinct modulo Q when w varies in W . But then it is obvious that F (λ, k) 6= 0
by (55).

Observe that for λ = µ + ρ(k) where µ ∈ P+ we have F (λ, k) = c(µ +
ρ(k), k)P (µ, k), since both expressions are meromorphic in k (for fixed µ) and
represent aW -invariant holomorphic solution of (20) in a tubular neighborhood
of Tv. For generic k, and hence for all k, they must be proportional therefore,
and we conclude that the asymptotically free expansion (55) of the left hand
side coincides with the right hand side if λ = µ + ρ(k) with µ dominant and
integral. By Theorem 4.2 we conclude that F (λ, k; e) = 1 if λ = µ+ρ(k) with µ
dominant and integral. Using the theory of hypergeometric shift operators we
see more generally that the meromorphic function (λ, k) → F (λ, k; e) is periodic
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for translations of k in the integral lattice KZ ⊂ K (for translation which are
integral multiples of the constant multiplicity functions 1 this follows from (44)
and Corollary 4.4, and this argument can be generalized to general integral
translations in k). This statement is indeed more general than the former,
since for the polynomial case where µ = λ − ρ(k) is integral and dominant
the periodicity in k clearly implies that F (λ, k; e) is constant in k, and hence
constant equal to 1. We would now like to extend this result to arbitrary λ ∈ t∗

using some kind of interpolation result like Carlson’s Theorem, although this is
not literally possible. A first basic fact is the following:

Lemma 6.10. Let k0 ∈ KZ and λ ∈ t∗. The entire function C ∋ x→ ǫk0(x) :=
F (λ, xk0; e) is periodic with period 1 and has growth order at most 1.

Proof. The periodicity follows immediately from the above text. It is enough
to prove that the growth order of the entire function ǫ̃k0(x) := F̃ (λ, xk0; e) is at
most 1, using the (nontrivial) fact that the growth order of an entire function
that can be written as a quotient f/g of two entire functions of finite growth
order has a finite growth order bounded by the maximum of the growth orders
of f and g. By a well-known result of Gruman and Lelong [46], the growth order
ρ(z) of a holomorphic family of entire functions w → f(z, w) has the property
that its smallest upper half continuous majorant z → ρ∗(z) is plurisubhar-
monic, hence in particular satisfies the maximum principle. Applying this to
t∗ × Tv exp(πiΩ) ∋ (λ, z) → F̃ (λ, k; z) it suffices therefore, in view of Corollary
6.2, to prove that the order as an entire function of k of the holomorphic fam-
ily (λ, z) → Φ(λ − ρ(k), k; z) is bounded by 1 for λ outside the locally finite
set of hyperplanes (λ, κ∨) + 1 = 0 and z ∈ Tv,+ exp(πiΩ) regular. This is a
straightforward consequence of the recurrence relations (52) (see [60]).

The main theorem of this subsection is:

Theorem 6.11. We have F (λ, k; e) = 1 for all λ ∈ t∗ and k ∈ K.

Proof. We start with a key non-vanishing result, which is based on Matsuo’s
Theorem:

Lemma 6.12. If λ ∈ t∗ and k ∈ K+ then we have F (λ, k; e) 6= 0.

Proof. Consider the H-module M := HF (λ, k) ⊂ S(λ, k). Then M is a nonzero
H-submodule of the space of holomorphic functions on Tv exp(πiΩ). First sup-
pose that λ(α∨) 6= kα + 1

2kα/2 for all α ∈ R0
+. By the proof of Corollary

6.7 it follows easily that M is isomorphic to M(λ) as an H-module. Hence
it contains a unique holomorphic function GF (λ, k) on Tv exp(πiΩ) which is a
joint eigenfunction of the T (ξ, k) with eigenfunction λ and such that F (λ, k) =
|W |−1

∑

w∈W
wGF (λ, k). The latter equation extends meromorphically to all

(λ, k) ∈ t∗×K+. Let G be a joint eigenfunction of the T (ξ, k) with eigenfunction
λ such that k ∈ K+ and suppose that G(e) = 0. Then the lowest homogeneous
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term g of G is a homogeneous polynomial of positive degree which is killed by
all operators T rat(ξ, k), and hence by E(k) :=

∑

i xiT
rat(ξi, k). Then

E(k) =
∑

i

xi∂(ξi) +
∑

α∈R0
+

(kα + kα/2)(1− sα) (59)

But
∑

i xi∂(ξi)(g) = dg with d > 0, and
∑

α∈R0
+
(kα + kα/2)(1 − sα) is a scalar

operator on any irreducible W -module by Schur’s lemma. The eigenvalue of
the latter operator acting in any irreducible W -module has nonnegative real
part if k ∈ K+, by the nonnegativity of the eigenvalues of 1 − sα. This shows
that g = 0, implying G = 0. Hence G(λ, k) := (GF (λ, k; e))

−1GF (λ, k) ex-
tends to a holomorphic family in (λ, k) ∈ t∗ × K+, and we have F (λ, k) =
|W |−1F (λ, k; e)

∑

w∈W
wG(λ, k). By the holomorphicity of the sum on the right

hand side we see that F (λ, k; e) = 0 implies that F (λ, k) = 0, contradicting
Lemma 6.9.

Now we are finally ready to finish the proof of the main Theorem 6.11.
The previous lemma implies that the entire function C ∋ x → ǫk0(x) is non-
vanishing and by Lemma 6.10 it has growth order at most 1. Obviously this
implies that ǫk0(x) = exp(p(x)) where p is a polynomial of degree at most 1.
Since it is a periodic function with period 1 we see that p(x) has to be of the
form pn,c(x) = 2πinx + c for some n ∈ Z and c ∈ C. It is also clear that for
real λ we have ǫk0(x) ∈ R if x ∈ R. Hence we have n = 0, proving that ǫk0 is
a constant function. Hence for real λ we have F (λ, k; e) = ǫk0(1) = ǫk0(0) = 1,
and the desired result follows.

A more refined analysis makes it possible to evaluate the asymptotically free
solutions Φ(λ, k; e) at e whenever this is possible. It is an analog of the Gauss
summation formula for the classical hypergeometric function:

Theorem 6.13 ([60]). Let k ∈ K−. Then

lim
A+∋z→e

Φ(λ− ρ(k), k; z) =
c∗(ρ(k), k)

c∗(λ, k)
(60)

Such formulae also enable one to evaluate explicitly F (λ, k; p) at special
points p ∈ exp(πiΩ).

Theorem 6.11 and the above summation formulae are multivariate examples
of explicit (partial) solutions to a “connection problem” for a regular singular
system of linear partial differential equations. Connection problems play a cen-
tral role in the theory ordinary linear differential equations with regular singu-
larities on the projective line. There has been quite some progress in the theory
for these one-dimensional connection problems, in particular in the case of rigid
local systems, by the work of Katz [38] Crawley-Boevey [13] , Oshima and oth-
ers (see [64] for an account of these developments). Oshima and Shimeno [65]
observed that the solution to the connection problem for rigid local systems in
one dimension is relevant in the multivariate situation of Theorem 6.11 as well,
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by “restricting” the hypergeometric system to various one-dimensional strata of
the singular locus. This yields a different approach than the approach presented
here. Though natural and possibly more elementary than the above proof, it
seems inevitable that a case-by-case analysis will be a part of such an approach.
Perhaps the key step to a both uniform and satisfactory proof of theorem 6.11 is
the ”global hypergeometric function” for root systems introduced by Cherednik.
This functions is a q-hypergeometric functions version of the F (λ, k;x). Tech-
niques of Stokman [69] handle the normalization of this global hypergeometric
function for root systems quite naturally, and Theorem 6.11 should follow by
taking the limit for q tends to 1.

6.5 Noncompact harmonic analysis

In Subsection 6 (also see Subsection 4.1) we have seen that the restriction of
F (λ, k) to Tv can be viewed as a generalization of the elementary zonal spheri-
cal function on a Riemannian symmetric space X = G/K of noncompact type
restricted to a maximally flat subspace Tv = AK/K ⊂ G/K. In the previous
subsection we have seen that F (λ, k; e) = 1, generalizing a basic property of the
family of elementary zonal spherical functions. It turns out that the spherical
Plancherel formula for G/K generalizes as well, as long as k ∈ K+

R
. This is the

“noncompact version” of the theory of the orthogonal basis of Jacobi polynomi-
als for C[T ]W on W\Tu as discussed in Subsection 4.1, and can be viewed as a
common generalization of Harish-Chandra’s spherical Plancherel formula [23],
[24] for noncompact Riemannian symmetric spaces and the Jacobi transform for
even functions on the real line [42].

We identify Tv with tv via the exponential mapping exp normalized such
that for all α ∈ R we have (exp(ξ))α = expα(ξ). Let dx denote a Haar measure
on tv normalized such that the co-volume of 2πQ∨ equals 1, and let dλ denote
the Haar measure on t∗ defined by duality. Let da denote the Haar measure
on Tv corresponding to dx via the identification. We equip C∞

c (Tv) with a
pre-Hilbertian structure by the Hermitian form

(f, g) :=

∫

Tv

f(a)g(a)dµ(a) (61)

where
dµ(a) := |W |−1

∏

α∈R+

|a
1
2
α − a−

1
2
α|2kαda (62)

Let us define an absolutely continuous measure ν on it∗v by the formula

dν(λ) :=
(2π)−n

c̃(λ, k)c̃w0
(w0λ, k)

dλ (63)

For f ∈ C∞
c (Tv)

W we define its hypergeometric Fourier transform (with
respect to the root system R and parameter function k) as the W -invariant
function H(f) of λ ∈ t∗ defined by:

H(f)(λ) :=

∫

a∈Tv

f(a)F (−λ, k; a)dµ(a) (64)
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By Proposition 6.5 this is well defined, obviouslyW -invariant, and holomorphic
in λ. In the opposite direction we define a wave packet operator J . If h is a
nice W -invariant function on it∗v (say an integrable function with respect to the
measure ν) then we define

J (h)(a) :=

∫

λ∈it∗v

h(λ)F (λ, k; a)dν(λ) (65)

The transforms H and J can be extended to various more general types of
functions, and are in a formal sense adjoint to each other if we give these re-
spective function spaces the Hermitian inner product structures associated to
the measures µ and ν respectively. By abuse of language we will not make any
notational distinction between all these extensions of the transforms H and J .
The main results on these transforms state that H and J are inverse to each
other, with important refinements describing the behavior of various important
spaces of functions under these transforms. Proving such results is based on
various types of estimates for the kernel F (λ, k; a).

The following uniform estimate (both in λ ∈ t∗ and in a ∈ Tv) plays an
important role

Theorem 6.14 ([61]). We have

|F (λ, k; a)| ≤ |W |1/2Ha(Re(λ)) (66)

where for λ ∈ tv and a ∈ Tv one defines Ha(λ) := max{awλ | w ∈ W}

Using this estimate one proves Paley-Wiener Theorem. Define for a ∈ Tv
the (W -invariant) Paley-Wiener space PW (a)W consisting of all W -invariant
entire complex functions h on t such that for all N ∈ N there exists a constant
CN such that

|h(λ)| ≤ CN (1 + ‖λ‖)−NHa(−Re(λ)) (67)

Let Ca denote the convex hull of the orbit Wa in Tv. Using Theorem 6.14
one shows easily that H(C∞

c (Ca)
W ) ⊂ PW (a)W , where C∞

c (Ca) denotes the
space of compactly supported smooth functions on Tv whose support is con-
tained inside Ca. The converse statement can be proved by an argument
which goes back to Rosenberg [66] using the asymptotic expansion Corollary
6.2 of the kernel F (λ, k; a) in the positive chamber Tv,+. This yields the result
J (PW (a)W ) ⊂ C∞

c (Ca)
W . By an argument due to Schlichtkrull and Van den

Ban [2] one can now prove the Paley Wiener Theorem:

Theorem 6.15 ([61]). The transforms H : C∞
c (Ca)

W → PW (a)W and J :
PW (a)W → C∞

c (Ca)
W are inverse isomorphisms.

In combination with the formal adjointness of H and J we immediately
obtain the L2 version of this result:

Theorem 6.16 ([61]). The transforms H and J admit a unique extension to
inverse unitary isomorphisms between L2(Tv, µ) and L

2(itv, ν).
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This result was further generalized by [62] to include also the case of not
necessarily positive root parameters kα subject to the condition that µ is a
locally integrable function on Tv. It is interesting that the spectrum is no longer
continuous in this generality, but consists of series of various dimensions. This
corresponds to the possible occurrence of spherical discrete series of graded affine
Hecke algebras if the parameters are not necessarily positive. The result was
also refined by [61] by extending the transforms beyond W -invariant functions.
In this version the transforms H and J extend to intertwining isomorphism
between H-modules. A further refinement was provided by Delorme [15], who
defined the natural Schwartz spaces and proved that H and J (in the non W -
invariant version, and in the generality where we only require µ to be a locally
integrable function) restrict to inverse topological isomorphisms between these
Schwartz spaces. In the ”repulsive” case where kα is positive for all α > 0 the
argument of Delorme was simplified by Schapira [67] by means of a beautiful
sharpening of the uniform estimate Theorem 6.14. He proved the following
striking results

Theorem 6.17 ([67]). Let λ = σ+ iτ with σ, τ ∈ tv. Let a = expx ∈ Tv,+, and
let k ∈ K+. Then

(i) |F (λ, k; a)| ≤ F (σ, k; a)

(ii) F (σ, k; a) ≤ F (0, k; a)Ha(Re(σ))

(iii) F (0, k; a) ≍
∏

α∈R0
(1 + α(x))a−ρ(k)

Following Harish-Chandra, Delorme defined the Schwartz space for H on
Tv as the space C(Tv) consisting of smooth functions f on Tv such that for all
constant coefficient differential operators D on Tv, and all N ∈ N one has

sup
a∈Tv

(1 + ‖ log(a)‖)NF (0, k; a)−1|Df(a)| <∞ (68)

The space C(Tv), equipped with its natural family of seminorms arising from
(68), is a nuclear Fréchet space.

The results of Delorme and Schapira, restricted to the case at hand of W -
invariant functions and positive root parameters kα, can now be stated as fol-
lows:

Theorem 6.18 ([15],[67]). The transform H maps C(Tv)
W onto the space of

W -invariant elements of the classical Schwartz space S(itv). This yields an
isomorphism H : C(Tv)

W → S(it∗v)
W of topological vector spaces, whose inverse

is J (considered on the classical Fréchet space S(itv)
W ).

7 Special cases

7.1 Jack polynomials

Let P denote the set of integer partitions and Pn ⊂ P the subset of partitions
in at most n parts. The Jack polynomials Jλ(x;α) in x = (x1, . . . , xn) (with
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λ ∈ Pn and α ∈ C) can be naturally considered as the GLn-type extension of
the Jacobi polynomials for the root system of type An−1. They form a C-basis
of the ring of symmetric polynomials in x1, . . . , xn. If α = 1 they reduce to the
well known Schur polynomials, up to normalization. The Jack polynomials [35]
form a very important class of symmetric polynomials, with remarkably deep
applications, interpretations and special properties. There are several elegant
and meaningful definitions accordingly (see e.g. [50]). We will presently define
the Jack polynomial via its relation with the type An−1 Jacobi polynomial, and
comment on the more conventional definitions afterwards.

Let λ be an integer partiion and α ∈ C. We define the upper hook length
product h∗(λ, α) by

h∗(λ, α) =
∏

(i,j)∈λ

(λ′j − i+ 1+ α(λi − j)))

where (i, j) runs over the set of coordinates of the boxes of λ when represented
as a Young diagram in the usual way, and λ′ denotes the conjugate partition
(so that λ′j − i+1+ λi − j equals the length of the “hook” inside λ with upper
leftmost corner the box with coordinates (i, j)).

Recall that an integer partition λ ∈ Pn determines canonically a dominant
weight π(λ) of the root system of type An−1.

Definition 7.1. Let λ be an integer partition with at most n parts. The n-
variable Jack polynomial Jλ(x;α) is the unique symmetric polynomial of homo-
geneous degree |λ| in x1, . . . , xn characterized by the property that its restriction
to the complex algebraic torus TA defined by {(x1, . . . , xn) | x1 . . . xn = 1} equals
h∗(λ, α)PA(π(λ), α

−1; (x1, . . . , xn)) where PA(µ, k;x) denotes the Jacobi polyno-
mial of type An−1 with highest weight µ.

We now recall some of the striking properties of the Jλ(x;α) which can not
be easily understood directly in terms of the Jacobi polynomials.

First of all, they are stable with respect to the number of variables. That is,
we have, if m ≥ n ≥ l(λ) (where l(λ) = λ′1 denotes the number of parts of λ),
then

Jλ(x1, . . . , xm;α)|xn+1=···=xm=0 = Jλ(x1, . . . , xn;α) (69)

For this reason it is possible to view the Jλ(x;α) as restrictions to a finite set
of variables of symmetric functions Jλ(α) in an infinite set of variables.

Definition 7.2. The Jλ(α) are called the Jack functions.

The {Jλ(α) | λ ∈ P} form a basis of the ring symmetric functions. The
expansion of Jλ(α) in terms of the basis of monomial symmetric functions mµ

only involves partitions µ which are smaller than or equal to λ in the dominance
ordering of integer partitions. In particular it makes sense to speak about the
coefficient of the monomial symmetric function m(1l) where l = |λ|. This reveals
a much more natural definition of the normalization of the family Jλ(α): the
coefficient of m(1l) equals l!. In fact this normalization is part of the original
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definition of the Jack polynomials by Jack [35], [50], and the equivalence with
our normalization in a fixed number of variables can be derived from a nontrivial
result due to Stanley [68] (see [3]).

It follows in a straightforward way from our definition that when α is a
positive real number then the n-variable polynomials Jλ(x;α) are orthogonal
with respect to the measure

∏

i<j

|xi − xj |
2/αx−1

1 . . . x−1
n dx1 ∧ · · · ∧ dxn

on the torus TB = {(x1, . . . , xn) | ∀i = 1, . . . , n : |xi| = 1}. There exists a
quite different inner product with respect to which the Jack functions Jλ(α) are
orthogonal. Define

zλ :=
∏

i≥1

(imimi!) (70)

where mi = mi(λ) denotes the number of parts of λ that are equal to i. Let
(·, ·)α denote the scalar product on the ring of symmetric functions such that

(pλ, pµ)α = δλ,µzλα
l(λ) (71)

Theorem 7.3. The Jack functions Jλ(α) are orthogonal with respect to the
inner product (·, ·)α.

Another remarkable property of the Jλ(α) is the positivity and integrality of
its coefficients when expressed with respect to the basis of normalized monomial
symmetric functions m̃λ = nλmλ, where nλ :=

∏

i≥1mi!.

Theorem 7.4 ([39]). The coefficients of Jλ(α) with respect to the basis {m̃µ |
µ ∈ P} of the ring of symmetric functions are polynomials in α with nonnegative
integral coefficients.

The Jack polynomials are also discussed in Chapter 7 by Dunkl.

7.2 The hypergeometric function of matrix argument

Hypergeometric functions of matrix argument arose as certain zonal spherical
functions on the cone of positive definite real symmetric n× n matrices in the
work of Bochner [4] and Herz [32]. This theory was generalized and further
developed by Constantine [10], James [36], Muirhead [53], and Takemura [70].
The hypergeometric functions of matrix argument find applications in random
matrix models, number theory, and quantum theory. The most general special
functions of this type were introduced independently by Macdonald [49] and
Korányi [44]. Macdonald [49] defined his functions as formal series in terms of
the Jack functions Jλ(α), hence in infinitely many variables. When we restrict
to n variables by setting xi = 0 for all i > n then one obtains a symmetric
formal power series in x1, . . . , xn. These formal power series are convergent if
|xi| < 1 for all i = 1, . . . , n. By interpreting the xi as the eigenvalues of an n×n
matrix then we can think of these functions as functions of “matrix argument”.
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First define the dual Jack polynomials J∗
λ(x;α) by

J∗
λ(α) := Jλ(α)/(Jλ(α), Jλ(α))α

We note in passing that it was shown by Stanley [68] that

(Jλ(α), Jλ(α))α = h∗(λ, α)h∗(λ, α)

where
h∗(λ, α) =

∏

(i,j)∈λ

(λ′j − i+ α(λi − j + 1)))

is the product over the boxes of the diagram of λ of the so-called “upper hook
lengths”. Hence when we restrict to n-variables x1, . . . , xn we have

J∗
λ(x;α) = PA(λ, α

−1;x)/h∗(λ, α)

Finally we define the “C-normalization” of the Jack polynomials by

Cλ(α) := α|λ||λ|!J∗
λ(α) (72)

Recall the Pochhammer symbol (a)s: If a ∈ C and s ∈ Z≥0 it is defined by

(a)s = a(a+ 1) . . . (a+ s− 1)

By convention (a)0 = 1 for all a ∈ C. Given λ ∈ P and a parameter k ∈ C we
define a generalized Pochhammer symbol by

(a)
(α)
λ :=

∏

i≥1

(a− α−1(i− 1))λi

We are now ready to formulate Macdonald’s definition [49] of the generalized
hypergeometric function pFq of matrix argument.

Definition 7.5. Let a1, . . . , ap; b1, . . . , bq and α be complex parameters. The
hypergeometric function pFq(a1, . . . , ap; b1, . . . , bq;α) is the formal series given
by:

pFq(a1, . . . , ap; b1, . . . , bq;α) :=
∑

λ∈P

(a1)
(α)
λ . . . (ap)

(α)
λ

(b1)
(α)
λ . . . (bq)

(α)
λ |λ|!

Cλ(α)

We denote the restriction of pFq(a1, . . . , ap; b1, . . . , bq;α) to n variables by set-
ting xi = 0 for all i > n by pFq(a1, . . . , ap; b1, . . . , bq;x;α) with x = (x1, . . . , xn).
This symmetric power series in x1, . . . , xn is convergent on the polydisk defined
by |xi| < 1 for all i.

When α = 1
2 , 1 or 2 then the Jack polynomials in this power series can be

interpreted as zonal polynomials on the cone of quaternionic, complex or real
positive definite matrices respectively, and in this way one can establish the
link for these special parameter values between the functions pFq defined by
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Macdonald and Korányi and the original functions of matrix argument studied
by Constantine, James and Muirhead.

Let us now restrict our attention to the special case p = 2, q = 1 of the
generalized hypergeometric functions pFq of matrix argument.

The power series 2F1 is characterized uniquely by a system of n linear partial
differential equations of order 2. Explicitly these equations are given as follows.
Here and below we will always write k = α−1. Define

∆i(a, b, c; k) = xi(1−xi)∂
2
i + (c− k(n− 1)− (a+ b + 1− k(n− 1))xi) ∂i+

k

n
∑

j=1;j 6=i

xi(1− xi)

(xi − xj)
∂i − k

n
∑

j=1;j 6=i

xj(1− xj)

(xi − xj)
∂j

Theorem 7.6 ([44]). The hypergeometric function 2F1(a, b; c;x;α) is the unique
symmetric function in the n variables x1, . . . , xn that satisfies

∆i(a, b, c;α
−1)F = abF, ∀i = 1, 2, . . . , n (73)

which is analytic at x1 = · · · = xn = 0 and normalized by F (0) = 1.

Observe that ∆i(a, b, c;α
−1) depends only on a+b and that (73) is symmetric

in a and b. Note that if a symmetric function F is an eigenfunction of the
operators ∆i(a

′, b′, c;α−1) then the eigenvalues are independent of i and we can
choose a and b such that a+ b = a′ + b′ and F satisfies (73).

Let us now turn to the relation with the hypergeometric function for root
systems. We have seen in section 6 that the hypergeometric system (3.9) is a
holonomic system of linear partial differential equations of rank |W |. For generic
values of (λ, k) the system is irreducible. This can be seen for instance from the
generic irreducibility of the monodromy representation of the hypergeometric
system. For special values of the parameters λ ∈ t∗ and k ∈ K the hypergeo-
metric system (3.9) may no longer be irreducible. This happens for example if
the system of equations (3.9) factorizes via a holonomic system of smaller rank,
i.e. if there exists a holonomic system of linear partial differential equations of
smaller rank whose solutions are also solutions of (3.9). The holonomic systems
which appear as factors of the hypergeometric system (3.9) are often interesting
in their own right.

The hypergeometric function 2F1 of matrix argument is a case in point. It
was shown by Beerends and Opdam [3] that the system of differential equations
of Theorem 7.6 is a factor (in the above sense) of the hypergeometric system
(3.9) for the root system of type BCn and a special choice of its parameters, a
result that we will explain below. For a good account of this result and of the
holonomic system defined by the system of differential equations of Theorem
7.6, we refer to [34].

It follows in particular that 2F1 is an explicit power series expansion at 0
of the BCn-type hypergeometric function F (λ, k; t) for these parameters. We
remark that in general such power series expansions are not known. We re-
fer the reader to [3] and the references therein for a more extensive historical
background on this type of hypergeometric series of matrix argument.
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Let (e1, . . . , en) be the standard basis in Rn. We equip Rn with the Euclidean
inner product 〈·, ·〉 with respect to which the standard basis is an orthonormal
basis. The set

RB := {±ei,±2ei,±(ek ± el) | i = 1, . . . , n; 1 ≤ k < l ≤ n} (74)

forms a root system of type BCn. The set

SB := {e1 − e2, e2 − e3, . . . , en−1 − en, en} (75)

is a set of simple roots. The torus T is of the form T = {(t1, . . . , tn) | ti ∈ C×},
where ti is identified with the character of T corresponding to the root ei of RB.

The Weyl group WB acts naturally on the complex algebraic torus T . It is
the hyperoctahedral group WB = WA ⋉N , where WA is the symmetric group
of permutations of the coordinates ti, and N ≈ Cn

2 is the group of sequences of
signs of length n, acting on T by raising ti to the power of the i− th sign in the
sequence. The space N\T of N -orbits in T is isomorphic to the n-dimensional
complex affine space. We equip this orbit space with coordinates xi := 1

2 −
1
4 (ti+ t

−1
i ), giving N\T the structure of an n-dimensional complex vector space

V = Cn, with linear action by the permutation group WA. Obviously we have
a canonical identification WA\V =WB\T , and we have

C[V ]WA = C[x1, . . . , xn]
WA ≈ C[T ]WB (76)

Given (a, b, c) and α we define mutiplicity parameters k1 = kei , k2 = k2ei
and k3 = kei±ej for the root RB of type BCn as follows:

k1 = 2c− a− b− 1− α−1(n− 1) (77)

k2 = a+ b+
1

2
− c

k3 = α−1

We record that in terms of these parameters we have

a+ b = k1 + 2k2 + (n− 1)k3 (78)

and

ρ(k) =
1

2
(a+ b)ωn + α−1ρA (79)

where ωn = e1 + · · · + en is the n-th fundamental weight with respect to the
basis SB of simple roots, and where ρA = 1

2

∑n
i=1(n − 2i + 1)ei is the half the

sum of the positive type A-roots ei − ej (with i < j) of RB. Observe that ωn

and ρA are orthogonal vectors. We define a spectral parameter λ for RB by

λ = −aωn + ρ(k) (80)

The main result of [3] states that:
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Theorem 7.7. Via the identification (76) we consider 2F1(a, b; c;x1, . . . , xn;α)
as a WB-invariant holomorphic function in an open neighborhood of e ∈ T .
Then

2F1(a, b; c;x1, . . . , xn;α) = FB(λ, k; t1, . . . , tn) (81)

where FB denotes the hypergeometric function for the root system RB, and the
parameters (λ, k) are defined in terms of (a, b, c;α) by (77), (80).

In view of Definition 7.5, this result yields a series expansion of the special
type of BCn-Jacobi polynomials which appear on the right hand side of (81)
in terms of Jack polynomials, with explicit hypergeometric coefficients. More
generally, Macdonald [49] considered expansions for arbitrary type BCn-Jacobi
polynomials in terms of Jack polynomials. He derived combinatorial expressions
for the coefficients as certain tableau sums. Results of this kind can also be
derived from the binomial formulae due to Okounkov [54], [55] for Koornwinder
and Macdonald polynomials in terms of so-called interpolation polynomials, cf.
[43].

One may also express Korányi’s second order operators ∆i(a, b, c;α
−1) di-

rectly in terms of the Dunkl-Heckman operators Sξ(k) [26] for RB. These op-
erators are defined by:

Sξ(k) :=∂ξ +
1

2

∑

α∈RB,+

kαα(ξ)
1 + t−α

1− t−α
(1 − sα)

=
1

2
(Tξ(k) + w0 ◦ T−ξ(k) ◦ w0)

where w0 : T → T is given by w0(t) = t−1, the action of the longest Weyl
group element of WB on T . These operators are WB-equivariant (i.e. for any
w ∈ WB we have w ◦ Sξ(k) ◦ w

−1 = Swξ(k)) but they do not commute. The
WB-equivariance of the operators Sξ(k) implies that S2

ei(k) defines a differential-
reflection operator on C[T ]N = C[x1, . . . , xn] for every i = 1, . . . , n.

Proposition 7.8. Let Di(k) denote the unique linear partial differential opera-
tor on C[x1, . . . , xn] which coincides with S2

ei(k) on the subring C[x1, . . . , xn]
WA .

For all i = 1, . . . , n we have:

Di(k) = (ρ(k), ei)
2 −∆i(a, b, c;α

−1) (82)

Proof. This is a straightforward but tedious direct computation.

7.3 The missing Euler integral

The multivariable hypergeometric function associated with a root system gen-
eralizes the classical Euler–Gauss F (α, β, γ; z) in all its properties, except for
one crucial missing insight: the Euler integral representation

F (α, β, γ; z) =
Γ(γ)

Γ(α)Γ(γ − α)

∫ 1

0

tα−1(1− t)γ−α−1(1 − tz)−βdt
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for |z| < 1 or by analytic continuation for z ∈ C minus a cut with the interval
[1,∞]. For rational parameters α, β, γ the integrand is an algebraic function of
t, which becomes single valued on a suitable finite cover of the complex plane
ramified over the four points t = 0, 1,∞, 1/z. As such it can be viewed as a
period of a meromorphic differential on a one parameter (namely z) family of
Riemann surfaces. This is the modern algebraic geometric view on the hyperge-
ometric equation, and has been generalized to the concept of the Gauss-Manin
connection (the attribution to Gauss is of course wrong, and should be to Euler,
but wrong attributions in mathematics happen quite often).

For multivariable hypergeometric functions of Appell and Lauricella type
integral representations are classical. For integral representations for the KZ-
equation we refer to Chapter 11 by Tarasov and Varchenko.

Hence the search for an Euler type integral representation in the multivari-
able root system context is urgent, but unfortunately progress has been small. It
can be shown that for a ”special” spectral parameter λ ∈ h∗, depending linearly
on the coupling parameter k ∈ K, the hypergeometric system becomes highly
reducible and has a subsystem with dimension of the solution space equal to
rk(R) + 1. The corresponding monodromy is the reflection representation of
the affine Hecke algebra. Let us call this the ”special” hypergeometric system
associated with R [12].

The natural generalization of the Schwartz map defines a projective structure
on the T ◦/W with T ◦ the complement of the mirrors. For k ∈ K positive and
sufficiently small it even defines a hyperbolic structure on T ◦/W with conic
singularities along the mirrors. The problem for which of these k ∈ K the space

T ◦/W

becomes a Heegner divisor complement in a ball quotient can be answered. In
the analogous Bessel equation this has been completely answered in [11] and
the list is quite substantial. This work generalizes the results of Deligne and
Mostow on the Lauricella FD hypergeometric function [14] to the root system
context. In the toric root system setting an announcement of similar results was
discussed in [12] but complete details have not been published yet. The toric
setting in interesting because it provides a uniform framework for the period
maps of the moduli space of del Pezzo surfaces of degree d = 3, 2, 1 to ball
quotients of dimension 4, 6, 8 respectively. These period maps were found by
Allcock–Carlson–Toledo for d = 3 (cubic surfaces) [1], by Kondo for d = 2
(quartic curves) [40] and by Heckman and Looijenga for d = 1 (rational elliptic
surfaces) [28].

But despite all this progress on the special hypergeometric system for partic-
ular values of k ∈ K (satisfying the Schwarz conditions) we do not even have an
integral representation for the ”special” hypergeometric function for arbitrary
k ∈ K.
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