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Preface

These are lectures on classicial differential geometry of curves and surfaces
in Euclidean space R

3, as it developped in the 18th and 19th century. Their
principal investigators were Gaspard Monge (1746-1818), Carl Friedrich
Gauss (1777-1855) and Bernhard Riemann (1826-1866).

In Chapter 1 we discuss smooth curves in the plane R
2 and in space

R
3. The main results are the definition of curvature and torsion, the Frenet

equations for the derivative of the moving frame, and the fundamental theo-
rem for smooth curves being essentially charcterized by their curvature and
torsion. The theory of smooth curves is also a preparation for the study of
smooth surfaces in R

3 via smooth curves on them.
The results of Chapter 2 on the first and second fundamental forms are

essentially due to Monge and his contemporaries. At the end of this chapter
we can give the definitions of mean curvature and Gaussian curvature.

In Chapter 3 we will discuss particular examples: surfaces of revolution,
and a special attention for various charts on the sphere. We end this chapter
with a discussion of ruled surfaces.

Chapter 4 on the Theorema Egregium deals with the main contributions
by Gauss, as developped in his ”Disquisitiones generalis circa superficies
curvas” (General investigations on curved surfaces) from 1827. This chapter
is a highlight of these lectures, and altogether we shall discuss four different
proofs of the Theorema Egregium.

In Chapter 5 we discuss geodesics on a surface S in R
3. They are defined

as smooth curves on S whose acceleration vector in R
3 is perpendicular to

the surface along the curve. They turn out to be the curves that locally
minimize the length between points.

The last Chapter 6 deals with abstract surfaces in the spirit of Riemann,
notably from his famous Habilitationsvortrag ”Ueber die Hypothesen welche
der Geometrie zu Grunde liegen” (On the hypotheses which lie at the basis
of geometry) from 1854. The basic example of such an abstract Rieman-
nian surface is the hyperbolic plane with its constant curvature equal to −1
Riemannian metric. We discuss the Riemann disc model and the Poincaré
upper half plane model for hyperbolic geometry.

This course can be taken by bachelor students with a good knowledge
of calculus, and some knowledge of differential equations. After taking this
course they should be well prepared for a follow up course on modern Rie-
mannian geometry. The text book ”Elementary Differential Geometry” by
Andrew Pressley from 2010 contains additional details and many exercises
as well, and will be used for this course.
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1 Smooth Curves

1.1 Plane Curves

A plane algebraic curve is given as the locus of points (x, y) in the plane
R
2 which satisfy a polynomial equation F (x, y) = 0. For example the unit

circle with equation F (x, y) = x2 + y2 − 1 and the nodal cubic curve with
equation F (x, y) = y2 − x2(x+ 1) are represented by the pictures

x

y

x

y

These curves can be parametrized. For the circle we can take the familiar
parametrization

t 7→ r(t) = (cos t, sin t)

where the time t runs over R/2πZ. But parametrizations of a curve are
highly nonunique. For example, the pencil of lines y = t(x + 1) through
the point (−1, 0) on the circle intersects the circle in a unique other point,
which gives the parametrization

t 7→ r(t) = (
1− t2

1 + t2
,

2t

1 + t2
)

where time t runs over the real line R together with a point∞ at infinity cor-
respondig to the base point (−1, 0) of the pencil. The first parametrization
is the standard unit speed trigonometic parametrization, while the second
parametrization is a rational parametrization of the circle.

The second method can also be used to find a parametrization of the
nodal cubic curve. Consider the pencil of lines y = tx with base point (0, 0)

4



the nodal singular point. Each line of the pencil intersects the nodal cubic
curve in a unique other point, and we find the polynomial parametrization

t 7→ r(t) = (t2 − 1, t3 − t)

where time t runs over the real line R.
The circle and the nodal cubic curve are so called rational curves, because

they admit a rational parametization. However, it can be shown that the
cubic curve with equation F (x, y) = 4x3−ax−b−y2 is not a rational curve,
as soon as the discriminant ∆ = a3 − 27b2 does not vanish.

The above parametrizations give in fact holomorphic parametrization of
the complex points of the curves in question. The cubic curve has a holo-
morphic parametization of its complex points using the Weierstrass function
℘(a, b; t). This holomorphic function of the complex variable t is doubly pe-
riodic, and as such is called an elliptic function. Likewise the trigonometric
parametrization of the unit circle is simply periodic in the complex variable
t with periods from 2πZ.

This leads us into the world of complex function theory and algebraic
geometry. Although a highly interesting part of mathematics it is not the
subject of these lectures. Instead we shall study real curves (and later real
surfaces) given by smooth real equations through smooth real parametriza-
tions. Here smooth means infinitely differentiable in the sense of calculus
(or real analysis). From this perspective the implicit function theorem is a
relevant general result.

Theorem 1.1. Let F : U → R be a smooth function on an open subset U in
the plane R

2. Let Fx and Fy denote the partial derivatives of F with respect
to x and y respectively. If F (x0, y0) = 0 and Fy(x0, y0) 6= 0 for some point
(x0, y0) in U then locally near (x0, y0) the curve with equation F (x, y) = 0
is the graph y = f(x) of a smooth function f of the variable x near the point
x0 with f(x0) = y0.

The curve with an implicit equation F (x, y) = 0 is locally an explicit
graph y = f(x), which explains the name implicit function theorem. How-
ever, our starting point for smooth curves will not be through their equa-
tions, but right from the definition through their parametrizations.

Definition 1.2. A smooth plane curve C is a smooth injective map

(α, β) ∋ t 7→ r(t) = (x(t), y(t)) ∈ R
2

with −∞ ≤ α < β ≤ ∞ and nowhere vanishing derivative rt = (xt, yt).
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For example, a curve given by an equation F (x, y) = 0 as in the implicit
function theorem can be parametrized by

t 7→ r(t) = (t, f(t))

or more generally by

t 7→ r(t) = (x(t), f(x(t)))

with xt > 0 or xt < 0 throughout the interval domain of the parametrization.
Thinking in this way of a plane curve as a smooth path t 7→ r(t) traced

out in time t the first and second derivative

v = rt , a = rtt

are the velocity and the acceleration of the motion along the curve. What
is their geometric meaning?

If we denote by u ·v the inner product of the vectors u,v ∈ R
2 then the

first fundamental function

t 7→ g = rt · rt

is just the square of the speed at which the curve is traversed. The function

t 7→ s(t) =

∫ t

t0

√

g(u)du

gives the length of the curve traced out between time t0 and a later time t.
The vector t = rt/

√
g is the unit tangent vector of the curve.

Let J denote the counterclockwise rotation of R2 over an angle π/2, so
that Je1 = e2 and Je2 = −e1 with e1 = (1, 0) and e2 = (0, 1) the standard
orthonormal basis of R2. The vector n = Jt is called the unit normal vector
of the curve.

The second fundamental function

h = rtt · n

is the component of the acceleration in the normal direction.
Let t 7→ t̃ from (α, β) to (α̃, β̃) be a bijective and bismooth map. The

smooth plane curve C̃
t̃ 7→ r̃(t̃) = r(t(t̃))
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is called a reparametrization of the original curve C. The reparametrization
is called proper (improper) if

dt̃

dt
> 0

(

dt̃

dt
< 0

)

meaning that the curve is traced out in the same (opposite) direction.
Suppose t 7→ t̃ is a reparametrization. Then we have

dr

dt
=

dr̃

dt̃

dt̃

dt

d2r

dt2
=

d2r̃

dt̃2

(

dt̃

dt

)2

+
dr̃

dt̃

d2t̃

dt2

using the chain rule. Since the unit tangent vector and the unit normal
vector remain unchanged under proper reparametizations we find

g(t) = g̃(t̃)

(

dt̃

dt

)2

, h(t) = h̃(t̃)

(

dt̃

dt

)2

as transformation rules for the first and second fundamental functions. So
the quotient h/g = h̃/g̃ is invariant under proper reparametrizations of the
curve. Since both t and n change sign under improper reparametrizations
the quotient h/g changes sign as well under improper reparametrizations.

Definition 1.3. The function k = h/g is called the signed curvature of the
plane curve C.

For example, the circle with radius r > 0 and parametrization

t 7→ r(t) = (r cos t, r sin t)

has unit tangent t and unit normal n given by

t = (− sin t, cos t) , n = Jt = (− cos t,− sin t)

and the fundamental functions become g = r2 and h = r. Hence the signed
curvature k = h/g = 1/r is just the inverse of the radius of the circle.

If k(t) = 0 for some t then the corresponding point r(t) of the curve C
is called a flex point. Equivalently, for a flexpoint the acceleration rtt(t) is
a scalar multiple of the velocity rt(t).

The next result is called the fundamental theorem for plane curves.
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Theorem 1.4. If we have given two arbitrary smooth real valued functions
t 7→ g(t) > 0 and t 7→ h(t) defined on some open interval then there exists
locally a smooth curve t 7→ r(t) with the prescribed g > 0 and h as their
first and second fundamental functions. The curve is unique up to a proper
Euclidean motion.

Proof. Since {t,n} is an orthonormal basis we have the equation

rtt = (rtt · t)t+ (rtt · n)n

and using t = rt/
√
g,n = Jrt/

√
g and g = rt · rt, gt = 2rtt · rt we arrive at

the second order ordinary differential equation

rtt =

(

gt
2g

+
h√
g
J

)

rt

for the curve t 7→ r(t) on the given interval. This second order differential
equation has a unique solution t 7→ r(t) on a sufficiently small open interval
around an initial time t0 with the initial position r(t0) and initial velocity
rt(t0) freely prescribed.

Taking the inner product of the second order differential equation with
rt we find the equation

(rt · rt)t/2(rt · rt) = gt/2g

or equivalently
(log(rt · rt)− log g)t = 0

with general solution (rt · rt) = cg for some constant c > 0. Taking the
solution curve t 7→ r(t) with rt(t0) ·rt(t0) = g(t0) we get c = 1 and therefore
g = (rt ·rt) for all t on the given interval around t0. Taking the inner product
of the second order differential equation with the unit normal n = Jrt/

√
g

we also find
rtt · n = h(t)

and the solution curve t 7→ r(t) of the second order differential equation has
g and h as its first and second fundamental functions.

The curve t 7→ r(t) is unique up to a translation in order to fix the initial
position r(t0) composed with a rotation to fix the direction of the initial
velocity rt(t0). The composition of a translation with a rotation is called a
proper Euclidean motion of R2. These transformations form a group under
composition of maps, the proper Euclidean motion group of the Euclidean
plane.

8



An important reparametrization of a curve t 7→ r(t) is the arclength
s = s(t) characterized by ds/dt =

√
g with g = rt · rt the first fundamental

function. If the curve s 7→ r(s) is parametrized by arclength then rs ·rs ≡ 1.
The second order differential equation in the above proof simplifies to

rss = kJrs

and the geometry of the locus of points traced out by the curve is essentially
determined by the signed curvature s 7→ k(s) up to a proper Euclidean
motion of the plane R

2.

1.2 Space Curves

The definition of a space curve is just the obvious modification of the one
of a plane curve as given in Definition 1.2.

Definition 1.5. A smooth space curve C is a smooth injective map

(α, β) ∋ t 7→ r(t) = (x(t), y(t), z(t)) ∈ R
3

for some −∞ ≤ α < β ≤ ∞ such that the derivative rt = (xt, yt, zt) 6= 0 is
nowhere vanishing.

Likewise a bijective and bismooth map (α, β) ∋ t 7→ t̃ ∈ (α̃, β̃) gives a
reparametrization C̃ of C by means of

(α̃, β̃) ∋ t̃ 7→ r̃(t̃) = r(t(t̃)) ∈ R
3

and we speak of a proper or improper reparametrization depending on
whether dt̃/dt is positive or negative respectively. We obtain

dr

dt
=

dr̃

dt̃

dt̃

dt

d2r

dt2
=

d2r̃

dt̃2

(

dt̃

dt

)2

+
dr̃

dt̃

d2t̃

dt2

d3r

dt3
=

d3r̃

dt̃3

(

dt̃

dt

)3

+ 3
d2r̃

dt̃2
d2t̃

dt2
dt̃

dt
+

dr̃

dt̃

d3t̃

dt3

by the chain rule. Using these formulas one can check that (denoting for the
derivative with respect to t a dot and for the derivative with respect to t̃ a
prime)

ṙ× r̈ =

(

dt̃

dt

)3

r̃′ × r̃′′ ,
...
r · (ṙ× r̈) =

(

dt̃

dt

)6

r̃′′′ · (r̃′ × r̃′′)
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which in turn implies that the scalar expressions

κ =
|ṙ× r̈|
|ṙ|3

, τ =

...
r · (ṙ× r̈)

|ṙ× r̈|2

are independent of the parametrization, and should have geometric meaning.

Definition 1.6. The functions κ and τ are called the curvature and the
torsion of the curve C respectively.

Note that the torsion is only well defined if the curvature κ > 0 is
positive. As soon as we deal with the torsion τ this will always be tacitly
assumed. The name torsion is due to Valleé in his text book Traité de
Geometrie Descriptive of 1825.

The length of the curve (taken from t = t0 to t = t1) is given by
∫ t1

t0

|ṙ|dt

and viewed as a new parameter s = s(t) =
∫

|ṙ|dt is called the arclength.
If we assume that the curve C is parametrized by arclength then the

tangent vector t = ṙ has unit length. Differentiation of the relation t · t = 1
yields ṫ · t = 0. The unit vector n, defined by ṫ = κn for κ > 0, is therefore
perpendicular to t and called the principal normal. The vector product
b = t × n is called the binormal. The above formulas for curvature and
torsion in case of arclength parametrization take the form

κ = ṫ · n , τ = ṅ · b .

Indeed, we have r̈ = ṫ = κn and τ = ẗ · (t× ṫ)/κ2 = ṅ · b.
Definition 1.7. Let the space curve s 7→ r(s) be parametrized by arclength.
The orthonormal triple {t,n,b} of tangent vector t, principal normal n and
binormal b is called the moving frame, or in french the ”répère mobile” of
Élie Cartan.

The name binormal was introduced by Barré de Saint Venant in 1845.

Theorem 1.8. Let the space curve s 7→ r(s) be parametrized by arclength.
Suppose that the curvature κ(s) > 0 for all s, and so the moving frame
t(s),n(s),b(s) and the torsion τ(s) are defined for all s. Then the moving
frame of the curve satisfies the system of differential equations

ṫ = 0t+ κn+ 0b

ṅ = −κt+ 0n+ τb

ḃ = 0t− τn+ 0b

10



which are called the Frenet (or sometimes Frenet–Serret) equations.

The Frenet equations were found by Frenet in his dissertation of 1847,
and were found independently by Serret and published in the Journal de
Mathématique 16 of 1851.

Proof. Because {t,n,b} is an orthonormal basis we have

ṫ = (ṫ · t)t+ (ṫ · n)n+ (ṫ · b)b
ṅ = (ṅ · t)t+ (ṅ · n)n+ (ṅ · b)b
ḃ = (ḃ · t)t+ (ḃ · n)n+ (ḃ · b)b

Differentiation of t · t = n · n = b · b = 1 yields ṫ · t = ṅ · n = ḃ · b = 0. By
the definition of curvature and torsion we have

ṫ · n = κ , ṫ · b = 0 , ṅ · b = τ

as explained above. Likewise, differentiation of t · n = t · b = n · b = 0
yields ṫ · n = −ṅ · t, ṫ · b = −ḃ · t, ṅ · b = −ḃ · n. This proves the Frenet
formulas.

The next result is called the fundamental theorem for space curves.

Theorem 1.9. If s 7→ κ(s) > 0 and s 7→ τ(s) are smooth functions on an
open interval then there exists locally a space curve s 7→ r(s) parametrized
by arclength and with curvature κ(s) and torsion τ(s). Moreover the curve
is unique up to a proper Euclidean motion.

Proof. Let {r1(t), · · · , rn(t)} be a set of n vectors in R
n depending in a

smooth way on a parameter t in some interval (α, β) such that at some
initial time t0 the vectors form a positive orthonomal basis of Rn. Then for
all time t in (α, β) these vectors from a positive orthonormal basis of Rn if
an only if the functions aij(t) defined by the equations

ṙi(t) =
∑

k

aik(t)rk(t)

satisfy the skew symmetry relation

aij(t) + aji(t) = 0

for all t ∈ (α, β). Indeed observe that

d

dt
(ri · rj) =

∑

k

(aikrk · rj + ajkri · rk)
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by the Leibniz product rule. The left hand side is identically equal to 0
if and only if ri · rj = δij for all t ∈ (α, β). Hence the right hand side is
identically equal to 0 if and only if aij(t) + aji(t) = 0 for all t ∈ (α, β).

The conclusion is that for given smooth functions κ(s) and τ(s) on some
interval there exists on a sufficiently small open interval around an initial pa-
rameter s0 a positive orthonormal basis {t(s),n(s),b(s)} varying smoothly
with s near s0 as solution of the Frenet equations. Moreover it is unique up
to a free (positive orthonormal) choice at the initial parameter s0. Define
the smooth curve s 7→ r(s) by a direct integration

r(s) =

∫

t(s)ds

and again the initial position r(s0) can be freely prescribed. Since ṙ(s) = t(s)
has unit length this curve is parametrized by arclength, and it has curvature
κ(s) (now use that κ(s) > 0) and torsion τ(s) at time s. Moreover the curve
is unique up to a proper orthogonal linear transformation followed by a
translation.
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2 Surfaces in Euclidean Space

2.1 The First Fundamental Form

A smooth surface in R
3 is often given by a smooth or even polynomial

equation
F (x, y, z) = 0

and if both F (x0, y0, z0) = 0 and Fz(x0, y0, z0) 6= 0 then the implicit function
theorem says that locally near (x0, y0, z0) the surface is just the graph z =
f(x, y) of a smooth function f of the variables (x, y) near the point (x0, y0)
with f(x0, y0) = z0. In other words the surface F (x, y, z) = 0 has local
coordinates coming from the orthogonal projection of the surface on the
plane z = 0. However it is more convenient and more practical to give a
more general definition, which is just the analogue of the similar situation
for plane of space curves.

Definition 2.1. A smooth surface S in Euclidean space is a smooth injective
map

U ∋ (u, v) 7→ r(u, v) ∈ R
3

with U an open subset of R2 and ru × rv 6= 0 on all of U .

All our discussions of S are entirely local, and so we are allowed to shrink
U if required. The condition

ru × rv 6= 0

means that the pair of vectors {ru, rv} is linearly independent. Their linear
span at (u, v) is called the tangent space at r(u, v), while the vector

N =
ru × rv

|ru × rv|

is called the (unit) normal. Note that the triple

{ru, rv ,N}

is a basis of R3.

Definition 2.2. If we denote

E = ru · ru , F = ru · rv = rv · ru , G = rv · rv
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as smooth functions on U then the expression

I = Edu2 + 2Fdudv +Gdv2

is called the first fundamental form of S on U . Note that E > 0, G > 0 and
EG− F 2 > 0.

The coordinates (u, v) on S are called conformal coordinates if E = G
and F = 0 for all (u, v) ∈ U ⊂ R

2. This means that the angle between
two intersecting curves in the coordinate patch U and the angle between the
corresponding curves on S are equal.

If t 7→ (u(t), v(t)) is a smooth curve in U then the arclength of the curve
t 7→ r(u(t), v(t)) on S in R

3 is given by

s =

∫

√

Eu̇2 + 2Fu̇v̇ +Gv̇2 dt

and therefore we also write

ds2 = Edu2 + 2Fdudv +Gdv2

for the first fundamental form. The square root

ds =
√

Edu2 + 2Fdudv + gdv2

is called the length element on S.
The area element dA on S takes in these coordinates the form

dA =
√

EG− F 2dudv

and integration over a compact region R inside U gives the area of the image
of R under the map (u, v) 7→ r(u, v) inside S.

2.2 The Second Fundamental Form

As before let U ∋ (u, v) 7→ r(u, v) ∈ R
3 be a smooth surface S in Euclidean

space R
3, and let

{ru, rv,N =
ru × rv

|ru × rv|
}

be the associated positive frame in R
3 of tangent vectors and unit normal.
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Definition 2.3. If we denote

L = ruu ·N , M = ruv ·N = rvu ·N , N = rvv ·N

as smooth functions on U then the expression

II = Ldu2 + 2Mdudv +Ndv2

is called the second fundamental form of S on U .

If t 7→ (u(t), v(t)) is a smooth curve in the coordinate region U of the
surface S given by (u, v) 7→ r(u, v) then

t 7→ r(u(t), v(t))

is a curve on S with

v = ruu̇+ rv v̇ , a = ruuu̇
2 + 2ruvu̇v̇ + rvv v̇

2 + ruü+ rv v̈

as velocity and acceleration. Suppose that time t is the arclength parameter
s for this curve, so that the velocity v is the unit tangent t for all s. Then
a = ṫ implies that a · t = 0 for all t, and a = κn with κ the curvature of
the curve, and n the principal normal (defined as long as κ > 0). Since the
triple {t,N, t×N} is a positive orthonormal frame we can decompose

ṫ = κn = κnN+ κgt×N

into a normal and a tangential component. The functions κn and κg are
called the normal curvature and the geodesic curvature of the given curve
on S respectively. Note that κ2 = κ2n + κ2g since the above decomposition

of ṫ is orthogonal. It is also clear that the normal curvature is given by

κn = ṫ ·N =
II

I

as quotient of second and first fundamental form in the direction of the
vector (du/ds, dv/ds). Indeed the denominator I is just equal to 1 in the
direction of (du/ds, dv/ds) by the definition of arclength.

Definition 2.4. If the curve s 7→ r(u(s), v(s)) is parametrized by arclength
then it is called a geodesic on S if its geodesic curvature vanishes identically.
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The geodesic curvature is a measure how much the curve t 7→ r(u(t), v(t))
on S curves inside S. Geodesics are therefore those curves on S that are as
straight as possible.

The formula for the normal curvature

κn =
II

I
=

Lu̇2 + 2Mu̇v̇ +Nv̇2

Eu̇2 + 2Fu̇v̇ +Gv̇2

as the quotient of the second and first fundamental form in the direction of
the vector (u̇, v̇) remains valid for any time parameter t for the curve on S.
This formula means that two curves on S that touch each other at a point
r on S have the same normal curvature κn at r.

Let us fix a point r on S and let N be the normal to S at r. The pencil
of planes through the normal line r+ RN intersects S in a family of plane
curves, for which at r the normal curvature κn, if traversed in the right
direction, is just the signed curvature k. In turn we arrive at the equation

k =
Lu̇2 + 2Mu̇v̇ +Nv̇2

Eu̇2 + 2Fu̇v̇ +Gv̇2

with t a time parameter for this family of plane curves on S through r.
Having the point r on S fixed and the coefficients E,F,G and L,M,N also
fixed numbers we shall view k = k(u̇, v̇) as function of the direction (u̇, v̇).
The extrema of k when both u̇ and v̇ vary (but not both equal to zero) are
given by differentiation of the above formula with respect to u̇ and v̇. The
two equations ∂k/∂u̇ = 0 and ∂k/∂v̇ = 0 amount to

(Eu̇2 + 2Fu̇v̇ +Gv̇2)(Lu̇+Mv̇)− (Lu̇2 + 2Mu̇v̇ +Nv̇2)(Eu̇+ F v̇) = 0

(Eu̇2 + 2Fu̇v̇ +Gv̇2)(Mu̇+Nv̇)− (Lu̇2 + 2Mu̇v̇ +Nv̇2)(Fu̇+Gv̇) = 0

and can be simplified to

(L− kE)u̇+ (M − kF )v̇ = 0

(M − kF )u̇+ (N − kG)v̇ = 0

which means that k is a root of the characteristic equation

∣

∣

∣

∣

L− kE M − kF
M − kF N − kG

∣

∣

∣

∣

= 0 .

This equation becomes

(EG− F 2)k2 − (EN − 2MF +GL)k + (LN −M2) = 0 .
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The two roots of this quadratic equation are called the principal curvatures
of S, and will be denoted k1 and k2. According to Dirk Struik the principal
curvatures were introduced by Monge in 1784 [11].

If k1 = k2 at some point r of S then the first and second fundamental
forms are proportional at that point, and r is called an umbilic of S. If
k1 6= k2 then the two corresponding solutions (u̇, v̇) are well defined up to a
nonzero multiple, and called the principal directions. These directions are
orthogonal on S, which can be proved using the familiar result from linear
algebra that eigenvectors of a symmetric matrix corresponding to different
eigenvalues are orthogonal.

Indeed, if we write

I =

(

E F
F G

)

, II =

(

L M
M N

)

then k = k1,2 are the eigenvalues of the symmetric matrix I−1/2 II I−1/2,
whose corresponding eigenvectors (u̇1, v̇1)I

1/2 and (u̇2, v̇2)I
1/2 are orthogonal

in R
2. This means that (u̇1, v̇1) and (u̇2, v̇2) are orthogonal with respect to

I, that is
Eu̇1u̇2 + F (u̇1v̇2 + v̇1u̇2) +Gv̇1v̇2 = 0,

which means that these two directions are orthogonal on the surface S.
Equivalently, the two corresponding planes of the pencil of planes through
the line r+ RN are perpendicular.

The fixed point r on S is called an elliptic point if LN −M2 > 0, and
a hyperbolic point if LN − M2 < 0. So for an elliptic point the principal
curvatures have the same sign, while for a hyperbolic point the principal
curvatures have opposite sign.

The important quantities

H =
EN − 2FM +GL

2(EG − F 2)
= 1

2
(k1 + k2)

K =
LN −M2

EG− F 2
= k1k2

are called the mean curvature H and the Gaussian curvature K at the given
point of S. A surface whose mean curvature H vanishes identically is called
a minimal surface. These are the surfaces one encounters in the Plateau
problem: if we have given a closed curve in R

3 then find a (preferably the)
surface with boundary this curve and minimal area. Such surfaces are also
called soap bubble surfaces.
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Since the principal curvatures k1 and k2 have geometric meaning they
are invariants with respect to proper coordinate transformations. Therefore
H and K also remain invariant under proper coordinate transformations.
Under improper coordinate transformation both k1 and k2 change sign, and
therefore H also changes sign while K still remains invariant.

The Gaussian curvature K is the most important notion of curvature for
surfaces, and will be further investigated in later chapters.
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3 Examples of Surfaces

3.1 Surfaces of Revolution

Consider a surface of revolution S in standard form

r(u, v) = (f(u) cos v, f(u) sin v, g(u))

as the revolution of the plane curve C : u 7→ r(u) = (0, f(u), g(u)) in the
plane x = 0 around the z axis. The curves on S with parameter u while v is
constant are called meridians, and those with u is constant and parameter
v are called circles of latitude.

The coefficients of the first and second fundamental forms are given by

E = (f ′)2 + (g′)2 , F = 0 , G = f2

L =
f ′g′′ − f ′′g′

√

(f ′)2 + (g′)2
, M = 0 , N =

fg′
√

(f ′)2 + (g′)2

and so the various curvatures become

K =
g′(f ′g′′ − f ′′g′)

f((f ′)2 + (g′)2)2
, H =

g′((f ′)2 + (g′)2) + f(f ′g′′ − f ′′g′)

2f((f ′)2 + (g′)2)
√

(f ′)2 + (g′)2

k1 =
g′

f
√

(f ′)2 + (g′)2
, k2 =

f ′g′′ − f ′′g′

((f ′)2 + (g′)2)
√

(f ′)2 + (g′)2

by direct calculation. For the unit sphere we take f(u) = cos u, g(u) = sinu
and as a result get K = H = k1 = k2 = 1. Hence the unit sphere has
constant Gaussian curvature equal to 1.

3.2 Charts for the Sphere

Consider the unit sphere S with equation x2 + y2 + z2 = 1 as a surface of
revolution

r(u, v) = (f(u) cos v, f(u) sin v, g(u))

by rotation of the unit circle C : u 7→ r(u) = (0, f(u), g(u)) with f2 + g2 ≡ 1
in the plane x = 0 around the z axis.

The Archimedes projection is given by

f(u) =
√

1− u2 , g(u) = u , −1 < u < 1

which is just the horizontal projection from the cylinder

x2 + y2 = 1 , −1 < z < 1
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onto the sphere minus the north pole n and the south pole s. Since

f ′ =
−u√
1− u2

, g′ = 1

we get

E =
1

1− u2
, F = 0 , G = (1− u2)

which implies EG − F 2 = 1. Hence the Archimedes projection yields
equiareal coordinates. In this way Archimedes (287-212 BC) found the area
of the unit sphere to be 4π. In cartography the Archimedes projection is usu-
ally called the Gall–Peters projection named after the cartographers James
Gall (1808-1895) and Arno Peters (1916-2002). The Gall–Peters projection
gave some controversy in the late 20th century by its claim of politically
correct map design.

The equirectangular projection introduced by the Greek mathematician
Marinus of Tyre (70-130 AD) is given by

f(u) = cos u , g(u) = sinu , −π/2 < u < π/2 .

It is a suitable projection from the cylinder

x2 + y2 = 1 , −π/2 < z < π/2

onto the sphere minus the north and south pole. Since

f ′ = − sinu , g′ = cos u

we get
E = 1 , F = 0 , G = cos2 u

and so the equirectangular projection is equidistant along meridians.
The Mercator projection is given by

f(u) =
1

coshu
, g(u) =

sinhu

coshu
, −∞ < u < ∞

which is a suitable nonlinear projection from the full cylinder

x2 + y2 = 1,−∞ < z < ∞

onto the sphere minus the north and south pole. Since

f ′ =
− sinhu

cosh2 u
, g′ =

1

cosh2 u
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we get

E =
1

cosh2 u
, F = 0 , G =

1

cosh2 u

and so the Mercator projection yields conformal coordinates on S− {n, s}.
The straight lines u = av + b with constant a in the plane map onto curves
on the sphere which intersect the meridians under a constant angle. These
curves are called loxodromes, and were used in the old days for navigation.
This was the reason Mercator (1512-1594) invented his projection.

The stereographic projection is the linear projection from the plane z = 0
with center the north pole n = (0, 0, 1). A point p = (u, v, 0) in the plane is
projected onto the point q = λp+ (1− λ)n on the sphere. Since |q| = 1 we
get λ = 2/(u2 + v2 + 1). So the stereographic projection is given by

r(u, v) =

(

2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2 + v2 − 1

u2 + v2 + 1

)

and projects onto the sphere minus the north pole n. A direct computation
yields

ru = (−2u2 + 2v2 + 2,−4uv,−4u)/(u2 + v2 + 1)2

rv = (−4uv,+2u2 − 2v2 + 2,−4u)/(u2 + v2 + 1)2

which in turn implies

E =
4

(u2 + v2 + 1)2
, F = 0 , G =

4

(u2 + v2 + 1)2
.

The conclusion is that stereographic projection yields conformal coordinates
on S − {n}. Stereographic projection was already known in ancient Greek
civilization to Hipparchus and Ptolemy. The first known world map based
upon stereographic projection, mapping each hemisphere onto a circular
disc, was made in 1507 by Gualterious Lud.

It is easy to verify that the inverse stereographic projection is given by

(x, y, z) 7→
(

x

1− z
,

y

1− z

)

.

The composition of inverse stereographic projection and Mercator projection
becomes

(u, v) 7→
(

cos v

coshu
,
sin v

cosh u
,
sinhu

coshu

)

7→
(

cos v

coshu− sinhu
,

sin v

coshu− sinhu

)
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or in complex notation

w = u+ iv 7→ cos v + i sin v

coshu− sinhu
=

exp(iv)

exp(−u)
= exp(u+ iv) = ew

which is a holomorphic function as should. Indeed, it is conformal as compo-
sition of two conformal transformations. On the complex plane it becomes
a holomorphic transformation with nowhere vanishing derivative.

It is convenient to compose the stereographic projection from the south
pole s = (0, 0,−1) with complex conjugation of the (u, v) plane, in order
that the transition from one stereographic projection to the other preserves
the orientation. It is given by the equation q = λp+ (1− λ)s with |q| = 1
and p = (u,−v) ∈ R

2 with λ = 2/(u2 + v2 + 1), and boils down to the
formula

r(u, v) =

(

2u

u2 + v2 + 1
,

−2v

u2 + v2 + 1
,
1− u2 − v2

u2 + v2 + 1

)

.

Because 1 − z = 2(u2 + v2)/(u2 + v2 + 1) the composition of inverse stere-
ographic projection from the north pole with stereographic projection from
the south pole is given in complex notation by

w = u+ iv 7→ u− iv

u2 + v2
=

1

w

which is again holomorphic on the punctured complex plane with nowhere
vanishing deriviative.

3.3 Ruled Surfaces

A ruled surface S is a smooth surface given by a parametrization

(u, v) 7→ r(u, v) = γ(u) + vδ(u)

with t 7→ γ(t) and t 7→ δ(t) two smooth space curves. We shall always have
in mind that v is taken from an open interval around 0 that might depend
on u. The line segments with u constant and v as parameter are called the
rulings of the ruled surface. In order that S is smooth we need to require
that

ru × rv = (γ̇ + vδ̇)× δ 6= 0

for all (u, v) in the domain of definition. This amounts to

γ̇ × δ 6= 0
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by possibly shrinking the interval of definition for the parameter v. Since
rvv = 0 the third coefficient

N = rvv ·N

of the second fundamental form vanishes everywhere, which in turn implies
that the Gaussian curvature

K =
−M2

EG− F 2
≤ 0

is nonpositive everywhere on S. Examples of ruled surfaces are the one
sheeted hyperboloid with equation

x2 + y2 − z2 = 1

(check this by taking γ(u) = (cos u, sinu, 0) and looking for δ(u)) and the
Möbius band with parametrization

r(u, v) = (cos u, sinu, 0) + v(− sin(u/2) cos u,− sin(u/2) sin u, cos(u/2))

with u ∈ R/2πZ and say |v| < 1/2, because

γ(u) =





cosu − sinu 0
sinu cos u 0
0 0 1









1
0
0





while

δ(u) =





cos u − sinu 0
sinu cos u 0
0 0 1









cos(u/2) 0 − sin(u/2)
0 1 0

sin(u/2) 0 cos(u/2)









0
0
1





This Möbius band has everywhere K < 0 and so is metrically different from
the flat Möbius band with K ≡ 0 obtained by joining the ends of a strip of
paper after first performing a halft twist! This remark should be read again
after the reader has absorbed the Theorema Egregium in the next chapter.
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4 Theorema Egregium of Gauss

4.1 The Gauss Relations

Suppose we have given a smooth surface S in Euclidean space R
3 given by

a smooth coordinate map

U ∋ (u, v) 7→ r(u, v) ∈ R
3

for some open subset Uof the Euclidean plane R
2. The coefficients of the

first fundamental form

I = Edu2 + 2Fdudv +Gdv2

are by definition the coefficients of the Gram matrix of the basis {ru, rv} of
the tangent space to S. If we denote the unit normal of S by

N =
ru × rv

|ru × rv|

then {ru, rv,N} is a basis of R3, and we obtain the Gauss relations

ruu = Γ1

11ru + Γ2

11rv + LN

ruv = Γ1

12ru + Γ2

12rv +MN

rvv = Γ1

22ru + Γ2

22rv + NN

with suitable coefficients Γk
ij and L,M,N being smooth functions on U .

Taking the inner product with N shows that L,M,N are the coefficients of
the second fundamental form

II = Ldu2 + 2Mdudv +Ndv2

of S in accordance with Definition 2.3. The coefficients Γk
ij are called the

Christoffel symbols. The next theorem is due to Gauss.

Theorem 4.1. The Christoffel symbols are given by the Gauus relations

Γ1

11 =
GEu − 2FFu + FEv

2(EG− F 2)
, Γ2

11 =
2EFu − EEv − FEu

2(EG− F 2)

Γ1

12 =
GEv − FGu

2(EG − F 2)
, Γ2

12 =
EGu − FEv

2(EG − F 2)

Γ1

22 =
2GFv −GGu − FGv

2(EG − F 2)
, Γ2

22 =
EGv − 2FFv + FGu

2(EG − F 2)

as functions of the coefficients E,F,G and their first order derivatives.
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Proof. Taking the inner product of the Gauss relations with the tangent
vectors ru and rv yields the linear equations

ruu · ru = Γ1

11E + Γ2

11F , ruu · rv = Γ1

11F + Γ2

11G

ruv · ru = Γ1

12E + Γ2

12F , ruv · rv = Γ1

12F + Γ2

12G

rvv · ru = Γ1

22E + Γ2

22F , rvv · rv = Γ1

22F + Γ2

22G

with solutions

Γ1

11 =
Gruu · ru − Fruu · rv

EG− F 2
, Γ2

11 =
Eruu · rv − Fruu · ru

EG− F 2

Γ1

12 =
Gruv · ru − Fruv · rv

EG− F 2
, Γ2

12 =
Eruv · rv − Fruv · ru

EG− F 2

Γ1

22 =
Grvv · ru − Frvv · rv

EG− F 2
, Γ2

22 =
Ervv · rv − Frvv · ru

EG− F 2

On the other hand

Eu = 2ruu · ru , Ev = 2ruv · ru , Fu = ruu · rv + ruv · ru
Gu = 2ruv · rv , Gv = 2rvv · rv , Fv = ruv · rv + rvv · ru

which in turn implies that

ruu · ru = Eu/2 , ruv · ru = Ev/2 , ruu · rv = Fu − Ev/2

ruv · rv = Gu/2 , rvv · rv = Gv/2 , rvv · ru = Fv −Gu/2

and the given expressions for the Christoffel symbols follow by substitution.

This theorem enables one to obtain a partial analogue of Theorem 1.4.

Corollary 4.2. A smooth surface in Euclidean space R
3 is determined up

to a proper Euclidean motion by its first and second fundamental forms.

Proof. Given the coefficents of the first and second fundamental forms the
Gauss relations become a system of second order partial differential equa-
tions, and as such have a unique solution

(u, v) 7→ r(u, v)

up to a proper Euclidean motion of R
3. Indeed the freedom is the pre-

scription of r and of {ru, rv} for some initial point (u0, v0) ∈ U with the
restriction that the Gram matrix of {ru, rv} at the initial point is given by
the first fundamental form.
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However it is not true that both the coefficients E,F,G and L,M,N
can be independently prescribed. The Gauss relations have to satisfy the
compatibility conditions

(ruu)v = (ruv)u , (rvv)u = (ruv)v

and then can be solved according to the Frobenius integrability theorem.
These compatibility conditions boil down to three independent differential
relations among the 6 coefficients E,F,G and L,M,N . This is what one
should expect, because we look for the 3 components of the solution vector
r(u, v) and so in the coefficients of the Gauss relations there should also
be 3 independent coefficients. In the next section we shall work out the
compatibility conditions for the Gauss relations explicitly.

4.2 The Codazzi–Mainardi and Gauss Equations

Let U ∋ (u, v) 7→ r(u, v) ∈ R
3 be a smooth surface. The frame {ru, rv,N}

is a basis of R3. Since N ·N ≡ 1 the partial derivatives Nu and Nv can be
written as a linear combination of {ru, rv}.

Theorem 4.3. We have the Weingarten equations

Nu =
MF − LG

EG− F 2
ru +

LF −ME

EG− F 2
rv

Nv =
NF −MG

EG− F 2
ru +

MF −NE

EG− F 2
rv

Proof. If we write

Nu = aru + brv , Nv = cru + drv

for suitable a, b, c, d ∈ R then

Ea+ Fb = Nu · ru = −L , Ec+ Fd = Nv · ru = −M

Fa+Gb = Nu · rv = −M , Fc+Gd = Nv · rv = −N

by taking inner products with ru and rv. Solving these linear equations
proves the result.

These equations were found by Weingarten in 1861. After this prepara-
tion we shall now work out the compatibility conditions

(ruu)v = (ruv)u , (rvv)u = (ruv)v
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for the Gauss relations of the previous section. Their components in the
normal direction lead to the Codazzi–Mainardi equations. These formulas
were found independently by Codazzi in 1860 and Mainardi in 1856. Their
components in the tangential directions lead to the Gauss equations.

Theorem 4.4. The coefficients of the first and second fundamental forms
satisfy the Codazzi–Mainardi equations

Lv −Mu = LΓ1

12 +M(Γ2

12 − Γ1

11)−NΓ2

11

Mv −Nu = LΓ1

22 +M(Γ2

22 − Γ1

12)−NΓ2

12

and the Gauss equations

EK = (Γ2

11)v − (Γ2

12)u + Γ1

11Γ
2

12 + Γ2

11Γ
2

22 − Γ1

12Γ
2

11 − Γ2

12Γ
2

12

FK = (Γ1

12)u − (Γ1

11)v + Γ2

12Γ
1

12 − Γ2

11Γ
1

22

FK = (Γ2

12)v − (Γ2

22)u + Γ1

12Γ
2

12 − Γ1

22Γ
2

11

GK = (Γ1

22)u − (Γ1

12)v + Γ1

22Γ
1

11 + Γ2

22Γ
1

12 − Γ1

12Γ
1

12 − Γ2

12Γ
1

22

as normal and tangential components of the compatibility conditions.

Proof. Substitution of the Gauss relations in the compatibility conditions

(ruu)v = (ruv)u , (rvv)u = (ruv)v

gives the equations

∂

∂v
(Γ1

11ru + Γ2

11rv + LN) =
∂

∂u
(Γ1

12ru + Γ2

12rv +MN)

∂

∂u
(Γ1

22ru + Γ2

22rv +NN) =
∂

∂v
(Γ1

12ru + Γ2

12rv +MN)

for any surface S in R
3. Writing out these equations in terms of the basis

{ru, rv,N} gives (using the Weingarten equations)

(Γ1

11)v + Γ1

11Γ
1

12 + Γ2

11Γ
1

22 + L
NF −MG

EG− F 2
=

(Γ1

12)u + Γ1

12Γ
1

11 + Γ2

12Γ
1

12 +M
MF − LG

EG− F 2
,

(Γ1

22)u + Γ1

22Γ
1

11 + Γ2

22Γ
1

12 +N
MF − LG

EG− F 2
=

(Γ1

12)v + Γ1

12Γ
1

12 + Γ2

12Γ
1

22 +M
NF −MG

EG− F 2
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as the coefficients of ru, and

(Γ2

11)v + Γ1

11Γ
2

12 + Γ2

11Γ
2

22 + L
MF −NE

EG− F 2
=

(Γ2

12)u + Γ1

12Γ
2

11 + Γ2

12Γ
2

12 +M
LF −ME

EG− F 2
,

(Γ2

22)u + Γ1

22Γ
2

11 + Γ2

22Γ
2

12 +N
LF −ME

EG− F 2
=

(Γ2

12)v + Γ1

12Γ
2

12 + Γ2

12Γ
2

22 +M
MF −NE

EG− F 2

as the coefficients of rv, and

MΓ1

11 +NΓ2

11 + Lv = LΓ1

12 +MΓ2

12 +Mu

LΓ1

22 +MΓ2

22 +Nu = MΓ1

12 +NΓ2

12 +Mv

as the coefficients of N respectively. The tangential components of the
compatibility conditions reduce to the Gauss equations, while the normal
components give the Codazzi–Mainardi equations.

Given smooth functions E,F,G and L,M,N on a planar region U with
E,G > 0 and EG−F 2 > 0 that satisfy the Codazzi-Mainardi equations and
the Gauss equations of Theorem 4.4 (with the Christoffel symbols given by
Theorem 4.1) it follows that there exists a smooth surface in Euclidean space
R
3 with these functions as coefficients of the first and second fundamental

form. This result is called the fundamental theorem for surfaces in R
3. It

goes back to Bonnet (1867) and follows from the Frobenius integrability
theorem.

4.3 The Remarkable Theorem of Gauss

The results of the previous two sections are rather computational. But the
catch is that the Christoffel symbols as given by the Gauss equations in
Theorem 4.1 and the expressions for the Gaussian curvature K as given
through the Gauss equations of Theorem 4.4 lead to a remarkable theorem.

Theorem 4.5. The Gauss curvature K of a surface S in R
3 depends only of

the coefficients E,F,G of the first fundamental form (through their partial
derivatives of order at most 2).

Proof. Indeed the Gauss equations of Theorem 4.4 give a formula for K
in terms of the partial derivatives of at most first order of the Christoffel
symbols, while in turn the Christoffel symbols depend on E,F,G through
partial derivatives of at most first order by Theorem 4.1.
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Gauss called this theorem the ”Theorema Egregium”, and it is indeed a
remarkable result. Let us call a differential geometric quantity for a surface
S in R

3 an inner quantity if it relies only on the length element ds2 on S, so
if in local coordinates (u, v) 7→ r(u, v) on S it relies only on the coefficients
E,F,G of the first fundamental form. Inner differential geometry is the
differential geometry that is meaningful to a flatlander living on S.

The coefficients L,M,N of the second fundamental form are not inner
quantities. They are given as the components of the second order derivatives
of the coordinates (u, v) 7→ r(u, v) in the direction of the normal N. So their
calculation requires the ambient Euclidean space R3 containing S. Therefore
it is remarkable that the Gaussian curvature K = (LN −M2)/(EG−F 2) is
an inner quantity, expressible in terms of the coefficients E,F,G of the first
fundamental form.

Corollary 4.6. It is impossible to choose local coordinates (u, v) 7→ r(u, v)
for the unit sphere in R

3 such that the length element on the sphere becomes
the planar Euclidean length element ds2 = du2 + dv2.

Proof. The Gaussian curvature of the unit sphere is constant equal to 1
while the Gaussian curvature of a planar Euclidean region is constant equal
to 0. Hence the Theorema Egregium prevents such flat coordinates for the
sphere.

This fact must have been conjectured by many cartographers before
Gauss, but the Theorema Egregium provides the first rigorous proof. There
is another application of the Theorema Egregium that was already alluded
to at the end of Section 3.3.

Corollary 4.7. It is impossible to choose new local coordinates (x, y) on the
Möbius band S given by

r(u, v) = (cos u, sinu, 0) + v(− sin(u/2) cos u,− sin(u/2) sin u, cos(u/2))

with u ∈ R/2πZ and say |v| < 1/2 such that the length element in the new
coordinates becomes the planar Euclidean length element ds2 = dx2 + dy2.

Proof. Indeed, we computed in Section 3.3 that the Gauss curvature K of
the Möbius band S is strictly negative on all of S. If these new coordinates
would exist then K vanishes identically, which is a contradiction with the
Theorema Egregium.

The Gauss equations in Theorem 4.4 give in fact 4 expressions for the
Gaussian curvature K as function of E,F,G and their partial derivatives
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up to order 2. It turns out that all 4 expressions lead to the same formula,
whose explicit form was worked out by Brioschi (1852) and Baltzer (1866).

Theorem 4.8. The explicit expression for the Gaussian curvature K as a
function of E,F,G in the Theorema Egregium takes the form

K(EG− F 2)2 = (−Evv/2 + Fuv −Guu/2)(EG − F 2)+
∣

∣

∣

∣

∣

∣

0 Eu/2 Fu − Ev/2
Fv −Gu/2 E F

Gv/2 F G

∣

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∣

0 Ev/2 Gu/2
Ev/2 E F
Gu/2 F G

∣

∣

∣

∣

∣

∣

Proof. We start with the formula

K =
LN −M2

EG− F 2

that was used as definition of the Gaussian curvature. From

L = ruu ·N , M = ruv ·N , N = rvv ·N

together with

N =
ru × rv√
EG− F 2

we obtain

K(EG − F 2)2 = (ruu · (ru × rv))(rvv · (ru × rv))− (ruv · (ru × rv))
2 .

Using a · (b× c) = det(a b c) we get

(a · (b× c))(d · (e× f)) =

∣

∣

∣

∣

∣

∣

a · d a · e a · f
b · d b · e b · f
c · d c · e c · f

∣

∣

∣

∣

∣

∣

for any six vectors a,b, c,d, e, f in R
3. Hence

K(EG− F 2)2 =

∣

∣

∣

∣

∣

∣

ruu · rvv ruu · ru ruu · rv
ru · rvv E F
rv · rvv F G

∣

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∣

ruv · ruv ruv · ru ruv · rv
ru · ruv E F
rv · ruv F G

∣

∣

∣

∣

∣

∣

and so
K(EG− F 2)2 = (ruu · rvv − ruv · ruv)(EG − F 2)+

∣

∣

∣

∣

∣

∣

0 ruu · ru ruu · rv
ru · rvv E F
rv · rvv F G

∣

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∣

0 ruv · ru ruv · rv
ru · ruv E F
rv · ruv F G

∣

∣

∣

∣

∣

∣
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and the result follows if we can express the right hand side in terms of the
first fundamental form.

By definition the coefficients E,F,G of the first fundamental form are
given by

E = ru · ru , F = ru · rv , G = rv · rv
and differentiation results in the identities (as in the proof of Theorem 4.1)

ruu · ru = Eu/2 , ruv · ru = Ev/2 , ruu · rv = Fu − Ev/2

ruv · rv = Gu/2 , rvv · rv = Gv/2 , rvv · ru = Fv −Gu/2

Differentiation of the third expression with respect to v and of the fourth
with respect to u, followed by a subtraction, yields the identity

ruu · rvv − ruv · ruv = −Evv/2 + Fuv −Guu/2

and the desired formula for the Gaussian curvature K follows by a direct
substitution.

These clever calculations give a second proof of the Theorema Egregium,
but it is quite clear that the theorem was not discovered this way. Both
proofs of the Theorema Egregium work with general coordinates (u, v) which
might be part of the reason why the calculations tend to be cumbersome.

We end this section with a geometric but intuitive argument of Hilbert
why the Theorema Egregium ought to be true. The Gauss–Rodrigues map
for a surface S in R

3 as given in local coordinates

(u, v) 7→ r(u, v)

is the map from S to the two dimensional unit sphere S2 by sending the
point r(u, v) to the unit normal N(u, v). The important formula

Nu ×Nv = Kru × rv

says that the Jacobian of the Gauss–Rodrigues map equals the Gaussian
curvature. The proof of this formula follows directly from the Weingarten
equations. In most text books the Gauss–Rodrigues map is just called the
Gauss map, but it was already introduced before Gauss by Rodrigues in
1815, who used it to prove that the total Gaussian curvature of an ellipsoid
is equal to 4π.

The point is now that we shall think of the smooth surface S as build
from a triangulation of Euclidean triangles. The total Gaussian curvature

K(u, v)dA = K(u, v)
√

EG− F 2dudv
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then becomes a weighted sum of delta functions located at the vertices of
the triangulation. The weight at a given vertex is the area of the region R of
unit normal vectors, directed in outward direction for the given orientation.

Say at the given vertex n triangles come together with angles α1, · · · , αn.
Then it is not difficult to see that the region R of outward unit normal vectors
is a spherical polygon with n vertices and angles equal to π−α1, · · · , π−αn.
This is clear by replacing the n triangles by n quadrangles, each with one
pair of opposite orthogonal angles and the other opposite pair with angles
αi and π − αi. Moreover take the pairwise glued edges of the same length.
It is instructive to make a paper model in case n = 4.

The total Gaussian curvature at the vertex becomes the area of the
polygon R, and equals

n
∑

1

(π − αi)− (n− 2)π = 2π −
n
∑

1

αi

by the Girard formula. This explains that the Gaussian curvature is an
inner quantity. Note that if more than three triangles come together at
the given vertex then the triangulated surface can be locally bent without
distortation, but the local contribution to the Gaussian curvature from the
given vertex remains the same. Did Gauss discover the Theorema Egregium
along these lines, by approximation of a smooth surface by a triangulated
surface?

Thinking along these lines we can also explain a truely remarkable result,
called the Gauss–Bonnet theorem.

Theorem 4.9. Let S be a surface build out of Euclidean triangles, which is
compact and has no boundary. Let v be the number of vertices, e the number
of edges and f be the number of faces of the triangulation. Then the total
Gaussian curvature of S is given by

∫

S

KdA = 2πχ(S)

with χ(S) = (v − e+ f) ∈ Z the so called Euler characteristic of S.
Proof. The expression

∫

S
KdA is called the total Gaussian curvature, and

becomes in the triangulated approximation equal to

2πv −
∑

α

α = 2πv − πf = 2π(v − e+ f)

since 3f = 2e as each triangle is bounded by three edges, while each edge
bounds exactly two triangles.
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The remarkable aspect of the Gauss–Bonnet theorem is that the integral
Gaussian curvature on S, which a priori is a real number depending on the
chosen length element ds2 of the surface, remains invariant if the surface
is smoothly deformed. Indeed an integral multiple of 2π remains constant
under smooth deformations. For example the total Gaussian curvature of
the ellipsoids

x2/a2 + y2/b2 + z2/c2 = 1

is equal to 4π for any a, b, c > 0, since the area of the unit sphere with
constant Gaussian curvature K = 1 is equal to 4π. We can also approximate
the unit sphere by a tetrahedron, octahedron or icosahedron, and in each
case χ = v − e+ f = 2 as known to Euler.

4.4 The upper and lower index notation

So far we have used the classical notation for surfaces in R
3 with local co-

ordinates u, v and coefficients E,F,G and L,M,N of the first and second
fundamental forms respectively. This notation has been completely standard
in the nineteenth century literature, when this theory was developed. It is
still used in the more recent text books of the past century like Vorlesun-
gen über Differentialgeometrie von Wilhelm Blaschke from 1945, Lectures
on Classical Differential Geometry by Dirk Struik from 1950, Differential
Geometry by James Stoker from 1969, and the more recent Elementary Dif-
ferential Geometry by Andrew Pressley from 2010, which we also use as side
book for this course.

In this section we adopt the following change of notation

u 7→ u1, v 7→ u2 ∂/∂u 7→ ∂1, ∂/∂v 7→ ∂2

with upper indices for the coordinates and lower indices for the partial
derivatives. The coefficients of the first and second fundamental forms are
changed into gij and hij respectively, with indices i, j, k, · · · = 1, 2. So the
surface in R

3 is given locally by a smooth map

(u1, u2) 7→ r = r(u1, u2)

with N = ∂1r × ∂2r/|∂1r× ∂2r| the everywhere defined unit normal. So in
the new notation

gij = ∂ir · ∂jr hij = ∂i∂jr ·N

for i, j = 1, 2. The first fundamental form

ds2 =
∑

gijdu
iduj
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is also called the metric tensor. Whenever we write a sum symbol
∑

it
is understood that the summation runs over those indices in the summand
which appear both as upper and as lower index. In Einstein summation
convention even the summation sign is left out, and whenever the same
index appears as upper and lower index in some expression it is tacitly
assumed that it is summed over. For example, we have

∂i∂jr =
∑

Γk
ij∂kr+ hijN

for the definition of the Christoffel symbols Γk
ij and the second fundamental

form tensor
∑

hijdu
iduj . We write gij for the coefficients of the inverse

matrix of gij, so for example g12 = −g21/(g11g22 − g21g12).

Theorem 4.10. The Christoffel symbols are given by

Γk
ij =

∑

(∂igjl + ∂jgil − ∂lgij)g
lk/2

and so the Christoffel symbols are algebraic expressions in the coefficients of
the metric tensor and their first order derivatives.

Proof. Indeed, taking the scalar product of the boxed equation with ∂lr
gives

∂i∂jr · ∂lr =
∑

Γk
ijgkl

and since
(∂igjl + ∂jgil − ∂lgij)/2 = ∂i∂jr · ∂lr

the formula for the Christoffel symbols follows from linear algebra.

A comparison with the old notation used in Section 4.1 illustrates that
the new notation is both compact and efficient. We can view the boxed
equation as a second order system of partial differential equations for r as
function of (u1, u2), and the theory of such equations gives that a smooth
surface in R

3 is uniquely determined by its first and second fundamental form
coefficients, up to a proper Euclidean motion coming from the free choice
of an initial point r(u1

0
, u2

0
) and initial tangent vectors ∂ir(u

1
0
, u2

0
) under the

constraint ∂ir(u
1
0
, u2

0
) · ∂jr(u10, u20) = gij(u

1
0
, u2

0
). This is the fundamental

theorem for smooth surfaces in R
3.

The situation is analogous to that of smooth curves being determined by
curvature κ > 0 and torsion τ . However in the former case we could prescribe
arbitrarily smooth functions κ > 0 and τ of a parameter s and the local exis-
tence and uniqueness of a smooth arclength parametrized smooth curve with
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these curvature and torsion followed by local existence and uniqueness of the
ordinary differential equation in question, the Frenet equation. However in
the situation of surfaces we can not prescribe the coefficients gij (under the
obvious constraints g11 > 0, g11g22 − g21g12 > 0) and hij arbitrarily.

Indeed for a solution of the boxed equation to exist we must necessarily
have

∂i(∂j∂kr) = ∂j(∂i∂kr)

and so the expression

∂i{
∑

Γl
jk∂lr+ hjkN}

is symmetric under i ↔ j. The theory of partial differential equations
of boxed type gives that these so called integrability conditions also are
sufficient for local existence and uniqueness. Hence the expression

∑

∂iΓ
l
jk∂lr+

∑

Γm
il Γ

l
jk∂mr+

∑

hilΓ
l
jkN+ (∂ihjk)N+ hjk∂iN

should be symmetric under i ↔ j. The normal component of these equations
leads to the Codazzi–Mainardi equations, and the tangential components to
the Gauss equations.

Since N · N = 1 we get ∂iN · N = 0 and so the Codazzi–Mainardi
equations simply become

∂ihjk − ∂jhik +
∑

{hilΓl
jk − hjlΓ

l
ik} = 0

for all i, j, k. Likewise N · ∂nr = 0 implies that

∂iN · ∂nr = −N · ∂i∂nr = −hin

and so ∂iN =
∑

nl
i∂lr with coefficients nl

i given by nl
i =

∑−hing
nl. These

are the so called Weingarten equations. If we denote

Rl
ijk := ∂iΓ

l
jk − ∂jΓ

l
ik +

∑

{Γl
imΓm

jk − Γl
jmΓ

m
ik}

for the coefficients of the Riemann curvature tensor then the Gauss equa-
tions take the form

Rl
ijk =

∑

{hinhjk − hjnhik}gnl

or equivalently

{hilhjk − hjlhik} =
∑

Rn
ijkgnl =: Rijkl
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for all i, j, k, l. Note the relations

Rjikl = −Rijkl, Rijlk = −Rijkl, Rklij = Rijkl

for all i, j, k, l. Since the Riemann curvature tensor coefficients Rl
ijk or Rijkl

are (admittedly rather complicated) algebraic expressions in the coefficients
of the metric tensor and their first and second order partial derivatives we
arrive at the Theorema Egregium

K :=
h11h22 − h21h12
g11g22 − g21g12

=
−R1212

g11g22 − g21g12

for i = 1, j = 2, k = 1, l = 2.
This ends our discussion of the Theorema Egregium as consequence of

the integrability conditions for the fundamental theorem. Compared to the
same explanations in Sections 4.1 and 4.2 the index notation used here is
compact and more efficient.

It follows from the Frobenius integrability theorem that for arbitrary six
smooth functions gij = gji, hij = hji on a domain U in R

2 satisfying the
regularity conditions

g11 > 0, g11g22 − g21g12 > 0

and the Codazzi-Mainardi equations

∂ihjk − ∂jhik +
∑

{hilΓl
jk − hjlΓ

l
ik} = 0

and the Gauss equations

Rl
ijk =

∑

{hinhjk − hjnhik}gnl

with the curvature coefficients defined by

Rl
ijk := ∂iΓ

l
jk − ∂jΓ

l
ik +

∑

{Γl
imΓm

jk − Γl
jmΓ

m
ik}

there exists a smooth surface in R
3 with these functions as coefficients of

the first and second fundamental form, and the surface is unique up to a
proper motion of R3.

36



5 Geodesics

5.1 The Geodesic Equations

Suppose S is a smooth surface given by the coordinates

(u, v) 7→ r(u, v)

with first fundamental form

ds2 = Edu2 + 2Fdudv +Gdv2

given by the usual formulas

E = ru · ru , F = ru · rv , G = rv · rv .

We recall the definition of a geodesic on S from Section 2.2.

Definition 5.1. A curve γ(t) = r(u(t), v(t)) on S traversed in time t is
called a geodesic if the acceleration γ̈ is a multiple of the unit normal N for
all time t.

It is clear that geodesics are traversed with constant speed since

d

dt
(γ̇ · γ̇) = 2γ̈ · γ̇ = 2γ̈ · (u̇ru + v̇rv) = 0

because γ̈ is a multiple of N.

Theorem 5.2. The curve γ(t) = r(u(t), v(t)) is a geodesic on S if and only
if the so called geodesic equations

d

dt
(Eu̇+ F v̇) = (Euu̇

2 + 2Fuu̇v̇ +Guv̇
2)/2

d

dt
(Fu̇+Gv̇) = (Evu̇

2 + 2Fvu̇v̇ +Gv v̇
2)/2

do hold.

Proof. By definition γ(t) = r(u(t), v(t)) is a geodesic on S if

{ d

dt
(u̇ru + v̇rv)} · ru = 0 , { d

dt
(u̇ru + v̇rv)} · rv = 0 .

These equations can be rewritten as

d

dt
{(u̇ru + v̇rv) · ru} = (u̇ru + v̇rv) · (u̇ruu + v̇ruv)

d

dt
{(u̇ru + v̇rv) · rv} = (u̇ru + v̇rv) · (u̇ruv + v̇rvv)
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and using the relations (as seen before in the proof of Theorem 4.1)

ruu · ru = Eu/2 , ruv · ru = Ev/2 , ruu · rv = Fu − Ev/2

ruv · rv = Gu/2 , rvv · rv = Gv/2 , rvv · ru = Fv −Gu/2

the geodesic equations follow.

We shall derive another form for the geodesic equations in the next
theorem. Observe that the above geodesic equations can be rewritten as

Eü+ F v̈ = (−Euu̇
2 − 2Evu̇v̇ + (−2Fv +Gu)v̇

2)/2

Fü+Gv̈ = ((Ev − 2Fu)u̇
2 − 2Guu̇v̇ −Gv v̇

2)/2

and since (EG − F 2) > 0 one can solve ü and v̈ from these equations by
direct linear algebra.

Theorem 5.3. A curve t 7→ r(u(t), v(t)) is a geodesic on S if and only if
the geodesic equations

ü+ Γ1

11u̇
2 + 2Γ1

12u̇v̇ + Γ1

22v̇
2 = 0

v̈ + Γ2

11u̇
2 + 2Γ2

12u̇v̇ + Γ2

22v̇
2 = 0

hold with Γk
ij the Christoffel symbols of Theorem 4.1.

Remark 5.4. Let us write as before

v = ruu̇+ rv v̇ , a = ruü+ rv v̈ + ruuu̇
2 + 2ruvu̇v̇ + rvv v̇

2

for the velocity and acceleration of the curve t 7→ r(u(t), v(t)) on the surface
S in R

3. The orthogonal projection along N of the accelaration a on the
tangent space spanned by ru, rv is given by a− (a ·N)N and becomes

(ü+ Γ1

11u̇
2 + 2Γ1

12u̇v̇ + Γ1

22v̇
2)ru + (v̈ + Γ2

11u̇
2 + 2Γ2

12u̇v̇ + Γ2

22v̇
2)rv

by the very definition of the Christoffel symbols. Hence the above theorem is
clear indeed, and the proof given above was just a repetition of calculations
in the proof of Theorem 4.1.

Meridians on a surface of revolution are the intersection of the surface
with a plane through the axis of rotation. Therefore it is clear on geometric
grounds that the meridians on a surface of revolution are always geodesics.
For example for the unit sphere S2 all great circles are geodesics. But for
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general surfaces it is rare that geodesics can be computed explicitly. However
two important conlusions about geodesics can be drawn at this point.

The first conclusion is that for each point on the surface and for each
tangent vector at that point there exists locally a unique geodesic through
that point with the given tangent vector as velocity. Indeed, the geodesic
equations are a system of ordinary second order differential equations. Hence
this follows from the general existence and uniqueness theorem for such
differential equations.

The second conclusion is similar in spirit to the Theorema Egregium in
the sense that geodesics on a surface only depend on the coefficients E,F,G
of the first fundamental form and their first partial derivatives. Apparently
the notion of geodesic is an inner quantity of the surface, despite the fact that
the definition of geodesic requires the ambient Euclidean space R3 containing
S. In the next section we shall see that geodesics are those curves on the
surface S for which the length along the curve between nearby points is
minimal. This geometric characterization of geodesics is clearly inner, and
therefore it should this time not come as a surprise that geodesics are an
inner concept.

In terms of classical mechanics one can think of a geodesic as the orbit of
a free particle on S. Indeed Newton’s law of motion F = mr̈ together with
the geodesic equation γ̈ ∝ N means that the tangential component of the
force vanishes everywhere. From this point of view geodesics have constant
speed as a consequence of conservation of Hamiltonian energy H = (γ̇ ·γ̇)/2.

5.2 Geodesic Parallel Coordinates

Let U ⊂ R
2 be an open rectangle containing the origin (0, 0) and let

U ∋ (u, v) 7→ r(u, v) ∈ R
3

be a smooth surface S with first fundamental form coefficients

E = ru · ru , F = ru · rv , G = rv · rv

defining the length element ds2 = Edu2 + 2Fdudv +Gdv2 on S.

Theorem 5.5. All curves u 7→ r(u, v) with v being constant are unit speed
geodesics which intersect the axis {(0, v); v ∈ R} everywhere in U in a per-
pendicular way if and only if the first fundamental form becomes

ds2 = du2 +G(u, v)dv2

on all of U .
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Proof. The curves u 7→ r(u, v) with v constant are all unit speed curves if
and only if E = 1 on all of U , and they intersect the axis {(0, v); v ∈ R}
at each point in U orthogonally if and only if F (0, v) = 0 for all v. If the
curves u 7→ r(u, v) with v constant are in addition geodesics then the second
geodesic equation in Theorem 5.2 implies that Fu = 0 on all of U , and hence
F = 0 on all of U . This shows that the first fundamental form becomes
ds2 = du2 +Gdv2 on all of U as required.

Conversely if ds2 = du2 + Gdv2 then the coordinate curves intersect at
each point orthogonally. The curves u 7→ r(u, v) with v constant are unit
speed curves, and by direct inspection solutions of both geodesic equations
in Theorem 5.2.

The coordinates of the theorem are called geodesic parallel cordinates.
Geodesic parallel coordinates exist nearby a freely prescribed smooth curve
t 7→ r(0, t) on S. Because

∫ t2

t1

√

1 +G(t, v(t))v̇2 dt ≥
∫ t2

t1

dt = t2 − t1

for all t2 > t1 the length between nearby points on a geodesic is minimal
under small deformations of the curve keeping begin and end point fixed
throughout the deformation. Therefore geodesics have a geometric meaning
as locally length minimizing curves, and it should not be a surprise that their
characterizing geodesic equations are inner, as mentioned in the previous
section.

A familiar example of geodesic parallel coordinates are polar coordinates
in the Euclidean plane, since the coordinate transformation

x = r cos θ , y = r sin θ

implies that ds2 = dx2 + dy2 = dr2 + r2dθ2 is of the desired form.
Using the geodesic equations in Theorem 5.2 it is easy to check that in

geodesic parallel coordinates with first fundamental form

ds2 = du2 +G(u, v)dv2

the curve v 7→ r(0, v) is a unit speed geodesic as well if and only if

G(0, v) = 1 , Gu(0, v) = 0

for all (0, v) ∈ U . Hence the first fundamental form becomes

ds2 = du2 + dv2 +O(u2)

and so is Euclidean up to first order along the curve u = 0.
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5.3 Geodesic Normal Coordinates

Let S be a smooth surface in R
3 given by local coordinates U ∋ (u, v) 7→

r(u, v) with U an open disc around the origin (0, 0).

Definition 5.6. These coordinates are called geodesic normal coordinates
around the point r(0, 0) of S if in polar coordiates

u = r cos θ , v = r sin θ

the lines θ is constant through (0, 0) become geodesics on S with arclength
parameter r.

It follows from the existence and uniqueness of geodesics through a given
point with a given tangent vector at that point that around each point of
S geodesic normal coordinates exist and are in fact unique up to the action
of the orthogonal group O(2,R) in the coordinates (u, v). The next result
is called Gauss’ Lemma.

Lemma 5.7. In geodesic normal coordinates the geodesic circles r equal to
a positive constant intersect the central geodesics θ equal to a constant in a
perpendicular way.

Proof. We have |rr(r, θ)| = 1 for 0 < r < ǫ for some ǫ > 0, and therefore
∫ ρ

0

(rr · rr) dr = ρ

for all 0 < ρ < ǫ. Differentiation of both sides with respect to θ gives

0 =

∫ ρ

0

(rr · rrθ) dr =

∫ ρ

0

(rr · rθ)r dr −
∫ ρ

0

(rrr · rθ) dr

for all 0 < ρ < ǫ. Since r 7→ r(r, θ) with θ constant is a geodesic with
arclength r we conclude that rrr ∝ N and so rrr · rθ = 0 for all 0 < r < ǫ.
Because r(0, θ) is constant we get

rr(ρ, θ) · rθ(ρ, θ) = rr(0, θ) · rθ(0, θ) = 0

for all ρ > 0 and θ ∈ R/2πZ.

Remark 5.8. In order to understand the line of thought of Riemann, as
we shall discuss in the next chapter, it will be necessary to have an inner
geometric proof of Gauss’ Lemma. Such a proof goes as follows. If

u = r cos θ , v = r sin θ
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are geodesic normal coordinates then the line element becomes

ds2 = Edu2 + 2Fdudv +Gdv2 = edr2 + 2fdrdθ + gdθ2

with

e = E cos2 θ + 2F cos θ sin θ +G sin2 θ

f = (−E cos θ sin θ + F (cos2 θ − sin2 θ) +G sin θ cos θ)r

g = (E sin2 θ − F sin θ cos θ +G cos2 θ)r2

as follows from du = cos θdr − r sin θdθ, dv = sin θdr + r cos θdθ. Therefore
f = O(r) and g = O(r2) for r ↓ 0, and so

f(+0, θ) = 0 , g(+0, θ) = gr(+0, θ) = 0

for all θ. Clearly e = 1 because the curves θ is constant are unit speed
parametized for time r. In turn the second geodesic equation in Theorem 5.2
for the geodesics θ is constant with parameter r gives fr = 0 for all small
r > 0, and together with f(+0, θ) = 0 we deduce f(r, θ) = 0 for all θ and all
small r > 0. Hence in geodesic normal coordinates

ds2 = dr2 + g(r, θ)dθ2

and Gauss’ lemma follows.

The next result gives a normal form of the length element ds2 in geodesic
normal coordinates.

Theorem 5.9 (Riemann’s formula). In geodesic normal coordinates (u, v)
the length element ds2 on S takes the form

ds2 = dr2 + g(r, θ)dθ2 = du2 + dv2 +H(u, v)(udv − vdu)2

with H(u, v) = (g(r, θ) − u2 − v2)/(u2 + v2)2 a smooth function around the
origin. The Gaussian curvature K0 at the origin is given by K0 = −3H(0, 0)
and therefore K0 = 0 if and only if the length element ds2 is Euclidean up
to second order.

Proof. The first equality sign in the formula for ds2 is a direct consequence of
Theorem 5.5 together with Gauss’ Lemma. Since u = r cos θ and v = r sin θ
we find

r =
√

u2 + v2 , θ = arctan
v

u
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which in turn implies

dr =
udu+ vdv√

u2 + v2
, dθ =

d(v/u)

1 + (v/u)2
=

udv − vdu

u2 + v2

and since

dr2 =
u2du2 + 2uvdudv + v2dv2

u2 + v2
= du2 + dv2 − (udv − vdu)2

u2 + v2

the second equality in the formula for ds2 follows by direct substitution.
In the geodesic normal coordinates (u, v) we have

E = 1 +H(u, v)v2 , F = −H(u, v)uv , G = 1 +H(u, v)u2

and
EG− F 2 = 1 +H(u, v)(u2 + v2)

and so the Brioschi–Baltzer formula of Theorem 4.8 gives

K(u, v) =
−Evv + 2Fuv −Guu

2(EG − F 2)
+O(r2) = −3H(0, 0) +O(r)

for r2 = u2 + v2 ↓ 0. Hence K0 = −3H(0, 0) and this completes the proof
of the theorem.

Theorem 5.10. If L(r) is the length of the circle u2 + v2 = r2 and A(r)
the area of the disc u2 + v2 ≤ r2 for 0 < r < ǫ then

K0 = 6 lim
r↓0

2πr − L(r)

2πr · r2 , K0 = 12 lim
r↓0

πr2 −A(r)

πr2 · r2

with K0 = K(0, 0) the Gaussian curvature at the origin.

Proof. We have ds2 = dr2 + g(r, θ)dθ2 with

g(r, θ) = r2 +H(0, 0)r4 +O(r5)

for r ↓ 0 by Theorem 5.9. Hence the length L(r) equals

∫

2π

0

√

g(r, θ) dθ =

∫

2π

0

r[1 +H(0, 0)r2/2 +O(r3)] dθ

= 2πr(1 +H(0, 0)r2/2) +O(r4)
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while the area A(r) becomes

∫ r

0

∫

2π

0

√

g(ρ, θ) dρdθ =

∫ r

0

∫

2π

0

ρ[1 +H(0, 0)ρ2/2 +O(ρ3)] dρdθ

= πr2(1 +H(0, 0)r2/4) +O(r5)

for r ↓ 0. Since H(0, 0) = −K0/3 we conclude

L(r) = 2πr(1−K0r
2/6) +O(r4) , A(r) = πr2(1−K0r

2/12) +O(r5)

and the theorem follows.

The first formula of this theorem was obtained by Bertrand and Puiseux,
and the second formula is due to Diquet, both in the year 1848. Therefore a
correct inner geometric approach to the Gaussian curvature can be achieved
as follows. Define the Gaussian curvature by the Brioschi–Baltzer formula
of Theorem 4.8. This is a rather complicated algebraic formula, and it is
a priori highly unclear that the Gaussian curvature is defined independent
of a choice of local coordinates. A direct proof of that fact will be a very
tricky algebraic computation. If someone would be courageous to do these
computations then the immediate next question would be the meaning of
Gaussian curvature.

In geodesic normal coordinates (which have inner geometric meaning)
the Brioschi–Baltzer formula simplifies, and this is what we used in the the
proof of Theorem 5.9. The formulae of Bertrand–Puiseux and Diquet are
derived from this theorem, and result in two inner geometric meanings of the
Gaussian curvature. As a consequence the Brioschi–Baltzer formula for the
Gaussian curvature is indeed independent of the choice of local coordinates.
The Bertrand–Puiseux and Diquet formulae give two more proofs of the
Theorema Egregium that the Gaussian curvature is of inner geometric origin.
Altogether we have given six different arguments for the validity of the
Theorema Egregium, four in Section 4.3 and another two in this section.
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6 Surfaces of Constant Curvature

6.1 Riemannian surfaces

Locally a Riemannian surface is given by an open set U in the Euclidean
plane R

2 with coordinates u, v and three smooth functions E,F,G : U → R

such that E > 0 and EG − F 2 > 0 on all of U . But apart from these
restrictions the functions E,F,G are arbitrary functions. The expression

ds2 = Edu2 + 2Fdudv +Gdv2

is called the first fundamental form (old terminology of Monge and Gauss)
or the Riemannian metric (modern terminology in honour of Riemann). The
Riemannian metric enables one to measure the length of piecewise smooth
curves in U . Indeed, if [α, β] ∋ t 7→ (u(t), v(t)) ∈ U is a piecewise smooth
curve in U then the length of such a curve is defined by

∫ β

α
ds =

∫ β

α

√

Eu̇2 + 2Fu̇v̇ +Gv̇2 dt

just as defined in Section 2.1. Of course, the motivating example remains
that of a smooth surface S embedded in R

3, with the Riemannian metric
induced by the embedding.

In his famous Habilitation lecture, held on June 10 in 1854 in Göttingen
and entitled ”Über die Hypothesen, welche der Geometrie zu Grunde liegen”
(On the Hypotheses, which underlie Geometry), Riemann took the above
intrinsic approach as point of departure. The Riemannian metric enables
one to measure length of curves, and thereby also to define the concept of
geodesics via the geodesic equations, as we did in Section 5.1. Subsequently,
one shows that geodesics are curves which minimize the lengths between
nearby points on the geodesic, as we did in Section 5.2. Finally, on proves
the existence of geodesic normal coordinates, as we did in Section 5.3. In
geodesic normal coordinates around a given point Riemann showed that the
Riemannian metric has the form

ds2 = du2 + dv2 +H(u, v)(udv − vdu)2

for some smooth function H(u, v), say defined around the origin correspond-
ing to the given point. Riemann then defines the Gauss curvature at the
given point as K0 = −H(0, 0)/3 in accordance with Theorem 5.9. The
Riemannian metric in geodesic normal coordinates is Euclidean up to first
order, and the second order deviation of the flat Euclidean metric du2+ dv2
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is given by the Gauss curvature at the given point. Can it be explained in
simpler geometric terms? Curvature is what measures the deviation from
flatness!

6.2 The Riemann Disc

Let Sr be the sphere in R
3 with equation x2 + y2 + z2 = r2 for r > 0.

The stereographic projection from the north pole (0, 0, r) assigns to a point
(x, y, z) on Sr the intersection of the line through (0, 0, r) and (x, y, z) with
the plane z = 0. This point of intersection has coordinates (u, v, 0) with

u =
rx

r − z
, v =

ry

r − z

because (x, y, z) = (1 − λ)(0, 0, r) + λ(u, v, 0) with λ = (r − z)/r. The
stereographic projection is a smooth bijection from Sr − {(0, 0, r)} onto the
plane z = 0 with coordinates (u, v) with inverse given by

x =
2r2u

u2 + v2 + r2
, y =

2r2v

u2 + v2 + r2
, z =

r(u2 + v2 − r2)

u2 + v2 + r2

for (u, v) ∈ R
2. A straightforward calculation gives

ds2 =
4(du2 + dv2)

(1 + (u2 + v2)/r2)2

for the length element of the sphere Sr in these coordinates.

Theorem 6.1. For certain constants m,n ∈ R the intersection of Sr with
the plane z = mx+ n is mapped onto the quadric curve with equation

r(u2 − 2rmu+ v2 − r2)− n(u2 + v2 + r2) = 0

which in turn implies that circles on Sr are stereographically projected onto
circles and (in case n = r if the plane goes through the north pole) lines
in R

2. For n = 0 the plane z = mx intersects Sr in a great circle whose
projection

(u− rm)2 + v2 = r2(m2 + 1)

for m 6= 0 intersects the equator u2+v2 = r2 in two antipodal points (0,±r).

The proof of the theorem is by direct substitution. By rotational symme-
try around the third axis we see that great circles on Sr are stereographically
projected onto circles and lines intersecting the equator u2+v2 = r2 in a pair
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of antipodal points. The conclusion is that the plane R
2 with coordinates

(u, v) and length element

ds2 =
4(du2 + dv2)

(1 +K(u2 + v2))2

is a geometric model for a surface with constant positive Gaussian curvature
K = 1/r2 > 0.

Motivated by these calculations Riemann suggested as geometric model
for a surface with constant negative Gaussian curvature K = −1/r2 < 0 the
disc Dr = {u2 + v2 < r2} with length element

ds2 =
4(du2 + dv2)

(1− (u2 + v2)/r2)2

by the exact same formula as above. Just replace r2 by −r2 in the formula
for the length element on the Riemann sphere Sr. The restriction to the disc
Dr is necessary because the length element blows up near the boundary of
the disc. The disc Dr with the above length element is called the Riemann
disc. By construction the Riemann disc is an abstract surface, not given as
surface in R

3, but just in coordinates with a prescribed length element.
What curves in the Riemann disc Dr do we expect as geodesics? The

transition from K = 1/r2 > 0 to K = −1/r2 < 0 is made by the formal
algebraic substitutions

r 7→
√
−1r , z 7→

√
−1z ,m 7→

√
−1m ,n 7→

√
−1n

while x, y, u, v remain the same. The geodesic

(u− rm)2 + v2 = r2(m2 + 1)

in the spherical geometry with K = 1/r2 goes via these substitutions over
in the geodesic

(u+ rm)2 + v2 = r2(m2 − 1)

in the hyperbolic geometry with K = −1/r2. Apparently one should take
m2 > 1 and the geodesic with this equation becomes a circle intersecting
the boundary u2 + v2 = r2 of Dr in two points

(−r/m,±r
√

1− 1/m2)

in a perpendicular way. This last claim follows from

r2/m2 + r2(1− 1/m2) + r2(m− 1/m)2 + r2(1− 1/m2) = r2m2

and the Pythagoras theorem. So we expect as geodesics for the Riemann
disc Dr circular arcs perpendicular to the boundary of Dr.
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6.3 The Poincaré Upper Half Plane

In the previous section we have seen that the unit disc D = {u2 + v2 < 1}
with length element

ds2 =
4(du2 + dv2)

(1− u2 − v2)2

is a model for geometry with constant Gauss curvature K = −1. In complex
notation w = u+ iv and z = x+ iy the fractional linear transformations

z = −i
w + 1

w − 1
, w =

z − i

z + i

interchange D with the upper half plane H = {y > 0}. The derivative is
given by

dw

dz
=

2i

(z + i)2

which in turn implies that

4dwdw

(1− ww)2
=

16dzdz

((z + i)(z + i)− (z − i)(z − i))2

and hence

ds2 =
4(du2 + dv2)

(1− u2 − v2)2
=

dx2 + dy2

y2

for the length element on H. The upper half plane H with this length element
is called the Poincaré upper half plane.

Theorem 6.2. The group PSL2(R) acts on the upper half plane H by frac-
tional linear transformations

(

a b
c d

)

z =
az + b

cz + d

and this action preserves the length element ds2 = (dx2 + dy2)/y2.

Proof. The derivative of the mapping z 7→ ζ = (az + b)/(cz + d) is equal to
dζ/dz = 1/(cz + d)2 and therefore

dζdζ

(ℑζ)2 =
dzdz

(ℑz)2

by a direct computation.
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In fact PSL2(R) is the full group of orientation preserving isometries of
the Poincaré upper half plane. The positive imaginary axis is a geodesic,
since

∫

√

ẋ2 + ẏ2

y
dt ≥

∫

dy

y

and by the distance transitive action of PSL2(R) it follows that all lines
and circles perpendicular to the real axis as boundary of H are geodesics.
Note that t 7→ iet is a unit speed geodesic, and so the length from i to
the boundary at 0 or at i∞ in infinite. This description of geodesics in
the Poincaré upper half plane is a confirmation of our formal description of
geodesics for the Riemann unit disc in the previous section.

6.4 The Beltrami Trumpet

Consider a surface of revolution in R
3 given by

r(u, v) = (f(u) cos v, f(u) sin v, g(u))

with f, g smooth functions of a real variable u and v ∈ R/2πZ. The formula
for the Gaussian curvature

K =
g′(f ′g′′ − f ′′g′)

f((f ′)2 + (g′)2)

was derived in Section 3.1. In case the profile curve is parametrized by
arclength we have (f ′)2 + (g′)2 = 1 and also f ′f ′′ + g′g′′ = 0. Hence the
Gaussian curvature becomes K = −f ′′/f by direct verification.

The surface of revolution has constant Gaussian curvature K = 1 if and
only if f ′′ + f = 0. Hence f(u) = cos u and g(u) =

∫

√

1− sin2 udu = sinu
and the surface of revolution is the unit sphere x2+y2+z2 = 1 as expected.

Likewise a surface of revolution has constant Gaussian curvatureK = −1
if and only if f ′′ − f = 0. Hence we find

f(u) = eu , g(u) =

∫

√

1− e2udu .

The integral can be evaluated by the substitution eu = cos θ, and

g(u) = −
∫

sin2 θ

cos θ
dθ =

∫

{cos θ − 1

cos θ
}dθ = sin θ − 1

2
log(

1 + sin θ

1− sin θ
)

which leads to

g(u) =
√

1− e2u − log(e−u +
√

e−2u − 1)
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with u < 0.
The profile curve for this surface of revolution has graph

z =
√

1− x2 − log
1 +

√
1− x2

x

for 0 < x < 1 and is called the tractrix. This name refers to a remarkable
geometric property of this curve. At each point r = (x0, z0) of the tractrix
the tangent line L intersects the vertical axis in a point q = (0, z1) with
|r− q| = 1. Indeed by a direct calculation one finds

dz

dx
=

√
1− x2

x

for 0 < x < 1. Hence the tangent line L at r has equation

z − z0 =

√

1− x2
0

x0
(x− x0)

and meets the vertical axis in the point q = (0, z1) with

z1 − z0 = −
√

1− x2
0
.

The square of the distance from r to q is equal to

x20 + (z1 − z0)
2 = x20 + 1− x20 = 1

and so the distance from r to q remains constant and equal to 1 as r moves
along the tractrix. The surface obtained by revolution of the tractrix around
the vertical axis was called the pseudosphere by Beltrami, who introduced
this surface in 1869. The pseudosphere also goes under the name of the
Beltrami trumpet.

The first fundamental form of the pseudosphere becomes

ds2 = du2 + e2udv2

and with the substition x = v, y = e−u this becomes the familiar length
element

ds2 =
dx2 + dy2

y2

of H with x ∈ R/2πZ and y > 1. The pseudosphere is therefore also the
quotient space

{z = x+ iy; y > 1}/2πZ
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for the isometric action of 2πZ on H by horizontal translations. The length
of the pseudosphere is infinite, while its area relative to the area element

dA =
dxdy

y2

is finite and in fact equal to 2π.
The question whether the full Poincaré upper half planeH can be realized

as a closed surface in R
3 remained open until Hilbert in 1909 proved the

impossibility of such an isometric embedding in R
3. For a proof of Hilbert’s

theorem we refer to the text book by Stoker.
It should be mentioned that the formal description by Riemann of the

hyperbolic disc leads to an isometic embedding as the lower sheet of the
hyperboloid with two sheets

x2 + y2 + 1 = z2 , z < 0

inside R
2,1 with coordinates via stereographic projection from (0, 0, 1) onto

the unit disc in the plane z = 0. Here R
2,1 is the Lorentzian space with

pseudolength element
ds2 = dx2 + dy2 − dz2

but such expressions only became the subject of study in the 20th century
with the theory of special and general relativety.

It was shown by the French mathematicians Janet in 1926 and Cartan in
1927 that an arbitrary Riemannian space (U, ds2) of dimensionm can always
be locally isometrically embedded in R

n with n = m(m + 1)/2 under the
restriction that the coefficients of ds2 and the embedding have convergent
power series expansions. This number n is clearly the minimal possible as
ds2 encodes m(m + 1)/2 unknown functions. But it is unknown whether
such an isometric embedding does exist in the smooth context. More than
150 years after the seminal lecture by Riemann it is still an open problem
in the case of surfaces of dimension m = 2 whether a length element

ds2 = Edu2 + 2Fdudv +Gdv2

with arbitrary smooth coefficients with E,G > 0 and EG − F 2 > 0 locally
near a point of vanishing Gaussian curvature of sufficiently high order can
always be isometrically realized as a smooth surface inside the Euclidean
space R

3 of dimension n = 3.
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