
DEPARTMENT OF MATHEMATICS

UNIVERSITY OF NIJMEGEN The Netherlands

THE MODULI SPACE OF
RATIONAL ELLIPTIC SURFACES

Gert Heckman, Eduard Looijenga

Report No. 0111 (June 2001)

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF NIJMEGEN
Toernooiveld
6525 ED Nijmegen
The Netherlands

1



The moduli space of rational elliptic surfaces

Gert Heckman and Eduard Looijenga

To Tonny Springer for his 75th birthday

Abstract. We show that the moduli space of rational elliptic surfaces admitting

a section is locally a complex hyperbolic variety of dimension 8. We compare its

Satake-Baily-Borel compactification with a compactification obtained by means

of geometric invariant theory, considered by Miranda.

Introduction

By a rational elliptic surface we mean a smooth complete complex surface that can

be obtained from a pencil of cubic curves in P2 with smooth members by successive

blowing up (9 times) its base points. A more intrinsic characterization is to say that

the surface is rational and admits a relatively minimal elliptic fibration possessing

a section. Better yet: it is a smooth complete complex surface whose anticanonical

system is base point free and defines a fibration. The description as a blown-up P2

is not canonical (in general the possible choices are in bijective correspondence with

a weight lattice of an affine root system of type Ê8), but the last characterization

makes it plain that the fibration is. The main goal of this paper is to investigate

and describe the moduli space of these surfaces and certain compactifications thereof.

By assigning to a fiber of a rational elliptic surface its Euler characteristic we find a

divisor on its base curve, called the discriminant divisor. This discriminant divisor is

effective and of degree 12. In general it is reduced, meaning that we have 12 singular

fibers, each of which is a rational curve with a node. It is not difficult to show that in

that case the discriminant divisor is a complete invariant: the projective equivalence

class of the discriminant (as a 12-element subset of P1) determines the surface up to

isomorphism. Let us denote byM the moduli space of rational elliptic surfaces with

reduced discriminant. One compactification of M was obtained by Miranda [24] by
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2 GERT HECKMAN AND EDUARD LOOIJENGA

applying geometric invariant theory to the Weierstrass models of these surfaces. It

gives a projective compactification ofM, denoted here byMM , with an interpretation

of every boundary point as corresponding to an isomorphism class of rational elliptic

surfaces.

Regarding the discriminant of a rational elliptic surface as its fundamental invari-

ant leads to an altogether different compactification ofM. Let D12 denote the space

of SL(2)-orbits in the configuration space of 12-element subsets of P1. A projective

compactification D∗
12 of D12 is obtained by means of Geometric Invariant Theory:

take the closed SL(2)-orbits in the space of effective degree 12 divisors on P1 that

are semistable in the sense that all multiplicities are ≤ 1
2 · 12 = 6. There is only

one such orbit which is not stable: it is represented by a divisor which is 6 times a

2-element subset. The variety D∗
12 appears in the work of Deligne and Mostow [10] as

the Satake-Baily-Borel compactification of a 9-dimensional complex ball B9 with just

one cusp (which corresponds to the closed strictly semistable orbit). It arises from

a period mapping: for a 12-element subset D of P1, take the cyclic cover C → P1

of degree 6 which totally ramifies in D and then assign to D the abelian variety

(of dimension 10) obtained from the Jacobian of C by dividing out the Jacobian of

intermediate covers (so that the Galois group acts on this quotient with primitive

sixth roots of unity). The discriminant gives rise to a closed embedding ofM in D12.

Rational elliptic surfaces have 8 moduli, whereas dimD12 = 9 and so they define a

SL(2)-invariant hypersurface in the 12th symmetric power of P1. This hypersurface

can be characterized as defining the 12-element subsets admitting an equation that is

the sum of a cube and a square. The compactification ofM we alluded to is the nor-

malizationM∗ ofM in D∗
12. A central result of this paper is a characterization of the

morphismM∗ → D∗
12 in the spirit of Deligne and Mostow, namely as a morphism of

Satake-Baily-Borel compactifications defined by an ‘arithmetically defined’ hyperball

in B9. The origin of this description is explained by the fact that the degree 6 cover

C → P1 naturally comes with a morphism from C to the elliptic curve of J-invarant

0 when its ramification divisor is the discriminant of a rational elliptic surface.

We find that the boundary of M in M∗ is of codimension one and has four

irreducible components, each of which is the closure of a totally geodesic subvariety.

Only two of these irreducible components also appear in Miranda’s compactification

and have there the interpretation as parametrizing rational elliptic surfaces with a

special fiber (of bicyclic type I2 and of cuspidal type II respectively).

Apart from that, the two compactifications are very much different. The natural

birational map between MM and M∗ is not a morphism in either direction and

many points ofM∗ fail to have an interpretation as describing an isomorphism class

of a rational elliptic surface. We therefore consider the closureMM∗ of the diagonally

embeddedM in the product of these two compactifications. A substantial part of this

paper can be understood as a study ofMM∗ with its projections onMM andM∗. In

the end it turns out that this diagram can be obtained in completely arithmetic terms
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(involving a hyperbolic Hermitian lattice over the Eisenstein ring); Examples 10.2 and

10.3 make this most explicit. The situation is quite similar to the relation one of us

found between the Baily-Borel compactification of the moduli space of K3 surfaces of

degree 2 (resp. 4) and Shah’s GIT compactification of the sextic plane curves (resp.

quartic surfaces) [21] and the one that Sterk [32] found between the moduli space of

Enriques surfaces and Shah’s GIT compactification of curves on P1 × P1 of bidegree

(4, 4) invariant under a certain involution.

Vakil [34] recently showed that some interesting moduli spaces define finite mon-

odromy covers ofM: the moduli spaces of (1) nonhyperelliptic genus 3 curves endowed

with a canonical pencil, of (2) genus 4 curves with an effective even theta character-

istic, and of (3) hyperelliptic genus 4 curves endowed with a noncanonical pencil all

have this form. He observes that it then follows from our theorem that these moduli

spaces are locally complex hyperbolic.

As is well-known,M has also the interpretation as the moduli space of Del Pezzo

surfaces of degree 1. From this point of view, the above result neatly fits in a series of

similar characterizations of the moduli spaces of Del Pezzo surfaces of given degree:

this started with the work of Allcock, Carlson and Toledo [3] who associated to a

cubic surface X in P3 the intermediate Jacobian of the cyclic degree 3 cover of P3

ramified along that surface. They found that in this way the moduli space of cubic

surfaces has the structure of a ball quotient. In this case one is so fortunate as to

have a GIT interpretation of the Baily-Borel compactification so that the boundary

parametrizes (mildly) degenerate cubic surfaces. Van Geemen (unpublished) and

Kondo [16] independently found a similar ball quotient description for the moduli

space of Del Pezzo surfaces of degree two (or equivalently, of quartic plane curves).

It seems that here the GIT compactication and the Baily-Borel compactification are

related in a way that is quite similar to the case studied in the present paper. In

particular, neither is a blowup of the other.

Let us take the occasion to point out that this is also the picture for Del Pezzo

surfaces of degree four (in higher degree they are rigid, so this is the remaining case

of interest). The anticanonical embedding of such a surface realizes that surface in

P4 as the fixed point set of a pencil P of quadrics in P4. The singular quadrics in this

pencil define a 5-element subset D of P and the isomorphism type of the pair (P,D)

is a complete invariant of the surface. The work of Deligne-Mostow identifies the set

of such of isomorphism types with an open subset of a ball quotient, essentially by

passing to the Jacobian of the cyclic cover of P of degree 5 with total ramification in

D.

We also mention here that Abramovich and Vistoli [1] defined (as a special case

of a more general theory of theirs) a complete Deligne-Mumford stack of moduli of

rational elliptic surfaces, which is modeled on what we call the Kontsevich compacti-

fication. Here the boundary points label no longer ordinary rational elliptic surfaces,
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but rather surfaces with an ‘orbispace structure’

Let us now describe the contents of the separate sections. We begin the paper

with a general discussion of the Picard group of a rational elliptic surface (Section

1). Although this section is brief, we do not use all the material expounded here and

we therefore advise the reader to consult it as needed. Section 2 introduces the main

character of this paper, the moduli space M. We review Miranda’s compactifica-

tionMM ofM, which parametrizes elliptic surfaces and we define another one,M∗,
which does not. In Section 3 we define yet another compactification that dominates

these two and is based on Kontsevich’s notion of a stable map. This compactification

is useful by itself, but plays in the present paper only an auxiliary role: we use it

to understand the birational map between MM and M∗ in geometric terms. In the

next two Sections 4 and 5 we make a careful study of the homology of cyclic degree

6 covers of P1 totally ramified in 12 distinct points and the action of a corresponding

central extension of the braid group of P1 with 12 strands. This discussion belongs

to algebraic topology rather than to algebraic geometry and is independent of the

preceding. Section 6 recalls the basics of the Satake-Baily-Borel compactification of

a ball quotient and the next section discusses the work of Deligne-Mostow for the

case that is relevant here. Since this result is a bit hidden in their general theory,

we outline its proof. In passing we obtain a simple description of the monodromy

group (a unitary group of a rank 10 lattice over the Eisenstein ring) as a quotient of

the corresponding mapping class group (a centrally extended braid group). Section

8 leads up to the main Theorems 9.2 and 9.3 in the next section. The final Section

10 is for the most part descriptive. It provides what we feel is a natural general

context for our results. It also suggests an extension of the theory of automorphic

forms for ball quotients whose geometric counterpart is a theory of compactifications

of ball quotients with a locally symmetric divisor removed. The appendix is devoted

to unitary lattices over an Eisenstein ring. Part of this is a general discussion, but we

have also put here the more specific results that we use.

Some of the initial steps of this work by one of us (GH) were carried out when he

was a visitor of the École Normale Superieure at Paris in May 1998, and he is grateful

for the hospitality. He also wants to thank Richard Borcherds for an inspiring lecture

and discussion. We thank Rick Miranda for some helpful correspondence. Finally we

thank the referee for his careful job.

Most of the results described here were obtained in the summer of 1999.

We happily dedicate this paper to our colleague Tonny Springer on the occasion

of his 75th birthday.
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1. Rational elliptic surfaces: basic properties

In this section we collect some facts (known and perhaps less known) concerning

rational elliptic surfaces and Del Pezzo surfaces of degree one. General references are

[19], [12], [20], [26] and [14].

By a rational elliptic surface we shall mean a smooth complete rational surface

X that admits an elliptic fibration that is relatively minimal (in the sense that no

exceptional curve is contained in a fiber) and has a section. Then this fibration is

unique since its fibers are the anticanonical curves on X ; in particular, its base P is

canonically the projective line of lines of the plane H0(X,ω−1
X ). (In fact, any smooth

complete surface whose anticanonical system is a pencil and defines a fibration is of

this form.) The sections of this fibration are precisely the exceptional curves of the

first kind of X . We can always obtain such a surface—though in general in more

than one way—as follows: take a pencil of plane cubic curves having at least one

smooth member. Its base locus will consist of nine points (possibly infinitely near)

and blowing these up yields a rational elliptic surface in our sense (the last blowup

giving a section).

It follows from this last description that the Picard lattice of X is isomorphic

to the rank 10 lattice I1,9 that has a basis ℓ, e1, . . . , e9 on which the inner product

takes the form ℓ.ℓ = 1, ℓ.ei = 0, ei.ej = −δi,j . An isomorphism I1,9
∼= Pic(X) can be

chosen such that ℓ is the class of a line in P2 and ei the class of the exceptional curve

of the ith blowup. The class of a fiber of X → P is the class of ω−1
X and is therefore

mapped to f := 3ℓ− e1 − · · · − e9.
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We first investigate I1,9 as an abstract lattice with distinguished isotropic vector

f . A root of I1,9 is a vector α ∈ I1,9 with α.f = 0 and α.α = −2. The orthogonal

reflection with respect to α,

sα : c 7→ c+ (α.c)α

preserves the lattice I1,9 and fixes f . The set of roots (denoted here byR) is an infinite

root system; a root basis is α0 := ℓ − e1 − e2 − e3, α1 := e1 − e2, . . . , α8 := e8 − e9,
which shows that it is of type Ê8. The associated Weyl group W (R) of isometries of

I1,9 generated by the reflections with respect to roots is precisely the stabilizer of f

in the orthogonal group of I1,9 (see for instance [35]). We realize R as an affine root

system (and W (R) as an affine transformation group) as follows. The set of vectors

c ∈ I1,9 with c.f = 0 resp. c.f = 1 project in I1,9/Zf onto a sublattice Q resp. an

affine lattice A over Q. Given a root α, then taking the inner product with that root,

makes α appear as an affine-linear form on A. If denote by α̌ the image of −α in Q,

then the action of sα in A is given by c 7→ c − (α.c)α̌ and thus R becomes an affine

root system on A in the sense of [22]. The group W (R) acts faithfully on A and

the underlying real affine space AR receives its standard affine reflection action. The

image R of R in Q is a finite root system of type E8 and spans Q. The full translation

lattice Q is so realized as the translation subgroup of W (R). More concretely, the

transformation in I1,9 associated to u ∈ Q is the Eichler-Siegel transformation

Tu : c 7→ c+ (c.f)û− (c.û)f − 1

2
(û.û)(c.f)f,

where û ∈ Q̂ lifts u ∈ Q. The transformation Tu indeed only depends on u and we

have thus defined an injective homomorphism T : Q→ SO(I1,9) of groups.

Let us denote by E ⊂ I1,9 the set of e with e.f = 1 and e.e = −1. The natural

map E → A is a bijection: if c ∈ I1,9 is such that c.f = 1, then (c.c) is odd (this

follows from the fact that Q is even and that this is true for one such c, e.g., c = e1)

and so e := c − 1
2 (1 + (c.c))f is the unique element of c + Zf with self-product −1.

So the translation subgroup T (Q) of W (R̂) acts simply transitively on E .
It is clear that this discussion makes sense in Pic(X) without any reference to an

isomorphism of (I1,9, f) onto (Pic(X), [ω−1
X ]). We adapt our notation to this situation

in an obvious way and write fX ,RX , EX , QX , AX , . . . .

An element ofRX resp. EX that is the class of an irreducible curve is called a nodal

resp. exceptional class and we denote by Rirr
X ⊂ RX resp. E irr

X ⊂ E the corresponding

subset. The following is well-known.

Proposition 1.1. Any irreducible component of a reducible fiber has a nodal class

and this establishes a bijection between the set of irreducible components of reducible

fibers and Rirr
X .

The set Rirr
X decomposes according to the set of reducible fibers (Xp)p∈S :

Rirr
X = ⊔p∈SRirr

Xs
.
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It is convenient to introduce the closed nodal chamber as the set of c ∈ AR satisfying

α.c ≥ 0 for all α ∈ Rirr
X . This is a product of closed simplices (a factor for every

reducible fiber) times an affine space. It is a strict fundamental domain for the action

of the Weyl subgroup W (Rirr
X ) ⊂ W (RX) in AR. Let us denote by Qirr

X ⊂ QX the

image of the integral span of Rirr
X in Pic(X).

Proposition 1.2. A section of X → P is an exceptional curve of the first kind

and this identifies the set of sections with E irr
X . Given e ∈ EX , let e0 ∈ EX be the

unique element of its W (Rirr
X )-orbit mapping to the closed nodal chamber. Then e0 is

the class of a section and e− e0 is a nonnegative linear combination of nodal classes.

The composite map E irr
X ⊂ EX ∼= AX → AX/Q

irr
X is a bijection.

All of this is known, though perhaps stated somewhat differently in the literature

(see for example [26]). So E irr
X gets smaller when Rirr

X gets bigger. The generic

situation is when Rirr
X = ∅: then E irr

X = EX . The other extreme, E irr
X finite, happens

precisely when QX/Q
irr
X is finite. The following proposition identifies the rational

points of the Picard group of the generic fiber.

Proposition 1.3. The group of automorphisms Aut0(X/P ) of X that induce a

translation in every smooth fiber is faithfully represented in Pic(X). It acts simply

transitively on E irr
X and via the identification of E irr

X with AX/Q
irr
X , this group is identi-

fied with the abelian group QX/Q
irr
X . It is also the group of automorphisms of Pic(X)

that lie in T (Q) ·W (Rirr
X ) and preserve Rirr

Xs
for every reducible fiber Xs. (This group

contains the image of (Qirr
X )⊥ ⊂ Q under T as a subgroup of finite index.)

This proposition should be known, but since we did not find it stated this way,

we give a proof. For this we need a property of affine Coxeter groups that we recall

from [6], Ch. VI, § 2. Let (W, (si)i∈I) be an irreducible Coxeter system of affine type

(with the si’s distinct) and identify W with its canonical representation as an affine

transformation group. Denote by D(I) the Dynkin diagram on I. The normalizer

N(W ) of W in the affine transformation group acts on D(I) and identifies N(W )/W

with Aut(D(I)). If I0 ⊂ I is the set of special vertices of D(I) (an i ∈ I is special

precisely when every element of W is the composite of a translation and an element of

WI−{i}), then N(W )/W acts faithfully on I0 and the subgroup of N(W )/W induced

by translations acts simply transitively on I0. In particular, if a translation in N(W )

fixes a special vertex of D(I), then it lies in W . On the other hand, any element of

N(W )/W not coming from a translation fixes a special vertex.

We see this illustrated by a Kodaira fibration over a smooth curve germ X → D

with special fiber Xo (the general fiber is a smooth curve of genus one, the special

fiber is of Kodaira type). If (Ci)i∈I are the distinct irreducible components of Xo,

then we have Ci.Ci = −2 for all i and if
∑

i niCi is the class of the general fiber,

then the reflections si : c 7→ c + (c, Ci)[Ci] in H2(X0) generate an irreducible Cox-

eter system (W, (si)i∈I) of affine type acting naturally in the affine hyperplane in
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Hom(H2(Xo),R) = H2(Xo; R) of forms that take the value 1 on
∑

i niCi. Its Dynkin

diagram is just the intersection graph of the Ci’s. We have ni > 0 for all i and i ∈ I is

special precisely when ni = 1. Any automorphism of the general fiber which induces

a translation on that fiber extends to the whole fibration. If it preserves a special

component, then it preserves every component. So it follows from the preceding that

that its action on AR is the composite of an element of W and a translation.

Proof of 1.3. That Aut(X) acts faithfully on Pic(X) is well-known and easy

to prove. If e, e′ ∈ E irr
X are represented by sections E, E′, then there is a fiberwise

translation in the part of X that is smooth over P which sends E to E′. As recalled

above, this translation extends as an automorphism h ofX . Then h fixes the difference

of any two sections, so it certainly acts as the identity in QX/Q
irr
X . If E and E′ meet a

reducible fiber Xs in the same component, then this component is special. So h fixes

every irreducible component of Xs. The rest of the argument is now straightforward

or follows from the above mentioned property of Kodaira fibrations. �

Lemma 1.4. We have T (QX) ⊂ Aut0(X/P ) ·W (Rirr
X ).

Proof. Let u ∈ QX . So for every α ∈ RX we have Tu(α) = α − (α.u)f . It

follows that for every reducible fiber Xs, Tu preserves the root subsystem RXs
of

RX generated by Rirr
Xs

. So Tu normalizes the associated affine Weyl group W (Rirr
Xs

).

Choose a section E. Then Tu sends its class e ∈ E irr
X to an element of the form

w(e′) with w ∈ W (Rirr
X ), where e′ ∈ E irr

X is the class of a section E′. There is a

unique h ∈ Aut0(X/P ) that sends E to E′. We show that g := h−1
∗ w−1Tu is in

W (Rirr
X ). It is clear that g is the identity on the orthogonal complement of Rirr

X and

fixes e. Also, for every reducible fiber Xs, g normalizes W (Rirr
Xs

) and its image in

N(W (Rirr
Xs

))/W (Rirr
Xs

) is induced by a translation. Since g(e) = e, it follows that this

image is trivial: g acts in the span of Rirr
Xs

as an element of W (Rirr
Xs

). This is true for

all reducible fibers and hence g ∈W (Rirr
X ). �

Remark 1.5. Contraction of an exceptional curve of the first kind with class

e ∈ E irr
X produces a smooth rational surface surface Xe with ωXe

.ωXe
= 1. It follows

from Proposition 1.3 that its isomorphism type is independent of the choice of e. If

all fibers of X → P are irreducible (in other words, Rirr
X = ∅), then ω−1

Xe
is ample, in

other words, Xe is a Del Pezzo surface of degree one. Conversely, if we are given a

Del Pezzo surface of degree one, then its anticanonical system consists of irreducible

curves and has a unique fixed point. Blowing up that point yields an elliptic surface

with all its fibers irreducible. So the coarse moduli space of Del Pezzo surfaces of

degree one can be identified with the coarse moduli space of smooth rational elliptic

surfaces with all its fibers irreducible. Notice that we have a natural identification of

QX with the orthogonal complement of [ωXe
] in Pic(Xe).
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2. Moduli of rational elliptic surfaces I

2.1. The Weierstrass model. Let f : X → P be a rational elliptic surface.

The discriminant divisor of f is the divisor on P for which the multiplicity of p ∈ P
is the Euler characteristic of the fiber Xp. This is an effective divisor whose degree

must be the Euler characteristic of X , which is 12. Assigning to each fiber its modular

invariant defines a morphism J : P → P1. Let us assume that all the singular fibers

are of type Ik. Then D∞ := J∗(∞) is the discriminant divisor of f . In order to

understand J over the special points 0 and 1, let us recall that the affine J-line is

obtained as the analytic orbifold PSL(2,Z)\H with 0 resp. 1 corresponding to the

singular orbits of ω := e2π
√−1/6 resp.

√
−1. The order of ramification of the quotient

map over such a point is the order of its PSL(2,Z)-stabilizer, that is 3 resp. 2. Since

the fibers of f over P −D∞ are smooth, the morphism J is at every point of P −D∞
locally liftable to a morphism to H. This implies that J∗(0) = 3D0 and J∗(1) = 2D1

with D0 resp. D1 a divisor of degree 4 resp. 6. So D∞ is in the pencil generated by

3D0 and 2D1. This imposes a nontrivial condition on D∞.

To see this, we fix a projective line P and denote by H the space of sections of

OP (1). For a nonnegative integer k, Hk := Symk H is then the space of sections of

O(k) and the associated (k-dimensional) projective space Pk is the linear system of

effective degree k divisors on P . The set of triples (D0, D1, D∞) ∈ P4×P6×P12 with

D0 and D1 not a common multiple of an element of P2 (to ensure that they generate

a pencil) and D∞ in the pencil generated by 3D0 and 2D1 is an irreducible subvariety

of dimension 6 + 4 + 1 = 11. Denote by Σ̃ its closure in P4 × P6 × P12 and by Σ the

projection of Σ̃ in P12. It is clear that Σ is irreducible of dimension ≤ 11. In fact:

Proposition 2.1. The projection Σ̃ → Σ is birational so that Σ is a rational

ruled hypersurface in P12. A point (D0, D1, D∞) ∈ Σ̃ for which 3D0 6= 2D1 comes

from a rational elliptic surface. It is unique up to P -automorphism if D0 and D1

have disjoint support (a condition fulfilled if D∞ is reduced).

Proof. Let W ⊂ Σ̃2 be the locus of pairs of distinct points of Σ̃ with the same

image in P12. For the first assertion it is enough to show that W is of dimension ≤ 10.

A point of (D0, D1, D∞) ∈ Σ̃ for which 3D0, 2D1, D12 are mutually distinct can be

represented by a triple (f0, f1, f∞) ∈ H4 ⊕H6 ⊕H12 with f∞ = f3
0 + f2

1 so that Di

is the divisor defined by fi. Notice that the vector (f3
0 , f

2
1 ) ∈ H⊕2

12 is unique up to a

scalar factor. An element of W is representable by a quadruple (f3
0 , f

2
1 , g

3
0 , g

2
1) in H12

with f3
0 +f2

1 = g3
0+g2

1. This identity can also be written as (f1−g1)(f1+g1) = g3
0−f3

0 .

If the righthand side is nonzero, then it is factored by the lefthand side into two forms

of degree six. The family of such factorizations (with fixed nonzero righthand side) is

of dimension one. Since [f0 : g0] lies in a projective space of dimension 9, it follows

that dimW ≤ 9 + 1 = 10.

To prove the second assertion we consider the vector bundle E := OP (2)⊕OP (3)⊕
OP over P . Denote the projections on its summands by X,Y, Z repectively. So
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for (f0, f1, f∞) as above, the expression −Y 2Z + X3 + 3f0XZ
2 + 2f1Z

3 defines a

homomorphism E → OP (6). Its zero set in the associated projectivized bundle P(E)
is a Weierstrass curve over P with modular function J = f3

0 /f∞. If f3
0 and f2

1

are linearly independent, then minimal resolution of its singularities gives an elliptic

surface for which the first summand of E defines a section. This surface is rational.

If f0 and f1 have no nontrivial common zero, then J has degree 12 and J∗(i) = Di

for i = 0, 1,∞. Kodaira’s theory (see for example [4], Thm. 11.1 and Subsection 3.1

below) implies that this elliptic surface is unique up to P -isomorphism. �

Remark 2.2. Vakil [34] recently proved that the degree of Σ is equal to 3762. In

the same paper he also gives several remarkable characterizations of this hypersurface.

Example 2.3. This is an example to which we will later return. Take for D∞
the 12th roots of unity in C, viewed as a reduced divisor on P1. If we take D0 = 4(0)

and D1 = 6(∞), then clearly (D0, D1, D∞) ∈ Σ̃. By the preceding argument there is

a rational elliptic surface with D∞ as discriminant divisor.

We thus recover a result of Dolgachev.

Corollary 2.4 (Dolgachev, [13]). The coarse moduli space of rational elliptic

surfaces (and hence also the coarse moduli space of Del Pezzo surfaces of degree one)

is rational.

Proof. In view of 2.1 we must show that the Aut(P )-orbit space of Σ̃ is rational.

Generically Σ̃ is fibered in lines over the product of projective spaces P4 × P6. Let

P ′
4 ⊂ P4 be the locus where Aut(P ) acts freely. Then P ′

4 is open-dense in P4, and

the orbit space B := Aut(P )\P ′
4 is a rational curve. So if Σ̃′ denotes the preimage

of P ′
4 in Σ̃, then Aut(P )\Σ̃′ → B is a morphism to a rational curve whose generic

fiber has the structure of a fibration of lines over a projective space. This implies that

Aut(P )\Σ̃′ is rational. �

2.2. Miranda’s compactification. R. Miranda gave in his thesis [23] a geo-

metric invariant theory compactification of the space of pencils of cubic plane curves.

Since pencils with a smooth member define rational elliptic surfaces, this leads a

compactification of the moduli space of (generic) rational elliptic surfaces. Later he

found that the geometric invariant theory of Weierstrass fibrations did that job more

directly [24] and so it is this approach that we shall follow.

Let U ⊂ H4 ⊕ H6 be the open subset of (f0, f1) such that f3
0 + f2

1 is square

free. As was noted in the proof of 2.1, the locus Y 2Z = X3 + 3f0XZ
2 + 2f1Z

3

defines in P(OP (2) ⊕OP (3)⊕OP ) × U a rational elliptic surface XU → P × U over

U with section over P × U . The group GL(H) acts on this fibration. Two points

of U define isomorphic elliptic surfaces with section if and only if they are in the

same GL(H)-orbit. Since the automorphism group of a rational elliptic surface acts

transitively on its sections, it follows that GL(H)\U is the coarse moduli space of
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rational elliptic surfaces with reduced discriminant. We denote that orbit space by

M. A natural projective completion MM of M is obtained by means of geometric

invariant theory applied to the SL(H)-action on H4 ⊕H6. With Miranda one easily

finds that (f0, f1) is semistable (resp. stable) relative to this action if and only if f3
0

and f2
1 have no nontrivial common zero of order > 6 (resp. ≥ 6). The proj of the

algebra of SL(H)-invariants of the algebra of regular functions on H4 ⊕H6,

C[H4 ⊕H6]
SL(H) =

(
C[H4]⊗ C[H6]

)SL(H)

is a projective completion ofM. In more geometric terms: if P(H4 ⊕H6) stands for

the weighted projective space gotten by dividing H4⊕H6−{(0, 0)} out by the action

of the central subgroup Gm ⊂ GL(H), then

MM = SL(H)\\P(H4 ⊕H6)
ss.

Here the double backslash indicates that we are forming a categorical orbit space.

In this case, its closed points are in bijective correspondence with the closed SL(H)-

orbits in P(H4⊕H6)
ss. We shall refer toMM as the Miranda compactification ofM.

The geometric counterpart of the graded algebra of invariants C[H4 ⊕H6]
SL(H) is an

orbifold line bundle LMM overMM such that C[H4⊕H6]
SL(H) is the graded algebra

of sections of its tensor powers with twice the degree. For instance, H0(MM ,L⊗2
MM ) =

H∗
4 ⊗ 1 and H0(MM ,L⊗3

MM ) = 1⊗H∗
6 .

The minimal strictly semistable orbits in H4⊕H6 are represented by the pairs of

the form (λf2, µf3) with f a product of two distinct linear forms and λ, µ constants

that are not both zero. In that case the modular function is constant equal to [λ3 :

λ3 + µ2] ∈ P1 and is a complete invariant of the orbit.

A stable orbit can be given more of a geometric content by associating to a stable

pair (f0, f1) ∈ H4 ⊕H6 the divisor triple (D0, D1, D∞) ∈ Σ̃ of (f0, f1, f
3
0 + f2

1 ): this

triple determines the pair (f0, f1) up to the action of the central subgroup Gm ⊂
GL(H). We thus have defined an invariant open subset Σ̃st of Σ̃ characterized by the

condition that 3D0 and 2D1 have no point in common of multiplicity ≥ 6.

Proposition 2.5 (Miranda [24]). A stable orbit defines a rational elliptic surface

all of whose fibers are reduced that is, are of Kodaira type Ik (k-gon), II (cuspidal

curve), III (two rational curves with a common tangent), or IV (three confluent

smooth rational curves). Conversely, any such rational elliptic surface determines a

stable orbit.

A semistable orbit defines a rational elliptic surface such that the irreducible com-

ponents of its fibers have multiplicity ≤ 2, that is, in addition to the fibers above, we

also allow those of type I∗k . Conversely, such a rational elliptic surface determines a

semistable orbit in Σ̃. The minimal strictly semistable orbits correspond to rational

elliptic surfaces with a I∗4 -fiber (such a surface is unique) or with two distinct I∗0 -

fibers (such a surface has constant modular function—see below—and this constant is

a complete invariant of the surface).
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An elliptic surface with two I∗0 fibers is always of the following form: start out

with a smooth elliptic curve E and consider the involution in E × P1 defined by

(p, [z : 1]) 7→ (−p, [−z : 1]). This involution has 8 fixed points that give ordinary

doubly points on the quotient surface. A single blowup resolves these and the resulting

smooth surface X is rational and fibers over the rational curve that is the quotient of

P1 by the involution [z : 1]) 7→ [−z : 1]). So to a strictly semistable orbit of this type

is associated a J-invariant.

2.3. Discriminant compactification. We think of P12 = Sym12 P as the pro-

jective space of effective divisors of degree 12 on H . Write D := SL(H)\P r
12 for the

moduli space of reduced effective degreee 12 divisors on P . Let us recall that a SL(H)-

orbit in P12 is stable (resp. semistable) if and only if it has no point of multiplicity ≥ 6

(resp. 7). The minimal strictly semistable elements are of the form 6(a) + 6(b) with

a and b distinct, hence lie in a single SL(H)-orbit. Let us write Dst for the ordinary

orbit space SL(H)\P st
12 and put

D∗ := SL(H)\\P ss
12 = Proj(C[H12]

SL(H)).

So D∗ is a projective one point compactification of Dst; the added singleton will be

denote d∞. The hypersurface D∗ − D in D∗ parametrizes the nonreduced divisors

and is classically called the discriminant. There is an orbifold line bundle LD∗ on D∗

such that the degree n part of C[H12]
SL(H) is the space of sections of its nth tensor

power. The discriminant is given by the equation
∏

1≤i<j≤12(zi − zj)
2 and hence the

divisor of a section of L11·12
D∗ .

Consider the open part M′ ⊂ MM that parametrizes rational elliptic surfaces

whose discriminant divisor has no point of multiplicity ≥ 6. This means that we

discard the surfaces with a nonreduced fiber or a fiber of type I6 or worse. SoMM −
M′ is of dimension ≤ 3 and hence everywhere of codimension ≥ 5 in MM . There is

an obvious discriminant morphism F : M′ → D∗. Assigning to (f0, f1) ∈ H4 ⊕ H6

the discriminant form f3
0 + f2

1 defines an isomorphism

F ∗LD∗
∼= L⊗6

MM |M′ .

Hence we find:

Corollary 2.6. The algebra of sections ⊕k∈ZH
0(M′, F ∗L⊗k

D∗) is zero in negative

degrees and of finite type. Its proj defines the projective compactification M′ ⊂MM .

By Proposition 2.1, M embeds in D as a closed hypersurface. We denote the

normalization ofM in D∗ byM∗ and inMM ×D∗ (via the diagonal embedding) by

MM∗. The projectionMM∗ →MM will be special over the singleton corresponding

to the case where 3D0 = 2D1 (in other words, (D0, D1) = (2(a) + 2(b), 3(a) + 3(b))

with a, b ∈ P distinct) and over the locus where the linear span of 3D0, 2D1 has a

member with a point of multiplicity ≥ 7. A major goal of this paper is to describe
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the diagram

MM ←MM∗ →M∗

in terms of complex hyperbolic geometry. In particular, we will show that M∗ is

naturally the Baily-Borel compactification of a ball quotient such that M∗ −M is

the closure of a union of locally symmetric divisors. This requires a better geometric

understanding of the above diagram and that is the topic of the next section.

3. A geometrically meaningful compactification

We found two compactifications ofM obtained from Geometric Invariant Theory:

one (MM ) based on the Weierstrass description of a rational elliptic surface, the other

(M∗) based on the fact that a generic elliptic surface is defined by its discriminant.

It is our goal to define a rather explicit compactification ofM which dominates both.

We also want it to be geometrically meaningful in the sense that the newly added

points define degenerate elliptic surfaces of some sort. Together these desiderata imply

that the modular function of these elliptic surfaces must always be of degree 12. Since

there exist rational elliptic surfaces whose modular function has lower degree, there

is a price to pay: we must allow the base to have ordinary double points.

3.1. Kodaira’s theorem. We begin with restating a fundumental result of Ko-

daira in more geometric form. If P is a smooth complete curve, then a nonconstant

morphism J : P → P1 defines over P − J−1{0, 1,∞} a fibration by elliptic curves

given up to involution. Associated to such a ‘Kummer fibration’ is a µ6-covering of

P which will play a central role in this paper. It is defined as follows. We recall that

the abelianization of PSL(2,Z) is the cyclic group of order 6 with ( 1 1
0 1 ) mapping to

a generator. We denote that group by C6 and its generator by τ . So the PSL(2,Z)

principal bundle over P − J−1{0, 1,∞} defined by J determines an unramified C6-

covering of P − J−1{0, 1,∞}. We extend that covering to a possibly ramified one

over P , C → P , by normalizing over P . In the case of the universal example—J is

then the identity—this corresponds to the modular covering Eo → P1 defined by the

commutator subgroup of PSL(2,Z). The curve Eo is of genus one and has only one

cusp (in other words, it is totally ramified over ∞). If we choose that cusp to be the

origin, Eo becomes an elliptic curve and the fact that it comes with a faithful action

of µ6 implies that Eo has J-invariant 0. In the general case, C → P is simply the

normalized pull-back of Eo → P1. Here is the list of Kodaira fibers expressed in terms

of the behavior of J at p:
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J(p) degp J type

∞ k(≥ 1) Ik or I∗k
0 0 (mod 3) I0 or I∗0

1 (mod 3) II or IV ∗

2 (mod 3) II∗ or IV

1 0 (mod 2) I0 or I∗0
1 (mod 2) III or III∗

/∈ {0, 1,∞} I0 or I∗0

The abelianization of SL(2,Z) is cyclic of order 12 with ( 1 1
0 1 ) mapping to a gen-

erator. We denote group and generator by C12 and η. So the nontrivial element

−1 of the kernel of SL(2,Z) → PSL(2,Z) maps to η6. A relatively minimal elliptic

fibration X → P with J as modular function determines a C12-covering C̃ → P which

factorizes over C → P . Thus we associated to every Kodaira fiber an integer modulo

12, which together with the local behaviour of J at the corresponding base point

determines that fiber. Kodaira’s basic result says that the lift of the C6-covering to

a C12-covering determines X → P up to P -isomorphism and that any such lift so

arises. This residue class is in fact the reduction modulo 12 of the Euler characteris-

tic of the fiber. So the Euler characteristics of the fibers define a further lift to the

integers. (This implies that the Euler characteristic of X is always divisible by 12.)

For a fiber with finite J-value, its Euler characteristic is the unique representative of

Z/(12) in {0, 1, . . . , 11} (though 1, 5, 7 and 11 will not occur), whereas for a fiber Xp

with J(p) =∞ it is degp J (type Idegp J) or degp J + 6 (type I∗degp J).

A cyclic covering over a smooth rational curve is already given by the orders of

the stabilizers. So if P is rational, then an elliptic fibration associated to J is already

specified by a lift of the map P → Z/(6) defined by J (whose support will be in

J−1{0, 1,∞}) to a finitely supported map with values in Z/(12). The above receipe

defines a lift to the nonnegative integers and the ‘integral’ of the latter is the Euler

characteristic of the total space. The total space is rational precisely when the sum

of its fiber Euler characteristics is equal to 12. This describes a procedure to obtain

all rational elliptic fibrations and it is the one employed by Miranda in [25] to recover

Persson’s classification [29] of rational elliptic fibrations up to homeomorphism.

3.2. Kontsevich compactification. Let be given a pair (J : P → P1, D),

where

(a) P is a complete connected normal crossing curve of arithmetic genus zero,

(b) J : P → P1 a morphism of degree 12,

(c) D is a 12-element subset of the regular part of P contained in J−1(∞).

For later purposes it will be useful to observe that there then exists a µ6-covering

C → P such that

(i) C is a connected normal crossing curve,
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(ii) C → P is unramified over Preg −D and

(iii) C → P is totally ramified over D and the action of µ6 in the tangent space

of such a ramification point is the tautological one (i.e., given by scalar

multiplication).

and that this covering is unique up to isomorphism. (The arithmetic genus of C is

easily calculated to be 25.) So to give the pair (J : P → P1, D) is equivalent to giving

a complete normal crossing curve C with C6-action as above and a morphism C → P1

constant on orbits of degree 6 · 12. The cover C → P need not be the pull-back of

the modular elliptic curve Eo → P1 for there may be irreducible components of P

in a fiber of J (on which C → P is necessarily nontrivial). But if we contract all

such components then this is true. In other words, J is covered by a C6-equivariant

morphism J̃ : C → Eo.

We say that (J : P → P1, D) is Kontsevich stable if the group of its automorphisms

that induce the identity of P1 is finite. In other words, we require that every connected

component of Preg−D on which J is constant has negative Euler characteristic. There

is an obvious extension of this notion to families of such pairs which leads to a well-

defined moduli problem. Following Kontsevich ([18] 1.3.2) such pairs have a moduli

stack that is complete, smooth. He also shows that the locus parametrizing pairs

(J : P → P1, D) with P singular defines a normal crossing divisor. His argument

shows at the same time that the singular points of P are fully smoothable in the

sense that they are independently smoothable, already at first order. The underlying

variety can be regarded as a coarse moduli space of pairs (C,C → P1) obtained as

above: here C is a complete connected normal crossing curve of arithmetic genus 25

endowed with C6-action having in Creg exactly 12 fixed points, each with tangent

character χ such that the morphism C → P1 is constant on orbits and has degree

6 · 12, and the group of P1-automorphisms of C is finite. But the corresponding stack

is slightly different.

Remark 3.1. If (J : P → P1, D) is a Kontsevich stable pair, then (P,D) need

not be (Deligne-Knudsen-Mumford) stable as a 12-punctured curve, but successive

contraction of its unstable components yields such a curve (P̄ , D̄) and this curve is

unique. There results a morphism from the Kontsevich moduli space to the Knudsen-

Deligne-Mumford space S12\M0,12 of stable 12-punctured rational curves.

We embed M in this moduli space by assigning to a generic rational elliptic

fibration X → P the pair consisting of its modular function J : P → P1 and the fiber

J−1(∞). The normalization ofM in this moduli space will be called the Kontsevich

compactification and denoted byMK .

If (J : P → P1, D) represents a closed point of MK , then clearly D will be

contained in J−1(∞). Specifically, a connected component of J−1(∞) contains as

many points of D as the degree of J on a deleted neighborhood of that component in

P . Moreover, every connected component of J−1(0) resp. J−1(1) has a basis of deleted
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neighborhoods in P on which J has degree divisible by 3 resp. 2. The interest of this

construction is that such a J is still the modular function of an elliptic fibration defined

over the union of the connected components of Preg−D on which J is nonconstant: if

P ′ is an irreducible component of P on which J is nonconstant, then J determines an

elliptic fibration up to canonical involution. If p is a smooth point of P , then the fiber

over p will be smooth or of type I1, depending on whether J(p) is finite. In case p is

singular, then we have a singular Kodaira fiber not of type I1. So if P ′ has exactly

one singular point p, then the Euler characteristic of the fiber over p is determined by

the fact that the Euler characteristics of the singular fibers sum up to 12. This gives

also the answer in the general case since we can smooth all the singular points of P

different from p and do the calculation for this new situation. We thus conclude that

the Euler characteristic of the fiber over p in P ′ must be equal to 12 minus the degree

of J on the connected component of P −{p} containing P ′−{p} plus the multiplicity

of p in (J |P ′)∗(∞). But beware that in general a singular fiber over a crossing point

will depend on the choice of a branch through it. For instance, if P has two connected

components P2, P10 of degree 2 and 10 meeting in a point p with J(p) = 0, then the

fiber over p in P2 is of type II∗ whereas the fiber over p in P10 is of type II. This issue

is addressed and resolved by Abramovich and Vistoli in [1] by consistently working

in a setting of Deligne-Mumford stacks. We shall not go into this here as it is not

needed for what follows. We content ourselves with observing that MK comes as a

stack with a universal morphisms PK →MK ×P1 of degree 12 such that the part of

PK where this morphism is smooth supports an elliptic fibration for which J is the

modular function. Moreover, PK comes (as a stack) with a C6-covering CK → PK .

Proposition 3.2. The identity map of M extends to a morphism from the

Kontsevich compactification MK to the Miranda compactification MM . Precisely,

if J : P → P1 represents a closed point of MK and

(i) if the fibration has a component P ′ of P on which J has degree > 6, then we

assign to J the fibration over this component (since a nonreduced Kodaira

fiber takes off at least 6 from the degree of modular function, this fibration

will have only reduced Kodaira fibers);

(ii) if P has a singular point p with finite J-value such that each component of

P − {p} has degree 6 over P1, then we assign to J the elliptic fibration with

constant modular function J(p) and with two fibers of type I∗0 and

(iii) if P has a singular point p over ∞, such that each component of P − {p}
has degree 6 over P1, then we assign to J the point m∞ ∈ MM (the unique

point representing a rational elliptic surface with a I∗4 -fiber).

Proof. We begin with proving the first part of (iii). Suppose that P has a

singular point p over∞. Denote the closures of the connected components of P −{p}
by P1 and P2. Then on (Pi, p) we have a Kodaira fiber of type I∗ki

for some ki ≥ 1.

The Euler characteristic of such a fiber is 6 + ki and hence the degree of J on Pi is 6.
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To see that the birational map from MK to MM is in fact a morphism, we

consider the closure M of the diagonal embedding of M in MK × MM . Since

MK is normal it suffices to prove that the projection M → MK is a bijection. Or

equivalently, that any curve germ in MM is the image of one in MK . Moreover,

we want this lift to be as prescribed by the proposition. This can be checked in a

straightforward manner. �

Remark 3.3. It can be shown that the natural morphism MK → S12\M0,12 is

finite. This implies that is also possible to define MK as the normalization of M in

S12\M0,12. Though this avoids appeal to the Kontsevich moduli space, we shall need

the more powerful interpretation that comes with the latter.

The identity also extends as a morphism MK → M∗ as follows. Let be given

an allowable pair (J : P → P1, D) representing a closed point ofMK . If there exists

an irreducible component Pc of P such that the direct image of D under the natural

retraction P → Pc is a stable divisor (all multiplicities < 6), then this irreducible

component is unique—we shall call it the central component of (P,D)—and we assign

to (J : P → P1, D) the corresponding point of D∗. If no such component exists, then

there is a unique singular point pc—the central point of (P,D)—such that D has 6

points in each connected component of P−{pc}, and we then assign to (J : P → P1, D)

the point of D∗ that corresponds to the unique minimal semistable orbit (the orbit

of divisors that have two distinct points, each with multiplicity 6). In either case

we allow ourselves a mild abuse of language by referring to this point of D∗ as the

discriminant of (J : P → P1, D). It is not difficult to verify that this defines a

morphismMK → D∗. Since MK is normal this morphism will factorize overM∗.
So MK dominates MM∗. Understanding of MK will help us in understanding

MM∗.

3.3. A partial list of strata. Let us describe the generic points of MK −M
(these turn out to be all hypersurfaces). If X → P is a generic rational elliptic fibra-

tion (so with smooth base P and reduced discriminant), then the modular function

J : P → P1 is a degree 12 covering with the property that the local degree of J

at a point over 0 resp. 1 is always equal to 3 resp. 2. Following Riemann-Hurwitz,

the discriminant of J must then have the form 8(0) + 6(1) + R, with R of degree 8.

This divisor gives us the 8 moduli parameters. Degeneracies will occur when supp(R)

meets 0, 1 or∞. The computation of (co)dimension is based on the full smoothability

property.

In the list below we make use of a small part of Persson’s classification [29]. For

instance, we use the fact that the rational elliptic fibrations with a fiber of Kodaira

type Ik (8 6= k ≤ 9), II, III, IV , I∗k (k ≤ 4) respectively are parametrized by an

irreducible variety. We excluded the I8-case since there are two types of fibrations with

an I8 fiber: in one case (I ′8) the classes of the irreducible components in the Picard

group generate a primitive sublattice and in the other case (I ′′8 ) the sublattice is of
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index two in a primitive sublattice and either case is parametrized by an irreducible

variety. The two cases can be distinguished by the fact that in case (I ′8) the fiber can

degenerate in a I9-fiber, whereas this is not possible for the (I ′′8 ) case. But either can

degenerate into a I∗4 -fiber and is a degeneration of a I7-fiber.

(Ik≥2) Then P has an irreducible component P12 of degree 12 over P1 and there

is a z ∈ P12 where J |P12 has local degree k. We have an extra component

P0 in J−1(∞) which meets P12 in the ramification point. This component

contains k points of D and so it is central if and only if k ≥ 7. Hence the

discriminant has a point of multiplicity min{k, 12 − k}. The image of this

hypersurface of MK in MM is of dimension 9 − k, whereas its image in

M∗ is of dimension 9 − k for k = 2, 3, 4, 5, of dimension 0 for k = 6, and of

dimension k − 2 for k = 7, 8, 9. The hypersurface in question is irreducible

unless k = 8, in which case there are two irreducible components.

(II) Then P has two irreducible components P10, P2 of degrees resp. 10 and 2

over P1 meeting in a point p with J-value 0. The component P2 ramifies

simply over 0 and 1; the component P10 has a fiber over 0 resp. 1 of type

(33, 1) resp. (25). Over (P10, p) we have a fiber of type II (a cuspidal fiber)

and over (P2, p) a fiber of type II∗ (an Ê8-fiber). The central component is

P10 and the discriminant has a point of multiplicity 2. The images of this

subvariety in M∗ and MM are hypersurfaces.

(III) This case and the next are similar to the preceding case. Here P has two

irreducible components P9, P3 of degrees 9 resp. 3 over P1 meeting in a point

p with with J-value 1. The component P3 ramifies totally over 0 and has a

point of simple ramification over 1; the component P9 has fiber over 0 resp.

1 of type (33) resp. (24, 1). Over (P9, p) we have a Kodaira fiber of type III,

and over (P3, p) one of type III∗ (an Ê7-fiber). The central component is

P9 and the discriminant has a point of multiplicity 3. The images of this

subvariety in M∗ and MM are of codimension two (since we forget P3).

(IV ) Now P has two irreducible components P8, P4 of degrees 8 resp. 4 over P1

meeting in a point p with J-value 0. The component P4 has fiber over 0

resp. 1 of type (3, 1) resp. (22), whereas for P8 these data are (32, 2) resp.

(24). They meet in their points of smallest ramification. Over (P8, p) we

have a fiber of type IV and over (P4, p) a fiber of type IV ∗ (an Ê6-fiber).

The central component is P8 and the discriminant has a point of multiplicity

4. The images of this subvariety inM∗ andMM are of codimension three.

The following cases involve Kodaira fibers of type I∗k . In all these cases, P has two

irreducible components P6, P
′
6 that are both of degree 6 over P1.

(I∗0 ) P6 and P ′
6 meet in a point p with J(p) finite. Over (P6, p) and (P ′

6, p) we

have fibers of type I∗0 . The point p is central and so the discriminant is
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the orbit of the divisor with two points of multiplicity 6. The image of this

subvariety in MM is a curve and its image in M∗ is a singleton.

(I∗k,k′ ) Here P6 and P ′
6 are separated by a central component Pc contained in

J−1(∞). If Pc meets P6 in p, then we have a Kodaira fiber of type I∗k
at (P, p), where k = degp(J |P ) ∈ {1, 2, 3, 4}. Similarly we find a Kodaira

fiber of type I∗k′ for P ′
6. So Pc meets D in k + k′ points. Hence the discrim-

inant has a point of multiplicity 6− k and one of multiplicity 6− k′. This

defines a hypersurface inMK , whose image inM∗ has dimension k+ k′− 1

(so we get a hypersurface in M∗ precisely when k = k′ = 4). Its image in

MM is a singleton.

So the boundary of M in MK is a union of irreducible hypersurfaces MK(F ),

where F runs over the Kodaira symbols Ik, k = 2, . . . , 7, 9, I ′8, I
′′
8 , II, III, IV , I∗0 ,

I∗k,k′ with k, k′ = 1, 2, 3, 4. Let us write MM∗(F ) for the image of MK(F ) in MM∗

and let MM (F ) and MM∗(F ) have a similar meaning. The dimensions of these

subvarieties are listed in the table below.

It is not hard to check that MM∗(I2) contains MM∗(Ik) when k ≤ 5, that

MM∗(II) ⊃ MM∗(III) ⊃ MM∗(IV ) and that MM∗(I∗4,4) contains MM∗(I∗k,k′ ).

From these and similar incidence relations we deduce:

(i) The irreducible components of the boundary of M in MM∗ are the hyper-

surfaces MM∗(I2), MM∗(II), MM∗(I7), MM∗(I ′8), MM∗(I ′′8 ), MM∗(I9),
MM∗(I∗4,4), the curveMM∗(I∗0 ) and the threefold MM∗(I6).

(ii) For k = 7, 9 we have MM∗(Ik) = M∗(Ik) ×MM (Ik) and MM∗(I8)(i) =

M∗(I(i)
8 )×MM (I

(i)
8 ) for i = 1, 2.

(iii) We have inclusions

M∗(I9) ⊃M∗(I ′8) ⊃M∗(I7),

MM (I9) ⊂MM (I ′8) ⊂MM (I7),

M∗(I∗4,4) ⊃M∗(I ′′8 ) ⊃M∗(I7),

MM (I∗4,4) ⊂MM (I ′′8 ) ⊃MM (I7).

(iv) The projection of MM∗(F ) →M∗(F ) is birational for F = I2, I9, II, I
∗
4,4

and a collapse onto a point for F = I6, I
∗
0 .

(v) The projection of MM∗(F ) →MM (F ) is birational for F = I2, II, I6, I
∗
0

and and a collapse onto a point for F = I9, I
∗
4,4.

The following statements then follow in a straightforward manner:

Corollary 3.4. The boundary of M in M∗ is the union of the irreducible hy-

persurfaces M∗(I2), M∗(II), M∗(I9) and M∗(I∗4,4). Moreover,

(i) M∗(I9) ∩M∗(I∗4,4) =M∗(I ′8),
(ii) M∗(I ′′8 ) ⊂M∗(I∗4,4),

(iii) M∗(I ′8) ∩M∗(I ′′8 ) =M∗(I7),
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(iv) M∗(I6) is a singleton contained in M∗(I7) and M∗(I∗0 ) is a singleton con-

tained in M∗(I∗4,4). These two make up the preimage of d∞ ∈ D∗ in M∗.

F dimM∗(F ) dimMM (F ) dimMM∗(F )

I2 7 7 7

Ik≤5 9− k 9− k 9− k
I6 0 3 3

I7 5 2 7

I ′8, I
′′
8 6 1 7

I9 7 0 7

II 7 7 7

III 6 6 6

IV 5 5 5

I∗0 0 1 1

I∗k,k′ k + k′ − 1 0 k + k′ − 1

4. Homology of a cyclic covering

4.1. Symplectic lattices with symmetries. Let be given a finite abelian

group G that acts (morphically) on a symplectic lattice L. We then extend the

symplectic form as a sesquilinear form over Z[G] by

〈 , 〉 : L× L→ Z[G], (a, b) 7→
∑

g∈G

(a · gb)g =
∑

g∈G

(g−1a · b)g.

Indeed, this form is Z[G]-linear in the first argument and 〈b, a〉 = −〈a, b〉 (where the

overline is the involution which sends each element of G to its inverse). So if we

multiply the form by any anti-invariant element of Z[G] (such as g − g−1 for some

g ∈ G), then we get a Hermitian form over Z[G].

We take G to be a cyclic group of order 6, C6, with a given generator τ ∈ C6.

Let χ : Z[C6]→ C be the character that sends τ to ω := e2π
√−1/6. The image of this

character is the ring of integers Z + Zω. We call this ring the Eisenstein ring and

denote it by O. For the lattice L as above, LO := O⊗Z[C6] L/(torsion) is the biggest

torsion free quotient of L on which C6 acts through O. This quotient of L is realized

as the image of L under the natural ‘eigenprojection’ C ×Z L → (C ×Z L)χ. The

composition of the sesquilinear form above with χ factorizes over a skew-hermitian

(O-valued) form:

φ : LO × LO → O.
We make this a Hermitian form by multiplying with a square root of −3: we put

θ := ω − ω−1,
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and let our Hermitian form be

ψ(a, b) := −θφ(a, b).

As we will show in the Appendix, such Hermitian lattices can also be gotten from

quadratic forms with C6-symmetry.

Example 4.1. Let Eo be the elliptic curve of J-invariant 0. It admits a faithful

action of C6 with τ acting on the tangent space at the origin as multiplication by

ω. Note that H1(Eo) is a free O-module of rank one. The generators make up a

C6-orbit and if c is any one of them, then φ(c, c) =
∑5

i=0(c, (τ
∗)−ic)ωi = 2θ and so

ψ(c, c) = −θ.2θ = 6. For later reference we also note that (τ∗)−1 acts on H1,0(Eo) as

multiplication by ω−1.

Example 4.2. Here is another example. Take L := Z[C6]/(
∑5

i=0 τ
i) (which, as

a Z[C6]-module, is isomorphic to the augmentation ideal of Z[C6]). We equip it with

the symplectic form

τ i · τ j =

{
±1 if j = i± 1,

0 otherwise.

We have 〈1, 1〉 = τ−τ−1 and so for the image e of 1 in LO we have ψ(e, e) = −θ.θ = 3.

4.2. Cyclic covers. Let π : Co → P1 be the smooth C6-covering of the projec-

tive line that has total ramification over the 12th roots of unity in the unit circle and

with the generator τ of C6 acting as multiplication by e2π
√−1/6 on the tangent space

of the ramification points. An affine equation for this curve is w6 + z12 = 1 with

τ acting as τ(z, w) = (z, ωw) and π(z, w) = z. There is also C12-symmetry, with a

generator η of C12 acting as η(z, w) = (e2π
√−1/12z, w). So we have an action C6×C12

on Co. Our first goal is to describe H1(Co) as a module over

R := Z[C6 × C12] = Z[τ, η]/(τ6 − 1, η12 − 1).

We make use of F. Pham’s description [30] of the homology (with its intersection

form) of the affine piece C′
o := Co − π−1(∞). Consider the real part of C′

o defined

by x12 + u6 = 1 with x and u in the unit interval. We orient it as going from (0, 1)

to (1, 0) and denote the singular 1-simplex thus defined by e. Since e is not fixed by

any non-trivial element of C6 × C12, e generates a free R-submodule of the module

of singular 1-chains on C′
o. Pham observes that

e := (1− τ)(1 − η)e
is a 1-cycle with the property that it generates H1(Co) as an R-module. Since

Re does not contain nonzero boundaries, H1(C
′
o) gets identified (as an R-module)

with the ideal (1 − τ)(1 − η)R. The annihilator of (1 − τ)(1 − η) in R is the ideal

(
∑5

i=0 τ
i,

∑11
i=0 η

i)R and so the dual module H1(C′
o) appears naturally as a quotient:

Z[τ, η]/(

5∑

i=0

τ i,

11∑

i=0

ηi) ∼= H1(C′
o), 1 7→ e∗.
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Pham also describes the intersection pairing: the adjoint homomorphism H1(Co) →
H1(Co) is the antihomomorphism of R-modules given by

e = (1− τ)(1 − η)e 7→ −(1− τ)(1 − η)(1 − τη)e∗.
Notice that the kernel of this map is (1 − τ)(1 − η)(∑11

i=0(τη)
i)Re. The inclusion

C′
o ⊂ Co induces a surjection on H1; in fact, H1(Co) can be identified with the

image of H1(Co) → H1(Co) (compatibly with the intersection pairing). So we find

an isomorphism

(1− τ)(1 − η)R/(1− τ)(1 − η)(
11∑

i=0

(τη)i) ∼= H1(Co), (1 − τ)(1 − η) 7→ e.

We will identify the lefthand side with the quotient ring

A := Z[τ, η]/(

5∑

i=0

τ i,

11∑

i=0

ηi,

11∑

i=0

(τη)i),

so that 1 corresponds to e. (So as a Z[C6]-module, A is generated by {ηi}10i=1.) The

sesquilinear extension of the intersection pairing is given by

〈a, b〉R = (1− τ)(1 − η)a.b(τη − 1) ∈ R, a, b ∈ A.
If we merely regard H1(Co) as a Z[C6]-module, then the intersection form defines a

sesquilinear pairing

〈 , 〉Z[C6] : H1(Co)×H1(Co)→ Z[C6]

that is Z[C12]-invariant. The two are of course related by

〈a, b〉R =

11∑

i=0

〈ae, ηibe〉Z[C6]η
i.

Reducing modulo the ideal generated by τ2 − τ + 1 yields sesquilinear pairings

〈 , 〉O : H1(Co)O ×H1(Co)O → O and 〈 , 〉O[C12] : AO ×AO → O[C12]

that are related in the same way. The associated Hermitian forms are defined by

multiplying these by −θ = −ω(1 + ω):

ψ(ae, be) := −ω(1 + ω)〈ae, be〉O and Ψ(a, b) := −ω(1 + ω)〈a, b〉O[C12],

so that
11∑

i=0

ψ(e, ηie)ηi = Ψ(1, 1)

= −ω(1 + ω)(1− ω)(1− η)(ω−1η−1 − 1)

= −(1 + ω)((−1− ω−1) + η + ω−1η−1)

= 3− (1 + ω)η − (1 + ω−1)η−1.
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In other words,

(1) ψ(e, ηie) =





3 if i = 0,

−1− ω if i = 1,

−1− ω−1 if i = −1,

0 otherwise.

Since ψ is C12-invariant, these formulae completely describe ψ on the generators ηie.

Let us denote by Λ the Hermitian O-module underlying AO. So if ri ∈ Λ denotes

the image of ω2iηi, then (r1, . . . , r10) is a O-basis of AO on which ψ is given by

(2) ψ(ri, rj) =





3 if j = i,

θ if j = i+ 1,

0 if j > i+ 1.

Notice that for k ≤ 10, the annihilator of the span of r1, . . . , rk−1 contains the span

of rk+1, . . . , r11. It is not hard to see that it is in fact equal to it.

Remark 4.3. The homology class of e can be represented more simply as follows.

The closed sector of the (closed) unit disk in the z-line with arg(z) between 0 and

2π/12 has a unique lift to C passing through (0, 1). If we give this lift its complex

orientation, then it becomes a singular 2-simplex whose boundary of is of the form

e + ǫ− ηe, where ǫ is a lift of the arc on the unit circle. So (1− η)e is homologous to

−ǫ. Hence e = (1− τ)(1 − η)e is homologous to (τ − 1)ǫ.

Remark 4.4. It is easy to check that the O-sublattice of AO spanned by ηi, i =

0, . . . , k is of rank min{k+1, 10} and positive definite for k ≤ 3, positive indefinite for

k = 4, and hyperbolic for k ≥ 5. Since multiplication by η is a lattice automorphism

it follows that the O-sublattice spanned by all ηi with i 6≡ 5 (mod 6) is a positive

(indefinite) sublattice of rank at least 9. This is clearly also the maximal rank of a

positive sublattice, so it is of the form l⊥0 for some 0-vector l0. A small calculation

shows that we can take l0 = (1 + (1 + ω)η + 2ωη2 + (2ω − 1)η3 + (ω − 1)η4)e.

5. A central extension of a braid class group

5.1. Braid and braid class groups. This section reviews some facts concern-

ing the braid groups of C× and P1. We adhere to the categorical convention for the

composition law in fundamental groupoids: αβ means that the path α comes after

the path β.

We first establish the terminology. Fix a positive integer d. For any topological

surface X we denote by X(d) the configuration space of d-element subsets of X . The

braid group of X with d strands Brd(X) of X is by definition the fundamental group

of X(d). The latter requires a choice of base point and so strictly speaking this group

is only defined up to conjugacy. The group Homeo(X) of self-homeomorphisms of X
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acts on X(d). The image of the the fundamental group of the identity component,

π1(Homeo(X)0, 1) in the fundamental group of X(d) is normal and we shall refer to

the quotient group as the d-pointed braid class group of X , BCld(X). For X = P1 we

will often omit X and simply write Brd and BCld.

An alternative characterization of BCld(X) is as a mapping class group: if we

fix a d-element subset S of X , then BCld(X) is the group of isotopy classes of self-

homeomorphisms of the pair (X,S) that are trivial as an absolute isotopy class of

self-homeomorphisms of X . This also gives BCld the interpretation as the orbifold

fundamental group of the moduli space Sd\M0,d of smooth rational curves with d

punctures.

We first consider the case X = C×. We take as a base point ∗ for C×(d) the set

µd of dth roots of 1. We have two special elements R and T of Brd(C
×): R is defined

in Brd(C
×) by t ∈ [0, 1] 7→ e2π

√−1t/d ·µd, and T is represented by the loop that leaves

all elements of µd in place except 1 and e2π
√
−1/d: these traverse (in counterclockwise

direction) half of the circle that has the segment [1, e2π
√
−1/d] as a diameter. These

two elements generate Brd(C
×), but in order to get a useful presentation of Brd(C

×)

it is better to enlarge the number of generators. Let Tk := RkTR−k (k ∈ Z/d).

Clearly, Tk relates to the pair (e2π
√−1k/d, e2π

√−1(k+1)/d) in the same way as T to

(1, e2π
√
−1/d). These elements satisfy:

TkTk+1Tk = Tk+1TkTk+1, k ∈ Z/d,

TkTl = TlTk, k, l ∈ Z/d and k − l 6= ±1.
(3)

Together with the obvious relations

RTkR
−1 = Tk+1, k ∈ Z/d,(4)

these present Brd(C
×) in terms of the generators R, T0, . . . , Td−1. It is clear that in

the braid class group Rd comes from a loop in C× ⊂ Homeo0(C×) (the image of

R corresponds to multiplication by e2π
√−1/d). So it dies in BCld(C

×), and indeed,

BCld(C
×) is gotten from Brd(C

×) by imposing this extra relation.

The loop defined by Rd gives the nontrivial element of π1(PSL(2,C)) ∼= Z/2. So

R2d dies in Brd. The reader may check that in Brd we also have the relations

(5) R ≡ T1T2 · · ·Td−1, R−1 ≡ Td−1Td−2 · · ·T1.

One can verify that the relations (3) imply that T1T2 · · ·Td−1 and Td−1Td−2 · · ·T1

have the same dth power in Brd(C
×). So the relations (5) already imply that R2d

maps to 1 in Brd. Conjugating them with R shows that the images of T1T2 · · ·Td−1

and Td−1Td−2 · · ·T1 in Brd are invariant under the cyclic permutation (0, 1, . . . , d−1).

(By suppressing R and adding the cyclic invariance we get a presentation of Brd in

terms of the Ti’s. The cyclic invariance also allows us to eliminate another generator

and this then leads to a presentation due to Fadell-Van Buskirk in [15].) Finally, the

braid class group BCld is gotten by putting Rd ≡ 1.
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5.2. Action of a centrally extended braid class group. We continue with

the situation of Section 4. We use the presentation of the braid class group BCl12 with

generators R = η, T0, . . . , T11 subject to the relations (3), (4), (5) (and η12 = 1). The

loop defining T = T0 can be represented by a homeomorphism of the pair (P1, µ12)

with support in a neighborhood U of the arc from 1 to e2π
√
−1/12, the loop defining

R is represented by η. This homeomorphism lifts uniquely over π : Co → P1 to a

homeomorphism with support in π−1U . Let T̂ denote its isotopy class in the group

of homeomorphisms of Co that commute with the C6-action. (Perhaps we should

remark that T̂ is also the monodromy that we get from a Milnor fibration: if we let

the two points of ramification 1, e2π
√
−1/12 coalesce along the segment that connects

them, then the C6-covers acquire a singularity with local equation w6 + ζ2 (an A5-

singularity) and T̂ is the monodromy of this degeneration.)

The action of T̂ on H1(Co) will be a Z[C6]-linear automorphism that preserves the

intersection pairing. Hence T̂ will also act on the O-module H1(Co)O and preserve

the Hermitian form ψ defined in Section 4.1. Let us make these actions explicit in

terms of Pham’s basis. A suitable representative T̂ (in the given isotopy class) will

act on 1-chains on Co with boundary supported by the π-preimage of 0 and the 12th

roots of unity. Clearly, T̂ will not affect the class of ηie if i 6= 0, 1 (mod 12). It is also

easily seen that T̂ maps the class of ηe to that of e. On the other hand T̂e will be

represented by the path which first follows e, stops just before 1, makes then a full

counterclockwise loop around the ramification point over 1, then returns to a point

over 0, and finally follows a lift over the segment [0, e2π
√
−1/12]. From this description

it follows that this path is as a 1-chain homologous to (1− τ + τη)e.

Corollary 5.1. The monodromy operator T̂ acts on H1(Co) as follows:

T̂ (ηie)− ηie =





−(1 + τ)e if i = 0,

e if i = 1,

τe if i = −1,

0 otherwise.

It is in particular of order 6. Its action on H1(Co)O is the given by the complex

reflection

T̂O(x) = x− 1
3 (1 + ω)ψ(x, e)e = x+ ω−1θ−1ψ(x, e)e

of order 3.

Proof. The first statement follows in a straightforward manner from the fact

that e = (1 − τ)(1 − η)e, our computation of T̂ (ηie), and the Z[C6]-linearity of T̂ .

The second follows from the first if we bear in mind the Formulae 1 for ψ(ηie, e) =

ψ(e, η−ie). �

Consider the mapping class group B̂Cl12 of C6-equivariant isotopy classes gen-

erated by T̂ and C6 × C12. So B̂Cl12 is a central extension of BCl12 by C6. Let
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T̂k := ηkT̂ η−k ∈ B̂Cl12, k ∈ Z/12. These elements also obey the braid relations

T̂kT̂k+1T̂k = T̂k+1T̂kT̂k+1, k ∈ Z/12,

T̂kT̂l = T̂lT̂k, k, l ∈ Z/12, k − l 6= ±1.
(6)

In view of the relations (5) it is natural to put

R̂ := T̂1T̂2 · · · T̂11, R̂∗ := T̂11T̂10 · · · T̂1.

Lemma 5.2. We have R̂ = τη and R̂∗ = η−1.

Proof. From the definitions we find that R̂ = (ηT̂ )11η and R̂∗ = η−1(T̂ η−1)11.

We know a priori that (ηT̂ )11 and (T̂ η−1)11 are covering transformations, hence it is

enough to show that these elements act on H1(Co) as resp. τ and 1. This is verified

in a straightforward manner using Corollary 5.1. �

So the T̂i’s generate all of B̂Cl12. It also follows that B̂Cl12 is a nontrivial central

extension of BCl12.

Recall from Section 4 that we identified H1(Co)O with the hermitian rank 10

O-module Λ. We noted in Remark 4.4 (see also the more precise identification in the

Appendix) one finds that the form ψ on Λ has hyperbolic signature (9, 1). Since the

action of B̂Cl12 in H1(Co) preserves the Z[C6]-module structure and the sesquilin-

ear form, we have an induced monodromy representation B̂Cl12 → U(Λ) with R̂R̂∗

mapping to ω. This drops to a projective representation BCl12 → PU(Λ).

Theorem 5.3 (Allcock, [2]). The monodromies

ρ : BCl12 → PU(Λ) and ρ̂ : B̂Cl12 → U(Λ)

are surjective.

Corollary 5.4. Every unitary automorphism of Λ comes from a symplectic

automorphism of H1(Co) that commutes with the C6-action.

It follows from 5.1 that in either case the image of T̂i has order three. So if

we define B̂Cl12[3] as the quotient of B̂Cl12 by the relations T̂ 3
i ≡ 1 and define

BCl12[3] similarly, then the monodromy representations factorize over homomor-

phisms B̂Cl12[3] → U(Λ) and BCl12[3] → PU(Λ). We shall see that these are iso-

morphisms.

6. Satake-Baily-Borel compactification

Let V be a complex vector space equipped with a Hermitian form ψ : V ×V → C

of hyperbolic signature (n, 1), with n ≥ 2. Denote by L = L(V ) ⊂ V the set of

v ∈ V with ψ(v, v) < 0. Then its projectivization B = B(V ) ⊂ P(V ) (a complex

ball) is a symmetric space for the projective unitary PU(V ). We regard L as an

equivariant C×-bundle over B. For any integer k we denote by L(k) the line bundle

defined by the representation of C× on C given by z ∈ C× 7→ zk. Then L(n + 1)
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is equivariantly isomorphic to the canonical bundle of B. (To see this, observe that

if p ∈ B is given by the negative definite line L ⊂ ΛC, then the tangent space of

B at p is canonically isomorphic to Hom(L,ΛC/L) and hence the determinant line

of the cotangent space with Ln+1 ⊗ det(ΛC)−1.) So the canonical bundle of B is

SU(V )-equivariantly isomorphic to L(n+ 1).

6.1. Suppose V has also the structure of a vector space over an imaginary qua-

dratic number field K = Q(
√
−d) in C (d a positive square free integer), such that ψ

is defined over K and let be given an arithmetic subgroup Γ of U(VK). Then Γ acts

properly on the C×-bundle L and the analytic orbifold

LΓ := Γ\L.
retains a C× action.

The space of Γ-automorphic forms of weight k is by definition

Ak := H0(B,L(k))Γ.

Its elements may be thought of as Γ-invariant functions on L that are homogeneous

of degree −k on every fiber. The space Ak is known to be finite dimensional for all

k ∈ Z and trivial for k < 0. Observe that Ak = 0 when k is not divisible by the order

of Γ∩K×. (In the case that interests us this order will be 6.) Examples of such forms

are the Poincaré series: if v0 ∈ L, then

F (a) :=
∑

γ∈Γ

ψ(a, γv0)
−k

converges uniformly on compact subsets of L, provided that k ≥ 2 dim(ΛC) = 2n+ 2.

Hence F defines an element of Ak. The direct sum

A• := ⊕k≥0A
k

is a C-algebra of regular functions on LΓ. It is an algebra of finite type whose spectrum

we denote by L∗
Γ. This is a normal affine variety which contains LΓ as an open-dense

subvariety; we therefore call it the automorphic hull of LΓ. The group C× acts on L∗
Γ

with a unique fixed point. The corresponding projective variety at infinity, Proj(A•),
will be denoted by B∗

Γ. As the notation suggests, the underlying spaces are in fact

orbit spaces of a Γ-space extensions L∗ ⊃ L and B∗ ⊃ B. The Satake-Baily-Borel

theory constructs these spaces and we briefly recount how this is done.

A point of ∂B defined over K is called a cusp (of the form ψK). Then the union

B∗ of B and the set of cusps is just the convex hull of the K-points of the closure of

B in P(V ). A nonzero isotropic vector n defined over K defines a cusp [n] ∈ B∗ and

conversely, a cusp defines an isotropic line I ⊂ V defined over K. For such a line I,

let

πI⊥ : V → V/I⊥

denote the obvious projection. If n ∈ I is a generator, then ψ( , n) defines a coordinate

for V/I⊥, so that πI⊥ is basically given by the inner product with n. The image of
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L ⊂ V is the set of generators (V − I⊥)/I⊥. Let L∗ be the disjoint union of L, the

punctured lines πI⊥(L) and a singleton V/V = {∗}. Notice that U(VK) acts naturally

on this union (with ∗ as fixed point). We give L∗ the topology generated by

(i) the open subsets of L,

(ii) unions Ωn ∪ πn⊥(Ωn) with n ∈ VK −{0} isotropic and Ωn ⊂ L is the subset

defined by −ψ(z, z) > |ψ(z, n)|2.
(iii) unions ΩN ∪ ∪n∈Nπn⊥(ΩN ) ∪ {∗} with N ⊂ VK − {0} a finite union of Γ-

orbits of isotropic vectors and ΩN the subset of L defined by the inequalities

−ψ(z, z) > |ψ(z, n)|2, for all n ∈ N .

The group U(VK) acts on L∗ as a group of homeomorphisms. The action of the

central subgroup K× extends in an obvious way to C× so that in fact U(VK).C×

acts. The orbit space Γ\L∗ is the C×-space underlying the automorphic hull (it is not

difficult to verify that the Poncaré series defined above extends continously to L∗).
The cuspidal lines define finitely many (regular) C×-orbits in L∗

Γ, because Γ acts with

finitely many orbits in the set of cusps.

Similarly, the space underlying B∗
Γ is the the C×-orbit space of the Γ-orbit space

of B∗ endowed with the horoball (or Satake) topology: this is the topology of B∗

generated by

(i) the open subsets of B,

(ii) unions P(Ωn)∪{[n]}, where P(Ωn) ⊂ B is of the form−ψ(z, z)/|ψ(z, n)|2 > 1,

with n ∈ VK nonzero isotropic.

6.2. The automorphic hull possesses plenty of totally geodesic hypersurfaces: Sup-

pose that H is a Γ-invariant collection of K-hyperplanes in V of hyperbolic signature

(that is, orthogonal to a positive vector). We assume that Γ has finitely many orbits

in this collection. An example is the case when H is the set of hyperplanes that are

perpendicular to a vector v ∈ VK with ψ(v, v) = k (k a fixed positive integer). For

every H ∈ H, B(H), is totally geodesic subball of B and the collection of these is

locally finite on B. So

L(H) := ∪H∈HL(H)

is closed in L and defines a closed analytic subset L(H)Γ of LΓ. If n > 2, then L∗
Γ−LΓ

is of codimension > 2 in L∗
Γ and an extension theorem implies that the closure L(H)∗Γ

of L(H)Γ is analytic in L∗
Γ. (This is also true when n = 2, but that needs an additonal

argument.)

This will be a C×-invariant hypersurface, hence algebraic. Notice that L(H)∗Γ
supports an effective Cartier divisor if and only if L(H) is defined by a single auto-

morphic form. (That form then will admit a product expansion.)

7. The moduli space of rational curves with 12 punctures

By a smooth C6-curve we will mean a complete nonsingular complex-projective

curve C endowed with an action of the cyclic group C6 that is isomorphic to a curve
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CD with affine equation w6 =
∏

p∈D(z−p), where D is a 12-element subset of C, with

τ(w, z) = (ωw, z) (recall that τ is a fixed generator of C6 and ω = e2π
√−1/6). A more

intrinsic characterization is to say that C has genus 25 and that the C6-action has

12 distinct fixed points, each with (tangent space) character χ, and is free elsewhere.

(The Riemann-Hurwitz formula shows that its orbit space is then a rational curve.)

Given such a smooth C6-curve C, let H1,0(C)χ denote the space of regular differ-

entials α on C on which C6 acts with character χ, that is, which satisfy τ∗α = ω−1.α.

We claim that H1,0(C)χ has dimension one. To see this, represent C by an affine

equation w6 =
∏

p∈D(z − p) as above. Then w−1dz is a regular differential on C and

τ∗(w−1dz) = ω−1.w−1dz. Notice that the only zeroes of w−1dz are the ramification

points and that each such point appears with multiplicity 4. This implies that it is

the only such form up to scalar: any other must be of the form f(z)w−1dz with f a

rational function. In order that it be regular f should have no poles, so f must be

constant. (If we let the ramification points move in P1, then a period of such a form

is a Lauricella function, see [10].)

The coarse moduli space of the C6-curves under consideration is the same as the

one of 12 element subsets of a projective line (given up to a projective transformation),

and so can be identified with D. This suggests to allow as singular objects the C6-

coverings of a projective line CD → P with D a semistable divisor on P such that over

a point of multiplicity k of D we have a (plane curve) singularity with local equation

zk = w6 (k = 1, . . . , 6). A good substitute for the sheaf of regular differentials is then

the dualizing sheaf ωC .

Lemma 7.1. For a C6-covering C = CD → P with D semistable, the χ-eigenspace

in H0(C, ωC) is one-dimensional. The pull-back of a generator to a normalization of

C is a logarithmic differential whose polar set is the preimage of multiplicity 6 locus

of the discriminant.

Proof. Choose an affine equation for C as before. First note that w−1dz lies

in H0(C, ωC)χ. At a point of multiplicity k, a local equation of C is zk = w6. A

straightforward calculation shows that the pull-back of w−1dz under normalization

has in each the preimage of this singularity a zero of order 4, 1, 0, 0, 0,−1 for k =

1, 2, 3, 4, 5, 6. Any other element of H0(C, ωC)χ is of the form f(z)w−1dz and as in

the smooth case we find that f cannot have any poles, hence must be constant. �

Lemma 7.2. The orbifold line bundle LD∗ over D∗ is naturally isomorphic to the

coarse moduli space of pairs (C,α⊗6) with C a C6-curve with semistable discriminant

divisor and α ∈ H0(C, ωC)χ.

Proof. We use our fixed two dimensional vector space Π equipped with a gener-

ator ζ of ∧2Π. Given a semistable F ∈ Π12, regard F as a homogeneous function on

Π∗. Then w6 = F defines a degree 6 covering of Π∗. It is an affine surface with good

C×-action (so that w has weight 2) whose curve at infinity is a C6-curve C as above.
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Then w−1ζ is a C×-invariant rational form whose residue at infinity, α, is a nonzero

element of H0(C, ωC)χ. So α⊗6 is the residue of w−6ζ⊗6 = F−1ζ⊗6. Think of F−1

as the linear form on the line CF in Π12 spanned by F which takes the value 1 on F .

The SL(Π)-orbit of such a linear form defines an element of the complement of the

zero section of LD∗ and vice versa. Since the constructions are SL(Π)-equivariant, we

thus get a map from the complement of the zero section of LD∗ to the moduli space

in question. It is easy to see this this extends to an isomorphism of LD∗ to the moduli

space. �

Let C be a smooth C6-curve as above. The intersection pairing identifies H1(C)

with H1(C) as Z[C6]-modules with symplectic form. Since H1(C) is isomorphic (as a

Z[C6]-module with symplectic form) to A, the choice of such an isomorphism induces

an isomorphism of Hermitian O-modules Λ = AO → H1(C)O . We shall refer to a

Hermitian isomorphism Φ : Λ → H1(C)O as a Λ-marking of the C6-curve C. By

Corollary 5.4 such a marking always comes from a sesquilinear isomorphism A →
H1(C).

Lemma 7.3. The automorphism group of the C6-curve C acts faithfully on the

quotient H1(C)O.

Proof. This is clear for the group of covering transformations. Any such au-

tomorphism that is not a covering transformation must permute the ramification

points nontrivially. It is easy to see that such an automorphism acts nontrivially on

H1(C)O . �

This implies that a Λ-marked C6-curve has no automorphisms. Hence there is fine

moduli space D̃ in the analytic category of these objects. It is an analytic manifold of

dimension 9 (use three of the ramification points as coordinates for the projective line

C6\C; the other nine then run over an open subset of C9) and comes with an evident

action of the unitary group U(Λ) of Λ: u ∈ U(Λ) sends (C,Φ) to (C,Φu−1). This

action is proper and the orbit space can be identified with D. Lemma 7.2 suggests

we also consider the moduli space L1/6

D̃ of triples (C,Φ, α) consisting of a Λ-marked

genus C6-curve (C,Φ) and an element α ∈ H0(C, ωC)χ. It is clear that the projection

L1/6

D̃ → D̃ is a U(Λ)-equivariant line bundle.

Lemma 7.4. The morphism D̃ → D ⊂ Dst extends naturally to a branched U(Λ)-

covering D̃st → Dst. Moreover, the U(Λ)-equivariant line bundle L1/6

D̃ → D̃ extends

naturally to a U(Λ)-equivariant line bundle L1/6

D̃st
→ D̃st.

Proof. Let D be a stable effective degree 12 divisor in C (so all multiplicities

≤ 5). Given a neighborhood U of D in the space of effective degree 12 divisors, denote

by U ′ ⊂ U the divisors that are reduced. Then D′ ∈ U ′ 7→ H1(CD′)O defines a locally

constant sheaf of O-modules. If D has multiplicities 5 ≥ n1 ≥ n2 ≥ · · ·nr ≥ 1 (so
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that
∑
ni = 12), and U is sufficiently small, then the local monodromy group is

isomorphic to subgroup of
∏

i U(Λni−1). Since the ranks ni − 1 are all ≤ 4, the latter

is finite by Subsection A.1, and hence so is the monodromy group. The assertions of

the lemma are a formal consequence of this fact. �

Remark 7.5. Closer inspection shows that there is in fact a moduli interpretation

of the added points: an element of D̃st is represented by a pair (C,Φ), where C is a C6-

curve with stable ramification divisor and Φ : Λ→ H1(C)O is a certain epimorphism

ofO-modules. The kernel of Φ is isomorphic to an orthogonal direct sum of sublattices

Λn1−1 ⊥ Λn2−1 ⊥ · · · and Φ is given up to composition with an element of the local

monodromy group
∏

i U(Λni−1). A point of L1/6

D̃st
is obtained by also giving an element

of H0(C, ωC)χ.

Remark 7.6. If D is stable, then we have a square norm on H0(C, ωC)χ defined

by

α ∈ H0(C, ωC)χ 7→ θ

∫

C

α ∧ ᾱ.

In case D is reduced, then this is just the restriction of our Hermitian form −ψ via

the embedding

H0(C, ωC)χ ⊂ H1(C; C)χ = C⊗O H1(C)O .

This norm blows up over the point d∞. To see this, use the fact that if D becomes

strictly semistable, then w−1dz becomes a differential on the normalization of CD

with poles of order one. So the integral of the generating section defined by |w−1dz|2
blows up over d∞.

We now define a period mapping. Let (L1/6

D̃ )× be the complement of the zero

section of L1/6

D̃ . Let L be as defined in Section 6 with V = ΛC, K = Q(ω) = Q(
√
−3)

and Γ = U(Λ). If (C,Φ, α) represents a point of (L1/6

D̃ )×, then assign to this triple

the vector Φ−1(α). This defines the period mapping:

P̃er : (L1/6

D̃ )× → L.

This mapping is clearly equivariant with respect to the actions of C× and U(Λ)

and both its domain and range are analytic manifolds of dimension 10. This period

mapping extends across the locus with finite monodromy: we have an extension

P̃er : (L1/6

D̃st
)× → L.

Indeed, if a point of the domain is represented as in Remark 7.5 by a triple (C,Φ, α),

then Lemma 7.1 implies that α defines a nonzero element of H1(C)χ and the image

of (C,Φ, α) is the point of L ∩ ker(Φ)⊥ that is mapped by Φ to α. For the details we

refer to [10]. The period mapping drops to a morphism

Per : (L1/6

D̃st
)→ LU(Λ),
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and if we pass to C×-orbit spaces, we also get

P(P̃er) : D̃st → B and P(Per) : Dst → BU(Λ).

The following theorem is a special case of a theorem of Deligne-Mostow [10].

Theorem 7.7 (Deligne-Mostow [10], see also [8]). The period map P̃er estab-

lishes a U(Λ)-equivariant isomorphism between the C×-bundle (L1/6

D̃st
)× and L. The

induced isomorphism Dst → BU(Λ) extends to an isomorphism between the GIT com-

pactification D∗ ⊃ Dst and the Baily-Borel compactification B∗
U(Λ) ⊃ BU(Λ).

Statement and proof are somewhat hidden in the paper and so we give an

Outline of proof. Since P̃er is C×-equivariant, it is enough to prove that

P(P̃er) : D̃st → B is an isomorphism. To this end, one first shows that P(P̃er) is

a local isomorphism in codimension one (this is based on simple type of local Torelli

theorem) and has discrete fibers. This implies that P(P̃er) has no ramification. So

P(P̃er) is a local isomorphism every where. We wish to show that P(P̃er) is proper;

the simple connectivity of B will then imply that P(P̃er) is an isomorphism. This

will follow if we prove that P(Per) : Dst → BU(Λ) is proper. In other words, we want

to show that P(Per) extends continuously to the one-point compactifications of its

domain and range.

Let D be a strictly semistable divisor of degree 12 on P = P1. So D has a point of

multiplicity 6. Let γ be a small oriented circle around this point. Then the preimage

of γ in CD consists of 6 disjoint circles. If γ̃ is one of these, then
∫

γ̃
w−1dz is by 7.1 the

residue of a differential with a simple pole and hence nonzero. The cycle γ̃ subsists

under small deformations of D and for D′ in a neighborhood of D the corresponding

integral
∫

γ̃(D′)
w−1dz is then analytic in D′ and nowhere zero. If D′ is reduced, then

γ̃(D′) defines an isotropic element of H1(CD′)O. On the other hand, by Remark

7.6,
∫

CD′
|w−1dz|2 tends to +∞, as D′ approaches D. So the same is true for the

expression ∫
CD′
|w−1dz|2

|
∫

γ̃(D′) w
−1dz|2 .

It now follows from our explicit description of the Satake topology in Section 6 that

the image of D′ under P(Per) tends to the cusp of B∗
U(Λ), as D′ tends to D. This

proves that P(Per) : Dst → BU(Λ) is proper.

So both P(P̃er) : D̃st → B and P(Per) : Dst → BU(Λ) are isomorphisms. Since D∗

and B∗
U(Λ) are normal one point compactifications of Dst and BU(Λ) respectively, the

continuous extension D∗ → B∗
U(Λ) is in fact an isomorphism. �

We can also tell what the image of D is. Let us call a hyperplane in Λ a mirror if

it is the orthogonal complement of a 3-vector. A mirror has hyperbolic signature and

by Lemma A.6 any two mirrors are U(Λ)-equivalent. So the collection H of mirrors

defines an irreducible hypersurface B(H)∗U(Λ) in B∗
U(Λ). If we let of 12 distinct points
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in P1 two coalesce, then we get a curve germ in D∗ with generic point in D and closed

point a generic point in D∗ − D. Associated to this there is a ‘vanishing 3-vector’

which shows that D∗ −D is mapped to B(H)∗U(Λ). Since both D∗ −D and B(H)∗U(Λ)

are irreducible we find:

Theorem 7.8. The period mapping defines an isomorphism

(D∗,Dst,D) ∼= (B∗
U(Λ),BU(Λ),BU(Λ) − B(H)U(Λ)).

Remark 7.9. The geometric invariant theory quotient D∗ is in a natural way

stratified by the multiplicities of an effective degree 12 divisor on P . The strata in

Dst are indexed by partitions of 12 with parts at most 5, whereas the point D∗−Dst

corresponds to the partition (62) of 12. The ball quotient B∗
U(Λ) is also stratified

in a natural way by mirror intersection pattern. The orthogonal complement in

Λ of an intersection of mirrors, which is not empty inside L, is isomorphic to a

primitive sublattice of Λ generated by 3-vectors. As such it is isomorphic to a lattice

Λk1 ⊥ Λk2 ⊥ · · · with k1 ≥ k2 ≥ · · · (see Appendix), and we assign to it the partition

(k1 + 1, k2 + 1, · · · ) of 12. With respect to this geometric stratification of D∗ and

this arithmetic stratification of B∗
U(Λ) the period mapping becomes an isomorphism

of stratified spaces.

Remark 7.10. We observed in 2.3 that the discriminant hypersurface D∗−D has

degree 11 · 12 (with respect to the LD∗). Hence the locally symmetric hypersurface

B(H)∗U(Λ) is defined by a section of L(6 · 11 · 12). Since L→ LU(Λ) ramifies with order

three along L(H), it follows that the divisorial preimage of L(H)U(Λ) is 3L(H). So

L(H) is given by an automorphic form of weight 2 · 11 · 12 with a character of order

3. Since Allcock finds this degree to be 44 [2], we assume that his weight is 1/6 of

ours (the center of U(Λ) consists of the 6th roots of unity and so the degree of any

nonzero U(Λ)-automorphic form on B is divisible by 6).

Corollary 7.11. The kernel of the monodromy representation ρ : B̂Cl12 → U(Λ)

is the normal subgroup generated by T̂ 3
0 so that ρ induces isomorphisms B̂Cl12[3] ∼= Γ

and BCl12[3] ∼= PU(Λ).

Proof. The group BCl12 may be identified with the orbifold fundamental group

of D. Via the orbifold isomorphism D ∼= BU(Λ) − B(H)U(Λ), we then get a BCl12[3]-

covering. This covering factorizes over a covering of B − B(H) with the kernel of

BCl12[3]→ PU(Λ) as covering group.

Since T̂ 3
0 is trivial in B̂Cl12[3], a simple loop around a deleted hyperplane has

monodromy of order three, and so the covering over B−B(H) extends as an unramified

covering over the smooth part of B(H): we now have a connected unramified covering

over B − B(H)sing. Since B − B(H)sing is simply connected, this covering must be

trivial. We conclude that BCl12[3] → PU(Λ) is injective. From this it follows that

B̂Cl12[3] ∼= U(Λ) is injective as well. �
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8. Rational elliptic surfaces and the Eisenstein curve

Recall from our discussion of Kodaira’s theorem 3.1 that the commutator sub-

group of PSL(2,Z) defines a modular curve Eo of genus one with a simple cusp. We

regard it as an elliptic curve by taking the cusp as its origin. It comes with a faithful

action the abelianization C6 of PSL(2,Z), and so this elliptic curve has J-invariant 0.

In other words, it can be analytically obtained as the quotient C/O with the gener-

ator τ ∈ C6 acting as complex multiplication by ω. So Z[C6] acts on H1(Eo) via O.

We will refer to Eo as the Eisenstein curve. Since τ acts on the tangent space of the

origin with eigenvalue ω, the same is true for the action of τ∗ on H1,0(E0). It follows

that H1(E0,C)χ = H0,1(E0).

The natural map to the J-line, Eo → P1, ramifies over 0 (two points of order

three), 1 (three points of order two) and ∞ (total ramification).

Lemma 8.1. Let X → P be a rational elliptic surface with reduced discriminant

D∞. Let J : P → P1 be its modular function and let C be the normalization of

P ×P1 Eo. Then the C6-covering C → P is the one considered in Section 7: it is only

ramified over D∞, the ramification over D∞ is total and τ acts in the tangent space

of each ramification point as multiplication by ω.

Proof. It is clear that the projection C → P is a C6-covering. There is no

ramification outside the discriminant divisor J∗(∞) since J is there locally liftable to

a morphism to Eo. The remaining statements follow easily. �

A special feature of this situation is that C comes with a C6-equivariant morphism

J̃ : C → Eo. Its degree is clearly 12.

Theorem 8.2. In the situation of Lemma 8.1 we have:

(i) The morphism J̃ : C → Eo induces an embedding J̃∗
O : H1(Eo)O → H1(C)O

of O-modules that multiplies the hermitian form by 12,

(ii) the line H1,0(C)χ is perpendicular to the image of J̃∗
O and

(iii) there exists a 6-vector z ∈ H1(C)O such that the image of J̃∗
O is the O-

submodule H1(C)O spanned by 2θz.

Proof. The first assertion follows from the fact that J̃ is C6-equivariant and of

degree 12 and the second from the observation that H1(Eo,C)χ = H0,1(Eo).

The last clause requires more work. In view of the connectedness of M, it is

enough to prove that assertion for one particular rational elliptic surface. We take

the case studied in Section 4, where D∞ ⊂ P1 is the set of 12th roots of unity and

Co → P1 is the curve with C6 × C12-action. As noted in Example 2.3, D∞ is the

discriminant divisor of an elliptic surface, but we will exhibit such a fibration more

directly. Consider the action of the (order 12) subgroup G ⊂ C6 × C12 generated

by τ3η. The orbit space G\Co is a C6-covering of C12\P1. If we identify the latter

with P1 by means of the affine coordinate z12, then we see that G\Co → P1 has total
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ramification over 1, a fiber with two points over 0 and a fiber with three points over

∞. These properties imply that G\Co has genus one and more than that, namely

that G\Co is C6-equivariantly isomorphic to the Eisenstein curve Eo. The Eisenstein

curve supports a C6-equivariant elliptic fibration. This pulls back to a C6-equivariant

elliptic fibration over Co and that in turn descends to an elliptic fibration on P1. We

therefore denote the resulting C6-morphism J̃ : Co → Eo. The induced map on the

first cohomology J̃∗ : H1(Eo) → H1(Co) is C6-equivariant. We identify the Z[τ, η]-

module H1(Co) with the algebra A defined in Section 4. It is clear that the image of

J̃∗ is the O-submodule spanned by

11∑

i=0

(τ3η)i ∈ A.

The image u of this element in

H1(Co)O ∼= AO = O[η]/(

11∑

i=0

ηi,

11∑

i=0

(ωη)i)

is easily calculated to be of the form 2θz, with

z = ω−1(η2 + η8) + (η3 + η4 + η9 + η10) + ω(η5 + η11).

We claim that u is a 12 · 6-vector: this is a straightforward computation or one

invokes Example 4.1 and the fact that the Hermitian form is multiplied by 12. So z

is a 6-vector. �

The last assertion of the above proposition implies that the condition for a 12

element subset of P1 to be the discriminant of a rational elliptic surface imposes a

linear constraint on the period map defined in Section 7. We investigate this in more

detail in the next section.

9. Moduli of rational elliptic surfaces II

From now on, we make free use of notions, notation and results of the theory of

O-lattices, as collected and proved in the Appendix.

In the Appendix we fix a sublattice Λo that is the orthogonal complement of

a 6-vector zo ∈ Λ. (It is proved in Proposition A.6 that all such sublattices are

U(Λ)-equivalent.) According to Proposition A.8 the stabilizer of Λo in U(Λ) restricts

isomorphically to the unitary group U(Λo) of Λo. It follows from Proposition A.6 that

U(Λo) has two orbits in the set of primitive 0-vectors in Λo: type (θ) and (0). So the

Baily-Borel compactification B∗
o,U(Λo) adds two points to Bo,U(Λo). We denote them

∞θ and ∞0.

We call a hyperplaneH of Λo a mirror trace if it is the intersection of a mirror of Λ

with Λo and has hyperbolic signature. This amounts to requiring that the orthogonal

complement H⊥ of H in Λ is positive definite and contains the 6-vector zo and a
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3-vector. According to Lemma A.9 the discriminant of H⊥ then takes the values 6, 9,

15 or 18; we denote that number by d(H) and call it the d-invariant of H . A special

role will be played by the mirror traces with d-invariant 6 or 9 as in these cases there

exist 3-vectors r1, r2 in H⊥ such that r1 + r2 spans Λ⊥
o . Proposition A.12 can be

restated as:

Proposition 9.1. Two mirror traces with the same d-invariant are equivalent

under the U(Λo)-action.

We denote the collection of mirror traces by Ho, and those with d-invariant in a

subset S ⊂ {6, 9, 15, 18} by Ho(S). So we get a hypersurface ∆ := Bo(Ho)
∗
U(Λ)o

in B∗
o,U(Λo) that has four irreducible components: ∆(d) := Bo(Ho(d))

∗
U(Λo), d =

6, 9, 15, 18.

The inclusion Lo ⊂ L induces a natural map

L∗
o,U(Λo) → L∗

U(Λ)

that is finite and birational onto a hypersurface of L∗
U(Λ) (it need not be injective

though) so that L∗
o,U(Λo) can be identified with the normalization of this hypersurface.

It is clear that Lo(Ho)
∗
U(Λo) is the preimage of L(H)∗U(Λ) under the map displayed

above.

Let f : X → P be a rational elliptic surface with reduced discriminant. We have

an associated C6-covering C → P together with an equivariant morphism C → Eo.

We say that a Λ-marking Φ : H1(C)O ∼= Λ is adapted if ΦJ̃∗ maps H1(Eo) to the

orthogonal complement of Λo. Rational elliptic surfaces with adapted markings define

analytic covers M̃ and ED̃|M̃ of M and ED|M respectively, the latter with Galois

group U(Λo), the former with Galois group U(Λo) modulo its scalars. The period map

induces an equivariant morphism ED|M̃ → Lo. It follows from the preceding that this

morphism is injective; in fact from Proposition 2.1, Theorem 7.8 and Theorem 8.2 we

get:

Theorem 9.2. The period mapping induces an isomorphism of arrows:

(M∗,M) ∼= (B∗
o,U(Λo),Bo,U(Λo) − Bo(Ho)U(Λ)

o
)

y
y

(D∗,D) ∼= (B∗
U(Λ),BU(Λ) − B(H)U(Λ)).

According to 3.4, the boundary of M in M∗ consists of four irreducible hyper-

surfaces of M∗: M∗(I2), M∗(II), M∗(I9) and M∗(I∗4,4), whereas the irreducible

components of ∆ are ∆(18), ∆(15), ∆(9), ∆(6). The period isomorphism 9.2 must

set up a bijection between these two sets. Something similar should hold for the strata

M∗(I6) andM(I∗0 ) lying over the two cusps ∞0 and ∞θ of B∗
U(Λ). We complete the

picture by determining which goes to which.
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Theorem 9.3. The period isomorphism maps the irreducible components denoted

M∗(I2), M∗(II), M∗(I∗4,4), M∗(I9) onto ∆(18), ∆(15), ∆(9), ∆(6) respectively.

Moreover, the singletons M∗(I∗6 ) and M(I∗0 ) are mapped to {∞θ} and {∞0} respec-

tively.

Before we begin the proof, we note that this theorem is equivalent to the corre-

sponding statements for MK (instead ofM∗), for by definitionM∗(F ) is the image

of MK(F ) under the modification MK → M∗. We will prove the theorem in this

form.

Let (J : P → P1, D) represent a closed point of MK and let C → P be the

corresponding µ6-covering. Consider a deformation of (J : P → P1, D) over a smooth

curve germ (D, o) with smooth generic fiber. After a finite base change this is covered

by a smoothing of C:

C → P → P1 × D,

where the first morphism is the quotient by an µ6-action and the second is of degree

12. We observed in 3.2 that there is a natural µ6-equivariant morphism C → Eo.

In a situation like this there is a standard procedure for comparing the cohomology

of the special fiber and the general fiber: the pull-back of C → D over the universal

cover D̃× of D× := D − {o}, C
D̃× → D̃×, is homologically trivial and after a choice

of an adapted Λ-marking we get an isomorphism of O-modules H1(C
D̃×)O ∼= Λ such

that the image of H1(Eo)O is a multiple of zo. This gives rise to a period morphism

D̃× → Bo. The inclusion C ⊂ C is a homological isomorphism, and hence the diagram

C ⊂ C ← C
D̃× induces a homomorphism of O-modules Λ → H1(C)O such the image

of O2θzo is mapped onto H1(Eo)O.

Proof of 9.3. Consider the case when the closed fiber represents a general point

of MK(I2), MK(II), MK(I9) or MK(I∗4,4). The image of such a point in D∗ is a

semistable orbit of a degree 12 divisor on P1 of type (2, 110), (2, 110), (3, 19), (22, 18)

respectively, as explained in Section 3. So its image under the period isomorphism is

going to be perpendicular to a (primitive) sublattice L of Λ of type Λ1, Λ1, Λ2, Λ1×Λ1

respectively, by Section 7. In the last two cases, the central component of Pc is in

J−1(∞) and so the morphism H1(Eo)→ H1(C)→ H1(Cc) will be zero. This implies

that in these cases L contains zo. This shows that in terms of the notation of Lemma

A.9 L is of type δ6 in the MK(I9)-case and of type δ9 and in theMK(I∗4,4)-case. So

we then find a point of ∆(6) and ∆(9) respectively.

We now show that for I2 we cannot end up with a point of ∆(15). Since we have

a period isomorphism, it then will follow that we must get a point of ∆(18) and that

in the remaining case II we get a point of ∆(15). We note that in the I2-case, the

lattice L ∼= Λ1 is accounted for by H1(C′)O, where C′ is the irreducible component of

C that lies over∞. Since the map C → Eo is constant on C′, it follows that L ⊂ Λo.

It follows that L+Oz0 is of type δ18. A priori this lattice might be imprimitive, but

it certainly does not contain a lattice of type δ15.
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We know that both MK(I6) and MK(I∗0 ) map to d∞ ∈ D∗. So they will map

to distinct cusps of B∗
o,U(Λo). Hence it is enough to show that MK(I6) maps to ∞θ:

then MK(I∗0 ) must necessarily map to the other cusp ∞0. A similar argument as

used for MK(I2) shows that a generic point of MK(I6) is mapped to cusp of B∗
o

that is perpendicular to a sublattice L ⊂ Λo isomorphic to Λ5. Then I := L ∩ L⊥

is a primitive isotropic line whose image in B∗
o is the cusp in question. A primitive

isotropic line of type (0) is not perpendicular to a lattice of type Λ5, whereas one of

type (θ) is. So MK(I6) maps to a cusp of type θ. �

From Corollary 2.6 we deduce a description of the Miranda compactification in

terms of automorphic forms:

Theorem 9.4. The graded C-algebra of automorphic forms on Bo with values in

a tensor power L(k) with arbitrary poles along the hyperball arrangement Bo(Ho(6, 9))

is zero in negative degrees and of finite type. Its proj reproduces the Miranda com-

pactifiation of Bo,U(Λo) − Bo(Ho(6, 9))U(Λo).

This means that the hypersurface ∆(6) ∪∆(9) in Bo,U(Λo) can never be the zero

set of an automorphic form, since the inverse of such a form would produce an element

of the above algebra of negative degree. This is in contrast with ∆ itself (see [2]).

Remark 9.5. An intersection of mirror traces in Bo of d-invariant 6 or 9 is by def-

inition the orthogonal complement of a positive definite sublattice L ⊂ Λ spanned by

zo and 3-vectors of d-invariant 6 or 9. According to Proposition A.11 there are, apart

from the mirror traces themselves, three types: (6, 9), (9, 9) and (6, 9, 9), in which

cases L is spanned by zo and 3-vectors of the indicated d-invariant. It also follows

from Proposition A.11 that each of these three types represents a single U(Λo)-orbit.

So these define irreducible subvarieties ∆(6, 9), ∆(9, 9), and ∆(6, 9, 9) of B∗
o,U(Λo) of

codimension 2, 2 and 3 respectively. Using Corollary 3.4 one identifies these subvari-

eties in M∗ asM∗(I ′8), M∗(I ′′8 ) andM∗(I7) respectively.

10. Modification of the Baily-Borel compactification.

Although this section is mostly of a descriptive nature, it may help to put our

results into perspective: we outline an extension of the Baily-Borel theory which

produces the compactifications obtained here in an algebro-geometrical setting in a

canonical fashion. This is closely related to the construction described in [21].

10.1. Modifications defined by arrangements. Suppose we are given a com-

plex manifold X of dimension n and a collection H of smooth hypersurfaces of X that

is locally finite on X and is arrangementlike, in the sense that at each point of X there

exist local analytic coordinates such that each H ∈ H passing through that point is

given by a linear equation. Denote byD = ∪H∈HH their union. There is a simple and

straightforward way to find a modification X̃ → X of X such that strict transforms
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of the members of H get separated: if D(k) denotes the union of the codimension k

intersections of members of the H, then first blow up D(n), then the strict transform

of D(n−1), and so on, finishing with blowing up a strict transform of D(2):

X = X̃n ← X̃n−1 ← · · · ← X̃1 = X̃.

If we denote the strict transform of H in X̃k by H̃k, then the collection {H̃k}H∈H is

also arrangementlike and has no intersections of codimension > k. In particular, the

{H̃1}H∈H are disjoint. It is clear that the blowup is an isomorphism over Ω := X−D.

Lemma 10.1. The morphism X̃ → X is obtained by blowing up the fractional

ideal
∑

H∈HOX(H).

Proof. Let k be the maximal integer for which D(k) is nonempty. So X̃k → X

is an isomorphism, but X̃k−1 → X̃k is not. So D(k) is locally the intersection of k

members ofH in general position. From this it follows that the blowup of ID factorizes

over X̃k−1. The pull-back of
∑

H∈HOX(H) to X̃k−1 is up to a twist with a principal

ideal equal to
∑

H∈HOX̃k−1
(H̃k−1). The lemma now follows with induction. �

A case of interest is when X is the projective space P(V ) of a complex vector

space V . If H ∈ H is given by the linear form φH on V , then the blowup above

is simply obtained as follows: consider the morphism Ω → P(CH) defined by [z] 7→
[(φH(z)−1)H∈H] and take the closure of its graph in P(V )× P(CH).

Assume now that in this situation the collection H is nonempty and that the

H ∈ H have no point in common (in other words, H contains a set of coordinate

hyperplanes). Then the projection of P̃(V ) → P(CH) is birational onto its image.

That image can be regarded as a projective completion of the hyperplane complement

Ω and we therefore denote it by Ω̂. (In case V = Cn+1 and H consists of the set of

coordinate hyperplanes, then the resulting birational map Pn
99K Pn is the natural

n-dimensional generalization of the standard Cremona transformation.) The variety

Ω̂ comes with a natural stratification {Ω(W )}W into smooth subvarieties. Here the

index set runs over all linear subspaces W ⊂ V with the property that P(W ) is an

intersection of members of H. To be precise: Ω(W ) is the image of Ω under the

projection Ω → P(V/W ). So it is in fact the hyperplane complement in P(V/W )

defined by the collection of H ∈ H that pass through P(W ).

The variety Ω̂ defined in the above example always exists as a locally compact

Hausdorff space. If X is projective, then conditions can be specified under which Ω̂

will exist as a projective variety. Let us explain briefly how.

The connected components of the indecomposables of the Boolean algebra gen-

erated by the members of H define a stratification of X . This stratification is analyt-

ically locally trivial. In a similar fashion, the collection of irreducible components of

the preimages of the members of H determine a stratification of X̃. The preimage of

a stratum of X is a union of strata of X̃ → X and it is easy to see that this preimage

is trivial over the given stratum as a stratified variety. We consider now a somewhat
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coarser partition of X̃ whose members are indexed by the irreducible components of

intersections of members of H, in which we include the empty set as index (this will

no longer be a stratification in general: the closure of a member need not be union

of parts): if S is an irreducible component of some D(k) with k ≥ 1, then let PS be

the closure of the preimage of S − (S ∩D(k+1)) in X̃ minus the points that lie in the

closure of the preimage of D −D(k) and P∅ will be the preimage of Ω. So the open

member of this partition can be identified with Ω, and the closed members of this

partition are the strict transforms of the members of H. For S 6= ∅, the morphism

PS → S is trivial: PS is then canonically a product S×Ω(S), where Ω(S) is the com-

plement of a hyperplane configuration in a projective space. This structure defines

an equivalence relation on X̃: declare two points of X̃ to be equivalent if they are in

the same member PS of the partition and have the same image in Ω(S) (when S = ∅,
read this as: have the same image in Ω). This equivalence relation is closed and the

quotient space Ω̂ is locally compact Hausdorff.

If X is projective, and we seek to put a projective structure on Ω̂, then the

above example suggests we look for a line bundle L on X with the property that the

restriction of L to H is isomorphic to the normal bundle of H . Its pull-back to X̃ will

then be trivial on the equivalence classes and so we would like that
∑

H∈H L(−H) is

generated by its sections and that these sections separate the equivalence classes on

X̃. In fact, it would be enough to know that L restricted to H is isomorphic to a

positive power nH of the normal bundle ofH and then we would ask the corresponding

property for
∑

H∈H L(−nHH).

10.2. Intermediate modification of a cusp. We will look at an analogue of

this situation in the case where X is a locally symmetric variety (a quotient of a

bounded symmetric domain by an arithmetic automorphism group) and the hyper-

surfaces H are totally geodesic. We then also wish to understand what happens if

we take the closure D∗ of D in the Baily-Borel compactification X ⊂ X∗ and how

the blowup over X extends across that compactification. The irreducible bounded

symmetric domains admitting totally geodesic complex hypersurfaces are the domains

of type IV (associated to a real orthogonal group of type SO(2, n)) and the complex

balls. Only the complex balls are relevant here, and as they are easier to deal with

than the type IV domains, we concentrate on them.

So let us take up the situation of Section 6. It is known [5] that Γ has a neat

subgroup of finite index (this means that this subgroup has the property that the

subgroup of C× generated by the eigen values of its elements has no torsion). For

the purposes of this discussion, there is no loss in generality when passing to such a

subgroup and therefore we assume that Γ is neat from the start.

Let us now agree on a bit of notation. If W ⊂ V is a degenerate positive subspace

defined over K with radical I, then B is disjoint with P(W ) and so the projection

P(V ) − P(W ) → P(V/W ) is defined on B. We denote the image by B(W ) and the
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projection πW : B → B(W ). It is easy to see that B(W ) = P(V/W ) − P(I⊥/W ). So

this is an affine space over I⊥/W .

There is an evident factorization

πW : B
πI−−−−→ B(I) −−−−→ B(W ).

The second projection is one of affine spaces. Let us explicate πI .

Suppose v = (z0, z1, z2, . . . , zn) are K-coordinates for V such that I⊥ is defined

by z0 = 0 and ψ assumes the form

ψ(z, w) = z0w̄n + znw̄0 +

n−1∑

i=1

ziw̄i.

The intersection of the affine hyperplane defined by z0 = ψ(z, en) = 1 with L projects

isomorphically onto B. This intersection is given by ℜ(−zn) > ‖z′‖2, where z′ =

(z1, . . . , zn−1). In terms of these coordinates the projection πI is simply (z′, zn) 7→
z′, and hence a fibration into left half planes, indeed. The topology near the cusp

defined by I is easily described in these terms also: a neighborhood basis of this cusp

intersected with B is the family of shifted fibrations defined by ℜ(−zn) > ‖z′‖2 + a

with a a positive constant. The boundary of such subset, in other words a fiber of

the function ℜ(zn) + ‖z′‖2, is an orbit of the unipotent radical of the U(V )-stabilizer

of I. This unipotent radical is a Heisenberg group and is described in A.7. Since Γ

is neat, the Γ-stabilizer of I, ΓI , is contained in this Heisenberg group and is in fact

a cocompact subgroup of it. So the center of ΓI is infinite cyclic and acts faithfully

by purely imaginary translations in the fibers of πI , whereas the quotient of ΓI by its

center acts faithfully on the affine space B(I) as a lattice of maximal rank. Hence

ΓI\B→ ΓI\B(I)

is a punctured disc bundle whose base is a principal homogeneous space for the com-

plex torus ΓI\I⊥/I. The associated disc bundle can be understood as the ΓI -orbit

space of B⊔ B(I) endowed with a suitable topology with the bundle projection given

by the obvious retraction

ΓI\(B ⊔ B(I))→ ΓI\B(I).

The associated line bundle over ΓI\B(I) has a Riemann form which is the negative

of the form ψ induced on the translation space I⊥/I. This implies that the dual of

this line bundle is ample. So ΓI\B(I) can be contracted analytically in ΓI\(B⊔B(I)).

The result of this contraction is that we added a singleton to ΓI\B. This is the local

model of the Baily-Borel compactification near the cusp attached to I (the added

point is that cusp). The contraction mapping itself is the local model of a well-known

(orbifold) resolution of the Baily-Borel compactification, one that apparently has the

zero section ΓI\B(I) as exceptional divisor.
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Any K-linear subspaceW ⊂ I⊥ which contains I defines an intermediate contrac-

tion and hence an intermediate modication of the cusp as follows. The image of W

in I⊥/I defines a subtorus of ΓI\I⊥/I. This subtorus gives rise to a torus fibration:

ΓI\B(I)→ ΓI\B(W ).

That fibration is the restriction of a contraction

ΓI\(B ⊔ B(I))→ ΓI\(B ⊔ B(W ))

which leaves ΓI\B unaltered. It can be performed in the analytic category for the

same reason as for the full contraction. So W = I⊥ gives the Baily-Borel model and

W = I the natural resolution. We still have a natural retraction

ΓI\(B ⊔ B(W ))→ ΓI\B(W )

and this retraction is locally analytically trivial.

10.3. Compactifications of arrangement type. Now let us return to the

more specific situation of 6.2 (we continue to assume that Γ is neat). For every

H ∈ H, B(H) is totally geodesic subball of B and the collection of these is locally

finite on B. So

B(H) := ∪H∈HB(H)

is closed in B and defines a closed analytic hypersurface B(H)Γ of BΓ. This hypersur-

face is arrangementlike in the sense of 10.1 and hence determines a blowup B̃ → B.

This blowup is Γ-invariant and hence defines a blowup B̃Γ → BΓ of orbit spaces.

We explain how this blowup naturally extends across the Baily-Borel compactifica-

tion. For every isotropic K-line I ⊂ V , let us denote by IH the intersection of I⊥

and the H ∈ H containing I. So I ⊂ IH ⊂ I⊥, with IH = I⊥ in case no H ∈ H
passes through I. The preceding construction attaches to the collection {IH}I an

intermediate modification of the cusps of B∗
Γ. Let us denote this blowup

BH
Γ → B∗

Γ.

Each member H of H passing through I defines an affine hyperplane in B(IH) and

hence an orbit in ΓI\B(IH) under a complex subtorus of codimension one. The closure

of the image of H in ΓI\(B⊔B(IH)) is the preimage of that orbit under the retraction

of ΓI\(B⊔B(IH)) onto ΓI\B(IH). In other words the closure of the divisor B(H)Γ in

BH
Γ is in an obvious sense locally trivial near the boundary of BΓ in BH

Γ . This implies

that the normal crossing resolution of this divisor naturally extends across BH
Γ to give

the sought for extension of the blowup:

B̃H
Γ → BH

Γ → B∗
Γ.

The closure B(H)∗Γ of B(H)Γ in B∗
Γ is a hypersurface and the blowup above has the

virtue that the strict transforms of the irreducible components of this hypersurface

get separated. (This strict transform also supports an effective Cartier divisor.)
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There is a topological contraction of the exceptional locus of B̃H
Γ → B∗

Γ which

is of a very similar nature as our compactification of the hyperplane complement

P(V ) − D described in 10.1 (and is also related to the construction described in

[21]): topologically it is gotten as the Γ-orbit space of a stratified extension Ω̂ of

Ω := B − B(H) as a Γ-space. The strata Ω(W ) of this extension are indexed by

certain subspaces W of V : if I denotes the collection of K-hyperplanes of V that are

isotropic, then W is an intersection of members of H ∪ I. We require that W is not

positive definite or what amounts to the same, that P(W )∩B∗ 6= ∅. The corresponding

stratum Ω(W ) is the image of Ω in P(V/W ). If the algebra of Γ-automorphic forms

on B with arbitrary poles along B(H) is zero in negative degrees and of finite type,

then we believe that the proj of this algebra has Ω̂Γ as underlying topological space,

thus endowing the latter with the structure of a projective variety that makes the

contraction map B̃H
Γ → Ω̂Γ a morphism.

Almost all the compactifications we encountered in this paper appear to be of this

type, as the following examples illustrate (proofs of these statements are omitted).

Example 10.2. The Deligne-Mumford modification D = S12\M0,12 of D∗ = D∗
12

fits in a commutative diagram

B̃H
U(Λ) −→ B∗

U(Λ)
y

y

D −→ D∗

with horizontal arrows the modifications, vertical arrows the inverse period mapping,

and H the collection of mirrors (hyperplanes perpendicular to a 3-vector). The right

vertical arrow is the Deligne-Mostow isomorphism. The left vertical arrow however

is not an isomorphism, but it factors through a ‘minimal’ ball quotient modification

relative to H, which is a variation of the construction described in this section where

only those subspaces in the intersection lattice of H are blown up for which the

orthogonal sublattice is irreducible.

Example 10.3. The modification

MM∗ →M∗

is via the period mapping identified with the modification

B̃
Ho(6,9)
o,U(Λo) → B∗

o,U(Λo),

whereHo is the restriction ofH above to the complexification of Λo andHo(6, 9) ⊂ Ho

the subcollection of hyperplanes of d-invariant 6 or 9.

In this case we have a contraction of the exceptional locus that gives the Miranda

compactification of the U(Λo)-orbit space of Ω := Bo−Bo(Ho(6, 9)). The strata Ω(W )

of the extension Ω̂ for whichW has hyperbolic signature are listed in Proposition A.11.

Using the obvious notation, we find the following cases:
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(0) For a hyperplane W of d-invariant 6 resp. 9, Ω(W ) is a singleton. This

corresponds in MM to the single isomorphism class of a rational elliptic

surface with a I9-fiber, resp. a I∗4 -fiber.

(1) For a codimension two intersection W of d-invariant (6, 9) resp. (9, 9) we get

a one-dimensional stratum Ω(W ) parametrizing rational elliptic surfaces of

type I ′8 (resp. I ′′8 ).

(2) For a codimension three intersection W of d-invariant (6, 9, 9) we get a two-

dimensional stratum Ω(W ) parametrizing rational elliptic surfaces with a

I7-fiber.

The maximal strata come from the cases when W is positive degenerate: if we take

for W the intersection of all members of Ho(6, 9) containing an isotropic line of type

(θ) resp. (0), then Ω(W ) is of dimension 3 resp. 1 and parametrizes rational elliptic

surfaces with an I6-fiber resp. I∗0 -fiber.

Appendix A. Unitary lattices over the Eisenstein ring

In this appendix we collect and prove some properties concerning the lattice Λ.

We advise the reader first to browse through the text and then to consult it when the

need arises.

The lattice Λ is among the lattices considered by Allcock in [2]. Let us begin with

an observation implicit in his paper. Suppose L is a Z-lattice equipped with an even

symmetric bilinear form ( · ) : L×L→ Z and an orthogonal automorphism τ of order

6 that has only primitive 6th roots of unity as eigen values (in other words, τ satisfies

τ2 − τ + 1 = 0). Then L becomes in an obvious manner a torsion free O-module.

Since O is a principal ideal domain, this module will be free also. We shall call the

order 3 automorphism −τ a triality of L (for this notion naturally extends Cartan’s

use of that term—see below). A skew-hermitian O-valued form φ on L is then defined

by

φ(x, y) := ω(x · y)− (x · τy).
Using

2(τx · x) = −((τx− 1) · (τx − 1)x) + (τx · τx) + (x · x)
= −(τ2x · τ2x) + (τx · τx) + (x · x) = (x · x),

we see that φ(x, x) = 1
2θ(x · x). So for the associated Hermitian form ψ := −θφ on L

we have ψ(x, x) = 3
2 (x · x). In other words, ( · ) = 1

3 (ψ + ψ̄).

A remarkable fact is that orthogonal reflections in L (relative to ( · )) determine

certain unitary reflections relative to ψ: recall or note that any vector r ∈ L with

(r · r) = 2 (a ‘root’) defines an orthogonal Z-linear reflection in L that sends r to −r;
likewise, the O-linear transformation

sr(x) := x− ω−1φ(x, r)r.
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is the identity on the ψ-orthogonal complement of r and since φ(r, r) = θ, it is

immediate that sr multiplies r by the third root of unity −ω. So sr is a unitary

reflection in L of order 3, which is why such a transformation is called a triflection.

Note that the triflections generate a normal subgroup G(L) of the unitary group U(L)

of L.

Conversely, every finitely generated torsion free O-module L equipped with a

θO-valued Hermitian form ψ (or equivalently, a O-valued skew-hermitian form φ)

so arises, reason for us to call such data an O-lattice. The associated (anti-linear)

map x ∈ L 7→ φ(−, x) ∈ HomO(L,O) is bijective precisely when the underlying even

symmetric bilinear form ( · ) is unimodular.

Let us call x ∈ L an n-vector if ψ(x, x) = n (so then 3 divides n). If a positive

definite O-lattice L is spanned by its 3-vectors, then the underlying even integral

lattice decomposes canonically into an orthogonal sum of root lattices of type Ak,

Dk or Ek. This decomposition is unique and hence respected by τ . Since τ cannot

interchange summands (otherwise it would have eigen values of order 2 or 3), this

decomposition is in fact one of O-lattices. So the indecomposable cases must be of

type Aeven, Deven≥4, E6 and E8. On the other hand, it is easy to see that a triality

cannot exist inside the Weyl groups W (Ak) or W (Bk) for k even and at least 4. So

the possible indecomposable Z-lattices with a triality are of type A2, D4, E6 and E8.

For example, a type D4 root lattice admits a triality in W (F4) (which is in fact the

automorphism group of the underlying Z-lattice). By inspecting Carter’s description

of conjugacy classes in exceptional Weyl groups [7] we find that for a root lattice of

type A2, D4, E6 and E8 a triality exists and is unique up to conjugacy. They can be

gotten in a uniform manner as follows: let Λk be the O-lattice with basis r1, . . . , rk,

such that each ri is a 3-vector, ψ(ri, ri+1) = θ for i = 1, . . . k − 1 and ψ(ri, rj) = 0

when j > i + 1. So Λ10 is the O-lattice encountered in Section 4. One may verify

that Λk is positive definite iff k = 1, 2, 3, 4 and that in these cases the underlying

root lattice are of type A2, D4, E6, E8 respectively. (For k = 2, we get the classical

triality on D4.) By means of Coxeter [9] we identify G(Λk) in Shephard and Todd’s

Table VII in [33]. The associated triflection group G(Λk) appears there with number

4) for k = 2, 25) for k = 3 and 32) for k = 4. (The group G(Λ3) is the Hesse group of

symmetries of the Hesse pencil λ(x3 + y3 + z3) + µ(xyz); G(Λ4) is sometimes called

the Witting group.)

A.1. The lattice Λ4. The case E8 is of particular interest: following [2], τ is

then realizable as the 5th power of a Coxeter transformation. (A Coxeter transfor-

mation of such a root lattice has order 30 and its eigen values are the eight primitive

30th roots of unity.)

The 3-vectors of Λ4 are the roots of the E8-lattice, hence there are 240 of them.

If we identify O/θO with F3, then

Λ4
F3

:= F3 ⊗O Λ4 ∼= Λ4/θΛ4
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gets the structure of a vector space of dimension 4 over F3. The skew hermitian

O-valued form φ on Λ4 induces a symplectic F3-valued form on Λ4
F3

. It turns out to

be nondegenerate. There results a homomorphism

U(Λ4)→ Sp(Λ4
F3

) ∼= Sp(4,F3)

which Allcock shows to be surjective with kernel the scalar subgroup µ3. (Note that

ω + 1 is divisible by θ, so that ω acts as minus the identity in Λ4
F3

.) In particular,

U(Λ4) is transitive on Λ4
F3
− {0}. He further observes that every nonzero element of

Λ4
F3

has in its preimage precisely three 3-vectors (a µ3-orbit). Allcock uses this to

prove:

Lemma A.1 ([2], Theorem 5.2). The group U(Λ4) acts transitively on the set of

6-vectors and on the set of 3-vectors in Λ4.

We shall further exploit this reduction to study 3- and 6-vectors in the Λ4-lattice.

We begin with noting that it remembers the relative position of the µ6-orbits of two

nonproportional 3-vectors r, r′: the fact that these two span a positive definite lattice

of rank two implies that |ψ(r, r′)| < 3, and as ψ(r, r′) is divisible by θ, we have either

ψ(r, r′) = 0 or ψ(r, r′) ∈ µ6θ. This means that their images in Λ4
F3

span an isotropic

resp. nondegenerate rank two sublattice.

The description of the 6-vectors in terms of this reduction must be less straight-

forward, witness the fact that there are 80 · 27 6-vectors and 80 nonzero elements in

Λ4
F3

. The next lemma offers one such description.

Lemma A.2. A 6-vector z ∈ Λ4 can be written in exactly three ways as the sum

of two 3-vectors z = r1 + r2 with ψ(r1, r2) = θ. All such pairs r1, r2 span the same

rank two sublattice Lz of Λ4. The image of Lz in Λ4
F3

is a nondegenerate plane and

assigning to z the mod θ reduction of the pair (z, Lz) defines a bijection between the

set of µ3-orbits of 6-vectors in Λ4 and the set of pairs (v, P ), where P ⊂ Λ4
F3

is a

nondegenerate plane and v ∈ P − {0}.

Proof. Consider the set S of pairs of 3-vectors (r, r′) in Λ4 with ψ(r, r′) = θ. The

mod θ reduction of a pair (r, r′) ∈ S is pair of vectors (v, v′) in Λ4
F3

with symplectic

product 1. The number of such pairs of vectors is 80 · 27. The 3-vectors mapping

to v are the elements of the µ3-orbit of r and likewise for r′. So the preimage of

(v, v′) in S is the µ3-orbit of the pair (r, r′). Hence S has 80 · 27 · 3 elements. The

image of the map (r, r′) ∈ S 7→ r + r′ ∈ Λ4 consists of 6-vectors, hence is the set of

all 6-vectors, since it is U(Λ4)-invariant. As there are 80 · 27 6-vectors, we see that

each 6-vector occurs precisely three times. If (r, r′) ∈ S, then (ωr′, r+ (1−ω)r′) and

((1 − ω)r, ωr + r′) are two other elements of S with the same sum. So there are no

more elements in S with that property. Hence the span of r and r′ only depends on

r + r′. All the assertions of the lemma now have been proved. �
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Allcock’s result says that mod θ reduction gives a bijective correspondence be-

tween the µ6-orbits of 3-vectors and the lines ℓ ⊂ Λ4
F3

. Lemma A.2 can be understood

as asserting a similar relationship between the µ6-orbits of 6-vectors and the flags

(ℓ, P ) in Λ4
F3

, where ℓ is a line in a nondegenerate plane P . Since symplectic geome-

try over a finite field is a priori a lot simpler than unitary geometry over the Eisenstein

ring, such an interpretation is helpful when determining the relative position of a 3-

vector and 6-vector in Λ4. To see this, note that for a nondegenerate flag (ℓ, P ) in

Λ4
F3

and a line ℓ′ in Λ4
F3

the following possibilities present themselves:

(a) ℓ′ = ℓ,

(b) ℓ+ ℓ′ = P ,

(c) ℓ′ 6⊂ P , ℓ′ not perpendicular to ℓ,

(d) ℓ′ 6⊂ P , ℓ′ perpendicular to ℓ but not to P ,

(e) ℓ′ perpendicular to P .

By elementary symplectic geometry, each of these cases represents a single orbit under

the symplectic group. Let us see what this tells us about the relative position of a

3-vector r and a 6-vector z. From the preceding it follows that the unitary group

of Λ4 has precisely five orbits in the set of pairs of µ6-orbits (µ6.r, µ6.z). We give

in each of the five cases above a representative example with z = r1 + r2 (so that

Lz = Or1 +Or2 and hence P is the image of Lz in Λ4
F3

).

(a) r = ω2r1 + r2 (so ψ(r, z) = 0),

(b) r = r1 (so ψ(r, z) = 3 + θ),

(c) r = r3 (so ψ(r, z) = −θ),
(d) r = ωr2 + r3 (so ψ(r, z) = 3),

(e) r = r4 (so ψ(r, z) = 0).

The case (a) is somewhat special: then r and z are perpendicular and span an imprim-

itive sublattice. We also see that the orthogonal complement of z in Lz is spanned

by r. So any 3-vector with the same mod θ-reduction as z lies in Lz and spans with

z a subgroup of finite index in Lz.

Corollary A.3. Let z = r1 + r2 be the standard 6-vector in Λ4. Then the set

of those 3-vectors in Λ4 which have a fixed nonzero Hermitian inner product with z

make up a single U(Λ4)z-orbit. The 3-vectors perpendicular to z span a lattice of type

Λ1×Λ2, with basis (ω2r1 + r2, r1− θr2− 2r3 + θr4, r4). A 3-vector perpendicular to z

spans with z a primitive sublattice if and only if it belongs to the Λ2-summand (hence

any two such are in the same U(Λ4)z-orbit).

Proof. Let r′ be a 3-vector in Λ4 with ψ(r′, z) 6= 0. It follows from the preceding

that r′ is U(Λ4)z-equivalent to ωir, with i ∈ Z/6 and r a vector mentioned in one of

the cases (b), (c), (d). In these cases the exponent i ∈ Z/6 is determined by the inner

product of r′ with z. The last part of the corollary is straightforward. �
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In case (d), we have that z − r is a 3-vector perpendicular to r. We shall need to

know in how many ways z can be written as a sum of two perpendicular 3-vectors.

Corollary A.4. A 6-vector z is written in exactly 4 distinct ways as a sum

of two perpendicular 3-vectors in Λ4. These vectors are orthogonal to the orthogonal

complement of z in Lz, and so span with z a rank 3 sublattice of Λ4. (For z = r1 + r2
these sum decompositions are z = (z − r) + r with r = ωr2 + r3, ωr2 + r3 + ω−1r4,

ωr2 + r3 + ω−2r4, ωr1 + 2r2 − θr3 − r4.)

Proof. We begin with noting that a line ℓ′ in Λ4
F3

has property (d) if and only

if it is the graph ℓf of a nonzero homomorphism f : ℓ→ P⊥. It is clear that there are

8 such lines. They come in 4 pairs: we have ℓ ⊂ ℓf + ℓf ′ if and only if f + f ′ = 0. In

that case ℓf + ℓf ′ is isotropic and so ℓf , ℓf ′ correspond to µ6-orbits of 3-vectors that

are perpendicular. There are unique 3-vectors rf , rf ′ in these orbits with sum z. Let

r be a 3-vector with the same mod θ-reduction as z. Since ℓ− ℓf is isotropic, r is also

orthogonal to rf . We noted that r spans the orthogonal complement of z in Lz, and

so the second assertion of the corollary follows. �

The following is proved in a similar fashion as A.3. The proof is in fact easier

and so we omit it.

Lemma A.5. Let r ∈ Λ4 be a 3-vector. Then the stabilizer group U(Λ4)r acts

transitively on the set of those 3-vectors in Λ4 which have a fixed inner product with

r.

A.2. The lattice Λ. A hyperbolic O-lattice is obtained as follows: letM be a free

finitely generated O-module. Regard M as Z-module. The module HomZ(M,Z)⊕M
has the natural quadratic form q(ξ, x) = ξ(x) for which it is an unimodular Z-lattice.

Now let O act on M as before and on HomZ(M,Z) contragradiently. Then the

preceding construction turns HomZ(M,Z) ⊕M into a nonsingular O-lattice HM . So

HO ∼= O2 with Hermitian form ψ(z, w) = θ(z1w̄2 − z2w̄1). Notice that the skew-

hermitian form φ = −θ−1ψ has discriminant 1. We shall denote the given basis

of HO by (e, f). Consider the lattice Λ4 ⊥ Λ4 ⊥ HO and denote the first two

summands Λ′ and Λ′′ (with basis (r′i)
4
i=1 resp. (r′′i )4i=1). We shall identify Λ = Λ10

with Λ′ ⊥ Λ′′ ⊥ HO by means of the unitary isomorphism

(r1, . . . , r10) 7→ (r′′1 , . . . , r
′′
4 , s+ e, ωe+ θf, ω−1e+ r′1, r

′
2, r

′
3, r

′
4),

where s ∈ Λ′′ is characterized by the fact that it is perpendicular to r′′1 , r
′′
2 , r

′′
3 and

ψ(s, r′′4 ) = θ. This shows in particular that Λ has signature (9, 1), as asserted earlier.

Notice that this isomorphism also identifies Λ6 (the span of r1, . . . , r6) with Λ′′ ⊥ HO.

Allcock [2] proves that U(Λ) acts transitivily on the set of primitive 0-vectors of

Λ, in other words, every primitive 0-vector of Λ4 ⊥ Λ4 ⊥ HO can be transformed by

a unitary transformation into e. We derive from this the corresponding statement for

the set of 6-vectors:
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Proposition A.6. Each 3-vector in Λ is perpendicular to a primitive null vector

and the group U(Λ) acts transitively on the set of pairs (r, n) with r a 3-vector and n

a primitive 0-vector perpendicular to r (in particular, U(Λ) is transitive on the set of

3-vectors in Λ).

Similarly, each 6-vector in Λ is perpendicular to a primitive null vector. The

group U(Λ) acts transitively on the set of 6-vectors, but has two orbits in the set of

pairs (z, n) with z a 6-vector and n a primitive 0-vector perpendicular to z. These

two orbits are represented by (r′1 + r′2, e) (type (θ)) and (r′1 + r′′1 , e) (type (0)).

A.7. Before we begin the proof it is useful to make a few general observations.

Let V be a finite dimensional complex vector space equipped with a skew-hermitian

form φ. Let also be given a nonzero isotropic vector e ∈ V . For every v ∈ V with

φ(v, e) = 0 we define the transformation Te,v in V by

Te,v(x) = x+ φ(x, e)v + φ(x, v)e+ 1
2ψ(v, v)ψ(x, e)e

One checks that Te,v is unitary and fixes e. Its action in e⊥ is simply given by

x ∈ e⊥ 7→ x+φ(x, v)e. Notice that Te,v only depends on the image of v in e⊥/R
√
−1e.

We have

Te,uTe,v = Te,u+v+ 1

2
φ(v,u)e.

These transformations make up the unipotent radical of the stabilizer of e in the

unitary group U(V ). It is a Heisenberg group with center the transformations Te,λe

with λ real. Suppose that L ⊂ V is a discrete O-submodule in V of maximal rank

such that φ takes on L × L values in O. If e and v lie in L and φ(v, v) is even, then

clearly Te,v preserves L. So if x ∈ e⊥ ∩ L, then x+Oe is contained in a U(L)e-orbit

if φ(x, v) = 1 for some v ∈ L ∩ e⊥ with φ(v, v) even. Or what amounts to the same,

if v ∈ L ∩ e⊥ with ψ(x, v) = −θ and ψ(v, v) ∈ 6Z.

Proof of A.6. We only prove the statements involving a 6-vector, the proof of

the one about a 3-vector is similar and easier. We begin with the last clause. Let

(z, n) be as in the proposition. By Allcock’s result, a unitary transformation will map

this into a pair with second component e and so we may assume that n = e. Then

z can be written x′ + x′′ + λe with x′ ∈ Λ′, x′′ ∈ Λ′′ and λ ∈ O. We must have

ψ(x′, x′)+ψ(x′′, x′′) = 6. Since the two terms must be nonnegative multiples of three

they are (6, 0), (3, 3) or (0, 6). The stabilizer of e contains the interchange of Λ′ and

Λ′′ as well as the unitary group of each of these summands. So we can eliminate

the last case and by A.1 assume that (x′, x′′) = (r′1 + r′2, 0) or (x′, x′′) = (r′1, r
′′
1 ). In

either case, there exists a 6-vector v ∈ Λ′ with ψ(z, v) = θ and so by the discussion

(A.7) there exists a unitary transformation fixing e that sends z to x′ + x′′. The last

assertion follows.

We next show that any 6-vector z is perpendicular to a primitive null vector.

The orthogonal complement Λz of z is a free O-module of signature (8, 1). So its

complexification C⊗O Λz = R⊗Z Λz represents zero.
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Its real dimension is ≥ 5 and a theorem of Meyer [31] then implies that Λz also

represents zero. In other words, there exists a null vector perpendicular to z.

It remains to see that r′1 + r′2 and r′1 + r′′1 are in the same U(Λ)-orbit. This is left

to the reader. �

A.3. The lattice Λo. Let us now fix a sublattice Λo ⊂ Λ that is the orthogonal

complement of a 6-vector zo ∈ Λ. In view of A.6 all such sublattices are unitary

equivalent.

Proposition A.8. The U(Λ)-stabilizer of Λo maps isomorphically to the unitary

group U(Λo) of Λo.

The proof is a modification of a standard argument in lattice theory. In order

to make it transparent we begin with a general discussion. Given an O-lattice L,

let us simply write L∗ for HomO(L,O). The skew-hermitian form φL := −θ−1ψL

on L induces an antilinear map aL : L → L∗, x 7→ φ( , x). Suppose that φL is

nondegenerate (i.e., has nonzero discriminant). Then aL maps L bijectively onto

a sublattice of L∗ of finite index, so that C(L) := L∗/aL(L) is a finite O-module.

The order of C(L) is then the square absolute value of the discriminant of L. For

instance, if L is spanned by a 3n-vector, then C(L) ∼= O/(nθ), which has indeed

order 3n2. The form φL determines a skew-hermitian form φL∗ on L∗ such that

ψL∗(aL(x), aL(y)) = ψL(y, x). This form now takes values in the field Q(ω). If

however one of its arguments lies in the image of aL, then it takes values in O. So

ψL∗ induces a skew-hermitian form φC(L) : C(L) × C(L)→ Q(ω)/O. It is clear that

every unitary transformation of L induces a unitary transformation in C(L).

Suppose now L of discriminant ±1 and let M ⊂ L be a primitive nondegenerate

submodule with orthogonal complement N . So M ⊥ N sits in L as a submodule

of finite index. Composing aL with restriction to M ⊥ N gives an embedding of

L/(M + N) in C(M ⊥ N) = C(M) ⊥ C(N). This image is isotropic for the skew-

hermitian Q(ω)/O-valued form on C(M) ⊥ C(N). Since L has discriminant ±1,

it is a maximal sublattice in Q ⊗Z L on which φ is O-valued, an so its image in

C(M) ⊥ C(N) is maximally isotropic. It is clear that the projection of this image

in either summand is a bijcetion. In other words, the image is the graph of an

isomorphism α : C(M) ∼= C(N) which changes the sign of the forms.

It is clear that an automorphism of M ⊥ N preserves L if and only if is preserves

the image of L in C(M) ⊥ C(N). So a pair of unitary transformations of M ⊥
N of the form (uM , uN) preserves L if and only if α commutes with the unitary

transformations in C(M) and C(N) induced by uM and uN .

Proof of A.8. We apply this to the case at hand: L = Λ, M = Λo and N

spanned by the 6-vector zo. Then C(Λo) ∼= C(Ozo) ∼= O/(2θ), where in the latter

case the skew form takes the value 1
2θ

−1 on a generator. One easily verifies that the

group of unitary transformations of O/(2θ) is µ6. As this is also the group of unitary
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transformations of Ozo, it follows that every unitary transformation of Λo extends

uniquely to unitary transformation of Λ. �

In order to classify the 3-vectors in Λ relative to zo, we first consider the abstract

O-lattices spanned by a 3-vector and a 6-vector.

Lemma A.9. Let L be a positive definite O-lattice of rank two spanned by a 6-

vector z and 3-vectors. Then we are in one of the following four cases: L has a basis

(e1, e2) such that

(δ6) z = e1 + e2 and ψ has the matrix
(

3 θ
θ̄ 3

)
so that L has discriminant 6 or

(δ9) z = e1 + e2 and ψ has the matrix ( 3 0
0 3 ) so that L has discriminant 9 or

(δ15) z = e1 and ψ has the matrix
(

6 θ
θ̄ 3

)
so that L has discriminant 15 or

(δ18) z = e1 and ψ has the matrix ( 6 0
0 3 ) so that L has discriminant 18.

Moreover, is M ⊃ L a rank two O-lattice that strictly contains L, then we are in case

δ18 and M is isomorphic to the lattice of case δ6.

Proof. Suppose first that L is spanned by the 6-vector z and a 3-vector r. We

have ψ(z, r) = θu for some u ∈ O. Since L is positive definite, we must have |u|2 < 6.

Since u ∈ O, this implies that up to a unit u equals 0, 1, θ or 2. By multiplying

r with a unit we may assume that u acually equals one of these values. For u = 0

we get case δ18, and for u = 1 we get case δ15. For u = θ we get case δ9 by taking

(e1, e2) = (z + r,−r) and for u = 2 we get case δ6 by taking (e1, e2) = (z − ωr, ωr).
For the last part of the lemma, we observe that for an overlattice M ⊃ L we

must have that the quotient of the discriminant of M by the discriminant of L must

be the norm of an element of O. Since the discriminant of M is also divisible by 3,

this implies that L is of type δ9 or δ18. The case δ9 has as underlying integral lattice

a root lattice of type A1 ⊥ A1. This admits no even overlattice and hence cannot

occur. There remains the case that L is of type δ18 with M of discriminant 6. It is

then not hard to see that M is as asserted.

�

If r ∈ Λ is a 3-vector, which together with zo spans a primitive positive definite

sublattice of Λ, then according to Lemma A.9, the discriminant of this sublattice can

take 4 values : 6, 9, 15 or 18. We call this value the d-invariant of r. Proposition A.6

shows that the primitive isotropic lines I ⊂ Λo come in two types (types (0) and (θ))

and that each type is represented by a single U(Λo)-orbit.

Proposition A.10. Let I ⊂ Λo be a primitive isotropic line and denote by I(6)

resp. I(9) the span of I and the 3-vectors r ∈ I⊥ with d-invariant 6 resp. 9. Then:

(θ) If I is type (θ), then I(6)/I and I(9)/I are perpendicular sublattices of I⊥/I
of rank 1 and 2 respectively. Moreover, there are precisely 4 rank one sub-

lattices of I⊥/I spanned by the image of a 3-vector in I⊥ of d-invariant

9.
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(0) If I is type (0), then I(6) = I and I(9)/I is of rank 1.

Proof. By Proposition A.6 we may assume that I is spanned by e and that

zo = r′1 + r′2 in case (θ) and zo = r′1 + r′′1 in case (0). This identifies I⊥/I with

Λ′ ⊥ Λ′′. A 3-vector in I⊥ maps to a 3-vector in I⊥/I ∼= Λ′ ⊥ Λ′′ of the same

d-invariant and the 3-vector of Λ′ ⊥ Λ′′ lies in Λ′ or in Λ′′.
In case (θ) it is clear that any 3-vector in Λ′′ has d-invariant 18, so if we are after

the 3-vectors of d-invariant 6 or 9, then we only have to deal with Λ′. Assertion (θ)

then follows from Lemma A.2 and Corollary A.4.

Case (0) follows from the simple observation that r′1 + r′′1 cannot be written in

any other way as a sum of two 3-vectors in Λ′ ⊥ Λ′′. �

Proposition A.11. Let L ⊂ Λ be a primitive sublattice containing zo. Then L⊥

is isomorphic to an orthogonal product of lattices Λk1 ⊥ Λk2 ⊥ · · · with k1 ≥ 6 if and

only if L is spanned by zo and 3-vectors of d-invariant 6 and 9 and we are then in

one of the following cases:

(6) (L, zo) ∼= (Λ2, r1 + r2), L
⊥ ∼= Λ8 and L is spanned by zo and a 3-vector of

d-invariant 6,

(9) (L, zo) ∼= (Λ1 ⊥ Λ1, r + r′), L⊥ ∼= Λ7 ⊥ Λ1 and is spanned by zo and a

3-vector of d-invariant 9,

(6, 9) (L, zo) ∼= (Λ3, r1 + r2), L
⊥ ∼= Λ7 and L is spanned by zo and two 3-vectors

of d-invariant 6, 9.

(9, 9) (L, zo) ∼= (Λ3, r1 + r3), L
⊥ ∼= Λ7 and L is spanned by zo and two 3-vectors

of d-invariant 9, 9.

(6, 9, 9) (L, zo) ∼= (Λ4, r1 + r2), L
⊥ ∼= Λ6 and L is spanned by zo and three 3-vectors

of d-invariant 6, 9, 9.

Each of these possibilities respresents a single U(Λo)-equivalence class and this is

also the complete list of U(Λo)-equivalence classes of positive definite sublattices of Λ

spanned by zo and 3-vectors of d-invariant 6 and 9.

Proof. Let us first assume that L⊥ is isomorphic to an orthogonal product

Λk1 ⊥ Λk2 ⊥ · · · with k1 ≥ 6. Since Λ ∼= Λ6 ⊥ Λ4 and Λk1 ∼= Λ6 ⊥ Λk1−6, we see that

it is enough to investigate the corresponding issue in Λ4. The 6-vectors in Λ4 are all

unitary equivalent, and so we can assume that z = r1 + r2. The assertions regarding

the classification now follow from Corollary A.3.

Assume now that L ⊂ Λ is a positive definite sublattice and spanned by zo and 3-

vectors of d-invariant 6 and 9. Assume also that its rank is ≤ 5. Then the orthogonal

complement of the lattice L is hyperbolic of sufficiently high rank and so by Meyer’s

theorem contains a primitive null vector. We may assume that this null vector is e

and that zo is either r′1 + r′2 or r′1 + r′′1 . So L projects isomorphically to a sublattice

L̄ ⊂ Λ′ ⊥ Λ′′ spanned by 3-vectors. Since the 3-vectors helping to span L are of

d-invariant 6 or 9, A.10 implies that L̄ ⊂ Λ′ when zo = r′1 + r′2 and L̄ ⊂ Or′1 +Or′′1
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when zo = r′1 + r′′1 . In particular, L is of rank ≤ 4. All the assertions now follow in a

straightforward manner from A.3, A.10 and A.7. �

Proposition A.12. The 3-vectors in Λ of fixed d-invariant form a single orbit

under the action of U(Λo).

Proof. For d = 6 or 9 this is part of the statement of the previous proposition.

The cases d = 15 and d = 18 are handled in a similar way. �
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Math. de France 93 (1965), 333–367.

[31] J.-P. Serre: Cours d’Arithmétique, Presses Univ. de France, Paris 1970.

[32] H. Sterk: Compactifications of the period space of Enriques surfaces I, II, Math. Z. 207 (1991),

1–36 and Math. Z. 220 (1995), 427–444.

[33] G.C. Shephard, J.A. Todd: Finite unitary reflection groups, Canadian J. Math. 6 (1954), 274–

304.

[34] R. Vakil: Twelve points on the projective line, branched covers, and rational elliptic fibrations.

To appear.

[35] E.B. Vinberg: Hyperbolic reflection groups, Russian Math. Surveys 40 (1985), 31–75.

Faculteit Wiskunde en Informatica, Catholic University of Nijmegen, Postbus 9010,

NL-6500 GL Nijmegen, The Netherlands

E-mail address: heckman@sci.kun.nl

Faculteit Wiskunde en Informatica, University of Utrecht, Postbus 80.010, NL-3508

TA Utrecht, The Netherlands

E-mail address: looijeng@math.uu.nl


