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Chapter 1

Introduction

In this dissertation we present a construction of matrix valued polynomials in one vari-

able, with special properties, out of matrix coefficients on certain compact groups. The

construction generalizes the theory that relates Jacobi polynomials to certain matrix co-

efficients on compact groups.

In the present chapter we motivate the research in this dissertation and we give an

outline of the results. To this end, we discuss in Sections 1.1 and 1.2 the notion of

matrix valued orthogonal polynomials and how their simplest examples, the scalar valued

orthogonal polynomials, are related to matrix coefficients on compact Lie groups. Once

the definitions and notations are fixed we can formulate the research goal. In Section 1.3

we discuss a spectral problem in the theory of Lie groups. In Section 1.4 we indicate that

for the solutions of the spectral problem there is a general framework of certain functions,

whose structure is determined by a family of matrix valued orthogonal polynomials. In

Section 1.5 we discuss the use of this construction and some of the open questions. We

close this chapter with an overview of the contents of the various chapters in Section 1.6.

1.1 Orthogonal polynomials

1.1.1. Let I = (a, b) ⊂ R be an interval, possibly unbounded. Let w : I → R be a non-

negative integrable function satisfying
∫
I
w(x)dx > 0, where dx is the Lebesgue measure

and suppose that the moments are finite, i.e.
∫
I
|xn|w(x)dx < ∞ for all n ∈ N. Define

the inner product 〈·, ·〉w on the space of complex valued continuous functions on I by

〈f, h〉w =

∫
I

f(x)h(x)w(x)dx.

A sequence of orthogonal polynomials on I with respect to 〈·, ·〉w is a sequence {pd : d ∈ N}
with pd(x) ∈ C[x] of degree d satisfying 〈pd, pd′〉w = cdδd,d′ , with cd ∈ R a positive number.

A family of orthogonal polynomials satisfies a three term recurrence relation, i.e. there

1



Chapter 1. Introduction

are sequences of complex numbers {ad : d ∈ N}, {bd : d ∈ N} and {cd : d ∈ N} with the

ad 6= 0 for which the functional equation

xpd(x) = adpd+1(x) + bdpd(x) + cdpd−1(x) (1.1)

holds on I. Conversely, given a three term recurrence relation (1.1) one can construct

a sequence of polynomials {pd(x) : d ∈ N}. Favard’s theorem gives sufficient conditions

on the coefficients ad, bd and cd to guarantee the existence of a positive Borel measure µ

so that {pd(x) : d ∈ N} is a sequence of orthogonal polynomials with respect to µ. See

e.g. [Chi78] for an introduction to the theory of orthogonal polynomials.

The classical orthogonal polynomials of Hermite, Laguerre and Jacobi are also eigen-

functions of a second order differential operator that is symmetric with respect to 〈·, ·〉w
and Bochner showed that this additional property characterizes them among all the fam-

ilies of orthogonal polynomials.

1.1.2. Among the generalizations of the theory of orthogonal polynomials is the theory

of matrix valued orthogonal polynomials in one variable. Matrix valued polynomials are

elements in C[x] ⊗ End(V ) where V is a finite dimensional complex vector space. The

space C[x] ⊗ End(V ) is a bimodule over the matrix algebra End(V ). The Hermitian

adjoint of A ∈ End(V ) is denoted by A∗.

Let I = (a, b) ⊂ R be an interval, possibly unbounded. A matrix weight W on I is an

End(V )-valued function for which all its matrix entries are integrable functions such that

W (x) is positive definite almost everywhere on I. Suppose that W has finite moments,

i.e., that
∫
I
|x|n|Wi,j(x)|dx < ∞ for all i, j and all n ∈ N, where the integration is entry

wise. Define the pairing

〈·, ·〉W : C[x]⊗ End(V )× C[x]⊗ End(V )→ End(V )

by 〈P,Q〉W =
∫
I
P (x)∗W (x)Q(x)dx. The pairing 〈·, ·〉W is called an End(V )-valued inner

product, i.e. it has the following properties.

• 〈P,QS + RT 〉W = 〈P,Q〉WS + 〈P,R〉WT for all S, T ∈ End(V ) and all P,Q,R ∈
C[x]⊗ End(V ),

• 〈P,Q〉∗W = 〈Q,P 〉W for all P,Q ∈ C[x]⊗ End(V ),

• 〈P, P 〉W ≥ 0 for all P ∈ C[x] ⊗ End(V ), i.e. 〈P, P 〉W is positive semi-definite. If

〈P, P 〉W = 0 then P = 0.

The right End(V )-module C[x]⊗End(V ) with the pairing 〈·, ·〉W is called a pre-Hilbert

module, see e.g. [Lan95] and [RW98]. A family {Pd : d ∈ N} with Pd ∈ C[x]⊗ End(V ) is

called a family of matrix valued orthogonal polynomials for 〈·, ·〉W if (i) degPd = d, (ii) the

leading coefficient of Pd is non-singular and (iii) 〈Pd, Pd′〉W = Sdδd,d′ with Sd ∈ End(V ).

Note that Sd is positive definite. The existence of a family of matrix valued orthogonal

polynomials for a given matrix weight W (x) is proved in e.g. [GT07, Prop. 2.4], by a

generalization of the Gram-Schmidt orthogonalization.
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1.1. Orthogonal polynomials

An important property of a family of matrix valued orthogonal polynomials is that

they satisfy a three term recurrence relation, i.e. there are sequences {Ad : d ∈ N}, {Bd :

d ∈ N} and {Cd : d ∈ N} in End(V ) with the Ad invertible, such that

xPd(x) = Pd+1(x)Ad + Pd(x)Bd + Pd−1(x)Cd

holds on I. However, for matrix valued orthogonal polynomials with explicit expressions,

the explicit computation of the coefficients may be difficult.

The weight matrix W may be conjugated by an invertible matrix U ∈ End(V ) to

obtain a new matrix weight UWU∗. We say that the matrix weights W and UWU∗

are similar. If W is similar to a matrix weight of blocks, i.e. a matrix weight of the form

diag(W1,W2) with W1 and W2 both matrix weights, then we say that W is decomposable.

Otherwise we say that the matrix weight W is indecomposable. If the commutator

{W (x) : x ∈ I}′ = {J ∈ End(V )|∀x ∈ I : W (x)J = JW (x)}

is one-dimensional then the weight is indecomposable.

1.1.3. Assume that I ⊂ R is an open interval. A differential operator of order n for the

End(V )-valued functions on I is given by an expression

n∑
i=0

Ai(x)
di

dxi
,

with Ai an End(V )-valued function that acts by multiplication on the left. Let us consider

a second order End(V )-linear differential operator D for which there is a family {Pd : d ∈
N} of matrix valued orthogonal polynomials that are eigenfunctions of D, i.e. there are

elements Λd(D) ∈ End(V ) such that

(DPd)(x) = Pd(x)Λd(D). (1.2)

The existence of a matrix weight W together with a second order differential operator

D that has a family of matrix valued orthogonal polynomial as its eigenfunctions, has

been studied by Durán [Dur97]. He shows that if the eigenvalue Λd acts on the same

side as the End(V )-valued functions of the differential equations, then the matrix weight

W is similar to a diagonal matrix. Hence the interesting examples are those in which

the eigenvalue acts on the other side, as in (1.2). At the time there were no examples

available but a few years later plenty examples of these families of polynomials were

found after analyzing the representation theory of the pair of Lie groups (SU(3),U(2)),

see [GPT01, GPT02, GPT03, GPT04]. A pair (W,D) consisting of a matrix weight W

and a second order differential operator D that has a family of matrix valued orthogonal

polynomials as eigenfunctions is called a classical pair. The notion of a matrix valued

classical pair was first introduced in [GPT03] and examples of classical pairs with a non-

diagonalizable weight are given there. Other examples of classical pairs are given in

e.g. [DG05a].

3



Chapter 1. Introduction

Given a matrix weight W and a family {Pd : d ∈ N} of matrix valued orthogonal

polynomials we define D(W ) as the algebra of differential operators that have the family

of matrix valued orthogonal polynomials as eigenfunctions. This algebra is not always

commutative, see e.g. Chapter 4. See also [GT07] for more results on D(W ).

Finally, we note that the convention on left and right that we use in this dissertation

is opposite to the conventional one in the literature on matrix valued orthogonal poly-

nomials. To pass from one choice to the other one has to take Hermitian adjoints in the

appropriate places. We have two arguments in favor of our choice. The first is that the

examples of matrix valued polynomials that we present in this dissertation are in fact

vector valued polynomials that are put carefully in a matrix. The differential operators

that act on the matrix valued polynomials, actually act on the columns from the left.

Moreover, the vector valued polynomials in the columns are eigenfunctions, with scalar

eigenvalues, which translates to a diagonal eigenvalue for the matrix valued polynomials

that acts on the right. A second argument in favor of our choice is that the theory of

matrix valued orthogonal polynomials can be expressed in terms of Hilbert C∗-modules,

in which it is customary to have the C∗-algebra-valued inner product linear in the second

variable.

1.2 Realization as matrix coefficients

1.2.1. The family of Jacobi polynomials {P (α,β)
d : d ∈ N} in one variable is an example

of a family of (scalar valued) classical orthogonal polynomials. The Jacobi polynomials

have two real parameters α > −1 and β > −1 and they are defined as follows. On

(−1, 1) the function w(x) = (1 − x)α(1 + x)β is positive, so 〈p, q〉 =
∫ 1

−1
p(x)q(x)w(x)dx

defines an inner product on the space of real-valued polynomials in one variable. Using

the Gram-Schmidt process on the basis of polynomials {1, x, x2, . . .}, we obtain a family

of orthogonal polynomials whose members are explicitly given by

P
(α,β)
d (x) =

(α+ 1)d
d!

2F1

(
−d, d+ α+ β + 1

α+ 1
;

1− x
2

)
,

where 2F1 is the hypergeometric function defined by

2F1

(
a, b

c
; z

)
=

∞∑
k=0

(a)k(b)k
(c)kk!

zk,

where (a)k = a ·(a+1) · · · (a+k−1) is the Pochhammer symbol. The Jacobi polynomials

satisfy a three term recurrence relation

xP
(α,β)
d (x) = adP

(α,β)
d+1 (x) + bdP

(α,β)
d (x) + cdP

(α,β)
d−1 (x)

of which the coefficients can be expressed in α, β and d. Moreover, the P
(α,β)
d (x) are

eigenfunctions of the differential operator

(1− x)2 d
2

dx2
+ (β − α− (α+ β + 2)x)

d

dx
(1.3)

4



1.2. Realization as matrix coefficients

with eigenvalue −d(d+ α+ β + 1).

1.2.2. For the special choice α = β = 1
2 and a renormalization, we obtain the Chebyshev

polynomials of the second kind,

Ud(x) = (d+ 1) 2F1

(
−d, d+ 2

3
2

;
1− x

2

)
.

The orthogonality is given by 〈Ud, Ud′〉 = π
2 δdd′ and the three term recurrence relation is

given by 2xUd(x) = Ud+1(x) + Ud−1(x) with starting values U0(x) = 1 and U1(x) = 2x.

Moreover, Ud(cos(t)) = sin((d + 1)t)/ sin(t), which is Weyl’s character formula for the

compact Lie group SU(2). The group SU(2) consists of unitary 2 × 2 matrices with de-

terminant one and we study SU(2) via its irreducible representations: homomorphisms

πH : SU(2)→ GL(H) where H is a finite dimensional complex vector space without non-

trivial SU(2)-invariant subspaces. The subgroup of diagonal matrices ut = diag(eit, e−it)

in SU(2) is a circle that we denote by T . The irreducible representations of SU(2) are

parametrized by ` ∈ 1
2N and the corresponding representation spaces H` are 2` + 1-

dimensional. Moreover, the space H` has an SU(2)-invariant Hermitian inner product

〈·, ·〉. Let us denote an irreducible representation by τ`. Such a representation is com-

pletely determined by the restriction of its character χ` : T → C : ut 7→ tr(τ`(ut)).

We have χ`(ut) = U2`(cos(t)), which shows that the characters of SU(2) are Chebyshev

polynomials (in the coordinate x = cos(t)).

1.2.3. The restricted characters of SU(2) can also be obtained in another way. Let us

denote G = SU(2) × SU(2) with subgroup K ∼= SU(2) embedded via i : K → G : k 7→
(k, k). The irreducible representations of G are parametrized by two half integers (`1, `2).

The pair (`1, `2) corresponds to the representation π`1,`2 = τ`1 ⊗ τ`2 acting on the space

H`1,`2 = H`1 ⊗H`2 and 〈·, ·〉 denotes a G-invariant Hermitian inner product on H`1,`2 .

The representation π`1,`2 ◦ i : K → GL(H`1,`2) is not irreducible in general, but it is

isomorphic to the direct sum of irreducible representations of K, given by the familiar

Clebsch-Gordan rule

H`1,`2 ∼=
`1+`2⊕

`=|`1−`2|

H`. (1.4)

The trivial representation K → GL(C) corresponds to ` = 0. The trivial representation

occurs in the decomposition (1.4) if and only if `1 = `2. In this case, with `1 = `2 = `,

there is a vector v0 ∈ H`,` of length one with the property that π`,`(k)v0 = v0 for all

k ∈ K. Consider the matrix coefficient

m`,`
v0,v0 : G→ C : g 7→ 〈v0, π`,`(g)v0〉,

which is K-bi-invariant. It is called an elementary zonal spherical function associated

to π`,` and it is related to the character χ` of SU(2) as follows. Let ψ : G → SU(2)

be defined by ψ(k1, k2) = k1k
−1
2 . The fiber of ψ at the identity is K and we obtain

5



Chapter 1. Introduction

a diffeomorphism ψ : G/K → SU(2). We have χ` ◦ ψ = (2` + 1)m`,`
v0,v0 . In fact, the

inverse image A of T under the map ψ is a one-dimensional torus. The group G admits a

decomposition G = KAK, i.e. we can write every element g ∈ G as a product g = k1ak2

for some k1, k2 ∈ K and a ∈ A. This implies that m`,`
v0,v0 is completely determined by

its restriction to A. The Chebyshev polynomials are now related to the elementary zonal

spherical functions of the pair (G,K).

1.2.4. In 1.2.3 we have seen that the Chebyshev polynomials of the second kind can

be realized as matrix coefficients on a compact group, restricted to a suitable torus.

It can be shown that the second order differential operator for which the Chebyshev

polynomials are eigenfunctions comes from a differential operator, the Casimir operator,

that acts on functions on SU(2)×SU(2). Koornwinder [Koo85] observed that in a similar

fashion, certain matrix coefficients of SU(2)×SU(2), carefully arranged in a matrix, when

restricted to a suitable torus, give matrix valued polynomials (in coordinate x = cos(t)).

In Chapters 4 and 5, the polynomials of Koornwinder from [Koo85] are further developed

into a family of matrix valued orthogonal polynomials satisfying a second order differential

operator. In [GPT02] and [PTZ12] families of matrix valued orthogonal polynomials are

found by means of solving differential equations associated to the pair (SU(3),U(2)) and

(SO(4),SO(3)) respectively.

1.2.5. The goal of this dissertation is to present a uniform construction of a family

of matrix valued orthogonal polynomials {Pd : d ∈ N} together with a commutative

algebra D of differential operators, whose elements have the polynomials Pd as joint

eigenfunctions, with the eigenvalues being diagonal matrices acting on the right. The

construction generalizes the theory that relates Jacobi polynomials in one variable to

certain matrix coefficients on compact groups. Moreover, the examples that we discussed

in 1.2.4 fit into our construction.

1.3 The spectral problem

1.3.1. Our construction is based on the analysis of a spectral problem in the theory of

compact Lie groups. Given a compact connected Lie group we identify the irreducible

representations by their highest weights. From this point on we assume that the reader

is more or less familiar with these notions.

The main ingredient of our construction is a triple (G,K, µ) consisting of a compact

connected Lie group G, a closed connected subgroup K ⊂ G and an irreducible K-

representation τ of highest weight µ with the property that the induced G-representation

indGK(τ) is a multiplicity free direct sum of irreducible representations of G. Such a triple

is called a multiplicity free triple. The only examples that we know have the following

additional property: µ lies in a face F of the positive integral weights with the property

that for every element µ′ ∈ F the triple (G,K, µ′) is a multiplicity free triple. Such a

triple (G,K,F ) is called a multiplicity free system.

6



1.3. The spectral problem

G K λsph faces F

SU(n+ 1) n ≥ 1 U(n) $1 +$n any

SO(2n) n ≥ 2 SO(2n− 1) $1 any

SO(2n+ 1) n ≥ 2 SO(2n) $1 any

Sp(2n) n ≥ 3 Sp(2n− 2)× Sp(2) $2 dimF ≤ 2

F4 Spin(9) $1 dimF ≤ 1 or

F = Nω1 + Nω2

Spin(7) G2 $3 dimF ≤ 1

G2 SU(3) $1 dimF ≤ 1

Table 1.1: Compact multiplicity free systems of rank one. In the third column we have

given the highest weight λsph ∈ P+
G of the fundamental zonal spherical representation in

the notation for root systems of Bourbaki [Bou68, Planches], except for the case (G,K) =

(SO4(C),SO3(C)) where G is not simple and λsph = $1 +$2 ∈ P+
G = N$1 + N$2.

Examples of multiplicity free systems are (G,K, 0) with (G,K) a Gel’fand pair. In-

deed, the definition of a Gel’fand pair is that the trivial K-representation τ0 occurs with

multiplicity at most one in the restriction of any irreducible G-representation to K. Us-

ing Frobenius reciprocity we see that this is the same as indGK(τ0) being a multiplicity

free G-representation. The rank of a Gel’fand pair is the dimension of G/K minus the

dimension of the maximal K-orbit in G/K.

The spectral problem is to find all multiplicity free systems modulo a suitable equiv-

alence relation among them. We have solved this problem successfully for the triples

(G,K,F ) with (G,K) a rank one Gel’fand pair. The classification is presented in Table

1.1. In [HNOO12] a classification of multiplicity free systems (G,K,F ) is presented with

(G,K) a symmetric pair of arbitrary rank.

1.3.2. We have used two techniques to prove the classification of multiplicity free systems

(G,K,F ) with (G,K) a rank one Gel’fand pair. The first one amounts to translating the

problem in terms of complex algebraic groups. The notion of Gel’fand pairs of compact

groups translates to that of spherical pairs of reductive groups. A pair (GC,KC) of

reductive algebraic groups is called a spherical pair if a Borel subgroup B ⊂ GC has an

open orbit in the quotient GC/KC. A face F of the dominant integral weights of KC
corresponds to a parabolic subgroup P ⊂ KC. The problem of showing that some triple

(G,K,F ) is or is not a multiplicity free system boils down to show the (non)-existence of

an open orbit of a Borel subgroup of GC in the space GC/P . We used this technique to

prove the statement on the multiplicity free systems involving the symplectic groups.

The second technique is to analyze the branching rules in a sophisticated manner.

The compact Gel’fand pairs of rank one have the property that there is a one-dimensional

torus A ⊂ G such that there is a decomposition G = KAK. This means that for each

g ∈ G there are elements k1, k2 ∈ K and a ∈ A with g = k1ak2. Let M = ZK(A), the

7



Chapter 1. Introduction

centralizer of A in K. Under the hypothesis that (G,K) is a rank one Gel’fand pair we

show that (G,K,F ) is a multiplicity free system if and only if the restriction to M of

every irreducible K-representation of highest weight µ ∈ F decomposes multiplicity free.

We use this technique to prove the statements on the multiplicity free systems involving

exceptional groups.

1.3.3. The determination of the multiplicity free systems (G,K,F ) with (G,K) a rank

one Gel’fand pair is not enough for our purposes. We need more precise information.

Given such a system (G,K,F ) we want to determine, for a fixed µ ∈ F , the irreducible

G-representations whose restriction to K contains an irreducible representation of highest

weight µ. We denote the dominant integral weights of G and K by P+
G and P+

K respec-

tively. The highest weights of the G-representations that contain a K-representation of

given weight µ is denoted by P+
G (µ).

A branching rule for a pair (G,K) of compact groups describes the irreducible K-

representations that occur in the restriction of any irreducible G-representation. Deter-

mination of P+
G (µ) amounts to inverting the branching rules for the pair (G,K).

β2

β1

ω2

ω1

λ

s1λ

α2

$2

$1

α1

µ

P+
G2

(µ)

Bµ

Figure 1.1: Branching from G2 to SL3(C) on the left and the µ-well on the right.

1.3.4. Consider the pair (G2,SU(3)), which is a Gel’fand pair of rank one. The irreducible

representations of G2 and SU(3) are parametrized by P+
G2

and P+
SU(3) which are monoids

generated over N by {$1, $2} and {ω1, ω2} respectively, which are depicted in Figure 1.1.

The picture on the left in Figure 1.1 shows in the gray area all the SU(3)-representations
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that occur in the restriction of a G2-representation of highest weight λ. More precisely,

we should only look at the integral points in the gray area. There are also multiplicities

involved: the multiplicities are one on the outer hexagon, and increase by one on each

inner shell hexagon, until the hexagon becomes a triangle and then multiplicities stabilize.

From this picture we see that the two faces F that yield multiplicity free systems, are ω1N
and ω2N. The picture on the right in Figure 1.1 also shows what the P+

SU(3)(µ) should be

for the indicated µ.

1.3.5. We close this section with an observation that is very important for the construc-

tion of matrix valued orthogonal polynomials. For µ = 0, the set P+
G (0) is a monoid over

N whose generator λsph is called the spherical weight. This means that the restriction

to K of the irreducible G-representation of highest weight λsph contains the trivial K-

representation. Moreover, λsph is the smallest weight with this property. We denote this

representation by πsph.

We show that if λ ∈ P+
G (µ), then λ + λsph ∈ P+

G (µ). For every λ ∈ P+
G (µ) there is a

minimal element ν ∈ P+
G (µ) with the property that λ = ν + dλsph and ν − λsph 6∈ P+

G (µ).

The set of these elements ν is finite, and we denote it by Bµ.

The set P+
G (µ) is of the form N×Bµ, i.e. there is an isomorphism of sets

λ : N×Bµ → P+
G (µ) : (d, ν) 7→ ν + dλsph.

See the picture on the right in Figure 1.1 for an illustration of the set P+
G (µ). We call

P+
G (µ) the µ-well and we call Bµ the bottom of the µ-well.

We say that an element λ(d, ν) ∈ P+
G (µ) is of degree d. The finite set Bµ ⊂ P+

G

inherits the standard partial ordering of P+
G , and together with the standard ordering on

N, we obtain a partial ordering �µ on P+
G (µ):

λ(d1, ν1) �µ λ(d2, ν2)⇔ d1 < d2 ∨ (d1 = d2 ∧ ν1 � ν2).

This ordering first looks at the degree and then at the partial ordering on the bottom

Bµ. Every µ-well that we encounter in Table 1.1, except1 for the case G = F4, is of this

shape and we are able to determine all the bottoms explicitly.

Let (G,K,F ) be a multiplicity free system with (G,K) a Gel’fand pair of rank one,

with G other than F4, and let µ ∈ F . Let λ ∈ P+
G (µ) and let π be an irreducible G-

representation of highest weight λ. Consider the tensor product π⊗πsph. Suppose that π′

is an irreducible representation of G of highest weight λ′ that occurs in the decomposition

of π ⊗ πsph. If λ′ ∈ P+
G (µ), then λ− λsph �µ λ′ �µ λ+ λsph, which we prove in Theorem

2.4.2.

1A few days before printing we discovered that there are good faces other than {0} in this case.

Unfortunately there was no time left to analyze the µ-wells in these cases.
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1.4 The general construction in a nutshell

In this section we fix a multiplicity free system (G,K,F ) with (G,K) a rank one Gel’fand

pair and G not of type F4. We also fix an element µ ∈ F and an irreducible K-

representation τ of highest weight µ. Let V denote the representation space of τ .

1.4.1. Let R(G) denote the algebra of matrix coefficients on G and consider the action

of K ×K on R(G)⊗ End(V ) given by

((k1, k2)Φ)(g) = τ(k1)Φ(k−1
1 gk2)τ(k2)−1,

where Φ is a map G→ End(V ). The functions that are fixed under this action are called

spherical functions of type µ. Let Eµ denote the space of spherical functions of type µ.

Typically, a spherical function of type µ is obtained as follows. Let λ ∈ P+
G (µ) and let

π be the corresponding representation of G in the space Vλ. There is a K-equivariant

embedding b : V → Vλ and its adjoint b∗ : Vλ → V is also K-equivariant. Define

Φλµ : G→ End(V ) by

Φµλ(g) = b∗ ◦ π(g) ◦ b.

The function Φµλ is called an elementary spherical function of type µ associated to λ ∈
P+
G (µ). The elementary spherical functions of type µ constitute a basis of Eµ. The partial

ordering �µ on P+
G (µ) induces a grading on Eµ.

A special instance of an elementary µ-spherical function is Φ0
λsph

, which we call the

fundamental zonal elementary spherical function. We denote this (scalar) valued function

by φ. Note that φ is K-bi-invariant. The space E0 of spherical functions of type 0 is

called the space of zonal spherical functions. E0 is the space of K-bi-invariant functions

in R(G) and it is isomorphic to C[φ].

1.4.2. Let λ ∈ P+
G (µ). Then the function g 7→ φ(g)Φµλ(g) is in Eµ. In fact, we show that

it is a linear combination of functions Φµλ′ with λ′ ∈ P+
G (µ) satisfying λ− λsph �µ λ′ �µ

λ+λsph. This implies that Eµ is an E0-module. Moreover, multiplication with φ respects

the grading. We deduce that Eµ is a free E0-module with |Bµ| generators, Bµ being the

bottom of the µ-well. Hence we can express an elementary spherical function of type µ

as an E0-linear combination of the |Bµ| elementary spherical functions of degree zero.

1.4.3. The final step in the construction is restricting the µ-spherical functions to the

torus A ⊂ G that we have discussed before. The torus A is one-dimensional and we

have a decomposition G = KAK. In view of their transformation behavior, the spherical

functions of type µ are completely determined by their restrictions to A. We show that the

restricted elementary spherical functions of type µ of degree zero are linearly independent

in each point of a dense subset Aµ−reg of A. Applying the base change in each point to

Φµλ gives a family of vector valued polynomials functions on A that we denote by Qµλ. The

functions Qµλ are polynomial in φ and if λ = λ(d, ν) is of degree d then there is exactly

one entry of Qµλ that is a polynomial in φ of degree d.

10
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1.4.4. The matrix valued polynomials Qµd are obtained by arranging the |Bµ| vector

valued functions Qµλ of the same degree in a matrix. This yields a matrix valued function

whose entries are polynomials in φ. Upon writing Qµd (a) = Pµd (x) for x = φ(a) we obtain

a family of matrix valued polynomials whose leading coefficient (that of xd) is invertible.

Let I ⊂ R denote the image of A under the fundamental zonal spherical function φ.

We show that (possibly after rescaling I = [−1, 1]), {Pµd : d ∈ N} is a family of matrix

valued orthogonal polynomials with respect to a matrix weight Wµ(x) that is of the form

(1 − x)α(1 + x)βW̃µ(x) with suitable values for α and β and with W̃µ(x) a self-adjoint

matrix valued polynomial. Moreover, we show that there is a commutative algebra of dif-

ferential operators D(Wµ) for which the polynomials Pµd are simultaneous eigenfunctions,

i.e. DPd = PdΛd(D) for a diagonal matrix Γd(D) whose entries are polynomial in d. This

algebra is a quotient of the algebra U(gC)kC , the subalgebra of the universal enveloping

algebra of gC, that centralizes kC. The map to D(Wµ) is given by taking radial parts, a

conjugation by the base change and a substitution of variables. Note that the Casimir

operator is in U(gC)kC . We denote its image in D(Wµ) by DΩ,µ. We have constructed

in a uniform way a family of matrix valued orthogonal polynomials. Moreover, the pairs

(Wµ, DΩ,µ) are classical.

1.5 Applications and further studies

1.5.1. The construction of matrix valued orthogonal polynomials that we presented in

Section 1.4 boils down to the construction of the particular Jacobi polynomials that we

discussed in 1.2.3, if we take µ = 0. Moreover, we show that the matrix valued orthogonal

polynomials of Grünbaum et. al. [GPT02] are closely related to the ones constructed in

this dissertation, for the corresponding multiplicity free triple.

1.5.2. In the particular examples [GPT02] and Chapters 4 and 5 of this dissertation, the

results are very explicit, i.e. one can obtain very explicit expressions for the coefficients

that are involved. The coefficients that are involved are mostly Clebsch-Gordan coeffi-

cients for the various tensor product decompositions and it is not likely that we can be

as specific for the other multiplicity free triples.

1.5.3. It would be desirable to have a better understanding of the following aspects of

the weight functions. The first is that we would like to know whether or not Wµ(x) is

indecomposable. In the case (SU(2) × SU(2),SU(2)) that we studied in Chapter 4 we

know that the weight decomposes into two indecomposable blocks. This decomposition

is closely related to the Cartan-involution for the symmetric pair (SU(2)× SU(2),SU(2))

and we expect that the only decomposable matrix weights Wµ come from multiplicity

free triples (SO(2n),SO(2n − 1), µ). Moreover, we expect that they are decomposable

into no more than two blocks.

We are also interested in the points where the determinant of Wµ is zero. We expect

that the critical values of φ are the only points where this happens. Indeed, if there are

11
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more singularities then we expect that the conjugated differential operators would detect

them. However, there seem to be no other singularities. It would be interesting to learn

more about this matter.

1.5.4. The examples that we have constructed have many hidden properties, see e.g.

all the very particular results in Chapter 5 on decompositions of the weight. We found

for example the LDU -decomposition of the weight W , i.e. a decomposition W (x) =

L(x)D(x)L(x)∗ with L(x) a lower triangular matrix valued polynomial and D a diagonal

matrix valued function. It would be interesting to see what the LDU -decomposition of the

weight means on the level of the Lie groups. Having a good control over these examples

may be fruitful if we want to understand the general matrix valued polynomials of Jacobi

type, introduced by Grünbaum and Durán in [DG05a].

1.5.5. The algebras D(Wµ) and D(W ) are not yet understood in sufficient detail. It

would be interesting to learn about a global description of these algebras and what the

precise role is of the elements other than the images of the Casimir operator.

1.6 This dissertation

This dissertation consists of two parts. In Part I we make the results that we discussed

in Sections 1.3 and 1.4 precise. This material originates from collaborating with Gert

Heckman. A joint article is in preparation.

Part II consists of two articles [KvPR11, KvPR12] that are written in collaboration

with Erik Koelink and Pablo Román. The article in Chapter 4 has been accepted for

publication by International Mathematical Research Notices with the title “Matrix-valued

orthogonal polynomials related to (SU(2) × SU(2),diag)”. The article in Chapter 5 has

been submitted with the title “Matrix-valued orthogonal polynomials related to (SU(2)×
SU(2),diag), II”. Time constraints forced the author to put the articles integrally in this

dissertation, instead of redirecting them into one new chapter.

• Chapter 2: Multiplicity Free Systems. In this chapter we define multiplicity

free triples (G,K, µ) and multiplicity free systems (G,K,F ). We classify the multi-

plicity free systems (G,K,F ) with (G,K) a rank one Gel’fand pair. Moreover, we

describe the spectrum P+
G (µ) that we associate to a multiplicity free triple (G,K,F )

with G other than F4 and we equip it with a partial ordering. We show that this

partial ordering behaves well with respect to taking the tensor product with πsph,

the fundamental spherical representation.

• Chapter 3: Matrix Valued Polynomials associated to Multiplicity Free

Systems. Given a multiplicity free triple (G,K, µ) we introduce spherical functions

of type µ. We explain the construction of a family of matrix valued orthogonal

polynomials starting from a multiplicity free system (G,K,F ), with (G,K) a rank

one Gel’fand pair with G other than F4, and an element µ ∈ F . We obtain some

12
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explicit results about the matrix weight and we obtain a commutative algebra of

differential operators for which the matrix valued polynomials are simultaneous

eigenfunctions.

• Chapter 4: Matrix Valued Orthogonal Polynomials related to (SU(2) ×
SU(2),SU(2)), I. We continue the work of Koornwinder by constructing families

of matrix valued orthogonal polynomials out of the vector valued polynomials in

[Koo85]. We show that Koornwinder’s polynomials are the same as the ones we

construct, but our construction in this chapter is closely related to the construction

in Chapter 3. Using Magma we obtain expressions for second order differential

operators that have the matrix valued orthogonal polynomials as eigenfunctions.

In fact, we find non-commuting differential operators and differential operators of

order one among them. We also show that the matrix weight decomposes into no

more than two blocks of matrix weights

• Chapter 5: Matrix Valued Orthogonal Polynomials related to (SU(2) ×
SU(2),SU(2)), II. We continue study of Chapter 4 by deducing the differential oper-

ators from the group theory. This amounts to calculating radial parts as in [CM82],

a base change and a substitution of variables. We explain where the differential oper-

ator of order one comes from. Moreover, we find a remarkable LDU -decomposition

for the matrix weight. This decomposition easily implies our previous conjecture

about the determinant of the matrix weight. The LDU -decomposition also provides

a link to the (scalar valued) Gegenbauer and Racah polynomials. Moreover, we ex-

press the matrix valued polynomials as matrix valued hypergeometric functions in

the sense of Tirao [Tir03].
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Chapter 2

Multiplicity Free Systems

2.1 Introduction

2.1.1. Let (G,K) be a Gel’fand pair of algebraic reductive groups over C, i.e. the re-

striction of any irreducible rational representation π : G → GL(V ) decomposes into a

direct sum of irreducible rational representations of K and the multiplicity of the trivial

K-representation is at most one. The algebra of matrix coefficients of G that are K-bi-

invariant is isomorphic to a commutative algebra of Krull-dimension r, the rank of the

pair (G,K). If we assume furthermore that (G,K) is a symmetric pair with G simply

connected and both G and K connected, then the algebra of matrix coefficients of G that

are K-bi-invariant is isomorphic to a polynomial algebra with r generators. Under this

isomorphism the matrix coefficients can be identified with Jacobi polynomials. The Ja-

cobi polynomials in one variable enjoy many special properties: they satisfy a three term

recurrence relation, they are eigenfunctions of a second order differential operator and if

we consider them on the compact form G0 ⊂ G then they lead to a system of orthogonal

polynomials. Moreover, all the explicit expressions are known, see [KLS10, Ch. 9.8]. In

Chapter 3 we generalize the construction of these Jacobi polynomials in one variable to

a construction of vector and matrix valued polynomials that enjoy properties similar to

those of the Jacobi polynomials. In the present chapter we investigate the ingredients for

this construction which are multiplicity free triples (Definition 2.1.8). A multiplicity free

triple consists of a pair of connected reductive complex algebraic groups K ⊂ G and an

irreducible rational representation of K that plays the role of the trivial representation

in a Gel’fand pair: it occurs with multiplicity at most one in the decomposition of the

restriction of any irreducible rational representation of G to K. The multiplicity free

triples that we know have the property that we may vary the K-type in a monoid that

is contained in a face of a Weyl chamber of K, without losing the multiplicity property.

This defines what we call a multiplicity free system (Definition 2.2.1) and we study these

systems by means of parabolic subgroups of K. We classify the multiplicity free systems

of rank one and we obtain the explicit data concerning the involved representations that
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we need in Chapter 3.

All algebraic groups and varieties in this section are over the complex numbers. Ref-

erences for notions in the theory of algebraic groups are [Bor91, Hum81, Spr09].

Definition 2.1.2. Let G be a connected reductive algebraic group and let X be a homo-

geneous G-variety. Then X is called a spherical G-variety if X admits an open B orbit

for some Borel subgroup B ⊂ G. Let H ⊂ G be a closed connected subgroup. The pair

(G,H) is called a spherical pair if the quotient G/H is a spherical G-variety. We call a

spherical pair (G,K) reductive if both G and K are reductive.

Proposition 2.1.3. Let (G,H) be a spherical pair. If H ′ ⊂ G is a subgroup with H ⊂ H ′
then (G,H ′) is also a spherical pair.

Proof. There exists a Borel B ⊂ G such that B has an open orbit in G/H. Equivalently,

the action of B×H on G given by (b, g, h) 7→ bgh−1 has an open orbit in G which implies

that the action of B × H ′ on G also has an open orbit. Hence (G,H ′) is a spherical

pair.

2.1.4. Let (G,K) be a reductive spherical pair and let X = G/K, which is an affine

variety with coordinate ring C[X] = C[G]K , the algebra of matrix coefficients that are

invariant for the right regular representation of K. As a G-module, C[X] is isomorphic to

a direct sum of irreducible rational G-representations. The fact that X is a G-spherical

variety is equivalent to C[X] being a multiplicity free G-module, i.e. the multiplicity of

any irreducible representation of G in the decomposition of C[X] is at most one. The

irreducible representations that occur in the decomposition of C[X] are precisely those

with a vector v in the representation space V that is fixed by K. It follows that a pair

(G,K) of connected reductive groups is a Gel’fand pair if and only if it is a reductive

spherical pair. In general a G-homogeneous variety X is a spherical variety if and only

if for every G-homogeneous line bundle L → X the space of global sections Γ(X,L)

decomposes multiplicity free as a G-module.

2.1.5. An isogeny c : G → G′ is a surjective group homomorphism with finite kernel.

Two groups G,G′ are called isogenous if there is an isogeny in one of the directions and

this generates an equivalence relation. A pair (G,K) with K ⊂ G is isogenous to a pair

(G′,K ′) if G is isogenous to G′ and restriction to K and K ′ yields an isogeny. If (G1,K1)

and (G2,K2) are spherical pairs then so is (G1 × G2,K1 ×K2). A spherical pair of the

form (G1 ×G2,K1 ×K2) is called decomposable. A spherical pair that is not isogenous

to a decomposable spherical pair is called indecomposable.

Mikityuk [Mik86] and Brion [Bri87] classified (independently) the indecomposable

reductive spherical pairs modulo isogenies. One part of the classifications had already

been done by Krämer [Krä79] who classified the spherical pairs (G,K) with G simple and

K reductive. The list of indecomposable reductive spherical pairs consists of 22 families

(Gn,Kn) of which 15 have Gn simple, and 21 pairs (G,K) of which 20 have G simple.

18



2.1. Introduction

2.1.6. We fix notations for the representations of a connected reductive group G over C
of semisimple rank n. Let B ⊂ G be a Borel subset and let T ⊂ B be a maximal torus.

The Lie algebra of G is denoted by g and the Lie algebra of T by t. Let zg denote the

center of g and denote g′ = [g, g]. We have g = zg⊕g′. The roots of G are denoted by RG.

The choice for B fixes a notion of positivity and we get a system of simple roots ΠG and

a set of positive roots R+
G ⊂ RG. The Weyl group of the root system is denoted by WG.

The fundamental weights that correspond to the roots αi ∈ R+
G are denoted by $i. The

dual z∨g of zg is isomorphic to a number of dim zg copies of C. The weight lattice PG is a

full sublattice of Zdim zg ⊕ spanZ{$i : i = 1, . . . , n} because there is a finite covering of G

by G̃, the direct product of the center of G and the simply connected covering G̃′ of G′,

the semisimple part of G. Denote V = PG ⊗Z R. Let 〈·, ·〉 denote the pairing on V dual

to the Killing form. The choice for B also determines a positive Weyl chamber C+
G and

a set of positive weights P+
G . A relatively open face f ⊂ C+

G gives a subset F = f ∩ P+
G

of P+
G which we call a (relatively open) face of P+

G . The elements in P+
G correspond to

irreducible rational representations of G via the theorem of the highest weight. If G is

semisimple we denote by λ � λ′ the partial ordering on PG defined by λ′ − λ being an

N-linear combination of positive roots.

2.1.7. A reductive spherical pair (G,K) gives an affine G-homogeneous space X = G/K

and the G-module C[X] decomposes multiplicity free. The highest weights of the irre-

ducible representations that occur in the decomposition constitute a subset P+
G (0) ⊂ P+

G

where the zero refers to the highest weight of the trivial K-representation. The set P+
G (0)

is called the spherical monoid (over N) because it is closed under addition and 0 ∈ P+
G (0).

The number of generators of P+
G (0) is in general ≥ r, the rank of the pair (G,K). How-

ever, the dimension of the cone generated by P+
G (0) is always r. Krämer [Krä79] provides

the generators of P+
G (0) for the reductive spherical pairs (G,K) with G simple for the

cases in which P+
G (0) is generated by r elements. In the two other cases he provides the

general expression for the elements in P+
G (0).

Let (G,K) be a reductive pair, let µ ∈ P+
K , λ ∈ P+

G and let τµ and πλ be irreducible

representations of K and G of highest weights µ and λ respectively. We denote mG,K
λ (µ) =

[πλ|K : τµ]. the number of copies of τµ in the restriction of πλ to K. The following

definition generalizes the notion of a Gel’fand pair.

Definition 2.1.8. A triple (G,K, µ) consisting of a connected reductive algebraic group

G, a closed connected reductive subgroup K ⊂ G and a weight µ ∈ P+
K is called a multi-

plicity free triple if mG,K
λ (µ) ≤ 1 for all λ ∈ P+

G .

Example 2.1.9. Consider the spherical pair (SLn+1(C),GLn(C)) where the embedding

GLn(C)→ SLn+1(C) is given by x 7→ diag(x, detx−1). Let π be any irreducible rational

representation of SLn+1(C). From the classical branching rules (see e.g. [Kna02, Ch. IX])

it follows that the restriction of π to GLn(C) decomposes multiplicity free. In particular,

m
SLn+1(C),GLn(C)
λ (µ) ≤ 1 for all λ ∈ P+

SLn(C) and all µ ∈ P+
GLn(C). This implies that
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((SLn+1(C),GLn(C)), µ) is a multiplicity free triple for every µ ∈ P+
GLn(C). Similarly,

(SOn(C),SOn−1(C), µ) is a multiplicity free triple for every µ ∈ P+
SOn−1(C).

A multiplicity free triple has no geometrical counterpart in the sense of Gel’fand pairs

versus spherical pairs. In Section 2.2 we define multiplicity free systems by imposing

further conditions on the K-type µ. This notion does have a geometrical counterpart.

Before we come to this point we discuss some results in representation theory.

2.1.10. Let (G,H) be a pair of connected algebraic groups with H ⊂ G a closed subgroup

and G reductive and let τ : H → GL(V ) be a rational finite dimensional H-representation.

The group H acts on the space G×V by h(g, v) = (gh−1, τ(h)v). The quotient G×τ V is

a G-homogeneous vector bundle over the homogeneous space G/H. Any G-homogeneous

vector bundle E → G/H is of this form where the H-representation is given by the

representation of H in the the fiber of E → G/H over the point eH, for e ∈ G the neutral

element.

The global sections of the bundle G ×τ V correspond to elements in C[G] ⊗ V that

are invariant for the H-action defined by (h · f)(g) = τ(h)f(gh−1). We denote this space

by indGH(V ). The left regular representation of G on indGH(V ) is denoted by indGH(τ)

and it is called the induced representation of τ to G. The induction procedure is a

functor indGH from the category of rational H-representations to the category of rational

G-representations. Given G-representations π, π′ in V and V ′ respectively, we denote

dim(HomG(V, V ′)) by [π : π′]. If π is irreducible then [π : π′] is the number of copies

of π in the decomposition of V ′ as a direct sum of irreducible G-representations. The

restriction functor resGH , which associates to a rational G-representation its restriction to

H, is a left adjoint for indGH . This implies Frobenius reciprocity: we have [indGH(τ) : π] =

[resGH(π) : τ ]. See [Jan03, Ch. 3].

A special instance of induced representations is the realization of irreducible rational

representations of reductive connected algebraic groups. See e.g. [DK00, Ch. 4].

Theorem 2.1.11 (Borel-Weil). Let G be a connected algebraic group, B ⊂ G a Borel

subgroup, T ⊂ B a maximal torus and let λ ∈ P+
G . Let χ−λ : T → C× be the character

of weight −λ. Let P ⊂ G be the standard parabolic subgroup associated to the subset

of simple roots α ∈ ΠG with the property that 〈λ, α〉 ≥ 0. The extension of χ−λ to a

character of B by letting it be trivial on the unipotent part is denoted by χ−λ : B → C×.

We denote the similar extension of χ−λ to a character of P by χ−λ : P → C×.

• The rational G-representation indGB(χ−λ) is irreducible of highest weight −sG(λ),

where sG ∈WG is the longest Weyl group element.

• The rational G-representation indGP (χ−λ) is irreducible of highest weight −sG(λ).

The map G/B → G/P induces an isomorphism indGP (χ−λ) → indGB(χ−λ) which is

G-equivariant.

2.1.12. The irreducible representation of highest weight −sGλ is dual to the irreducible

representation of highest weight λ. In Theorem 2.1.11 we associated to an element λ ∈ P+
G
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a unique parabolic subgroup P . Note that the elements in an open face F ⊂ P+
G all yield

the same parabolic subgroup.

2.2 Multiplicity free systems

Definition 2.2.1. A multiplicity free system is a triple (G,K,F ) with G a connected

reductive algebraic group, K ⊂ G a closed connected reductive subgroup and F ⊂ P+
K a

non-empty relatively open face of P+
K such that for every weight µ ∈ F the triple (G,K, µ)

is a multiplicity free triple.

Example 2.2.2. Example 2.1.9 shows that (G,K,P+
K ) is a multiplicity free system for

(G,K) = (SLn+1(C),GLn(C)) and (SOn+1(C),SOn(C)).

Theorem 2.2.3. Let (G,K) be a pair of connected reductive groups with K ⊂ G a closed

subgroup and let F ⊂ P+
K be a relatively open face. Denote by P ⊂ K the parabolic

subgroup that is associated to the face −sK(F ) (as in Theorem 2.1.11). Then (G,K,F )

is a multiplicity free system if and only if (G,P ) is a spherical pair.

Proof. Suppose that (G,K,F ) is a multiplicity free system and let L → G/P be

a G-homogeneous line bundle. By 2.1.4 we need to show that the G-module Γ(G/P,L)

decomposes multiplicity free. We may assume that Γ(G/P,L) = indGPχ for some character

χ of P . The character χ is of the form χ = χµ for some µ ∈ PK . The functoriality of

ind implies that indGPχµ = indGK(indKP (χµ)) as a G-representation. Hence, if −µ 6∈ P+
K

then L→ G/P has no nonzero global sections and the claim is vacuously true. We may

assume that −µ ∈ P+
K and in fact µ ∈ sK(F ). Theorem 2.1.11 implies that indKP (χµ)

is an irreducible K-representation of highest weight sK(µ) ∈ F . Let π be an irreducible

G-representation of highest weight λ. Since (G,K,F ) is a multiplicity free triple we

have mG,K
λ (−sK(µ)) ≤ 1. Frobenius reciprocity implies mG,K

λ (−sK(µ)) = [indGP (χµ) : π]

and hence Γ(G/P,L) decomposes multiplicity free. Conversely, if (G,P ) is a spherical

pair then every irreducible G-representation occurs with multiplicity at most one in the

decomposition of any G-representation indGP (χ−sK(µ)) with µ ∈ F . Frobenius reciprocity

implies that mG,K
λ (µ) ≤ 1 for every λ ∈ P+

G .

Lemma 2.2.4. Let (G,K,F ) be a multiplicity free system, let f ⊂ C+
K be the relatively

open face such that F = f ∩P+
K and let F ′ ⊂ P+

G be a face with F ′ ⊂ f . Then (G,K,F ′)

is a multiplicity free system. In particular, if (G,K,F ) is a multiplicity free system then

(G,K) is a spherical pair.

Proof. Let P and P ′ denote the parabolic subgroups in K that correspond to the faces

F and F ′ respectively. The condition F ′ ⊂ f implies that P ⊂ P ′. It follows from

Proposition 2.1.3 that the pair (G,P ′) is G-spherical and Proposition 2.2.3 implies in

turn that (G,K,F ′) is a multiplicity free system. Since F 6= ∅ we have 0 ∈ f and we see

that (G,K) is spherical.
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G K λsph faces F

SLn+1(C) n ≥ 1 GLn(C) $1 +$n any

SO2n(C) n ≥ 2 SO2n−1(C) $1 any

SO2n+1(C) n ≥ 2 SO2n(C) $1 any

Sp2n(C) n ≥ 3 Sp2n−2(C)× Sp2(C) $2 dimF ≤ 2

F4 Spin9(C) $1 dimF ≤ 1 or

F = Nω1 + Nω2

SO7(C) G2 $3 dimF ≤ 1

G2 SL3(C) $1 dimF ≤ 1

Table 2.1: Multiplicity free systems with (G,K) a spherical pair of rank one. In the third

column we have given the highest weight λsph ∈ P+
G of the fundamental zonal spherical

representation in the notation for root systems of Bourbaki [Bou68, Planches], except for

the case (G,K) = (SO4(C),SO3(C)) where G is not simple and λsph = $1 +$2 ∈ P+
G =

N$1 + N$2.

2.2.5. Let (G,K,F ) be a multiplicity free system and let (G′,K ′) be a spherical pair that

is isogenous to (G,K). We have F = f ∩ P+
K for some relatively open face f ⊂ tK = tK′ .

Define F ′ = f ∩ P+
K′ . Then (G′,K ′, F ′) is a multiplicity free system. We say that

(G,K,F ) and (G′,K ′, F ′) are isogenous multiplicity free triples and this relation generates

an equivalence relation.

Let (G,K,F ) be a multiplicity free system with (G,K) a spherical pair of rank one.

Let G0 ⊂ G and K0 ⊂ K denote compact Lie groups with K0 ⊂ G0 and whose com-

plexifications are G and K. We claim that (G0,K0) is a compact two-point-homogeneous

space, i.e. given two pairs of points (p, q) and (p′, q′) in G0/K0 for which the distances

d(p, q) and d(p′, q′) are the same, there is an element g ∈ G with p′ = gp and q′ = gp.

To see this note that this property is equivalent to the property that K0 acts transi-

tively on the unit sphere in TeK0(G0/K0) (see e.g [Hel01, p. 535]), which we prove in

Proposition 3.2.3. This is in turn equivalent to the fact that the convolution algebra of

K0-bi-invariant matrix coefficients on G0 is generated by one element, hence the claim.

Compact two-point-homogeneous spaces have been classified by Wang in [Wan52].

In Table 2.1 we have listed the indecomposable spherical pairs (G,K) of rank one

modulo isogeny. In the third column we have put the fundamental spherical weights as

indicated in [Krä79], see Example 2.3.2. In the fourth column we have indicated the faces

F which lead to multiplicity free systems (G,K,F ). In the remainder of this section we

prove that this is a complete list of multiplicity free systems with (G,K) a spherical pair

of rank one and we briefly discuss examples of higher rank.

The Lie algebras associated to the spherical pairs (G,K) of rank one that are not

symmetric admit decompositions similar to the Iwasawa decomposition that we have for

symmetric pairs.
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2.2.6. Let G2,0 and Spin(7) denote the compact Lie groups whose complexifications are

G2 and Spin7(C). We want to find a copy of G2,0 in Spin(7). First we find a copy of Spin(7)

in SO(8). The group SO8(C) is defined by {x ∈ Mat8(C)|∀v, w ∈ C8 : Q(xv, xw) =

Q(v, w),detx = 1} where the bilinear form Q is given by Q(v, w) = vtSw with

S =

(
0 I

I 0

)
.

Let {v±ei , i = 1, 2, 3, 4} be a weight basis of C8. Let V ⊂ C8 denote the real subspace

with respect to the conjugation cv∓ei 7→ cv±ei . Then SO(8) = {x ∈ Mat8(R)|∀v, w ∈ V :

Q(xv, xw) = Q(v, w),det(x) = 1}.
The maximal torus t of the Lie algebra so7(C) is spanned by the elements Hi =

Ei,i − E3+i,3+i ∈ gl7(C) and we denote by εi the elements in t∨ defined by εi(Hj) = δij .

The roots of (so7(C), t) are given by R = {±εi ± εj : 1 ≤ i < j ≤ 3} ∪ {±εi : 1 ≤ i ≤ 3},
see Figure 2.1.

ε1 − ε2

ε2 − ε3

ε3

Figure 2.1: Roots of B3.

The simple roots are Π = {ε1 − ε2, ε2 − ε3, ε3}. The spherical weight for the pair

(so7(C), g2) is λsph = 1
2 (ε1 +ε2 +ε3) which is the highest weight of the spin representation

Spin7(C)→ SO8(C). This realizes Spin7(C) ⊂ SO8(C). The weights of this representation

are 1
2 (±ε1 ± ε2 ± ε3), as depicted in Figure 2.2.

Let v1 and v8 be the highest and lowest weight vectors in Vλsph
. We have Spin(7) =

Spin7(C)∩SO(8) and G2,0 is the stabilizer in Spin(7) of the vector v1 +v8 ∈ V . Note that

the stabilizer of v1 + v8 in the (standard) representation of SO8(C) is a copy of SO7(C).

Hence we have SO7(C) ∩ Spin7(C) = G2 and similarly for the compact subgroups.

Let a ⊂ so7(C) be spanned by HA = H1+H2+H3. Let A ⊂ Spin7(C) be the torus with

Lie algebra a and write M = ZG2
(A). Then M ∼= SL3(C) which can be seen from Figure

2.1, as the long roots of G2 are in λ⊥sph (with respect to the Killing form). To determine

A ∩M we look at the coroot lattices Q∨Spin7(C) = {(n1, n2, n3) ∈ Z3 : n1 + n2 + n3 ∈ 2Z}
and Q∨M = {(n1, n2, n3) ∈ Z3 : n1 +n2 +n3 = 0}. We have λ∨sph = (1, 1, 1) and thus 1

3λ
∨
sph

is in Q∨M modulo Q∨Spin7(C). Hence A ∩M has three elements.
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v8

v1

Figure 2.2: Weight diagram of Spin7(C)→ SO8(C) with orbits of M .

Let α : a → C be defined by α(sHA) = s. Then the adjoint action of a on so7(C)

gives a decomposition of a-weight spaces

so7(C) = n− ⊕m⊕ a⊕ n+,

where m is the Lie algebra of M , n− = so7(C)−α ⊕ so7(C)−2α, n+ = so7(C)α ⊕ so7(C)2α

and where so7(C)±α and so7(C)±2α are the direct sums of the appropriate root spaces of

so7(C).

A short root of g2 is contained in some direct sum so7(C)εi ⊕ so7(C)−εj−εk but not

in one of the summands. It follows that there is a map θ : n+ → n− with the property

(θ + I)n+ = m⊥ ⊂ g2. Hence we have so7(C) = g2 ⊕ a⊕ n+.

2.2.7. The spherical weight for (G2,SL3(C)) is $1 which corresponds precisely to the

embedding G2 → SO7(C) that we discussed in 2.2.6. The roots of g2 are {±αi|i =

1, . . . , 6}, see Figure 2.3.

The weight $1 is a root α4 of g2. Let s ⊂ g2 be an sl2(C)-triple with root $1. The

root spaces of s are perpendicular to sl3(C) with respect to the Killing form. Let g ∈ G2

correspond to the element

g′ =
1√
2

(
1 1

1 −1

)
in the subgroup SL2(C) ⊂ G2 whose Lie algebra is s. Let HA = Ad(g)H1, where H1 ∈ tG2

is the element in tG2 that corresponds to $∨1 . Note that HA ∈ H⊥1 ⊂ s. Let a ⊂ g2

denote the subspace spanned by HA. Let A ⊂ G2 denote the torus whose Lie algebra

is a. Define M = ZSL3(C)(A) which is a copy of SL2(C) ⊂ G2 whose roots are the long

roots perpendicular to $1. Let tM be the torus spanned by the orthocomplement of H1.

Then h = a⊕ tM is a Cartan subalgebra of g2 whose root spaces are Ad(g)(g2,±αi). Let

α : a→ C be defined by α(sHA) = s. The adjoint action of a on g2 gives a decomposition

of a-weight spaces

g2 = n− ⊕ sl2(C)⊕ a⊕ n+,
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α2

α5

α8

−α5

α6

−α6

α3

α4

−α3

−α4

−α1

α1

Figure 2.3: Roots for G2.

where m is the Lie algebra of M , n− = g2,−α/2 ⊕ g2,−α ⊕ g2,−3α/2, n+ = g2,α/2 ⊕ g2,α ⊕
g2,3α/2 and where g2,±α/2, g2,±α and g2,±3α/2 are the direct sums of the appropriate root

spaces of g2.

The space g2,α5 ⊕ g2,α1 ⊕ g2,−α3 ⊕ g2,−α6 is an irreducible s-representation. The

representations of SL2(C) are parametrized by 1
2N and given ` ∈ 1

2N we realize the

corresponding representation T ` in the space C[x, y]2` of homogeneous polynomials of

degree 2`. The s-representation under consideration corresponds to ` = 3
2 and the weight

vectors are x3, x2y, xy2 and y3. The highest and lowest weight vectors correspond to root

vectors of M . A small calculation shows that T `(g′)x3 +3T `(g′)xy2 is in the direct sum of

the highest and lowest weight spaces and similarly for T `(g′)y3 + 3T `(g′)x2y. This gives

rise to a map θ : n+ → n− with the property that (θ + I)n+ = m⊥ ⊂ k. Finally we note

that A ∩M has two elements because 1
2α
∨
4 − α∨6 ∈ t∨M .

Lemma 2.2.8. Let (G,K) be a spherical pair of rank one. Let a ⊂ k⊥ be a line consisting

of semisimple elements and let A ⊂ G denote the one-dimensional torus with Lie algebra

a. Define M = ZK(A) with Lie algebra m and Cartan subalgebra tM , the Lie algebra of

TM . Then a⊕ tM is a Cartan subalgebra of g. Fix notions of positivity on a and a⊕ tM
that are compatible and let n+ denote the direct sum of root spaces for the adjoint action

of a on g. Then we have g = k⊕ a⊕ n+. The group WA = NK(A)/M has two elements

where the non-trivial element acts on a by reflection in the origin. There is a linear map

θ : n+ → n− with the property that (θ + I)n+ = m⊥ ⊂ k.

Proof. If (G,K) is a symmetric pair then this is part of the usual structure theory with

θ the corresponding involution. In the other two cases we have proved all statements for

a specific choice of a in 2.2.6 and 2.2.7. The restriction that a has semisimple elements

implies that it is the complexification of a line in k⊥0 in the compact picture. The compact
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(G,K) M

(SLn+1(C),GLn(C)) S(diag(GL1(C)×GL1(C))×GLn−1(C))

(SO2n(C),SO2n−1(C)) SO2n−2(C)

(SO2n+1(C),SO2n(C)) SO2n−1(C)

(Sp2n(C),Sp2n−2(C)× Sp2(C)) Sp2(C)× Sp2n−4(C)

(F4,Spin9(C)) Spin7(C)

(Spin7(C),G2) SL3(C)

(G2,SL3(C)) SL2(C)

Table 2.2: Spherical pairs of rank one with M = ZK(A) modulo conjugation with K. Note

that the embedding Spin7(C) ⊂ Spin9(C) is the standard embedding Spin7(C) ⊂ Spin8(C)

followed by the embedding Spin8(C) ⊂ Spin9(C) that is twisted by the automorphism

ε1 − ε2 ↔ ε3 − ε4, see [BS79, §6].

group K0 acts transitively on these lines (see Proposition 3.2.3) and we see that the

results in 2.2.6 and 2.2.7 are independent of the choice of a. The action of K0 is actually

transitive on the sphere in k⊥ which implies that the only element in K that normalizes

a non-trivially is the reflection in the origin.

Proposition 2.2.9. Let (G,K) be a spherical pair of rank one. Let A,M be as in Lemma

2.2.8. Let P ⊂ K be a parabolic subgroup. Then G/P is G-spherical if and only if K/P

is M -spherical.

Proof. Let N+ ⊂ G be the closed unipotent subgroup with Lie algebra n+ and let

BM ⊂M be a Borel subgroup. Define B = BMAN
+ which is a Borel subgroup of G and

consider the map c : G/P → G/K. The open orbit of B in G/K is BK/K ∼= B/(B ∩K).

Note that B ∩ K contains BM with finite index. We observe that G/P has an open

B-orbit if and only if c−1(BK/K) has an open B-orbit, because c−1(BK/K) is an open

B-stable subset of G/P . The latter holds if and only if B ∩K has an open orbit in the

fiber c−1(K/K) = K/P which is in turn equivalent to K/P being M -spherical.

Lemma 2.2.10. Let F4 denote the connected (simply connected) reductive algebraic group

of type F4. The triple (F4,Spin9(C), F ) is a multiplicity free system if and only if dimF ≤
1 or F = Nω1 + Nω2.

Proof. The branching from K to M via the twisted embedding Spin8(C) ⊂ Spin9(C) is

described in [BS79, §6] and goes as follows. The restriction of an irreducible representation

of highest weight µ to the standard Spin8(C) is known and the representation of the

twisted embedding are obtained by interchanging the roots ε1 − ε2 and ε3 − ε4. Each

of these representations is then restricted to the standard Spin7(C) ⊂ Spin8(C). One

easily checks that the indicated representations decompose multiplicity free. To exclude

the other faces we only need to exclude the other two-dimensional faces. By looking at

the Dynkin diagram of B4 one calculates the dimensions of the corresponding parabolic
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subgroups P . The dimensions are 22 or 23. Hence, dim F4/P is equal to 29 or 30 whereas

dimBF4
= 28. It follows that there cannot be an open orbit for these faces.

Lemma 2.2.11. The triple (G2,SL3, F ) is a multiplicity free system if and only if F is

of dimension ≤ 1.

Proof. The branching rules for the pair (G2,SL3) are known, see e.g. [KQ78]. It follows

that an irreducible SL3(C)-representation occurs with multiplicity ≤ 1 if and only if its

highest weight is on a face of dimension ≤ 1. The result follows from Proposition 2.2.9.

Lemma 2.2.12. The triple (Spin7,G2, F ) is a multiplicity free system if and only if F

is of dimension ≤ 1.

Proof. We have seen that M = ZK(A) = SL3(C). The result follows from Lemma

2.2.11 and Proposition 2.2.9.

We have discussed all rows in Table 2.1 except for the symplectic groups. We need

the following result of Brion [Bri87, Prop. 3.1].

Proposition 2.2.13. Let G be a connected reductive algebraic group and let H ⊂ G be

an algebraic subgroup. Let H = HrHu be a Levi decomposition of H. Let Q ⊂ G be

a parabolic subgroup of G with Levi decomposition Q = QrQu such that Hr ⊂ Qr and

Hu ⊂ Qu. Then the following are equivalent.

• (G,H) is a spherical pair,

• (Qr, Hr) is a spherical pair and if BQr ⊂ Qr is a Borel subgroup opposite to Hr,

i.e. BQrH
r ⊂ Qr is open, then BQr ∩Hr has an open orbit in Qu/Hu.

2.2.14. Let (G,K) = (SLn+1(C),GLn(C)) and let BG ⊂ G and BK ⊂ K denote the

standard Borel subgroups consisting of the upper triangular matrices. We claim that

(G,BK) is a spherical pair. Proposition 2.2.3 then implies that (G,K,P+
K ) is a multiplicity

free system. This statement is already clear form the classical branching rules, but the

present proof serves as an alternative. The claim follows from Proposition 2.2.13. Indeed,

in this case H = BK and Q = BG and Hr = Qr = T ⊂ BG, the standard torus consisting

of diagonal matrices. The quotient BG/BK is a vector space isomorphic to ⊕gα where

α ∈ R+
G\R

+
K . There is an open orbit of the action of the torus T ⊂ B on ⊕gα, hence the

claim. A similar argument for this claim may also be found in [VK78, Rk. 7].

Lemma 2.2.15. The triple (Sp2n(C),Sp2n−2(C)×Sp2(C), F ) is a multiplicity free system

if and only if dimF ≤ 2.

Proof. Let G = Sp2n(C) and K = Sp2n−2(C) × Sp2(C). We proceed in five steps. In

the first step we parametrize the standard parabolic subgroups P ⊂ K that correspond

to the faces of dimension two. In the second step we determine the parabolic subgroups

Q ⊂ G with the properties (I) P r ⊂ Qr and (II) Pu ⊂ Qu. In the third step we show

that the pairs (Qr, P r) are spherical and we determine a Borel subgroup BQr ⊂ Qr with
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the property that BQrP
r ⊂ Qr is open. In the fourth step we show that BQr ∩ P r has a

dense orbit in Qu/Pu. In view of Proposition 2.2.13 we conclude that the pairs (G,P ) are

spherical pairs. In the fifth step we show that for a face F of dimension three, (G,K,F )

is not spherical.

(1). We introduce a system of simple roots for K,

ΠK = {ε1 − ε2, ε2 − ε3, . . . , εn−2 − εn−1, 2εn−1, 2εn} (2.1)

A standard parabolic subgroup PΓ ⊂ K that corresponds to a two dimensional face is

determined by a subset Γ ⊂ ΠK consisting of n − 2 elements. We divide the various

possibilities in four cases.

(i) {2εn−1, 2εn} ∩ Γ = ∅,

(ii) {2εn−1, 2εn} ∩ Γ = {2εn},

(iii) {2εn−1, 2εn} ∩ Γ = {2εn−1},

(vi) {2εn−1, 2εn} ∩ Γ = {2εn−1, 2εn}.

(2). We introduce two systems of simple roots for G,

ΠG = {ε1 − ε2, ε2 − ε3, . . . , εn−1 − εn, 2εn} (2.2)

Π̃G = {εn − ε1, ε1 − ε2, ε2 − ε3, . . . , εn−2 − εn−1, 2εn−1}. (2.3)

For each Γ in step one we determine a set of simple roots Γ′ such that the corresponding

standard parabolic subgroup QΓ′ ⊂ G satisfies properties (I) and (II). In cases (i) and (ii)

we have Γ ⊂ ΠG and we take Γ′ = Γ ⊂ ΠG. In case (iii) we switch to the system Π̃G of

simple roots. We observe that Γ ⊂ Π̃G and therefore we take Γ′ = Γ ⊂ Π̃G. In case (iv)

we take Γ′ = (Γ ∩ ΠG) ∪ {εn−1 − εn} ⊂ ΠG. This is the smallest system of simple roots

in ΠG that generates Γ.

Claim. The standard parabolic subgroups QΓ′ ⊂ G satisfy (I) and (II).

Proof of claim. In each case we write P = PΓ and Q = QΓ′ . It is clear that

P r ⊂ Qr by the choice of Q. In fact, we have P r = Qr in cases (i)-(iii). The more

difficult part lies in showing that Pu ⊂ Qu. To show this inclusion we look at the Lie

algebras of Pu and Qu. The Lie algebra of Pu is spanned by the root spaces kβ with

β ∈ R+
K\R

+
P r . Similarly for Qu but we have to be aware of the different sets Γ′. In

cases (i) and (ii) we have P r = Qr and hence R+
K\R

+
P r ⊂ R+

G\R
+
Qr . In case (iii) the

set of positive roots R′+G is different from the standard one. The Lie algebra of Qu is

spanned by the root spaces gα with α ∈ R′+G \R
+
Qr . By inspection of R′+G we see that

R+
K\R

+
P r ⊂ R′+G \R

+
Qr . In case (iv) we have P r ( Qr but again R+

K\R
+
P r ⊂ R+

G\R
+
Qr by

inspection. This settles the claim.

(3). The groups P r and Qr can be read from the Dynkin diagrams of K and G by

deleting the appropriate nodes. We have seen that P r = Qr in cases (i)-(iii) from which it

follows that the pairs (Qr, P r) are spherical in these cases. The groups P r are as follows.
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(i) P r = C× × SLn−1(C)× C× where the Lie algebra of the copies of C× are spanned

by H1 + · · ·+Hn−1 and Hn.

(ii) P r = SLp(C)× C× × SLn−p−1(C)× C× × Sp2(C) for some 1 ≤ p ≤ n− 2. The Lie

algebras of the copies of C× are spanned by H1 + · · ·+Hp and Hp+1 + · · ·+Hn−1.

(iii) P r = SLp(C)×C×× Sp2(n−p−1)(C)×C× for some 1 ≤ p ≤ n− 2. The Lie algebras

of the copies of C× are spanned by H1 + · · ·+Hp and Hn.

(iv) P r = SLp(C)×C××SLq(C)×C××Sp2(n−p−q−1)(C)×Sp2(C) for some p, q ∈ N≥1

with 2 ≤ p + q ≤ n − 2. The Lie algebras of the copies of C× are spanned by

H1 + · · ·+Hp and Hp+1 + · · ·+Hp+q.

In case (iv) we have Qr = SLp(C)×C× × SLq(C)×C× × Sp2(n−p−q)(C). It is clear that

(Qr, P r) is a spherical pair in case (iv) too. For any Borel subgroup B ⊂ Qr the quotient

Qr/P r has an open orbit. In all the cases we choose the Borel subgroup BQr ⊂ Qr to be

the product of the standard Borel subgroups in each factor.

(4). The groups BQr ∩ P r = BP r are products of standard Borel subgroups for each

factor of P r. We need to determine Qu/Pu. In all cases there is a set nΓ ⊂ RG such that

quotient Qu/Pu is isomorphic to the direct sum of root spaces gα with α ∈ nΓ. In cases

(i) and (ii) we have nΓ = R+
G\R

+
K and in case (iii) nΓ = R′+G \R

+
K . In case (iv) we have

nΓ = R+
G\(R

+
K ∪R

+
Sp2(n−p−q)(C)) = {εi ± εn : i = 1 . . . , p+ q}.

The actions of P r on the vector spaces Qu/Pu in the four cases are given as follows.

(i) Qu/Pu ∼= Hom(C2,Cn−1) and P r acts by

(s, x, t)M = sx ◦M ◦
(

t 0

0 t−1

)
.

(ii) Qu/Pu ∼= Hom(C2,Cp ⊕ Cn−p−1) and P r acts by

(x, s, y, t, z)M = (sx⊕ ty) ◦M ◦ z−1.

(iii) Qu/Pu ∼= Hom(C2,Cp)⊕ C2(n−p−1) and P r acts by

(x, s, y, t)(M,V ) =

(
sx ◦M ◦

(
t 0

0 t−1

)
, yV

)
.

(iv) Qu/Pu ∼= Hom(C2,Cp ⊕ Cq) and P r acts by

(x, s, y, t, u, v)M = (tx⊕ sy) ◦M ◦ v−1.
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Chapter 2. Multiplicity Free Systems

In each case BP r has an open orbit. Indeed, checking this boils down to verify that the

actions

GL2(C)× C× × End(C2)→ End(C2) : (x, t)M = x ◦M ◦ diag(t, t−1) (2.4)

and

GL2(C)×GL2(C)× Sp2(C)×Hom(C2,C4)→ Hom(C2,C4),

(x, y, z)M = (x⊕ y) ◦M ◦ z−1 (2.5)

are spherical for the cases (i, iii) and (ii, iv) respectively. We claim that (1) B × C× has

an open orbit in End(C2) for the action (2.4), where B ⊂ GL2(C) is the Borel subgroup

consisting of upper triangular matrices and (2) that B1 ×B2 ×B3 has an open orbit for

the action (2.5), where Bi ⊂ GL2(C) is the Borel subgroup consisting of upper triangular

matrices for i = 1, 2 and B3 ⊂ Sp2(C) is the Borel subgroup consisting of upper triangular

matrices. This is achieved by considering the orbits of

(
1 0

1 1

)
and


1 0

1 1

1 0

1 1


respectively.

(5). The spherical actions (2.4, 2.5) are neat in the sense that replacing (one of the

copies of) GL2(C) or Sp2(C) by its maximal torus, no longer yields a spherical action.

It follows that if we remove a root from Γ in cases (i), (ii) and (iii), the action BP r no

longer has an open orbit, since Qu/Pu remains the same, but correspondingly, in (2.4,

2.5) we must replace (one of the copies of) GL2(C) by its maximal torus. Similarly for

removing a root other than 2εn−1 or 2εn from Γ in case (iv). However, if we remove one

of the roots 2εn−1 or 2εn we end up in one of the cases (i)-(iii) with one root removed.

Hence, in this case, we also cannot have an open orbit of BP r in Qu/Pu.

Theorem 2.2.16. For each row in Table 2.1 we can choose one of the indicated faces in

the last column to obtain a triple (G,K,F ). Modulo isogenies these are all the multiplicity

free systems with (G,K) a spherical pair of rank one.

Proof. In Example 2.2.2 we argued that the first three rows yield multiplicity free

systems. The other rows are discussed in Lemmas 2.2.11, 2.2.12 and 2.2.15.

2.2.17. We know that there are more multiplicity free systems.

• (G,K,F ) with (G,K) a spherical pair of rank > 1 and F the face that parametrizes

the one-dimensional representations. K has one-dimensional representations only if

it has a center. The examples in the list of Krämer are

– (SO2n+1(C),GLn(C)),
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2.3. Inverting the branching rule

– (SL2n+1(C),GL1(C)× Sp2n(C)),

– (SO10(C),SO2(C)× Spin7(C)),

– (Sp2n(C),GL1(C)× Sp2n−2(C)),

– The compact Hermitian pairs, see e.g. [Hel01, Ch. 10]. For an analysis of the

spherical functions for these pairs see [HS94, Part I, Ch. 5].

• Let G = SLn+1(C)× SLn+1(C), K = diag(G) and F = Nω1 or F = Nωn. The pair

(G,K) is a symmetric pair and the Cartan involution θ is the flip. Let T ⊂ SLn+1(C)

be the standard torus and denote by A the image of the map T → G : t 7→ (t, t−1).

Then A is an n-dimensional torus in G for which G = KAK. Denote M = ZK(A),

which is equal to the diagonal embedding of T in G. Then (G,K,F ) is a multiplicity

free system and the rank of the pair (G,K) is n. Indeed, the restrictions to M of

the K-representations of highest weight µ ∈ F decompose multiplicity free.

• Let G = Spin9(C), K = Spin7(C) and F = Nω1. Then (G,K,F ) is a multiplicity

free system with (G,K) a spherical pair of rank two. Let A ⊂ G be the two-

dimensional torus for which G = KAK and let M = ZK(A). In the next section we

show that an irreducible representation of Spin7(C) of highest weight µ ∈ F restricts

to an irreducible representation of G2, which in turn decomposes multiplicity free

upon restriction to M , which is isomorphic to SL3(C).

In [HNOO12] a classification of multiplicity free systems (G,K,F ) is presented with

(G,K) a symmetric pair of arbitrary rank.

2.3 Inverting the branching rule

Definition 2.3.1. Let (G,K,F ) be a multiplicity free system with (G,K) a spherical pair

of rank one and let µ ∈ F . Define the set P+
G (µ) = {λ ∈ P+

G : mG,K
λ (µ) = 1}. This set is

called the µ-well. Furthermore, we define the set P+
M (µ) = {ν ∈ P+

M : mK,M
µ (ν) = 1}.

Example 2.3.2. The 0-well for a spherical pair (G,K) of rank one is a monoid (over N)

that is generated by the spherical weight λsph. The generators for the spherical pairs of

rank one are indicated in Table 2.1. If (G,K) is a symmetric pair (of any rank) then the

generators of P+
G (0) can be calculated by means of the Cartan-Helgason Theorem, see

[Kna02, Thm. 8.49].

Proposition 2.3.3. Let (G,K,F ) be a multiplicity free system from Table 2.1, let µ ∈
F and let λ ∈ P+

G (µ). Let Vλ denote the representation space of the irreducible G-

representation of highest weight λ. Let V n+

λ = {v ∈ Vλ : n+v = 0}. Then M acts on V n+

λ

as an irreducible representation. Moreover, any non-zero vector v ∈ V n+

λ is K-cyclic.

Proof. The subgroup MAN+ ⊂ G is parabolic because it contains the Borel B =

BMAN
+ of Proposition 2.2.9. The first part of the statement is a reformulation of
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Theorem 5.104 in [Kna02]. This leaves us to show the last statement. Let v ∈ V n+

λ be

non-zero and let U(g) denote the universal enveloping algebra of g. We have U(g)v = Vλ
because the representation is irreducible. By Lemma 2.2.8 we have g = k⊕ a⊕ n+ which

gives a decomposition U(g) = U(k)⊗U(a)⊗U(n+). Since U(n+)v = 0 and U(a)v ⊂ C · v
we see that U(k)v = Vλ.

2.3.4. Let tM ⊂ m be a Cartan subalgebra and define h = a ⊕ tM . Fix compatible

notions of positivity on a and h so that positive roots with respect to (g, h) restrict to

non-negative functionals on a. Let P ′+G be the set of dominant weights with respect to

this ordering. Let λ ∈ P ′+G and let π be an irreducible representation of highest weight λ.

The highest weight of the irreducible representation of M on V +
λ is λ|tM . The vectors in

v ∈ V n+

λ transform according to π(H)v = λ(H)v for all H ∈ a.

Proposition 2.3.5. Let (G,K,F ) be a multiplicity free system with (G,K) a spherical

pair of rank one, let µ ∈ F and let λ ∈ P+
G (µ). Let ν be the highest weight of the

representation of M on V n+

λ . Then ν ∈ P+
M (µ).

Proof. Let W ⊂ Vλ be a K-invariant subspace of positive dimension. Let G0 ⊂ G and

K0 ⊂ K be a compact forms and let (·, ·) be a symmetric non-degenerate G0-invariant

pairing on Vλ. Let v ∈ V n+

λ be non-zero. Then (v, w) 6= 0 for some w ∈ W . Indeed,

if this were not true then (Vλ,W ) = 0, because v is K-cyclic, which would imply that

W = {0}, contradicting dimW > 0. One of the K-invariant subspaces is a copy of Vµ.

We have shown that there is a vector v′ ∈ Vµ ⊂ Vλ with (v, v′) 6= 0. Schur’s Lemma

implies mK,M
µ (ν) ≥ 1 and hence mK,M

µ (ν) = 1 by Proposition 2.2.9.

Proposition 2.3.6. Let (G,K, µ) be a multiplicity free triple. Let λ ∈ P+
G (µ). Then

λ+ λsph ∈ P+
G (µ).

Proof. Let W = bλ(Vµ)⊗bλsph
(V0) ⊂ Vλ⊗Vλsph

. Since K acts trivially on V0 = C we see

that the space W is isomorphic to Vµ as K-representation. Let a : Vλ ⊗ Vλsph
→ ⊕λ′Vλ′

be the G-equivariant intertwiner that governs the decomposition of Vλ ⊗ Vλsph
. We show

that the image of W of the projection prλ+λsph
◦ a : Vλ ⊗ Vλsph

→ Vλ+λsph
is non-zero

which implies the result because prλ+λsph
is G-equivariant.

We realize the spaces Vλ and Vλsph
as global sections of line bundles Lλ and Lλsph

over

G/B where B ⊂ G is a Borel subgroup. The (G-equivariant) projection prλ+λsph
◦ a :

Vλ ⊗ Vλsph
→ Vλ+λsph

corresponds to the bilinear map Γ(G/B,Lλ) × Γ(G/B,Lλsph
) →

Γ(G/B,Lλ+λsph
) : (sv, sv′) 7→ sv · sv′ . Hence the image under prλ+λsph

of a non-zero

vector v ⊗ v′ ∈ W corresponds to a section svsv′ of Lλ+λsph
. Since both sv and sv′ are

non-zero and holomorphic, so is their product. Hence prλ+λsph
(a(W )) 6= {0}.

2.3.7. It follows from Proposition 2.3.5 that there is a map pµ : P+
G (µ) → P+

M (µ) that

assigns to an element λ the highest weight of the M -representation in V n+

λ . From Propo-

sition 2.3.6 we see that there is an asymptotic (or spherical) direction. The nature of the

sets P+
G (µ) has also been noted by Camporesi in [Cam05a] and [Cam05b]. Our proof of

Proposition 2.3.5 is based on Remark 1 in [Cam05a, p.106].
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2.3. Inverting the branching rule

The projection map pµ : P+
G (µ) → P+

M (µ) is surjective. For the symmetric pairs this

follows from the identity

lim
m7→∞

mG,K
bµ(ν)+m·λsph

(µ) = mK,M
µ (ν),

see [Wal73, Cor. 8.5.15], and for the other two pairs it follows from the explicit branching

rules. The number of elements in P+
M (µ) is denoted by dµ(M). This number is equal to

the dimension of EndM (Vµ) and to the number of elements in the bottom of the µ-well.

The fibers of pµ : P+
G (µ)→ P+

M (µ) are affine copies of Nλsph. To see this we note that

(1) if pµ(λ) = ν then pµ(λ+λsph) = ν, which follows from 2.3.4, and (2) λsph is primitive,

i.e. λsph/n 6∈ P+
G for n ∈ N with n ≥ 2. The latter is clear from the descriptions of λsph

in Table 2.1. It follows that a fiber of pµ has a minimal element.

Definition 2.3.8. Let (G,K,F ) be a multiplicity free system with (G,K) a spherical pair

of rank one and let µ ∈ F . We denote the minimal element (in the ordering discussed

in 2.3.7) of the fiber p−1
µ (ν) by bµ(ν). The set Bµ := {bµ(ν) : ν ∈ P+

M (µ)} is called the

µ-bottom or the bottom of the µ-well.

Proposition 2.3.9. Let (G,K,F ) be a multiplicity free system from Table 2.1 and let µ ∈
F . We have an isomorphism of sets Bµ×N→ P+

G (µ) given by (bµ(ν), d) 7→ bµ(ν)+d·λsph.

Proof. Propositions 2.3.5 and 2.3.6 imply that the map λ is injective. To see that it is

surjective we note that λsph is primitive.

2.3.10. Camporesi calculated the bottoms of the µ-wells for the first three triples in Table

2.1 in [Cam05a]. He obtains partial results for the bottoms in the symplectic case. The

determination of the sets P+
G (µ) is what we call an inversion of the branching rules. The

most important part is to determine the bottoms of the µ-wells. Indeed, if we know the

bottoms Bµ then we can reconstruct the µ-wells by means of Proposition 2.3.9.

For our purposes we need to reformulate the descriptions of the µ-bottoms of Cam-

poresi. Also, we need to invert the branching rules for the remaining cases.

2.3.11. In the remainder of this section we give descriptions of the µ-wells for multiplicity

free triples (G,K,F ) with (G,K) a spherical pair of rank one and G simply connected

and other1 than F4. The µ-wells for other multiplicity free triples can be deduced from

them by looking at the appropriate sublattices.

Inverting the branching rules for (SLn+1(C),GLn(C))

Let G = SLn+1(C) and K ⊂ G the image of GLn(C)→ SLn+1(C) : x 7→ diag(x, detx−1).

We use the choices and notations for roots and weights as in [Bou68]. The roots and

weights of G are denoted by α1, . . . , αn and $1, . . . , $n. The roots and weights of K are

denoted by β1, . . . , βn−1 and ω1, . . . , ωn−1. See Figure 2.4 for a picture in rank two.

1A few days before printing we discovered that there are good faces other than {0} in this case.

Unfortunately there was no time left to analyze the µ-wells in these cases.
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α1

α2

$1

$2

Figure 2.4: Roots and fundamental weights for sl3(C). The positive Weyl chamber of

gl2(C) is light gray and it contains the positive Weyl chamber of sl3(C) in which we have

laid some bricks.

The spherical weight λsph = ε1− εn+1 is a root of G but not of K. In the SL2(C)-copy

with root λsph we can rotate λsph to a semisimple element in k⊥. This gives a torus A ⊂ G.

The group M = ZK(A) equals M = {(x, y, x) ∈ S(GL1(C)×GLn−1(C)×GL1(C))}. The

map M → GLn−1(C) : (x, y, x) 7→ y is a double cover. The weight lattices of G,K and

M parametrize the respective irreducible rational representations and by means of the

Killing form we can realize PK and PM in PG. Define $̃i = $i − εi + 1
2 (ε1 + εn+1) for

i = 1, . . . , n. We obtain

P+
G = $1N⊕ · · · ⊕$n−1N⊕$nN, (2.6)

P+
K = $1N⊕ · · · ⊕$n−1N⊕$nZ, (2.7)

P+
M = $̃1Z⊕ $̃2N⊕ · · · ⊕ $̃n−1N. (2.8)

Note that P+
M ⊂ (ε1 − εn+1)⊥. We formulate two branching rules which follow from the

classical branching rules, see also [Cam05a, p.13].

Theorem 2.3.12. Let λ ∈ P+
G and µ ∈ P+

K and write

λ =

n+1∑
i=1

aiεi, µ =

n+1∑
i=1

biεi. (2.9)

Then mλ(µ) = 1 if and only if (i) ai−bi ∈ Z and (ii) ai ≥ bi and bi ≥ ai+1 for 1 ≤ i ≤ n.

Theorem 2.3.13. Let µ ∈ P+
K and ν ∈ P+

M and write

µ =

n+1∑
i=1

biεi, ν =

n+1∑
i=1

ciεi. (2.10)
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2.3. Inverting the branching rule

Then mµ(ν) = 1 if and only if (i) bi − ci ∈ Z for 2 ≤ i ≤ n and (ii) bi ≥ ci+1 and

ci+1 ≥ bi+1 for 1 ≤ i ≤ n− 1.

Let µ ∈ P+
K . To determine the µ-well P+

G (µ) we need to describe the µ-bottom Bµ.

See Figure 2.5 for a picture of a µ-well in the rank two case. Note that the bottom is not

linear as a function of the M -types.

µ

wµ

Figure 2.5: The µ-well for (sl3, gl2) and µ = 4ω1 − ω2.

Lemma 2.3.14. Let w ∈ WG be a Weyl group element such that wµ ∈ P+
G . Then

wµ ∈ Bµ.

Proof. Write µ =
∑n+1
i=1 biεi. WG = Sn+1, the permutation group of n+ 1 objects and

w is such that bw−1 ≥ · · · ≥ bw−1(n+1). It follows from Theorem 2.3.12 that mwµ(µ) = 1.

Note that w−11 = 1 or w−1(n + 1) = n. It follows that wµ − λsph 6∈ Bµ because

bw−11 − 1 ≥ b1 or bn ≤ bw−1(n+1) + 1 will be violated.

The Weyl translation wµ plays an important role. We noted already that P+
M ⊂

(ε1 − εn+1)⊥. Let p : P+
G → P+

M denote the orthogonal projection. M acts irreducibly on

V n+

wµ with a representation of highest weight p(wµ) which we denote by ν∗ = p(wµ).

Lemma 2.3.15. Let ν ∈ P+
M (µ). Then there is a unique n-tuple (m1, . . . ,mn) with

mn ∈ N and with at least one mi = 0, such that

ν − ν∗ =

n∑
i=1

mip(αi).

Proof. Let λ ∈ P+
G with p(λ) = ν. We claim that λ − wµ is in the root lattice QG.

We may assume that λ ∈ P+
G (µ) by adding a multiple of λsph that is large enough. This

implies that λ − µ ∈ QG. Since µ − wµ ∈ QG we have λ − wµ ∈ QG, hence the claim.
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Write λ − wµ =
∑n
i=1 riαi for some integers ri and let r = min ri. The ri are unique

because the simple roots span QG. Then λ− wµ =
∑
i(ri − r)α1 + r(ε1 − εn+1) because∑n

i=1 αi = λsph. Application of p yields ν − ν∗ =
∑
i(ri − r)p(αi) as desired.

Theorem 2.3.16. Let µ ∈ P+
K and let ν ∈ P+

M (µ). Let (m1, . . . ,mn) denote the unique

n-tuple from Lemma 2.3.15. Then the bottom element bµ(ν) ∈ Bµ satisfies

bµ(ν) = wµ+

n∑
i=1

miαi. (2.11)

Proof. Define λ = wµ +
∑n
i=1miαi and write λ =

∑n+1
i=1 aiεi. Camporesi has shown

[Cam05a, §3] that λ = bµ(ν) if and only if λ = ν + (b1 − bn + |b1 + bn − a1 − an+1|)λsph.

We show that λ is of this form, thereby proving the theorem. We proceed in three steps.

In step one we give an expression for λ− wµ. In step two we calculate which conditions

the coefficients of λ−wµ should satisfy. In step three we show that the conditions in step

two are satisfied for the various possibilities of µ.

(1). The Weyl group element satisfies w(n + 1) = k for some k ∈ {1, 2, . . . , n + 1}.
We have

λ− µ =

n∑
i=1

 i∑
j=1

(ai − bi)

αi (2.12)

and the integers
∑i
j=1(ai − bi) are all non-negative. Secondly, we have

wµ− µ =

n∑
i=k

(bn+1 − bi)αi. (2.13)

In this case the coefficients are all non-negative because bn+1 ≥ bi for i ≥ k. Finally, we

have

λ− wµ =

k−1∑
i=1

 i∑
j=1

(aj − bj)

αi +

n∑
i=k

 i∑
j=1

(aj − bj)− (bn+1 − bi)

αi.

The coefficients for i = 1, . . . , k − 1 are non-negative integers. If i ≥ k then we have

i∑
j=1

(aj − bj)− (bn+1 − bi) =

i−1∑
j=1

(aj − bj) + ai − bn+1 =

n∑
j=i

(bj − aj+1) ≥ 0.

(2). Write λ−wµ =
∑n
i=1 riαi for positive integers ri. Let 〈·, ·〉 denote inner product

on R⊗Z P
+
G dual to the Killing form. We have

〈λ, ε1 − εn+1〉 = bw−11 − bw−1(n+1) + r1 + rn+1 − 2r.

Hence we must have bw−11− bw−1(n+1) + r1 + rn+1−2r = (b1− bn+ |b1 + bn−a1−an+1|).
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(3). We distinguish three cases, according to in which Weyl chamber for G the element

µ lies. The three cases are (i) w(n+1) = n+1, (ii) w(n+1) = 1 and (iii) 2 ≤ w(n+1) ≤ n.

(i). w(n+ 1) = n+ 1. In this case r1 = a1− b1, rn =
∑n
i=1(ai− bi) and r = r1. Hence

bw1 − bw(n+1) + r1 + rn − 2r =

b1 − bn+1 +

n∑
i=2

(ai − bi) = b1 − bn +

(
b1 + bn +

n∑
i=2

ai

)
. (2.14)

Note that b1 + bn +
∑n
i=2 ai =

∑n−1
i=2 (ai − bi) + an − bn+1 and an − bn+1 ≥ an − bn ≥ 0.

Hence λ = bµ(ν).

(ii). w(1) = n+ 1. Then ri =
∑n
j=i(bj − aj+1) and r = rn. Hence

bw−11 − bw−1(n+1) + r1 + rn − 2r = b1 − bn −

(
b1 + bn +

n∑
i=2

ai

)
. (2.15)

In this case we have b1 +bn+a2 + . . .+an =
∑n−1
j=2 aj+1−bj +a2−bn+1. But a2−bn+1 ≤

a2 − b1 ≤ 0 which implies b1 + bn − a1 − an+1 ≤ 0. Hence λ = bµ(ν).

(iii). w(k) = n+ 1, 1 < k < n+ 1. We have ri =
∑i
j=1(aj − bj) if i = 1, . . . , k− 1 and

ri =
∑n
j=i(bj − aj+1) if i = k, . . . , n. Note that r1 ≤ r2 · · · ≤ rk−1 and rk ≥ rk+1 ≥ · · · ≥

rn. Hence r1 + rn− 2r = r1− rn if rn ≤ r1 and r1 + rn− 2r = rn− r1 if r1 ≤ rn. Suppose

r1 ≤ rn. We find

bw−11 − bw−1(n+1) + r1 + rn − 2r = b1 − bn + rn − r1 (2.16)

and 0 ≤ rn − r1 = bn − an+1 − a1 + b1. Suppose rn ≤ r1. We find

bw1 − bw(n+1) + r1 + rn − 2r = b1 − bn + r1 − rn (2.17)

and 0 ≤ r1 − rn = a1 − b1 − bn + an+1. In both cases we conclude that λ = bµ(ν).

Inverting the branching rules for (Spind(C),Spind−1(C))

The inversion of the branching law is taken from [Cam05a]. We treat the odd and even

case simultaneously. Let G = Spind(C) and K = Spind−1(C) with d ≥ 3 and consider the

representation of G of highest weight $1. The fundamental weights of G are denoted by

$i and those of K by ωi. See Figure 2.6 for a picture in rank two.

The Killing form allows us to realize PK in PG as follows.

PSpin2n
→ PSpin2n+1

: ωi 7→ $i, (2.18)

PSpin2n−1
→ PSpin2n

: ωi 7→ $i+1. (2.19)

The spherical weight λsph = ε1 can be rotated by an element in a copy of Spin3(C) to

a vector in k⊥, which gives a torus A ⊂ G. M = ZK(A) is isomorphic to Spind−2(C).
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α1

α2
$2

$1

Figure 2.6: Roots and fundamental weights for so5. The positive Weyl chamber of so4 is

light gray and it contains the positive Weyl chamber for so5 in which we have laid some

bricks.

Let λ ∈ P+
G , µ ∈ P+

K and ν ∈ P+
M . Write λ =

∑
i aiεi, µ =

∑
i biεi and ν =

∑
i ciεi.

All the differences ai − aj , bi − bj and ci − cj are integers and

a1 ≥ a2 ≥ · · · ≥ an ≥ 0, (2.20)

b1 ≥ b2 ≥ · · · ≥ |bn| ≥ 0, (2.21)

c2 ≥ · · · ≥ cn ≥ 0 (2.22)

if d = 2n+ 1 and

a1 ≥ a2 ≥ · · · ≥ |an| ≥ 0, (2.23)

b2 ≥ · · · ≥ bn ≥ 0, (2.24)

c2 ≥ · · · ≥ |cn| ≥ 0 (2.25)

if d = 2n. The branching rules fromG toK and fromK toM are classical, see e.g. [Kna02,

Thm. 9.16].

Theorem 2.3.17. Let d = 2n+ 1 and let λ, µ and ν be as above.

• mλ(µ) = 1 if and only if ai − bi ∈ Z, and

a1 ≥ b1 ≥ a2 ≥ · · · ≥ an ≥ |bn|.

• mµ(ν) = 1 if and only if bi − ci ∈ Z, and

b1 ≥ c2 ≥ b2 ≥ · · · ≥ cn ≥ |bn|.

Theorem 2.3.18. Let d = 2n and let λ, µ and ν be as above.

• mλ(µ) = 1 if and only if ai − bi ∈ Z, and

a1 ≥ b2 ≥ a2 ≥ · · · ≥ bn ≥ |an|.
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2.3. Inverting the branching rule

• mµ(ν) = 1 if and only if bi − ci ∈ Z, and

b2 ≥ c2 ≥ b2 ≥ · · · ≥ bn ≥ |cn|.

Note that the projection p : P+
G → P+

M is given by projection along ε1, i.e. by putting

a1 = 0. We can obtain the inversion of the branching rule from G to K as follows.

Given a K-type µ we determine the set P+
M (µ) using the appropriate branching rule. The

elements ν ∈ P+
M can be lifted to P+

G by adding a number of λsph = ε1. Adding the

right vector h · λsph lifts ν to the µ-well. In Figure 2.7 we have depicted a µ-well for

(Spin5(C),Spin4(C)).

µ

wµ

Figure 2.7: The µ-well for (so5, so4) and µ = 4ω1 + 2ω2.

Theorem 2.3.19. Let µ ∈ P+
K and write µ =

∑
i biεi.

• Let d = 2n+ 1. The map P+
M (µ)→ Bµ : ν 7→ ν + b1λsph is a bijection.

• Let d = 2n. The map P+
M (µ)→ Bµ : ν 7→ ν + b2λsph is a bijection.

Proof. The images of both maps are in the µ-well P+
G (µ), which follows from the

branching laws. Since the first inequalities a1 ≥ b1 and a1 ≥ b2 are sharp the result

follows.

Inverting the branching rules for (Sp2n(C),Sp2n−2(C)× Sp2(C))

Let G = Sp2n(C) and K = Sp2n−2(C) × Sp2(C) with n ≥ 3. The weight lattice PG
is spanned by $i =

∑i
j=1 εj for i = 1, . . . , n. The weight lattice PK is spanned by

ωi =
∑i
j=1 εj for i = 1, . . . , n − 1 and ωn = εn. We choose the standard notion of

positivity: P+
G and P+

K are generated by the $i and ωi respectively. The spherical weight
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Chapter 2. Multiplicity Free Systems

λsph = ε1 + ε2 lies in P+
K . We choose another Weyl chamber for G for a moment so that

λsph translates to λ′sph = ε1 − εn which is not a root of K. Inside the SL2(C) copy in

G with root λ′sph we can rotate λ′sph to a semisimple element in k⊥. This gives a one-

dimensional torus A ⊂ G. Define M = ZK(A). Then M ∼= Sp2(C) × Sp2n−4(C) and

the embedding in K is as follows. Let K1 = Sp2(C) × Sp2n−4(C) × Sp2(C) ⊂ K. Then

M → K1 is given by (x, y) 7→ (x, y, x). The weight lattice of M is spanned by 1
2 (ε1 + εn)

and the $i − ε1 for 2 ≤ i ≤ n− 1.

We write λ ∈ P+
G as a vector λ = (a1, . . . , an) of integers that satisfy

a1 ≥ a2 ≥ . . . ≥ an ≥ 0.

Similarly we write P+
K 3 µ = (b1, . . . , bn) where the integers bi satisfy

b1 ≥ b2 ≥ . . . ≥ bn−1 ≥ 0, bn ≥ 0

and P+
M 3 ν = (c1, . . . , cn) where the integers ci satisfy

c1 = cn, 2c1 ∈ N, c2 ≥ c3 ≥ . . . ≥ cn−1 ≥ 0.

The branching rule for G to K is in the next theorem due to Lepowsky [Lep71], see

[Kna02, Thm. 9.50] for a proof.

Theorem 2.3.20. Let λ = (a1, . . . , an) ∈ P+
G and µ = (b1, . . . , bn) ∈ P+

K . Define

• A1 = a1 −max(a2, b1),

• Ak = min(ak, bk−1)−max(ak+1, bk) for 2 ≤ k ≤ n− 1

• An = min(an, bn−1).

The multiplicity mλ(µ) = 0 unless all Ai ≥ 0 and b1 +
∑n
i=1Ai ∈ 2Z. In this case the

multiplicity is given by

mλ(µ) = pΣ(A1ε1 +A2ε2 + · · ·+ (An − bn)εn)−
pΣ(A1ε1 +A2ε2 + · · ·+ (An + bn + 2)εn)

where pΣ is the multiplicity function for the set Σ = {εi ± εn : 1 ≤ i ≤ n− 1}.

The branching rule for K to M is due to Baldoni-Silva [BS79]. It is an application

of Lepowsky’s branching rule that uses the auxiliary group K1. We do not need the

generality of this formula. We rather need another formulation of Lepowsky’s branching

rule.

Theorem 2.3.21. Let G′ = Sp2n−2(C) and let K ′ = Sp2(C) × Sp2n−4(C). Let µ′ =

(b1, . . . , bn−1) ∈ P+
G and ν′ = (c1, . . . , cn−1) ∈ P+

K . Define

• C1 = b1 −max(b2, c2),
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2.3. Inverting the branching rule

• Ck = min(bk, ck)−max(bk+1, ck+1) for 2 ≤ k ≤ n− 2,

• Cn−1 = min(bn−1, cn−1).

The multiplicity mµ′(ν
′) = 0 unless all Ci ≥ 0 and c1 +

∑n−1
i=1 Ci ∈ 2Z. In this case the

multiplicity is given by

mµ′(ν
′) = pΞ((C1 − c1)ε1 + C2ε2 + · · ·+ Cnεn)−

pΞ((C1 + c1 + 2)ε1 + C2ε2 + · · ·+ Cn−1εn)

where pΞ is the multiplicity function for the set Ξ = {εi ± ε1 : 2 ≤ i ≤ n− 1}.

Because µ = xωi + yωj is special we have control over the multiplicity formulas pΣ

and pΞ.

Lemma 2.3.22. (1). Let µ = xωi + yωj with 1 ≤ i ≤ j ≤ n − 1. If λ ∈ P+
G (µ) then

Ak = 0 unless k ∈ {1, i+ 1, j+ 1}. (2). Let µ = xωi + yωn with 1 ≤ i ≤ n− 2. If λ ∈ P+
G

then Ak = 0 unless k ∈ {1, i+ 1}.

Proof. Denote µ = (c1, c2, . . . , cn). (1). We may assume that i < j for if i = j then

we are in case (2) with y = 0. If 2 ≤ k ≤ i or i + 2 ≤ k ≤ j or j + 2 ≤ k ≤ n − 1

then Ak = min(ak, ck−1) − max(ak+1, ck) = ck−1 − ck = 0 because ak ≥ ck = ck−1

and ak+1 ≤ ck−1 = ck. Furthermore An = min(an, cn−1) = 0 if j ≤ n − 2. (2). Let

µ = xωi + yωn with 1 ≤ i ≤ n− 1. If 2 ≤ k ≤ i or i+ 2 ≤ k ≤ n− 1 then ck−1 = ck which

implies Ak = 0.

Lemma 2.3.23. • Let Ai ∈ N for i = 1, 2, 3 and define A =
∑3
i=1Ai/2. Let Σ =

{εi ± ε4 : 1 ≤ i ≤ 3}. Then pΣ(
∑3
i=1Aiεi)− pΣ(

∑3
i=1Aiεi + 2ε4) = 1 if and only if

max(Ai) ≤ A and A ∈ Z.

• Let A1, A2 ∈ N and define A = (A1+A2)/2. Let y ∈ N. Let Σ = {εi±ε3 : 1 ≤ i ≤ 2}.
Then pΣ(A1ε1+A2ε2−yε3)−pΣ(A1ε1+A2ε2+(y+2)ε3) = 1 if and only if A−y/2 ∈ Z
and y ≤ A1 +A2, A1 ≤ A2 + y and A2 ≤ A1 + y.

• Let C1, C2, c1 ∈ N and let Ξ = {ε2 ± ε1}. Then pΞ((C1 − c1)ε1 + C2ε2)− pΞ((C1 +

c1 + 2)ε1 +C2ε2) = 1 if and only if C1 +C2 − c1 is even and C1 +C2 − c1 ≥ 0 and

C2 − C1 + c1 ≥ 0.

Proof. We only prove the first statement. The others are proved in a similar but simpler

fashion. We have

3∑
k=1

Akεk =

3∑
k=1

Bk(εk + ε4) +

3∑
k=1

(Ak −Bk)(εk − ε4)

if and only if
∑3
i=1Bk = A. It follows that

PΣ′(A1ε1 +A2ε2 +A3ε3) = #{(B1, B2, B3) ∈ N3 :

3∑
k=1

Bk = A and Bk ≤ Ak}
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Chapter 2. Multiplicity Free Systems

and similarly

pΣ(A1ε1 +A2ε2 +A3ε3 + 2ε4) =

#{(B1, B2, B3) ∈ N3 :

3∑
k=1

Bk = A+ 1 and Bk ≤ Ak}. (2.26)

Assume that A1 ≥ A2 ≥ A3. We distinguish two possibilities: (1) A1 ≤ A and (2)

A1 > A. In case (1) we have

pΣ(

3∑
i=1

Aiεi) = #{lattice points in hexagon indicated in Figure 2.8}

which is given by

pΣ(

3∑
i=1

Aiεi) = (A+ 1)(A+ 2)/2−
3∑
i=1

(A−Ai)(A−Ai + 1)/2.

Similarly

pΣ(

3∑
i=1

Aiεi + 2ε4) = (A+ 2)(A+ 3)/2−
3∑
i=1

(A+ 1−Ai)(A−Ai + 2)/2

and the difference is one, as was to be shown.

Ā

Ā

Ā

A2

A3

A1

A1

A2

A3

Ā

Ā

Ā

Figure 2.8: Counting integral points.

In case (2) where A1 > A we have

pΣ(

3∑
i=1

Aiεi) = #{lattice points in parallelogram in Figure 2.8}
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2.3. Inverting the branching rule

which is given by A2A3. Similarly pΣ(
∑3
i=1Aiεi + 2ε4) = A2A3 and hence the difference

is zero.

2.3.24. The projection in P+
G along the direction λsph is denoted by psph. Let λ =

(a1, . . . , an). Then psph(λ) is the form (c1,−c1, a3, . . . , an). Application of a suitable

Weyl group element w ∈WG gives w(psph(λ)) = (c1, c3, . . . , cn−1, c1) ∈ P+
M . This element

corresponds to the projection of wλ along λ′sph = ε1− εn. Hence this is the highest weight

of the M -representation in V n+

λ In order to apply Theorem 2.3.21 in the proof of the next

result we need to make use of this translation.

Theorem 2.3.25. Denote P+
M 3 ν = (c1, . . . , cn).

(i) Let µ = xωi + yωj with 2 ≤ i ≤ j ≤ n− 1. Then the map bµ : P+
M (µ)→ Bµ is given

by

bµ(ν) = (c1,−c1, c2, . . . , cn−1) + (c1 + x+ y)λsph.

(ii) Let µ = xωi + yωn with 2 ≤ i ≤ n− 1. Then the map bµ : P+
M (µ)→ Bµ is given by

bµ(ν) = (c1,−c1, c2, . . . , cn−1) + (c1 + x)λsph.

(iii) Let µ = xω1 + yωj with 2 ≤ j ≤ n− 1. Then the map bµ : P+
M (µ)→ Bµ is given by

bµ(ν) = (c1,−c1, c2, . . . , cn−1) +
1

2
(x+ y + Cj + max(c2, y))λsph.

(iv) Let µ = xω1 + yωn. Then the map bµ : P+
M (µ)→ Bµ is given by

bµ(ν) = (c1,−c1, c2, . . . , cn−1) +
1

2
(c2 + x+ y)λsph.

Proof. Write µ = (b1, . . . , bn) and let λ = (a1, . . . , an) ∈ P+
G (µ). Let Ai and Ci be as in

Theorems 2.3.20 and 2.3.21. Write psph(λ) = (b,−b, a3, . . . , an).

(i). Lemma 2.3.22 shows that Ak = 0 unless k ∈ {1, i+1, j+1}. Lemma 2.3.23 implies

that max(Ak) ≤ 1
2 (A1 +Ai+1 +Aj+1). Since A1 = a1−a2, this inequality is invariant for

adding Z-multiples of λsph to λ. Hence the inequalities Ak ≥ 0 determine whether the

multiplicity is zero or one. The smallest value z ∈ 1
2N for which psph(λ) + zλsph ∈ P+

G (µ)

is z = b+ x+ y. The proof of (ii) is completely analogous.

(iii) Lemma 2.3.22 shows that Ak = 0 unless k ∈ {1, 2, j + 1}. Lemma 2.3.23 implies

that max(Ak) ≤ 1
2 (A1 +A2 +Aj+1). Two inequalities are invariant for adding Z-multiples

of λsph to λ. The third is A1 +A2 ≥ Aj+1 which implies a1 +a2 ≥ 1
2 (max(a3, y) +Aj+1 +

x+ y). Together with A1 ≥ and A2 ≥ 0 this implies that the smallest z ∈ 1
2N for which

psph(λ) + zλsph ∈ P+
G (µ) is

z = max(x+ y − b, y + b,
1

2
(max(a3, y) +Aj+1 + x+ y)).
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Chapter 2. Multiplicity Free Systems

The element psph(λ) corresponds to ν ∈ P+
M (µ) via ν = (b, a2, . . . , an, b). In order to

determine z we need an estimate on b. To this end we consider the branching of the

irreducible representation of G′ of highest weight µ upon restriction to K ′. We use

Theorem 2.3.21. In this case Ck = 0 unless k = 1 or k = j. The inequalities in the

third statement of Lemma 2.3.23 with 2 = j imply, after a small computation, that

z = 1
2 (max(a3, y) +Aj+1 + x+ y).

(iv). Lemma 2.3.22 shows that Ak = 0 unless k ∈ {1, 2}. Lemma 2.3.23 implies that

min(Ak) ≤ 1
2 (A1 + A2 + Aj+1). Two inequalities are invariant for adding Z-multiples of

λsph to λ. The third is A1 +A2 ≥ y which implies a1 +a2 = 1
2 (x+ y+a3). Together with

A1 ≥ 0 and A2 ≥ 0 this implies that the smallest z ∈ 1
2N for which psph(λ)+zλsph ∈ P+

G (µ)

is

z = max(x− b, b, 1

2
(a3 + x+ y)).

The element psph(λ) corresponds to ν ∈ P+
M (µ) via ν = (b, a3, . . . , an, b). In order to

determine z we need an estimate on b and a3. To this end we consider the branching of

the irreducible representation of G′ of highest weight µ − yεn = xε1 upon restriction to

K ′. We use Theorem 2.3.21. In this case Ck = 0 unless k = 1. The inequalities in the

third statement of Lemma 2.3.23 imply that c′1 + c′2 = x whenever ν = (c′1, c
′
2, . . . , c

′
n−1)

occurs in the decomposition of xε1. The diagonal embedding of the factor Sp2(C) of M

in K1 implies that the weight (ν′, y) decomposes into M types (c1, c
′
2, . . . , c

′
n−1, c1) with

c1 running from 1
2 |c
′
1 − y| to 1

2 (c′1 + y). Since c′2 = a3 we find, after a small computation,

that z = 1
2 (x+ y + a3).

In Figure 2.9 we have depicted a µ-well in the rank three case. Note that the bottom

is linear and that the affine rank of the bottom is at most six. Indeed, with at most three

numbers Ai non-zero we can have only 6 parameters ai varying.

Figure 2.9: The µ-well for (sp6(C), sp4(C)⊕ sp2(C)) and µ = 2ω2 + 3ω3.
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2.3. Inverting the branching rule

Inverting the branching rules for (Spin7(C),G2)

In this subsection we take G = Spin7(C) with Lie algebra g of type B3. Let tG ∼= C3 be

a Cartan subalgebra with positive roots R+
G given by

ei − ej , ei + ej , ei

for 1 ≤ i < j ≤ 3, and basis of simple roots α1 = e1 − e2, α2 = e2 − e3, α3 = e3. The

fundamental weights $1 = e1, $2 = e1 + e2, $3 = (e1 + e2 + e3)/2 are a basis over N for

the set P+
G of dominant weights. As the Cartan subalgebra tK for K = G2 we shall take

the orthogonal complement of h = (−e1 + e2 + e3). The elements e1 + e3, e1 + e2, e2 − e3

are the long positive roots in R+
K , while

ε1 = (2e1 + e2 + e3)/3, ε2 = (e1 + 2e2 − e3)/3, ε3 = (e1 − e2 + 2e3)/3

are the short positive roots in R+
K . The natural projection q : R+

G → P+
K is a bijection

onto the long roots and two to one onto the short roots in R+
K . Note that εi = q(ei)

for i = 1, 2, 3. The simple roots in R+
K are {β1 = ε3, β2 = ε2 − ε3} with corresponding

fundamental weights {ω1 = ε1, ω2 = ε1 + ε2}. Observe that ω1 = q($1) = q($3) and

ω2 = q($2), and hence q : P+
G → P+

K is a surjection. Note that the natural projection

q : PG → PK is equivariant for the action of the Weyl group WM
∼= S3 of the centralizer

M = SL3(C) in K of h. The Weyl group WG is the semidirect product of C2 × C2 × C2

acting by sign changes on the three coordinates and the permutation group S3.

As a set with multiplicities we have

A = q(R+
G)−R+

K = {ε1, ε2, ε3}

whose partition function pA enters in the formula for the branching from B3 to G2. Note

that pA(kε1 + lε2) = pA(kε1 +mε3) = k + 1 for k, l,m ∈ N and pA(µ) = 0 otherwise.

Lemma 2.3.26. For λ ∈ P+
G and µ ∈ P+

K the multiplicity mG,K
λ (µ) ∈ N with which an

irreducible representation of K with highest weight µ occurs in the restriction to K of an

irreducible representation of G with highest weight λ is given by

mG,K
λ (µ) =

∑
w∈WG

det(w)pA(q(w(λ+ ρG)− ρG)− µ)

and if we extend mG,K
λ (µ) ∈ Z by this formula for all λ ∈ PG and µ ∈ PK then

mG,K
w(λ+ρG)−ρG(v(µ+ ρK)− ρK) = det(w) det(v)mG,K

λ (µ)

for all w ∈ WG and v ∈ WK . Here ρG and ρK are the Weyl vectors of R+
G and R+

K

respectively, i.e. half the sum of the positive roots.

This lemma was obtained in Heckman [Hec82] as a direct application of the Weyl

character formula. The above type formula, valid for any pair K < G of connected
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compact Lie groups [Hec82], might be cumbersome for practical computations of the

multiplicities, because of the (possibly large) alternating sum over a Weyl group WG and

the piecewise polynomial behaviour of the partition function. However in the present

(fairly small) example one can proceed as follows.

If λ = k$1 + l$2 +m$3 = klm = (x, y, z) with

x = k + l +m/2, y = l +m/2, z = m/2⇔ k = x− y, l = y − z,m = 2z

then λ is dominant if k, l,m ≥ 0 or equivalently if x ≥ y ≥ z ≥ 0. We tabulate the 8

elements w1, · · · , w8 ∈ WG such that the projection q(wiλ) ∈ Nε1 + Nε2 is dominant for

R+
M for all λ which are dominant for R+

G. Clearly the projection of (x, y, z) is given by

q(x, y, z) = xε1 + yε2 + zε3 = (x+ z)ε1 + (y − z)ε2

and ρG = $1 +$2 +$3 = (2 1
2 , 1

1
2 ,

1
2 ) is the Weyl vector for R+

G.

i det(wi) wiλ q(wiλ) q(wiρG − ρG)

1 + (x, y, z) (x+ z)ε1 + (y − z)ε2 0

2 − (x, y,−z) (x− z)ε1 + (y + z)ε2 −ε3
3 + (x, z,−y) (x− y)ε1 + (y + z)ε2 −ε1 − ε3
4 − (x,−z,−y) (x− y)ε1 + (y − z)ε2 −ε1 − ε2 − ε3
5 − (y, x, z) (y + z)ε1 + (x− z)ε2 −ε3 + 0

6 + (y, x,−z) (y − z)ε1 + (x+ z)ε2 −ε3 − ε3
7 + (z, x, y) (y + z)ε1 + (x− y)ε2 −ε3 − ε2
8 − (−z, x, y) (y − z)ε1 + (x− y)ε2 −ε3 − ε1 − ε2

In Figure 2.10, the location of the points q(wiλ) ∈ P+
M , indicated by the number i,

with the sign of det(wi) attached, is drawn. Observe that q(w1λ) = (k+m)ω1 + lω2 ∈ P+
K

for all λ = klm ∈ P+
G .

Let us denote a = (k+l+m)ε1 and b = (k+l)ε1, and so these two points together with

the four points q(wiλ) for i = 1, 2, 3, 4 form the vertices of a hexagon with three pairs of

parallel sides. In the picture we have drawn all six vertices in P+
K , which happens if and

only if q(w3λ) = kε1+(l+m)ε2 ∈ P+
K , or equivalently if k ≥ (l+m). But in general some of

the q(wiλ) ∈ P+
M for i = 2, 3, 4 might lie outside P+

K . Indeed q(w2λ) = (k+ l)ε1 +(l+m)ε2
lies outside P+

K if k < m, and q(w4λ) = kε1 + lε2 lies outside P+
K if k < l.

For fixed λ ∈ P+
G , the sum mλ(µ) of the following six partition functions as a function

of µ ∈ PK
4∑
1

det(w)pA(q(wi(λ+ ρG)− ρG)− µ)− pA(a− ε2 − µ) + pA(b− ε1 − ε2 − µ)

is just the familiar multiplicity function for the weight multiplicities of the root system

A2. It vanishes outside the hexagon with vertices a, b and q(wiλ) for i = 1, 2, 3, 4. On

the outer shell hexagon it is equal to 1, and it steadily increases by 1 for each inner shell
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ε2
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Figure 2.10: Projection of WGλ onto P+
M .

hexagon, until the hexagon becomes a triangle, and from that moment on it stabilizes

on the inner triangle. The two partition functions we have added corresponding to the

points a and b are invariant as a function of µ for the action µ 7→ s2(µ+ ρK)− ρK of the

simple reflection s2 ∈ WK with mirror Rω1, because s2(A) = A. In order to obtain the

final multiplicity function

µ 7→ mG,K
λ (µ) =

∑
v∈WK

det(v)mλ(v(µ+ ρK)− ρK)

for the branching from G to K we have to antisymmetrize for the shifted by ρK action

of WK . Note that the two additional partition functions and their transforms under WK

all cancel because of their symmetry and the antisymmetrization. For µ ∈ P+
K the only

terms in the sum over v ∈WK that have a non-zero contribution are those for v = e the

identity element and v = s1 the reflection with mirror Rω2, and we arrive at the following

result.

Theorem 2.3.27. For λ ∈ P+
G and µ ∈ P+

K the branching multiplicity from G = Spin7(C)

to K = G2 is given by

mG,K
λ (µ) = mλ(µ)−mλ(s1µ− ε3)

with mλ the weight multiplicity function of type A2 as given by the above alternating sum

of the six partition functions.

Indeed, we have s1(µ + ρK) − ρK = s1µ − ε3. As before, we denote klm = k$1 +

l$2 + m$3 and kl = kω1 + lω2 with k, l,m ∈ N for the highest weight of irreducible

representations of G and K respectively. For µ ∈ Nω1 the multiplicities mG,K
λ (µ) are

only governed by the first term with v = e and so are equal to 1 for µ = n0 with
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Chapter 2. Multiplicity Free Systems

n = (k + l), · · · , (k + l + m) and 0 elsewhere. Indeed µ = n0 has multiplicity one if and

only if it is contained in the segment from b = (k + l)ε1 to a = (k + l +m)ε1.

Corollary 2.3.28. The fundamental representation of G with highest weight λ = 001 is

the spin representation of dimension 8 with K-types µ = 10 and µ = 00. It is the fun-

damental spherical representation for the Gel’fand pair (G,K). The irreducible spherical

representations of G have highest weights 00m with K-spectrum the set {n0; 0 ≤ n ≤ m}.

Corollary 2.3.29. For any irreducible representation of G with highest weight λ = klm

all K-types with highest weight µ ∈ F1 = Nω1 are multiplicity free, and the K-type with

highest weight µ = n0 has multiplicity one if and only if (k + l) ≤ n ≤ (k + l + m).

The domain of those λ = klm for which the K-type µ = n0 occurs has a well shape

Wn0 = Bn0 + N001 with bottom

Bn0 = {klm ∈ P+
G ; k + l +m = n}

given by a single linear relation.

Indeed, if we denote by Wn0 the set of λ = klm ∈ P+
G for which µ = n0 occurs in the

corresponding K-spectrum, then klm ∈Wn0 implies that kl(m+ 1) ∈Wn0. If we denote

by Bn0 the set of those klm ∈ Wn0 for which kl(m− 1) /∈ Wn0, then klm ∈ Bn0 implies

n = (k + l + m) by the first part of the above corollary. This ends our discussion that

(G,K,F1 = Nω1) is a multiplicity free triple. In order to show that (G,K,F2 = Nω2) is

also a multiplicity free triple we shall carry out a similar analysis.

Corollary 2.3.30. For an irreducible representation of G with highest weight λ = klm

all K-types with highest weight µ ∈ F2 = Nω2 are multiplicity free, and the K-type with

highest weight µ = 0n has multiplicity one if and only if max(k, l) ≤ n ≤ min(k+ l, l+m).

The domain of those λ = klm for which the K-type µ = 0n occurs has a well shape

W0n = B0n + N001 with bottom

B0n = {klm ∈ P+
G ;m ≤ k ≤ n, l +m = n}

given by a single linear relation and inequalities.

As before let W0n the set of klm ∈ P+
G for which µ = 0n occurs in the corresponding

K-spectrum. Under the assumption of the first part of this proposition klm ∈W0n implies

that kl(m+1) ∈W0n, and the bottom B0n of those klm ∈W0n for which kl(m−1) /∈W0n

contains klm if and only if n = l+m and k ≥ m. It remains to show the first part of the

proposition.

In order to determine the K-spectrum associated to the highest weight λ = klm ∈ N3

for G observe that

q(w3λ) = kε1 + (l +m)ε2

and so the K-spectrum on Nω2 is empty for k > (l + m), while for k = (l + m) the K-

spectrum has a unique point kω2 on Nω2. If k < (l +m), the point q(w3λ) moves out of
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ε2

ε1
ε3

b+

a−
1+

5−

e

f
4−

7+

d+

c−

6+

2−

8−

3+

Nω1

Nω2

Figure 2.11: Support of the multiplicity function µ 7→ mλ(µ).

the dominant set P+
K into P+

M −P
+
K , and the support of the function P+

K 3 µ 7→ mG,K
λ (µ)

consists of (the integral points of) a heptagon with an additional side on Nω2 from e to f as

in Figure 2.11. On the outer shell heptagon the multiplicity is one, and the multiplicities

increase by one for each inner shell heptagon, until the heptagon becomes a triangle or

quadrangle, and it stabilizes. This follows from Theorem 2.3.27 in a straightforward way.

Depending on whether the vertex

q(w2λ) = (k + l)ε1 + (l +m)ε2

lies in P+
K (for k ≥ m) or in P+

M − P
+
K (for k < m) we get e = (l+m)ω2 or e = (k + l)ω2

respectively. Hence we find

e = min(k + l, l +m)ω2, f = max(k, l)ω2

by a similar consideration for

q(w4λ) = kε1 + lε2

as before (f = k for k ≥ l and f = l for k < l). This finishes the proof of Corollary 2.3.30.

Our choice of positive roots for G = B3 and K = G2 was made in such a way that the

dominant set P+
K for K was contained in the dominant set P+

G for G. In turn this implies

that the set

A = q(R+
G)−R+

K = {ε1, ε1, ε3}

lies in an open half plane, which was required for the application of the branching rule of

Lemma 2.3.26.

However, we now switch to a different positive system in RG, or rather we keep R+
G

fixed as before, but take the Lie algebra k of G2 to be perpendicular to the spherical
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Chapter 2. Multiplicity Free Systems

direction $3 = (e1 + e2 + e3)/2 instead. Under this assumption the positive roots R+
M

form a parabolic subsystem in R+
G, and so the simple roots {α1 = e1 − e2, α2 = e2 − e3}

of R+
M are also simple roots in R+

G.

α2

α1

ε2

ε1
ε3

nε1

nε1

α2

α1

ε2

ε1
ε3

nε1

nε1

n(ε1 + ε2)

Figure 2.12: Projections of the bottoms Bn0 and B0n.

Let p : PG → PM = PK be the orthogonal projection along the spherical direction.

By abuse of notation we denote (with p($3) = 0)

ε1 = p($1) = (2,−1,−1)/3 , ε2 = p($2) = (1, 1,−2)/3

for the fundamental weights for P+
M = p(P+

G ). It is now easy to check that this projection

p : Bn0 → p(Bn0) , p : B0n → p(B0n)

is a bijection from the bottom onto its image in P+
M . In Figure 2.12 we have drawn the

projections

p(Bn0) = {kε1 + lε2; k + l ≤ n} , p(B0n) = {kε1 + lε2; k, l ≤ n, k + l ≥ n}

on the left and the right side respectively.

In fact, it follows from general principles that the orthogonal projection p along the

spherical direction is a bijection from the bottom Bµ of the induced G-spectrum Wµ

onto its image p(Bµ) in P+
M for µ ∈ P+

K ∩ F and (G,K,F ) any multiplicity free triple.

Moreover the image p(Bµ) is just the M -spectrum of the irreducible representation of K

with highest weight µ. In our example this is clear from the familiar branching rule from

G2 to A2, which we recall in the next section.
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Inverting the branching rules for (G2,SL3(C))

In this subsection we take G of type G2 and K = SL3(C) a subgroup of type A2. Having

the same rank we take tG = tK with simple roots {α1, α2} in R+
G and {β1, β2} in R+

K as

in the Figure 2.13 and P+
G = N$1 + N$2 is contained in P+

K = Nω1 + Nω2.

α2 = β2

β1 $2

ω2

$1 = ω1

α1

Figure 2.13: Roots and weights for G2 and SL3(C).

The branching rule from G to K is well known, see for example [Hec82]. In Figure

2.14 s1 ∈WG is the orthogonal reflection in the mirror R$2.

The multiplicities are one on the outer hexagon, and increase by one on each inner shell

hexagon, until the hexagon becomes a triangle and they stabilize. Hence the K-spectrum

of any irreducible representation of G with highest weight λ ∈ P+
G is multiplicity free

on the two faces Nω1 and Nω2 of the dominant set P+
K . In other words, the triples

(G2,SL3(C), Fi = Nωi) are multiplicity free for i = 1, 2.

The irreducible spherical representations of G have highest weight in N$1. Given

µ = nω1 ∈ F1 (and likewise µ = nω2 ∈ F2) the corresponding induced G-spectrum

is multiplicity free by Frobenius reciprocity, and by inversion of the branching rule has

multiplicity one on the well shaped region

Wµ = Bµ + N$1 , Bµ = {k$1 + l$2; k + l = n}

with bottom Bµ. As in the previous section the bottom is given by a single linear relation.

If we take M the SL2(C) corresponding to the roots {±α2} and denote by p : P+
G → P+

M =

N( 1
2α2) the natural projection along the spherical direction $1, then p is a bijection from

the bottom Bµ onto the image p(Bµ), which is just the M -spectrum of the irreducible

representation of K with highest weight µ, as should.

2.4 Module structure

2.4.1. Let (G,K,F ) be a multiplicity free system with (G,K) a spherical pair of rank

one and let µ ∈ F . In Section 2.3 we have calculated the µ-wells. We have seen that the
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β2

β1

ω2

ω1

λ

s1λ

α2

$2

$1

α1

µ

P+
G2

(µ)

Bµ

Figure 2.14: Branching from G2 to SL3(C) on the left and the µ-well on the right.

projection pµ : P+
G (µ) → P+

M (µ) from 2.3.7 is surjective. Proposition 2.3.9 implies that

the map

λ : N× P+
M (µ)→ P+

G : (d, ν) 7→ bν(µ) + dλsph (2.27)

is a bijection of sets. The degree of λ = λ(d, ν) is defined to be d. The µ-bottom Bµ ⊂ P+
G

inherits the standard partial ordering � which in turn induces a partial ordering on

P+
M (µ) that we denote by ≤µ. Together with the standard ordering on N this gives the

lexicographic ordering (≤,≤µ) on N×P+
M (µ). Via the isomorphism λ : N×P+

M (µ)→ P+
G

we push (≤,≤µ) to a partial ordering on P+
G (µ) that we denote by �µ.

Let λ = λ(d, ν) ∈ P+
G (µ) and let πλ be an irreducible representation of highest weight

λ. Let πsph denote the irreducible representation of highest weight λsph. The decom-

position of the representation πλ ⊗ πsph gives a set of weights (with multiplicities) and

among them are weights λ′ that contain the irreducible representation of highest weight

µ upon restriction to K. For example the weight λ + λsph = λ(d + 1, ν) occurs in this

decomposition. For later purposes we want to know the maximal and the minimal ele-

ments λ ∈ P+
G (µ) with respect to �µ that occur as highest weight in the decomposition

of πλ ⊗ πsph, whenever they exist. Note that weights may also fall out of the µ-well, as

depicted in Figure 2.16.

Theorem 2.4.2. Let (G,K,F ) be a multiplicity free system with (G,K) a spherical pair

of rank one and let µ ∈ F . Let λ, λ′ ∈ P+
G (µ) and let πλ, πλ′ be irreducible representations
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2.4. Module structure

of G of highest weight λ and λ′ respectively. Then [πλ⊗πsph : πλ′ ] ≥ 1 implies λ−λsph �µ
λ′ �µ λ+ λsph if λ− λsph ∈ P+

G (µ) and λ′ �µ λ+ λsph otherwise.

Proof. We prove the statement case by case for the multiplicity free systems (G,K,F )

with G simply connected. The statement for other multiplicity free systems follows from

these results. The case (F4,Spin9(C), {0}) is clear. There are five other cases.

(1). Let (G,K) = (SLn+1(C),GLn(C)). The spherical weight λsph = $1 +$n is the

highest weight of the adjoint representation Ad : SLn+1 → GL(sln+1). Let λ = λ(d, ν)

for some ν ∈ P+
M (µ). According to the proof of Lemma 2.3.15 we may write λ = wµ +∑n

i=1 riαi+dλsph with ri ∈ N and for at least one i we have ri = 0. Consider λ′ = λ+εi−εj
with i < j. If λ′ ∈ P+

G (µ) and the degree of λ′ is d+ 1 then λ′ = λ+ λsph −
∑
k αk where

1 ≤ k < i and j < k ≤ n because εi − εj = αi + . . . + αj . This shows that the rk with

1 ≤ k < i and j < k ≤ n must have been ≥ 1 in the first place. If this were not the case

then the degree could not have been raised by adding the root εi − εj . In either case we

find λ′ �µ λ + λsph. Similarly, adding negative roots yields λ′ �µ λ − λsph and we are

done. See Figure 2.15 for an illustration.

µ

wµ

Figure 2.15: The ordering �µ in case (sl3, gl2) behaves well under taking the tensor

product with λsph.

(2). Let (G,K) = (Spind(C),Spind−1(C)) with d ≥ 3. The spherical weight λ = $i

is the highest weight of the fundamental representation SOd → GL(Cd) whose non-zero

weights are the short roots. The only weights that influence the degree are ±ε1. Hence

λ− λsph �µ λ′ �µ λ+ λsph, as illustrated in Figure 2.15.

(3). Let (G,K) = (Sp2n(C),Sp2n−2(C) × Sp2(C)). The spherical weight is λsph =

ε1 + ε2 and the irreducible representation of highest weight λsph has weights ±εi ± εj for

1 ≤ i < j ≤ n. In view of the description of the µ-wells in Theorem 2.3.25 for the various

µ we see that the degree of λ can be raised by at most one upon adding a positive weight
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µ

wµ

Figure 2.16: Ordering �µ in case (so5, so4) behaves well under taking the tensor product

with λsph.

εi± εj . If this happens we have λ+ εi± εj = λ′ �µ λ+λsph because λsph− (εi± εj) ∈ Q+
G.

(4). Let (G,K) = (Spin7(C),G2). The spherical representation λsph = 1
2 (ε1 + ε2 + ε3)

is the highest weight of the spin representation Spin7(C) → SO8(C). The non-negative

weights are $3,−$1 +$3, $1−$2 +$3 and $2−$3. The degree is raised only by adding

$3 or $1−$2 +$3. The latter is equal to $3−α2−α3 which shows that λ′ �µ λ+λsph.

Similarly, adding negative weights shows λ′ �µ λ− λsph and we are done.

(5). Let (G,K) = (G2,SL3(C)). The spherical weight $1 is the highest weight of the

representation G2 → SO7(C) whose weights are the short roots and the zero root. The

inequalities λ−λsph �µ λ′ �µ λ+λsph follow by inspection. We have illustrated the good

behavior in Figure 2.17.

2.4.3. Theorem 2.4.2 plays a key role for the computation of matrix valued orthogonal

polynomials in Chapter 3. The proof uses the classification of multiplicity free systems

and explicit case by case knowledge of the branching rules. It would be desirable to have

a more conceptual proof.
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µ

Figure 2.17: The ordering�µ in case (g2, sl3) behaves well under taking the tensor product

with λsph.
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Chapter 3

Matrix Valued Polynomials

associated to Multiplicity Free

Systems

3.1 Introduction

In Chapter 2 we have classified the multiplicity free systems of rank one. In the present

chapter we turn our attention to compact groups and to the analogue of multiplicity free

systems for compact groups. Given a compact multiplicity free system (Definition 3.2.1)

we construct families of matrix valued orthogonal polynomials on a compact interval. The

construction is divided into two steps. In the first step we generalize the construction

of Jacobi polynomials on rank one symmetric pairs to a construction of vector valued

polynomials for compact multiplicity free systems of rank one. Along the way we keep

track of the orthogonality and recurrence relations and differential equations. The second

step is to arrange the vector valued polynomials into matrices to obtain matrix valued

polynomials. We obtain families of matrix valued orthogonal polynomials which are

simultaneous eigenfunctions for a commutative algebra of differential operators. In the

final subsection of this chapter we discuss briefly how the matrix valued polynomials relate

to the ones obtained by Grünbaum et al. [GPT02].

In this chapter we use different notations for groups. The compact Lie groups are now

denoted by roman capitals G,K and their complexifications are denoted by GC,KC. This

is the price we pay to get rid of the indices of the compact groups that we would have

had to introduce otherwise.
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G K λsph faces F

SU(n+ 1) n ≥ 1 U(n) $1 +$n any

SO(2n) n ≥ 2 SO(2n− 1) $1 any

SO(2n+ 1) n ≥ 2 SO(2n) $1 any

Sp(2n) n ≥ 3 Sp(2n− 2)× Sp(2) $2 dimF ≤ 2

F4 Spin(9) $1 dimF ≤ 1 or

F = Nω1 + Nω2

Spin(7) G2 $3 dimF ≤ 1

G2 SU(3) $1 dimF ≤ 1

Table 3.1: Compact multiplicity free systems of rank one. In the third column we in-

dicated the spherical weight. In the third column we have given the highest weight

λsph ∈ P+
G of the fundamental zonal spherical representation in the notation for root sys-

tems of Bourbaki [Bou68, Planches], except for the case (G,K) = (SO(4),SO(3)) where

G is not simple and λsph = $1 +$2 ∈ P+
G = N$1 + N$2.

3.2 Multiplicity free triples

Let G be a compact connected Lie group, K ⊂ G a closed connected subgroup and let

GC and KC denote the complexifications of G and K. Weyl’s unitary trick provides a

correspondence between the rational irreducible representations of GC and KC and the

unitary irreducible representations of G and K. In 2.1.6 we have fixed the notations of

the roots and weights for the algebraic groups GC and KC. In this chapter we use the

same notations. Once we have chosen a maximal torus in G and a notion of positivity we

denote by R+
G the set of positive roots, by P+

G the set of dominant integral weights and

by C+
G the positive Weyl chamber and similarly for K. By a relatively open face F ⊂ P+

K

we mean the intersection P+
K ∩ f for f ⊂ C+

K a relatively open face of the positive Weyl

chamber.

Definition 3.2.1. Let G,K be compact Lie groups and let GC,KC denote their complex-

ifications. Let F ⊂ P+
K be a relatively open face and let µ ∈ P+

K . A triple (G,K, µ) is

called a compact multiplicity free triple if (GC,KC, µ) is a multiplicity free triple. A triple

(G,K,F ) is called a compact multiplicity free system if (GC,KC, F ) is a multiplicity free

system.

The pairs (G,K) in Table 3.1 are the compact Lie groups whose complexifications

(GC,KC) appear in Table 2.1. In particular we denote Sp(2n) = U(2n) ∩ Sp2n(C) where

some other authors may use Sp(n) for the same compact Lie group. The rank of a compact

pair (G,K) is defined by the rank of the pair (GC,KC) that we discussed in 2.1.7.

Recall from 2.1.5 that an isogeny is a finite covering homomorphism and that two

Lie groups G and G′ are called isogenous if there is an isogeny in one of the directions.

Let c : G′ → G be an isogeny of compact Lie groups. Then the complexified map
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cC : G′C → GC is also an isogeny. Conversely, an isogeny cC : G′C → GC of the complex

reductive groups G′C, GC restricts to an isogeny of the compact subgroups G′ and G.

Definition 3.2.2. Let c : G′ → G be an isogeny of compact groups, let K ′ ⊂ G′ be a

closed subgroup and denote K = c(K ′). Then c is called an isogeny of the pairs (G,K)

and (G′,K ′). Two pairs (G,K) and (G′,K ′) are called isogenous is there is an isogeny

between (G,K) and (G′,K ′) in one of the directions.

In view of Theorem 2.2.16 we see that modulo isogenies, Table 3.1 comprises all the

multiplicity free systems with (G,K) of rank one. The corresponding spaces G/K are

precisely the two-point-homogeneous spaces as classified by Wang in [Wan52].

Proposition 3.2.3. Let (G,K,F ) be a compact multiplicity free system of rank one. Let

X = G/K and let x0 = eK ∈ X. Identify the tangent space TeX = k⊥ where ⊥ is

with respect to the Killing form on g. The action of K on TeX is transitive on lines.

Let a ⊂ k⊥ be a line. Let A ⊂ G be the torus with a as Lie algebra. Then we have a

decomposition G = KAK.

Proof. We only have to check this for the two non-symmetric pairs since for the rank one

symmetric pairs the statement is clear, see [Kna02, Thm. 6.51]. Spin(7) acts transitively

on S7 and G2 acts transitively on S6, see e.g. [MS43]. We can be more precise, see [Ada96,

Cor. 5.4, Thm. 5.5]. The stabilizer of a point s ∈ S7 of the Spin(7)-action is (isomorphic

to) G2 and the corresponding action of G2 on TsS
7 ∼= R7 is transitive on lines. The

stabilizer of a point t ∈ S6 of the G2 action is (isomorphic to) SU(3) the corresponding

action of SU(3) on C3 is transitive on S5 ⊂ TtS
6. Hence SU(3) acts transitively on lines

in TtS
6. We conclude that the orbits of K in G/K are parametrized by A and hence

G = KAK.

3.2.4. Let (G,K,F ) be a compact multiplicity free system of rank one. The Lie algebras

of G and K are denoted by g and k and their complexifications by gC and kC. We have

seen in Lemma 2.2.8 that gC admits a decomposition gC = kC ⊕ aC ⊕ n+
C where aC is

a one-dimensional torus that consists of semisimple elements. Denote a = g ∩ aC. The

one-dimensional torus a is the Lie algebra of a torus A ⊂ G with the property that

G = KAK. Denote M = ZK(A). In Proposition 2.2.9 we have seen that an irreducible

K-representation τ of highest weight µ ∈ F decomposes multiplicity free upon restriction

to M . In Table 3.2 we have indicated the subgroups M modulo conjugation by K.

3.2.5. The µ-well P+
G (µ) = {λ ∈ P+

G : mλ(µ) = 1} is isomorphic to N × Bµ where the

bottom Bµ is a finite set that is isomorphic to P+
M (µ), see Proposition 2.3.9. The number

of elements in Bµ is dµ(M) = |P+
M (µ)|. In 2.27 we have defined the isomorphism

λ : N× P+
M (µ)→ P+

G (µ) : (d, ν) 7→ bµ(ν) + d · λsph. (3.1)

The bottom Bµ has been determined case by case (see Subsection 2.3) and λsph generates

the spherical monoid P+
G (0) over N. λsph is called the fundamental spherical weight.
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G K M

SU(n+ 1), n ≥ 1 U(n) S(diag(U(1)×U(1))×U(n− 1))

SO(2n), n ≥ 2 SO(2n− 1) SO(2n− 2)

SO(2n+ 1), n ≥ 2 SO(2n) SO(2n− 1)

Sp(2n), n ≥ 3 Sp(2n− 2)× Sp(2) Sp(2)× Sp(2n− 4)

F4 Spin(9) Spin(7)

Spin(7) G2 SU(3)

G2 SU(3) SU(2)

Table 3.2: Spherical pairs of rank one with M = ZK(A) modulo conjugation with K. Note

that the embedding Spin7(C) ⊂ Spin9(C) is the standard embedding Spin7(C) ⊂ Spin8(C)

followed by the embedding Spin8(C) ⊂ Spin9(C) that is twisted by the automorphism

ε1 − ε2 ↔ ε3 − ε4, see [BS79, §6].

P+
G (µ) is endowed with the partial ordering �µ that we defined in 2.4.1. The partial

ordering �µ behaves well with respect to taking the tensor product with an irreducible

representations of highest weight λsph. Indeed, let λ, λ′ ∈ P+
G (µ) and let πλ, πλ′ be

irreducible representation of highest weights λ and λ′ in the vector spaces Vλ, Vλ′ . Let

πλsph
be an irreducible representation of highest weight λsph in Vλsph

. We have shown in

Theorem 2.4.2 that [πλ ⊗ πλsph
: πλ′ ] ≥ 1 implies

λ− λsph �µ λ′ �µ λ+ λsph. (3.2)

Moreover, we have shown in Proposition 2.3.6 that λ + λsph ∈ P+
G (µ) and that the

projection Vλ ⊗ Vλsph
→ Vλ+λsph

is onto.

3.3 Spherical functions

From now on (G,K,F ) is a compact multiplicity free system with (G,K) a compact

Gel’fand pair of rank one and with G other1 than F4.

3.3.1 Spherical functions and representations

3.3.1. The irreducible unitary representations of K of highest weight µ ∈ P+
K are all

equivalent. We fix an irreducible representation for every µ ∈ P+
K and we denote the

representation space with Vµ. Similarly for G where we fix for every λ ∈ P+
G a unitary

irreducible representation of highest weight λ in the representation space that we denote

by Vλ. Note that our choices imply that the spaces Vµ and Vλ are endowed with Hermitian

inner products 〈·, ·〉µ and 〈·, ·〉λ. We use the convention that a Hermitian inner product

is complex linear in the second variable.

1A few days before printing we discovered that there are good faces other than {0} in this case.

Unfortunately there was no time left to analyze the µ-wells in these cases.

60



3.3. Spherical functions

Let λ ∈ P+
G and let π denote the corresponding irreducible representation in Vλ. The

matrix coefficients of λ are denoted by mλ
v1,v2(g) = 〈v1, π(g)v2〉λ.

Definition 3.3.2. Let µ ∈ F and let τ be the K-representation of highest weight µ in

Vµ. A spherical function on G of type µ is a matrix valued function Φ : G → End(Vµ)

such that

Φ(k1gk2) = τ(k1)Φ(g)τ(k2) for all k1, k2 ∈ K and g ∈ G. (3.3)

3.3.3. Let (G,K, µ) be a multiplicity free triple and let λ ∈ P+
G (µ). The representation

space Vλ decomposes uniquely as a direct sum Vλ = Vµ ⊕ V ⊥µ .

Definition 3.3.4. Let µ ∈ F and let π be the representation of G in Vλ of highest weight

λ ∈ P+
G (µ). Let b : Vµ → Vλ be a unitary K-equivariant embedding and let b∗ : Vλ → Vµ

be its Hermitian adjoint. The spherical function of type µ associated to λ is defined by

Φµλ : G→ End(Vµ) : g 7→ b∗ ◦ π(g) ◦ b. (3.4)

An elementary spherical function of type µ is a spherical function of type µ associated to

some λ ∈ P+
G (µ).

3.3.5. Note that the spherical function Φµλ only depends on the weights µ and λ as long

as we take the K-equivariant embedding b : Vµ → Vλ unitary.

3.3.6. Let µ ∈ F and let λ ∈ P+
G (µ). Fix a basis {vi : i = 1, . . . ,dim(µ)} for Vµ. Then

〈vi,Φµλ(g)vj〉µ = 〈bµ(vi), πλ(g)bµ(vj)〉λ, (3.5)

from which we see that the matrix entries of the elementary spherical functions are matrix

coefficients of the irreducible representation of G.

3.3.7. Definition 3.3.4 applies only to multiplicity free triples (G,K, µ). There are more

general definitions of a spherical function available. Indeed, for triples (G,K, τ) where G

is a locally compact group, K a compact subgroup and τ an irreducible representation

of K, for which the multiplicity [π|K : τ ] may be greater than one for some irreducible

representation π of G, one can also define elementary spherical functions, see for example

[War72a], [Tir77], [GV88]. However, at this moment we cannot work in this generality

because for the construction of the matrix valued polynomials we need the structure of

compact Lie groups. Moreover, we need the elementary spherical functions to take their

values in one and the same matrix algebra. The latter will not be the case if we allow

multiplicities [π|K : τ ] > 1.

3.3.8. Let µ ∈ F and let λ ∈ P+
G (µ). Let τ be a unitary irreducible K-representation of

highest weight µ and let b : Vµ → Vλ be a unitary K-equivariant embedding. Let χµ =

dim(Vµ)tr(τ). Define the convolution algebra Cµ(G) = span{mλ
v,w : λ ∈ P+

G (µ), v, w ∈
b(Vµ) ⊂ Vλ}. Proposition 3.3.9 and Corollary 3.3.10 give different characterizations of
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elementary spherical functions. We present the results here because several authors use

Corollary 3.3.10 as a definition of elementary spherical functions, see e.g. [Tir77], [GPT02],

[RT06]. The proof of the Proposition 3.3.9 is given in [GV88, Thm. 1.3.5]. The proof of

Corollary 3.3.10 is included in [GV88, Lem. 1.3.4].

Proposition 3.3.9. Let Φ be a spherical function of type µ ∈ F . Define the linear map

LΦ : Cµ(G)→ End(Vµ) : f 7→
∫
G

f(g)Φ(g)dg. (3.6)

If Φ is an elementary spherical function of type µ then LΦ is an irreducible representation

of the convolution algebra Cµ(G). Conversely, if L is an irreducible representation of

Cµ(G) of the form L = LΦ, with Φ a µ-spherical function, then Φ is an elementary

spherical function of type µ.

Corollary 3.3.10. Let µ ∈ F and let Φ : G → End(Vµ) be a continuous function. The

following are equivalent.

• Φ is an elementary spherical function of type µ,

• Φ(e) = I and for all x, y ∈ G we have

Φ(x)Φ(y) =

∫
K

χµ(k−1)Φ(xky)dk. (3.7)

3.3.11. Let µ ∈ F and let λ ∈ P+
G (µ). Let U(kC) and U(gC) denote the universal envelop-

ing algebras of kC and gC respectively. Let τ and π be unitary irreducible representations

of K and G in Vµ and Vλ of highest weight µ and λ respectively. The representations

τ and π induce representations τ̇ : U(kC) → End(Vµ) and π̇ : U(gC) → End(Vλ). Let

Iµ ⊂ U(kC) denote the kernel of τ̇ . Let U(gC)kC be the centralizer of kC in U(gC). The

restricted representation π̇ : U(gC)kC → End(Vλ) is not irreducible, an operator π̇(X)

commutes with the projections on the isotypical K-types. Let b : Vµ → Vλ be a unitary

K-equivariant embedding. We obtain a representation

ω̃λ,µ : U(gC)kC → EndK(Vµ) : X 7→ b∗π̇(X)b. (3.8)

We identify EndK(Vµ) ∼= C to obtain a representation ωλ,µ : U(gC)kC → C. Define

Dµ = U(gC)k
C
/(U(gC)k

C ∩ U(gC)Iµ). The space Dµ is an algebra [Dix96, Prop. 9.1.10

(ii)]. The representation ωλ,µ : U(gC)k
C → C factors through the quotient U(gC)k

C → Dµ

and the induced map, which we denote by κλ,µ : Dµ → C, is an irreducible representation.

Proposition 3.3.12. Let µ ∈ F and let Φ be a spherical function of type µ. Define the

linear map

κΦ : Dµ → EndK(Vµ) : D 7→ (DΦ)(e). (3.9)

If Φ is an elementary spherical function of type µ then κΦ is an irreducible representation

of the algebra Dµ. Conversely, if κ is an irreducible representation of Dµ of the form

κ = κΦ for a µ-spherical function Φ, then Φ is an elementary spherical function of type

µ.
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3.3.13. The result in Proposition 3.3.12 is proved in e.g. [GV88, Thm. 1.4.5], [Tir77,

Prop. 4.5]. Proposition 3.3.12 implies that a spherical function Φ of type µ is elementary

if and only if Φ is a simultaneous eigenfunction for the algebra Dµ and Φ(e) = I. To see

this let D ∈ Dµ and for g ∈ G let Lg be the map G → G defined by Lg(h) = gh. Since

D is left invariant, i.e. L∗gD = D, we have

D(Φµλ)(g) = L∗g(D(Φµλ))(e) = D(L∗gΦ
λ
µ)(e) = Φ(g)D(Φλµ)(e).

For the converse, if Φ is a simultaneous eigenfunction for Dµ with Φ(e) = I then D 7→
D(Φ)(e) is a representation of Dµ. Because Φ is µ-spherical we have D(Φ)(e) ∈ EndK(Vµ)

and EndK(Vµ) ∼= C from which we see that D 7→ D(Φ)(e) is an irreducible representation.

Proposition 3.3.12 implies that Φ is an elementary spherical function of type µ.

Proposition 3.3.14. The algebra Dµ is commutative.

Proof. In [Dix96, 9.2.10] Dixmier argues that there is an injective algebra anti homo-

morphism Dµ → U(aC)⊗EndM (Vµ). Since EndM (Vµ) is commutative, so are the algebras

U(aC)⊗ EndM (Vµ) and Dµ.

3.3.2 Recurrence relations for the spherical functions

Definition 3.3.15. Let µ ∈ F and let λsph ∈ P+
G denote the fundamental spherical weight

(see 3.2.5). The spherical functions of type µ = 0 are called zonal spherical functions. The

elementary zonal spherical function that is associated to d·λsph is denoted by φd = Φ0
d·λsph

.

The elementary zonal spherical function associated to λsph is denoted by φ = φ1 and it is

called the fundamental zonal spherical function.

3.3.16. Note that the zonal spherical functions are K-bi-invariant. We use the partial

ordering �µ on the µ-well P+
G (µ) that we have discussed in 3.2.5 to obtain a recurrence

relation for the elementary µ-spherical functions. The recurrence is obtained by multipli-

cation with φ.

Proposition 3.3.17. Let µ ∈ F and λ ∈ P+
G (µ). Then there are coefficients aµλ(λ′) ∈ C

such that

φΦµλ =
∑

λ−λsph�µλ′�µλ+λsph

aµλ(λ′)Φµλ′ , λ′ ∈ P+
G (µ). (3.10)

Moreover, aµλ(λ+ λsph) 6= 0 and
∑
λ−λsph�µλ′�µλ+λsph

aµλ(λ′) = 1.

Proof. Let πλ be a unitary representation of highest weight λ. Denote V = ⊕λ′Vλ′ where

is sum is taken over all λ′ that occur as highest weights of irreducible representations in

the decomposition of πλ ⊗ πλsph
. The sum is finite but there may be repetitions if πλ′

occurs in πλ ⊗ πλsph
with multiplicity greater than one. Let 〈·, ·〉 denote a Hermitian

inner product on V for which the G representation is unitary. There is a unitary G-

intertwining isomorphism a : Vλ ⊗ Vλsph
→ V . Let bλ : Vµ → Vλ be the K-equivariant
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map from Definition 3.3.4. We use these maps to find copies of Vµ in both Vλ ⊗ Vλsph

and V as follows. Define b1 : Vµ → Vλ ⊗ Vλsph
: v 7→ bλ(v)⊗ vsph where vsph ∈ Vλsph

is a

K-fixed vector of length one. The map b1 is a unitary K-equivariant linear map, uniquely

determined up to a scalar of length one. The maps bλ′ : Vµ → Vλ′ determine a unique

map b2 : Vµ → V such that for every projection prλ′′ : V → Vλ′′ we have prλ′′ ◦ b2 = bλ′′ .

Let v ∈ Vµ. It follows from the K-invariance of the maps b1, bλ′ and Schur’s Lemma that

there are coefficients ãµλ(λ′) ∈ C such that

ab1(v) =
∑
λ′

ãµλ(λ′)bλ′(v). (3.11)

We have 〈ab1(v),⊕πλ′(g)ab1(w)〉 = 〈v,Φµλ(g)w〉µφ(g) which is equal to∑
λ′

|ãµλ(λ′)|2〈v,Φµλ′(g)w〉µ

by (3.11). Put aµλ(λ′) = |ãµλ(λ′)|2. If λ′ 6∈ P+
G (µ) then aµλ(λ′) = 0. We find

φΦµλ =
∑
λ′∈P+

G

aµλ(λ)Φµλ.

From 3.2.5 it follows that we only need to sum over λ′ ∈ P+
G (µ) with λ − λsph �µ

λ′ �µ λ + λsph. We have ||prλ′ab1(v)||2 = aµλ(λ′)||v||2. In 3.2.5 we have seen that

prλ+λsph
(ab1(v)) 6= 0. Hence aµλ(λ + λsph) 6= 0. The last statement is immediate from

(3.11). Note that the coefficients aµλ(λ′) are independent of the unitary intertwiner a.

Corollary 3.3.18. Let µ ∈ F and let Φµλ be an elementary spherical function with λ =

λ(d, ν). Then there are dµ(M) polynomials qµλ,ν ∈ C[φ], ν ∈ P+
M (µ) such that

Φµλ =
∑

ν∈P+
M (µ)

qµλ,ν(φ)Φµλ(0,ν).

The polynomials are uniquely determined and their degrees are ≤ d.

Proof. We argue by induction on the set P+
G (µ). For λ = λ(0, ν) the statement is clear.

Let λ(d, ν) ∈ P+
G (µ) with d > 0 and suppose that for all λ′ = λ(d′, ν′) with λ′ �µ λ we

can express Φµλ′ as a C[φ]-linear combination of Φµλ(0,ν), ν ∈ P
+
M (µ) with coefficients of

degree ≤ d′. Consider λ−λsph = λ(d−1, ν). It follows from (3.10) together with the fact

that the coefficient of the highest degree aµλ(d−1,ν)(λ) 6= 0 that

Φµλ =
1

aµλ(d−1,ν)(λ)

φΦµλ(d−1,ν) −
∑

λ−2λsph�µλ′≺µλ

aµλ(d−1,ν)(λ
′)Φµλ′

 , (3.12)

from which the result follows, because d′ ≤ d.

3.3.19. In the case µ = 0 we get a three term recurrence relation for the elementary zonal

spherical functions φd. This means that we can express φd as a polynomial of degree d in

φ. The polynomials that we get are, up to an affine transformation, Jacobi polynomials.

In Table 3.3 we provide the possibilities in the cases of our interest.
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3.3. Spherical functions

3.3.3 The space of spherical functions

3.3.20. Let µ ∈ F and let τ be an irreducible K-representation of highest weight µ. Let

C(G) denote the space of continuous functions on G and let R(G) ⊂ C(G) denote the

space of representative functions, i.e. the subspace spanned by the matrix coefficients mλ
v,w

with λ ∈ P+
G . Consider the space of End(Vµ)-valued functions Rµ(G) = R(G)⊗End(Vµ).

Define the action of K ×K on Rµ(G) by

(k1, k2)Φ(g) = τ(k1)Φ(k−1
1 gk2)τ(k2)−1, for Φ ∈ Rµ(G). (3.13)

Definition 3.3.21. Define the complex vector space Eµ = Rµ(G)K×K . Eµ is called the

space of µ-spherical functions.

Proposition 3.3.22. The complex vector space Eµ is generated by the elementary spher-

ical functions of type µ.

Proof. It is clear that the elementary spherical functions are contained in Eµ. For the

converse we use the Peter-Weyl decomposition for Rµ(G). Keeping track of the K ×K-

action shows that

Eµ =
⊕
λ∈P+

G

HomK(Vµ, Vλ)⊗HomK(Vλ, Vµ). (3.14)

The space HomK(Vµ, Vλ) is one-dimensional if and only if λ ∈ P+
G (µ). In this case the

unitary embedding b : Vµ → Vλ is in HomK(Vµ, Vλ). The function in Eµ that corresponds

to b⊗ b∗ is Φµλ. This shows that the elementary spherical functions span Eµ.

3.3.23. We have already argued in 3.3.19 that E0, the space of K-bi-invariant matrix

coefficients, is a polynomial algebra, i.e. E0 = C[φ]. We investigate the algebraic structure

of general Eµ. Let f ∈ E0 and Φ ∈ Eµ. Then the function x 7→ f(x)Φ(x) is contained

in Eµ because of Proposition 3.3.22 and (3.10). This observation shows that Eµ has

an E0-module structure. In fact, Eµ is a finitely generated E0-module, see e.g. [Kra85,

II.3.2]. Since Eµ is torsion free and E0 is a polynomial algebra in one variable, Eµ is a

free E0-module, see e.g. [Lan02, III.§7].

3.3.24. The space End(Vµ) is equipped with a Hermitian inner product 〈A,B〉 = tr(A∗B),

where A∗ is the Hermitian adjoint. This induces a Hermitian inner product on the space

of spherical functions of type µ as follows. Define the pairing 〈·, ·〉µ,G : Eµ × Eµ → C

〈Φ,Φ′〉µ,G :=

∫
G

tr(Φ(g)∗Φ′(g))dg, (3.15)

where dg denotes the Haar measure on G normalized by
∫
G
dg = 1. The pairing is linear

in the second variable and it does not depend on the basis of Vµ in which we express

the functions Φ,Φ′. Furthermore, the function g 7→ tr(Φ(g)∗Φ′(g)) is in E0 because it is

K-bi-invariant and it is the sum of matrix coefficients.
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Proposition 3.3.25. The pairing (3.15) is an inner product. The elementary spherical

functions of type µ form an orthogonal system with respect to 〈·, ·〉µ,G. More precisely:

〈Φµλ,Φ
µ
λ′〉µ,G =

(dimµ)2

dimλ
δλ,λ′ . (3.16)

Proof. By Schur orthogonality we have∫
G

mλ
v,w(g)mλ′

v′,w′(g)dg = dim(λ)−1δλ,λ′〈v, v′〉〈w,w′〉.

Fix an orthonormal basis {v1, . . . , vr} for Vµ. Let λ, λ′ ∈ P+
G (µ) and let bλ : Vµ → Vλ

and bλ′ : Vµ → Vλ′ be unitary K-equivariant embeddings. The entries of the elementary

µ-spherical functions are matrix coefficients mλ
bλ(vi),bλ(vj)

by 3.3.6. We find

〈Φµλ,Φ
µ
λ′〉µ,G =

r∑
j=1

r∑
i=1

∫
G

mλ
bλ(vi),bλ(vj)

(g)mλ′

bλ′ (vi),bλ′ (vj)
(g)dg =

dim(ν)2

dim(λ)
δλ,λ′ ,

as was to be shown.

3.3.26. Spherical functions Φ can also be studied by considering their traces trΦ, see

e.g. [God52], [War72a], [GV88], [Cam97], [Ped97]. We indicate briefly the correspondence

between the spherical functions and their traces.

Let (G,K, µ) be a multiplicity free triple and let bλ : Vµ → Vλ be a unitary K-

equivariant embedding for λ ∈ P+
G (µ). We rewrite (3.14) to

Eµ =
⊕

λ∈P+
G (µ)

HomK(Vµ, bλ(Vµ))⊗HomK(bλ(Vµ), Vµ)

=
⊕

λ∈P+
G (µ)

(End(bλ(Vµ))⊗ End(Vµ))
K×K

. (3.17)

Taking traces gives a map tr : Eµ → R(G) : Φ 7→ trΦ. In view of the identification (3.17)

this amounts to the linear isomorphism

(End(bλ(Vµ))⊗ End(Vµ))
K×K → EndK(bλ(Vµ)) : A⊗B 7→ tr(B)A (3.18)

for every λ ∈ P+
G (µ). Let τ be a unitary irreducible K-representation of highest weight µ.

The inverse of (3.18) is given by C 7→
∫
K
τ(k)−1C ⊗ τ(k)dk. In view of the identification

(3.17) we obtain the identity for spherical functions of type µ,

Φ(g) =

∫
K

tr(Φ(gk−1))τ(k)dk,

which shows how to set up the correspondence between the spherical functions and their

traces. Although this point of view on µ-spherical functions simplifies matters in the

sense that the values are no longer matrices but scalars, this is not the way we want to

understand the space of spherical functions Eµ. Instead, we study Eµ on the one hand

via the spherical functions restricted to a suitable torus and on the other hand via the

recurrence relations, because we want to construct matrix valued polynomials.
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3.3.27. Finally we note that the differential operators in Dµ act on Eµ by scalars, see

Proposition 3.3.12. We will keep track of what happens to the differential operators if we

simplify the space Eµ by restricting its elements to A or by using the recurrence relations

to simplify Eµ.

3.4 Spherical functions restricted to A

3.4.1 Transformation behavior

3.4.1. Let µ ∈ F and let τ be a unitary irreducible K-representation of highest weight

µ. Recall from Proposition 3.2.3 that there is a one-dimensional torus A ⊂ G such that

G = KAK and a ⊥ k. We fix such a torus A ⊂ G. In view of the transformation behavior

(3.3) a µ-spherical function Φ ∈ Eµ is completely determined by its restriction Φ|A.

Denote the space of continuous functions on A by C(A). Let R(A) ⊂ C(A) denote

the space of representative functions, i.e. the subspace of C(A) spanned by the matrix

coefficients of A. Since A ∼= S1 we have R(A) = C[eit, e−it].

3.4.2. We recall some facts and notations from 2.3.4. Let M = ZK(A) and let TM ⊂M
be a maximal torus with Lie algebra tM . The torus TMA ⊂ G is a maximal torus and we

consider the root system R′G associated to (gC, aC ⊕ tM,C). A choice for a lexicographic

ordering on aC ⊕ tM,C where aC comes first defines a notion of positivity on R′G. The

positive roots are denoted by R′+G and the set of dominant integral weights is denoted by

P ′+G . The root systems R′G are different from the root systems RG in [Bou68, Planches]

that we usually have in mind. However, the two systems differ only by a conjugation.

The spherical weight λsph in the corresponds to λ′sph ∈ P
′+
G . We denote by R′(a) the set

of restricted roots α|a, α ∈ R′G. Note that R′G(a) need not be a root system, for in the

case (G2,SU(3)) we find three different lengths of restricted roots.

3.4.3. M acts on the space End(Vµ) by conjugation and the invariant elements for this

action are the M -equivariant endomorphisms EndM (Vµ). The elements in EndM (Vµ)

can be simultaneously diagonalized because the restriction to M of τ of highest weight µ

decomposes multiplicity free (see 3.2.4).

Lemma 3.4.4. Let (G,K,F ) be a multiplicity free system from Table 3.1, let µ ∈ F and

let Φ ∈ Eµ. Then Φ|A ∈ R(A)⊗ EndM (Vµ).

Proof. Since M = ZK(A) we have τ(m)Φ(a) = Φ(ma) = Φ(am) = Φ(a)τ(m) for all

a ∈ A and m ∈M .

3.4.5. Let W = NK(A)/M which is a group of order two. The non-trivial element in

W can be represented by n ∈ NK(A)\M . Define actions of W and M ∩ A on R(A) ⊗
EndM (Vµ) by

(m · Φ)(a) = τ(m)Φ(m−1a), m ∈ A ∩M, (3.19)

(w · Φ)(a) = τ(n)Φ(n−1an)τ(n)−1, w ∈W. (3.20)
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In the symmetric case the actions of A ∩M and W commute because then the elements

in M ∩ A are of order two. In general NK(A) normalizes A ∩M so we obtain an action

of W n (A ∩M) on R(A)⊗ EndM (Vµ). The fixed points for this action are denoted by

(R(A)⊗ EndM (Vµ))
Wn(A∩M)

.

Define EµA = {Φ|A : Φ ∈ Eµ}. We observe that

EµA ⊂ (R(A)⊗ EndM (Vµ))
Wn(A∩M)

,

but in general we do not have equality. Indeed, suppose that A ∩M acts trivially on Vµ
and consider the constant function A→ EndM (Vµ) : a 7→ I which is in

(R(A)⊗ EndM (Vµ))
Wn(M∩A)

.

This function is not the restriction of a non-constant Φ ∈ Eµ because the elementary

spherical functions are (real) analytic, as their entries are matrix coefficients (see 3.3.6).

Hence the function a 7→ I is in EµA if and only if 0 ∈ P+
G (µ). The latter is the case if and

only if µ = 0. In fact, for a compact symmetric space one can give a global description of

the zonal spherical functions via the isomorphism E0 ∼= E0
A = R(A)W×(A∩M).

Proposition 3.4.6. The restriction map

resA : Eµ → EµA : Φ 7→ Φ|A (3.21)

is an isomorphism of vector spaces.

Proof. The G = KAK decomposition implies that, in view of the transformation

behavior (3.3), a spherical function is uniquely determined by its restriction to A. This

shows that resA is injective. It is surjective by definition.

3.4.2 Orthogonality and recurrence relations

3.4.7. Let µ ∈ F . Consider the space of restricted spherical functions EµA. If we restrict

the functions in (3.10) then we obtain a recurrence relation for the restricted spherical

functions,

φ(a)Φµλ(d,ν)(a) =
∑

λ−λsph�µλ′�µλ+λsph

aµλ(λ′)Φµλ′(a), (3.22)

for all a ∈ A and with aµλ(λ + λsph) 6= 0. This shows that EµA is an E0
A-module. The

restriction map Eµ → EµA is an isomorphism of vector spaces that respects the module

structures.

3.4.8. In view of the G = KAK decomposition (Proposition 3.2.3) we want to understand

an integration of K-bi-invariant functions over G as an integration of their restrictions to

A over the torus A.
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G K φ(at) (α, β)

SU(n+ 1) U(n) (n+1) cos2(t)−1
n (n− 1, 0)

SO(2n) SO(2n− 1) cos(t) (n− 3
2 , n−

3
2 )

SO(2n+ 1) SO(2n) cos(t) (n− 1, n− 1)

Sp(2n) Sp(2n− 2)× Sp(2) n cos2(t)−1
n−1 (2n− 3, 1)

F4 Spin(9) cos(2t) (7, 3)

Spin(7) G2 cos(3t) ( 5
2 ,

5
2 )

G2 SU(3) cos(2t) (2, 2)

Table 3.3: The fundamental spherical functions restricted to A ∼= S1 in coordinate at ↔
eit.

Proposition 3.4.9. There is a weight function D : A→ C such that the following holds.

If f : G→ C is K-bi-invariant then
∫
G
f(g)dg =

∫
A
f(a)|D(a)|da.

Proof. The statement is classical in case (G,K) is a symmetric pair, see e.g. [Hel62,

Thm. X.1.19]. In the two cases (Spin(7),G2) and (G2,SU(3)) the quotient space X =

G/K can also be written as X = G′/K ′ with (G′,K ′) the symmetric pair (SO(8),SO(7))

and (SO(7)/SO(6)) respectively. Since the orbits of K and K ′ in X are the same we see

that the weight function for K\G/K is equal to the weight function for K ′\G′/K ′.

3.4.10. The fundamental spherical functions in Table 3.3 correspond to the Jacobi poly-

nomials of degree one with parameters (α, β). One can also calculate the fundamental

zonal spherical function by explicitly calculating the matrix coefficient that corresponds

to the K-fixed vector in Vλsph
. In the two non-symmetric cases we know that the funda-

mental zonal spherical function on the quotient A/(A ∩M) is equal to cos(t). To lift it

back to A we need to triple or double the periods since A∩M has three or two elements

respectively.

Theorem 3.4.11. Let Φ,Φ′ ∈ EµA. Define the pairing 〈·, ·〉µ,A : EµA × E
µ
A → C by

〈Φ,Φ′〉µ,A =

∫
A

tr((Φ(a))∗Φ′(a))|D(a)|da.

Then 〈·, ·〉µ,A is an inner product on EµA. The restriction map resA : Eµ → EµA is unitary

with respect to the inner products 〈·, ·〉µ,G (see (3.15)) and 〈·, ·〉µ,A. This shows that the

basis {Φµλ|A : λ ∈ P+
G (µ)} of EµA is orthogonal for 〈·, ·〉µ,A.

Proof. By 3.3.24 and Proposition 3.4.9 we see that 〈Φ,Φ′〉µ,G = 〈Φ|A,Φ′|A〉µ,A for all

Φ,Φ′ ∈ Eµ.

3.4.12. The vector space EndM (Vµ) is isomorphic to ⊕ν∈P+
M (µ)EndM (Vν), see Definition

2.3.1. The isomorphism is given as follows. Let bν : Vν → Vµ be a unitary M -equivariant
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embedding and let b∗ν denote its Hermitian adjoint. Define the maps

βν : EndM (Vµ)→ EndM (Vν) : T 7→ tr(b∗ν ◦ T ◦ bν),

which are surjective for ν ∈ P+
M (µ). Together the maps {βν : ν ∈ P+

M (µ)} give a linear

map β : EndM (Vµ)→ ⊕ν∈P+
M (µ)EndM (Vν) which is surjective by construction and injec-

tive by dimension count. Recall that dµ(M) = dim EndM (Vµ) is the number of elements

in the bottom Bµ of the µ-well (see Definition 2.3.8). Parametrize the standard basis

vectors of Cdµ(M) by P+
M (µ). This fixes an isomorphism

⊕ν∈P+
M (µ)EndM (Vν)→ Cdµ(M).

The elements in EndM (Vµ) are diagonal matrices that consist of blocks. For later purposes

we want to view these diagonal matrices as vectors without repetition. To this end, define

the map (·)up by the following commutative diagram.

EndM (Vµ)

β

��

(·)up // Cdµ(M)

⊕ν∈P+
M (µ)EndM (Vν)
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The inner product (T, S) 7→ tr(T ∗S) that we discussed in 3.3.24 corresponds via (·)up to

the standard inner product on Cdµ(M) that is C-linear in the second variable.

Let Φ ∈ EµA. We denote by Φup : A → Cdµ(M) the composition of Φ and (·)up. The

space of Cdµ(M)-valued functions on A is endowed with the inner product 〈F, F ′〉µ,up =∫
A
〈F (a), F ′(a)〉|D(a)|da where {a 7→ D(a)} is the weight function from Proposition 3.4.9.

We have 〈Φ,Φ′〉µ,A = 〈Φup,Φ
′up〉µ,up. Hence the map EµA → (EµA)up given by composition

with (·)up is a unitary isomorphism of vector spaces. It is clear that (·)up respects the

module structures.

3.4.13. Finally we say something about the degrees of the restricted spherical func-

tions. We have seen in Lemma 3.4.4 that elementary spherical functions Φµλ restrict to

EndM (Vµ)-valued Fourier polynomials Φµλ|A. In particular the entries of the Cdµ(M)-

valued functions (Φµλ)up are Fourier polynomials. The degrees of the polynomials are

determined as follows. Let HA ∈ a denote the smallest non-zero element such that

expHA = 1. Let λ′ ∈ P ′+G (the alternative set of dominant integral weights we discussed

in 3.4.2) and consider a matrix element mλ′

v,w. Then the restriction mλ′

v,w|A is an element

in R(A) of degree ≤ |λ′(HA)|.

Proposition 3.4.14. Let µ ∈ F , let λ = λ(d, ν) ∈ P+
G (µ) for some ν ∈ P+

M (µ) and

d ∈ N. Let λ′ ∈ P ′+G (µ) denote the corresponding weight in the (alternative) set of

dominant integral weights that we discussed in 3.4.2. The entries of Φµλ|A are of degree

< |λ′(HA)| except for the entry that corresponds to the M -type ν. The degree of the latter

entry, a 7→ mλ′

bµ(v),bµ(v)(a), is |λ′(HA)|.
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Proof. Let ν′ ∈ P+
M (µ) and let v ∈ bλ′(bν(Vν′)) be non-zero. By Proposition 2.3.3

M acts irreducibly of type ν on the space V n+

λ′ . Write v as a sum of aC-weight vectors,

v =
∑
vη. The degree of a 7→ mλ′

v,v(a) is |λ′(HA)| if and only if vλ′|a 6= 0, i.e. (v, V n+

λ′ ) 6= 0.

So we need to show that (v, V n+

λ′ ) 6= 0 if and only if ν = ν′.

If (v, V n+

λ′ ) 6= 0 then ν = ν′. For the converse suppose that ν = ν′ and (v, V n+

λ′ ) = 0.

Since any non-zero vector w ∈ V n+

λ′ is K-cyclic by Proposition 2.3.3 we have (w, bλ′(Vµ)) 6=
0. But w only pairs non-trivially against vectors from the M -isotypical subspace of type

ν, bλ′(bν(Vν′)). Hence (v, w) 6= 0 for some w ∈ V n+

λ′ , a contradiction.

3.4.3 Differential operators

3.4.15. In this subsection we study how the differential operators in Dµ relate to differ-

ential operators acting on the restricted spherical functions. More precisely, we calculate

the radial parts of the operators in Dµ. We use the results in [CM82] in which Casselman

and Miličić calculate the radial parts for µ-spherical functions for symmetric pairs of any

rank. It turns out that, using Lemma 3.4.17, for the rank one cases that we study, the

proofs in [CM82] carry over mutatis mutandis to the non-symmetric examples.

3.4.16. We use the notations from 3.4.2. The eigenspace for an element γ ∈ R′+G (a) is

denoted by (gC)γ . An element γ gives rise to a character of A that we denote by eγ . Let

µ ∈ F and let τ ∈ K̂ be of highest weight µ. Let a ∈ A and X ∈ U(gC). We define

Xa = Ad(a−1)X. Define the trilinear map Ba : U(aC)× U(kC)× U(kC)→ U(gC) by

Ba(H,X, Y ) = XaHY.

For Z ∈ U(mC), we have Ba(H,XZ, Y ) = Ba(H,X,ZY ), so Ba induces a linear map

Γa : U(aC)⊗ U(kC)⊗U(mC) U(kC)→ U(gC) : H ⊗X ⊗ Y 7→ XaHY.

We denote U(aC) ⊗ U(kC) ⊗U(mC) U(kC) = A. Our first aim is to prove that Γa is an

isomorphism of vector spaces for a ∈ Areg = {a ∈ A|∀γ ∈ R′+G (a) : eγ(a) 6= 1}.

Lemma 3.4.17. Let γ ∈ R′+G (a) and let Z ∈ (gC)γ . Then there is a unique root vector

Z ′ ∈ (gC)γ′ with γ′ ∈ R′−G (a) such that Z + Z ′ = U ∈ kC. Moreover, we have

Z =
1

e−γ′(a)− e−γ(a)

(
Ua − e−γ(a)U

)
(3.23)

Z ′ =
1

e−γ(a)− e−γ′(a)

(
Ua − e−γ

′
(a)U

)
. (3.24)

Proof. This follows from Lemma 2.2.8. The proof of the equations (3.23, 3.24) follows

then from Ua = e−γ(a)Z + e−γ
′
(a)Z ′.

3.4.18. Recall from Lemma 2.2.8 that we denote the association gC → gC : Z 7→ Z ′ of

Lemma 3.4.17 by θ. The image of (I + θ) : n+
C → kC is the orthogonal complement of
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mC with respect to the Killing form and we denote it by qC. For any a ∈ Areg we have

gC = qaC⊕ aC⊕ kC. Indeed, by Lemma 3.4.17 we have gC = qaC + aC + kC and counting the

dimensions shows that the sum is direct.

Theorem 3.4.19. For a ∈ Areg, Γa : A → U(gC) is an isomorphism of vector spaces.

Proof. This is clear from the theorem of Poincaré-Birkhoff-Witt applied to the decom-

position gC = qaC ⊕ aC ⊕ kC from 3.4.18.

3.4.20. Let R denote the algebra of functions on A that is generated by {eγ , (1−e2γ)−1 :

γ ∈ R′+G (a)}. Fix a ∈ Areg and define

R⊗A → U(gC) : f ⊗X 7→ f(a)Γa(X).

We denote this map also by Γa. We have the following result (see [CM82, Thm. 2.4]).

Theorem 3.4.21. For each X ∈ U(gC) there exists a unique Π(X) ∈ R ⊗ A such that

Γa(Π(X)) = X for every a ∈ Areg.

3.4.22. The map Π : U(gC) → R ⊗ A is crucial in calculating the radial parts of the

differential operators in Dµ. Let us first explain what we mean by the radial part. In

subsection 3.3.3 we studied the space Eµ that consists of certain End(Vµ)-valued functions

with transformation behavior (3.3). Let Eµ denote the space of smooth functions G →
End(Vµ) that satisfy (3.3). Let EµA denote the space of functions Φ|A with Φ ∈ Eµ. Then

Eµ ⊂ Eµ, EµA ⊂ E
µ
A and (U(gC))kC acts on Eµ as differential operators. The radial part of

a differential operator X ∈ (U(gC))kC is the operator EµA → E
µ
A : Φ|A 7→ (XΦ)|A.

3.4.23. Let ι : U(gC) → U(gC) denote the anti-automorphism induced by gC → gC :

X 7→ −X. Define

ξµ : U(kC)⊗ U(kC)→ Hom(EndM (Vµ),End(Vµ)) :

ξµ(X ⊗ Y )(T ) = τ(X) ◦ T ◦ τ(ι(Y )). (3.25)

Then ξµ(XZ ⊗ Y ) = ξµ(X ⊗ ZY ) for all X,Y ∈ U(kC) and Z ∈ U(mC) which implies

that ξµ induces a linear map

ξµ : U(kC)⊗U(mC) U(kC)→ Hom(EndM (Vµ),End(Vµ))

that we also denote by ξµ. Finally, define the linear map ηµ = 1⊗ 1⊗ ξµ,

ηµ : R⊗ U(aC)⊗ U(kC)⊗U(mC) U(kC)→ R⊗ U(aC)⊗Hom(EndM (Vµ),End(Vµ))

and put Πµ = ηµ ◦Π : U(gC)→ R⊗U(aC)⊗Hom(EndM (Vµ),End(Vµ)). The elements in

R⊗U(aC)⊗Hom(EndM (Vµ),End(Vµ)) act as differential operators, transforming smooth

EndM (Vµ)-valued functions on Areg into End(Vµ)-valued functions on Areg by the rule

(f ⊗H ⊗ T )(F ) = f ·H(TF ).

We call Πµ(X) the µ-radial part of X ∈ (U(gC))kC , which is justified by the following

result.
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Theorem 3.4.24. For every Φ ∈ Eµ and X ∈ (U(gC))kC we have

(XΦ)|A = Πµ(X)Φ|A.

Moreover, the map Πµ : (U(gC))kC → R⊗A⊗ End(EndM (Vµ)) is a homomorphism that

factors through the quotient (U(gC))kC → Dµ and we obtain an injective homomorphism

Dµ → R⊗ U(aC)⊗ End(EndM (Vµ)).

Proof. The first part of the statement is [CM82, Thm 3.1 and Thm. 3.3] and the proofs

go through for the two non-symmetric pairs mutatis mutandis. It is left to show that

the map Πµ has the ideal (U(gC))kC ∩ U(gC)Iµ as its kernel. Let X ∈ (U(gC))kC and

suppose that Πµ(X) = 0. This implies that XΦµλ(e) = 0 for all λ ∈ P+
G (µ) and hence

that X ∈ (U(gC))kC ∩U(gC)Iµ. Conversely, if X ∈ (U(gC))kC ∩U(gC)Iµ and Φ ∈ Eµ then

XΦ = 0 because Eµ ⊂ L2(Eµ) is dense, where L2(Eµ) is the Hilbert space completion of

Eµ with respect to 〈·, ·〉µ,G. It follows that Πµ(X)Φ|A = 0 and this finishes the proof.

3.4.25. The image of the injective homomorphism from Theorem 3.4.24 is an algebra

that we denote by

DµA = Πµ(Dµ) ⊂ R⊗ U(aC)⊗ End(EndM (Vµ)).

We denote the induced isomorphism Πµ : Dµ → DµA. In the symmetric case with µ = 0

we know that D0 ∼= U(aC)W via the Harish-Chandra homomorphism, where W is the

Weyl group of R′G(a). In the more general case of Table 3.1 we do not know of a global

description of Dµ other than an embedding Dµ ⊂ U(aC)⊗EndM (Vµ), see [Dix96, Ch. 9].

3.4.26. The group W = NK(A)/M acts on EndM (Vµ) via W×EndM (Vµ)→ EndM (Vµ) :

w ·S = τ(n)Sτ(n)−1 where n ∈ NK(A)\M . Now we have an action of W on R⊗U(aC)⊗
End(EndM (Vµ)) defined point wise by

w · (f ⊗H ⊗ T )(a)(S) = f(nan−1)⊗Ad(n)H ⊗ τ(n) ◦ T (τ(n)−1Sτ(n)) ◦ τ(n)−1.

Consider the actions of M ∩ A on R and End(EndM (Vµ)) given by m · f(a) = f(m−1a)

and (m · T )(S) = T (τ(m)−1 ◦ S). These extend to an action of M ∩ A on R⊗ U(aC) ⊗
End(EndM (Vµ)) by letting M ∩ A act trivially on the second tensor factor. Note that

the natural action of M on the second factor is trivial anyway. We obtain an action of

W n (M ∩A) on R⊗ U(aC)⊗ End(EndM (Vµ)).

Proposition 3.4.27. DµA ⊂ (R⊗ U(aC)⊗ End(EndM (Vµ)))
Wn(M∩A)

.

Proof. The algebra DµA acts faithfully on EµA so it is sufficient to show that (σ·D)Φ = DΦ

for all Φ ∈ EµA and all σ ∈ W n (M ∩ A). As W n (M ∩ A) acts on EµA it induces an

action on DµA as follows. For σ ∈W n (M ∩A) we have (σ ?D)Φ = σ · (D(σ−1 ·Φ)) where

σ ·Φ is the usual action. Upon writing D =
∑
f ⊗H ⊗ T it is easily checked that indeed

σ ·D = σ ? D. Since (σ ? D)(Φµλ|A) = D(Φµλ|A) for λ ∈ P+
G (µ) we have σ ·D = D.
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3.4.28. We close this subsection by noting that equations (3.23) and (3.24) can be used

to compute the radial part effectively. In fact, in [War72b, Prop. 9.2.1.11] we find an

expression for the µ-radial part of the Casimir operator for the symmetric space cases.

We use the notation of 3.4.2. Let Ω ∈ ZgC be the Casimir operator of order two normalized

as follows. Let h0 ⊂ hC = aC ⊕ tM,C denote the real form on which all roots in R′G take

real values. So h0 = ia⊕ itM . Choose root vectors Eα ∈ (gC)α such that B(Eα, E−α) = 1

for all α ∈ R′G. Let {H1, . . . ,Hn} be an orthonormal basis with respect to the Killing

form B and such that H1 ∈ ia. Then the Casimir operator Ω is of the form

Ω =

n∑
i=1

H2
i +

∑
α∈R′G

EαE−α

and the action of Ω on an irreducible representation of highest weight λ ∈ P ′+G is given

by the scalar 〈λ, λ〉 + 〈λ, ρG〉 (see e.g. [Kna02, Prop. 5.28]), where 〈·, ·〉 is the pairing on

h∨0 dual to the Killing form. Let ∆nc ⊂ R′G denote the roots that are not perpendicular

to tM,C with ∆+
nc ⊂ ∆nc the positive roots. Let Ωm denote the Casimir operator for M .

Then we have

Ω = H2
1 + Ωm +

∑
α∈∆nc

EαE−α

and since Eα ∈ n+
C for α ∈ ∆nc we can use (3.23), (3.24) to calculate the radial part. For

α ∈ ∆nc let Hα ∈ aC denote the element such that α(H1) = B(Hα, H1). Moreover, let

Yα denote the unique element in kC such that Eα − Yα ∈ (gC)−α. We get

Πµ(Ω) = H2
1 + τ(Ωm) +

∑
α∈∆+

nc

eα + e−α

eα − e−α
Hα

+ 8
∑

α∈∆+
nc

1

(eα − e−α)2
(•τ(Yα)τ(Y−α) + τ(Yα)τ(Y−α)•)

− 8
∑

α∈∆+
nc

(eα + e−α)

(eα − e−α)2
(τ(Yα) • τ(Y−α)) (3.26)

where the bullet • indicates where to put the function Φ ∈ EµA.

3.5 Spherical polynomials

3.5.1 Spherical polynomials on G

3.5.1. Let µ ∈ F . We have seen in Proposition 3.3.17 that the elementary spherical

functions Φµλ satisfy recurrence relations. Given an elementary µ-spherical function Φµλ
there exist unique polynomials qµλ,ν ∈ C[φ] such that

Φµλ =
∑

ν∈P+
M (µ)

qµλ,ν(φ)Φµλ(0,ν),
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see Corollary 3.3.18. This defines the map

rec : Eµ → E0 ⊗ Cdµ(M) : Φµλ 7→ (qµλ,ν)ν∈P+
M (µ). (3.27)

where the name “rec” refers to the recurrence relations. The image of an elementary

spherical function of type µ under the map rec is denoted by rec(Φµλ) = Qµλ. We investigate

the orthogonality measure for the space rec(Eµ).

Definition 3.5.2. Define V µ ∈ E0 ⊗ End(Cdµ(M)) by

(V µ(g))ν,ν′ = tr
(

(Φµλ(0,ν)(g))∗Φµλ(0,ν′)(g)
)
.

3.5.3. The entries of (V µ)ν,ν′ are indeed in E0 by 3.3.23. Define the pairing 〈·, ·〉µ,q,G :

E0 ⊗ Cdµ(M) × E0 ⊗ Cdµ(M) → C by

〈Q,Q′〉µ,q,G =

∫
G

(Q(g))∗V µ(g)Q′(g)dg. (3.28)

Proposition 3.5.4. The map rec : Eµ → E0⊗Cdµ(M) is an isomorphism of vector spaces

that respects the E0-module structure. The pairing 〈·, ·〉µ,q,G defines a Hermitian inner

product on the space E0 ⊗ End(Cdµ(M)). Moreover, the map rec is unitary for 〈·, ·〉µ,G
and 〈·, ·〉µ,q,G.

Proof. The map rec is linear and it respects the module structures by definition. To

show that rec is injective, let Φ ∈ Eµ and suppose that rec(Φ) = 0. We can express Φ

as a finite sum of elementary spherical functions. These spherical functions are linearly

dependent by the assumption rec(Φ) = 0. Since no finite set of elementary spherical

functions is linearly dependent (because these correspond to characters of a commutative

algebra) we must have Φ = 0. The map rec is surjective because it is E0-linear and the

minimal elementary spherical functions Φµλ(0,ν) are mapped to the constant functions that

generate E0 ⊗ Cdµ(M) as an E0-module. Note that

〈Φµλ,Φ
µ
λ′〉µ,G =

∫
G

tr

∑
ν,ν′

qµλ,ν(φ(g))Φµλ(g)∗Φµλ(0,ν′)(g)qµλ′,ν′(φ(g))

 dg

=
∑
ν,ν′

∫
G

qµλ,ν(φ(g))tr
(

Φµλ(0,ν)(g)∗Φµλ(0,ν′)(g)
)
qµλ′,ν′(φ(g))dg,

which is equal to 〈Qµλ, Q
µ
λ′〉µ,q,G. It follows that rec is unitary.

3.5.5. The space E0 ⊗Cdµ(M) is called the space of µ-spherical polynomials. By Propo-

sition 3.5.4 the space of µ-spherical polynomials is isomorphic as E0-module to the space

of µ-spherical functions. The Hermitian structure on E0 ⊗ Cdµ(M) is governed by the

function g 7→ V µ(g). The function V µ is called the matrix valued µ-weight function.

Note that the family {Qµλ : λ ∈ P+
G (µ)} is an orthogonal family for 〈·, ·〉µ,q,G.
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3.5.6. The weight functions may be decomposed in blocks by conjugating with a certain

constant matrix. In the case (SU(2) × SU(2),diag), see 4.5.5, where the commutant

{V µ(g) : g ∈ G}′ is spanned by two elements. In the cases (SO(2n),SO(2n − 1)) the

commutant {V µ(g) : g ∈ G}′ will in general not be one-dimensional because the theta-

involution interchanges the spin components of the occurring M -types. It is yet unclear

what the commutants are in the generality of Table 3.1.

3.5.2 Spherical polynomials restricted to A

In this subsection we study the restriction map E0 ⊗Cdµ(M) → E0
A ⊗Cdµ(M). The space

E0
A ⊗ Cdµ(M) is an E0

A-module and the restriction map E0 → E0
A is an isomorphism of

vector spaces that respects the module structures, see Proposition 3.4.6 and Theorem

3.4.11. Hence the restriction map

resA : E0 ⊗ Cdµ(M) → E0
A ⊗ Cdµ(M) (3.29)

is an isomorphism of vector spaces that respects the module structures. Define the pairing

〈·, ·, 〉µ,q,A : E0
A ⊗ Cdµ(M) × E0

A ⊗ Cdµ(M) → C by

〈Q,Q′〉µ,q,A =

∫
A

(Q(a))∗V µ(a)Q′(a)|D(a)|da. (3.30)

Lemma 3.5.7. The pairing 〈·, ·〉µ,q,A defines a Hermitian inner product on E0
A⊗Cdµ(M).

The map resA is unitary with respect to 〈·, ·〉µ,q,G and 〈·, ·〉µ,q,A.

Proof. It is sufficient to check the identity 〈Qµλ, Q
µ
λ′〉µ,q,G = 〈Qµλ|A, Q

µ
λ′ |A〉µ,q,A which

follows from a straightforward calculation.

3.5.8. Another way of studying the space E0
A ⊗ Cdµ(M) is by means of the recurrence

relations to EµA. In 3.4.7 we have seen that the restricted elementary spherical functions

of type µ also satisfy recurrence relations. Hence we can express a restricted elementary

spherical function Φµλ|A as an E0
A-linear combination of the dµ(M) elementary spherical

functions Φµλ(0,ν), ν ∈ P
+
M (µ). The coefficients that we obtain are qµλ,ν |A with qµλ,ν defined

as in Corollary 3.3.18. This defines the map

recA : EµA → E0
A ⊗ Cdµ(M) : Φµλ|A 7→ (qµλ,ν |A)ν∈P+

M (µ). (3.31)

Proposition 3.5.9. The map recA : EµA → E0
A ⊗ Cdµ(M) is an isomorphism of vector

spaces. It respects the module structures and it is unitary for the inner products given by

(3.28) and (3.30).

Proof. The proof of recA being an isomorphism of vector spaces is similar to the

proof of rec being an isomorphism, see Proposition 3.5.4. The module structures are

clearly respected by recA. To see that rec is unitary we have to show the identity

〈Φµλ|A,Φ
µ
λ′ |A〉µ,A = 〈Qµλ|A, Q

µ
λ′ |A〉µ,q,A which is apparent from the definitions.
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3.5.10. The restriction maps (3.21) and (3.29) and the maps given by the recurrence

relations (3.27) and (3.31) fit in the following commutative diagram.

Eµ
rec //

resA

��

E0 ⊗ Cdτ (M)

resA

��
EµA recA

// E0
A ⊗ Cdτ (M)

The recurrence map recA can be understood in a different way. The recurrence relations

imply that a restricted spherical function Φµλ|A can be written as a E0
A-linear combination

of the dµ(M) elementary spherical functions Φµλ(0,ν) with ν ∈ P+
M (µ). In 3.4.12 we have

seen that EµA is isomorphic to (EµA)up via composition with (·)up. The isomorphism is

unitary and it respects the module structures. The map Ψ∗µ : E0
A ⊗ Cdµ(M) → (EµA)up is

defined by the following commutative diagram.

EµA
recA //

(·)up

��

E0
A ⊗ Cdµ(M)

Ψ∗µuu
(EµA)up

The map Ψ∗µ is unitary and it respects the module structures. The notation suggests that

Ψ∗µ is the pull back of a diffeomorphism. Theorem 3.5.12 shows that this is the case on a

dense open subset of A.

Definition 3.5.11. Define Aµ−reg = {a ∈ A : det(V µ(a)) 6= 0}. The set Aµ−reg is called

the µ-regular part of A.

Theorem 3.5.12. The set Aµ−reg is open and dense in A. The restriction

Ψ∗µ : (EµAµ−reg
)up → E0

Aµ−reg
⊗ Cd

µ(M) (3.32)

is given by pointwise multiplication by the matrix Ψµ(a) which has the vectors Φµλ(0,ν)(a)up,

ν ∈ P+
M (µ) as its columns. In particular (3.32) is induced by a diffeomorphism of the

(trivial) vector bundle Aµ−reg × Cdµ(M) to itself.

Proof. Define Ψµ : A → End(Cdµ(M)) point wise by the matrix Ψµ(a) whose column

vectors are (Φµλ(0,ν))
up(a) with ν ∈ P+

M (µ). The definition of the weight function V µ

implies that V µ(a) = (Ψµ(a))∗Ψµ(a). The determinant of V µ(a) is a polynomial in φ(a)

of positive degree by Proposition 3.4.14. As φ : A → C has only finitely many zeros on

A we see that Aµ−reg is open and dense in A. The construction of Ψµ implies that on

Aµ−reg we have the identity

Ψµ(a)Qµλ(a) = (Φµλ)up(a).

It follows that recA restricted to (EµAµ−reg
)up is given by

Qµλ(a) = Ψµ(a)−1(Φµλ)up(a),
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which finishes the proof.

3.5.13. The differential operators D ∈ DµA acting on EµA give rise to differential operators

acting on (EµA)up. We denote the corresponding algebra by Dµ,up
A . Let Dup ∈ Dµ,up and

define

(Ψ∗µD
up)Q = (Ψ∗µ)−1(Dup(Ψ∗µ(Q))).

We obtain a homomorphism Ψ∗µ : Dµ,up
A → R ⊗ U(aC) ⊗ End(Cdµ(M)). The algebra

R ⊗ U(aC) ⊗ End(Cdµ(M)) admits an action of W n (M ∩ A) by letting it act trivially

on the third tensor factor and in the usual way on the first two tensor factors. A small

calculation shows that

Ψ∗µD
µ,up
A ⊂ (R⊗ U(aC))Wn(M∩A) ⊗ End(Cdµ(M)). (3.33)

3.6 Full spherical polynomials

3.6.1 Construction

3.6.1. Let µ ∈ F and consider the isomorphism λ : N× P+
M (µ)→ P+

G (µ), see (3.1). The

number of elements in P+
M (µ) is dµ(M) and this is precisely the dimension of the vector

space in which the polynomials {Qµλ}λ∈P+
G

take their values. It follows that the number

of polynomials Qµλ of degree d is dµ(M).

Definition 3.6.2. The matrix valued function Qµd : A→ End(Cdµ(M)), d ∈ N is defined

point wise by the matrix Qµd (a) whose column with index ν ∈ P+
M (µ) is Qµλ(d,ν)(a).

Note that {Qµd}d∈N is a family of matrix valued functions on A for which the entries

are polynomials in φ. To get a family of matrix valued polynomials on a compact interval

we have to perform a final operation.

Definition 3.6.3. Let µ ∈ F and let I = φ(A) denote the image of the fundamental

zonal spherical function. The matrix valued function Qµd satisfies Qµd (a) = Pµd (φ(a))

where Pµd : A → End(Cdµ(M)) is a uniquely determined matrix valued polynomial. We

call {Pµd }d∈N the family of matrix valued polynomials associated to the multiplicity free

triple (G,K, µ).

3.6.2 Properties

3.6.4. The family of matrix valued polynomials associated to a triple (G,K, µ) has several

nice properties. In particular, the members of the family satisfy a three term recurrence

relation, they are orthogonal with respect to a matrix valued inner product and they

are simultaneous eigenfunctions for a commutative algebra of differential operators with

matrices as eigenvalues. We address all these properties in this section.
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Proposition 3.6.5. The matrix valued polynomials satisfy a three term recurrence rela-

tion. More precisely, for every d ∈ N there are three matrices Ad, Bd, Cd ∈ End(Cdµ(M))

such that

xPµd = Pµd+1Ad + Pµd Bd + Pµd−1Cd (3.34)

holds for x ∈ I. Moreover, the matrix Ad is invertible.

Proof. We prove the equivalent recurrence relation

φQµd = Qµd+1Ad +QµdBd +Qµd−1Cd (3.35)

which in turn is equivalent to a recurrence relation for the columns of the functions

{Qµλ}λ∈P+
G (µ). We have such a recurrence relation for the functions Φµλ, namely (3.22).

Applying the isomorphism Ψ∗A gives the desired recurrence relation for the functions Qµλ.

To see that Ad is invertible note that aµλ(λ+ λsph) 6= 0. Moreover, if λ′ �µ λ+ λsph then

aµλ(λ) = 0. Hence the matrices Ad are similar to lower triangular matrices with non-zero

entries on the diagonal.

3.6.6. If p ∈ C[φ] then
∫
A
p(a)|D(a)|da =

∫
I
p(x)w(x)dx for some function w(x). If we

change the variable using a linear transformation c : I → [−1, 1] then w(a) = (x−1)α(x+

1)β with α, β functions of the root multiplicities. We have indicated α and β in Table

3.3.

Definition 3.6.7. The entries of the weight function V µ (see 3.5.2) are polynomials in

φ. Define Wµ ∈ C[x]⊗ End(Cdµ(M)) point wise by Wµ(φ(a)) = V µ(a)w(φ(a)). Define

〈·, ·〉Wµ : End(Cdµ(M))[x]× End(Cdµ(M))[x]→ End(Cdµ(M)),

〈P, P ′〉Wµ =

∫
I

P (x)∗Wµ(x)P ′(x)dx. (3.36)

Proposition 3.6.8. The pairing 〈·, ·〉Wµ is a matrix valued inner product in the sense

of 1.1.2. The family {Pµd }d∈N is a family of matrix valued orthogonal polynomials with

respect to 〈·, ·〉Wµ .

Proof. The weight function V µ is positive definite on Aµ−reg, which implies that Wµ is

positive definite on a dense subset of I. This shows that 〈·, ·〉Wµ is a matrix valued inner

product. The orthogonality of the Pµd is clear from the definitions.

3.6.9. The matrix valued function x 7→Wµ(x) is called the weight function for the family

of matrix valued polynomials {Pµd }d∈N. If µ = 0 then the weight function reduces to w(x).

The variable x runs over the image of φ|A and if we rescale to the interval [−1, 1] we find

the Jacobi weights (y + 1)α(y − 1)β . The parameters α and β only depend on the pair

(G,K) and we have indicated them in Table 3.3 for the various cases.

3.6.10. Finally, we discuss the differential operators. Recall from 3.5.13 that the vector

valued functions Qµλ are simultaneous eigenfunctions of the algebra Ψ∗µD
µ,up
A .

79



Chapter 3. Matrix Valued Polynomials

Theorem 3.6.11. The algebra Ψ∗µD
µ,up
A can be pushed forward by φ. Upon writing φ(a) =

x, we obtain a homomorphism

φ∗ : Ψ∗µD
µ
A → C[x]⊗ C[∂x]⊗ End(Cdµ(M)).

We denote the image φ∗(Ψ
∗
µD

µ
A) = D(Wµ).

Proof. The map φ∗ exists because Ψ∗µD
µ,up
A is W n (M ∩A)-invariant. Pushing forward

a priori gives a subalgebra of C(x) ⊗ C[∂x] ⊗ End(Cdµ(M)). But the algebra acts faith-

fully on the matrix valued polynomials Pµd from which it follows that the coefficients are

polynomials in x, i.e. D(Wµ) ⊂ C[x]⊗ C[∂x]⊗ End(Cdµ(M)).

3.6.12. The algebra D(Wµ) acts on End(Cdµ(M))-valued polynomials column wise. The

polynomials Pµd are simultaneous eigenfunctions for D(Wµ), whose eigenvalues are diag-

onal matrices that act on the right, i.e. for all D ∈ DWµ

and d ∈ N there is a diagonal

matrix ΛD,d ∈ End(Cdµ(M)) such that DPµd = Pµd ΛD,d.

3.6.13. The algebra D(Wµ) is defined as the algebra of differential operators that have

the polynomials {Pµd } as eigenfunctions, see 1.1.3. This means that for D ∈ D(Wµ)

there are matrices {ΛD,d : d ∈ N} such that DPµd = Pµd ΛD,d. Clearly D(Wµ) ⊂ D(Wµ).

However, in general we do not have equality. Indeed, in Proposition 4.8.2 it is shown that

D(Wµ) contains non-commuting elements. A differential operator D ∈ D(Wµ) whose

eigenvalue is a diagonal matrix seems to be in D(Wµ). We cannot prove this because we

do not have control over the algebra Ψ∗µD
µ
A.

3.6.14. Let D ∈ D(Wµ) and write D =
∑r
i=0 ai∂

i
x. Then we see that deg ai ≤ i because

D has the sequence {Pd}d∈N as eigenfunctions. In Theorem 5.7.15 we see that the Casimir

element Ω ∈ (U(gC))kC of order two gives φ∗Ψ
∗
AΠµΩ, a second order differential operator

of hypergeometric type in the sense of Tirao [Tir03]. It would be interesting to see whether

explicit expressions can be calculated in the other cases. This could help to calculate the

polynomials Pµd explicitly by describing their columns as vector valued hypergeometric

functions.

3.6.15. We can describe the restricted spherical functions globally on A as vector val-

ued functions that are polynomial in φ. Locally on Aµ−reg this amounts to applying a

diffeomorphism. But because we end up with smooth functions in φ we expect that Ψ∗µ
is regular on Areg. This means that we expect Ψµ(a) to be invertible on Areg, i.e. that

the zero set of the determinant det Ψµ(a) is the same as the set of critical points of φ.

In the case (SU(2) × SU(2),SU(2)) we have observed this fact, see Corollary 5.2.3. It is

important to have a better understanding of this matter.

3.6.3 Comparison to other constructions

3.6.16. One of the motivations of studying the construction of vector and matrix valued

polynomials is that we wanted to understand the results by Grünbaum, Pacharoni and
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Tirao in [GPT02] as a generalization of classical Jacobi polynomials. In [GPT02] the

spherical functions associated to the compact multiplicity free system (SU(3),U(2), P+
U(2))

are studied. In this subsection we indicate how the matrix valued orthogonal polynomials

{Pµλ : λ ∈ P+
G (µ)} compare to polynomials that are obtained by Grünbaum, Pacharoni

and Tirao.

Let G = SU(3), K = U(2) and fix µ ∈ P+
K . Let τ be an irreducible unitary K-

representation of highest weight µ.

Definition 3.6.17. Denote by κ : End(C3)→ End(C2) the map

κ

 x11 x12 x13

x21 x22 x23

x31 x32 x33

 =

(
x11 x12

x21 x22

)

and define Φµ : G→ End(Vµ) : g 7→ τ(κ(g)), where τ : End(C2)→ End(Vµ) is the unique

holomorphic extension of τ : GL2 → GL(Vµ).

3.6.18. The function Φµ is an auxiliary function that is used to neutralize the right K-

action as follows. Φµ is µ-spherical and in fact, if µ ∈ P+
G then Φµ is the elementary

spherical function of type µ, see [GPT02, Thm. 2.10]. Let G = {g ∈ G : det(κ(g)) 6= 0}.
Note that G is a dense open subset of G and det(Φµ(g)) 6= 0 for g ∈ G. Define

Hµ
λ : G → End(Vµ) : g 7→ Φµλ(g)Φµ(g)−1, λ ∈ P+

G (µ).

The functions Hµ
λ satisfy

Hµ
λ (gk) = Hµ

λ (g), (3.37)

Hµ
λ (kg) = τ(k)Hµ

λ (g)τ(k)−1 (3.38)

for all g ∈ G and k ∈ K. This shows, in view of G = KAK, that Hµ
λ is determined by its

restriction Hµ
λ,A to A ⊂ G. Note that Hµ

λ (A) ⊂ EndM (Vµ).

The algebra U(gC)kC is isomorphic to ZkC ⊗ ZgC , see [Kno90]. The algebra ZgC is

generated by the elements ∆2 and ∆3 that are specified in [GPT02, Prop. 3.1]. The

operators ∆2,∆3 correspond to differential operators ∆̃2, ∆̃3 that have the functions

Hµ
λ,A as simultaneous eigenfunctions. The system of differential equations

{∆̃iH
µ
λ,A = cµi,λ ·H

µ
λ,A : i = 1, 2 and λ ∈ P+

G (µ)}

is solved using a circle of ingenious ideas. The solutions Hµ
λ,A turn out to be polynomials

in φ.

To see how the functions Hµ
λ,A compare to the function Qµλ we denote Hµ,up

λ =

(Hµ
λ,A)up. The group M is a one-dimensional torus. In particular dim(Vν) = 1 for all

ν ∈ P+
M (µ). Identify EndM (Vµ) = Vµ via EndM (Vν)↔ Vν . This seems rather unnatural,

but in this way we get the identity of functions

ΦµH
µ,up
λ = ΨµQ

µ
λ (3.39)
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on A. In principle, (3.39) indicates how to transfer the properties (orthogonality and

recurrence relations, differential equations) of the functions Qµλ to the functions Hµ
λ . The

calculation of the spherical functions of Grünbaum, Pacharoni and Tirao in [GPT02] by

solving a system of differential equations is now connected to our construction which is

mainly based on the recurrence relations, i.e. the decomposition of tensor products of

certain representations.
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The Example (SU(2)× SU(2), diag)

83





Chapter 4

Matrix valued orthogonal

polynomials related to

(SU(2)× SU(2), diag)

Abstract

The matrix valued spherical functions for the pair (K × K,K), K = SU(2), are stud-

ied. By restriction to the subgroup A the matrix valued spherical functions are diagonal.

For suitable set of representations we take these diagonals into a matrix valued function,

which are the full spherical functions. Their orthogonality is a consequence of the Schur

orthogonality relations. From the full spherical functions we obtain matrix valued or-

thogonal polynomials of arbitrary size, and they satisfy a three-term recurrence relation

which follows by considering tensor product decompositions. An explicit expression for

the weight and the complete block-diagonalization of the matrix valued orthogonal poly-

nomials is obtained. From the explicit expression we obtain right-hand sided differential

operators of first and second order for which the matrix valued orthogonal polynomials

are eigenfunctions. We study the low-dimensional cases explicitly, and for these cases

additional results, such as the Rodrigues’ formula and being eigenfunctions to first order

differential-difference and second order differential operators, are obtained.

4.1 Introduction

The connection between special functions and representation theory of Lie groups is a very

fruitful one, see e.g. [Vil68], [VK93]. For the special case of the group SU(2) we know

that the matrix elements of the irreducible finite-dimensional representations are explicitly

expressible in terms of Jacobi polynomials, and in this way many of the properties of the

Jacobi polynomials can be obtained from the group theoretic interpretation. In particular,
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the spherical functions with respect to the subgroup S(U(1) × U(1)) are the Legendre

polynomials, and using this interpretation one obtains product formula, addition formula,

integral formula, etc. for the Legendre polynomials, see e.g. [GV88], [HS94], [Hel00],

[Vil68], [VK93] for more information on spherical functions.

In the development of spherical functions for a symmetric pair (G,K) the emphasis

has been on spherical functions with respect to one-dimensional representations of K,

and in particular the trivial representation of K. Godement [God52] considered the

case of higher-dimensional representations of K, see also [GV88], [Tir77] for the general

theory. Examples studied are [Cam00], [vDP99], [GPT02], [Koo85], [Ped98]. However,

the focus is usually not on obtaining explicit expressions for the matrix valued spherical

functions, see Section 4.2 for the definition, except for [GPT02] and [Koo85]. In [GPT02]

the matrix valued spherical functions are studied for the case (U,K) = (SU(3),U(2)),

and the calculations revolve around the study of the algebra of differential operators for

which these matrix valued orthogonal polynomials are eigenfunctions. See also [GPT01],

[GPT03] and [GPT04]. The approach in this paper is different.

In our case the paper [Koo85] by Koornwinder is relevant. Koornwinder studies the

case of the compact symmetric pair (U,K) = (SU(2)×SU(2),SU(2)) where the subgroup

is diagonally embedded, and he calculates explicitly vector-valued orthogonal polynomi-

als. The goal of this paper is to study this example in more detail and to study the

matrix valued orthogonal polynomials arising from this example. The spherical functions

in this case are the characters of SU(2), which are the Chebychev polynomials of the sec-

ond kind corresponding to the Weyl character formula. So the matrix valued orthogonal

polynomials can be considered as analogues of the Chebychev polynomials. Koornwinder

[Koo85] introduces the vector-valued orthogonal polynomials which coincide with rows in

the matrix of the matrix valued orthogonal polynomials in this paper. We provide some

of Koornwinder’s results with new proofs. The matrix valued spherical functions can be

given explicitly in terms of the Clebsch-Gordan coefficients, or 3 − j-symbols, of SU(2).

Moreover, we find many more properties of these matrix valued orthogonal polynomials.

In particular, we give an explicit expression for the weight, i.e. the matrix valued or-

thogonality measure, in terms of Chebychev polynomials by using an expansion in terms

of spherical functions of the matrix elements and explicit knowledge of Clebsch-Gordan

coefficient. This gives some strange identities for sums of hypergeometric functions in

Appendix 4.A. Another important result is the explicit three-term recurrence relation

which is obtained by considering tensor product decompositions. Also, using the explicit

expression for the weight function we can obtain differential operators for which these

matrix valued orthogonal polynomials are eigenfunctions.

Matrix valued orthogonal polynomials arose in the work of Krein [Kre71], [Kre49]

and have been studied from an analytic point of view by Durán and others, see [Dur97,

DG04, DG05a, DG05b, DLR04, Grü03, DPS08, MPY01, vA07, LR99, Ger81, Ger82] and

references given there. As far as we know, the matrix valued orthogonal polynomials

that we obtain have not been considered before. Also 2 × 2-matrix valued orthogonal

polynomials occur in the approach of the non-commutative oscillator, see [IW07] for
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more references. A group theoretic interpretation of this oscillator in general seems to be

lacking.

The results of this paper can be generalized in various ways. First of all, the ap-

proach can be generalized to pairs (U,K) with (Ug)k abelian, but this is rather restrictive

[Kno90]. Given a pair (U,K) and a representation δ of K such that [π|K : δ] ≤ 1 for all

representations π of G and δ|M is multiplicity free, we can perform the same construction

to get matrix valued orthogonal polynomials. Needless to say, in general it might be

difficult to be able to give an explicit expression of the weight function. Another option is

to generalize to (K ×K,K) to obtain matrix valued orthogonal polynomials generalizing

Weyl’s character formula for other root systems, see e.g. [HS94].

We now discuss the contents of the paper. In Section 4.2 we introduce the matrix val-

ued spherical functions for this pair taking values in the matrices of size (2`+1)×(2`+1),

` ∈ 1
2N. In Section 4.3 we prove the recurrence relation for the matrix valued spherical

functions using a tensor product decomposition. This result gives us the opportunity to

introduce polynomials, and this coincides with results of Koornwinder [Koo85]. In Sec-

tion 4.4 we introduce the full spherical functions on the subgroup A, corresponding to the

Cartan decomposition U = KAK, by putting the restriction to A of the matrix valued

spherical function into a suitable matrix. In Section 4.5 we discuss the explicit form and

the symmetries of the weight. Moreover, we calculate the commutant explicitly and this

gives rise to a decomposition of the full spherical functions, the matrix valued orthogonal

polynomials and the weight function in a 2 × 2-block diagonal matrix, which cannot be

reduced further. After a brief review of generalities of matrix valued orthogonal polyno-

mials in Section 4.6, we discuss the even and odd-dimensional cases separately. In the

even dimensional case an interesting relation between the two blocks occur. In Section 4.7

we discuss the right hand sided differential operators, and we show that the matrix valued

orthogonal polynomials associated to the full spherical function are eigenfunctions to a

first order differential operator as well as to a second order differential operator. Section

4.8 discusses explicit low-dimensional examples, and gives some additional information

such as the Rodrigues’ formula for these matrix valued orthogonal polynomials and more

differential operators. Finally, in the appendices we give somewhat more technical proofs

of two results.

4.2 Spherical Functions of the pair (SU(2)×SU(2), diag)

Let K = SU(2), U = K ×K and K∗ ⊂ U the diagonal subgroup. An element in K is of

the form

k(α, β) =

(
α β

−β α

)
, |α|2 + |β|2 = 1, α, β ∈ C. (4.1)

Let mt := k(eit/2, 0) and let T ⊂ K be the subgroup consisting of the mt. T is the

(standard) maximal torus of K. The subgroup T × T ⊂ U is a maximal torus of U .

87



Chapter 4. MVOP I

Define

A∗ = {(mt,m−t) : 0 ≤ t < 4π} and M = {(mt,mt) : 0 ≤ t < 4π}.

We write at = (mt,m−t) and bt = (mt,mt). We have M = ZK∗(A∗) and the decomposi-

tion U = K∗A∗K∗. Note that M is the standard maximal torus of K∗.

The equivalence classes of the unitary irreducible representations of K are parama-

trized by K̂ = 1
2N. An element ` ∈ 1

2N determines the space

H` := C[x, y]2`,

the space of homogeneous polynomials of degree 2` in the variables x and y. We view

this space as a subspace of the function space C(C2,C) and as such, K acts naturally on

it via

k : p 7→ p ◦ kt,

where kt is the transposed. Let

ψ`j : (x, y) 7→
(

2`

`− j

) 1
2

x`−jy`+j , j = −`,−`+ 1, . . . , `− 1, ` (4.2)

We stipulate that this is an orthonormal basis with respect to a Hermitian inner product

that is linear in the first variable. The representation T ` : K → GL(H`) is irreducible

and unitary.

The equivalence classes of the unitary irreducible representations of U are parama-

trized by Û = K̂× K̂ = 1
2N×

1
2N. An element (`1, `2) ∈ 1

2N×
1
2N gives rise to the Hilbert

space H`1,`2 := H`1 ⊗H`2 and in turn to the irreducible unitary representation on this

space, given by the outer tensor product

T `1,`2(k1, k2)(ψ`1j1 ⊗ ψ
`2
j2

) = T `1(k1)(ψ`1j1 )⊗ T `2(k2)(ψ`2j2 ).

The restriction of (T `1,`2 , H`1,`2) to K∗ decomposes multiplicity free in summands of

type ` ∈ 1
2N with

|`1 − `2| ≤ ` ≤ `1 + `2 and `1 + `2 − ` ∈ Z. (4.3)

Conversely, the representations of U that contain a given ` ∈ 1
2N are the pairs (`1, `2) ∈

1
2N ×

1
2N that satisfy (4.3). We have pictured this parametrization in Figure 4.1 for

` = 3/2.

The following theorem is standard, see [Koo81].

Theorem 4.2.1. The space H`1,`2 has a basis

{φ`1,`2`,j : ` satisfies (4.3) and |j| ≤ `}
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Figure 4.1: Plot of the parametrization of the pairs (`1, `2) that contain ` upon restriction.

such that for every ` the map β`1,`2` : H` → H`1,`2 defined by ψ`j 7→ φ`1,`2`,j is a K-

intertwiner. The base change with respect to the standard basis {ψ`1j1 ⊗ ψ
`2
j2
} of H`1,`2 is

given by

φ`1,`2`,j =

`1∑
j1=−`1

`2∑
j2=−`2

C`1,`2,`j1,j2,j
ψ`1j1 ⊗ ψ

`2
j2
,

where the C`1,`2,`j1,j2,j
are the Clebsch-Gordan coefficients, normalized in the standard way.

The Clebsch-Gordan coefficient satisfies C`1,`2,`j1,j2,j
= 0 if j1 + j2 6= j.

Definition 4.2.2 (Spherical Function). Fix a K-type ` ∈ 1
2N and let (`1, `2) ∈ 1

2N×
1
2N

be a representation that contains ` upon restriction to K∗. The spherical function of type

` ∈ 1
2N associated to (`1, `2) ∈ 1

2N×
1
2N is defined by

Φ``1,`2 : U → End(H`) : x 7→
(
β`1,`2`

)∗
◦ T `1,`2(x) ◦ β`1,`2` . (4.4)

If Φ``1,`2 is a spherical function of type ` then it satisfies the following properties:

(i) Φ``1,`2(e) = I, where e is the identity element in the group U and I is the identity

transformation in H`,

(ii) Φ``1,`2(k1xk2) = T `(k1)Φ`(x)T `(k2) for all k1, k2 ∈ K∗ and x ∈ U ,

(iii) Φ``1,`2(x)Φ``1,`2(y) =
∫
K∗

χ`(k
−1)Φ``1,`2(xky)dk, for all x, y ∈ U . Here ξ` denotes the

character of T ` and χ` = (2`+ 1)ξ`.

Remark 4.2.3. Definition 4.2.2 is not the definition of a spherical function given by

Godement [God52], Gangolli and Varadarajan [GV88] or Tirao [Tir77] but it follows from

property (iii) that it is equivalent in this situation. The point where our definition differs is
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essentially that we choose one space, namely End(H`), in which all the spherical functions

take their values, instead of different endomorphism rings for every U -representation. We

can do this because of the multiplicity free splitting of the irreducible representations.

Proposition 4.2.4. Let EndM (H`) be the the algebra of elements Y ∈ End(H`) such

that T `(m)Y = Y T `(m) for all m ∈ M . Then Φ``1,`2(A∗) ⊂ EndM (H`). The restriction

of Φ``1,`2 to A∗ is diagonalizable.

Proof. This is an observation [Koo85, (2.6)]. Another proof, similar to [GPT02, Prop.

5.11], uses ma = am for all a ∈ A∗ and m ∈M so that by (2)

Φ``1,`2(a) = T `(m)Φ``1,`2(a)T `(m)−1.

The second statement follows from the fact that the restriction of any irreducible repre-

sentation of K∗ ∼= SU(2) to M ∼= U(1) decomposes multiplicity free. The standard

weight basis (4.2) is a weight basis in which Φ``1`2 |A∗ is diagonal. The restricted spherical

functions are given by

(
Φ``1,`2(at)

)
j,j

=

`1∑
j1=−`1

`2∑
j2=−`2

ei(j2−j1)t
(
C`1,`2,`j1,j2,j

)2

, (4.5)

which follows from Definition 4.2.2 and Theorem 4.2.1.

4.3 Recurrence Relation for the Spherical Functions

A zonal spherical function is a spherical function Φ``1,`2 for the trivial K-type ` = 0. We

have a diffeomorphism U/K∗ → K : (k1, k2)K∗ 7→ k1k
−1
2 and the left K∗-action on U/K∗

corresponds to the action of K on itself by conjugation. The zonal spherical functions

are the characters on K [Vil68] which are parametrized by pairs (`1, `2) with `1 = `2
and we write ϕ` = Φ0

`,`. Note that ϕ` = (−1)−j+l(2` + 1)−1/2U2`(cos t) by (4.5) and

C`,`,0j,−j,0 = (−1)−j+l(2` + 1)−1/2, where Un is the Chebyshev polynomial of the second

kind of degree n. The zonal spherical function ϕ 1
2

plays an important role and we denote

it by ϕ = ϕ 1
2
. Any other zonal spherical function ϕn can be expressed as a polynomial in

ϕ, see e.g. [Vil68], [Vre76]. For the spherical functions we obtain a similar result. Namely,

the product of ϕ and a spherical function of type ` can be written as a linear combination

of at most four spherical functions of type `.

Proposition 4.3.1. We have as functions on U

ϕ · Φ`1,`2` =

`1+ 1
2∑

m1=|`1− 1
2 |

`2+ 1
2∑

m2=|`2− 1
2 |

∣∣∣a(`1,`2)
(m1,m2),`

∣∣∣2 Φm1,m2

` (4.6)

where the coefficients a
(`1,`2)
(m1,m2),` are given by

a
(`1,`2)
(m1,m2),` =

∑
j1,j2,i1,i2,n1,n2

C`1,`2,`j1,j2,`
C

1
2 ,

1
2 ,0

i1,i2,0
C
`1,

1
2 ,m1

j1,i1,n1
C
`2,

1
2 ,m2

j2,i2,n2
Cm1,m2,`
n1,n2,`

. (4.7)
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4.3. Recurrence Relation for the Spherical Functions

where the sum is taken over

|j1| ≤ `1, |j2| ≤ `2, |i1| ≤
1

2
, |i2| ≤

1

2
, |n1| ≤ m1 and |n2| ≤ m2. (4.8)

Moreover, a
(`1,`2)
(`1+1/2,`2+1/2),` 6= 0. Note that the sum in (4.7) is a double sum because of

Theorem 4.2.1.

Proposition 4.3.1 should be compared to Theorem 5.2 of [PT04], where a similar

calculation is given for the case (SU(3),U(2)).

Proof. On the one hand the representation T `1,`2 ⊗ T 1
2 ,

1
2 can be written as a sum of at

most 4 irreducible U -representations that contain the representation T ` upon restriction

to K∗. On the other hand we can find a ‘natural’ copy H` of H` in the space H`1,`2 ⊗
H

1
2 ,

1
2 that is invariant under the K∗-action. Projection onto this space transfers via α,

defined below, to a linear combination of projections on the spaces H` in the irreducible

summands. The coefficients can be calculated in terms of Clebsch-Gordan coefficients

and these in turn give rise to the recurrence relation. The details are as follows.

Consider the U -representation T `1,`2 ⊗T 1
2 ,

1
2 in the space H`1,`2 ⊗H 1

2 ,
1
2 . By Theorem

4.2.1 we have

α : H`1,`2 ⊗H 1
2 ,

1
2 →

`1+ 1
2⊕

m1=|`1− 1
2 |

`2+ 1
2⊕

m2=|`2− 1
2 |

Hm1,m2

which is a U -intertwiner given by

α :
(
ψ`1j1 ⊗ ψ

`2
j2

)
⊗
(
ψ

1
2
i1
⊗ ψ

1
2
i2

)
7→

`1+ 1
2∑

m1=|`1− 1
2 |

m1∑
n1=−m1

`2+ 1
2∑

m2=|`2− 1
2 |

m2∑
n2=−m2

C
`1,

1
2 ,m1

j1,i1,n1
C
`2,

1
2 ,m2

j2,i2,n2
ψm1
n1
⊗ ψm2

n2
.

Let H` ⊂ H`1,`2 ⊗H 1
2 ,

1
2 be the space that is spanned by the vectors{

φ`1,`2`,j ⊗ φ
1
2 ,

1
2

0,0 : −` ≤ j ≤ `
}
.

The element φ`1,`2`,j ⊗ φ
1
2 ,

1
2

0,0 maps to

`1∑
j1=−`1

`2∑
j2=−`2

1
2∑

i1=− 1
2

1
2∑

i2=− 1
2

`1+ 1
2∑

m1=|`1− 1
2 |

m1∑
n1=−m1

`2+ 1
2∑

m2=|`2− 1
2 |

m2∑
n2=−m2

m1+m2∑
p=|m1−m2|

p∑
u=−p

C`1,`2,`j1,j2,j
C

1
2 ,

1
2 ,0

i1,i2,0
C
`1,

1
2 ,m1

j1,i1,n1
C
`2,

1
2 ,m2

j2,i2,n2
Cm1,m2,p
n1,n2,u φm1,m2

p,u .

Note that u = n1 +n2 = j1 + i1 + j2 + i2 = j, so the last sum can be omitted. Also, since

α is a K∗-intertwiner, we must have p = `. For every pair (m1,m2) we have a projection

P
(m1,m2)
` :

`1+ 1
2⊕

m1=|`1− 1
2 |

`2+ 1
2⊕

m2=|`2− 1
2 |

Hm1,m2 →
`1+ 1

2⊕
m1=|`1− 1

2 |

`2+ 1
2⊕

m2=|`2− 1
2 |

Hm1,m2
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onto the `-isotypical summand in the summand Hm1,m2 . Hence

Pm1,m2

` (α(φ`1,`2`,j ⊗ φ
1
2 ,

1
2

0,0 )) =

`1∑
j1=−`1

`2∑
j2=−`2

1
2∑

i1=− 1
2

1
2∑

i2=− 1
2

m1∑
n1=−m1

m2∑
n2=−m2

C`1,`2,`j1,j2,j
C

1
2 ,

1
2 ,0

i1,i2,0
C
`1,

1
2 ,m1

j1,i1,n1
C
`2,

1
2 ,m2

j2,i2,n2
Cm1,m2,`
n1,n2,j

φm1,m2

`,j .

The map Pm1,m2

` ◦ α is a K∗-intertwiner so Schur’s lemma implies that

`1∑
j1=−`1

`2∑
j2=−`2

1
2∑

i1=− 1
2

1
2∑

i2=− 1
2

m1∑
n1=−m1

m2∑
n2=−m2

C`1,`2,`j1,j2,j
C

1
2 ,

1
2 ,0

i1,i2,0
C
`1,

1
2 ,m1

j1,i1,n1
C
`2,

1
2 ,m2

j2,i2,n2
Cm1,m2,`
n1,n2,j

is independent of j. Hence it is equal to a
(`1,`2)
(m1,m2),`, taking j = `. We have

α(φ`1,`2`,j ⊗ φ
1
2 ,

1
2

0,0 ) =
∑
m1,m2

a
(`1,`2)
(m1,m2),jφ

m1,m2

`,j .

Moreover, the map

P =

`1+1/2∑
m1=|`1−1/2|

`2+1/2∑
m2=|`2−1/2|

Pm1,m2

` ◦ α : H`1,`2 ⊗H 1
2 ,

1
2 →

`1+ 1
2⊕

m1=|`1− 1
2 |

`2+ 1
2⊕

m2=|`2− 1
2 |

Hm1,m2

is a K∗-intertwiner. To show that it is not the trivial map we note that the coefficient

a
(`1,`2)

(`1+ 1
2 ,`2+ 1

2 ),`
is non-zero. Indeed, the equalities

C`1,`2,`j1,j2,`
=

(−1)`1−j1(`+ `2 − `1)!

(`1 + `2 + `+ 1)!∆(`1, `2, `)

[
(2`+ 1)(`1 + j1)!(`2 + `− j1)!

(`1 − j1)!(`2 − `+ j1)!

]1/2

,

C
`1,

1
2 ,`1+ 1

2

j1,
1
2 ,j1+ 1

2

=

[
`1 + j1 + 1

2`1 + 1

]1/2

and C
`1,

1
2 ,`1+ 1

2

j1,− 1
2 ,j1−

1
2

=

[
`1 − j1 + 1

2`1 + 1

]1/2

,

where ∆(`1, `2, `) is a positive function, can be found in [Vil68, Ch. 8] and plugging these

into the formula for a
(`1,`2)

(`1+ 1
2 ,`2+ 1

2 ),`
shows that it is the sum of positive numbers, hence it

is non-zero.

We conclude that P is non-trivial, so its restriction to H` is an isomorphism and it

intertwines the K∗-action. It maps K∗-isotypical summands to K∗-isotypical summands.

Hence α|H` = P |H`. Define

γ`1,`2` : H` → H`1,`2 ⊗H 1
2 ,

1
2 : ψ`j 7→ φ`1,`2`,j ⊗ φ

1
2 ,

1
2

0,0 .

This is a K-intertwiner. It follows that

α ◦ γ`1,`2` =
∑
m1,m2

a
(`1,`2)
(m1,m2),`β

m1,m2

` . (4.9)
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`1

`2

T
5
2 ,3

T
1
2 ,

1
2

Figure 4.2: Plot of how the tensor product T
5
2 ,3⊗T 1

2 ,
1
2 splits into irreducible summands.

Define the End(H`)-valued function

Ψ`
`1,`2 : U → End(H`) : x 7→ (γ`1,`2` )∗ ◦ (T `1,`1 ⊗ T 1

2 ,
1
2 )(x) ◦ γ`1,`2` .

Note that Ψ`
`1,`2

(x) = ϕ(x)Φ``1,`2(x). On the other hand we have T `1,`2 ⊗ T 1
2 ,

1
2 = α ◦(⊕

m1,m2
Tm1,m2

)
◦ α. Together with (4.9) this yields

Ψ`
`1,`2 =

∑
m1,m2

|a(`1,`2)
(m1,m2),`|

2(β`1,`2` )∗ ◦ Tm1,m2 ◦ βm1,m2

` .

Hence the result.

In Figure 4.2 we have depicted the representations ( 1
2 ,

1
2 ) and ( 5

2 , 3) with black nodes.

The tensor product decomposes into the four types ( 5
2 ±

1
2 , 3 ±

1
2 ) which are indicated

with the white nodes.

Corollary 4.3.2. Given a spherical function Φ``1,`2 there exist 2` + 1 elements q`,j`1,`2 ,

j ∈ {−`,−`+ 1, . . . , `} in C[ϕ] such that

Φ``1,`2 =
∑̀
j=−`

q`,j`1,`2Φ`(`+j)/2,(`−j)/2. (4.10)

The degree of q`,j`1,`2 is `1 + `2 − `.

Proof. We prove this by induction on `1 + `2. If `1 + `2 = ` then the statement is true

with the polynomials q`,j(`−k)/2,(`+k)/2 = δj,k. Suppose `1 + `2 > ` and that the statement
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holds for (`′1, `
′
2) with ` ≤ `′1 + `′2 < `1 + `2. We can write |a(`1−1/2,`2−1/2)

(`1,`2),` |2Φ`1,`2 as

ϕ · Φ`1− 1
2 ,`2−

1
2
− |a`1−

1
2 ,`2−

1
2

(`1−1,`2),` |
2Φ`1−1,`2

− |a`1−
1
2 `2−

1
2

(`1,`2−1),`|
2Φ`1,`2−1 − |a

`1− 1
2 `2−

1
2

(`1−1,`2−1),`|
2Φ`1−1,`2−1

by means of Proposition 4.3.1. The result follows from the induction hypothesis and

a
(`1−1/2,`2−1/2)
(`1,`2),` 6= 0.

Remark 4.3.3. The fact that these functions q`,j`1,`2 are polynomials in cos(t) has also

been shown by Koornwinder in Theorem 3.4 of [Koo85] using different methods.

4.4 Restricted Spherical Functions

For the restricted spherical functions Φ``1,`2 : A∗ → End(H`) we define a pairing.

〈Φ,Ψ〉A∗ =
2

π
tr

(∫
A∗

Φ(a) (Ψ(a))
∗ |D∗(a)|da

)
(4.11)

where D∗(at) = sin2(t), see [Hel62]. In [Koo85, Prop. 2.2] it is shown that on A∗ the

following orthogonality relations hold for the restricted spherical functions.

Proposition 4.4.1. The spherical functions on U of type `, when restricted to A∗, are

orthogonal with respect to (4.11). In fact, we have

〈Φ``1,`2 ,Φ
`
`′1,`
′
2
〉A∗ =

(2`+ 1)2

(2`1 + 1)(2`2 + 1)
δ`1,`′1δ`2,`′2 (4.12)

This is a direct consequence of the Schur orthogonality relations and the integral

formula corresponding to the U = K∗A∗K∗ decomposition.

The parametrization of the U -types that contain a fixed K-type ` is given by (4.3).

For later purposes we reparametrize (4.3) by the function ζ : N×{−`, . . . , `} → 1
2N×

1
2N

given by

ζ(d, k) =

(
d+ `+ k

2
,
d+ `− k

2

)
.

This new parametrization is pictured in Figure 4.3. For each degree d we have 2` + 1

spherical functions. By Proposition 4.2.4 the restricted spherical functions take their

values in the vector space EndM (H`) which is 2`+ 1-dimensional. The appearance of the

spherical functions in 2`+ 1-tuples gives rise to the following definition.

Definition 4.4.2. Fix a K-type ` ∈ 1
2N and a degree d ∈ N. The function Φ`d : A∗ →

End(H`) is defined by associating to each point a ∈ A∗ a matrix Φ`d(a) whose j-th row is

the vector Φ`ζ(d,j)(a). More precisely, we have(
Φ`d(a)

)
p,q

=
(

Φ`ζ(d,p)(a)
)
q,q

for all a ∈ A∗. (4.13)

The function Φ`d is called the full spherical function of type ` and degree d.
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`1

`2

k

d

Φ
3
2

3, 32

Figure 4.3: Another parametrization of the pairs (`1, `2) containing `; the steps of the

ladder are paramatrized by d, the position on a given step by k.

Let A′∗ be the open subset {at ∈ A∗ : t 6∈ πZ}. This is the regular part of A∗. The

following Proposition is shown in [Koo85, Prop. 3.2]. In Proposition 4.5.7 we prove this

result independently for general points in A∗ in a different way.

Proposition 4.4.3. The full spherical function Φ`0 of type ` and degree 0 has the property

that its restriction to A′∗ is invertible.

Definition 4.4.4. Fix a K-type ` ∈ 1
2N and a degree d ∈ N. Define the function

Q`d : A′∗ → End(H`) : a 7→ Φ`d(a)(Φ`0(a))−1. (4.14)

The j-th row is denoted by Q`ζ(d,j)(a). Q`d is called the full spherical polynomial of type `

and degree d.

The functions Q`d and Q`ζ(d,k) are polynomials because
(
Q`d
)
p,q

= q`,qζ(d,p)(ϕ). The

degree of each row of Q`d is d which justifies the name we have given these functions in

Definition 4.4.4.

We shall show that the functions Φ`d and Q`d satisfy orthogonality relations that come

from (4.11). We start with the Φ`d. This function encodes 2` + 1 restricted spherical

functions and to capture the orthogonality relations of (4.11) we need a matrix valued

inner product.

Definition 4.4.5. Let Φ,Ψ be End(H`)-valued functions on A∗. Define

〈Φ,Ψ〉 :=
2

π

∫
A∗

Φ(a) (Ψ(a))
∗ |D∗(a)|da. (4.15)

Proposition 4.4.6. The pairing defined by (4.15) is a matrix valued inner product. The

functions Φ`d with d ∈ N form an orthogonal family with respect to this inner product.
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Proof.The pairing satisfies all the linearity conditions of a matrix valued inner product.

Moreover we have Φ(a) (Φ(a))
∗ |D∗(a)| ≥ 0 for all a ∈ A∗. If 〈Φ,Φ〉 = 0 then ΦΦ∗ = 0

from which it follows that Φ = 0. Hence the pairing is an inner product. The orthogonality

follows from the formula

(〈Φd,Ψd′〉)p,q = 〈Φ`ζ(d,p),Φ
`
ζ(d′,q)〉A∗ = δd,d′δp,q

(2`+ 1)2

(d+ `+ p+ 1)(d+ `− p+ 1)

and Proposition 4.4.1.

Define

V `(a) = Φ`0(a)
(
Φ`0(a)

)∗ |D∗(a)|, (4.16)

with D∗(at) = sin2 t. This is a weight matrix and we have the following corollary.

Corollary 4.4.7. Let Q and R be End(H`)-valued functions on A∗ and define the matrix

valued paring with respect to the weight V ` by

〈Q,R〉V ` =

∫
A∗

Q(a)V `(a) (R(a))
∗
da. (4.17)

This pairing is a matrix valued inner product and the functions Q`d form an orthogonal

family for this inner product.

The functions Φ`d and Q`d being defined, we can now transfer the recurrence relations

of Proposition 4.3.1 to these functions. Let Ei,j be the elementary matrix with zeros

everywhere except for the (i, j)-th spot, where it has a one. If we write Ei,j with |i| > `

or |j| > ` then we mean the zero matrix.

Theorem 4.4.8. Fix ` ∈ 1
2N and define the matrices Ad, Bd and Cd by

Ad =
∑̀
k=−`

|aζ(d,k)
ζ(d+1,k),`|

2Ek,k,

Bd =
∑̀
k=−`

(∣∣∣aζ(d,k),
ζ(d,k+1),`

∣∣∣2Ek,k+1 +
∣∣∣aζ(d,k)
ζ(d,k−1),`

∣∣∣2Ek,k−1

)
,

Cd =
∑̀
k=−`

|aζ(d,k)
ζ(d−1,k),`|

2Ek,k.

(4.18)

For a ∈ A∗ we have

ϕ(a) · Φ`d(a) = AdΦ
`
d+1(a) +BdΦ

`
d(a) + CdΦ

`
d−1(a) (4.19)

and similarly

ϕ(a) ·Q`d(a) = AdQ
`
d+1(a) +BdQ

`
d(a) + CdQ

`
d−1(a). (4.20)

Note Ad ∈ GL2`+1(R).
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Proof. It is clear that (4.20) follows from (4.19) by multiplying on the right with the

inverse of Φ`0. To prove (4.19) we look at the rows. Let p ∈ {−`,−` + 1, . . . , `} and

multiply (4.19) on the left by Ep,p to pick out the p-th row. The left hand side gives

ϕ(a)Ep,pΦ
`
d(a) while the right hand side gives

|aζ(d,p)ζ(d+1,p),`|
2Ep,pΦ

`
d+1(a) + |aζ(d,p)ζ(d,p+1),`|

2Ep,p+1Φ`d(a)+

|aζ(d,p)ζ(d,p−1),`|
2Ep,p−1Φ`d(a) + |aζ(d,p)ζ(d−1,p),`|

2Ep,pΦ
`
d−1(a).

Now observe that these are equal by Proposition 4.3.1 and (4.13). This proves the result

since p is arbitrary.

Finally we discuss some symmetries of the full spherical functions. The Cartan involu-

tion corresponding to the pair (U,K∗) is the map θ(k1, k2) = (k2, k1). The representation

T `1,`2 and T `2,`1 ◦ θ are equivalent via the map ψ`1j1 ⊗ ψ
`2
j2
7→ ψ`2j2 ⊗ ψ

`1
j1

. It follows that

θ∗Φ``1,`2 = Φ``2,`1 . This has the following effect on the full spherical functions Φ`d from

Definition 4.4.2:

θ∗Φ`d = JΦ`d, (4.21)

where J ∈ End(H`) is given by ψ`j 7→ ψ`−j . The Weyl group W(U,K∗) = {1, s} consists

of the identity and the reflection s in 0 ∈ a∗. The group W(U,K∗) acts on A∗ and on the

functions on A∗ by pull-back.

Lemma 4.4.9. We have s∗Φ``1,`2(a) = JΦ``1,`2(a) for all a ∈ A∗. The effect on the full

spherical functions of type ` is

s∗Φ`d = Φ`dJ. (4.22)

Proof. This follows from (4.5) and the fact that

C`1,`2,`j1,j2,j
= (−1)`1+`2−`C`1,`2,`−j1,−j2,−j .

Proposition 4.4.10. The functions Φ`d commute with J .

Proof. The action of θ and sα on A∗ is just taking the inverse. Formulas (4.21) and

(4.22) now yield the result.

4.5 The Weight Matrix

We study the weight function V ` : A∗ → End(H`) defined in (4.16), in particular its

symmetries and explicit expressions for its matrix elements. First note that V ` is real

valued. Indeed, V ` commutes with J ,

JV `(a)J = JΦ`0(a)J(JΦ`0(a)J)∗|D∗(a)| = Φ`0(a)Φ`0(a)∗|D∗(a)| = V `(a), (4.23)
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since J∗ = J and J2 = 1. This also shows that V is real valued,

V `(at) = V `(a−t) = JV `(at)J = V `(at). (4.24)

Lemma 4.5.1. The weight has the symmetries V `p,q = V `q,p = V `−p,−q = V `−q,−p for

p, q ∈ {−`, . . . , `}.

Proof. The first equallity follows since V `(a) is self adjoint by (4.16) and real valued by

(4.24). Since V `(a) commutes with J we see that V `p,q = V `−p,−q. Set

v`(at) = Φ`0(a)Φ`0(a)∗ (4.25)

so that V `(at) = v`(at)|D∗(at)| = v`(at) sin2 t. Note that for −` ≤ p, q ≤ ` the matrix

coefficient

v`(at)p,q = tr
(

Φ``+p
2 , `−p2

(at)
(

Φ``+q
2 , `−q2

(at)
)∗)

(4.26)

is a linear combination of zonal spherical functions by the following lemma.

Lemma 4.5.2. The function U → C : x 7→ tr
(

Φ``1,`2(x)
(
Φ`m1,m2

(x)
)∗)

is a bi-K-

invariant function and

tr
(

Φ``1,`2(at)
(
Φ`m1,m2

(at)
)∗)

=

min(`1+m1,`2+m2)∑
n=max(|`1−m1|,|`2−m2|)

cnU2n(cos t) (4.27)

if `1 +m1 − (`2 +m2) ∈ Z and tr
(

Φ``1,`2(at)
(
Φ`m1,m2

(at)
)∗)

= 0 otherwise.

Proof. It follows from Property (2) that the function is bi-K-invariant, so it is natural

to expand the function in terms of the zonal spherical functions U2n corresponding to the

spherical representations Tn,n, n ∈ 1
2N. Since T `1,`2 is equivalent to its contragredient

representation, we see that the only spherical functions occurring in the expansion of

tr
(

Φ``1,`2(x)
(
Φ`m1,m2

(x)
)∗)

are the ones for which (n, n) ∈ A = {(n1, n2) ∈ 1
2N ×

1
2N :

`i+mi−ni ∈ Z, |`1−m1| ≤ n1 ≤ `1+m1, |`2−m2| ≤ n2 ≤ `2+m2} since the right hand side

corresponds to the tensorproduct decomposition T `1,`2⊗Tm1,m2 =
⊕

(n1,n2)∈A T
n1,n2 , see

Proposition 4.3.1 and Figure 4.4.

Given d, e ∈ N and −` ≤ p, q ≤ ` we write ζ(d, p) = (`1, `2), ζ(e, q) = (m1,m2). Then

we have(
Φ`d(at)

(
Φ`e
)

(at)
∗)
p,q

= tr
(

Φ`ζ(d,p)(at)
(

Φ`ζ(e,q)(at)
)∗)

=
∑

j,j1,j2,i1,i2

(
C`1,`2,`j1,j2,j

Cm1,m2,`
i1,i2,j

)2

ei(j2−j1+i1−i2)t, (4.28)

where the sum is taken over

|j| ≤ `, |j1| ≤ `1, |j2| ≤ `2, |i1| ≤ m1, |i2| ≤ m2,
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`1

`2

1

2

3
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6
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8

1 2 3 4 5 6 7 8

T 2, 92

T 4, 32

Figure 4.4: Plot of the decomposition of the tensor product T 4, 34 ⊗ T 2, 92 into irreducible

representations. The big nodes indicate the irreducible summands, the big black nodes

the ones that contain the trivial K∗-type upon restricting.

satisfying j1 + j2 = i1 + i2 = j. This equals(
Φ`d(at)

(
Φ`e(at)

)∗)
p,q

=
∑

|s|≤min(`1+m1,`2+m2)

d``1,`2,m1,m2,se
ist (4.29)

where

d``1,`2,m1,m2,s =
∑

j,j1,j2,i1,i2

(
C`1,`2,`j1,j2,j

Cm1,m2,`
i1,i2,j

)2

, (4.30)

where the sum is taken over

|j| ≤ `, |j1| ≤ `1, |j2| ≤ `2, |i1| ≤ m1, |i2| ≤ m2,

satisfying j1 + j2 = i1 + i2 = j and j2 − j1 + i1 − i2 = s. Since Un(cos t) = e−int +

e−i(n−2)t + · · ·+ eint, it follows from (4.29) and Lemma 4.5.2 that we have the following

summation result.

Corollary 4.5.3. Let |s| ≤ max(|`1 −m1|, |`2 −m2|). Then d``1,`2,m1,m2,s
is independent

of s.

Note that the sum in (4.30) is a double sum of four Clebsch-Gordan coefficients, which

in general are 3F2-series [VK93].

We now turn to the case `1 = `+p
2 , `2 = `−p

2 ,m1 = `+q
2 ,m2 = `−q

2 . Because of Lemma

4.5.1 the next theorem gives an explicit expression for the weight matrix.

Theorem 4.5.4. Let q − p ≤ 0 and q + p ≤ 0. For n = 0, . . . , `+ q there are coefficients

c`n(p, q) ∈ Q>0 such that

(
V `(at)

)
p,q

= sin2(t)

`+q∑
n=0

c`n(p, q)U2`+p+q−2n(cos(t)) (4.31)
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where the coefficients are given by

c`n(p, q) =
2`+ 1

`+ p+ 1

(`− q)!(`+ q)!

(2`)!

(p− `)`+q−n
(`+ p+ 2)`+q−n

(−1)`+q−n
(2`+ 2− n)n

n!
. (4.32)

By cn+p+q(p, q) = cn(−q,−p) the expansion (4.31) with (4.32) remains valid for q ≤ p.
Proof. Since min(`1 + m1, `2 + m2) = ` + p+q

2 and max(|`1 −m1|, |`2 −m2|) = p−q
2 in

this case we find the expansion of the form as stated in (4.31). It remains to calculate

the coefficients. Specializing (4.29) and writing(
C

(`+m)/2,(`−m)/2,`
j1,j2,j

)2

= δj,j1+j2

(
`+m

j1+(`+m)/2

)(
`−m

j2+(`−m)/2

)(
2`
`−j
) . (4.33)

we find

v`pq(cos t) =

`+p
2∑

j=− `+p2

`+q
2∑

i=− `+q2

F `ij(p, q) exp(i(−2(i+ j)t)) =

`+ p+q
2∑

r=−(`+ p+q
2 )

 min( `+q2 ,r+ `+p
2 )∑

i=max(− `+q2 ,r− `+p2 )

F `i,r−i(p, q)

 e−2irt, (4.34)

with

F `ij(p, q) =

(
`+ p

j + (`+ p)/2

)(
`+ q

i+ (`+ q)/2

)
×

min(−j+ `−p
2 ,i+ `−q

2 )∑
k=max(−j− `−p2 ,i− `−q2 )

(
`−p

−k−j+(`−p)/2
)(

`−q
k−i+(`−q)/2

)
(

2`
`−k
)2 . (4.35)

From this we can obtain the explicit expression of v`(at)p,q in Chebyshev polynomials.

The details are presented in Appendix A.

Proposition 4.5.5. The commutant

{V `(a) : a ∈ A∗}′ = {Y ∈ End(H`) : V `(a)Y = Y V `(a) for all a ∈ A∗}
{v`(a) : a ∈ A∗}′,

is spanned by the matrices I and J .

Proof. By Proposition 4.4.10 we have J ∈ {V `(a) : a ∈ A∗}′. It suffices to show that

the commutant contains no other elements than those spanned by I and J .

Let v`(at) =
∑2`
n=0 Un(cos t)An, with An ∈ Mat2`+1(C) by Theorem 4.5.4. Then for

B in the commutant it is necessary and sufficient that AnB = BAn for all n. First, put

C = A2`. Then by Theorem 4.5.4 Cp,q =
(

2`
`+p

)−1
δp,−q. The equation BC = CB leads to

Bp,q = (C−1BC)p,q =
Cq,−q
Cp,−p

B−p,−q =
Cq,−qC−q,q
Cp,−pC−p,p

Bp,q
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by iteration. Since Cq,−q = Cp,−p if and only if p = q or p = −q we find Bp,q = 0 for

p 6= q or p 6= −q. Moreover, Bp,p = B−p,−p and Bp,−p = B−p,p.

Secondly, put C ′ = A2`−1. Then, by Theorem 4.5.4, we have

C ′p,q = δ|p+q|,1(2`+ 1)

(
2`

`− p

)−1(
2`

`+ q

)−1

,

so the non-zero entries are different up to the symmetries C ′p,q = C ′−p,−q = C ′q,p = C ′−q,−p.

Now BC ′ = C ′B implies by the previous result Bp,pC
′
p,q + Bp,−pC

′
−p,q = C ′p,qBq,q +

C ′p,−qBq,q. Take q = 1 − p to find Bp,p = B1−p,1−p = Bp−1,p−1 unless p = 0 or p = 1,

and take q = p − 1 to find Bp,−p = B1−p,p−1 = Bp−1,1−p unless p = 0 or p = 1. In

particular, for ` ∈ 1
2 + N this proves the result. In case ` ∈ N we obtain one more

equation: B0,0 = B1,1 +B1,−1. This shows that B is in the span of I and J .

The matrix J has eigenvalues ±1 and two eigenspaces H`
− and H`

+. The dimensions

are b`+ 1/2c and d`+ 1/2e. A choice of (ordered) bases of the eigenspaces is given by

{ψ`j − ψ`−j : −` ≤ j < 0, `− j ∈ Z} and {ψ`j + ψ`−j : 0 ≤ j ≤ `, `− j ∈ Z}. (4.36)

Let Y` be the matrix whose columns are the normalized basis vectors of (4.36). Conju-

gating V ` with Y` yields a matrix with two blocks, one block of size d`+ 1/2e× d`+ 1/2e
and one of size b`+ 1/2c × b`+ 1/2c.

Corollary 4.5.6. The family (Q`d)d≥0 and the weight V ` are conjugate to a family and

a weight in block form. More precisely

Y −1
` Q`d(at)Y` =

(
Q`d,−(at) 0

0 Q`d,+(at)

)
, Y −1

` V `(at)Y` =

(
V `−(at) 0

0 V `+(at)

)
.

The families (Q`d,±)d≥0 are orthogonal with respect to the weight V `±. Moreover, there is

no further reduction possible.

Proof. The functions Q`d can be conjugated by Y`. Since the Q`d commute with J we

see that the Y −1
` Q`dY` has the same block structure as Y −1

` V `Y`. The blocks of Y −1
` Q`dY`

are orthogonal with respect to the corresponding block of Y −1
` V `Y`. The polynomials

Q`d,− take their values in the (−1)-eigenspace H`
− of J , the polynomials Q`d,+ in the

(+1)-eigenspace H`
+ of J . The dimensions are b`+ 1/2c and d`+ 1/2e respectively.

A further reduction would require an element in the commutant {V `(a) : a ∈ A∗}′
not in the span of I and J . This is not possible by Proposition 4.5.5.

The entries of the weight v` with the Chebyshev polynomials of the highest de-

gree 2` occur only on the antidiagonal by Theorem 4.5.4. This shows that the deter-

minant of v`(at) is a polynomial in cos t of degree 2`(2` + 1) with leading coefficient

(−1)`(2`+1)
∏`
p=−` c0(p,−p)22` 6= 0. Hence v` is invertible on A∗ away from the zeros

of its determinant, of which there are only finitely many. We have proved the following

proposition which should be compared to Proposition 4.4.3.
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Proposition 4.5.7. The full spherical function Φ`0 is invertible on A∗ except for a finite

set.

In particular, Q`d is well-defined in Definition 4.4.2, except for a finite set. Since Q`d is

polynomial, it is well-defined on A.

Mathematica calculations lead to the following conjecture.

Conjecture 4.5.8. det(v`(at)) = (1− cos2 t)`(2`+1)
∏`
p=−`(2

2`c`0(p,−p)).

Conjecture 4.5.8 is supported by Koornwinder [Koo85, Prop. 3.2], see Proposition

4.4.3. Conjecture 4.5.8 has been verified for ` ≤ 16.

4.6 The matrix valued orthogonal polynomials associ-

ated to (SU(2)× SU(2), diag)

The main goal of Sections 4.3, 4.4 and 4.5 was to study the properties of the matrix valued

spherical functions of any K-type associated to the pair (SU(2) × SU(2),diag). These

functions, introduced in Definition 4.2.2, are the building blocks of the full spherical

functions described in Definition 4.4.2. We have exploited the fact that the spherical

functions diagonalize when restricted to the subgroup A. This allows us to identify each

spherical function with a row vector and arrange them in a square matrix.

The goal of this section is to translate the properties of the full spherical functions

obtained in the previous sections at the group level to the corresponding family of matrix

valued orthogonal polynomials.

4.6.1 Matrix valued orthogonal polynomials

Let W be a complex N ×N matrix valued integrable function on the interval (a, b) such

that W is positive definite almost everywhere and with finite moments of all orders. Let

MatN (C) be the algebra of all N ×N complex matrices. The algebra over C of all poly-

nomials in the indeterminate x with coefficients in MatN (C) is denoted by MatN (C)[x].

Let 〈·, ·〉 be the following Hermitian sesquilinear form in the linear space MatN (C)[x]:

〈P,Q〉 =

∫ b

a

P (x)W (x)Q(x)∗dx. (4.37)

The following properties are satisfied:

• 〈aP + bQ,R〉 = a〈P,R〉+ b〈Q,R〉, for all P,Q,R ∈ MatN (C)[x], a, b ∈ C,

• 〈TP,Q〉 = T 〈P,Q〉, for all P,Q ∈ MatN (C)[x], T ∈ MatN (C),

• 〈P,Q〉∗ = 〈Q,P 〉, for all P,Q ∈ MatN (C)[x],

• 〈P, P 〉 ≥ 0 for all P ∈ MatN (C)[x]. Moreover if 〈P, P 〉 = 0 then P = 0.
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Given a weight matrix W one constructs a sequence of matrix valued orthogonal

polynomials, that is a sequence {Rn}n≥0, where Rn is a polynomial of degree n with

nonsingular leading coefficient and 〈Rn, Rm〉 = 0 if n 6= m.

It is worth noting that there exists a unique sequence of monic orthogonal polynomials

{Pn}n≥0 in MatN (C)[x]. Any other sequence of {Rn}n≥0 of orthogonal polynomials in

MatN (C)[x] is of the form Rn(x) = AnPn(x) for some An ∈ GLN (C).

By following a well-known argument, see for instance [Kre71], [Kre49], one shows that

the monic orthogonal polynomials {Pn}n≥0 satisfy a three-term recurrence relation

xPn(x) = Pn+1(x) +Bn(x)Pn(x) + CnPn−1(x), n ≥ 0,

where Q−1 = 0 and Bn, Cn are matrices depending on n and not on x.

There is a notion of similarity between two weight matrices that was pointed out in

[DG05a]. The weights W and W̃ are said to be similar if there exists a nonsingular matrix

M , which does not depend on x, such that W̃ (x) = MW (x)M∗ for all x ∈ (a, b).

Proposition 4.6.1. Let {Rn,1}n≥0 be a sequence of orthogonal polynomials with respect

to W and M ∈ GLN (C). The sequence {Rn,2(x) = Rn,1(x)M−1}n≥0 is orthogonal

with respect to W̃ = MWM∗. Moreover, if {Pn,1} is the sequence of monic orthogonal

polynomials orthogonal with respect to W then {Pn,2(x) = MPn,1(x)M−1} is the sequence

of monic orthogonal polynomials with respect to W̃ .

Proof. It follows directly by observing that∫
Rn,2(x)W̃ (x)Rm,2(x)∗dx =

∫
Rn,1(x)M−1W̃ (x)(M−1)∗Rm,1(x)∗dx

=

∫
Rn,1(x)W (x)Rm,1(x)∗dx = 0, if n 6= m.

The second statement follows by looking at the leading coefficient of Pn,2 and the unicity

of the sequence of monic orthogonal polynomials with respect to W̃ . A weight

matrix W reduces to a smaller size if there exists a matrix M such that

W (x) = M

(
W1(x) 0

0 W2(x)

)
M∗, for all x ∈ (a, b),

where W1 and W2 are matrix weights of smaller size. In this case the monic polynomials

{Pn}n≥0 with respect to the weight W are given by

Pn(x) = M

(
Pn,1(x) 0

0 Pn,2(x)

)
M−1, n ≥ 0,

where {Pn,1}n≥0 and {Pn,2}n≥0 are the monic orthogonal polynomials with respect to

W1 and W2 respectively.
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4.6.2 Polynomials associated to SU(2)× SU(2)

In the rest of the paper we will be concerned with the properties of the matrix orthogonal

polynomials Qd. For this purpose we find convenient to introduce a new labeling in

the rows and columns of the weight V . More precisely for any ` ∈ 1
2Z let W be the

(2`+ 1)× (2`+ 1) matrix given by√
1− x2W (x)n,m = V (aarccos x)−`+n,−`+m, n,m ∈ {0, 1, . . . , 2`}. (4.38)

It then follows from Theorem 4.5.4 that

W (x)n,m = (1− x)
1
2 (1 + x)

1
2

(2`+ 1)

n+ 1

(2`−m)!m!

(2`)!
×

m∑
t=0

(−1)m−t
(n− 2`)m−t
(n+ 2)m−t

(2`+ 2− t)t
t!

Un+m−2t(x), (4.39)

if n ≤ m and W (x)n,m = W (x)m,n otherwise.

We also consider the sequence of monic polynomials {Pd}d≥0 given by

Pd(x)n,m = Υ−1
d Qd(aarccos x)−`+n,−`+m, n,m ∈ {0, 1, . . . , 2`}, (4.40)

where Υd is the leading coefficient of the polynomial Qd(aarccos x), which is non-singular

by Theorem 4.4.8. Now we can rewrite the results on Section 4.5 in terms of the weight

W and the polynomials Pd.

Corollary 4.6.2. The sequence of matrix polynomials {Pd(x)}d>0 is orthogonal with

respect to the matrix valued inner product

〈P,Q〉 =

∫ 1

−1

P (x)W (x)Q(x)∗dx.

Theorem 4.4.8 states that there is a three term recurrence relation defining the matrix

polynomials Qd. These polynomials are functions on the group A. We can use (4.40) to

derive a three term recurrence relation for the polynomials Pd.

Corollary 4.6.3. For any ` ∈ 1
2N the matrix valued orthogonal polynomials Pd, are

defined by the following three term recurrence relation

xPd(x) = Pd+1(x) + Υ−1
d BdΥdPd(x) + Υ−1

d CdΥd−1Pd−1(x), (4.41)

where the matrices Ad, Bd and Cd are given in Theorem 4.4.8 and taking into account

the relabeling as in the beginning of this subsection.

4.6.3 Symmetries of the weight and the matrix polynomials

In this section we shall use the symmetries satisfied by the full spherical functions to

derive symmetry properties for the matrix weight W and the polynomials Pd.
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For any n ∈ N, let In be the n×n identity matrix and let Jn and Fn be the following

n× n matrices

Jn =

n−1∑
i=0

Ei,n−1−i, Fn =

n−1∑
i=0

(−1)iEi,i. (4.42)

For any n × n matrix X the transpose Xt is defined by (Xt)ij = Xji (reflection in the

diagonal) and we define the reflection in the antidiagonal by (Xd)ij = Xn−j,n−i. Note

that taking transpose and taking antidiagonal transpose commute, and that

(Xt)d = (Xd)t = Xdt = JnXJn.

Moreover, (XZ)d = ZdXd for arbitrary matrices X and Z. We also need to consider the

(2`+ 1)× (2`+ 1) matrix Y defined by

Y =
1√
2

(
I`+ 1

2
J`+ 1

2

−J`+ 1
2

I`+ 1
2

)
, if ` =

2n+ 1

2
, n ∈ N,

Y =
1√
2

 I` 0 J`
0

√
2 0

−J` 0 I`

 , if ` ∈ N.

(4.43)

Proposition 4.6.4. The weight matrix W (x) satisfies the following symmetries

(i) W (x)t = W (x) and W (x)d = W (x) for all x ∈ [−1, 1]. Thus

J2`+1W (x)J2`+1 = W (x),

for all x ∈ [−1, 1].

(ii) W (−x) = F2`+1W (x)F2`+1 for all x ∈ [−1, 1].

Here F2`+1 is the (2`+ 1)× (2`+ 1) matrix given in (4.42).

Proof. The symmetry properties ofW in (i) follow directly from Lemma 4.5.1. The proof

of (ii) follows from (4.39) by using the fact that Un(−x) = (−1)nUn(x) for any Chebyshev

polynomial of the second kind Un(x), so that W (−x)n,m = (−1)n+mWn,m(x).

The weight matrix W can be conjugated into a 2 × 2 block diagonal matrix. In

Corollary 4.5.6 we have pointed out this phenomenon for the weight V . The following

theorem translates Corollary 4.5.6 to the weight matrix W .

Theorem 4.6.5. For any ` ∈ 1
2N, the matrix W satisfies

W̃ (x) = YW (x)Y t =

(
W1(x) 0

0 W2(x)

)
,

where Y is the matrix given by (4.43). Moreover if {Pd,1}d≥0 (resp. {Pd,2}d≥0) is a

sequence of monic matrix orthogonal polynomials with respect to the weight W1(x) (resp.

W2(x)), then

P̃d(x) =

(
Pd,1(x) 0

0 Pd,2

)
, d ≥ 0, (4.44)
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is a sequence of matrix orthogonal polynomials with respect to W̃ . There is no further

reduction.

The case ` = (2n+ 1)/2, n ∈ N, leads to weights matrices W of even size. In this case

W splits into two blocks of size `+ 1
2 . In Corollary 4.6.6 we prove that these two blocks

are equivalent, hence the corresponding matrix orthogonal polynomials are equivalent.

It follows from Proposition 4.6.4 (1) that there exist (n+ 1)× (n+ 1) matrices A(x)

and B(x) such that A(x)t = A(x) and

W (x) =

(
A(x) B(x)

B(x)dt A(x)dt

)
, (4.45)

for all x ∈ [−1, 1].

Corollary 4.6.6. Let ` = (2n+ 1)/2, n ∈ Z. Then

YW (x)Y t =

(
W1(x) 0

0 W2(x)

)
,

where

W1(x) = A(x) +B(x)Jn+1, W2(x) = Jn+1Fn+1W1(−x)Fn+1Jn+1.

Here A(x) and B(x) are the matrices described in (4.39) and (4.45). Moreover, if

{Pd,1}d≥0 is the sequence of monic orthogonal polynomials with respect to W1(x) then

Pd,2(x) = (−1)dJn+1Fn+1Pd,1(−x)Fn+1Jn+1, (4.46)

is the sequence of monic orthogonal polynomials with respect to W2(x).

Proof. In this proof we will drop the subindex in the matrices Jn+1, Fn+1 and we will

use J and F instead. It is a straightforward calculation that for (n+1)× (n+1)-matrices

A, B C and D the following holds

Y

(
A B

C D

)
Y t =

1

2

(
A+Ddt + J(C +Bdt) B − Cdt + (Ddt −A)J

J(Ddt −A) + C −Bdt D +Adt − (C +Bdt)J

)
In particular for the weight function W we get

YW (x)Y t =

Y

(
A(x) B(x)

B(x)dt A(x)dt

)
Y t =

(
A(x) +B(x)J 0

0 J(A(x)−B(x)J)J

)
This proves that

W1(x) = A(x) +B(x)J, W2(x) = J(A(x)−B(x)J)J.

It follows from Proposition 4.6.4 (2) that A(−x) = FA(x)F and B(−x) = FB(x)F .

Therefore we have

JFW1(−x)FJ = JFA(−x)FJ + FJB(−x)FJ = JA(x)J − JB(x) = W2(x).

This proves the first assertion of the theorem.

The last statement follows from Proposition 4.6.1
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4.7 Matrix Valued Differential Operators

In the study of matrix valued orthogonal polynomials an important ingredient is the

study of differential operators which have these matrix valued orthogonal polynomials

as eigenfunctions. In this section we discuss some of the differential operators that have

the matrix valued orthogonal polynomials of the previous section as eigenfunctions. The

calculations rest on the explicit form of the weight function (4.39).

4.7.1 Symmetric differential operators

We consider right hand side differential operators

D =

s∑
i=0

∂iFi(x), ∂ =
d

dx
, (4.47)

in such a way that the action of D on the polynomial P (x) is

PD =

s∑
i=0

∂i(P )(x)Fi(x).

In [GT07, Propositions 2.6 and 2.7] one can find a proof of the following proposition.

Proposition 4.7.1. Let W = W (x) be a weight matrix of size N and let {Pn}n≥0 be

the sequence of monic orthogonal polynomials in MatN (C)[x]. If D is a right hand side

ordinary differential operator as in (4.47) of order s such that

PnD = ΛnPn, for all n ≥ 0,

with Λn ∈ A, then

Fi = Fi(x) =

i∑
j=0

xjF ij , F ij ∈ MatN (C),

is a polynomial of degree less than or equal to i. Moreover D is determined by the sequence

{Λn}n≥0 and

Λn =

s∑
i=0

[n]iF
i
i (D), for all n ≥ 0,

where [n]i = n(n− 1) · · · (n− i+ 1), [n]0 = 1.

We consider the following algebra of right hand side differential operators with coeffi-

cients in MatN (C)[x].

D = {D =
∑
i

∂iFi : Fi ∈ MatN (C)[x], degFi ≤ i}.

Given any sequence of matrix valued orthogonal polynomials {Rn}n≥0 with respect to

W , we define

D(W ) = {D ∈ D : RnD = Γn(D)Rn, Γn(D) ∈ MatN (C), for all n ≥ 0}.
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We observe that the definition of D(W ) does not depend on the sequence of orthogonal

polynomials {Rn}n≥0.

Remark 4.7.2. The mapping D 7→ Γn(D) is a representation of D(W ) in CN for each

n ≥ 0. Moreover the family of representations {Γn}n≥0 separates the points of D(W ).

Note that D(W ) is an algebra.

Definition 4.7.3. A differential operator D ∈ D is said to be symmetric if 〈PD,Q〉 =

〈P,QD〉 for all P,Q ∈ MatN (C)[x].

Proposition 4.7.4 ([GT07]). If D ∈ D is symmetric then D ∈ D(W ).

The main theorem in [GT07] says that for any D ∈ D there exists a unique differ-

ential operator D∗ ∈ D(W ), the adjoint of D, such that 〈PD,Q〉 = 〈P,QD∗〉 for all

P,Q ∈ MatN (C)[x]. The map D 7→ D∗ is a ∗-operation in the algebra D(W ) . Moreover

we have D(W ) = S(W ) ⊕ iS(W ), where S(W ) denotes the set of all symmetric opera-

tors. Therefore it suffices, in order to determine all the algebra D(W ), to determine the

symmetric operators S(W ).

The condition of symmetry in Definition 4.7.3 can be translated into a set of differential

equations involving the weight W and the coefficients of the differential operator D. For

differential operators of order 2 this was proven in [DG04, Theorem 3.1].

Theorem 4.7.5. Let W (x) be a weight matrix supported on (a, b). Let D ∈ D be the

differential operator

D = ∂2F2(x) + ∂F1(x) + F 0
0 ,

Then D is symmetric with respect to W if and only if

F2W = WF2, (4.48)

2(F2W )′ = WF ∗1 + F1W, (4.49)

(F2W )′′ − (F1W )′ + F0W = WF ∗0 , (4.50)

with the boundary conditions

lim
x→a,b

F2(x)W (x) = 0, lim
x→a,b

(F2(x)W (x))′ − F1(x)W (x) = 0. (4.51)

4.7.2 Matrix valued differential operators for the polynomials Pn

As in the previous section, we will denote by {Pn}n≥0 the sequence of monic orthogonal

polynomials with respect to the weight matrix W . We can write the weight as W (x) =

ρ(x)Z(x) where ρ(x) = (1−x)
1
2 (1 +x)

1
2 and Z(x) is the (2`+ 1)× (2`+ 1) matrix whose

(n,m)-entry is given by

Z(x)n,m =
(2`+ 1)

n+ 1

(2`−m)!m!

(2`)!

m∑
t=0

(−1)m−t
(n− 2`)m−t
(n+ 2)m−t

(2`+ 2− t)t
t!

Un+m−2t. (4.52)

=

m∑
t=0

c(n,m, t)Un+m−2t(x),
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if n ≤ m and Z(x)n,m = Z(x)m,n otherwise.

Once we have an explicit expression for the weight matrix W we can use the symmetry

equations in Theorem 4.7.5 to find symmetric differential operators. If we start with a

generic second order differential operator

D =

2∑
i=0

∂iFi(x), Fi(x) =

i∑
j=0

xjF ij , F ij ∈ MatN (C),

then the equations (4.48), (4.49) and (4.50) lead to linear equations in the coefficients F ij .

It is easy to solve these equations for small values of N using any software tool such as

Maple. We have used the general expressions for small values of N to make an ansatz for

the expressions of a first order and a second order differential operator. Then we prove

that these operators are symmetric for all N by showing that they satisfy the conditions

in Theorem 4.7.5.

In the following theorem we show the matrix polynomials Pn satisfy a matrix valued

first order differential equation. This phenomenon, which does not appear in the scalar,

case has been recently studied in the literature (see for instance [CG05], [Cas10]).

Theorem 4.7.6. Let E be the first order matrix valued differential operator

E =

(
d

dx

)
A1(x) +A0,

where the matrices A1(x) and A0 are given by

A1(x) =

2∑̀
i=0

(
2`− i

2`

)
Ei,i+1 −

2∑̀
i=0

x

(
`− i
`

)
Eii −

2∑̀
i=0

(
i

2`

)
Ei,i−1,

A0 =
2∑̀
i=0

(2`+ 2)(i− 2`)

2`
Eii.

Then E is symmetric with respect to the weight W ; hence E ∈ D(W ). Moreover for every

integer n ≥ 0,

Pn(x)E = Λn(E)Pn(x),

where

Λn(E) =

2∑̀
i=0

(
−n(`− i)

`
+

(2`+ 2)(i− 2`)

2`

)
Eii.

Proof. The proof of the theorem is performed by showing that the differential operator

E is symmetric with respect to the weight W . It follows from Theorem 4.7.5, with F2 = 0,

that E is symmetric if and only if

W (x)A1(x)∗ +A1(x)W (x) = 0, (4.53)

−(A1(x)W (x))′ +A0W (x) = W (x)A∗0, (4.54)
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with the boundary condition

lim
x→±1

A1(x)W (x) = 0. (4.55)

The second statement will then follow from Propositions 4.7.1 and 4.7.4.

The verification of (4.53) and (4.54) involves elaborate computations, see Appendix

4.B.

Theorem 4.7.7. Let D be the second order matrix valued differential operator

D = (1− x2)
d2

dx2
+

(
d

dx

)
B1(x) +B0,

where the matrices B1(x) and B0 are given by

B1(x) =

2∑̀
i=0

(
(4`+ 3)(i− 2`)

2`
Ei,i+1 − x

(2`+ 3)(i− 2`)

`
Eii +

(
3i

2`

)
Ei,i−1

)
,

B0 =

2∑̀
i=0

(i− 2`)(i`− 2`2 − 5`− 3)

2`
Eii.

Then D is symmetric with respect to the weight W (x); hence D ∈ D(W ). Moreover for

every integer n ≥ 0,

Pn(x)D = Λn(D)Pn(x),

where

Λn(D) =

2∑̀
i=0

(
n(n− 1)− (2`+ 3)(i− 2`)

`
+

(i− 2`)(i`− 2`2 − 5`− 3)

2`

)
Eii.

Proof. The proof of the theorem is similar to that of Theorem 4.7.6, see Appendix

4.B.

Corollary 4.7.8. The differential operators D and E commute.

Proof. To see that D and E commute it is enough to verify that the corresponding

eigenvalues commute. The eigenvalues commute because they are diagonal matrices.

As we pointed out in Theorem 4.6.5, for any ` ∈ 1
2N the matrix weight W and the

polynomials Pn are (2`+ 1)× (2`+ 1) matrices that can be conjugated into 2× 2 block

matrices. More precisely

YW (x)Y t =

(
W1(x) 0

0 W2(x)

)
, Y Pn(x)Y −1 =

(
Pn,1(x) 0

0 Pn,2(x)

)
,

where Y is the orthogonal matrix introduced in (4.43) and W1, W2 are the square matrices

described in Corollary 4.6.6. Here {Pn,1}n≥0 and {Pn,2}n≥0 are the sequences of monic

orthogonal polynomials with respect to the weights W1 and W2 respectively.
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Proposition 4.7.9. Suppose ` = (2n + 1)/2 for some integer n, then E splits in (n +

1)× (n+ 1) blocks in the following way

Y E Y t = Ẽ =

(
−(`+ 1)In+1 E1

E2 −(`+ 1)In+1

)
,

where

E1 =

(
d

dx

)
Ã1(x) + Ã0,

E2 =

(
d

dx

)
Fn+1Jn+1Ã1(−x)Jn+1Fn+1 + Fn+1Jn+1Ã0Jn+1Fn+1.

Here Fn+1, Jn+1 are the matrices introduced in (4.42). The matrices A1 and A0 are given

by

Ã1(x) = −
n−1∑
i=0

(2`− i)
2`

Ei,n−i−1 + x

n∑
i=0

(`− i)
`

Ei,n−i+

n∑
i=1

i

2`
Ei,n−i+1 +

(2`+ 1)

4`
En,n+1,

Ã0 =

n∑
i=0

(`+ 1)(`− i)
`

Ei,n−i.

Proof. The proposition follows by a straightforward computation.

Proposition 4.7.10. Suppose ` ∈ N, then we have Y E Y t = Ẽ,

Ẽ =

(
d

dx

) O(`+1)
Ã1(x)

vt1
F`Ã1(x)F` v2 O`×`

+

−(`+ 1)I(`+1)
Ã0(x)

vt0
F`Ã0(x)F` v0 −(`+ 1)I`

 ,

where Ã1 and Ã0 are n× n matrices given by

Ã1(x) = −
`−2∑
i=0

(2`− i)
2`

Ei,`−i−1 + x

`−1∑
i=0

(`− i)
`

Ei,`−i +

`−1∑
i=1

i

2`
Ei,`−i+1,

Ã0 =

`−1∑
i=0

(`+ 1)(`− i)
`

Ei,`−i,

and the vectors v0, v1, v2 ∈ C` are v0 = (0, 0, · · · , 0),

v1 =

(
(2`+ 1)

√
2

4`
, 0, · · · , 0

)
, v2 =

(
− (2`+ 1)

√
2

4(`+ 1)
, 0, · · · , 0

)
.
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Proof. The proposition follows by a straightforward computation.

Let us assume that ` = (2n + 1)/2 for some n ∈ N so that the weight W and the

polynomials Pn are matrices of even dimension. Proposition 4.7.9 says that

P̃n(x)Ẽ = Y ΛnY
tP̃n(x), n ≥ 0. (4.56)

A simple computation shows that

Y ΛnY
t = −(`+ 1)I2n+2 +

(
0 Λn,1

Λn,2 0

)
,

where Λn,1 is a (n+ 1)× (n+ 1) matrix (depending on n) and

Λn,2 = Fn+1Jn+1Λn,1Jn+1Fn+1.

It follows from (4.56) that the following matrix equation is satisfied(
−(`+ 1)Pn,1(x) Pn,1(x)E1

Pn,2(x)E2 −(`+ 1)Pn,2(x)

)
=

(
−(`+ 1)Pn,1(x) Λn,1Pn,2(x)

Λn,2Pn,1(x) −(`+ 1)Pn,2(x)

)
.

Therefore the polynomials Pn,1 and Pn,2 satisfy the following differential equations

Pn,1E1 − Λn,1Pn,2 = 0, (4.57)

Pn,2E2 − Λn,2Pn,1 = 0. (4.58)

Finally it follows from (4.57), (4.58) and (4.46) that for every n ≥ 0, the polynomial Pn,1
is a solution of the following second-order matrix valued differential equation

Pn,1E1E2 − Λn,1Λn,2Pn,1 = 0.

We can also obtain a second order differential equation for Pn,2.

4.8 Examples

The purpose of this section is to study the properties of the monic orthogonal polynomials

{Pn}n≥0 presented in Section 4.6 for small dimension. For ` = 0, 1
2 , 1,

2
3 , 2, we show that

these polynomials are solutions of certain matrix valued differential equations. We will

show that the polynomials can be defined by means of Rodrigues’ formulas and we will

give explicit expressions for the three term recurrence relations.

4.8.1 The case ` = 0; the scalar weight

In this case the polynomials {Pn}n≥0 are scalar valued. The weight W reduces to the

real function

W (x) = (1− x)
1
2 (1 + x)

1
2 , x ∈ [−1, 1].

Therefore the polynomials Pn are a multiple of the Chebyshev polynomials of the second

kind: Pn(x) = 2−nUn(x), n ∈ N.
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4.8.2 The case ` = 1
2
; weight of dimension 2

In this case the polynomials {Pn}n≥0 are 2× 2 matrices. The weight W is given by

W (x) = (1− x)
1
2 (1 + x)

1
2

(
2 2x

2x 2

)
, x ∈ [−1, 1].

It is a straightforward computation that

YW (x)Y t = 2

(
(1− x)

1
2 (1 + x)

3
2 0

0 (1− x)
3
2 (1 + x)

1
2

)
, Y =

1√
2

(
1 1

−1 1

)
.

Observe that W1(x) = (1−x)
1
2 (1 +x)

3
2 and W2(x) = (1−x)

3
2 (1 +x)

1
2 are Jacobi weights

and therefore we have

Pn,1 =
2nn!(n+ 2)!

(2n+ 2)!
P

( 1
2 ,

3
2 )

n (x), Pn,2(x) =
2nn!(n+ 2)!

(2n+ 2)!
P

( 3
2 ,

1
2 )

n , n ∈ N0,

where {P (α,β)
n }n≥0 are the classical Jacobi polynomials

Differential equations

By Theorem 4.7.6 we have

d

dx
Pn(x)

(
−x 1

−1 x

)
+ Pn(x)

(
−3 0

0 0

)
=

(
−n− 3 0

0 n

)
Pn(x).

We can conjugate the differential operator E by the matrix Y to obtain

Ẽ = Y E Y t =

(
d

dx

)(
0 1 + x

x− 1 0

)
+

3

2

(
−1 1

1 −1

)
,

The monic polynomials

P̃n(x) = Y Pn(x)Y t =

(
Pn,1(x) 0

0 Pn,2(x)

)
, n ∈ N0,

satisfy

P̃n(x)Ẽ = Λ̃nP̃n(x), where Λ̃n(x) =

(
−3/2 n+ 3/2

n+ 3/2 −3/2

)
.

Now the fact that P̃n(x) is an eigenfunction of Ẽ is equivalent to the following relations

between Jacobi polynomials

(1 + x)
d

dx
P ( 1

2 ,
3
2 )(x) +

3

2
P

( 1
2 ,

3
2 )

n (x)− (n+
3

2
)P

( 3
2 ,

1
2 )

n (x) = 0,

(1− x)
d

dx
P

( 3
2 ,

1
2 )

n (x) +
3

2
P

( 3
2 ,

1
2 )

n (x)− (n+
3

2
)P

( 1
2 ,

3
2 )

n (x) = 0.
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4.8.3 Case ` = 1; weight of dimension 3

Here we consider the simplest example of nontrivial matrix orthogonal polynomials for

the weight W . The weight matrix W of size 3× 3 is obtained by setting ` = 1. We have

W (x) = (1− x)
1
2 (1 + x)

1
2

 3 3x 4x2 − 1

3x x2 + 2 3x

4x2 − 1 3x 3

 (4.59)

We know from Theorem 4.6.5 that the weight W (x) splits into a block of size 2× 2 and

a block of size 1× 1, namely

YW (x)Y t =

(
W1(x) 0

0 W2(x)

)
= (1− x)

1
2 (1 + x)

1
2

4x2 + 2 3
√

2x 0

3
√

2x x2 + 2 0

0 0 4(1− x2)

 .

From Theorem 4.6.5 the monic orthogonal polynomials P̃n(x) with respect to W̃ (x) reduce

to

P̃n =

(
Pn,1(x) 0

0 Pn,2(x)

)
where {Pn,2}n≥0 are the monic polynomials with respect to W1(x) and {Pn,2}n≥0 are the

monic polynomials with respect to the weight W2(x).

Remark 4.8.1. The weight W2 is a multiple of the Jacobi weight (1 − x)α(1 + x)β

corresponding to α = 3/2 and β = 3/2. The monic polynomials {Pn,2}n≥0 are then a

multiple of the Gegenbauer polynomials

Pn,2(x) =
2nn!(n+ 3)!

(2n+ 3)!
P

( 3
2 ,

3
2 )

n (x).

The first order differential operator

By Theorem 4.7.6 we have that the monic polynomials Pn are eigenfunctions of the

differential operator E. More precisely the following equation holds

d

dx
Pn(x)

−x 1 0

− 1
2 0 1

2

0 −1 x

+ Pn(x)

−4 0 0

0 −2 0

0 0 0

 =

−n− 4 0 0

0 −2 0

0 0 n

Pn(x).

Now we can conjugate the differential operator E by the matrix Y to obtain a differential

operator Ẽ = Y E Y t. The fact that the polynomials Pn are eigenfunctions of E says that
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the polynomials P̃n are eigenfunctions of Ẽ. In other words

d

dx
P̃n(x)

0 0 x

0 0
√

2
2

x −
√

2 0

+ P̃n(x)

−2 0 2

0 −2 0

2 0 −2

 =

 −2 0 n+ 2

0 −2 0

n+ 2 0 −2

 P̃n(x).

We can now rewrite the equation above in terms of the polynomials Pn,1 and Pn,2.

d

dx
Pn,1(x)

(
x√
2

2

)
+ Pn,1(x)

(
2

0

)
= Pn,2(x)

(
n+ 2

0

)
,

d

dx
Pn,2(x)

(
x −

√
2
)

+ Pn,2(x)
(
2 0

)
=
(
n+ 2 0

)
Pn,1(x).

Since Pn,2 is a Gegenbauer polynomial, we see that the elements of the first row of Pn,2
can be written explicitly in terms of Gegenbauer polynomials.

Second order differential operators

In this subsection we describe a set of linearly independent differential operators that

have the polynomials Pn,1 as eigenfunctions.

Proposition 4.8.2. The matrix orthogonal polynomials {Pn,1}n≥0 satisfy

Pn,1Dj = Λn(Dj)Pn,1, j = 1, 2, 3, n ≥ 0,

where the differential operators Dj are

D1 = (x2 − 1)

(
d2

dx2

)
+

(
d

dx

)(
5x −4

−1 5x

)
+

(
1 0

0 0

)
,

D2 =

(
d2

dx2

)(
x2 −2x
x
2 −1

)
+

(
d

dx

)(
5x −6

1 0

)
+

(
4 0

0 0

)
,

D3 =

(
d2

dx2

)(
−2x 8x2 − 4

x2 − 2 2x

)
+

(
d

dx

)(
−8 32x

6x −4

)
+

(
0 16

6 0

)
.

and the eigenvalues Λj are given by

Λn(D1) =

(
n(n+ 4) + 1 0

0 n(n+ 4)

)
, Λn(D2) =

(
(n+ 2)2 0

0 0

)
,

Λn(D3) =

(
0 8(n+ 2)(n+ 1)

(n+ 3)(n+ 2) 0

)
.

Moreover, the differential operators D1, D2 and D3 satisfy

D1D2 = D2D1, D1D3 6= D3D1, D2D3 6= D3D2.
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Proof. The proposition follows by proving that the differential operators Dj , j = 1, 2, 3

are symmetric with respect to the weight matrix W1. This is accomplished by a straight-

forward computation, showing that the differential equations (4.48), (4.49), (4.50) and

the boundary conditions (4.51) are satisfied. As a consequence of Remark 4.7.2, the com-

mutativity properties of the differential operators follow by observing the commutativity

of the corresponding eigenvalues.

Rodrigues’ Formula

Proposition 4.8.3. The matrix orthogonal polynomials {Pn,1(x)}n≥0 satisfy the Ro-

drigues’ formula

Pn,1(x) =

c

[
(1− x2)

1
2 +n

((
4x2 + 2 3

√
2x

3
√

2x x2 + 2

)
+

(
2n
n+2

√
2nx
n+2

−
√

2nx
n+1 − n

n+1

))](n)

W−1
1 (x), (4.60)

where

c =
(−1)n2−2n−2(n+ 2)(n+ 3)

√
π

(2n+ 3)Γ(n+ 3
2 )

.

Proof. The proposition can be proven in a similar way to Theorem 3.1 of [DG05b]. We

include a sketch of the proof for the sake of completeness. First of all, we recall that the

classical Jacobi polynomials P
(α,β)
n (x) satisfy the Rodrigues’ formula

P (α,β)
n (x) =

(−1)n

2nn!
(1− x)−α(1 + x)−β [(1− x)α+n(1 + x)β+n](n).

Let R(x) and Yn be the matrix polynomials of degree 2 and 1

R(x) =

(
4x2 + 2 3

√
2x

3
√

2x x2 + 2

)
, Yn(x) =

(
2n
n+2

n
√

2x
n+2

−
√

2nx
n+1 − n

n+1

)
,

so that the (4.60) can be rewritten as

Pn,1(x) = c

[
(1− x2)

1
2 +n (R(x) + Yn(x))

](n)

W−1
1 (x).

Then by applying the Leibniz rule on the right hand side of (4.60), it is not difficult to

prove that

Pn,1(x) = c 1
2n(n− 1)[(1− x)

1
2 +n(1 + x)

1
2 +n](n−2)(1− x)−

1
2 (1 + x)−

1
2R′′(x)R(x)−1

+ cn[(1− x)
1
2 +n(1 + x)

1
2 +n](n−1)(1− x)−

1
2 (1 + x)−

1
2 (R′(x) + Y ′(x))R(x)−1

+ c[(1− x)
1
2 +n(1 + x)

1
2 +n](n)(1− x)−

1
2 (1 + x)−

1
2 (I + Y (x)R(x)−1).
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Now by applying the Rodrigues’ formula for the Jacobi polynomials we obtain

Pn,1(x) = 2nn!(−1)nc[P
( 1
2 ,

1
2 )

n (x)(I + Y (x)R(x)−1)

− 1
2 (1− x)(1 + x)P

( 3
2 ,

3
2 )

n−1 (x)(Y ′(x) +R′(x))R(x)−1

+ 1
8 (1− x)2(1 + x)2P

( 5
2 ,

5
2 )

n−2 (x)R′′(x)R(x)−1]. (4.61)

Now with a careful computation we can show that the expression above is a matrix

polynomial of degree n with nonsingular leading term. Using integration by parts it is

easy to show the orthogonality of Pn,1 and xm, m = 0, 1, . . . , n − 1, with respect to the

weight W1.

Three term recurrence relations

In Corollary 4.6.3 we show that the matrix polynomials Pn(x) of any size satisfy a three

term recurrence relation. The recurrence relation for the polynomials Pn,1 can then be

obtained by conjugating the recurrence relation for Pn(x) by the matrix Y . The recurrence

coefficients (4.18) are given in terms of Clebsch-Gordan coefficients and are difficult to

manipulate. For ` = 1 we can use the Rodrigues’ formula (4.60) to derive explicit formulas

for the three term recurrence relation for the polynomials Pn,1.

First we need to compute the norm of Pn,1(x). The Rodrigues’ formula (4.60) and

integration by parts lead to

‖Pn,1‖2 = 2−2n−1π

(
(n+3)
(n+1) 0

0 (n+3)2

8(n+1)2

)
.

If {Pn,1}n≥0 is a sequence of orthonormal polynomials with respect to W1 with leading

coefficients Ωn, then it follows directly from the orthogonality relations for the monic

polynomials that ‖Pn,1‖2 = Ω−1
n (Ω∗n)−1. The orthonormal polynomials Pn,1 with leading

coefficient

Ωn =

√ 22n+1(n+1)
π(n+3) 0

0 2n+2(n+1)√
π(n+3)

 ,

satisfy the three term recurrence relation

xPn(x) = An+1Pn+1(x) +BnPn(x) +A∗nPn−1(x),

where An = Ωn−1Ω−1
n and

Bn = Ωn[coef. of xn−1 in Pn,1 − coef. of xn in Pn+1,1]Ω−1
n .

The coefficient of xn−1 in Pn,1 can by obtained from (4.61). Now a careful computation

shows that

An =

 1
2

√
n(n+3)

(n+1)(n+2) 0

0 n(n+3)
2(n+1)(n+2)

 , Bn =

(
0 4

(n+2)(n+3)
1

2(n+1)(n+4) 0

)
.
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Therefore the monic polynomials Pn,1 satisfy the three term recurrence relation

xPn,1(x) = Pn+1,1(x) + B̃nPn,1(x) + C̃nPn−1,1(x),

where

B̃n =

(
0 4

(n+2)(n+3)
1

2(n+1)(n+2) 0

)
, C̃n =

(
n(n+3)

4(n+2)(n+1) 0

0 n2(n+3)2

4(n+2)2(n+1)2

)
.

4.8.4 Case ` = 3/2; weight of dimension 4

The weight matrix W of size 4× 4 is obtained by setting ` = 3/2.

W (x) = (1− x2)
1
2


4 4x 4

3 (4x2 − 1) 4x(2x2 − 1)

4x 4
9 (4x2 + 5) 4

9x(2x2 + 7) 4
3 (4x2 − 1)

4
3 (4x2 − 1) 4

9x(2x2 + 7) 4
9 (4x2 + 5) 4x

4x(2x2 − 1) 4
3 (4x2 − 1) 4x 4


We know from Corollary 4.6.5 that the weight W (x) splits in two blocks of size 2 × 2,

namely

W̃ (x) = YW (x)Y t =

(
W1(x) 0

0 W2(x)

)
,

where

W1(x) = 4(1− x)1/2(1 + x)3/2

(
2x2 − 2x+ 1 1

3 (4x− 1)
1
3 (4x− 1) 1

9 (2x2 + 2x+ 5)

)
,

and

W2(x) = J2F2W1(−x)F2J2, where F2 =

(
1 0

0 −1

)
and J2 =

(
0 1

1 0

)
.

It follows from Corollary 4.6.6 that the monic orthogonal polynomials Pn,2 with respect

to the weight W2 are completely determined by the the monic orthogonal polynomials

Pn,1 with respect to Pn,2(x) = J2F2Pn,1(−x)F2J2. Therefore we only need to study the

polynomials Pn,1.

Differential operators

In this subsection we describe a set of linearly independent differential operators that

have the polynomials Pn,1 as eigenfunctions.

Proposition 4.8.4. The matrix orthogonal polynomials {Pn,1}n≥0 satisfy

Pn,1Dj = Λn(Dj)Pn,1, j = 1, 2, 3, n ≥ 0,
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where the differential operators Dj are

D1 = (x2 − 1)

(
d2

dx2

)
+

(
d

dx

)(
6x −3

−1 6x− 2

)
+

(
2 0

0 0

)
,

D2 =

(
d2

dx2

)(
x2 − 1

4 − 3
2x+ 3

4
x
2 + 1

4 − 3
4

)
+

(
d

dx

)(
6x 9

2
3
2 0

)
+

(
6 0

0 0

)
,

D3 =

(
d2

dx2

)(
−3x+ 3 9x2 − 9x

x2 + x− 2 3x− 3

)
+

(
d

dx

)(
−9 36x− 18

8x+ 4 −3

)
+

(
0 18

12 0

)
,

and the eigenvalues Λj are given by

Λn(D1) =

(
n(n+ 5) + 2 0

0 n(n+ 5)

)
, Λn(D2) =

(
(n+ 3)(n+ 2) 0

0 0

)
,

Λn(D3) =

(
0 9(n+ 2)(n+ 1)

(n+ 4)(n+ 3) 0

)
.

Moreover, the differential operators D1, D2 and D3 satisfy

D1D2 = D2D1, D1D3 6= D3D1, D2D3 6= D3D2.

Rodrigues’ Formula

The monic orthogonal polynomials {Pn,1(x)}n≥0 satisfy the Rodrigues’ formula

Pn,1(x) = c

[
(1− x)

1
2 +n(1 + x)

3
2 +n(R(x) + Yn(x))

](n)

W−1
1 (x),

where

c =
2−2n−2(−1)n(n+ 3)(n+ 4)

√
π

Γ(n+ 5
2 )

,

and

R(x) =

(
2x2 − 2x+ 1 1

3 (4x− 1)
1
3 (4x− 1) 1

9 (2x2 + 2x+ 5)

)
,

Yn(x) =

(
n
n+3

n
3(n+3) (2x+ 1)

n
3(n+1) (1− 2x) − n

3(n+1)

)
.

Three term recurrence relations

The orthonormal polynomials Pn,1(x) = ‖Pn,1‖−1Pn,1, with leading coefficient

Ωn =


√

22n+1(n+1)
π(n+4) 0

0
9(n+1)

√
22n+1(n+2)√

π(n+3)(n+4)

 ,
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satisfy the three term recurrence relation

xPn(x) = An+1Pn+1(x) +BnPn(x) +A∗nPn−1(x),

where

An =

 1
2

√
n(n+4)

(n+1)(n+3) 0

0 n(n+4)

2(n+2)
√

(n+1)(n+3)

 ,

Bn =

 0 3

2
√

(n+1)(n+2)(n+3)(n+4)
3

2
√

(n+1)(n+2)(n+3)(n+4)

2
(n+2)(n+3)

 .

Therefore the monic polynomials Pn,1(x) satisfy the three term recurrence relation

xPn,1 = Pn+1,1 + B̃nPn,1 + C̃nPn−1,1,

where

B̃n =

(
0 9

2(n+3)(n+4)
1

2(n+1)(n+2)
2

(n+2)(n+3)

)
, C̃n =

(
n(n+4)

4(n+1)(n+3) 0

0 n2(n+4)2

4(n+1)(n+2)2(n+3)

)
.

4.8.5 Case ` = 2; weight of dimension 5

In this subsection we consider the 2 × 2 irreducible block in the case ` = 2, where the

matrix weight W is of dimension 5. This case completes the list of all irreducible 2 × 2

blocks obtained by conjugating the weight W by the matrix Y .

The 2× 2 block is given by

W1(x) = (1− x)
3
2 (1 + x)

3
2

(
x2 + 4 10x

10x 16x2 + 4

)
.

As before, we denote by {Pn,1}n the sequence of monic orthogonal polynomials with

respect to W1.

Differential operators

In this subsection we describe a set of linearly independent differential operators that

have the polynomials Pn,1 as eigenfunctions.

Proposition 4.8.5. The matrix orthogonal polynomials {Pn,1}n≥0 satisfy

Pn,1Dj = Λn(Dj)Pn,1, j = 1, 2, 3, n ≥ 0,
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where the differential operators Dj are

D1 = (x2 − 1)

(
d2

dx2

)
+

(
d

dx

)(
7x −1

−4 7x

)
+

(
3 0

0 0

)
,

D2 =

(
d2

dx2

)(
x2 − 1

2x

2x −1

)
+

(
d

dx

)(
7x −3

2 0

)
+

(
5 0

0 0

)
,

D3 =

(
d2

dx2

)(
3
8x

x2

16 −
1
4

x2 − 1
4 − 3

8x

)
+

(
d

dx

)(
− 1

4
5
8x

4x −1

)
+

(
0 5

4

2 0

)
,

and the eigenvalues Λj are given by

Λn(D1) =

(
n(n+ 6)− 3 0

0 n(n+ 6)

)
, Λn(D2) =

(
(n+ 1)(n+ 5) 0

0 0

)
,

Λn(D3) =

(
0 1

16 (n+ 5)(n+ 4)

(n+ 2)(n+ 1) 0

)
.

Moreover, the differential operators D1, D2 and D3 satisfy

D1D2 = D2D1, D1D3 6= D3D1, D2D3 6= D3D2.

Rodrigues’ Formula

The monic orthogonal polynomials {Pn,1(x)}n≥0 satisfy the Rodrigues’ formula

Pn,1(x) = c

[
(1− x)

3
2 +n(1 + x)

3
2 +n(R(x) + Yn(x))

](n)

W−1
1 (x),

where

c =
(−1)n2−2n−4(n+ 3)(n+ 4)(n+ 5)

√
π

(2n+ 5)Γ(n+ 5
2 )

,

and

R(x) =

(
x2 + 4 10x

10x 16x2 + 4

)
, Yn(x) =

(
− 3n
n+1 − 6nx

n+1
6nx
n+4

12n
n+4

)
.

Three term recurrence relations

The orthonormal polynomials Pn,1(x) = ‖Pn,1‖−1Pn,1 with leading coefficient

Ωn =

22n+2

√
(n+2)(n+1)√
π(n+4)(n+5)

0

0 2n
√

2(n+1)√
π(n+5)

 ,

satisfy the three term recurrence relation

xPn(x) = An+1Pn+1(x) +BnPn(x) +A∗nPn−1(x),
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where

An =

 n(n+5)

2
√

(n+1)(n+2)(n+3)(n+4)
0

0

√
n(n+5)√

(n+1)(n+4)

 ,

Bn =

 0 2√
(n+1)(n+2)(n+4)(n+5)

2√
(n+1)(n+2)(n+4)(n+5)

0

 .

Therefore the monic polynomials Pn,1(x) satisfy the three term recurrence relation

xPn,1 = Pn+1,1 + B̃nPn,1 + C̃nPn−1,1,

where

B̃n =

(
0 1

2(n+1)(n+2)
8

(n+4)(n+5) 0

)
, C̃n =

(
n2(n+5)2

4(n+1)(n+2)(n+3)(n+4) 0

0 n(n+5)
4(n+1)(n+4)

)
.
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4.A Transformation formulas

The goal of this appendix is to prove Theorem 4.5.4. We use the standard notation for the

Pochhammer symbols and the hypergeometric series from [AAR99]. In the manipulations

we only need the Chu-Vandermonde summation formula [AAR99, Corollary 2.2.3] which

reads

2F1

(
−n, a
c

; 1

)
=

(c− a)n
(c)n

. (4.62)

and Sheppard’s transformation formula for 3F2’s [AAR99, Cor. 3.3.4] written as

n∑
k=0

(e+ k)n−k(d+ k)n−k
(−n)k(a)n(b)n

k!
=

n∑
k=0

(d− a)n−k(e− a)n−k
(−n)k(a)k(a+ b− n− d− e+ 1)k

k!
. (4.63)
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Proposition 4.A.1. Let ` ∈ 1
2N and p, q ∈ 1

2Z such that |p|, |q| ≤ `, ` − p, ` − q ∈ Z,

q − p ≤ 0 and q + p ≤ 0. Let s ∈ {0, . . . , `+ q} and define

es(p, q) =

`+q−s∑
n=0

(
`+ p

n

)(
`+ q

n+ s

) `−p−s∑
m=0

(
`−p
m+s

)(
`−q
m

)(
2`

m+n+s

)2 . (4.64)

Then we have

e`s(p, q) =

(2`+ 1)

(`+ p+ 1)

(`− q)!(`+ q)!

(2`)!

`+q−s∑
T=0

(−1)`+q−T
(p− `)`+q−T (2 + 2`− T )T

(`+ p+ 2)`+q−TT !
.

Proof. First we reverse the inner summation using M = `− p− s−m to get

es(p, q) =

`+q−s∑
n=0

(
`+ p

n

)(
`+ q

n+ s

) `−p−s∑
M=0

(
`−p
M

)(
`−q

`−p−M−s
)

(
2`

`−p−M+n

)2 . (4.65)

We rewrite the inner summation:

`−p−s∑
M=0

(
`−p
M

)(
`−q

`−p−M−s
)

(
2`

`−p−M+n

)2 =
(`− q)!

(2`)!
(−1)s(−`+ p)s

(
2`

`− p+ n

)−1

×

`−p−s∑
M=0

(−`+ p+ s)M (`+ p− n+ 1)M
M !(−`+ p− n)M

B(M) (4.66)

where B(M) = (` − p −M + 1)n(p − q + M + s + 1)`+q−s−n is a polynomial in M of

degree `+ q− s that depends on `, p, q, n and s. The polynomial B(M) has an expansion

in (−1)t(−M)t,

B(M) =

`+q∑
t=0

At · (−1)t(−M)t. (4.67)

The coefficients At = At(`, p, q, n, s) can be found by repeated application of the difference

operator ∆Mf = f(M + 1)− f(M). Let ∆i
M be its i-th power. We have

∆t
M

t!

∣∣∣∣
M=0

B = At. (4.68)

In other words,

B(M) =

`+q∑
t=0

At · (−1)t(−M)t with At =
∆t
M

t!

∣∣∣
M=0

B. (4.69)
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We calculate (4.66) by substituting (4.67) in it. Interchanging summations, the inner sum

can be evaluated using (4.62) (after shifting the summation parameter). We get

`−p−s∑
M=0

(
`−p
M

)(
`−q

`−p−M−s
)

(
2`

`−p−M+n

)2 =
(`− q)!

(2`)!
(−1)s(−`+ p)s

(
2`

`− p+ n

)−1

×

`+q−s∑
t=0

At
(−2`− 1)`−p−s−t(−`+ p+ s)t(`+ p− n+ 1)t

(−`+ p− n)`−p−s
. (4.70)

Substituting (4.70) and (4.68) in (4.65) and simplifying gives

es(p, q) =
(`− q)!(`+ p)!

(2`)!(2`)!
(−1)`−p−s(−`+ p)s(−`− q)s×

`+q−s∑
t=0

(`+ p+ 1)t(−2`− 1)`−p−s−t(−`+ p+ s)t
∆t
M

t!

∣∣∣∣
M=0

×

(p− q + s+M + 1)`+q−s

`+q−s∑
n=0

(−`− q − s)n(−`− p)n(`− p−M + 1)n
n!(−`− p− t)n(−`− p−M)n

. (4.71)

The inner sum over n is a 3F2-series, which can be transformed using (4.63). Note that

the t-order difference operator can now be evaluated yielding only one non-zero term in

the sum over n. This gives

es(p, q) =
2`+ 1

`+ p+ 1

(`− q)!(`+ q)!

(2`)!
×

`+q−s∑
t=0

(−1)−s−t
(−`+ p)s+t(2 + `− q + s+ t)`+q−s−t

(`+ p+ 2)s+t(`+ q − s− t)!
.

Reversing the order of summation using T = `+ q − s− t yields

e`s(p, q) =
(2`+ 1)

(`+ p+ 1)

(`− q)!(`+ q)!

(2`)!
×

`+q−s∑
T=0

(−1)`+q−T
(p− `)`+q−T (2 + 2`− T )T

(`+ p+ 2)`+q−TT !

as was to be shown.

Proof.[Proof of Theorem 4.5.4] We already argued that there is an expansion in Cheby-

shev polynomials (4.31). From (4.34) it follows that there are coefficients d`r(p, q) such

that

v`p,q(cos t) =

`+ p+q
2∑

r=−(`+ p+q
2 )

d`r(p, q)e
−2irt. (4.72)
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The coefficients d`r(p, q) and c`n(p, q) are related by

d`r(p, q) =

`+q−(r+ q−p
2 )∑

n=0

c`n(p, q). (4.73)

Let q− p ≤ 0, q+ p ≤ 0 and r ≥ p−q
2 and substitute r(s) = s+ p−q

2 in (4.34). Comparing

this to (4.72) shows

d`r(s)(p, q) =

`+q−s∑
n=0

(
`+ p

n

)(
`+ q

n+ s

) `−p−s∑
m=0

(
`−p
m+s

)(
`−q
m

)(
2`

m+n+s

)2 (4.74)

for s = 0, . . . , `+ q. Now we use Proposition 4.A.1 to show that d`r(p, q) equals

(2`+ 1)

(`+ p+ 1)

(`− q)!(`+ q)!

(2`)!

`+q−(r+ q−p
2 )∑

n=0

(−1)`+q−n
(p− `)`+q−n(2 + 2`− n)n

(`+ p+ 2)`+q−nn!
(4.75)

for r = p−q
2 , . . . , `+ p+q

2 . It follows that

c`n(p, q) =
2`+ 1

`+ p+ 1

(`− q)!(`+ q)!

(2`)!

(p− `)`+q−n
(`+ p+ 2)`+q−n

(−1)`+q−n
(2`+ 2− n)n

n!
. (4.76)

This proves the theorem.

We can reformulate Proposition 4.A.1 in terms of hypergeometric series.

Corollary 4.A.2. For N ∈ N, a, b, c ∈ N so that 0 ≤ a ≤ N , 0 ≤ b ≤ N , and additionally

a ≤ b, N ≤ a+ b and 0 ≤ c ≤ N − b we have

c∑
m=0

(−c)m (b+ 1)m (b+ 1)m
(N − a− c+ 1)mm! (b−N)m

×

4F3

(
−b,N − a− b− c,N − b−m+ 1, N − b−m+ 1

N − b− c+ 1,−b−m,−b−m
; 1

)
=

(
N+1
a

)(
b

N−a−c
)(

N−b
N−b−c

) c∑
n=0

(−a)N−b−n (−1)N−b−n (N + 2− n)n
(N − a+ 2)N−b−n n!

The 4F3-series in the summand is not balanced. Note that the case s = 0 leads

to single sums, and the 4F3 boils down to a terminating 2F1 which can be summed by

the Chu-Vandermonde sum, so Corollary 4.A.2 can be viewed as an extension of Chu-

Vandermonde sum (4.62).

The coefficients d`r(p, q) of (4.34) with |r| ≤ p−q
2 are independent of r. Corollary 4.5.3

in case ` = `1 + `2 = m1 +m2 can be stated as follows.
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Corollary 4.A.3. For N ∈ N, a, b, c ∈ N so that 0 ≤ a ≤ N , 0 ≤ b ≤ N , b ≤ a,

a+ b ≤ N , and 0 ≤ c ≤ N − a− b we have(
N−b
a+c

)(
N−a
c

)(
N
a+c

)2 b∑
n=0

(−b)n (c+ a−N)n (a+ c+ 1)n (a+ c+ 1)n
n! (c+ 1)n (a+ c−N)n (a+ c−N)n

× 4F3

(
−a,−a− c,N − a− c− n+ 1, N − a− c− n+ 1

N − a− b− c+ 1,−a− c− n,−a− c− n
; 1

)
=

N + 1

N − a+ 1

(
N

b

)−1 b∑
m=0

(−a)m (N − b+m+ 2)b−m (−1)m

(N − a+ 2)m (b−m)!
.

In particular, the left hand side is independent of c in the range stated.

Different proofs of Corollaries 4.A.2, 4.A.3 using transformation and summation for-

mulas for hypergeometric series have been communicated to us by Mizan Rahman.

4.B Proof of the symmetry for differential operators

Proof.[Proof of Theorem 4.7.6] In terms of ρ(x) and Z(x), the equations (4.53) and

(4.54) are given by

0 = Z(x)A1(x)∗ +A1(x)Z(x), (4.77)

0 = −A′1(x)Z(x)− ρ(x′)

ρ(x)
A1(x)Z(x)−A1(x)Z ′(x) +A0Z(x)− Z(x)A0. (4.78)

As a consequence of the properties of symmetry of the weight W , it suffices to verify the

conditions above for all the (n,m)-entries with n ≤ m. Here we assume that n < m. The

case n = m can be done similarly. The first equation (4.77) holds true if and only if

Zn,m−1A1(x)m,m−1 + Zn,mA1(x)m,m + Zn,m+1A1(x)m,m+1

+ Zn−1,mA1(x)n,n−1 + Zn,mA1(x)n,n + Zn+1,mA1(x)n,n+1 = 0,

for all n ≤ m. In order to prove the expression above we replace the coefficients of A1

and Z in the left hand side and we obtain

− m

2`

m−1∑
t=0

c(n,m− 1, t)Un+m−2t−1(x)− `−m
`

m∑
t=0

c(n,m, t)xUn+m−2t(x)

+
2`−m

2`

m+1∑
t=0

c(n,m+ 1, t)Un+m−2t+1(x)− n

2`

m∑
t=0

c(n− 1,m, t)Un+m−2t−1(x)

− `− n
`

m∑
t=0

c(n,m, t)xUn+m−2t(x) +
2`− n

2`

m∑
t=0

c(n+ 1,m, t)Un+m−2t+1(x).
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By using the recurrence relation xUr(x) = 1
2Ur−1(x) + 1

2Ur+1(x) we obtain

m−1∑
t=0

[
−m

2`
c(n,m− 1, t)− n

2`
c(n− 1,m, t)−

2`− n−m
2`

c(n,m, t)

]
Un+m−2t−1(x)

m∑
t=0

[
2`−m

2`
c(n,m+ 1, t) +

2`− n
2`

c(n+ 1,m, t)−

2`− n−m
2`

c(n,m, t)

]
Un+m−2t+1(x)

+

[
− n

2`
c(n,m+ 1,m)− 2`−m

2`
c(n,m+ 1,m+ 1)−

2`−m− n
2`

c(n,m,m)

]
Un−m−1(x)

A simple computation shows that the coefficient of Un−m−1 in the expression above is

zero. Now by changing the index of summation t we obtain[
2`−m

2`
c(n,m+ 1, 0) +

2`− n
2`

c(n+ 1,m, 0)−

2`− n−m
2`

c(n,m, 0)

]
Un+m+1(x)

+

m−1∑
t=0

[
−m

2`
c(n,m− 1, t)− n

2`
c(n− 1,m, t)− 2`− n−m

2`
c(n,m, t)

2`−m
2`

c(n,m+ 1, t+ 1) +
2`− n

2`
c(n+ 1,m, t+ 1)−

2`− n−m
2`

c(n,m, t+ 1)

]
Un+m−2t−1(x). (4.79)

Using the explicit expression of c(n,m, t) in (4.52) we obtain that (4.79) is given by

m∑
t=0

c(n,m, t)

[
− (m+ 1− t+ n)(2`−m+ 1)

2`(−m+ 1 + t− n+ 2`)
− 2`− n−m

2`
−

(−n+ 1 + 2`)(m+ 1− t+ n)

2`(−m+ 1 + t− n+ 2`)
+

(2`+ 1− t)(m+ 1)

2`(t+ 1)
+

(2`+ 1− t)(n+ 1)

2`(t+ 1)

+
(2`− n−m)(m+ 1− t+ n)(2`+ 1− t)

`(−m+ 1 + t− n+ 2`)(t+ 1)

]
Un+m−2t−1(x) = 0,

since the sum of the terms in the square brackets is zero. This completes the proof of

(4.77).
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Now we prove (4.78). The (n,m)-entry of the right hand side of (4.78) is given by

x(A1(x)Z(x))n,m − (1− x2)(A1(x)Z ′(x))n,m

+ (1− x2)[(A0)n,n −A′1(x)n,n − (A0)m,m]Zn,m,

Using (4.52) we obtain

(1− x2)[(A0)n,n −A′1(x)n,n − (A0)m,m]Zn,m

=

m∑
t=0

`(n−m+ 1)−m
`

c(n,m, t)(1− x2)Un+m−2t(x). (4.80)

x(A1(x)Z(x))n,m =

m∑
t=0

[
− n

2`
c(n− 1,m, t)xUn+m−2t−1(x)

−`− n
`

c(n,m, t)x2 Un+m−2t(x) +
2`− n

2`
c(n+ 1,m, t)xUn+m−2t+1(x)

]
(4.81)

(1− x2)(A1(x)Z ′(x))n,m =

m∑
t=0

[
− n

2`
c(n− 1,m, t) (1− x2)U ′n+m−2t−1(x)

− `− n
`

c(n,m, t)x(1− x2)U ′n+m−2t(x)+

2`− n
2`

c(n+ 1,m, t) (1− x2)U ′n+m−2t+1(x)

]
(4.82)

Now we proceed as in the proof of the condition (4.77). In (4.80) and (4.81) we use the

three term recurrence relation for the Chebychev’s polynomials to get rid of the factors

x and x2. Equation (4.82) involves the derivative of the polynomials U . For this we use

the following identity

U ′n(x) =
(n+ 2)Un−1(x)− nUn+1(x)

2(1− x2)
, n ≥ 0, (U−1 ≡ 0).

Finally we change the index of summation t and we use the explicit expression of the

coefficients c(n,m, t) to complete the proof.

The boundary condition (4.55) can be easily checked.

Proof.[Proof of Theorem 4.7.7] We will show that the conditions of symmetry in Theorem

4.7.5 hold true. The first equation (4.48) is satisfied because A2(x) is a scalar matrix.

Equation (4.49) can be written in terms of ρ(x) and Z(x) in the following way

(6x−B1(x))Z(x) + 2(x2 − 1)Z ′(x)− Z(x)B1(x)∗ = 0.

This can be checked by a similar computation to that of the proof of Theorem 4.7.6.
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Now we give the proof of the third condition for symmetry. If we take the derivative

of (4.49), we multiply it by 2 and we add it to (4.50) we obtain the following equivalent

condition

(W (x)B1(x)∗ −B1(x)W (x))′ − 2(W (x)B0 −B0W (x)) = 0. (4.83)

We shall prove instead that

W (x)B1(x)∗ −B1(x)W (x)− 2

(∫
W (x)dx

)
B0 − 2B0

(∫
W (x)dx

)
= 0,

which is obtained by integrating (4.83) with respect to x. Then (4.83) will follow by

taking the derivative with respect to x.

We assume n < m. The other cases can be proved similarly. We proceed as in the

proof of (4.77) in Theorem 4.7.6 to show that

(W (x)B1(x)∗ −B1(x)W (x))n,m

= −ρ(x)

m∑
t=0

c(n,m, t)
(m− n) (`+ 1)

(
4 `2 − `m− `n+ 5`+ 3

)
` (−m+ 1 + t− n+ 2`) (t+ 1)

Un+m−2t−1(x) (4.84)

On the other hand we have

−
(

2

(∫
W (x)dx

)
B0 + 2B0

(∫
W (x)dx

))
n,m

=

m∑
t=0

[
2c(n,m, t)((B0)m,m − (B0)n,n)

∫
ρ(x)Un+m−2t(x)dx

]
. (4.85)

It is easy to show that the following formula for the Chebyshev’s polynomials holds∫
ρ(x)Ui(x) = ρ(x)

(
Ui+1(x)

2(i+ 2)
− Ui−1(x)

2i

)
, (U−1 ≡ 0).

Therefore we have that (4.85) is given by

ρ(x)

m∑
t=0

c(n,m, t)
(B0)m,m − (B0)n,n)

(n+m− 2t)

(
c(n,m, t+ 1)

c(n,m, t)
− 1

)
Un+m−2t−1(x)

= ρ(x)

m∑
t=0

c(n,m, t)
(m− n) (`+ 1)

(
4 `2 − `m− `n+ 5`+ 3

)
` (−m+ 1 + t− n+ 2`) (t+ 1)

Un+m−2t−1(x). (4.86)

Now (4.86) is exactly the negative of (4.84). This completes the proof of the theorem.
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Chapter 5

Matrix valued orthogonal

polynomials related to

(SU(2)× SU(2), diag), II

Abstract

In a previous paper we have introduced matrix valued analogues of the Chebyshev poly-

nomials by studying matrix valued spherical functions on SU(2) × SU(2). In particular

the matrix-size of the polynomials is arbitrarily large. The matrix valued orthogonal

polynomials and the corresponding weight function are studied. In particular, we cal-

culate the LDU-decomposition of the weight where the matrix entries of L are given in

terms of Gegenbauer polynomials. The monic matrix valued orthogonal polynomials Pn
are expressed in terms of Tirao’s matrix valued hypergeometric function using the matrix

valued differential operator of first and second order to which the Pn’s are eigenfunctions.

From this result we obtain an explicit formula for coefficients in the three-term recurrence

relation satisfied by the polynomials Pn. These differential operators are also crucial in

expressing the matrix entries of PnL as a product of a Racah and a Gegenbauer poly-

nomial. We also present a group theoretic derivation of the matrix valued differential

operators by considering the Casimir operators corresponding to SU(2)× SU(2).

5.1 Introduction

Matrix valued orthogonal polynomials have been studied from different perspectives in

recent years. Originally they have been introduced by Krein [Kre71], [Kre49]. Matrix

valued orthogonal polynomials have been related to various different subjects, such as

higher-order recurrence equations, spectral decompositions, and representation theory.

The matrix valued orthogonal polynomials studied in this paper arise from the represen-
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tation theory of the group SU(2) × SU(2) with the compact subgroup SU(2) embedded

diagonally, see Chapter 4 for this particular case and Gangolli and Varadarajan [GV88],

Tirao [Tir77], Warner [War72b] for general group theoretic interpretations of matrix val-

ued spherical functions. An important example is the study of the matrix valued or-

thogonal polynomials for the case (SU(3),U(2)), which has been studied by Grünbaum,

Pacharoni and Tirao [GPT02] mainly exploiting the invariant differential operators. In

Chapter 4 we have studied the matrix valued orthogonal operators related to the case

(SU(2)×SU(2),SU(2)), which lead to the matrix valued orthogonal polynomial analogues

of Chebyshev polynomials of the second kind Un, in a different fashion. In the current

paper we study these matrix valued orthogonal polynomials in more detail.

In order to state the most important results for these polynomials we recall the weight

function (4.39)

W (x)n,m =
√

1− x2

m∑
t=0

αt(m,n)Un+m−2t(x),

αt(m,n) =
(2`+ 1)

n+ 1

(2`−m)!m!

(2`)!
(−1)m−t

(n− 2`)m−t
(n+ 2)m−t

(2`+ 2− t)t
t!

(5.1)

if n ≥ m and W (x)n,m = W (x)m,n otherwise. Here and elsewhere in this paper ` ∈ 1
2N,

n,m ∈ {0, 1, · · · , 2`}, and Un is the Chebyshev polynomial of the second kind. Note

that the sum in (5.1) actually starts at min(0, n+m− 2`). It follows that W : [−1, 1]→
M2`+1(C), W (x) =

(
W (x)n,m

)2`
n,m=0

, is a (2` + 1) × (2` + 1)-matrix valued integrable

function such that all moments
∫ 1

−1
xnW (x) dx, n ∈ N, exist. From the construction

given in Section 4.5, it follows W (x) is positive definite almost everywhere. By general

considerations, e.g. [GT07], we can construct the corresponding monic matrix valued

orthogonal polynomials {Pn}∞n=0, so

〈Pn, Pm〉W =

∫ 1

−1

Pn(x)W (x)
(
Pm(x)

)∗
dx = δnmHn, 0 < Hn ∈M2`+1(C) (5.2)

where Hn > 0 means that Hn is a positive definite matrix, and Pn(x) =
∑n
k=0 x

kPnk
with Pnk ∈ M2`+1(C) and Pnn = I, the identity matrix. The polynomials Pn are the

monic variants of the matrix valued orthogonal polynomials constructed in Chapter 4

from representation theoretic considerations. Note that (5.2) defines a matrix valued

inner product 〈·, ·〉W on the matrix valued polynomials. Using the orthogonality relations

for the Chebyshev polynomials Un it follows that

(H0)nm = δnm
π

2

(2`+ 1)2

(n+ 1)(2`− n+ 1)
(5.3)

which is in accordance with Proposition 4.4.6. From Chapter 4 we can also obtain an

expression for Hn by translating the result of Proposition 4.4.6 to the monic case in (4.40),

but since the matrix Υd in (4.40) is relatively complicated this leads to a complicated
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expression for the squared norm matrix Hn in (5.2). In Corollary 5.5.4 we give a simpler

expression for Hn from the three-term recurrence relation.

These polynomials have a group theoretic interpretation as matrix valued spherical

functions associated to (SU(2) × SU(2), SU(2)), see Chapter 4 and Section 5.7. In par-

ticular, in Section 4.5 we have shown that the corresponding orthogonal polynomials are

not irreducible, but can be written as a 2-block-diagonal matrix of irreducible matrix

valued orthogonal polynomials. Indeed, if we put J ∈ M2`(C), Jnm = δn+m,2` we have

JW (x) = W (x)J for all x ∈ [−1, 1], and by Proposition 4.5.5 J and I span the commu-

tant {Y ∈M2`(C) | [Y,W (x)] = 0∀x ∈ [−1, 1]}. Note that J is a self-adjoint involution,

J2 = I, J∗ = J . It is easier to study the polynomials Pn, and we discuss the relation to

the irreducible cases when appropriate.

In this paper we continue the study of the matrix valued orthogonal polynomials and

the related weight function. Let us discuss in some more detail the results we obtain in this

paper. Some of these results are obtained employing the group theoretic interpretation

and some are obtained using special functions. Essentially, we obtain the following results

for the weight function:

(a) explicit expression for det(W (x)), hence proving Conjecture 4.5.8, see Corollary 5.2.3;

(b) an LDU-decomposition for W in terms of Gegenbauer polynomials, see Theorem 5.2.1.

Part (a) can be proved by a group theoretic consideration, and gives an alternative proof

for a related statement by Koornwinder [Koo85], but we actually calculate it directly

from (b). The LDU-decomposition hinges on expressing the integral of the product of

two Gegenbauer polynomials and a Chebyshev polynomial as a Racah polynomial, see

Lemma 5.2.7.

For the matrix valued orthogonal polynomials we obtain the following results:

(i) Pn as eigenfunctions to a second-order matrix valued differential operator D̃ and a

first-order matrix valued differential operator Ẽ, compare Section 4.7, see Theorem

5.3.1 and Section 5.3;

(ii) the group-theoretic interpretation of D̃ and Ẽ using the Casimir operators for

SU(2)×SU(2), see Section 5.7, for which the paper by Casselman and Miličić [CM82]

is essential;

(iii) explicit expressions for the matrix entries of the polynomials Pn in terms of ma-

trix valued hypergeometric series using the matrix valued differential operators, see

Theorem 5.4.5;

(iv) explicit expressions for the matrix entries of the polynomials PnL in terms of

(scalar-valued) Gegenbauer polynomials and Racah polynomials using the LDU-

decomposition of the weight W and differential operators, see Theorem 5.6.2;

(v) explicit expression for the three-term recurrence satisfied by Pn, see Theorem 5.5.3.
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In particular, (i) and (ii) follow from group theoretic considerations, see Section 5.3 and

5.7. This then gives the opportunity to link the polynomials to the matrix valued hyper-

geometric differential operator, leading to (iii). The explicit expression in (iv) involving

Gegenbauer polynomials is obtained by using the LDU-decomposition of the weight matrix

and the differential operator D̃. The expression of the coefficients as Racah polynomials

involves the first order differential operator as well. Finally, in Theorem 4.4.8 we have

obtained an expression for the coefficients of the three-term recurrence relation where the

matrix entries of the coefficient matrices are given as sums of products of Clebsch-Gordan

coefficients, and the purpose of (v) is to give a closed expression for these matrices. The

case ` = 0, or the spherical case, corresponds to the Chebyshev polynomials Un(x), which

occur as spherical functions for (SU(2) × SU(2),SU(2)) or equivalently as characters on

SU(2). For these cases almost all of the statements above reduce to well-known state-

ments for Chebyshev polynomials, except that the first order differential operator has no

meaning for this special case.

The structure of the paper is as follows. In Section 5.2 we discuss the LDU decom-

position of the weight, but the main core of the proof is refererred to Appendix 5.A. In

Section 5.3 we discuss the matrix valued differential operators to which the matrix valued

orthogonal polynomials are eigenfunctions. We give a group theoretic proof of this result

in Section 5.7. In Section 4.7 we have derived the same operators by a judicious guess

and next proving the result. In order to connect to Tirao’s matrix valued hypergeometric

series, we switch to another variable. The connection is made precise in Section 5.4. This

result is next used in Section 5.5 to derive a simple expression for the coefficients in the

three-term recurrence of the monic orthogonal polynomials, improving a lot on the cor-

responding result in Theorem 4.4.8. In Section 5.6 we explicitly establish that the entries

of the matrix valued orthogonal polynomials times the L-part of the LDU-decomposition

of the weight W can be given explicitly as a product of a Racah polynomial and a Gegen-

bauer polynomial, see Theorem 5.6.2. Some of the above statements require somewhat

lengthy and/or tedious manipulations, and in order to deal with these computations and

also for various other checks we have used computer algebra.

As mentioned before, we consider the matrix valued orthogonal polynomials studied in

this paper as matrix valued analogues of the Chebyshev polynomials of the second kind.

As is well known, the group theoretic interpretation of the Chebyshev polynomials, or

more generally of spherical functions, leads to more information on these special functions,

and it remains to study which of these properties can be extended in this way to the

explicit set of matrix valued orthogonal polynomials studied in this paper. This paper is

mainly analytic in nature, and we only use the group theoretic interpretation to give a

new way on how to obtain the first and second order matrix valued differential operator

which have the matrix valued orthogonal polynomials as eigenfunctions. We note that all

differential operators act on the right. The fact that we have both a first and a second

order differential operator makes it possible to consider linear combinations, and this is

useful in Section 5.4 to link to Tirao’s matrix valued differential hypergeometric function

and Section 5.6 in order to diagonalise (or decouple) a suitable matrix valued differential
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operator. The techniques in Section 5.4 and Section 5.6 are based on the techniques

developed in [PR08], [PT07], [Rom07], [RT06].

We finally remark that J.A. Tirao has informed us that I. Zurrián, I. Pacharoni and

J. Tirao have obtained results of a similar nature by considering matrix valued orthogonal

polynomials for the closely related pair (SO(4),SO(3)), see [Zur08], along the lines of

[GPT02]. We stress that our results and the results by Zurrián, Tirao and Pacharoni

have been obtained independently.

Acknowledgement. We thank Juan A. Tirao for his suggestion on how to obtain

the first order differential operator from the Casimir operators in Section 5.7. We also

thank Erik van den Ban for pointing out to one of us (MvP) the paper [CM82] and for

explaining the result of this paper. The work of Pablo Román on this paper was done

while employed by the Katholieke Universiteit Leuven, Belgium, through grant OT/08/33

of the KULeuven and grant P06/02 of the Belgian Interuniversity Attraction Pole.

5.2 LDU-decomposition of the weight

In this section we state the LDU-decomposition of the weight matrix W in (5.1). The

details of the proof, involving summation and transformation formulas for hypergeometric

series (up to 7F6-level), is presented in Appendix 5.A. Some direct consequences of the

LDU-decomposition are discussed. The explicit decomposition is a crucial ingredient in

Section 5.6, where the matrix valued orthogonal polynomials are related to the classical

Gegenbauer and Racah polynomials.

In order to formulate the result we need the Gegenbauer, or ultraspherical, polynomi-

als, see e.g. [AAR99], [Ism09], [KS98], defined by

C(α)
n (x) =

(2α)n
n!

2F1

(
−n, n+ 2α

α+ 1
2

;
1− x

2

)
. (5.4)

The Gegenbauer polynomials are orthogonal polynomials;∫ 1

−1

(1− x2)α−
1
2C(α)

n (x)C(α)
m (x)dx =

δnm
(2α)n

√
π Γ(α+ 1

2 )

n! (n+ α) Γ(α)
= δnm

π Γ(n+ 2α) 21−2α

Γ(α)2 (n+ α)n!
(5.5)

Theorem 5.2.1. The weight matrix W has the following LDU-decomposition;

W (x) =
√

1− x2 L(x)T (x)L(x)t, x ∈ [−1, 1],

where L : [−1, 1]→M2`+1(C) is the unipotent lower triangular matrix

L(x)mk =

0, k > m
m! (2k + 1)!

(m+ k + 1)! k!
C

(k+1)
m−k (x), k ≤ m
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and T : [−1, 1]→M2`+1(C) is the diagonal matrix

T (x)kk = ck(`)(1− x2)k, ck(`) =
4k(k!)4(2k + 1)

((2k + 1)!)2

(2`+ k + 1)! (2`− k)!

((2`)!)2
.

Note that the matrix-entries of L are independent of `, hence of the size of the matrix

valued weight W . Using

dk

dxk
C(α)
n (x) = 2k(α)k C

(α+k)
n−k (x)

we can write uniformly L(x)mk = m! 2−k (2k+1)!
(k!)2 (m+k+1)!

dkUm
dxk

(x). In Theorem 5.6.2 we extend

Theorem 5.2.1, but Theorem 5.2.1 is an essential ingredient in Theorem 5.6.2.

Since W (x) is symmetric, it suffices to consider the (n,m)-matrix-entry for m ≤ n of

Theorem 5.2.1. Hence Theorem 5.2.1 follows directly from Proposition 5.2.2 using the

explicit expression (5.1) for the weight W .

Proposition 5.2.2. The following relation

m∑
t=0

αt(m,n)Un+m−2t(x) =

m∑
k=0

βk(m,n)(1− x2)k C
(k+1)
n−k (x)C

(k+1)
m−k (x)

with the coefficients αt(m,n) given by (5.1) and

βk(m,n) =
m!

(m+ k + 1)!

n!

(n+ k + 1)!
k! k! 22k(2k + 1)

(2`+ k + 1)! (2`− k)!

(2`)! (2`)!

holds for all integers 0 ≤ m ≤ n ≤ 2`, and all ` ∈ 1
2N.

Before discussing the proof we list some corollaries of Theorem 5.2.1. First of all, we

can use Theorem 5.2.1 to prove Conjecture 4.5.8, see (a) of Section 5.1.

Corollary 5.2.3. det
(
W (x)

)
= (1− x2)2(`+ 1

2 )2
∏2`
k=0 ck(`).

Remark 5.2.4. We also have another proof of this fact using a group theoretic approach

to calculate det(Φ0(x)), see Chapter 4 and Section 5.7 for the definition of Φ0, and W

is up to trivial factors equal to (Φ0)(Φ0)∗. This proof is along the lines of Koornwinder

[Koo85].

Secondly, using the matrix J ∈ M2`+1(C), Jnm = δn+m,2` and W (x) = JW (x)J ,

see Proposition 4.5.5 and Subsection 4.6.2, we obtain from Theorem 5.2.1 the UDL-

decomposition for W . For later reference we also recall JPn(x)J = Pn(x), since both are

the monic matrix valued orthogonal polynomials with respect to W (x) = JW (x)J .

Corollary 5.2.5. W (x) =
√

1− x2
(
JL(x)J

)(
JT (x)J

)(
JL(x)J

)t
, x ∈ [−1, 1] gives the

UDL-decomposition of the weight W .
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Thirdly, considering the Fourier expansion of the weight function W (cos θ), and using

the expression of the weight in terms of Clebsch-Gordan coefficients, see (4.26), (4.29)

and (4.30), we obtain a Fourier expansion, which is actually equivalent to Theorem 5.2.1.

Corollary 5.2.6. We have the following Fourier expansion

m∧n∑
k=0

(−4)k(2k + 1)
(m− k + 1)k (n− k + 1)k

(m+ 1)k+1 (n+ 1)k+1

(2`+ k + 1)! (2`− k)!

(2`)! (2`)!
×

e−i(n+m)t(1− e2it)2k
2F1

(
k − n, k + 1

−n
; e2it

)
2F1

(
k −m, k + 1

−m
; e2it

)
=

2∑̀
j=0

n∑
j1=0

2`−n∑
j2=0

j1+j2=j

m∑
i1=0

2`−m∑
i2=0

i1+i2=j

(
n
j1

)(
2`−n
j2

)(
2`
j

) (
m
i1

)(
2`−m
i2

)(
2`
j

) ei((n−j1+j2)−(m−i1+i2))t

Proof. In Subsections 4.5 and 4.6 the weight function W (cos t) was initially defined as

a Fourier polynomial with the coefficients given in terms of Clebsch-Gordan coefficients.

After relabeling this gives

2∑̀
j=0

n∑
j1=0

2`−n∑
j2=0

j1+j2=j

m∑
i1=0

2`−m∑
i2=0

i1+i2=j

(
n
j1

)(
2`−n
j2

)(
2`
j

) (
m
i1

)(
2`−m
i2

)(
2`
j

) ei((n−j1+j2)−(m−i1+i2))t

=
(
L(cos t)T (cos t)L(cos t)t

)
nm

=

min(m,n)∑
k=0

βk(m,n) sin2k t C
(k+1)
n−k (cos t)C

(k+1)
m−k (cos t)

where we have used (4.33) to express the Clebsch-Gordan coefficients in terms of binomial

coefficients.

Using the result [BK92, Cor. 6.3] by Koornwinder and Badertscher together with the

Fourier expansion of the Gegenbauer polynomial, see [BK92, (2.8)], [AAR99, (6.4.11)],

[Ism09, (4.5.13)], we find the Fourier expansion of sink t C
(k+λ)
n−k (cos t) in terms of Hahn

polynomials defined by

Qk(j;α, β,N) = 3F2

(
−k, k + α+ β + 1,−j

α+ 1,−N
; 1

)
, k ∈ {0, 1, · · · , N}, (5.6)

see [AAR99, p. 345], [Ism09, §6.2], [KS98, §1.5]. For λ = 1 the explicit formula is

ik(n+ 1)k+1 (n− k)!

2k( 3
2 )k (2k + 2)n−k

sink t C
(k+1)
n−k (cos t) =

n∑
j=0

Qk(j; 0, 0, n)ei(2j−n)t

= e−int(1− e2it)k 2F1

(
k − n, k + 1

−n
; e2it

) (5.7)

using the generating function [KS98, (1.6.12)] for the Hahn polynomials in the last equal-

ity. Plugging this in the identity gives the required result.
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In the proof of Proposition 5.2.2 and Theorem 5.2.1 given in Appendix 5.A we use

a somewhat unusual integral representation of a Racah polynomial. Recall the Racah

polynomials, [AAR99, p. 344], [KS98, §1.2], defined by

Rk(λ(t);α, β, γ, δ) = 4F3

(
−k, k + α+ β + 1,−t, t+ γ + δ + 1

α+ 1, β + δ + 1, γ + 1
; 1

)
(5.8)

where λ(t) = t(t + γ + δ + 1), and one out of α + 1, β + δ + 1, γ + 1 equals −N with a

non-negative integer N . The Racah polynomials with 0 ≤ k ≤ N form a set of orthogonal

polynomials for t ∈ {0, 1, · · · , N} for suitable conditions on the parameters. For the

special case of the Racah polynomials in Lemma 5.2.7 the orthogonality relations are

given in Appendix 5.A.

Lemma 5.2.7. For integers 0 ≤ t, k ≤ m ≤ n we have∫ 1

−1

(1− x2)k+ 1
2C

(k+1)
n−k (x)C

(k+1)
m−k (x)Un+m−2t(x) dx =

√
π Γ(k + 3

2 )

(k + 1)

(k + 1)m−k
(m− k)!

(k + 1)n−k
(n− k)!

(−1)k (2k + 2)m+n−2k (k + 1)!

(n+m+ 1)!
×

Rk(λ(t); 0, 0,−n− 1,−m− 1)

Remark 5.2.8. Lemma 5.2.7 can be extended using the same method of proof to∫ 1

−1

(1− x2)α+k+ 1
2C

(α+k+1)
n−k (x)C

(α+k+1)
m−k (x)C

(β)
n+m−2t(x) dx =

(α+ k + 1)m−k (2k + 2α+ 2)n−k
(m− k)! (n−m)!

(−m+ β − α− 1)m−t
(m− t)!

×

(β)n−t
√
π Γ(α+ k + 3

2 )

Γ(α+ n+m− t+ 2)
4F3

(
k −m,−m− 2α− k − 1, t−m,β + n− t

β − α− 1−m,−m− α, n−m+ 1
; 1

)
(5.9)

assuming n ≥ m. Lemma 5.2.7 corresponds to the case α = 0, β = 1 after using

a transformation for a balanced 4F3-series. Note that 4F3-series can be expressed as

a Racah polynomial orthogonal on {0, 1, · · · ,m} in case α = 0 or β = α + 1, which

corresponds to Lemma 5.2.7. We do not use (5.9) in the paper, and a proof follows the

lines of the proof of Lemma 5.2.7 as given in Appendix 5.A.

In Theorem 4.6.5, see Section 5.1, we have proved that the weight function W is not

irreducible, meaning that there exists Y ∈M2`+1(C) so that

YW (x)Y t =

(
W1(x) 0

0 W2(x)

)
, Y Y t = I = Y tY (5.10)

and that there is no further reduction.

We can then obtain results by combining the reducibility and the LDU-decomposition.

E.g. assuming 2`+ 1 even and writing

Y =

(
A B

C D

)
, L(x) =

(
l1(x) 0

r(x) l2(x)

)
, T (x) =

(
t1(x) 0

0 t2(x)

)
,
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5.3. MVOP as eigenfunctions of DO

with A, D diagonal and B, C antidiagonal, see Corollary 4.5.6, l1(x), l2(x) lower-

diagonal matrices and r(x) a full matrix, we can work out the block-diagonal structure

of Y L(x)T (x)L(x)tY t. It follows that the off-diagonal blocks being zero is equivalent to

(Al1(x)t1(x) +Br(x)t1(x))
(
l1(x)tCt + r(x)tDt

)
+Bl2(x)t2(x)l2(x)tDt = 0. (5.11)

This can be rewritten as an identity for four sums of products of two Gegenbauer poly-

nomials involving the weight function and the constants in Theorem 5.2.1 being zero. We

do not write the explicit results, since we do not need them.

5.3 Matrix valued orthogonal polynomials as

eigenfunctions of matrix valued differential oper-

ators

In Section 4.7 we have derived that the matrix valued orthogonal polynomials are eigen-

functions for a second and a first order matrix valued differential operator by looking

for suitable matrix valued differential operators that are self-adjoint with respect to the

matrix valued inner product 〈·, ·〉W . The method was to establish relations between the

coefficients of the differential operators and the weight W , next judiciously guessing the

general result and next proving it by a verification. In this paper we show that essentially

these operators can be obtained from the group theoretic interpretation by establishing

that the matrix valued differential operators are obtainable from the Casimir operators

for SU(2)×SU(2). Since the paper is split into a first part of analytic nature and a second

part of group theoretic nature, we state the result in this section whereas the proofs are

given in Section 5.7. The Sections 5.4 and 5.6 depend strongly on the matrix valued

differential operators in Theorem 5.3.1.

Recall that all differential operators act on the right, so for a matrix valued polynomial

P : R → MN (C) depending on the variable x, the s-th order differential operator D =∑s
i=0

di

dxiFi(x), Fi : R→MN (C), acts by

(
PD

)
(x) =

s∑
i=0

diP

dxi
(x)Fi(x), PD : R→MN (C)

where
(
diP
dxi (x)

)
nm

= diPnm
dxi (x) is a matrix which is multiplied from the right by the matrix

Fi(x). The matrix valued orthogonal polynomial is an eigenfunction of a matrix valued

differential operator if there exists a matrix Λ ∈ MN (C), the eigenvalue matrix, so that

PD = ΛP as matrix valued functions. Note that the eigenvalue matrix is multiplied from

the left. For more information on differential operators for matrix valued functions, see

e.g. [GT07], [Tir03].

We denote by Eij the standard matrix units, i.e. Eij is the matrix with all matrix

entries equal to zero, except for the (i, j)-th entry which is 1. By convention, if either i

or j is not in the appropriate range, the matrix Eij is zero.
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Theorem 5.3.1. Define the second order matrix valued differential operator

D̃ = (1− x2)
d2

dx2
+

(
d

dx

)
(C̃ − xŨ) − Ṽ

C̃ =

2∑̀
i=0

(2`− i)Ei,i+1 +

2∑̀
i=0

iEi,i−1, Ũ = (2`+ 3)I, Ṽ = −
2∑̀
i=0

i(2`− i)Eii

and the first order matrix valued differential operator

Ẽ =

(
d

dx

)
(B̃0 + xB̃1) + Ã

B̃0 = −
2∑̀
i=0

(2`− i)
4`

Ei,i+1 +

2∑̀
i=0

(`− i)
2`

Eii +

2∑̀
i=0

i

4`
Ei,i−1,

B̃1 = −
2∑̀
i=0

(`− i)
`

Ei,i, Ã =

2∑̀
i=0

(2`+ 2)(i− 2`)

−4`
Ei,i,

then the monic matrix valued orthogonal polynomials Pn satisfy

PnD̃ = Λn(D̃)Pn, Λn(D̃) =

2∑̀
i=0

(−n(n− 1)− n(2`+ 3) + i(2`− i))Eii,

PnẼ = Λn(Ẽ)Pn, Λn(Ẽ) =

2∑̀
i=0

(
n(`− i)

2`
− (2`+ 2)(i− 2`)

4`

)
Eii.

and the operators D̃ and Ẽ commute. The operators are symmetric with respect to W .

The group theoretic proof of Theorem 5.3.1 is given in Section 5.7. Theorem 5.3.1

has been proved in Theorems 4.7.6 and 4.7.7 analytically. The symmetry of the operators

with respect to W means that 〈PD,Q〉W = 〈P,QD〉W and 〈PE,Q〉W = 〈P,QE〉W for

all matrix valued polynomials with respect to the matrix valued inner product 〈·, ·〉W
defined in (5.2). The last statement follows immediately from the first by the results of

Grünbaum and Tirao [GT07]. Also, [D,E] = 0 follows from the fact that the eigenvalue

matrices commute. In the notation of [GT07] we have D̃, Ẽ ∈ D(W ), where D(W ) is

the ∗-algebra of matrix valued differential operators having the matrix valued orthogonal

polynomials as eigenfunctions.

Note that Ẽ has no analogue in case ` = 0, whereas D̃ reduces to the hypergeometric

differential operator for the Chebyshev polynomials Un.

The matrix-differential operator D̃ is J-invariant, i.e. JD̃J = D̃. The operator Ẽ is

almost J-anti-invariant, up to a multiple of the identity. This is explained in Theorem

5.7.15 and the discussion following this theorem. In particular, D̃ descends to the cor-

responding irreducible matrix valued orthogonal polynomials, but Ẽ does not, see also

Section 4.7.
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5.4. MVOP as MVHGF

5.4 Matrix valued orthogonal polynomials as

matrix valued hypergeometric functions

The polynomial solutions to the hypergeometric differential equation, see (5.29), are

uniquely determined. Many classical orthogonal polynomials, such as the Jacobi, Her-

mite, Laguerre and Chebyshev, can be written in terms of hypergeometric series. For

matrix valued valued functions Tirao [Tir03] has introduced a matrix valued hypergeo-

metric differential operator and its solutions. The purpose of this section is to link the

monic matrix valued orthogonal polynomials to Tirao’s matrix valued hypergeometric

functions.

We want to use Theorem 5.3.1 in order to express the matrix valued orthogonal poly-

nomials as matrix valued hypergeometric functions using Tirao’s approach [Tir03]. In

order to do so we have to switch from the interval [−1, 1] to [0, 1] using x = 1− 2u. We

define

Rn(u) = (−1)n2−nPn(1− 2u), Z(u) = W (1− 2u) (5.12)

so that the rescaled monic matrix valued orthogonal polynomials Rn satisfy

Z(u) = W (1− 2u),

∫ 1

0

Rn(u)Z(u)Rm(u)∗ du = 2−1−2nHn. (5.13)

In the remainder of Section 5.4 we work with the polynomials Rn on the interval [0, 1].

It is a straightforward check to rewrite Theorem 5.3.1.

Corollary 5.4.1. Let D and E be the matrix valued differential operators

D = u(1− u)
d2

du2
+

(
d

du

)
(C − uU)− V, E =

(
d

du

)
(uB1 +B0) +A0,

where the matrices C, U , V , B0, B1 and A0 are given by

C = −
2∑̀
i=0

(2`− i)
2

Ei,i+1 +

2∑̀
i=0

(2`+ 3)

2
Eii −

2∑̀
i=0

i

2
Ei,i−1, U = (2`+ 3)I,

V = −
2∑̀
i=0

i(2`− i)Ei,i A0 =

2∑̀
i=0

(2`+ 2)(i− 2`)

2`
Ei,i,

B0 = −
2∑̀
i=0

(2`− i)
4`

Ei,i+1 +

2∑̀
i=0

(`− i)
2`

Eii +

2∑̀
i=0

i

4`
Ei,i−1

B1 = −
2∑̀
i=0

(`− i)
`

Ei,i.

Then D and E are symmetric with respect to the weight W , and D and E commute.
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Moreover for every integer n ≥ 0,

RnD = Λn(D)Rn, Λn(D) =

2∑̀
i=0

(−n(n− 1)− n(2`+ 3) + i(2`− i))Eii,

RnE = Λn(E)Rn, Λn(E) =

2∑̀
i=0

(
−n(`− i)

`
+

(2`+ 2)(i− 2`)

2`

)
Eii.

It turns out that it is more convenient to work with Dα = D+ αE for α ∈ R, so that

RnDα = Λn(Dα)Rn with diagonal eigenvalue matrix Λn(Dα) = Λn(D) + αΛn(E). By

[GT07, Prop. 2.6] we have Λn(Dα) = −n2 − n(Uα − 1)− Vα. Since the eigenvalue matrix

Λn(Dα) is diagonal, the matrix valued differential equation RnDα = Λn(Dα)Rn can be

read as 2`+ 1 differential equations for the rows of Rn. The i-th row of Rn is a solution

to

u(1− u)p′′(u) + p′(u)(Cα − uUα)− p(u)(Vα + λ) = 0, λ =
(
Λn(Dα)

)
ii

(5.14)

for p : C → C2`+1 a (row-)vector-valued polynomial function. Here Cα = C + αB0,

Uα = U − αB1, Vα = V − αA0 using the notation of Corollary 5.4.1. Now (5.14) allows

us to connect to Tirao’s matrix valued hypergeometric function [Tir03], which we briefly

recall in Remark 5.4.2.

Remark 5.4.2. Given d×d matrices C, U and V we can consider the differential equation

z(1− z)F ′′(z) + (C − zU)F ′(z) − V F (z) = 0, z ∈ C, (5.15)

where F : C→ Cd is a (column-)vector-valued function which is twice differentiable. It is

shown by Tirao [Tir03] that if the eigenvalues of C are not in −N, then the matrix valued

hypergeometric function 2H1 defined as the power series

2H1

(
U, V

C
; z

)
=

∞∑
i=0

zi

i!
[C,U, V ]i,

[C,U, V ]0 = 1, [C,U, V ]i+1 = (C + i)−1
(
i2 + i(U − 1) + V

)
[C,U, V ]i

(5.16)

converges for |z| < 1 in Md(C). Moreover, for F0 ∈ Cd the (column-)vector-valued

function

F (z) = 2H1

(
U, V

C
; z

)
F0

is a solution to (5.15) which is analytic for |z| < 1, and any analytic (on |z| < 1) solution

to (5.15) is of this form.

Comparing Tirao’s matrix valued hypergeometric differential equation (5.15) with

(5.14) and using Remark 5.4.2, we see that

p(u) =

(
2H1

(
U tα, V

t
α + λ

Ctα
;u

)
P0

)t
= P t0

(
2H1

(
U tα, V

t
α + λ

Cα
;u

))t
, (5.17)
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P0 ∈ C2`+1, are the solutions to (5.14) which are analytic in |u| < 1 assuming that

eigenvalues of Ctα are not in −N. We first verify this assumption. Even though Vα and

Uα are symmetric, we keep the notation for transposed matrices for notational esthetics.

Lemma 5.4.3. For every ` ∈ 1
2N, the matrix Cα is a diagonalisable matrix with eigen-

values (2j + 3)/2, j ∈ {0, . . . , 2`}.

Proof. Note that Cα is tridiagonal, so that vλ =
∑2`
n=0 pn(λ)en is an eigenvector for Cα

for the eigenvalue λ if and only if

− (λ− 3

2
) pn(λ) =

(2`− n)(2`+ α)

4`
pn+1(λ)

−
(

(2`+ α)(2`− n) + n(2`− α)

4`

)
pn(λ) +

(2`− α)n

4`
pn−1(λ).

The three-term recurrence relation corresponds precisely to the three-term recurrence

relation for the Krawtchouk polynomials for N ∈ N,

Kn(x; p,N) = 2F1

(
−n,−x
−N

;
1

p

)
, n, x ∈ {0, 1, · · · , N},

see e.g. [AAR99, p. 347], [Ism09, §6.2], [KS98, §1.10], with N = 2`, p = 2`+α
4` . The

Krawtchouk polynomials are orthogonal with respect to the binomial distribution for

0 < p < 1, or α ∈ (−2`, 2`), and we find

pn(λ) = Kn(λ;
2`+ α

4`
, `)

and the eigenvalues of Cα are 3
2 + x, x ∈ {0, 1, · · · , 2`}. This proves the statement for

α ∈ (−2`, 2`).

Note that for α 6= ±2`, the matrix Cα is tridiagonal, and the eigenvalue equation is

solved by the same contiguous relation for the 2F1-series leading to the same statement

for |α| > 2`. In case α = ±2` the matrix C±2` is upper or lower triangular, and the

eigenvalues can be read off from the diagonal.

In particular, we can give the eigenvectors of Cα explicitly in terms of terminating

2F1-hypergeometric series, but we do not use the result in the paper.

So (5.17) is valid and this gives a series representation for the rows of the monic

polynomial Rn. Since each row is polynomial, the series has to terminate. This im-

plies that there exists n ∈ N so that [Ctα, U
t
α, V

t
α + λ]n+1 is singular and 0 6= P0 ∈

Ker ([Ctα, U
t
α, V

t
α + λ]n+1).

Suppose that n is the least integer for which [Ctα, U
t
α, V

t
α + λ]n+1 is singular, i.e.

[Ctα, U
t
α, V

t
α + λ]i is regular for all i ≤ n. Since

[Ctα, U
t
α, V

t
α + λ]n+1 = (Ctα + n)−1

(
n2 + n(U tα − 1) + V tα + λ

)
[Ctα, U

t
α, V

t
α + λ]n (5.18)

143



Chapter 5. MVOP II

and since the matrix (Cα + n) is invertible by Lemma 5.4.3, [Cα, Uα, Vα + λ]n+1 is a

singular matrix if and only if the diagonal matrix

Mα
n (λ) =

(
n2 + n(U tα − 1) + V tα + λ

)
=
(
n2 + n(Uα − 1) + Vα + λ

)
= λ− Λn(Dα) (5.19)

is singular. Note that the diagonal entries of Mα
n (λ) are of the form λ − λαj (n), so that

Mn(λ) is singular if and only if λ = λαj (n) for some j ∈ {0, 1, · · · , 2`}. We need that the

eigenvalues are sufficiently generic.

Lemma 5.4.4. Let α ∈ R \ Q. Then (j, n) = (i,m) ∈ {0, 1 · · · , 2`} × N if and only if

λαj (n) = λαi (m).

Proof. Assume λαj (n) = λαi (m) and let (j, n), (i,m) ∈ {0, 1 · · · , 2`} × N, then

0 = λαj (n)− λαi (m) = (m− n)(n+m+ 2 + 2`) + (j − i)
(
α(2`+ 4)

2`
− j − i+ 2`

)
.

If j 6= i, then we solve for α = 2`
(2`+4)

(
− (m−n)(m+n+2`+2)

j−i + j + i− 2`
)

which is rational.

Assume next that j = i, then (m−n)(n+m+2+2`) = 0. Since n,m, ` ≥ 0, it follows

that n = m and hence (j, n) = (i,m).

Assume α irrational, so that Lemma 5.4.4 shows that Mn

(
λαi (m)

)
is singular if and

only if n = m. So in the series (5.17) the matrix [Ctα, U
t
α, V

t
α + λ]n+1 is singular and

[Ctα, U
t
α, V

t
α + λ]i is non-singular for 0 ≤ i ≤ n. Furthermore, by Lemma 5.4.4 we see

that the kernel of [Ctα, U
t
α, V

t
α + λ]n+1 is one-dimensional if and only if λ = λαn(i), i ∈

{0, 1, · · · , 2`}. In case λ = λαn(i) we see that (5.17) is polynomial for

P0 = [Ctα, U
t
α, V

t
α + λαn(i)]−1

n ei

determined uniquely up to a scalar, where ei is the standard basis vector.

We can now state the main result of this section, expressing the monic polynomials

Rn as a matrix valued hypergeometric function.

Theorem 5.4.5. With the notation of Remark 5.4.2 the monic matrix valued orthogonal

polynomials are given by

(
Rn(u)

)
ij

=

(
2H1

(
U tα, V

t
α + λαn(i)

Ctα
;u

)
n! [Ctα, U

t
α, V

t
α + λαn(i)]−1

n ei

)t
j

for all α ∈ R.

Note that the left hand side is independent of α, which is not obvious for the right

hand side.

Proof. Let us first assume that α is irrational, so that the result follows from the

considerations in this section using that the i-th row of Rn(u) is a polynomial of (precise)

degree n. The constant follows from monocity of Rn, so that (Rn(u))ii = un.
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5.5. Three-term recurrence relation

Note that the left hand side is independent of α, and the right hand side is continuous

in α. Hence the result follows for α ∈ R.

In the scalar case ` = 0 Theorem 5.4.5 reduces to

Rn(u) = (−4)−n(n+ 1) 2F1

(
−n, n+ 2

3
2

;u

)
, (5.20)

which is the well-known hypergeometric expression for the monic Chebyshev polynomials,

see [AAR99, §2.5], [Ism09, (4.5.21)], [KS98, (1.8.31)].

5.5 Three-term recurrence relation

Matrix valued orthogonal polynomials satisfy a three-term recurrence relation, see e.g.

[DPS08], [GT07]. In Theorem 4.4.8 we have determined the three-term recurrence rela-

tion for the closely related matrix valued orthogonal polynomials explicitly in terms of

Clebsch-Gordan coefficients. The matrix entries of the matrices occurring in the three-

term recurrence relation have been given explicitly as sums of products of Clebsch-Gordan

coefficients. The purpose of this section is to give simpler expressions for the monic matrix

valued orthogonal polynomials using the explicit expression in terms of Tirao’s matrix

valued hypergeometric functions as established in Theorem 5.4.5.

From general theory the monic orthogonal polynomials Rn : R → MN (C) satisfy a

three-term recurrence relation

uRn(u) = Rn+1(u) +XnRn(u) + YnRn−1(u),

n ≥ 0, where R−1 = 0 and Xn, Yn ∈ M2`+1(C) are matrices depending on n and not on

x. Lemma 5.5.1 should be compared to [DPS08, Lemma 2.6].

Lemma 5.5.1. Let {Rn}n≥0 be the sequence of monic orthogonal polynomials and write

Rn(u) =
∑n
k=0R

n
k u

k, Rnk ∈ MN (C), and Rnn = I. Then the coefficients Xn, Zn of the

three-term recurrence relation are given by

Xn = Rnn−1 −Rn+1
n , Yn = Rnn−2 −Rn+1

n−1 −XnR
n
n−1.

Proof. Let 〈·, ·〉 denote the matrix valued inner product for which the monic polynomials

are orthogonal. Using the three-term recursion, orthogonality relations and expanding

the monic polynomial of degree n+ 1 gives

〈uRn −XnRn − YnRn−1, Rn〉 = 〈Rn+1, Rn〉 = 〈un+1, Rn〉 + Rn+1
n 〈un, Rn〉.

By the orthogonality relations the left hand side can be evaluated as

〈uRn −XnRn − YnRn−1, Rn〉 = 〈un+1, Rn〉 + Rnn−1〈un, Rn〉 − Xn〈Rn, Rn〉

and comparing the two right hand sides gives the required expression for Xn, since

〈Rn, Rn〉 = 〈un, Rn〉 is invertible.
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The expression for Yn follows by considering on the one hand

〈uRn −XnRn − YnRn−1, Rn−1〉 = 〈Rn+1, Rn−1〉
= 〈un+1, Rn−1〉 + Rn+1

n 〈un, Rn−1〉 + Rn+1
n−1〈un−1, Rn−1〉.

while on the other hand the left hand side also equals

〈un+1, Rn−1〉 + Rnn−1〈un, Rn−1〉 + Rnn−2〈un−1, Rn−1〉
− Xn〈un, Rn−1〉 − XnR

n
n−1〈un−1, Rn−1〉 − Yn〈Rn−1, Rn−1〉

and using the expression for Xn and cancelling common terms gives the required expres-

sion, since 〈Rn−1, Rn−1〉 = 〈un−1, Rn−1〉 is invertible.

In order to apply Lemma 5.5.1 for the explicit monic polynomials in this paper we

need to calculate the coefficients, which is an application of Theorem 5.4.5.

Lemma 5.5.2. Let {Rn}n≥0 be the monic polynomials with respect to Z on [0, 1]. Then

Rnn−1 =

n∑
j=0

jn

4(n+ j)
Ej,j−1 −

n∑
j=0

n

2
Ej,j +

n∑
i=0

n(2`− j)
4(2`− j + n)

Ej,j+1

Rnn−2 =

n∑
j=0

n(n− 1)j(j − 1)

32(n+ j)(n+ j − 1)
Ej,j−2 −

n∑
j=0

n(n− 1)j

8(n+ j)
Ej,j−1

+

n∑
j=0

n(n− 1)(3j2 − 6`j − 2n2 + n− 4n`)

16(n+ j)(i− 2`− n)
Ej,j

−
n∑
j=0

n(n− 1)(2`− j)
8(2`+ n− j)

Ej,j+1 +

n∑
j=0

n(n− 1)(2`− j)(2`− j − 1)

32(2`− j + n− 1)(2`+ n− j)
Ej,j+2

Proof. We can calculate Rnn−1 by considering the coefficients of un−1 using the expres-

sion in Theorem 5.4.5. This gives

(Rnn−1)ij =
n!

(n− 1)!

(
[Ctα, U

t
α, V

t
α + λαn(i)]n−1[Ctα, U

t
α, V

t
α + λαn(i)]−1

n ei
)t
j

= n
(
Mα
n−1

(
λαn(i)

)−1
(Ctα + n− 1)ei

)t
j

using the recursive definition (5.18) of [Ctα, U
t
α, V

t
α + λαn(i)]n.

Note that Mα
n−1

(
λαn(i)

)
is indeed invertible by Lemma 5.4.4 for irrational α. The

explicit expression of the right hand side gives the result after a straightforward compu-

tation, since the resulting matrix is tridiagonal.

We can calculate Rnn−2 analogously,

(Rnn−2)ij = n(n− 1)
(
Mα
n−2

(
λαn(i)

)−1
(Ctα + n− 2)Mα

n−1

(
λαn(i)

)−1
(Ctα + n− 1)ei

)t
j
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and a straightforward but tedious calculation gives the result. Note that Rnn−2 is a five-

diagonal matrix, since it is the product of two tridiagonal matrices.

Note that even though we have used the additional degree of freedom α in the proof

of Lemma 5.5.2, the resulting expressions are indeed independent of α.

Now we are ready to obtain the coefficients in the recurrence relation satisfied by the

polynomials Rn.

Theorem 5.5.3. For any ` ∈ 1
2N the monic orthogonal polynomials Rn satisfy the three-

term recurrence relation

uRn(u) = Rn+1(u) + XnRn(u) + YnRn−1(u),

where the matrices Xn, Yn are given by

Xn = −
2∑̀
i=0

[
i2Ei,i−1

4(n+ i)(n+ i+ 1)
− Ei,i

2
+

(2`− i)2Ei,i+1

4(2`+ n− i)(2`+ n− i+ 1)

]
,

Yn =

2∑̀
i=0

n2(2`+ n+ 1)2

16(n+ i)(n+ i+ 1)(2`+ n− i)(2`+ n− i+ 1)
Ei,i.

Proof. This is a straightforward computation using Lemma 5.5.1 and Lemma 5.5.2.

The calculation of Xn is straightforward from Lemma 5.5.1 and Lemma 5.5.2. In order

to calculate Yn we need XnRn−1. A calculation shows

XnR
n
n−1 = −

2∑̀
j=0

nj2(j − 1)

16(n+ j − 1)(n+ j)(n+ j + 1)
Ej,j−2

+

2∑̀
j=0

nj(n+ 2j + 1)

8(n+ j)(n+ j + 1)
Ej,j−1+

2∑̀
j=0

(
−i2n(2`− i+ 1)

16(n+ i)(n+ i+ 1)(2`− i+ 1 + n)
− n

4
−

(2`− i)2(i+ 1)n

16(2`− i+ 1 + n)(2`− i+ n)(n+ i+ 1)

)
Ejj

−
2∑̀
j=0

n(2`− i)(4`− 2j + n+ 1)

8(2`+ n− j)(2`+ n− j + 1)
Ej,j+1

+

2∑̀
j=0

n(2`− j)2(2`− j + 1)

16(2`− j + n− 1)(2`− j + n)(2`− j + n+ 1)
Ej,j+2

Now Lemma 5.5.1 and a computation show that Yn reduces to a tridiagonal matrix.

Now (5.12) and Theorem 5.5.3 give the three-term recurrence

xPn(x) = Pn+1(x) + (1− 2Xn)Pn(x) + 4YnPn−1(x) (5.21)
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for the monic orthogonal polynomials with respect to the matrix valued weight W on

[−1, 1]. The case ` = 0 corresponds to the three-term recurrence for the monic Chebyshev

polynomials Un. Note moreover, that limn→∞Xn = 1
2 and limn→∞ Yn = 1

16 , so that the

monic matrix valued orthogonal polynomials fit in the Nevai class, see [Dur99]. Note

the matrix valued orthogonal polynomials Pn in this paper are considered as matrix

valued analogues of the Chebyshev polynomials of the second kind, because of the group

theoretic interpretation Chapter 4 and Section 5.7, but that these polynomials are not

matrix valued Chebyshev polynomials in the sense of [Dur99, §3].

Using the three-term recurrence relation (5.21) and (5.2) we get

4YnHn−1 =

∫ 1

−1

xPn(x)W (x)Pn−1(x)∗dx =∫ 1

−1

Pn(x)W (x)(xPn−1(x))∗dx = Hn (5.22)

analogous to the scalar-valued case. Since H0 is determined in (5.3) we obtain Hn.

Corollary 5.5.4. The squared norm matrix Hn is

(Hn)ij = δij
π

2

(n!)2 (2`+ 1)2
n+1

(i+ 1)2
n (2`− i+ 1)2

n

2−2n

(n+ i+ 1)(2`− i+ n+ 1)

and JHnJ = Hn.

In Theorem 4.4.8 we have stated the three-term recurrence relation for the polynomials

Q`n(a), a ∈ A∗, see also Section 5.7 of this paper. Apart from a relabeling of the orthonor-

mal basis the monic polynomials corresponding to Q`n are precisely the polynomials Pn,

see (4.40) for the precise identification

Pd(x)n,m = Υ−1
d Qd(aarccos x)−`+n,−`+m, n,m ∈ {0, 1, . . . , 2`}, (5.23)

see also Section 5.7, where Υd in (5.23) is the leading coefficient of Q`d.

Corollary 5.5.5. The polynomials Q`n as in Section 4.4 satisfy the recurrence

φ(a)Q`n(a) = AnQ
`
n+1(a) + BnQ

`
n(a) + CnQ

`
n−1(a)
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5.6. MVOP related to Gegenbauer and Racah

where

An =
∑̀
q=−`

(n+ 1)(2`+ n+ 2)

2(`− q + n+ 1)(`+ q + n+ 1)
Eq,q,

Bn =
∑̀
q=−`

(`− q + 1)(`+ q)

2(`− q + n+ 1)(`+ q + n+ 1)
Eq,q−1

+
∑̀
q=−`

(`+ q + 1)(`− q)
2(`− q + n+ 1)(`+ q + n+ 1)

Eq,q+1

Cn =
∑̀
q=−`

n(2`+ n+ 1)

2(n+ q + `+ 1)(n− q + `+ 1)
Eq,q.

Proof. We use An = ΥnΥ−1
n+1, Bn = Υn(1 − 2Xn)Υ−1

n , Cn = Υn(4Yn)Υ−1
n−1 and

Theorem 5.5.3 to obtain the result from a straighforward computation. The matrices Υn

are given by

(Υn)p,q = δpq 2n
(`− q + 1)n (`+ q + 1)n

n! (2`+ 2)n
(5.24)

which follows from [Koo85, (3.10), (3.16)] where we have to bear in mind that the poly-

nomials in [Koo85] differ from ours by an application of J . Note that Chapter 4 does not

give this value for Υn.

Recall from Theorem 4.4.8 and (4.7) that the matrix entries of the matrices An, Bn
and Cn are explicitly known as a square of a double sum with summand the product of

four Clebsch-Gordan coefficients, hence Corollary 5.5.5 leads to an explicit expression for

this square.

5.6 The matrix valued orthogonal polynomials related

to Gegenbauer and Racah polynomials

The LDU-decomposition of the weight W of Theorem 5.2.1 has the weight functions of the

Gegenbauer polynomials in the diagonal T , so we can expect a link between the matrix

valued polynomials Pn(x)L(x) and the Gegenbauer polynomials. We cannot do this via

the orthogonality relations and the weight function, since the matrix L also depends on

x. Instead we use an approach based on the differential operators D̃ and Ẽ of Section 5.3,

and because of the link to the matrix valued hypergeometric differential operator as in

Theorem 5.4.5 we switch to the matrix valued orthogonal polynomials Rn and x = 1−2u.

It turns out that the matrix entries of Pn(x)L(x) can be given as a product of a Racah

polynomial times a Gegenbauer polynomial, see Theorem 5.6.2.

We use the differential operators D and E of Corollary 5.4.1, and as in Section 5.4 it is

handier to work with the second-order differential operator D−2` = D−2`E. By Theorem
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5.2.1 we have W (x) = L(x)T (x)L(x)t, hence Z(u) = L(1− 2u)T (1− 2u)L(1− 2u)t. For

this reason we look at the differential operator conjugated by M(u) = L(1− 2u).

In general, for D = d2

du2F2(u)+ d
duF1(u)+F0(u) a second order matrix valued differen-

tial operator, conjugation with the matrix valued function M , which we assume invertible

for all u, gives

M−1DM =
d2

du2
M−1F2M +

d

du

(
M−1F1M + 2

dM−1

du
F0M

)
+

(
M−1F0M +

dM−1

du
F1M +

d2M−1

du2
F0M

)
.

Note that differentiating M−1M = I gives dM−1

du = −M−1 dM
du M

−1, and similarly we find
d2M−1

du2 = −M−1 d2M
du2 M

−1 + 2M−1 dM
du M

−1 dM
du M

−1. We are investigating the possibility

of M−1DM being a diagonal matrix valued differential operator. We now assume that

F2(u) = u(1 − u), so that M−1F2M = u(1 − u). A straightforward calculation using

this assumption and the calculation of the derivatives of M−1 shows that M−1DM =

u(1−u) d2

du2 + d
duT1 +T0 with T0 and T1 matrix valued functions if and only if the following

equations (5.25), (5.26) hold:

F0M − dM

du
T1 − u(1− u)

d2M

du2
= MT0 (5.25)

F1M − 2u(1− u)
dM

du
= MT1. (5.26)

Of course, T0 and T1 need not be diagonal in general, but this is the case of interest.

Proposition 5.6.1. The differential operator D = M−1D−2`M is the diagonal differen-

tial operator

D = u(1− u)
d2

du2
+

(
d

du

)
T1(u) + T0,

where

T1(u) =
1

2
T 1

1 − uT 1
1 , T 1

1 =

2∑̀
i=0

(2i+ 3)Ei,i, T0 =

2∑̀
i=0

(2`− i)(2`+ i+ 2)Ei,i

Moreover, Rn(u) = Rn(u)M(u) satisfies

RnD = Λn(D)Rn, Λn(D) = Λn(D)− 2`Λn(E).

The proof shows that M−1DαM can only be a diagonal differential operator for

α = −2`. Note that D is a matrix valued differential operator as considered by Tirao, see

Remark 5.4.2 and [Tir03], and diagonality of D implies that the matrix valued hyperge-

ometric 2H1-series can be given explicitly in terms of (usual) hypergeometric series. In
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particular, we find as in the proof of Theorem 5.4.5 that

(
Rn(u)

)
kj

=

(
2H1

(
T 1

1 , λn(k)− T0
1
2T

1
1

;u

)
v

)t
j

,

vk =
(
Rn(0)

)
kj
, λn(k) = Λn(D)kk, (5.27)

since the condition σ( 1
2T

1
1 ) 6⊂ −N is satisfied.

Proof. Consider Dα = D + αE, so that F2(u) = u(1− u) and the above considerations

apply and F1(u) = Cα − uUα, and F0 = −Vα. We want to find out if we can obtain

matrix valued functions T1 and T0 satisfying (5.25), (5.26) for this particular F1, F2 and

M(u) = L(1− 2u). Since F0 is diagonal, and assuming that T0, T1 can be taken diagonal

it is clear that taking the (k, l)-th entry of (5.25) leads to

(F0)kkMkl −
dMkl

du
(T1)ll − u(1− u)

d2Mkl

du2
= Mkl(T0)ll. (5.28)

By Theorem 5.2.1 we have Mkl = 0 for l > k and for l ≤ k

Mkl(u) =

(
k

l

)
2F1

(
l − k, k + l + 2

l + 3
2

;u

)
so that (5.28) has to correspond to the second order differential operator

u(1−u)f ′′(u) +
(
c− (a+ b+ 1)u

)
f ′(u)−abf(u) = 0, f(u) = 2F1

(
a, b

c
;u

)
(5.29)

for the hypergeometric function. This immediately gives

(T1)ll = l +
3

2
− (2l + 3)u, (T0)ll − (F0)kk = k2 + 2k − (l2 + 2l).

Since (F0)kk = (−Vα)kk = −k2 + (2` + α (2`+2)
2` )k − α(2` + 2), this is only possible for

α = −2`, and in that case

(T1)ll = l +
3

2
− (2l + 3)u, (T0)ll = −l2 − 2l + 2`(2`+ 2). (5.30)

It remains to check that for α = −2` the condition (5.26) is valid with the explicit

values (5.30). For α = −2` the matrix valued function F1 is lower triangular instead of

tridiagonal, so that (5.26) is an identity in the subalgebra of lower triangular matrices.

With the explicit expression for M we have to check that(
(
3

2
+ k)− u(3 + 2k)

)
Mkl − kMk−1,l − 2u(1− u)

dMkl

du
= Mkl

(3

2
+ l − u(3 + 2l)

)
which can be identified with the identity

(1− x2)
dC

(l+1)
k−l
dx

(x) = (k + l + 1)C
(l+1)
k−l−1(x)− x(k − l)C(l+1)

k−l (x).
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In turn, this identity can be easily obtained from [AS92, (22.7.21)] or from [Ism09, (4.5.3),

(4.5.7)].

Since Rn and M are polynomial, Proposition 5.6.1 and the explicit expression for the

eigenvalue matrix in Corollary 5.4.1 imply that (Rn)kj is a polynomial solution to

u(1− u)f ′′(u) +
(
(j +

3

2
)− u(2j + 3)

)
f ′(u) + (2`− j)(2`+ j + 2)f(u)

=
(
−n(n− 1)− n(2`+ 3) + k(2`− k) + 2n(`− k)− (2`+ 2)(k − 2`)

)
f(u)

which can be rewritten as

u(1 − u)f ′′(u) +
(
(j +

3

2
) − u(2j + 3)

)
f ′(u) − (j − k − n)(n + k + j + 2)f(u) = 0

which is the hypergeometric differential operator for which the polynomial solutions are

uniquely determined up to a constant. This immediately gives

Rn(u)kj = ckj(n) 2F1

(
j − k − n, n+ k + j + 2

j + 3
2

;u

)
. (5.31)

for j − k − n ≤ 0 and Rn(u)kj = 0 otherwise. The case n = 0 corresponds to Theorem

5.2.1 and we obtain ckj(0) =
(
k
j

)
. It remains to determine the constants ckj(n) in (5.31).

First, switching to the variable x, we find

(
Pn(x)

)
kj

=
(
Pn(x)L(x)

)
kj

= (−2)n ckj(n)
(n+ k − j)!

(2j + 2)n+k−j
C

(j+1)
n+k−j(x) (5.32)

so that by (5.32) the orthogonality relations (5.2) and (5.5) give

δnm(Hn)kl = (−2)n+m

2`∧(n+k)∑
j=0

ckj(n)clj(m)cj(`)
(n+ k − j)!

(2j + 2)n+k−j
×

δn+k,m+l

√
π Γ(j + 3

2 )

(n+ k + 1) j!
.

Using the explicit value for cj(`) as in Theorem 5.2.1 and Corollary 5.5.4 we find orthog-

onality relations for the coefficients ckj(n):

(Hn)kk 2−2n δnm =

2`∧(n+k)∑
j=0

ckj(n)ck+m−n,j(m)×

(j!)2 (2j + 1) (2`+ j + 1)! (2`− j)! (n+ k − j)!
(n+ k + j + 1)! (n+ k + 1) (2`)!2

(5.33)

Note that we can also obtain recurrence relations for the coefficients ckj(n) using the

three-term recurrence relation of Theorem 5.5.3.
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Theorem 5.6.2. The polynomials Rn(u) = Rn(u)M(u) satisfy

Rn(u)kj = ck,0(n)(−1)j
(−2`)j (−k − n)j

j! (2`+ 2)j
×

4F3

(
−j, j + 1,−k,−2`− n− 1

1,−k − n,−2`
; 1

)
2F1

(
j − k − n, n+ k + j + 2

j + 3
2

;u

)
with Rn(u)kj = 0 for j − k − n > 0 and

ck,0(n) = (−1)n4−n
n! (2`+ 2)n

(k + 1)n (2`− k + 1)n

We view Theorem 5.6.2 as an extension of Theorem 5.2.1, but Theorem 5.2.1 is in-

strumental in the proof of Theorem 5.6.2. Since the inverse of M(u), or of L(x), does

not seem to have a nice explicit expression we do not obtain an interesting expression

for the matrix elements of the matrix valued monic orthogonal polynomials Rn(u) or of

Pn(x). Note also that the case ` = 0 gives back the hypergeometric representation of the

Chebyshev polynomials of the second kind Un, see (5.20).

Comparing with (5.8) we see that we can view the 4F3-series in Theorem 5.6.2 as a

Racah polynomial Rk(λ(j);−2` − 1,−k − n − 1, 0, 0), respectively Rk+n−m(λ(j);−2` −
1,−k − n − 1, 0, 0), see (5.8), where the N of the Racah polynomials equals 2` in case

2` ≤ k + n and N equals k + n in case 2` ≥ k + n. Using the first part of Theorem 5.6.2

we see that the orthogonality relations (5.33) lead to

(Hn)kk 2−2n δnm =
π

2

2`+ 1

(n+ k + 1)2
|ck0(n)|2×

2`∧(n+k)∑
j=0

(2j + 1) (−2`)j (−n− k)j
(2`+ 2)j (n+ k + 2)j

×

Rk(λ(j);−2`− 1,−k − n− 1, 0, 0)Rk+n−m(λ(j);−2`− 1,−k − n− 1, 0, 0), (5.34)

which corresponds to the orthogonality relations for the corresponding Racah polynomials,

see [AAR99, p. 344], [KS98, §1.2]. From this we find that the sum in (5.34) equals

δnm
(2`+ 1)(n+ k + 1)

(2`+ 1 + n− k)
.

Hence,

|ck0(n)|2 = (Hn)kk 2−2n 2

π

(n+ k + 1)(2`+ 1 + n− k)

(2`+ 1)2
=

4−2n (n!)2 (2`+ 2)2
n

(k + 1)2
n (2`− k + 1)2

n

(5.35)

using Corollary 5.5.4.
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We end this section with the proof of Theorem 5.6.2. The idea of the proof is to

obtain a three-term recurrence for the coefficients ckj(n) with explicit initial conditions,

and to compare the resulting three-term recurrence with well-known recurrences for Racah

polynomials, see [AAR99], [Ism09], [KS98]. The three-term recurrence relation is obtained

using the first-order differential operator E and the fact that the Rn, being analytic

eigenfunctions to D, are completely determined by the value at 0, see Remark 5.4.2.

Proof.[Proof of Theorem 5.6.2] Since the matrix valued differential operators D and E

commute and have the matrix valued orthogonal polynomials Rn as eigenfunctions by

Corollary 5.4.1, we see that E = M−1EM satisfies

E Rn = Λn(E)Rn, Λn(E) = Λn(E), E D = DE (5.36)

Moreover, in the same spirit as the proof of Proposition 5.6.1 we obtain

E =

(
d

du

)
S1(u) + S0(u),

S1(u) = u(1− u)

2∑̀
i=0

i2(2`+ i+ 1)

`(2i− 1)(2i+ 1)
Ei,i−1 −

2∑̀
i=0

(2`− i)
4`

Ei,i+1,

S0(u) = (1− 2u)

2∑̀
i=0

i2(2`+ i+ 1)

2`(2i− 1)
Ei,i−1 +

2∑̀
i=0

i(i+ 1)− 4`(`+ 1)

2`
Ei,i

(5.37)

by a straightforward calculation.

Define the vector space of (row-)vector valued functions

V (λ) = {F analytic at u = 0 | FD = λF},

and ν : V (λ) → C2`+1, F 7→ F (0), is an isomorphism, see Remark 5.4.2 and [Tir03].

Because of (5.36) we have the following commutative diagram

V (λ)
E−−−−→ V (λ)

ν

y yν
C2`+1 N(λ)−−−−→ C2`+1

with N(λ) a linear map. In order to determine N(λ) we note that F ∈ V (λ) can be

written as, cf (5.27),

Fj(u) =

(
2H1

(
T 1

1 , λ− T0
1
2T

1
1

;u

)
F (0)t

)t
j

,

so that
dFj
du (0) = F (0)(λ − T0)( 1

2T
1
1 )−1 by construction of the 2H1-series, see Remark

5.4.2. Now (5.36) gives

N(λ) = (λ− T0)(
1

2
T 1

1 )−1S1(0) + S0(0)
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5.6. MVOP related to Gegenbauer and Racah

acting from the right on row-vectors from C2`+1.

By Proposition 5.6.1 we have that the k-th row
(
(Rn)kj(·)

)2`
j=0

of Rn is contained in

V (λn(k)), see (5.27). On the other hand, the k-th row of Rn is an eigenfunction of E for

the eigenvalue µn(k) = Λn(E)kk. Since ν
((

(Rn)kj
)2`
j=0

)
= (ckj(n))2`

j=0 we see that the

row-vector ck = (ckj(n))2`
j=0 satisfies ckN(λn(k)) = µn(k) ck, which gives the recurrence

relation

− (i+ k + n+ 1)(i− k − n− 1)(2`− i+ 1)

(2i+ 1)
ck,i−1(n)

+ (i(i+ 1)− 4`(`+ 1))ck,i(n) +
(i+ 1)2(2`+ i+ 2)

(2i+ 1)
ck,i+1(n)

= (−2n(`− k) + (2`+ 2)(k − 2`))ck,i(n), (5.38)

with the convention ck,−1(n) = 0. Note that cjk(0) =
(
k
j

)
indeed satisfies (5.38). Com-

paring (5.38) with the three-term recurrence relation for the Racah polynomials or the

corresponding contiguous relation for balanced 4F3-series, see e.g. [AAR99, p. 344], [KS98,

§1.2], gives

ckj(n) = ck,0(n)(−1)j
(−2`)j (−k − n)j

j! (2`+ 2)j
4F3

(
−j, j + 1,−k,−2`− n− 1

1,−k − n,−2`
; 1

)
and ckj(n) = 0 for j > k + n.

It remains to determine the constants ck0(n), and we have already determined their

absolute values in (5.35) by matching it to the orthogonality relations for Racah polyno-

mials. From the three-term recurrence relation Theorem 5.5.3 we see that the constants

ckj(n) are all real, so it remains to determine the sign of ck0(n). Theorem 5.5.3 gives a

three-term recurrence for Rn(u), and taking the (k, 0)-th matrix entry gives a polynomial

identity in u using (5.31). Next taking the leading coefficient gives the recursion

ck0(n+ 1) = − (n+ k + 2)

4(n+ k + 1)
ck0(n) +

(2`− k)2

4(2`+ n− k)(2`+ n− k + 1)
ck+1,0(n)

and plugging in ck0(n) = sgn(ck0(n))|ck0(n)| and using the explicit value for |ck0(n)| gives

sgn(ck0(n+ 1)) (n+ 1)(2`+ n+ 2) =

− sgn(ck0(n))(n+ k + 2)(2l − k + n+ 1) + sgn(ck+1,0(n))(2`− k)(k + 1).

This gives sgn(ck0(n)) = sgn(ck+1,0(n)) for the right hand side to factorise as in the

left hand side, and then sgn(ck0(n + 1)) = −sgn(ck0(n)). Since ck0(0) = 1, we find

sgn(ck0(n)) = (−1)n.

Remark 5.6.3. Theorem 5.6.2 can now be plugged into the three-term recurrence re-

lation for Rn of Theorem 5.5.3, and this then gives a intricate three-term recurrence

relation for Gegenbauer polynomials involving coefficients which consist of sums of two

Racah polynomials. We leave this to the interested reader.
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Remark 5.6.4. We sketch another approach to the proof of the value of ck0(n) by

calculating the value ck,2`(n) in case k + n ≥ 2` or ck,n+k(n) in case k + n < 2`. For

instance, in case k + n ≥ 2` we have

(Rn(u))k,2` = (Rn(u)M(u))k,2` = (Rn(u))k,2` = (Rn(u))2`−k,0

using that M is a unipotent lower-triangular matrix valued polynomial and the symmetry

JRn(u)J = Rn(u), see Section 4.5. Now the leading coefficient of the right hand side can

be calculated using Theorem 5.4.5, and combining with (5.31), the value ck,2`(n) follows.

Then the recurrence (5.38) can be used to find ck0(n).

5.7 Group theoretic interpretation

The purpose of this section is to give a group theoretic derivation of Theorem 5.3.1

complementing the analytic derivation of Section 4.7. For this we need to recall some of

the results of Chapter 4.

5.7.1 Group theoretic setting of the matrix valued orthogonal

polynomials

In this subsection we recall the construction of the matrix valued orthogonal polynomials

and the corresponding weight starting from the pair (SU(2)×SU(2),SU(2)) and an SU(2)-

representation T `. Then we discuss how the differential operators come into play and what

their relation is with the matrix valued orthogonal polynomials. The goal of this section is

to provide a map of the relevant differential operators in the group setting to the relevant

differential operators for the matrix valued orthogonal polynomials in Theorem 5.7.8.

Let U = SU(2) × SU(2) and K = SU(2) diagonally embedded in U . Note that K

is the set of fixed points of the involution θ : U → U : (x, y) 7→ (y, x). The irreducible

representations of U and K are denoted by T `1,`2 and T ` as is explained in Section 4.2.

The representation space of T ` is denoted by H` which is a 2` + 1-dimensional vector

space. If T ` occurs in T `1,`2 upon restriction to K we defined the spherical function

Φ``1,`2 in Definition 4.2.2 as the T `-isotypical part of the matrix T `1,`2 . Let A ⊂ U be the

subgroup

A =

{
at =

((
eit/2 0

0 e−it/2

)
,

(
e−it/2 0

0 eit/2

))
, 0 ≤ t < 4π

}
and let M = ZK(A). Recall the decomposition U = KAK, [Kna02, Thm. 7.38]. The

restricted spherical functions Φ``1,`2 |A take their values in EndM (H`), see Proposition

4.2.4. Since EndM (H`) ∼= C2`+1 this allows allows us to view the restricted spherical

functions as being C2`+1-valued. The parametrization of the U -representations that con-

tain T ` indicates how to gather the restricted spherical functions. Following Figure 4.3

we write (`1, `2) = ζ(d, h) with ζ(d, h) = ( 1
2 (d + ` + h), 1

2 (d + ` − h)). Here d ∈ N and
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h ∈ {−`,−`+ 1, . . . , `}. We recall the definition of the full spherical functions of type `,

Definition 4.4.2.

Definition 5.7.1. The full spherical function of type ` and degree d is the matrix valued

function Φ`d : A → End(C2`+1) whose j-th row is the restricted spherical function Φ``1,`2
with (`1, `2) = ζ(d, j).

The full spherical function of degree zero has the remarkable property of being invert-

ible on the subset Areg := {at|t ∈ (0, π) ∪ (π, 2π) ∪ (2π, 3π) ∪ (3π, 4π)}, which was first

proved by Koornwinder [Koo85, Prop. 3.2]. The invertibility follows also from Corollary

5.2.3. Let φ = Φ0
1/2,1/2 be the minimal nontrivial zonal spherical function of Section 4.3.

Together with the recurrence relations for the full spherical functions with φ, Proposition

4.3.1 this gives rise to the full spherical polynomials from Definition 4.4.4.

Definition 5.7.2. The full spherical polynomial Q`d : A → End(C2`+1) is defined by

Q`d(a) = (Φ`0(a))−1Φ`d(a).

The name full spherical polynomial comes from the fact that the Q`d are polynomials

in φ. The full spherical polynomials Q`d are orthogonal with respect to

〈Q,P 〉V ` =

∫
A

Q(a)V `(a)P (a)da, V `(at) = (Φ`0(at))
∗Φ`0(at) sin2 t,

see Corollary 4.4.7.

In Section 4.5 we studied the weight functions V ` extensively. It turns out that the

matrix entries are polynomials in the function φ, apart from the common factor sin t.

Upon changing the variable x = φ(a) we obtain the following system of matrix valued

orthogonal polynomials.

Definition 5.7.3. Let R`d : [0, 1]→ End(C2`+1) be the polynomial defined by R`d(φ(a)) =

Q`d(a). The degree of R`d is d. The polynomials are orthogonal with respect to

〈R,P 〉W ` =

∫ 1

−1

R(x)W `(x)P (x) dx,

where W ` is defined by W `(φ(a))dφ = V `(a)da.

The weight W `(x) from Definition 5.7.3 is the same as the weight defined in (5.1)

where we have to bear in mind that the basis is parametrised differently. The matrix

valued polynomials R`d correspond to the family {Pd}d≥0 from Theorem 5.3.1 by means

of making the R`d monic. Given a system of matrix valued orthogonal polynomials as

in Definition 5.7.3 it is of great interest to see whether there are interesting differential

operators. More precisely we define the algebra D(W `) as the algebra of differential

operators that are self adjoint with respect to the weight W ` and that have the R`d as

eigenfunctions. We define a map that associates to a certain left invariant differential

operator on the group U an element in D(W ).
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Before we go into the construction we observe that the spherical functions may also

be defined on the complexification AC, using Weyl’s unitary trick. Indeed, all the repre-

sentations that we consider are finite dimensional and unitary, so they give holomorphic

representations of the complexifications UC and KC.

A great part of the constructions that we are about to consider follows from Casselman

and Miličić [CM82], where the differential operators act from the left. In this section we

follow this convention, except that we transpose the results at the end in order to obtain

the proof of Theorem 5.3.1 where the differential operators act from the right.

Let U(uC) be the universal enveloping algebra for the complexification uC of the Lie

algebra u of the group U = SU(2)× SU(2). Let θ : U(uC)→ U(uC) be the flip on simple

tensors extending the Cartan involution θ : su(2)×su(2)→ su(2)×su(2), (X,Y ) 7→ (Y,X).

Recall k ∼= su(2) is the fixed-point set of θ. Let U(uC)k
C

denote the subalgebra of elements

that commute with kC. Let Z denote the center of U(kC).

Lemma 5.7.4. U(uC)k
C ∼= Z⊗ Z⊗ Z.

Proof. From [Kno90, Satz 2.1 and Satz 2.3] it follows that U(uC)k
C ∼= Z ⊗Z(j) (Z ⊗ Z)

where j ⊂ uC is the largest ideal of uC contained in kC. Since j = 0 the result follows.

Proposition 5.7.5. The elements of the algebra U(uC)k
C

have the spherical functions

Φ``1,`2 as eigenfunctions. This remains true when we extend Φ``1,`2 to UC.

Proof. See [War72b, Thm. 6.1.2.3]. The second statement follows from Weyl’s unitary

trick.

The spherical functions Φ``1,`2 have T `-transformation behaviour:

Φ``1,`2(k1uk2) = T `(k1)Φ``1,`2(u)T `(k2) (5.39)

for all k1, k2 ∈ K and u ∈ U , see Definition 4.2.2. Let C(A) denote the set of continuous

(C-valued) functions on A. Casselman and Miličić [CM82] define the map

Π` : U(uC)k
C
→ C(A)⊗ U(aC)⊗ End(EndM (H`))

and prove the following properties [CM82, Thm. 3.1,Thm. 3.3].

Theorem 5.7.6. Let F : U → End(H`) be a smooth function that satisfies (5.39). Then

(DF )|A = Π`(D)(F |A) for all D ∈ U(uC)k
C
. Moreover, Π` is an algebra homomorphism.

We call Π`(D) the T `-radial part of D ∈ U(uC)k
C
. In particular we have

Π`(D)(Φ``1,`2 |A) = λ`D,`1,`2Φ``1,`2 |A, λ`D,`1,`2 ∈ C.

Upon identifying EndM (H`) ∼= C2`+1 we observe that we may view Π`(D) as a differential

operator of the End(C2`+1)-valued functions that act on from the left. In particular, let

C(A,End(C2`+1), T `) denote the vector space generated by the Φ`d, d ≥ 0. The following

lemma follows immediately from the construction.
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5.7. Group theoretic interpretation

Lemma 5.7.7. Let D ∈ U(uC)k
C

be self-adjoint and consider Π`(D) as a differential

operator acting on C(A,End(C2`+1), T `) from the left. Then Π`(D) is self-adjoint for

〈·, ·〉V ` .

Definition 5.7.8. Let f : U(uC)k
C → D(W `) be defined by sending D to the conjugation

of the differential operator Π`(D) by Φ`0 followed by changing the variable x = φ(a).

The map f : U(uC)k
C → D(W `) is an algebra homomorphism. It gives an abstract

description of a part of D(W `). Note that f is not surjective because in Proposition 4.8.2

we have found a differential operator that does not commute with some of the other.

However, the algebra U(uC)k
C

is commutative by Lemma 5.7.4.

By means of Lemma 5.7.4 we know that U(uC)k
C

has Ω1 = Ωk ⊗ 1 and Ω2 = 1 ⊗ Ωk

among its generators, where Ωk ∈ Z is the Casimir operator. In the following subsection

we calculate f(Ω1 + Ω2) and f(Ω1−Ω2) explicitly. Upon transposing and taking suitable

linear combinations we find the differential operators D̃ and Ẽ from Theorem 5.3.1.

5.7.2 Calculation of the Casimir operators

The goal of this subsection is to calculate f(Ω) and f(Ω′) where f is the map described

in Definition 5.7.8 and where Ω = Ω1 + Ω2 and Ω′ = Ω1 − Ω2. We proceed in a series of

six steps. (1) First we provide expressions for the Casimir operators Ω and Ω′ which (2)

we rewrite according to the infinitesimal Cartan decomposition defined by Casselman and

Miličić [CM82, §2]. These calculations are similar to those in [War72b, Prop. 9.1.2.11]. (3)

From this expression we can easily calculate the T `-radial parts, see Theorem 5.7.6. The

radial parts are differential operators for EndM (H`)-valued functions on A. At this point

we see that we can extend matters to the complexification AC of A as in [CM82, Ex. 3.7].

(4) We identify EndM (H`) ∼= C2`+1 and rewrite the radial parts of step 3 accordingly. (5)

We conjugate these differential operators with Φ0 and (6) we make a change of variables

to obtain two matrix valued differential operators f(Ω) and f(Ω′). Along the way we keep

track of the differential equations for the spherical functions. Finally we give expressions

for the eigenvalues Λd and Γd of f(Ω) and f(Ω′) such that the full spherical polynomials

Qd are the corresponding eigenfunctions. Following Casselman and Miličić [CM82, §2]

the roots are considered as characters, hence written multiplicatively.

(1). First we concentrate on one factor K ∼= SU(2), with Lie algebra k and standard

Cartan subalgebra t. The complexifications are denoted by kC, tC and we use the standard

basis

H =

(
1 0

0 −1

)
, Eα =

1

2

(
0 1

0 0

)
, Eα−1 =

1

2

(
0 0

1 0

)
for kC. The Casimir of K is given by Ωk = 1

2H
2 + 4 {EαEα−1 + Eα−1Eα}. It is well-

known that the matrix-elements of the irreducible unitary representation T ` of SU(2) are

eigenfunctions of the Casimir operator Ωk for the eigenvalue 1
2 (`2 + `), see e.g. [Kna02,

Thm. 5.28]. The roots of the pair (kC ⊕ kC, tC ⊕ tC) are given by

R = {(α, 1), (α−1, 1), (1, α), (1, α−1)}.
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The positive roots are choosen as R+ = {(α, 1), (1, α−1)}, so that the two positive roots

restrict to the same root R(uC, aC) which we declare positive. The corresponding root

vectors are E(α,1) = (Eα, 0), etc. Define

E = (Eα, 0)(Eα−1 , 0) + (Eα−1 , 0)(Eα, 0).

Then we have Ω1 = 1
2 (H, 0)2 + 4E and Ω2 = θ(Ω1). In particular, the spherical function

Φ``1,`2 is an eigenfunction of Ωi for the eigenvalue 1
2 (`2i + `i) for i = 1, 2.

We have (H, 0) = 1
2 ((H,−H) + (H,H)) and (0, H) = 1

2 ((H,H)− (H,−H)) and from

this we find in U(uC)

Ω = Ω1 + Ω2 =
1

4
(H,H)2 +

1

4
(H,−H)2 + 4(E + θ(E)),

Ω′ = Ω1 − Ω2 =
1

2
(H,−H)(H,H) + 4(E − θ(E)).

(5.40)

(2). Following Casselman and Miličić [CM82, §2] we can express Ω and Ω′ according

to the infinitesimal Cartan decomposition of U(uC). Let β ∈ R and denote Xβ = Eβ +

θ(Eβ) ∈ kC. Denote Y a = Ad(a−1)Y for a ∈ A. In [CM82, Lemma 2.2] it is proved that

the equality

(1− β(a)2)Xβ = β(a)(Eaβ − β(a)Eβ)

holds for all a ∈ Areg. This is the key identity in a straightforward but tedious calculation

to prove the following proposition which we leave to the reader.

Proposition 5.7.9. Let a ∈ Areg and β ∈ R+. Then

Ω =
1

16

(
(H,−H)2 + (H,H)2

)
− 2

(β(a)−1 − β(a))2
{Xa

βX
a
β−1+

Xa
β−1Xa

β +XβXβ−1 +Xβ−1Xβ − (β(a) + β(a)−1)(Xa
βXβ−1 +Xa

β−1Xβ)}+
1

4

β(a) + β(a)−1

β(a)− β(a)−1
(H,−H). (5.41)

and

Ω′ =
1

8
(H,H)(H,−H) +

1

4

β(a) + β(a)−1

β(a)− β(a)−1
(H,H)+

2

β(a)− β(a)−1
(Xa

β−1Xβ −Xa
βXβ−1), (5.42)

The calculation of (5.41) is completely analogous to [War72b, Prop. 9.1.2.11] and it

is clear that (5.41) is invariant for interchanging β and β−1. The expression in (5.42) is

also invariant for interchanging β and β−1 albeit that it is less clear in this case. In either

case the expressions (5.41) and (5.42) do not depend on the choice of β ∈ R+.

(3). Following Casselman and Miličić [CM82, §3] we calculate the T `-radial parts of

Ω and Ω′. This is a matter of applying the map Π` from Theorem 5.7.6 to the expressions
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(5.41) and (5.42). At the same time we note that the coefficients in (5.41) and (5.42) are

analytic functions onAreg. They extend to meromorphic functions on the complexification

AC of A which we identify with C× using the map

a : C× → AC : w 7→ a(w) =

((
w 0

0 w−1

)
,

(
w−1 0

0 w

))
.

Under this isomorphism the differential operator (H,−H) translates to w d
dw . To see this

let g : AC → C be holomorphic and consider (H,−H)g(a(w)) which is equal to

(H,−H)g(a(w)) =

{
d

dt
g(a(etw))

}
t=0

= w
d

dw
(g ◦ a)(w).

Following [CM82], [War72b] we find the following expressions for the T `-radial parts of

Ω and Ω′;

Π`(Ω) =
1

16

(
w
d

dw

)2

+
1

4

w2 + w−2

w2 − w−2
w
d

dw
+

1

16
T `(H)2+

− 2

(w2 − w−2)2

{
T `(Eα)T `(Eα−1) •+T `(Eα−1)T `(Eα) •+

•T `(Eα)T `(Eα−1) + •T `(Eα−1)T `(Eα)
}

+

2
w2 + w−2

(w2 − w−2)2

{
T `(Eα) • T `(Eα−1) + T `(Eα−1) • T `(Eα)

}
, (5.43)

and

Π`(Ω
′) =

1

8
T `(H)w

d

dw
+

1

4

w2 + w−2

w2 − w−2
T `(H)+

2

w2 − w−2

{
T `(Eα−1) • T `(Eα) + T `(Eα) • T `(Eα−1)

}
(5.44)

where the bullet (•) indicates where to put the restricted spherical function. The ma-

trices T `(Eα) and T `(H) are easily calculated in the basis of weight vectors. Note that

T `(Eα−1) = JT `(Eα)J . We give the entries of T `(Eα) in the proof of Lemma 5.7.11.

The following proposition is a direct consequence of Theorem 5.7.6 and Proposition

5.7.5.

Proposition 5.7.10. The restricted spherical functions are eigenfunctions of the radial

parts of Ω and Ω′,

Π`(Ω)(Φ`1,`2` |AC) =
1

2
(`21 + `1 + `22 + `2)Φ`1,`2` |AC ,

Π`(Ω
′)(Φ`1,`2` |AC) =

1

2
(`21 + `1 − `22 − `2)Φ`1,`2` |AC .
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(4). The spherical functions Φ``1,`2 restricted to the torus AC take their values in

EndM (H`) and this is a 2`+ 1-dimensional vector space. We identify

EndM (H`)→ C2`+1 : Y 7→ Y up

to obtain functions (Φ``1,`2 |AC)up. The reason for putting the diagonals up is that we

want to write the differential operators as differential operators with coefficients in the

function algebra on A with values in End(C2`+1) instead of the way Π`(Ω) and Π`(Ω
′) are

defined. The differential operators that are conjugated to act on C2`+1-valued functions

are also denoted by (·)up. The differential operators (5.43) and (5.44) that are defined

for EndM (H`)-valued functions conjugate to differential operators Π`(Ω)up and Π`(Ω
′)up

for C2`+1-valued functions. All the terms except for the last ones in (5.43) and (5.44)

transform straightforwardly.

Lemma 5.7.11. The linear isomorphism EndM (H`) → C2`+1 : D 7→ Dup conjugates

the linear map EndM (H`) → EndM (H`) : D 7→ T `(Eα)DT `(Eα−1) to C2`+1 → C2`+1 :

Dup 7→ C`Dup, where C` ∈ End(C2`+1) is the matrix given by

C`p,j =
1

4
(`+ j)(`− j + 1)δj−p,1, ` ≤ p, j ≤ `.

Likewise, D 7→ T `(Eα−1)DT `(Eα) transforms to Dup 7→ JC`JDup, where J is the anti-

diagonal defined by Jij = δi,−j with −` ≤ i, j ≤ `.

Proof. Working with the normalized weight-basis as in [Koo85, §1] we see that T `(Eα)

is the matrix given by

T `(Eα)ij = δi,i+1
`+ i+ 1

2

√
(`− i− 2)!(`+ i+ 2)!

(`− i− 1)!(`+ i+ 1)!

and T `(Eα−1) = JT `(Eα)J . The lemma follows from elementary manipulations.

We collect the expressions for the conjugation of the differential operators (5.43) and

(5.44) by the linear map Y 7→ Y up where we have used Lemma 5.7.11.

Π`(Ω1 + Ω2)up =
1

16

(
w
d

dw

)2

+
1

4

w2 + w−2

w2 − w−2
w
d

dw
+

1

16
T `(H)2+

− 4

(w2 − w−2)2

{
T `(Eα)T `(Eα−1) + T `(Eα−1)T `(Eα)

}
+

2
w2 + w−2

(w2 − w−2)2

{
JC`J + C`

}
, (5.45)

Π`(Ω1 − Ω2)up =
1

8
T `(H)w

d

dw
+

1

4

w2 + w−2

w2 − w−2
T `(H) +

2

w2 − w−2

{
JC`J − C`

}
. (5.46)
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The differential operators (5.45) and (5.46) also act on the full spherical functions

Φ`,td . Collecting the eigenvalues of the columns in Φ`,td in diagonal matrices we obtain the

following differential equations:

Π`(Ω1 + Ω2)upΦd = ΦdΛd, (5.47)

Π`(Ω1 − Ω2)upΦd = ΦdΓd, (5.48)

where (Λd)pj = 1
4δp,j(d

2 + j2 + 2d(`+ 1) + `(`+ 2)) and (Γd)pj = 1
2δp,jj(`+ d+ 1). For

further reference we write

Π`(Ω1 + Ω2)up = a2(w)
d2

dw2
+ a1(w)

d

dw
+ a0(w), (5.49)

Π`(Ω1 − Ω2)up = b1(w)
d

dw
+ b0(w). (5.50)

(5). Recall from Definition 5.7.1 that the full spherical polynomials Q`,td are obtained

from the full spherical functions Φ`,td by the description Q`,td = (Φ`,t0 )−1Φ`,td . We conjugate

the differential operators (5.45) and (5.46) with Φ0 to obtain differential operators to

which the polynomials Qd are eigenfunctions. We need a technical lemma.

Lemma 5.7.12. • Let σ` : C× → End(C2`+1) be the map given by σ`(w) = `(w2 +

w−2)I + S` where S` is defined by
(
S`
)
p,j

= −(`− j)δp−j,1 − (`+ j)δj−p,1. Then

1

2
w(w2 − w−2)

d

dw
Φ`,t0 (w) = Φ`,t0 (w)σ`(w). (5.51)

• Let υ` : C× → End(C2`+1) be the map given by

υ`(w) =
1

8

w3

w4 − 1

(
1 + w4

w2
U `diag + U `lu

)
,

where
(
U `lu
)
i,j

= (−2`+ 2j)δi,j+1 + (2`+ 2j)δi+1,j and
(
U `diag

)
i,j

= −2iδij. Then

b1(w)Φ`,t0 (a(w)) = Φ`,t0 (a(w))υ`(w). (5.52)

Proof. The matrix coefficients of Φ`,t0 (a(w)) are given by

(Φ`,t0 (a(w)))p,j =
(`− j)!(`+ j)!(`− p)!(`+ p)!

(2`)!
×

min(`−p,`−j)∑
r=max(0,−p−j)

w4r−2`+2p+2j

r!(`− p− r)!(`− j − r)!(p+ j + r)!
, (5.53)

see [Koo85, Prop. 3.2]. The matrix valued function b1(w) is equal to the constant matrix
1
8T

` where T `(H)ij = 2δijj. We can now express the matrix coefficients of the matrices

in equations (5.51) and (5.52) in Laurent polynomials in the variable w and comparing

coefficients of these polynomials shows that the equalities hold.
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Definition 5.7.13. Define Ω` = (Φ`,t0 )−1 ◦Π`(Ω)up ◦Φ`,t0 and ∆` = (Φ`,t0 )−1 ◦Π`(Ω
′)up ◦

Φ`,t0 .

Theorem 5.7.14. The differential operators Ω` and ∆` are given by

Ω` =
1

16

(
w
d

dw

)2

+
1

4

{
(`+ 1)(w2 + w−2) + S`

} w

w2 − w−2

d

dw
+ Λ0,

∆` = υ`(w)
d

dw
+ Γ0.

Proof. This is a straightforward calculation using the expressions (5.49) and (5.50),

bearing in mind that the coefficients are matrix valued. In both calculations the difficult

parts are taken care of by Lemma 5.7.12.

(6). The elementary zonal spherical function Φ
1
2 ,

1
2

0 is denoted by φ and we have

φ(a(w)) = 1
2 (w2 + w−2). In this final step we note that the differential operators Ω`

and ∆` are invariant under the maps w 7→ −w and w 7→ w−1. This shows that the

differential operators can be pushed forward by φ◦a to obtain differential operators on C
in a coordinate z = φ(a(w)). Using the identities w d

dw (h ◦ φ)(w) = (w2 − w−2)h′(φ(w)),

(w d
dw )2(h◦φ)(w) = (w2−w−2)2h′′(φ(a(w)))+2(w2 +w−2)h′(φ(a(w))) and (w2−w−2)2 =

4(φ(a(w))2 − 1) we transform (5.54) and (5.54) into

Ω̃` =
1

4
(z2 − 1)

(
d

dz

)2

+
1

4

{
(2`+ 3)z + S`

} d

dz
+ Λ0, (5.54)

∆̃` =
1

8

(
2zU `diag + U `ul

) d
dz

+ Γ0. (5.55)

Recall that the End(C2`+1)-valued polynomials R`,td are defined by pushing forward

the End(C2`+1)-valued functions Q`,td over φ ◦ a, see Definition 5.7.3.

Theorem 5.7.15. The members of the family {R`,td }d≥0 of End(C2`+1)-valued polynomi-

als of degree d are eigenfunctions of the differential operators Ω̃` and ∆̃` with eigenvalues

Λd and Γd respecively. The transposed differential operators (Ω̃`)
t and (∆̃`)

t satisfy

− 4(Ω̃`)
t + 2(`2 + `) = D̃, (5.56)

−2

`
(∆̃`)

t − (`+ 1) = Ẽ, (5.57)

where D̃ and Ẽ are defined in Theorem 5.3.1.

Proof. The only things that need proofs are the equalities of the differential operators.

These follow easily upon comparing coefficients where one has to bear in mind the different

labeling of the matrices involved in the two cases.

Note that the differential operators D̃ and Ω̃` are invariant under conjugation by

the matrix J , where Ji,j = δi,−j . The differential operator ∆̃` is anti-invariant for this

conjugation. The differential operator Ẽ does not have this nice property.
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5.A Proof of Theorem 5.2.1

The purpose of this appendix is to prove the LDU-decomposition of Theorem 5.2.1. We

prove instead the equivalent Proposition 5.2.2, and we start with proving Lemma 5.2.7.

Note that the integral in Lemma 5.2.7 is zero by (5.5) in case t > m, since

C
(k+1)
m−k (x)Un+m−2t(x)

is a polynomial of degree n+ 2m− k − 2t < n− k.

We start by proving Lemma 5.2.7 in the remaining case for which we use the following

well-known formulas for connection and linearisation formulas of Gegenbauer polynomials,

see e.g. [AAR99, Thm. 6.8.2], [Ism09, Thm. 9.2.1];

C(γ)
n (x) =

bn/2c∑
k=0

(γ − β)k(γ)n−k
k! (β + 1)n−k

(
β + n− 2k

β

)
C

(β)
n−2k(x),

C(α)
n (x)C(α)

m (x) =

m∧n∑
k=0

(n+m− 2k + α)(n+m− 2k)!(α)k
(n+m− k + α)k!

× (α)n−k(α)m−k(2α)n+m−k

(n− k)!(m− k)!(α)n+m−k(2α)n+m−2k
C

(α)
n+m−2k(x).

(5.58)

Proof.[Proof of Lemma 5.2.7.] We indicate the proof of Lemma 5.2.7, so that the reader

can easily fill in the details. Calculating the product of two Gegenbauer polynomials as a

sum using the linearisation formula of (5.58) and expanding the Chebyshev polynomial

Un+m−2t(x) = C
(1)
n+m−2t(x) in terms of Chebyshev polynomials with parameter k + 1

using the linearisation formula of (5.58), we can rewrite the integral as a double sum

with an integral of Chebyshev polynomials that can be evaluated using the orthogonality

relations (5.5) reducing the integral of Lemma 5.2.7 to the single sum

min(t,m−k)∑
r=max(0,t−k)

(k + 1)r(k + 1)n−k−r(k + 1)m−k−r(2k + 2)m+n−2k−r

r! (m− k − r)! (n− k − r)! (k + 1)m+n−2k−r

× (m+ n− k + 1− 2r)

(m+ n− k + 1− r)
(−k)k+r−t(n+m− t− k − r)!
(k − t+ r)! (k + 2)n+m−t−k−r

√
π Γ(k + 3

2 )

(k + 1) Γ(k + 1)
.

Assuming for the moment that k ≥ t, so the sum is
∑min(t,m−k)
r=0 . Then this sum can be

written as a very-well-poised 7F6-series

√
π Γ(k + 3

2 )

(k + 1) Γ(k + 1)

(k + 1)m−k
(m− k)!

(k + 1)n−k
(n− k)!

(2k + 2)m+n−2k

(k + 1)m+n−2k
×

(−k)k−t
(k − t)!

(n+m− t− k)!

(k + 2)n+m−t−k
7F6

(
r1, r2, r3, r4, r5, r6, r7

s1, s2, s3, s4, s5, s6
; 1

)
.

with r1 = 1
2 (k −m− n+ 1), r2 = k + 1, r3 = k −m, r4 = k − n, r5 = k −m− n− 1, r6 =

−t, r7 = t−m−n−1 and s1 = 1
2 (k−m−n−1), s2 = −m, s3 = −n, s4 = −m−n−1, s5 =
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k − t + 1, s6 = −n −m + k + t. Using Whipple’s transformation [AAR99, Thm. 3.4.4],

[Bai64, §4.3] of a very-well-poised 7F6-series to a balanced 4F3-series, we find that the

7F6-series can be written as

(k −m− n)t (−t)t
(k − t+ 1)t (−m− n− 1)t

4F3

(
−k, k + 1,−t, t−m− n− 1

−n, −m, 1
; 1

)
.

Simplifying the shifted factorials and recalling the definition of the Racah polynomials

(5.8) in terms of a balanced 4F3-series gives the result in case k ≥ t.
In case k ≤ t we have to relabel the sum, which turns out again to be a very-well-poised

7F6-series which can be transformed to a balanced 4F3-series. The resulting balanced

4F3-series is not a Racah polynomial as in the statement of Lemma 5.2.7, but it can be

transformed to a Racah polynomial using Whipple’s transformation for balanced 4F3-

series [AAR99, Thm. 3.3.3]. Keeping track of the constants proves Lemma 5.2.7 in this

case.

As remarked in Section 5.2, Theorem 5.2.1 follows from Proposition 5.2.2. In order

to prove Proposition 5.2.2 we assume αt(m,n) to be given by (5.1) and we want to

find βk(m,n). Given the explicit expression for αt(m,n), we see that multiplying by√
1− x2 Un+m−2t(x), integrating over [−1, 1] and using Lemma 5.2.7 we find

αt(m,n)
π

2
=

m∑
k=0

βk(m,n)Ck(m,n)Rk(λ(t); 0, 0,−m− 1,−n− 1) (5.59)

where

Ck(m,n) =

√
π Γ(k + 3

2 )

(k + 1)

(k + 1)m−k
(m− k)!

(k + 1)n−k
(n− k)!

(−1)k (2k + 2)m+n−2k (k + 1)!

(n+m+ 1)!
.

Using the orthogonality relations for the Racah polynomials, see [AAR99, p. 344], [KS98,

§1.2],

m∑
t=0

(m+ n+ 1− 2t)Rk(λ(t); 0, 0,−m− 1,−n− 1)×

Rl(λ(t); 0, 0,−m− 1,−n− 1) = δk,l
(n+ 1)(m+ 1)

(2k + 1)

(m+ 2)k(n+ 2)k
(−m)k(−n)k

we find the following explicit expression for βk(m,n)

βk(m,n) =
1

Ck(m,n)

(2k + 1)

(n+ 1)(m+ 1)

(−m)k(−n)k
(m+ 2)k(n+ 2)k

×
m∑
t=0

(m+ n+ 1− 2t)Rk(λ(t); 0, 0,−m− 1,−n− 1)αt(m,n)
π

2

(5.60)

Now Proposition 5.2.2, and hence Theorem 5.2.1, follows from the following summation

and simplifying the result.
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Lemma 5.A.1. For ` ∈ 1
2N, n,m, k ∈ N with 0 ≤ k ≤ m ≤ n we have

m∑
t=0

(−1)t
(n− 2`)m−t
(n+ 2)m−t

(2`+ 2− t)t
t!

(m+ n+ 1− 2t)×

Rk(λ(t); 0, 0,−m− 1,−n− 1) = (−1)m+k (2`+ k + 1)! (2`− k)!

(2`+ 1)!

(n+ 1)

m! (2`−m)!

Proof. Start with the left hand side and insert the 4F3-series for the Racah polynomial

and interchange summations to find

k∑
j=0

(−k)j (k + 1)j
j! j! (−m)j (−n)j

(n− 2`)m
(n+ 2)m

×
m∑
t=j

(−1− n−m)t
(2`− n−m+ 1)t

(−2`− 1)t
t!

(m+ n+ 1− 2t)(−t)j(t−m− n− 1)j

Relabeling the inner sum t = j + p shows that the inner sum equals

(−1)j
(−1− n−m)2j

(2`− n−m+ 1)j
(−2`− 1)j(1 +m+ n− 2j)

×
m−j∑
p=0

(−1− n−m+ j)p
(2`− n−m+ 1 + j)p

(−2`− 1 + j)p
p!

×

(1 + 1
2 (−1−m− n+ 2j))p

( 1
2 (−1−m− n+ 2j))p

(−1−m− n+ 2j)p
(−1−m− n+ j)p

and the sum over p is a hypergeometric sum. Multiplying by
(j−m)p(j−n)p
(j−m)p(j−n)p

the sum can

be written as a very-well-poised 5F4-series

5F4

(
1
2 −m− n+ 2j, −1−m− n+ 2j, −1− 2`+ j, j −m, j − n

1
2 (−1−m− n+ 2j), 2`− n−m+ j + 1, j − n, j −m

; 1

)

=
(−m− n+ 2j)m−j

(−m− n+ j + 1 + 2`)m−j

(−m+ 1 + 2`)m−j
(−m+ j)m−j

by the terminating Rogers-Dougall summation formula [Bai64, §4.4].

Simplifying shows that the left hand side of the lemma is equal to the single sum

(n− 2`)m
(n+ 2)m

(−1)m(n+m+ 1)
(−n−m)m

(2`− n−m+ 1)m
×

(2`+ 1−m)m
m!

k∑
j=0

(−k)j (k + 1)j
j! j!

(−2`− 1)j
(−2`)j

which can be summed by the Pfaff-Saalschütz summation [AAR99, Thm. 2.2.6], [Ism09,

(1.4.5)]. This proves the lemma after some simplifications.

167



Chapter 5. MVOP II

5.B Moments

In this appendix we give an explicit sum for the generalised moments for W . By the

explicit expression

Ur(x) = (r + 1) 2F1

(
−r, r + 2

3
2

;
1− x

2

)
we find∫ 1

−1

(1− x)nUr(x)
√

1− x2 dx

= (r + 1)

r∑
k=0

(−r)k(r + 2)k

k! ( 3
2 )k

2−k2n+k+2 Γ(n+ k + 3
2 ) Γ( 3

2 )

Γ(n+ k + 3)

= (r + 1)2n+2 Γ(n+ 3
2 ) Γ( 3

2 )

Γ(n+ 3)
3F2

(
−r, r + 2, n+ 3

2
3
2 , n+ 3

; 1

)

= (r + 1)2n+2 Γ(n+ 3
2 ) Γ( 3

2 )

Γ(n+ 3)

(−n)r
(n+ 3)r

using the beta-integral in the first equality and the Pfaff-Saalschütz summation [AAR99,

Thm. 2.2.6], [Ism09, (1.4.5)] in the last equality. For m ≤ n, the explicit expression (5.1)

gives the following generalised moments∫ 1

−1

(1− x)pW (x)nm dx = 2p+2 Γ(p+ 3
2 ) Γ( 3

2 )

Γ(p+ 3)

(2`+ 1)

n+ 1

(2`−m)!m!

(2`)!
×

m∑
t=0

(−1)m−t
(n− 2`)m−t
(n+ 2)m−t

(2`+ 2− t)t
t!

(n+m− 2t+ 1)
(−p)n+m−2t

(p+ 3)n+m−2t
. (5.61)
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[CG05] M. M. Castro and F. A. Grünbaum. Orthogonal matrix polynomials satisfy-

ing first order differential equations: a collection of instructive examples. J.

Nonlinear Math. Phys., 12(suppl. 2):63–76, 2005.

[Chi78] T. S. Chihara. An Introduction to Orthogonal Polynomials. Gordon and

Breach, Sci. Publ., Inc., 1978.
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Reine Angew. Math., 406:5–9, 1990.

[Koo81] T. H. Koornwinder. Clebsch-Gordan coefficients for SU(2) and Hahn polyno-

mials. Nieuw Arch. Wisk. (3), 29(2):140–155, 1981.

172



Bibliography

[Koo85] T. H. Koornwinder. Matrix elements of irreducible representations of SU(2)×
SU(2) and vector-valued orthogonal polynomials. SIAM J. Math. Anal.,

16(3):602–613, 1985.

[KQ78] R. C. King and A. H. A. Qubanchi. The evaluation of weight multiplicities of

G2. J. Phys. A, 11(8):1491–1499, 1978.
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Samenvatting

Speciale functies zijn innig verbonden met groepentheorie. Een exponent van deze verbin-

ding vinden we in de Jacobipolynomen die voor sommige parameters gerealiseerd kunnen

worden als matrixcoëfficiënten op compacte Liegroepen. De eigenschappen die Jacobi-

polynomen kenmerken, zoals orthogonaliteit, het voldoen aan een drie-terms-recurrente

betrekking en het optreden als eigenfunctie van een zekere tweede orde differentiaalopera-

tor, kunnen we bewijzen door de polynomen te interpreteren als functies op een compacte

Liegroep.

De Liegroepen waarop we Jacobipolynomen kunnen realiseren als matrixcoëfficiënten

komen met een compacte ondergroep, het zijn de compacte rang één Gel’fandparen (G,K)

van samenhangende Liegroepen G en K. De constructie van de Jacobipolynomen berust

in wezen op de kenmerkende eigenschap van een Gel’fandpaar (G,K), namelijk dat de

triviale K-representatie ten hoogste één keer voorkomt in de ontbinding van de beperking

van iedere irreducibele G-representatie tot K.

In deel één van deze dissertatie formuleren we een definitie die de definitie van een

Gel’fandpaar veralgemeniseert. Een multipliciteitsvrij systeem (G,K,F ) bestaat uit twee

compacte samenhangende Liegroepen K ⊂ G en een verzameling F van dominante gehele

gewichten voor K waarvoor het volgende geldt: (1) F is de doorsnijding is van alle domi-

nante gewichten van K met een relatief open facet van de gesloten positieve Weylkamer

van K en (2) voor elke irreducibele K-representatie met hoogste gewicht in F geldt dat

ze met multipliciteit ten hoogste één voorkomt in de ontbinding van de beperking van

iedere irreducibele G-representatie tot K.

We bewijzen dat voor een multipliciteitsvrij systeem (G,K,F ) het paar (G,K) een

Gel’fandpaar is. We classificeren vervolgens alle multipliciteitsvrije systemen op equiva-

lentie na, waarvoor (G,K) een rang één Gel’fandpaar is. Dit levert een lijstje op van

zeven wezenlijk verschillende gevallen en onder deze zeven gevallen zijn vier families. Bij

ieder element uit de lijst geven we een beschrijving van de toegestane verzamelingen F in

termen van de dimensie.

Vervolgens beschrijven we een constructie van een familie van matrixwaardige polyno-

men voor ieder drietal (G,K, µ) waarbij µ ∈ F en (G,K,F ) een multipliciteitsvrij systeem

met (G,K) een Gel’fand paar van rang één en waarbij G niet van type F4 is1. Deze con-

1Enkele dagen voor het ter perse gaan van dit proefschrift ontdekten we dat er voor dit geval nog meer
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structie veralgemeniseert die van families van Jacobipolynomen voor zekere parameters.

We leiden allerlei eigenschappen af voor deze families: de polynomen in de familie zijn

oplossingen van een matrixwaardige hypergeometrische differentiaalvergelijking (vanwege

de Casimir operator), de polynomen in een familie zijn orthogonaal ten aanzien van een

matrixwaardig inproduct (vanwege Schur orthogonaliteit) en de polynomen in de familie

voldoen aan een drie-terms-recurrente betrekking waarvoor we de coëfficiënten uit kunnen

drukken in Clebsch-Gordancoëfficiënten (de ontbinding van tensorproductrepresentaties).

In deel twee wordt het voorbeeld (G,K, µ) uitgewerkt met G = SU(2)× SU(2), K de

diagonale inbedding van SU(2) in G en µ eender welk dominant geheel K-gewicht. In dit

geval kunnen we allerlei specifieke verbanden leggen met (C-waardige) speciale functies.

Veel van deze verbanden zijn vooralsnog nog niet begrepen op het niveau van de groepen.

facetten zijn dan alleen {0}. Helaas was er niet genoeg tijd meer om de analyse op de nieuwe putten uit

te voeren.
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me and Lorijn during our stay in Córdoba. I can look back on a wonderful two months

in Argentina.

During my research I have had valuable discussions with mathematicians from all

over the world, either written or over a cup of tea, which gave me new insights, new

ideas and the feeling that my research was appreciated. In particular I want to thank

prof. M. Brion, prof. R. Camporesi, prof. T. Koornwinder and prof. J. Tirao.

Martijn en Robin, ik vind het leuk dat jullie mijn paranimfen willen zijn. Verder

dank ik alle vrienden en familieleden die mij in de afgelopen jaren gesteund hebben in

mijn werk, zonder precies te weten waar het inhoudelijk nu precies om te doen was.

Deze kroon op mijn werk in Nijmegen, lieve Lorijn, zie ik schitteren dankzij jou.

Bedankt voor alles en alles, je bent zo belangrijk voor me.

Utrecht, oktober 2012

181





Curriculum vitae

Maarten van Pruijssen was born on the 4th of June 1979 in Oosterhout, the Netherlands.

He grew up in Oosterhout where he attended the Monseigneur Frencken College to obtain

his VWO-diploma in 1999. Two years later he began the studies of mathematics at the

University of Utrecht. In 2008 he concluded his studies with a master thesis on a subject

in the field of complex geometry.

Between 2008 and 2012 Maarten did his Ph.D. research at the Radboud University

under the supervision of Erik Koelink and Gert Heckman. His focus migrated from

geometry to the areas of special functions and Lie theory, fields of interest of both of his

supervisors. During his studies Maarten co-organized several student seminars. He also

taught a course for freshmen on dynamical systems and he was teacher in several exercise

classes. He also participated in three summer schools and he reported on his research on

various occasions.

After finishing his Ph.D.-thesis Maarten spent two months as a guest researcher at
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