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INTRODUCTION

Hypergeometric functions. It is known that almost all the spe-

cial functions of one variable to be met with in mathemati-

cal physics may be obtained from the general hypergeometric

function of Gauss by a suitable choice of parameters. These

same functions appear as elements of representations of the

simplest classical groups, namely the groups of rotations of

the sphere and of the Lobacevskii plane. This connection

lies in the nature of the matter, since the special functions

make their appearance by way of considerations connected

with this or that invariance of a problem under transforma-

tions of a space. Hence, it is natural to construct the theory

of hypergeometric functions of several variables, relying on

results and methods of the theory of the representations of

compact or locally compact Lie groups. It is thus necessary

so to construct the theory of hypergeometric functions that

it should contain the theory of general spherical functions,

connected with the representations of semisimple groups.

I.M. Gelfand, On some problems of functional analysis, Usp.

Mat. Nauk 11 (6) (1956), 3-12.

For a finite reflection group W acting on a Euclidean vector space Dunkl intro-

duced in [Du1] the remarkable operator

T (ξ, k) = ∂(ξ) +
∑

α

kαα(ξ)α(·)−1(1 − sα)

as perturbation in the parameter kα (satisfying kwα = kα ∀w, ∀α) of the differentiation

∂(ξ) in the direction of a vector ξ. Here α runs over a set of equations for the reflection

hyperplanes of W , and sα ∈ W is the corresponding reflection. Dunkl operators act
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on polynomials (and many other function spaces) with the properties

T (ξ, k)T (η, k) = T (η, k)T (ξ, k) ∀ξ, η

wT (ξ, k)w−1 = T (wξ, k) ∀w,∀ξ,

and their simultaneous spectral theory has an exact solution [Du2, J]. In this lec-

ture we have left these (rational) Dunkl operators aside, and instead focus on their

trigonometric analogues (by lack of time, and because the latter seem to be more

interesting). It will become clear that trigonometric Dunkl operators form the basic

tool in the hypergeometr(ic theor)y for root systems.

I like to thank Eric Opdam for many stimulating discussions, and Erik Koelink

and Henk de Vries for useful comments on the text.

1. TRIGONOMETRIC DUNKL OPERATORS

Let a be a Euclidean vector space of dimension n, and let R ⊂ a∗ be a possibly

nonreduced root system. Let R∨ ⊂ a be the dual root system. Let Q∨ = ZR∨ ⊂ a be

the coroot lattice. The dual lattice P = (Q∨)∗ ⊂ a∗ is the weight lattice of R. Let us

denote by h the complexification of a : h = a⊕ t with t = ia. Let H = Hom(P, C×) be

the complex torus with rational character lattice P . We have the polar decomposition

(1.1) H = AT, A = Hom(P, R>0), T = Hom(P, S1)

and h = Lie(H), a = Lie(A), t = Lie(T ). Let C[H] be the algebra of regular

functions (Laurent polynomials) on H. It has a C-basis eµ indexed by µ ∈ P , and

the multiplication is given by eµeν = eµ+ν , e0 = 1.

For α ∈ R let sα : λ 7→ λ − λ(α∨)α denote the corresponding reflection, and let

W = 〈sα;α ∈ R〉 ⊂ GL(h∗) be the Weyl group of R. By duality W also acts on h

and H. Fix a set of positive roots R+ ⊂ R. Let α∨
1 , . . . , α∨

n ∈ R∨
+ be the set of simple

coroots, and s1, . . . , sn ∈ W the corresponding simple reflections.

For α ∈ R let Hα = {h ∈ H; eα(h) = 1} and put Hreg = H\
⋃

Hα. Let C[Hreg] be

the algebra of regular functions on Hreg. For p ∈ Sh let ∂(p) denote the corresponding

translation invariant differential operator on H, so ∂(p)eµ = p(µ)eµ for p ∈ Sh and

µ ∈ P . Denote by D[Hreg] the algebra of differential operators on H with coefficients

in C[Hreg]. Clearly C[Hreg] is a natural left module for D[Hreg]. Let D[Hreg] ⊗ C[W ]

be the algebra of differential reflection operators on Hreg. The algebra structure is

the natural one making C[Hreg] into a left module for D[Hreg] ⊗ C[W ].
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DEFINITION 1.1. Let K = {k ∈ C
R; k = (kα) with kwα = kα ∀w ∈ W,∀α ∈ R}

be the linear space of multiplicity (or coupling) parameters for R. For ξ ∈ h and

k ∈ K the (trigonometric) Dunkl operator T (ξ, k) ∈ D[Hreg] ⊗ C[W ] is defined by

(1.2) T (ξ, k) = ∂(ξ) − ρ(k)(ξ) +
∑

α>0

kαα(ξ)(1 − e−α)−1 ⊗ (1 − sα)

with

(1.3) ρ(k) = 1
2

∑

α>0

kαα ∈ h∗.

Note that the divided difference operator (1− e−α)−1(1− sα) preserves the space

C[H], and likewise does the Dunkl operator T (ξ, k). Let R0 be the set of unmulti-

pliable roots in R, and put k0
α = 1

2k 1
2
α + kα for α ∈ R0 with the convention kβ = 0

if β /∈ R. So k0 is a multiplicity parameter for R0. Taking R0
+ = R0 ∩ R+ we get

ρ(k0) = ρ(k). It is easy to check (just by a rank one calculation) that

(1.4) siT (ξ, k) − T (siξ, k)si = −k0
αi

αi(ξ)

for each simple root αi ∈ R0
+. The next theorem is the basic result of this section.

THEOREM 1.2. We have [T (ξ, k), T (η, k)] = 0 ∀ξ, η ∈ h, ∀k ∈ K.

We will give two indications how to prove this result.

First proof: Verification by an (elementary but somewhat cumbersome) calculation

along the same lines as Dunkl’s original proof of commutativity in the rational case

[Du1]. The only illuminating point is that this calculation admits a reduction to rank

two. This is a basic feature in the theory of the Yang-Baxter equation. �

Second proof: It is easy to see that an element of D[Hreg]⊗C[W ] is zero as soon as

it vanishes on C[H] (see [O5, Lemma 2.8]). Therefore it suffices to prove commuta-

tivity of the Dunkl operators as elements of End(C[H]). It also suffices to check the

commutation relation for a Zariski dense set of multiplicity parameters, say kα ≥ 0

∀α ∈ R. In this case define a hermitian inner product (·, ·)k on C[H] by

(1.5) (f, g)k = |W |−1

∫

T

f g
∏

α>0

|e
1
2
α − e−

1
2
α|2kαdt



828-04

with dt the normalized Haar measure on T . Now it is easy to check that

(1.6)
(
T (ξ, k)f, g

)
k

=
(
f, T (ξ, k)g

)
k

for all f, g ∈ C[H] and ξ ∈ h. The bar denotes complex conjugation on h with respect

to the real form a.

One has the usual partial ordering ≤ on h∗ defined by µ ≤ ν iff ν − µ ∈ NR+.

Let P+ be the cone of dominant weights. For µ ∈ P we denote by µ+ the unique

dominant weight in Wµ. Define a new partial ordering ≤W on P by

(1.7) µ ≤W ν if either µ+ < ν+ or µ+ = ν+ ∧ ν ≤ µ.

So µ+ is the smallest and w0µ+ is the largest element in the orbit Wµ. Here w0 ∈ W

is the longest element. Now it is easy to check that the Dunkl operators are upper

triangular with respect to the basis eµ partially ordered by ≤W .

Next define a new basis E(µ, k), µ ∈ P , of C[H] by the conditions

E(µ, k) = eµ + · · ·(1.8)
(
E(µ, k), eν

)
k

= 0 ∀ν ∈ P with ν <W µ.(1.9)

Here the dots denote lower order terms with respect to ≤W . Clearly the Dunkl

operators are also upper triangular with respect to the basis E(µ, k) partially ordered

by ≤W . Since
(
E(µ, k), E(ν, k)

)
k

= 0, ∀ν <W µ, it follows from (1.6) that the Dunkl

operators are diagonalized by the basis E(ν, k). Hence Dunkl operators commute on

C[H]. �

REMARK 1.3. Let ε : R → {±1} be defined by ε(x) = +1 if x > 0 and ε(x) = −1

if x ≤ 0. For µ ∈ P let µ̃ ∈ h∗ be given by

(1.10) µ̃ = µ + 1
2

∑

α>0

kαε
(
µ(α∨)

)
α.

Then a direct calculation yields

(1.11) T (ξ, k)E(µ, k) = µ̃(ξ)E(µ, k).

Since kα ≥ 0, ∀α ∈ R, we have µ̃ 6= ν̃ if µ, ν ∈ P are distinct. Hence E(µ, k), µ ∈ P ,

is in fact an orthogonal basis of C[H] with respect to (·, ·)k.

Due to the commutativity of the Dunkl operators we can extend the map h →

D[Hreg] ⊗ C[W ], ξ 7→ T (ξ, k), in a unique way to an algebra homomorphism Sh →
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D[Hreg]⊗C[W ]. The image of p ∈ Sh will be denoted by T (p, k). The next definition

is due independently to Drinfeld [Dr] and Lusztig [Lu].

DEFINITION 1.4. The degenerate (or graded) Hecke algebra H = H(R+, k)

is the unique associative algebra over C satisfying

(1) H = Sh ⊗ C[W ] as a vector space over C,

(2) Sh → H, p 7→ p ⊗ 1 and C[W ] → H, w 7→ 1 ⊗ w are algebra homomorphisms

(often we will identify Sh and C[W ] with their images in H via these maps),

(3) p · w = p ⊗ w ∀p ∈ Sh, ∀w ∈ W ,

(4) si · ξ − siξ · si = −k0
αi

αi(ξ) ∀ξ ∈ h, and for αi a simple root of R0
+.

PROPOSITION 1.5. In the degenerate Hecke algebra H we have

(1) w · ξ · w−1 = wξ +
∑

α∈R0
+
∩wR0

−

k0
αα(wξ)sα ∀ξ ∈ h, ∀w ∈ W ,

(2) si · p − sip · si = −k0
αi

(p − sip)/α∨
i ∀p ∈ Sh,

(3) the center Z(H) of H is equal to ShW .

Proof: (1) Use induction on the length l(w) of w ∈ W . If w = siv with l(v) < l(w)

then one has R0
+ ∩wR0

− = si(R
0
+ ∩ vR0

−)∪ {αi}. Using the induction hypothesis and

relation (4) of Definition 1.4 one obtains the desired formula.

(2) By induction on the degree of p.

(3) From (1) it follows that Z(H) ⊂ Sh, and then (2) gives Z(H) = ShW . �

Combination of relation (1.4) and Theorem 1.2 with Definition 1.4 gives the

following conclusion.

CONCLUSION 1.6. The maps p 7→ T (p, k), w 7→ w define a homomorphism of the

degenerate Hecke algebra H into the algebra D[Hreg] ⊗ C[W ] of differential reflection

operators on Hreg. In turn this defines a representation of H on C[Hreg] leaving the

subspace C[H] invariant.

REMARK 1.7. Trigonometric Dunkl operators were originally introduced in [He2]

in the different form

(1.12) S(ξ, k) = ∂(ξ) + 1
2

∑

α>0

kαα(ξ)
1 + e−α

1 − e−α
⊗ (1 − sα)

satisfying the properties

(1.13) wS(ξ, k)w−1 = S(wξ, k) ∀w ∈ W,∀ξ ∈ h
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and

(1.14) [S(ξ, k), S(η, k)] = −1
4

∑

α,β>0

kαkβ{α(ξ)β(η) − α(η)β(ξ)}sαsβ

for all ξ, η ∈ h. Subsequently Cherednik [Ch1] suggested the formula for T (ξ, k) and

found Theorem 1.2. Comparison of (1.2) and (1.12) yields the relation

(1.15) T (ξ, k) = S(ξ, k) − 1
2

∑

α>0

kαα(ξ)sα.

With this in mind it is easy to see that (1.14) is just an equivalent form of Theorem

1.2. The second proof of Theorem 1.2 given here is due to the author (unpublished

and reproduced in [O5]). The connection between Dunkl operators and the degenerate

Hecke algebra is due to Cherednik [Ch2, O5].

2. THE HYPERGEOMETRIC SYSTEM

In this section we explain the intimate connection between Dunkl operators and

the hypergeometric theory for root systems as introduced in [HO1, He1, O1, O2]. By

Proposition 1.5 the center of the degenerate Hecke algebra equals ShW . Hence for

p ∈ ShW the Dunkl operator

(2.1) T (p, k) =
∑

w

D(w, p, k) ⊗ w ∈ D[Hreg] ⊗ C[W ]

commutes with all elements from W , and therefore

(2.2) D(p, k) :=
∑

w

D(w, p, k) ∈ D[Hreg]
W .

Clearly D(p, k) is the unique element in D[Hreg]
W which has the same restriction

to C[H]W as the Dunkl operator T (p, k). In particular D(p, k) preserves the space

C[H]W . It is also clear that

(2.3) D(p, k)D(q, k) = D(pq, k) ∀p, q ∈ ShW

and so {D(p, k); p ∈ ShW } is a commutative algebra of differential operators.

DEFINITION 2.1. Fix λ ∈ h∗. The system of differential equations

(2.4) D(p, k)f = p(λ)f, p ∈ ShW
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is called the hypergeometric system associated with the root system R, and with

spectral parameter λ.

THEOREM 2.2. If ξ1, . . . , ξn is an orthonormal basis of a then

(2.5) D(
∑

i

ξ2
i , k) = L(k) +

(
ρ(k), ρ(k)

)

with

(2.6) L(k) =
∑

i

∂(ξi)
2 +

∑

α>0

kα

1 + e−α

1 − e−α
∂(α)

and ∂(α) = 1
2 (α, α)∂(α∨).

Proof: For homogeneous p ∈ ShW the leading symbol of D(p, k) is equal to ∂(p).

Moreover by (1.6) the adjoint of D(p, k) with respect to (·, ·)k on C[H]W is equal to

D(p, k). Finally, by (1.11) the constant term D(p, k)1 is equal to p
(
ρ(k)

)
. Therefore,

the proposition follows, since L(k) ∈ D[Hreg]
W is the unique second order differential

operator with leading symbol
∑
i

∂(ξi)
2 which is symmetric with respect to (·, ·)k and

with constant term L(k)1 = 0 (as follows from the next theorem). �

REMARK 2.3. Suppose g is a real semisimple Lie algebra with Cartan decompo-

sition g = k ⊕ s, a ⊂ s a maximal abelian subspace,
∑

=
∑

(g, a) the restricted root

system, and mα the corresponding root multiplicities. If we put

(2.7) R = 2
∑

, k2α = 1
2mα

then the radial part of the Laplace operator on the symmetric space G/K with respect

to the left action by K has the form (2.6). For these particular multiplicity parameters

the commuting algebra {D(p, k); p ∈ ShW } therefore represents the radial parts of

the algebra D[G/K] of all invariant differential operators on G/K. For more details

and variations see [HS].

THEOREM 2.4. If we put δ(k)
1
2 =

∏
α>0

|e
1
2
α − e−

1
2
α|kα , then

(2.8)

δ(k)
1
2 ◦ {L(k) +

(
ρ(k), ρ(k)

)
} ◦ δ(k)−

1
2

=
∑

i

∂(ξi)
2 +

∑

α>0

kα(1 − kα − 2k2α)(α, α)

(e
1
2
α − e−

1
2
α)2
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Proof: This is a rather straightforward calculation. See [HS, Part I, Ch 2] where the

proof is spelled out. �

REMARK 2.5. The differential operator in the right hand side of (2.8) is the

Schrödinger operator of the periodic Calogero-Moser system. For the root system R

of type An this system describes the motion of n + 1 points on the circle R/2πZ with

a potential proportional to the sum of the inverse squares of the pairwise distances.

Conjugation of the commuting family {D(p, k); p ∈ ShW } with the function δ(k)
1
2

yields the quantum complete integrability of this system, and via a classical limit also

the classical complete integrability. For R a classical root system the classical inte-

grability was obtained by Moser [Mo] for type An and by Olshanetsky and Perelomov

[OP] for the other classical types by realizing the system as a Lax pair. However, the

only known proof of classical integrability valid also for exceptional root systems is

the one sketched above through quantum integrability and a classical limit. For more

details see [HS, Part I, Ch 2].

EXAMPLE 2.6. In case R has rank one and x is a coordinate on H = C× (so

C[H] = C[x, x−1] and θ = x d
dx

is a basis for a = R) the hypergeometric equation (2.4)

takes the form

(2.9) {θ2 +

(
k1

1 + x−1

1 − x−1
+ 2k2

1 + x−2

1 − x−2

)
θ + (1

2k1 + k2)
2 − λ2}f = 0.

Note that the equation has Weyl group symmetry x 7→ x−1, and in the new coordinate

z = 1
2 − 1

4 (x + x−1) this becomes the Gauss hypergeometric equation

(2.10) {z(1 − z)
d2

dz2
+

(
c − (1 + a + b)z

) d

dz
− ab}f = 0

with parameters

(2.11) a = λ + 1
2k1 + k2, b = −λ + 1

2k1 + k2, c = 1
2 + k1 + k2.

Following Harish-Chandra we substitute a formal series of the form

(2.12)
∑

ν≤µ

cνeν , cµ = 1

into the hypergeometric system (2.4). The leading exponents µ ∈ h∗ for which such

solutions exist satisfy (using Remark 1.3) the indicial equation

(2.13) p
(
µ + ρ(k)

)
= p(λ) ∀p ∈ ShW ⇐⇒ µ ∈ Wλ − ρ(k).
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Therefore, the hypergeometric system (2.4) has the asymptotically free solution

(2.14) Φ(λ, k; ·) =
∑

κ≤0

Γκ(λ, k)eλ−ρ(k)+κ, Γ0(λ, k) = 1

with Γκ(λ, k) satisfying the recurrence relations (using only the eigenvalue equation

for the second order operator L(k))

(2.15) −(2λ+κ, κ)Γκ(λ, k) = 2
∑

α>0

kα

∑

j≥1

(λ−ρ(k) + κ+jα, α)Γκ+jα(λ, k).

These recurrence relations can be uniquely solved unless

(2.16) (2λ + κ, κ) = 0 for some κ < 0.

The series (2.14) converges absolutely and uniformly on compact sets in h∗×K ×A+

which avoid these hyperplanes. Here A+ = {a ∈ A; eα(a) > 1 ∀α > 0}. It can be

shown [HS, Part I, Ch 4] that

(2.17) e−λ+ρ(k)Φ(λ, k; ·)

defines a meromorphic function on h∗ ×K ×A+T with simple poles along the hyper-

planes

(2.18) λ(α∨) ∈ N + 1 for some α ∈ R+.

In other words, the hyperplanes (2.16) with κ not a multiple of a root give only

apparent singularities.

DEFINITION 2.7. The meromorphic function c̃ on h∗ × K is defined by

(2.19) c̃(λ, k) =
∏

α>0

Γ
(
λ(α∨) + 1

2k 1
2
α

)

Γ
(
λ(α∨) + 1

2k 1
2
α + kα

)

with the convention kβ = 0 if β /∈ R.

THEOREM 2.8. The function F̃ (λ, k;h) given by

(2.20) F̃ (λ, k;h) =
∑

w

c̃(wλ, k)Φ(wλ, k;h)
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extends to a holomorphic function on

(2.21) h∗ × K × U

with U a small W -invariant tubular neighborhood of A in H. Moreover it satisfies

(2.22) F̃ (wλ, k;h) = F̃ (λ, k;wh) = F̃ (λ, k;h)

for all w ∈ W and (λ, k, h) ∈ h∗ × K × U .

This result is due to Opdam [O2]. For a proof see also [HS, Part I, Ch 4].

REMARK 2.9. Under the assumption

(2.23) (λ, α∨) /∈ Z ∀α ∈ R

the asymptotically free solutions Φ(wλ, k; ·) with w ∈ W are a basis for the solution

space of the hypergeometric system (2.4) on A+. Being invariant under W the system

(2.4) can be considered as a system of differential equations on the quotient W\H ∼=

C
n. The fundamental group Π1(W\Hreg) of the regular orbit space is the affine braid

group associated with R. In the above basis it can be checked that the monodromy

of the hypergeometric system yields a representation of the affine Hecke algebra with

quadratic relations

(2.24) (Tj + 1)(Tj − e
2πi(k 1

2
αj

+kαj
)
) = 0

and with central character s = e2πiλ. See [HS, Part I, Ch 4] for more details.

The next result is also due to Opdam [O4].

THEOREM 2.10. For all (λ, k) ∈ h∗ × K we have

(2.25) F̃ (λ, k; 1) = c̃
(
ρ(k), k

)
.

Outside the zeros of the entire function c̃
(
ρ(k), k

)
on K we put

(2.26) F (λ, k; ·) = c̃
(
ρ(k), k

)−1
F̃ (λ, k; ·)

This solution of (2.4) is called the hypergeometric function associated with R. In the

rank one case of Example 2.6 it is just the Gauss hypergeometric function.
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3. THE KNIZHNIK-ZAMOLODCHIKOV CONNECTION

In the previous section we have seen how Dunkl operators commuting with the

action of W give rise to the system of hypergeometric differential equations. There

is a more direct way to rewrite the eigenvalue problem for the Dunkl operators as an

integrable connection of Knizhnik-Zamolodchikov (or short KZ) type. This is due to

Matsuo [Mat] and Cherednik [Ch1, Ch2]. Our exposition is inspired by [O5, Section

3] and [Lo].

Let Ωp (and O = Ω0) denote the sheaf of holomorphic p-forms on Hreg, and

likewise Ωp ⊗C[W ] the sheaf of holomorphic p-forms with values in the trivial bundle

on Hreg with fiber C[W ]. For λ ∈ h∗ write dλ for the translation invariant 1-form on

H corresponding to λ. For α ∈ R let εα ∈ End(C[W ]) be defined by

(3.1) εα(w) = −sign(w−1α)w for w ∈ W.

It is clear that these endomorphisms satisfy

εα + ε−α = 0 ∀α ∈ R(3.2)

wεαw−1 = εwα ∀w ∈ W, ∀α ∈ R(3.3)

with w ∈ W acting on C[W ] by left multiplication.

DEFINITION 3.1. Fix λ ∈ h∗ and k ∈ K. The (trigonometric) KZ-connection

associated with R is the connection ∇(λ, k) : O ⊗ C[W ] → Ω1 ⊗ C[W ] on the trivial

bundle over Hreg with fiber C[W ] given by

∇(λ, k) = d ⊗ 1 − e(λ) + 1
2

∑

α>0

kα

(
1 + e−α

1 − e−α
dα ⊗ (1−sα) + dα ⊗ sαεα

)

with e(λ) the map sending f ⊗ w to fdwλ ⊗ w.

PROPOSITION 3.2. The KZ-connection commutes with the diagonal action of W

on Ωp ⊗ C[W ], with the action on the first factor being the natural one, and on the

second factor given by left multiplication.

Proof: Using (3.2) one can rewrite the formula for ∇(λ, k) as

∇(λ, k) = d ⊗ 1 − e(λ) + 1
4

∑

α∈R

kα

(
1 + e−α

1 − e−α
dα ⊗ (1−sα) + dα ⊗ sαεα

)

and the W -equivariance follows by direct verification using (3.3). �



828-12

For h ∈ Hreg let us denote Ωp
Wh =

⊕
w

Ωp
wh for the multigerms of p-forms at the

orbit Wh. We have a natural isomorphism of vector bundles over W\Hreg

(3.4) Ωp
Wh

∼=
−→ (Ωp

Wh ⊗ C[W ])W

given by ω 7→
∑

wω⊗w. By the previous proposition the KZ-connection descends to

a connection on the vector bundle (Ωp
Wh ⊗ C[W ])W , and via the isomorphism (3.4)

transfers into a connection

(3.5) d(λ, k) : Ωp
Wh → Ωp+1

Wh .

Using the explicit formula for ∇(λ, k) and the isomorphism (3.4) one has

d(λ, k) = d − dλ + 1
2

∑

α>0

kα

(
1 + e−α

1 − e−α
dα ⊗ (1−sα) − dα ⊗ sα

)

or equivalently

(3.6) d(λ, k) = d − d
(
λ+ρ(k)

)
+

∑

α>0

kα(1 − e−α)−1dα ⊗ (1−sα).

CONCLUSION 3.3. Fix h ∈ Hreg and let v(ξ) for ξ ∈ h be the unique W -invariant

vector field around Wh which is equal to ∂(ξ) around h. Then the covariant derivative

dv(ξ)(λ, k) ∈ End(OWh) of the connection (3.5) along v(ξ) (in a local coordinate

around Wh ∈ W\Hreg coming from a local coordinate around h) is given by

(3.7) dv(ξ)(λ, k) = T (ξ, k) − λ(ξ)

with T (ξ, k) the Dunkl operator of Definition 1.1.

COROLLARY 3.4. The KZ-connection is integrable.

Proof: The formula for the curvature R(λ, k) of d(λ, k) is given by (cf [De, Chapter

I, §2])

R(λ, k)
(
v(ξ), v(η)

)
= [dv(ξ)(λ, k), dv(η)(λ, k)] − d[v(ξ),v(η)](λ, k)

and therefore R(λ, k) = 0 by Theorem 1.2. �

REMARK 3.5. The proof of Matsuo [Mat] of the integrability of the KZ-connection

proceeds in a similar way as the “first proof” of Theorem 1.2. Another proof of the

integrability (by a more elegant calculation) has been given by Looijenga [Lo], whereas
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Opdam [O5] derives the integrability from the integrability of the hypergeometric

system (2.4).

4. HYPERGEOMETRIC SHIFT OPERATORS

In the degenerate Hecke algebra H(R+, k) of Definition 1.4 we denote by

(4.1) J =
∑

w

Sh ⊗ (1 − w)

the left ideal in H(R+, k) generated by the elements 1 ⊗ (1 − w) ∈ 1 ⊗ C[W ] for all

w ∈ W . For a left module V for H(R+, k) the subspace V W = {v ∈ V ;w(v) = v ∀w}

is called the space of spherical vectors in V . Clearly h1 ≡ h2 mod J for h1, h2 ∈

H(R+, k) implies h1(v) = h2(v) ∀v ∈ V W , ∀V .

PROPOSITION 4.1. If we write

(4.2) π(k) =
∏

α∈R0
+

(α∨ + 1
2k 1

2
α + kα) ∈ Sh ⊂ H(R+, k)

then we have in H(R+, k) the relation

(4.3) w · π(k) ≡ ε(w)π(k) modJ ∀w ∈ W.

Here ε : W → {±1} is the sign character.

Proof: Writing π(k) = (α∨
i + 1

2k 1
2
αi

+ kαi
)πi(k) with πi(k) ∈ Sh invariant under si,

relation (4.3) follows from Proposition 1.5(2). �

Let ∆ ∈ C[H] denote the Weyl denominator

(4.4) ∆ =
∏

α∈R0
+

(e
1
2
α − e−

1
2
α)

which transforms under W according to the sign character ε. It is well known that

every element of C[H] transforming under W by ε is of the form ∆f with f ∈ C[H]W .

Now we write as in (2.1)

(4.5) T
(
π(k), k

)
=

∑

w

D
(
w, π(k), k

)
⊗ w

with D
(
w, π(k), k

)
∈ D[Hreg].
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DEFINITION 4.2. The fundamental shift operators G+(k), G−(k+1) ∈ D[Hreg]

are defined by

G+(k) =
∑

w

∆−1D
(
w, π(k), k

)
(4.6)

G−(k + 1) = |W |−1
∑

w,v

ε(w)v
(
D(w, π(k), k)∆

)
.(4.7)

Here 1 ∈ K is the multiplicity parameter defined by 1α = 1 if α ∈ R0 and 1α = 0 if

α ∈ R\R0.

It is clear that for f ∈ C[H]W we have

G+(k)f = ∆−1T
(
π(k), k

)
f(4.8)

G−(k + 1)f = |W |−1
∑

v

vT
(
π(k), k

)
∆f.(4.9)

From the results of Section 1 and Proposition 4.1 it follows that both G+(k) and

G−(k+1) preserve the space C[H]W . In particular it follows that G+(k), G−(k+1) ∈

D[Hreg]
W . Finally from (1.6) it is easy to see that (for kα ≥ 0 ∀α)

(4.10)
(
G+(k)f, g

)
k+1

=
(
f,G−(k + 1)g

)
k

for all f, g ∈ C[H]W .

For µ ∈ P+ let mµ ∈ C[H]W be the orbit sum defined by

(4.11) mµ =
∑

ν∈Wµ

eν .

Since P+ is a strict fundamental domain for the action of W on P the mµ for µ ∈ P+

are a basis of C[H]W .

DEFINITION 4.3. For kα ≥ 0 ∀α let P (µ, k) for µ ∈ P+ be the basis of C[H]W

characterized by

(1) P (µ, k) = mµ + · · ·

(2)
(
P (µ, k),mν

)
k

= 0 ∀ν ∈ P+ with ν < µ.

Here the dots represent lower order terms
∑

aµνmν (sum over ν ∈ P+ with ν < µ).

The P (µ, k) are called the Jacobi polynomials associated with R.

Now consider the action of the degenerate Hecke algebra H(R+, k) on C[H] via

Dunkl operators and the usual action of W . It is easy to see that for µ ∈ P+ (in the

notation of the proof of Theorem 1.2)

(4.12) span{E(ν, k); ν ∈ Wµ}
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is an (in fact irreducible) module for H(R+, k) with central character equal to µ+ρ(k).

The Jacobi polynomial P (µ, k) is the suitably normalized (namely by asymptotics)

spherical vector in this module. Therefore it satisfies the hypergeometric system

(4.13) D(p, k)P (µ, k) = p
(
µ + ρ(k)

)
P (µ, k) ∀p ∈ ShW .

Using (4.10) and arguing as in the proof of Theorem 1.2 one easily obtains the fol-

lowing result.

PROPOSITION 4.4. There exist polynomials η+ and η− on h∗ × K such that

G+(k)P (µ, k) = η+

(
µ + ρ(k), k

)
P

(
µ − ρ(1), k + 1

)
(4.14)

G−(k)P (µ, k) = η−
(
µ + ρ(k), k

)
P

(
µ + ρ(1), k − 1

)
(4.15)

for all µ ∈ P+.

PROPOSITION 4.5. We have (with N = #R0
+)

η+(λ, k) = π(λ,−k) = (−1)N c̃(−λ, k)/c̃(−λ, k + 1)(4.16)

η−(λ, k) = π(λ, k − 1) = c̃(λ, k − 1)/c̃(λ, k).(4.17)

Proof: Indeed we have for µ ∈ P+

G+(k)P (µ, k) = ∆−1T
(
π(k), k)

)
mµ + · · ·

= ∆−1T
(
π(k), k)

)
ew0µ + · · ·

= (−1)Nπ(w̃0µ, k)ew0µ+ρ(1) + · · ·

= π(−w̃0µ,−k)P
(
µ − ρ(1), k + 1

)
+ · · ·

using Remark 1.3 and the equality ∆ = (−1)Ne−ρ(1)
∏

α∈R0
+

(1 − eα). Since w̃0µ =

w0

(
µ + ρ(k)

)
and π(−w0λ, k) = π(λ, k) relation (4.16) follows. Indeed π(λ, k) =

c̃(λ, k)/c̃(λ, k+1) is just a trivial identity by the functional equation Γ(z+1) = zΓ(z)

and the duplication formula Γ(2z) = 22z−1π− 1
2 Γ(z)Γ(z + 1

2 ).

For computing η−(λ, k) one first observes (say for µ regular)

G−(k + 1)P (µ, k + 1) =
∑

v

vT
(
π(k), k

)
∆E(µ, k + 1)

using (4.8), (4.10) and P (µ, k + 1) =
∑
v

vE(µ, k + 1). Then a similar computation

(∆E(µ, k + 1) = E
(
µ + ρ(1), k

)
+ · · ·) yields (4.17). �
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COROLLARY 4.6. For µ ∈ P+ and k ∈ K with (k − 1)α ≥ 0 ∀α we have (with

λ = µ + ρ(k))

(4.18)

(
P (µ, k), P (µ, k)

)
k(

P (µ + ρ(1), k − 1), P (µ + ρ(1), k − 1)
)
k−1

= (−1)N c̃(λ, k − 1)c̃(−λ, k)

c̃(λ, k)c̃(−λ, k − 1)
.

Proof: Just use (4.10) with k replaced by k−1, and substitute f = P
(
µ+ρ(1), k−1

)

and g = P (µ, k). �

Let L ⊂ K be the lattice

(4.19) L = {k ∈ K; kα ∈ Z ∧ k 1
2
α ∈ 2Z ∀α ∈ R0}.

Now the theory of shift operators can be generalized, and shifts over arbitrary l ∈

L can be established. The outcome is that formula (4.18) holds equally well with

k − 1 replaced by k − l and N by
∑

α>0
lα. This enables one to compute the norm

(
P (µ, k), P (µ, k)

)
k

inductively, and the final result takes the following form.

THEOREM 4.7. For µ ∈ P+ and k ∈ K with kα ≥ 0 ∀α we have (with λ = µ+ρ(k)

and (·, ·)k given by (1.5))

(4.20)
(
P (µ, k), P (µ, k)

)
k

=
c∗(−λ, k)

c̃(λ, k)
,

with c̃(λ, k) given by (2.19) and c∗(λ, k) by

(4.21) c∗(λ, k) =
∏

α>0

Γ
(
−λ(α∨) − 1

2k 1
2
α − kα + 1

)

Γ
(
−λ(α∨) − 1

2k 1
2
α + 1

) .

REMARK 4.8. Shift operators were introduced by Opdam [O1, O2], and their

application to the norm computation of the Jacobi polynomials is also due to him

[O3]. The particular case of (4.20) with µ = 0 is the constant term conjecture of

Macdonald [Ma], but the only known proof of this conjecture (which works in a

uniform way for all root systems) is the one that proves (4.20) at the same time. A

complete proof of Theorem 4.7 along the above lines is given in [HS, Part I, Section

3]. A somewhat different proof can be found in [O5].
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5. HARMONIC ANALYSIS ON A

We shall think of A as a linear space via the isomorphism exp : a → A (with

log as its inverse). Let da denote the Haar measure on A normalized by requiring

A/ exp(Q∨) to have volume 1. In this section we want to study the hypergeometric

Fourier transform F defined by

(5.1) Ff(λ) = |W |−1

∫

A

f(a)F̃ (−λ, k; a)δ(k; a)da

for f a suitable function on A invariant under W , and the weight function δ(k; ·) on

A given by

(5.2) δ(k; ·) =
∏

α>0

∣∣∣e 1
2
α − e−

1
2
α
∣∣∣
2kα

.

The hypergeometric Fourier transform reduces for k = 0 to the Euclidean Fourier

transform f 7→ f̂(λ) =
∫

f(a)a−λda, and for particular values of k (as in Remark 2.3)

to the spherical Fourier transform of Harish-Chandra (up to a factor c̃
(
ρ(k), k

)
). The

line of arguments will be similar to the one in the context of semisimple groups [Hel,

BS, MW], but particular adaptations to the present situation are sometimes necessary

[O5, HO2, O6]. Analogous arguments work in the setting of harmonic analysis for

the affine Hecke algebras [HO3].

It is clear that c̃
(
ρ(k), k

)
> 0 for all k ∈ K with kα ≥ 0 ∀α. Let K+ be the

connected component of {k ∈ K; kα ∈ R ∀α, c̃
(
ρ(k), k

)
6= 0} containing {k ∈ K; kα ≥

0 ∀α}.

PROPOSITION 5.1. For real k ∈ K the condition k ∈ K+ is equivalent to δ(k; ·)

being locally integrable on A.

Proof: It is easy to compute c̃
(
ρ(k), k

)
for each of the irreducible root systems case

by case. For R reduced and kα = k ∀α one has

c̃
(
ρ(k), k

)
=

n∏

i=1

Γ(k)

Γ(dik)

with d1 ≤ d2 ≤ · · · ≤ dn the primitive degrees of R. For R of type BCn with ks, km, kℓ

the multiplicities of the short, medium and long roots respectively one gets

c̃
(
ρ(k), k

)
=

n∏

i=1

Γ(ks + (i − 1)km + kℓ)

Γ(2(ks + (i − 1)km + kℓ)
·

Γ(km)

Γ(ikm)
.
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For R of type F4 one finds

c̃
(
ρ(k),k

)
=

Γ(ks)

Γ(2ks)
·

Γ(ks)

Γ(3ks)
·

Γ(kℓ)

Γ(2kℓ)
·

Γ(kℓ)

Γ(3kℓ)
×

Γ(ks + kℓ)

Γ
(
4(ks + kℓ)

) ·
Γ
(
3(ks + kℓ)

)

Γ
(
6(ks + kℓ)

) ·
Γ(2ks + kℓ)

Γ
(
2(2ks + kℓ)

) ·
Γ(ks + 2kℓ)

Γ
(
2(ks + 2kℓ)

)

and for R of type G2 the outcome is

c̃
(
ρ(k), k

)
=

Γ(ks)

Γ(2ks)
·

Γ(kℓ)

Γ(2kℓ)
·

Γ(ks + kℓ)

Γ
(
3(ks + kℓ)

) .

With these explicit formulas it is easy to check the proposition case by case (see [BHO,

Section 2]). �

Assume from now on that k ∈ K+. For f ∈ C∞
c (A)W the Fourier transform Ff is

well defined and entire on h∗ (by Theorem 2.8).

DEFINITION 5.2. Given a ∈ A let Ca denote the convex hull of Wa, and let

the support function Ha on a∗ be given by Ha(λ) = sup{λ(log b); b ∈ Ca}. An entire

function F on h∗ is said to have Paley-Wiener type a if ∀N ∈ N ∃C > 0 such that

|F (λ)| ≤ C(1 + |λ|)−NeHa

(
−Re(λ)

)
∀λ ∈ h∗

(so F is rapidly decreasing on subspaces of the form λ0 + ia∗ for λ0 ∈ a∗). The space

of functions on h∗ of Paley-Wiener type a is denoted by PW (a), and we also write

PW = ∪a∈APW (a).

The first step is to obtain uniform (both in λ and a) estimates for F̃ (λ, k; a) of

the following form. Given D ⊂ A compact and p ∈ Sh then ∃C > 0, N ∈ N such that

(5.3) |∂(p)F̃ (λ, k; a)| ≤ C(1 + |λ|N )emax{Re[wλ(log a)];w∈W}

for all λ ∈ h∗, a ∈ D. Such an estimate was derived in [O5, Section 6] using the

KZ-connection in case kα ≥ 0 ∀α. The extension of (5.7) to K+ (and even all of

K) follows with the help of hypergeometric shift operators [O6, Theorem 2.5]. Using

(5.3) the following result can be obtained [O6, Theorem 4.1].

THEOREM 5.3. If f ∈ C∞
c (A)W has support in Ca for some a ∈ A then Ff ∈

PW (a).
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For technical reasons we have to impose the following additional restrictions on

k ∈ K+:

(5.4) k0
α = 1

2k 1
2
α + kα > −1

2 ∧ k 1
2
α ∈ 2N if 1

2α, α ∈ R.

So for R reduced this condition is vacuous. As a candidate for inversion introduce

the wave packet operator I on PW by

(5.5) IF (a) =

∫

λ0+ia∗

F (λ)Φ(λ, k; a)
dµ(λ)

c̃(−λ, k)
.

Here a ∈ A+. For all ε > 0 and a0 ∈ A+ the series Φ(λ, k; a) converges uniformly for

Reλ(α∨) < 1 − ε ∀α > 0 and a ∈ a0A+, as shown by Gangolli. Moreover λ0 ∈ a∗

satisfies λ0(α
∨) < min(1, 1

2 (k 1
2
α + 1), k0

α) ∀α ∈ R0
+. Finally dµ(λ) denotes Lebesgue

measure on ia∗ (or its translates λ0+ia∗) normalized such that ia∗/2πiP has volume 1

(this normalization is called the regular normalization for our choice of Haar measure

da on A). Using the duplication formula one can rewrite (2.19) as

(5.6) c̃(λ, k) =
∏

α∈R0
+

2
−k 1

2
αΓ

(
λ(α∨)

)
Γ(λ(α∨) + 1

2 )

Γ
(
λ(α∨) + 1

2 (k 1
2
α + 1)

)
Γ(λ(α∨) + k0

α)
.

Hence it follows from our restriction on λ0 and the Cauchy integral formula that the

integral (5.5) is independent of λ0.

The next step is to rewrite (5.5) in a different form. Under the hypothesis

(5.7) k0
α ≥ 0 ∀α ∈ R0

one can directly take λ0 = 0 in (5.5) and get for F ∈ PWW

(5.8) IF (a) = |W |−1

∫

ia∗

F (λ)F̃ (λ, k; a)
dµ(λ)

c̃(λ, k)c̃(−λ, k)
.

Then one can proceed as in [O5, Section 8 and 9] to prove the Paley-Wiener theorem,

the inversion formula and the Plancherel theorem for the hypergeometric Fourier

transform.

If (5.7) is not valid one still moves λ0 back to 0 at the cost of picking up residues

caused by the factor c̃(−λ, k)−1 in (5.5). To understand what happens write

(5.9) c̃(λ, k) =
∏

α∈R0
+

λ(α∨) + k0
α

λ(α∨)

∏

α∈R0
+

2
−k 1

2
αΓ(λ(α∨) + 1)Γ(λ(α∨) + 1

2 )

Γ
(
λ(α∨) + 1

2 (k 1
2
α + 1)

)
Γ(λ(α∨) + k0

α + 1)
.
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Because of our restrictions k ∈ K+ and (5.4) it so happens that the entire residue

calculation is determined by the first factor in the right hand side of (5.9). This factor

is the c-function for the Yang particle system which was studied in [HO2]. In order

to state the result we need a definition.

DEFINITION 5.4. For L ⊂ a∗ an affine subspace put R0
L = {α ∈ R0;L(α∨) =

constant}. The property of L being residual is defined by induction on the codimen-

sion of L. By definition a∗ itself is residual. An affine subspace L of a∗ of positive

codimension is called residual if there exists a residual subspace M of a∗ with L ⊂ M

and dimM = dimL + 1 such that

(5.10) #{α ∈ R0
L\R

0
M ;L(α∨) = k0

α} ≥ #{α ∈ R0
L\R

0
M ;L(α∨) = 0} + 1.

A residual point is also called a distinguished point. Being residual or distinguished

is a notion invariant under W . For L residual let cL be the point of L closest to the

origin, and put

(5.11) Ltemp = cL + i(L − cL) ⊂ h∗

for the tempered form of L.

It is easy to see that L is residual (for R0) if and only if cL is distinguished (for R0
L).

So the classification of residual subspaces reduces to the classification of distinguished

points (for R0 and all its parabolic subsystems), and this was carried out in [HO2,

Section 4]. It is easy to see that this classification is invariant under scaling k 7→ xk for

x ∈ (0, 1]. In case k0
α = k0

β ∀α, β ∈ R0 the classification of W -orbits of distinguished

points is equivalent to the classification of distinguished nilpotent orbits (in the Bala-

Carter classification [Ca, Chapter 5]) in a semisimple Lie algebra g with root system

dual to R0. We can now formulate the analogue of (5.8) in case

(5.12) k0
α < 0 ∀α ∈ R0.

This restriction is necessary because [HO2] is restricted to this situation, but hopefully

the method can be generalized to the case k ∈ K+ (i.e. with some multiplicity

parameters positive and others negative).

THEOREM 5.5. If k ∈ K+ satisfies (5.4) and (5.12) then for F ∈ PWW we can

write

(5.13) IF (a) =
∑

L

∫

Ltemp

F (λ)F̃ (λ, k; a)γL(k)
Π′

L|Γ(λ(α∨) + 1
2k 1

2
α)|

Π′
L|Γ(λ(α∨) + 1

2k 1
2
α + kα)|

dµL(λ)
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with the sum over all residual subspaces of a∗. Here µL is the Lebesgue measure

on Ltemp normalized such that the volume of i(L − cL)/2πi
(
P ∩ (L − cL)

)
is equal

to 1. The expression Π′
L means that in the product over all roots α ∈ R those Γ-

factors are deleted whose arguments vanish identically on L. The number γL(k) is

nonnegative and rational satisfying γwL(xk) = γL(k) for all w ∈ W , x ∈ (0, 1].

Moreover γa
∗ = |W |−1 and for λ a regular distinguished point with {βi} ⊂ R0 the n

roots for which λ(β∨
i ) − kβi

= 0 one has γλ(k) = |W |−1 · [Q∨ : ΣZβ∨
i ]−1 if λ is a

negative combination of the roots βi, and γλ(k) = 0 otherwise.

REMARK 5.6. By induction on the rank the calculation of γL(k) reduces to the case

that L is a distinguished point λ. For subregular λ the calculation is still manageable

(but already cumbersome). For general λ the computation of γλ(k) is hard and

captures the full complexity of the residue calculation. From this perspective it is

equally hard to decide whether γλ(k) > 0 or γλ(k) = 0. However in case k0
α =

k0
β ∀α, β ∈ R0 it can be deduced from the work of Kazhdan and Lusztig [KL] (as in

[HO2]) that γλ(k) > 0 always. The example below shows that this need no longer be

true in the multiparameter setting (see [HO2, Section 2] for a conjectural explanation).

With the formulas (5.8) and (5.13) at hand one can proceed as in [O6] to prove

the Paley-Wiener theorem for the hypergeometric Fourier transform.

THEOREM 5.7. The hypergeometric Fourier transform F is a bijection from

C∞
c (A)W onto PWW with inverse equal to the wave packet operator I.

For a further discussion of the Plancherel theorem see [O6]. The distinguished points

λ with γλ(k) > 0 are exactly those λ ∈ h∗ for which F̃ (λ, k; ·) ∈ L2(A, δ(k; a)da)W . In

the spirit of Harish-Chandra one might call these hypergeometric functions cuspidal.

EXAMPLE 5.8. Let R be of type G2 with simple roots αs, αℓ (short and long

respectively) and fundamental weights ωs, ωℓ with ωi(α
∨
j ) = δij for i, j ∈ {s, ℓ}. The

restrictions k ∈ K+ and (5.12) amount to ks < 0, kℓ < 0 and ks+kℓ > −1
3 . Generically

there are 3 (regular) distinguished points given by

λ1 = ksωs + kℓωℓ = ρ(k)

λ2 = ksωs + 1
2 (kℓ − ks)ωℓ

λ3 = ksωs + (kℓ − ks)ωℓ

One can check that under the above conditions on k the points λ1 and λ2 are always

cuspidal, whereas λ3 is cuspidal for either 2
3ks < kℓ < 1

2ks or ks = kℓ (in which case
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λ3 = λ2). For R of type F4 a similar (but more complicated) pattern arises [HO2].

One might wonder where to look for the geometry behind all this?

6. FINAL REMARKS

A good portion of the results discussed so far admits a deformation with a pa-

rameter q. This originated with the q-constant term conjectures of Macdonald [Ma1].

Shortly after the introduction of the Jacobi polynomials P (µ, k) and the computation

of their norms [He1, O3] Macdonald introduced his orthogonal polynomials P (µ, q, t)

with 0 < q < t < 1 being independent parameters [Ma2]. One has (say R reduced and

kα = k ∀α) lim
q↑1

P (µ, q, qk) = P (µ, k) and one can think of the Macdonald polynomials

as multivariable analogues of the basic hypergeometric polynomials of Askey, Ismail

and Wilson [GR].

It was an exciting discovery of Cherednik to see how to construct the appropriate

q-analogues of the Dunkl operators using representation theory of affine and double

Hecke algebras [Ch3, Ch4, Ma3, Ma5]. As an application of the theory one gets the

evaluation of the norm of the Macdonald polynomials as an explicit product of q-

shifted factorials. This deformation by q is not merely another generalization for its

own sake. It is a beautiful fact (due to Koornwinder for type An [Ma4], conjectured

in precise terms by Macdonald and then proved by Cherednik [Ch4]) that the Fourier

analysis on T is selfdual in the sense that the spectral parameter and the variable

in the (suitably normalized) Macdonald polynomials play a symmetric role. This

symmetry is destroyed in the classical limit q ↑ 1.

The extension with a parameter q has also a meaning in physical terms. As

shown by Ruijsenaars it can be interpreted as the relativistic variation of the quantum

Calogero-Moser system [Ru].
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