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Chapter 1

Introduction

This is a thesis on real algebraic geometry. This means that we study objects
that are defined by polynomial equations with coefficients in the field of real
numbers. Specifically we will be concerned with the study of real quartic
curves; a subject with a rich 19th century history. A gem from this period is
the topological classification of smooth real plane quartic curves by the Danish
mathematician Zeuthen [46] in 1874. The set of real points of such a curve
consists of at most four ovals in the real projective plane and the six possible
configurations are shown in Figure 1.1. It was proved by Klein [24] that each
of them determines a connected component in the space of smooth real plane
quartic curves. Consequently the moduli space of such quartics consists of six
connected components.

j = 1 j = 2 j = 3

j = 4 j = 5 j = 6

Figure 1.1: The six topological types of smooth real plane
quartic curves by deforming the union of two ellipses.
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8 CHAPTER 1. INTRODUCTION

In this thesis we study the moduli space of smooth real plane quartics and
other moduli spaces of real objects using modern techniques of reflections in
algebraic geometry. An excellent survey article on this material was written
by Dolgachev [18]. It touches on many of the subjects we encounter in this
thesis but does not discuss questions of reality. For this we refer to the survey
written by Degtyarev and Kharlamov [14] on the topological properties of real
algebraic varieties. We now give an overview of this thesis with an emphasis
on the new results. We start with the final chapter and go backwards; this
corresponds to the order in which this thesis was conceived.

Chapter 6. In this chapter we consider a variation on the classification by
Zeuthen of Figure 1.1. We study smooth real plane quartic curves equipped
with a real point such that the tangent line at that point intersects the curve
in two other distinct points. These two points can be both real or form a pair
of complex conjugate points. Furthermore since by definition such a curve is
smooth and contains a real point it consists of at least one oval. We will prove
that the moduli space of these pointed curves consists of twenty connected
components. For each of these components a representative curve along with
the tangent line at the chosen point is shown in Figure 1.2. This classification
is more subtle then the topological one; the second and fourth picture from
the first row are topologically equivalent but represent different components in
the moduli space. At this point we would like to mention Appendix A of [13]
in which similar real moduli and deformation problems are discussed.

We start by extending work of Looijenga [29], [30] on moduli spaces of
complex del Pezzo pairs to the real setting. To formulate this result we intro-
duce some notation. Let Q be a root lattice of type E7 and define the complex
torus T = Hom(Q,C∗). The Weyl group W of type E7 acts by reflections on
Q and thus on T. We denote by T◦ the complement of the toric mirrors for
this action.

Theorem 1.0.1. Let (Q◦1)R be the moduli space of pairs (C, p) with C a smooth
real plane quartic curve and p ∈ C(R) such that TpC intersects C in two other
distinct points. There is an isomorphism of real orbifolds:

(Q◦1)R −→ (W\T◦) (R) (1.1)

where the right hand side consists of all W -orbits of t ∈ T◦ such that w · t = t̄
for some w ∈W .

The isomorphism of Equation 1.1 is similar to a period map. It allows us to
study the moduli space (Q◦1)R using the theory of root systems and involutions
in Weyl groups on the right hand side. We study the real points of such torus
quotients and their connected components for general root system of type
ADE. For type E7 we then prove there are twenty connected components
and relate them to the pictures of Figure 1.2.
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Figure 1.2: Representatives for the 20 connected components
of the moduli space (Q◦1)R.

Chapter 5. Recently there has been a great deal of progress in the con-
struction of period maps from moduli spaces to ball quotients. This offers
a new approach to the study of questions of reality for these moduli spaces.
The main example of this in the literature is the work of Allcock, Carlson and
Toledo [2], [5] on the moduli space of cubic surfaces. In the first article they
construct a period map from this moduli space to a ball quotient of dimension
four and the question of reality for this period map is studied in the second
article. One of the components of the moduli space of smooth cubic surfaces
was previously studied by Yoshida [45] using the period map.

For the moduli space of smooth plane quartic curves there is also a period
map due to Kondo [26]. It maps this moduli space to a ball quotient of
dimension six. We will study the question of reality for this period map in
Chapter 5. In particular we prove that each of the six components of the
moduli space of smooth real plane quartic curves is isomorphic to a real ball
quotient. In order to formulate this more precisely we introduce some notation
on Gaussian lattices. Let G = Z[i] be the Gaussian integers and let Λ1,6 be
the Gaussian lattice G7 equipped with the Hermitian form h(·, ·) defined by
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the matrix:

H =

(
−2 1 + i

1− i −2

)⊕3

⊕ (2). (1.2)

We denote the group of unitary transformations of this lattice by Γ = U(Λ).
The lattice Λ1,6 has hyperbolic signature (1, 6) and determines a complex ball
of dimension six by the expression:

B6 = P{z ∈ Λ1,6 ⊗G C ; h(z, z) > 0}. (1.3)

A root is an element r ∈ Λ1,6 such that h(r, r) = −2 and for every root r we
define its root mirror to be the hypersurface Hr = {z ∈ B6 ; h(r, z) = 0}. We
denote by B◦6 the complement in B6 of all root mirrors.

Theorem 1.0.2. There are six projective classes of anti-unitary involutions:
[χj ] with j = 1, . . . , 6 of the lattice Λ1,6 up to conjugation by PΓ. Each of them
determines a real ball Bχj6 ⊂ B6 and there are isomorphisms of real orbifolds:

QR
j −→ PΓχj\

(
Bχj6

)◦
. (1.4)

The group PΓχj is the stabilizer of the real ball Bχj6 in PΓ. It is an arithmetic
subgroup of PO(1, 6) for each j = 1, . . . , 6.

In fact we obtain more information on the groups PΓχj for j = 1, . . . , 6.
They are subgroups of finite index of hyperbolic Coxeter groups of finite co-
volume and we determine the Coxeter diagrams for these latter groups using
Vinberg’s algorithm. For the group PΓχ1 that corresponds to the component
QR

1 of maximal quartic curves we obtain a more explicit description: it is the
semi-direct product of a hyperbolic Coxeter group of finite co-volume by its
group of diagram automorphisms. The fundamental domain of this group is a
hyperbolic Coxeter polytope C6 whose Coxeter diagram is shown in Figure 1.3.
Its group of diagram automorphisms is the symmetric group S4. The locus of
fixed points in C6 of this group is a hyperbolic line segment. It corresponds
to a one-parameter family of smooth real quartic curves that consist of four
ovals with S4-symmetry and we determine this family explicitly.

Chapter 4. So far we have only discussed smooth plane quartic curves.
These are curves of genus three as implied by the title of this thesis. There is
however another class of genus three curves: the hyperelliptic ones. A smooth
hyperelliptic curve is determined by a set of distinct unordered points on the
projective line. The moduli spaces of such point sets were studied by Deligne
and Mostow [15]. They are isomorphic to complex ball quotients if and only
if the number of points equals 4, 5, 6, 8 or 12. The question of reality for the
case of 5 points has been studied by Yoshida and Apéry [6] and for the case
of 6 points by Yoshida [44] and Allcock, Carlson and Toledo [3], [4].
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Figure 1.3: The Coxeter diagram of the hyperbolic Coxeter
polytope C6 (left) and the wall that corresponds to C5 (right).
The nodes represent the walls and a double edge connecting
two nodes means their walls meet at an angle of π/4, a thick
edge means they are parallel and no edge means they are or-
thogonal.

A smooth hyperelliptic curve of genus three is determined by eight points
on the complex projective line. The question of reality in this case has been
studied by Chu [12]. He obtains a result similar to Theorem 1.0.2 using a
period map of Deligne-Mostow that maps the moduli space of eight unordered
points on P1(C) to a complex ball quotient of dimension five. We review this
work in Chapter 4 and supplement it by giving an explicit description of
the group that corresponds to the real ball quotient of the moduli space of
eight points on P1(R). This group is the semi-direct product of a hyperbolic
Coxeter group of finite co-volume by its group of diagram automorphisms.
The Coxeter diagram of its fundamental domain C5 is shown in Figure 1.3
and its group of diagram automorphisms is the dihedral group D8. There is a
unique central point in C5 that is invariant under D8 and has equal distance
to all the mirrors. This point corresponds to the configuration of eight-roots
of unity on the unit circle in the complex plane.

Chapter 3. The complex ball quotients that describe the two moduli spaces
of smooth genus three curves (hyperelliptic and non-hyperelliptic) arise from
lattices of hyperbolic signature that are defined over the Gaussian integers.
We study such Gaussian lattices in Chapter 3 with a special emphasis on
these two examples. The study of questions of reality for moduli spaces then
corresponds to the study of anti-unitary involutions on these lattices. This is
complicated by the fact that the Hermitian forms on these Gaussian lattices
are not unimodular as can be seen from Equation 1.2.
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Chapter 2. Finally, or firstly, we discuss the necessary preliminaries and
notations in Chapter 2.



Chapter 2

Preliminaries

2.1 Introduction

In this preliminary chapter we review some topics and introduce notations that
will be used throughout this thesis. For the most part the subjects treated
here are well known and we give references to the literature for proofs. We
will also prove some preliminary results and lemma’s on examples that appear
in later chapters.

2.2 Lattices

A lattice is a pair (L, (·, ·)) with L a free Z-module of finite rank r and (·, ·)
a non-degenerate, symmetric bilinear form on L taking values in Z. This
bilinear form extends naturally to a bilinear form (·, ·)Q on the rational vector
space L⊗Z Q and its signature (r+, r−) is called the signature of L. The dual
of L is the group L∨ = Hom(L,Z) and the lattice L is naturally embedded in
L∨ by the assignment x 7→ (x, ·). The group L∨ is naturally embedded in the
vector space L⊗Z Q by the identification:

L∨ = {x ∈ L⊗Z Q ; (x, y)Q ∈ Z for all y ∈ L}.

Note that the induced bilinear form on L∨ need not be integer valued but by
a small abuse of language we still call L∨ a lattice. An isomorphism between
lattices L1 and L2 is a group isomorphism φ : L1 → L2 that preserves the
bilinear forms of L1 and L2. If {e1, . . . , er} ⊂ L is a basis for L then the
matrix

B =

(e1, e1) · · · (e1, er)
...

. . .
...

(er, e1) · · · (er, er)


is called the Gram matrix. Its determinant d(L) is an invariant called the
discriminant of the lattice. A lattice is called unimodular if d(L) = ±1 or

13



14 CHAPTER 2. PRELIMINARIES

equivalently if L∨ = L. A lattice L is called even if (x, x) ∈ 2Z for all x ∈ L,
otherwise it is called odd. We denote the automorphism group of a lattice
L by O(L). An important class of automorphisms of a lattice is given by its
reflections. Suppose r ∈ L is primitive; we define the reflection sr in r by the
formula:

sr(x) = x− 2
(r, x)

(r, r)
r. (2.1)

This reflection is an automorphism of the lattice L if and only if 2(r, x) ∈
(r, r)Z for all x ∈ L. In that case we call r a root of L. Since conjugation by
an element of O(L) of a reflection is again a reflection, the reflections in roots
generate a normal subgroup W (L) / O(L).

Let L be an even lattice. The quotient AL = L∨/L is called the discrim-
inant group of L. It is a finite abelian group of order d(L). We denote the
minimal number of generators of AL by l(AL). If AL ∼= (Z/2Z)a for some
a ∈ N then L is called 2-elementary.

Proposition 2.2.1 (Nikulin [34], Thm. 3.6.2). An even 2-elementary lattice
is determined up to isomorphism by the invariants (r+, r−, a, δ). The invariant
δ is defined by:

δ =

{
0 if (x, x)Q ∈ Z for all x ∈ L∨

1 else

The discriminant quadratic form qL on AL takes values in Q/2Z and is
defined by the expression:

qL(x+ L) ≡ (x, x)Q mod 2Z for x ∈ L∨.

The group of automorphisms of AL that preserve the discriminant quadratic
form qL is denoted by O(AL) and there is a natural homomorphism: O(L)→
O(AL). If φL ∈ O(L) then we denote by q(φL) ∈ O(AL) the induced auto-
morphism of AL.

Theorem 2.2.2 (Nikulin, [34], Thm. 3.6.3). Let L be an even, indefinite
2-elementary lattice. Then the natural homomorphism O(L) → O(AL) is
surjective.

Proposition 2.2.3 (Nikulin, [34], Prop. 1.6.1). Let L be an even unimodular
lattice and M a primitive sublattice of L with orthogonal complement M⊥ =
N . There is a natural isomorphism γ : AM → AN for which qN ◦ γ = −qM .
Let φM ∈ O(M) and φN ∈ O(N). The automorphism (φM , φN ) of M ⊕ N
extends to L if and only if q(φN ) ◦ γ = γ ◦ q(φM ).

Theorem 2.2.4 (Nikulin, [34], Thm. 1.14.4). Let M be an even lattice of
signature (t+, t−) and let L be an even unimodular lattice of signature (l+, l−).
There is a unique primitive embedding of M into L provided the following hold:
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1. t+ < s+

2. t− < s−

3. l(AM ) ≤ rank(L)− rank(M)− 2

Notations for lattices

We denote by L(n) the lattice L where the bilinear form is scaled by a factor
n ∈ Z and we write U for the even unimodular hyperbolic lattice of rank 2
with Gram matrix ( 0 1

1 0 ). Furthermore we denote by Ai, Dj , Ek with i, j ∈ N,
j ≥ 4 and k = 6, 7, 8 the lattices associated to the negative definite Cartan
matrices of this type. For example:

A2 =

(
−2 1
1 −2

)
, A1 ⊕A1(2) =

(
−2 0
0 −4

)
, D4 =


−2 1 0 0
1 −2 1 1
0 1 −2 0
0 1 0 −2

 .

Determining if two lattices are isomorphic can be quite difficult. In the
following lemma we describe some isomorphic lattices that we will encounter
frequently when studying Gaussian lattices.

Lemma 2.2.5. There are isomorphisms of hyperbolic lattices:

(4)⊕A1
∼= (2)⊕A1(2) (2.2)

U(2)⊕A1
∼= (2)⊕A2

1 (2.3)

(2)⊕A1(2)⊕D4(2) ∼= (2)⊕A2
1 ⊕A1(2)3 (2.4)

Proof. For the first isomorphism we explicitly determine a base change:(
1 −1
−1 2

)t(
4 0
0 −2

)(
1 −1
−1 2

)
=

(
2 0
0 −4

)
.

For the second isomorphism we calculate the invariants (r+, r−, a, δ) of Propo-
sition 2.2.1. They are easily seen to be (1, 2, 3, 1) for both lattices so that the
lattices are isomorphic. The third isomorphism is the least obvious. We also
determine an explicit base change:

Bt
(
(2)⊕A2

1 ⊕A1(2)3
)
B = (2)⊕A1(2)⊕D4(2)

where B is the unimodular matrix:

B =



3 2 1 0 1 1
−1 0 −1 1 −1 −1
−1 0 0 −1 0 0
−1 −1 0 0 0 −1
−1 −1 0 0 −1 0
−1 −1 −1 0 0 0

 .
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2.3 Involutions in Coxeter groups

The classification of conjugacy classes of involutions in a Coxeter group was
done by Richardson [35] and Springer [40]. Before this the classification of
conjugacy classes of elements of finite Coxeter groups was obtained by Carter
[10]. In this section we give a brief review of these results.

Definition 2.3.1. A Coxeter system is a pair (W,S) with W a group pre-
sented by a (finite) set of generators S = {s1, . . . , sr} subject to relations

(sisj)
mij = 1 with 1 ≤ i, j ≤ r

where mii = 1 and mij = mji are integers ≥ 2. We also allow mij = ∞ in
which case there is no relation between si and sj . These relations are encoded
by the Coxeter graph of (W,S). This is a graph with r nodes labeled by the
generators. Nodes i and j are not connected if mij = 2 and are connected by
mij − 2 edges otherwise. If mij =∞ we connect the vertices by a thick edge.

For a Coxeter system (W,S) we define an action of the group W on the
real vector space V with basis {es}s∈S . First we define a symmetric bilinear
form B on V by the expression:

B(ei, ej) = 2 cos

(
π

mij

)
.

Then for each si ∈ S the reflection: si(x) = x − B(ei, x)ei preserves this
form B. In this way we obtain a homomorphism W → GL(V ) called the
geometric realization of W . For each subset I ⊆ S we can form the standard
parabolic subgroup WI < W generated by the elements {si; i ∈ I} acting on
the subspace VI generated by {ei}i∈I . We say that WI (or also I) satisfies the
(−1)-condition if there is a wI ∈WI such that wI ·x = −x for all x ∈ VI . The
element wI necessarily equals the longest element of (WI , SI). This implies
in particular that WI is finite. Let I, J ⊆ S, we say that I and J are W -
equivalent if there is a w ∈ W that maps {ei}i∈I to {ej}j∈J . Now we can
formulate the main theorem of [35]:

Theorem 2.3.2 (Richardson). Let (W,S) be a Coxeter system and let J be
the set of subsets of S that satisfy the (−1)-condition. Then:

1. If c ∈ W is an involution, then c is conjugate in W to wI for some
I ∈ J .

2. Let I, J ∈ J . The involutions wI and wJ are conjugate in W if and
only if I and J are W -equivalent.

This theorem reduces the problem of finding all conjugacy classes of in-
volutions in W to finding all W -equivalent subsets in S satisfying the (−1)-
condition. First we determine which subsets I ⊆ S satisfy the (−1)-condition,
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then we present an algorithm that determines when two subsets I, J ⊆ S are
W -equivalent. If (WI , SI) is irreducible and satisfies the (−1)-condition then
it is of one of the following types:

A1, Bn, D2n, E7, E8, F4, G2, H3, H4, I2(2p) (2.5)

with n, p ∈ N and p ≥ 4. If (WI , SI) is reducible and satisfies the (−1)-
condition thenWI is the direct product of irreducible, finite standard parabolic
subgroups (Wi, Si) from (2.5). The Coxeter diagrams of the (Wi, Si) occur as
disjoint subdiagrams of the types in the list of the diagram of (W,S). The
element wI is the product of the wIi which act as −1 on the VIi . Now let
K ⊆ S be of finite type and let wK be the longest element of (WK , SK).
The element τK = −wK defines a diagram involution of the Coxeter diagram
of (WK , SK) which is non-trivial if and only if wK 6= −1. If I, J ⊆ K are
such that τKI = J then I and J are W -equivalent. To see this, observe that
wKwI · I = wK · (−I) = τKI = J . Now we define the notion of elementary
equivalence.

Definition 2.3.3. We say that two subsets I, J ⊆ S are elementary equiv-
alent, denoted by I ` J , if τKI = J with K = I ∪ {α} = J ∪ {β} for some
α, β ∈ S.

It is proved in [35] that I and J are W -equivalent if and only if they are
related by a chain of elementary equivalences: I = I1 ` I2 ` . . . ` In = J .
This provides a practical algorithm to determine all the conjugation classes of
involutions in a given Coxeter group (W,S) using its Coxeter diagram:

1. Make a list of all the subdiagrams of the Coxeter diagram of (W,S)
that satisfy the (−1)-condition. These are exactly the disjoint unions
of diagrams in the list (2.5). Every involution in W is conjugate to wK
with K a subdiagram in this list.

2. Find out which subdiagrams of a given type are W -equivalent by using
chains of elementary equivalences.

Example 2.3.4 (E7). We use the procedure described above to determine all
conjugation classes of involutions in the Weyl group of type E7. This result
will be used many times later on. Since W7 contains the element −1 the
conjugation classes of involutions come in pairs {u,−u}. We label the vertices
of the Coxeter diagram as follows.

1 2 3 4

7

5 6
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Figure 2.1: The involutions A3
1 (left) and A3′

1 (right).

It turns out that all involutions of a given type are equivalent with the
exception of type A3

1: here there are two non-equivalent involutions as seen in
Figure 2.1. The types of involutions that occur are:

{1, E7} , {A1, D6} , {A2
1, D4A1} , {A3

1, A
4
1} , {D4, A

3′
1 }. (2.6)

For example, consider the two subdiagrams of type A1 with vertices {1}
and {2}. The diagram automorphism τ{1,2} which is of type A2 exchanges
the vertices {1} and {2}, so they are elementary equivalent. One shows in a
similar way that all diagrams of type A1 are equivalent.

2.4 Hyperbolic reflection groups

Most of the results of this section can be found in [42]. Let L be a hyperbolic
lattice of hyperbolic signature (1, n). We can associate to L the space V =
L ⊗Z R with isometry group O(V ) ∼= O(1, n). A model for real hyperbolic
n-space Hn is given by one of the sheets of the two sheeted hyperboloid {x ∈
V ; (x, x) = 1} in V . Its isometry group is the subgroup O(V )+ < O(V ) of
index two of isometries that preserves this sheet. Another model for Hn which
we will use most of the time is the ball defined by:

Bn = P{x ∈ L⊗Z R ; (x, x) > 0}

whose isometry group is naturally identified with the group O(B) ∼= PO(1, n).
The group O(L)+ = O(L) ∩ O(V )+ is a discrete subgroup of O(V )+ and it
has finite covolume by a theorem of Siegel [38]. Let W (L) < O(L)+ be the
normal subgroup generated by the reflections in roots of negative norm of L.
We can write the group O(L)+ as:

O(L)+ = W (L) o S(C)

where C ⊂ Bn is a fundamental chamber of W (L) and S(C) is the subgroup
of O(L)+ that maps C to itself. The lattice L is called reflective if W (L) has
finite index in O(L)+. In this case C is a hyperbolic polytope of finite volume
which we assume from now on. We say that {ri}i∈I with I = 1, . . . , k is a set
of simple roots for C if all pairwise inner products are non-negative and C is
the polyhedron bounded by the mirrors Hri so that:

C = P{x ∈ L⊗Z R ; (x, x) > 0 , (ri, x) ≥ 0 for i = 1, . . . , k}. (2.7)
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orthogonal intersection (r, r) = −2
interior angle π/3 (r, r) = −4
interior angle π/4 (r, r) = −8
parallel
ultraparallel

Figure 2.2: Conventions for Coxeter graphs

Since the group W (L) is discrete the root mirrors meet at dihedral angles
π/mij with mij ≥ 2 or they are disjoint in Bn. In this last case we say that
two root mirrors Hri and Hrj are parallel if they meet at infinity so that
mij = ∞, or ultra-parallel if they do not meet even at infinity. The matrix
G with entries (ri, rj)i,j∈I is called the Gram matrix of C and the mij can be
calculated from G by the relation:

(ri, rj)
2 = (ri, ri)(rj , rj) cos2

(
π

mij

)
.

The polytope C is described most conveniently by its Coxeter diagramDI from
Definition 2.3.1. In addition to the conventions introduced there we connect
two nodes by a dashed edge if their corresponding mirrors are ultraparallel.
In the examples that come from Gaussian lattices we will only encounter roots
of norm −2,−4 and −8 so we also subdivide the corresponding nodes into 0, 2
and 4 parts respectively. These conventions are illustrated in Figure 2.2

A Coxeter subdiagram DJ ⊂ DI with J ⊂ I is called elliptic if the cor-
responding Gram matrix is negative definite of rank |J | and parabolic if it is
negative semi-definite of rank |J | −#components of DJ . An elliptic subdia-
gram is a disjoint union of finite Coxeter diagrams and a parabolic subdiagram
the disjoint union of affine Coxeter diagrams. The elliptic subdiagrams of D of
rank r correspond to the (n− r)-faces of the polyhedron C ∈ Bn. A parabolic
subdiagram of rank n − 1 corresponds to a cusp of C. By the type of a face
or cusp of C we mean the type of the corresponding Coxeter subdiagram.

Vinberg’s algorithm

Suppose we are given a hyperbolic lattice L of signature (1, n). Vinberg [42]
describes an algorithm to determine a set of simple roots of W (L). If the
algorithm terminates these simple roots determine a hyperbolic polyhedron
C ⊂ Bn of finite volume which is a fundamental chamber for the reflection
subgroup W (L). We start by choosing a controlling vector p ∈ L such that
(p, p) > 0. This implies that p ∈ Bn. The idea is to determine a sequence
of roots r1, r2, . . . so that the hyperbolic distance of p to the mirrors Hri is
increasing. Since the hyperbolic distance d(p,Hri) is given by:

sinh2 d(p,Hri) =
(ri, p)

2

(ri, ri) · (p, p)
(2.8)
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the height h(ri) of a root defined by h(ri) = (ri, p)
2/(ri, ri) is a measure for

this distance. First we determine the roots of height 0. They form a finite root
system R and we choose a set of simple roots r1, . . . , ri to be our first batch of
roots. For the inductive step in the algorithm we consider all roots of height h
and assume that all roots of smaller height have been enumerated. A root of
height h is accepted if and only if it has non-negative inner product with all
previous roots of the sequence. The algorithm terminates if the accute angled
polyhedron spanned by the mirrors Hr1 , . . . has finite volume. This can be
checked using the following criterion also due to Vinberg.

Proposition 2.4.1. A Coxeter polyhedron C ⊂ Bn has finite volume if and
only if every elliptic subdiagram of rank n− 1 can be extended in exactly two
ways to an elliptic subdiagram of rank n or to a parabolic subdiagram of rank
n−1. Furthermore there should be at least 1 elliptic subdiagram of rank n−1.

Since an elliptic subdiagram of rank n − 1 corresponds to an edge of the
polyhedron C the geometrical content of this criterion is that every edge con-
nects either two actual vertices, two cusps or a vertex and a cusp. The fol-
lowing example is due to Vinberg, see [41] §4.

Example 2.4.2. Consider the hyperbolic lattice Z1,n(2) = (2)⊕ An1 with its
standard orthogonal basis {e0, . . . , en} where 2 ≤ n ≤ 9. The possible root
norms are −2 and −4. We take as controlling vector p = e0 with (p, p) = 2.
The height 0 root system is of type Bn and a basis of simple roots is given by:

r1 = e1 − e2 , . . . , rn = en−1 − en , rn = en.

The next root accepted by Vinberg’s algorithm is the root rn+1 = e0− e1− e2

of height 1 for n = 2 and the root rn+1 = e0 − e1 − e2 − e3 of height 1/2
for 3 ≤ n ≤ 8. This root indeed satisfies (rn+1, ri) > 0 for i = 1, . . . , n.
The resulting Coxeter polyhedron is a simplex and has finite volume so the
algorithm terminates. In all the cases there is a single cusp of type Ã1 for
n = 2 and of type B̃2 for n = 3, . . . , 8. The Coxeter diagrams are shown in
Figure 2.3.

2.5 Real plane algebraic curves

In this section we study the topology of real algebraic curves. For a treatment
of curves suitable for geometric invariant theory, which we use in later chap-
ters, we refer to [21] Chapter 4. A real plane algebraic curve C of degree d
is the zero locus in the projective plane P2(R) of a homogeneous polynomial
f(x, y, z) of degree d with real coefficients. If the curve C is smooth its set of
real points C(R) ⊂ P2(R) is a compact submanifold of dimension one. It is
well known that in this case the connected components of C(R), which we call
ovals, are smoothly embedded circles in P2(R). There are two possibilities for
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1 2 3 1 2 3 4

1 2 3 n− 1 n

n+ 1

Figure 2.3: The Coxeter diagrams of the groups O(Z1,n(2))+

for n = 2, . . . , 8.

an oval γ ⊂ P2(R): either it bounds a disc in which case we call γ even or it
is isotopic to a projective line in P2(R) and γ is called odd. If the degree of C
is even then all its ovals are even. In this case if C(R) 6= ∅ the complement of
the curve in P2(R) consists of two halves where f < 0 and f > 0 respectively.
One of these halves corresponds to the inside of the curve and is orientable,
the other half corresponds to the outside of the curve and is non-orientable.
We choose the sign of f so that the half where f > 0 is orientable. If C(R) = ∅
then its complement is the whole of P2(R) which is non-orientable so that we
choose the sign of f to be negative.

For a smooth real plane algebraic curve C the possibilities for the number
of ovals are completely determined by the following classical theorem due to
Harnack.

Theorem 2.5.1 (Harnack [20]). For any natural number d and any integer
n satisfying the inequalities:

1− (−1)d

2
≤ n ≤ (d− 1)(d− 2)

2
+ 1

there exists a smooth real plane algebraic curve C of degree d consisting of n
ovals.

The right hand inequality in Harnack’s theorem is also called Harnack’s
inequality. A curve for which this inequality is an equality is called a maximal
curve, or M -curve. The determination of the possible relative positions of the
ovals of a smooth real plane algebraic curve of degree d is the subject of the
first part of Hilbert’s 16th problem. It is still open for d > 7.

The space of all real plane algebraic curve of degree d is the projec-
tive space Pd,3(R) = PSymd(R3)∨ of dimension N = d2+3d

2 . The sublocus
∆(R) ⊂ Pd,3(R) that corresponds to singular curves is of codimension 1. Two
nonsingular curves C and C ′ are said to be connected by a rigid isotopy if
they are in the same connected component of Pd,3(R)−∆(R). A rigid isotopy
preserves the relative positions of the ovals of a curve but the converse need
not be true for curves of degree d ≥ 5.
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Example 2.5.2. For a smooth real plane algebraic curve C of degree four
the determination of the relative position of the ovals is classical and goes
back to Cayley and Zeuthen. There are six cases: the number of ovals n(C)
is 0, 1, 2, 3 or 4 and if n(C)=2 the ovals can be nested or not. In the other
cases the ovals cannot be nested otherwise we would get a contradiction with
Bezout’s theorem. These six cases are shown in Figure 1.1. This classification
corresponds with the classification by rigid isotopy, so the space P4,3(R)−∆(R)
has 6 connected components.

2.6 Complex del Pezzo surfaces

In this section we review the theory of del Pezzo surfaces that will be used
throughout this text. A good references for this section is [32]. Two other
references on the subject worth mentioning are [16] and [17].

Definition 2.6.1. A del Pezzo surface Y is a smooth, complex projective
surface whose anticanonical system | −KY | is ample. The degree of Y is the
self-intersection number: d = KY · KY of the canonical class in the Picard
group Pic(Y ) of Y . It is an integer with 1 ≤ d ≤ 9.

Most del Pezzo surfaces can be realized as the blowup of a configuration of
points in the projective plane. The precise statement is given by the following
theorem.

Theorem 2.6.2. A del Pezzo surface of degree d is isomorphic to either:

1. The blowup Y = BlB P2 of the projective plane in a set

B = {P1, . . . , Pr} ⊂ P2(C)

of r = 9 − d points in general position (1 ≤ d ≤ 9). A point set is in
general position if no 3 points are collinear, no 6 are on a conic and no
8 are on a cubic which is singular at one of these points.

2. The smooth quadric P1 × P1 in which case d = 8.

From now on we only consider del Pezzo surfaces of the first kind. Ex-
hibiting a del Pezzo surface as a blowup π : Y → P2 fixes a basis of the Picard
group Pic(Y ). This basis consists of the classes Ei = π−1(Pi) with 1 ≤ i ≤ r
of the exceptional curves over the blown up points and the class E0 of the
strict transform of a general line in P2. The anticanonical class expressed in
this basis of Pic(Y ) is given by:

−KY = 3E0 − E1 − . . .− Er.

It is represented by the strict transform of a cubic in P2 through the points
B = {P1, . . . , Pr}. We also write Pic0(Y ) for the orthogonal complement of
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−KY in Pic(Y ). From the description of a del Pezzo surface as a blowup of P2

it follows that the Picard group Pic(Y ) is isomorphic to the hyperbolic lattice
Z1,r of rank r + 1 and signature (1, r). It has a basis {e0, . . . , er} with inner
product defined by the relations:

e0 · e0 = 1
ei · ei = −1 for 1 ≤ i ≤ r
ei · ej = 0 for i 6= j.

An isomorphism φ : Z1,r → Pic(Y ) is called a marking of the del Pezzo surface
Y if it maps the element k = −3e0 + e0 + . . . + er to the canonical class KY

of Pic(Y ). An isomorphism (Y, φ) ∼= (Y ′, φ′) of marked del Pezzo surfaces is
an isomorphism F : Y → Y ′ such that the following diagram commutes.

Z1,r Pic(Y )

Pic(Y ′)

φ

φ′
F∗

Exhibiting a del Pezzo surface as a blowup π : Y → P2 is equivalent to
adding a marking to Y since from the marking φ we recover the blowup map
by blowing down the exceptional curves φ(ei) for 1 ≤ i ≤ r. This determines
a set B = {P1, . . . , Pr} of r points in general postition in P2. If two marked
del Pezzo surfaces are isomorphic then the corresponding point sets B and B′

are related by an element of PGL(3,C). As a consequence the space

D̃Pd =
(
(P2)r −∆

)
/PGL(3,C) (2.9)

is a moduli space for marked del Pezzo surfaces of degree d = 9 − r. Here ∆
denotes the set of configurations of r points in P2 not in general position in
the sense of Theorem 2.6.2. For an r-tuple of points in P2 in general position
with r ≥ 4 there is a unique element of PGL(3,C) that maps the points to
the configuration of points represented by the columns of the matrix:1 0 0 1 x1 . . . xr−4

0 1 0 1 y1 . . . yr−4

1 1 1 1 1 . . . 1

 .

This implies that D̃Pd is isomorphic to an open subset of (A2)r−4 and is
actually a fine moduli space for marked del Pezzo surfaces of degree d.

The Cremona action of the Weyl group

The orthogonal group O(Z1,r)
+ is a hyperbolic Coxeter group with the Coxeter

diagram shown in Figure 2.3. The stabilizer Wr of k = −3e0 + e1 + . . . + er
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in this group is the subgroup generated by the reflections in the long roots of
Z1,r. It is a finite Coxeter group of type:

A1A2, A4, D5, E6, E7, E8 (2.10)

for r = 3, . . . , 8. A set of generators S = {s1, . . . , sr} for Wr is given by the
reflections in the simple roots:

α1 = e1 − e2 , . . . , αr−1 = er−1 − er , αr = e0 − e1 − e2 − e3.

These root span a lattice Qr that is precisely the orthogonal complement of
k⊥ in Z1,r. The group Wr acts on marked del Pezzo surfaes by composing
with the marking: w · (X,φ) = (X,φ ◦w−1) for w ∈Wr. This action is simply

transitive so that the orbit space DPd = Wr\D̃Pd is a coarse moduli space
for del Pezzo surfaces of degree d.

We now describe this action on the set of blown up points in P2. Suppose
(X,φ) is a marked del Pezzo surface and π : X → P2 is the corresponding
blowing up map with B ⊆ P2 the set of blown up points. If φ′ is another
marking of X then φ′ = φ◦w for some element w ∈Wr. The element w defines
a birational transformation ρ(w) of P2 in the following way: first blow up P2

in the points of B. Then blow down the exceptional curves φ′(ei) = φ(w · ei)
for 1 ≤ i ≤ r. This determines a new set of points B′ and blowup map
π′ : X → P2 corresponding to φ′ such that the following diagram commutes.

X

P2 P2

π π′

ρ(w)

In this way we obtain a homomorphism of the Weyl group Wr to the group
of birational transformations of P2:

ρ : Wr → Bir(P2)

We can calculate this representation on the set S of simple reflections. The
element ρ(si) with 1 ≤ i ≤ r−1 corresponds to the transposition of the points
Pi and Pi+1. The element sr gives a more interesting transformation. It acts
on Z1,r by:

e1 7→ e0 − e2 − e3

e2 7→ e0 − e1 − e3

e3 7→ e0 − e1 − e2

ei 7→ ei 4 ≤ i ≤ r.

Geometrically this means that ρ(sr) is obtained by first blowing up P1, P2

and P3 and then blowing down the strict transforms of the lines connect-
ing them. This birational transformation ρ(sr) is called the standard Cre-
mona transformation based in P1, P2 and P3. A simple calculation shows that
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s7(2e0 − e1 − e2 − e3) = e0 so that the image of a conic through P1, P2, P3

under the standard Cremona transformation is a line. If we assume that these
points are

P1 = (1 : 0 : 0) , P2 = (0 : 1 : 0) , P3 = (0 : 0 : 1).

then ρ(sr) is given by (x : y : z) 7→ (yz : xz : xy). To summarise: the group
Wr acts on (P2)r − ∆ by permuting the points and by standard Cremona
transformations centered in triples of distinct points.

Del Pezzo surfaces of degree two

Suppose that Y is a del Pezzo surface of degree two so that it is isomorphic to
the blowup of the projective plane P2 in 7 points. The anticanonical system
of Y defines a morphism:

| −KY | : Y → P2.

It is a double cover of P2 branched along a smooth quartic C ⊂ P2. Conversely
a smooth quartic C = {f(x, y, z) = 0} determines a del Pezzo surface Y of
degree two by the formula:

Y = {w2 = f(x, y, z)} ⊂ P(2, 1, 1, 1). (2.11)

Consequently every del Pezzo surface Y has a special involution that corre-
sponds to the deck transformation of the double cover Y → P2. In terms of
Equation 2.11 this involution is given by:

ρY : [w : x : y : z] 7→ [−w : x : y : z].

If we choose a marking φ : Pic(Y ) → Z1,7 then this involution acts on the
lattice Z1,7 by:

ρ : x 7→ −x+ (x · k)k. (2.12)

It fixes the element k and acts as −1 on k⊥ so that it corresponds to the
centralizer −1 ∈ W (E7). An element e ∈ Z1,7 that satisfies e · e = −1 and
e · k = −1 is called exceptional. The set E of exceptional elements forms a
single W (E7)-orbit and consists of the 56 elements:

1. ei with 1 ≤ i ≤ 7, the class of the exceptional divisor Ei.

2. lij = e0− ei− ej , the class of the strict transform of the line Lij through
Pi and Pj .

3. cij = −k − lij = 2e0 − e1 − . . .− êi − . . .− êj − . . .− e7, the class of the
strict transform of the conic Cij through 5 of the 7 points.
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4. ki = −k − ei = 3e0 − e1 − . . . − 2ei − . . . − e7, the class of the strict
transform of the cubic Ki through 6 points with a node at a seventh
point.

The elements of E come in 28 pairs (ei, ki), (lij , cij) whose elements are in-
terchanged by the involution ρ. The geometric meaning of this is as follows.
An exceptional element E ∈ Pic(Y ) corresponds to a line on the del Pezzo
surface Y and there are 56 of these. The two elements of a pair (E, ρY (E))
are mapped to a single bitangent of the quartic curve by the anticanonical
map. This accounts for all 28 bitangents of a smooth plane quartic curve.

The Geiser involution

We can also describe the involution ρY explicitly as a birational involution of
P2 which is called the Geiser involution. Let B = {P1, . . . , P7} be the 7 blown
up points in P2(C). Suppose the cubics {C1, C2, C3} form a basis for the net
of cubics through B. We define the rational map:

ψ : P2(C) 99K P2(C)

[x : y : z] 7→ [C1(x, y, z) : C2(x, y, z) : C3(x, y, z)].

The locus of indeterminacy where C1, C2 and C3 vanish simultaneously is
precisely the set B. The cubic curve V (C) defined as the zero locus of C =
aC1 + bC2 + cC3 with a, b, c ∈ C is mapped by ψ to the projective line aC1 +
bC2 + cC3 = 0.

For a general point Q ∈ P2(C) \ B there is a pencil of cubics through
B ∪ {Q}. Let C,C ′ be a basis for this pencil. The point ψ(Q) is the unique
intersection point of the two lines l = π(C) and l′ = π(C ′). We see that for
the inverse image we have:

ψ−1ψ(Q) = ψ−1(l ∩ l′) = (C ∩ C ′) \B.

The set (C ∩ C ′) \B consists of two points {Q,Q′} with Q′ the nineth inter-
section point of C and C ′. This shows that the map ψ is generically 2 : 1.
The Geiser involution maps Q to Q′. It is not defined on the cubics Ki that
pass through B with a double point at Pi. After we blow up the points B,
the birational involution ψ lifts to the automorphism ρY of Y .

2.7 K3-surfaces

A main ingredient in Kondo’s construction of a period map for the moduli
space of smooth real plane quartic curves is the period map for K3-surfaces.
In this section we briefly review the relevant results and refer to [8] Chapter
8 for a detailed exposition and proofs. We also list some results on real K3
surfaces.
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Definition 2.7.1. A smooth compact complex surface is called a K3-surface
if it is simply connected and its canonical class KX is trivial.

Example 2.7.2. The most relevant example for us is that of a smooth quar-
tic surface X in P3. By the adjunction formula the canonical class KX is
zero in Pic(X). By the Lefschetz theorem for hyperplane section there are
isomorphisms:

π1(X) π1(P3) {1}
∼= ∼=

so that X is simply connected and indeed a K3 surface.

Let X be a K3 surface, since KX is trivial there is a non-vanishing holo-
morphic 2-form ωX ∈ H2,0(X) unique up to scalar multiplication. The Hodge
numbers of X are given by the Hodge diamond:

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h2,1 h1,2

h2,2

=

1
0 0

1 20 1
0 0

1

.

There is also a Hodge decomposition of the second cohomology of X, which
takes the form:

H2(X,C) = C · ωX ⊕H1,1(X)⊕ C · ωX .

The second integral cohomology group H2(X,Z) of X is equipped with a
symmetric bilinear form induced by the cup-product. This turns H2(X,Z)
into a lattice isomorphic to the K3-lattice:

L = U3 ⊕ E2
8 .

It is an even unimodular lattice of rank 22 and signature (3, 19). An iso-
morphism of lattices: φ : H2(X,Z) → L is called a marking of X. By
the Hodge-Riemann bilinear relations the extension of the bilinear form to
H2(X,C) satisfies:

(ωX , ωX) = (ωX , ωX) = 0 , (ωX , ωX) ∈ R>0 , (ωX , γ) = 0

for all γ ∈ H1,1(X). This allows us to define a period map by mapping
a marked K3-surface (X,φ) to the period point φ(H2,0(X)) in the period
domain:

Ω = P{z ∈ L⊗Z C ; (z, z) = 0 , (z, z̄) ∈ R>0} (2.13)

The following two theorems imply that this period domain is actually a
(coarse) moduli space for marked K3 surfaces.
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Theorem 2.7.3 (Weak Torelli theorem). Two K3-surfaces X and X ′ are
isomorphic if and only if there are markings for them such that they map to
the same period point in Ω.

Theorem 2.7.4 (Surjectivity of the period map). Every point [x] ∈ Ω occurs
as the period point of some marked K3-surface (X,φ).

Real K3 surfaces

A K3 surface X is called real if it is equipped with an anti-holomorphic in-
volution χX . We will also call such an involution a real form of X. The real
points of X which we denote by X(R) are the fixed points of the real form.

Theorem 2.7.5. Let χ be an involution on the K3 lattice L. There exists a
marked K3 surface (X,φ) such that χX = φ−1 ◦ χ ◦ φ induces a real form on
X if and only if the lattice of fixed points Lχ has hyperbolic signature.

Proof. See [39] Chapter VIII Theorem 2.3.

Suppose (X,χX) is a real K3 surface. By choosing a marking we obtain
an involution χ of the K3 lattice L. By Theorem 2.7.5 the fixed point lattice
of this involution Lχ is of hyperbolic signature. Since the K3 lattice is an
even unimodular lattice, the lattice Lχ is even and 2-elementary. According to
Proposition 2.2.1 the isomorphism type of Lχ is determined by three invariants
(r, a, δ) where r = r+ + r− = 1 + r−. It is clear that these invariants do
not depend on the marking of X. The following theorem originally due to
Kharlamov [23] shows that they determine the topological type of the real
point set X(R). We will write Sg for a real orientable surface of genus g and
kS for the disjoint union of k copies of a real surface S.

Theorem 2.7.6 (Nikulin [34] Thm. 3.10.6). Let (X,χX) be a real K3 surface.
Then:

X(R) =


∅ if (r, a, δ) = (10, 10, 0)

2S1 if (r, a, δ) = (10, 8, 0)

Sg t kS0 otherwise

where g = 1
2(22− r − a) and k = 1

2(r − a).



Chapter 3

Gaussian lattices

3.1 Introduction

This chapter is in a sense the technical heart of the first part of this thesis.
We study Gaussian lattices of hyperbolic signature and show how these give
rise to arithmetic complex ball quotients. Anti-unitary involutions of the
Gaussian lattice then correspond to real forms of these ball quotients. The
main examples are the two Gaussian lattices Λ1,5 and Λ1,6 whose ball quotients
correspond to the moduli spaces of smooth binary octavics and smooth quartic
curves. These are the subject of Chapters 4 and 5. An excellent reference on
the topic of Gaussian lattices is [1]. It also contains many examples of lattices
over the Eisenstein and Hurwitz integers.

3.2 Gaussian lattices

A Gaussian lattice is a pair (Λ, ρ) with Λ a lattice and ρ ∈ O(Λ) an auto-
morphism of order four such that the powers ρ, ρ2 and ρ3 act without nonzero
fixed points. Such a lattice Λ can be considered as a module over the ring of
Gaussian integers G = Z[i] by assigning (a + ib)x = ax + bρ(x) for all x ∈ Λ
and a, b ∈ Z. The expression

h(x, y) = (x, y) + i(ρ(x), y)

defines a G-valued non-degenerate Hermitian form on Λ which is linear in its
second argument and anti-linear in its first argument. Conversely suppose that
Λ is a free G-module of finite rank equipped with a G-valued Hermitian form
h(·, ·). We define a symmetric bilinear form on the underlying Z-lattice of Λ by
taking the real part of the Hermitian form: (x, y) = Reh(x, y). Multiplication
by i defines an automorphism ρ of order 4 so the pair (Λ, ρ) is a Gaussian
lattice. It is easily checked that these two constructions are inverse to each
other. Another way of defining a Gaussian lattice is by prescribing a Hermitian
Gaussian matrix. Such a matrix H satisfies H

t
= H and defines a Hermitian

29
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form on Gn by the formula h(x, y) = x̄tHy. The dual of a Gaussian lattice Λ
is the lattice Λ∨ = Hom(Λ,G). It is naturally embedded in the vector space
Λ⊗G Q(i) by the identification:

Λ∨ = {x ∈ Λ⊗G Q(i) ; h(x, y) ∈ G for all y ∈ Λ} .

From now on we only consider non-degenerate Gaussian lattices that sat-
isfy the condition h(x, y) ∈ (1 + i)G for al x, y ∈ Λ. This is equivalent to
Λ ⊂ (1 + i)Λ∨ and implies that the underlying Z-lattice of Λ is even.

Lemma 3.2.1. The group U(Λ) of unitary transformations of a Gaussian
lattice Λ is equal to the group:

Γ = {γ ∈ O(Λ) ; γ ◦ ρ = ρ ◦ γ}

of orthogonal transformations of the underlying Z-lattice of Λ that commute
with ρ.

Proof. If γ ∈ U(Λ) then by definition h(γx, γy) = h(x, y) for all x, y ∈ Λ.
Using the definition of the Hermitian form h this is equivalent to:

(γx, γy) + i(ργx, γy) = (x, y) + i(ρx, y).

By considering the real part of this equality we see that γ ∈ O(Λ). Combin-
ing this with the equality of the imaginary parts of the equation we obtain
(ργx, γy) = (γρx, γy) for all x, y ∈ Λ. This is equivalent to: ρ ◦ γ = γ ◦ ρ.
This proves the inclusion U(Λ) ⊂ Γ. For the other inclusion we can reverse
the argument.

A root r ∈ Λ is a primitive element of norm −2. For every root r we define
a complex reflection sr,i of order 4 (a tetraflection) by:

sr,i(x) = x− (1− i)h(r, x)

h(r, r)
r. (3.1)

It is a unitary transformation of Λ that maps r 7→ ir and fixes pointwise the
mirror Hr = {x ∈ Λ ; h(r, x) = 0}. The tetraflection sr,i and the mirror Hr

only depend on the orbit of r under the group of units G∗ = {1, i,−1,−i} of
G. We call such an orbit a projective root and denote it by [r]. If the group
generated by tretraflections in the roots has finite index in Γ = U(Λ) we say
that the lattice Λ is tetraflective.

Example 3.2.2 (The Gaussian lattice Λ2). The D4 lattice is given by:

D4 =
{
x ∈ Z4 ;

∑
xi ≡ 0 mod 2

}
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with the symmetric bilinear form induced by the standard form (x, y) =
∑
xiyi

of Z4 scaled by a factor −1 so that it is negative definite. We choose a non-
standard basis for this lattice given by the roots {βi} with the Gram matrix
B shown below.

β1 = e3 − e1

B =


−2 0 1 −1
0 −2 1 1
1 1 −2 0
−1 1 0 −2

 ρ =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

β2 = −e1 − e3

β3 = e1 − e2

β4 = e3 − e4

The matrix ρ defines an automorphism of order 4 without fixed points which
turns the lattice D4 into a Gaussian lattice which we will call Λ2. A basis for
Λ2 is given by the roots {β1, β3} and the Gram matrix H with respect to this
basis is given by:

H =

(
−2 1 + i

1− i −2

)
.

A small calculation shows that there are 6 projective roots which are the
G∗-orbits of the roots:{(

1
0

)
,

(
0
1

)
,

(
1
1

)
,

(
1
−i

)
,

(
1

1− i

)
,

(
1 + i

1

)}
The group generated by the tetraflections in these roots is the complex reflec-
tion group G8 of order 96 in the Shephard-Todd classification [37]. A basis

for the dual lattice Λ∨2 is given by
{

1
1+iβ1,

1
1+iβ3

}
so that (1 + i)Λ∨2 = Λ2.

Example 3.2.3. Consider the Gaussian lattice Λ1,1 with basis {e1, e2} and
Hermitian form defined by the matrix:

H =

(
0 1 + i

1− i 0

)
.

It is easy to verify that (1 + i)Λ∨1,1 = Λ1,1. A basis {β1, . . . , β4} for the
underlying Z-lattice and its Gram matrix B are shown below.

β1 = e2

B =


0 1 0 0
1 0 0 0
0 0 0 2
0 0 2 0

β2 = ie1

β3 = e1 − ie1

β4 = e2 − ie2

We conclude that the underlying Z-lattice is isomorphic to U ⊕ U(2).

Using these two examples of Gaussian lattices we can construct many more
by forming direct sums. We are especially interested in the Gaussian lattices of
hyperbolic signature since these occur in the study of certain moduli problems.
For example the Gaussian lattice Λ1,1 ⊕ Λ2 ⊕ Λ2 plays an important role in
the study of the moduli spaceM0,8 of 8 points on the projective line. Yoshida
and Matsumoto [33] prove that the unitary group of this lattice is generated
by 7 tetraflections so that it is in particular tetraflective. We will come back
to this lattice in Chapter 4.
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3.3 Anti-unitary involutions of Gaussian lattices

Let Λ be a Gaussian lattice of rank n and signature (n+, n−). An anti-unitary
involution of Λ is an involution χ of the underlying Z-lattice that satisfies:

h (χ(x), χ(y)) = h (x, y).

Equivalently it is an involution that anti-commutes with ρ so that: χ ◦ ρ =
−ρ◦χ. An anti-unitary involution χ naturally extends to the Q(i)-vectorspace
ΛQ = Λ ⊗G Q(i) which can be regarded as a Q-vectorspace of dimension 2n
and signature (2n+, 2n−). The fixed point subspace ΛχQ is a Q-vectorspace of
dimension n and signature (n+, n−). Consider the fixed point lattice Λχ =
Λ ∩ ΛχQ. The Hermitian form restricted to Λχ takes on real values in (1 + i)G
so that it is in fact even-valued. This implies that Λχ(1

2) in an integral lattice.

Proposition 3.3.1. Let Λ be the Gaussian lattice defined by a Hermitian
matrix H, so that in particular Λ ∼= Gn. Every anti-unitary involution of Λ
is of the form χ = M ◦ conj where conj is standard complex conjugation on
Λ ∼= Gn. The matrix M has coefficients in G and satisfies MM = I and:
M

t
HM = H.

Proof. Suppose that χ is a anti-unitary involution of Λ. Since every anti-
unitary involution on the vector space Λ ⊗G Q(i) is conjugate to standard
complex conjugation there is a matrix N such that N ◦ χ ◦N−1 = conj. We
can rewrite this as χ = M◦conj whereM = N−1N andM has coefficients in G.
It is clear that MM = I. Finally we can rewrite the equality h(χ(x), χ(y)) =
h(x, y) as:

xtM
t
HMy = xtHy.

This holds for all x, y ∈ Λ so that the last equality of the proposition follows.

Let χ be an anti-unitary involution of the lattice Λ and let [χ] be its pro-
jective equivalence class. The elements of [χ] are the involutions ikχ with
k = 0, 1, 2, 3. By conjugation with the scalar i we see that the the two in-
volutions {χ,−χ} and also {iχ,−iχ} are conjugate in Γ. The anti-unitary
involutions χ and iχ need not be Γ-conjugate, so in particular their fixed
point lattices need not be isomorphic. This can already be seen in the sim-
plest case of anti-unitary involutions on G. The fixed points lattice of the
anti-unitary involution conj and i ◦ conj are Z and (1 + i)Z respectively.

We now present some computational lemma’s on anti-unitary involutions
of Gaussian lattices of small rank. These will be very useful later on and will
be referenced to throughout this text.
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χ Λ Λχ Bχ

ψ1 G A1 (1)
iψ1 G A1(2) (1 + i)

ψ2 Λ2 A2
1

(
1 + i 0

1 1

)
ψ2 Λ1,1 U(2)

(
1 + i 0

0 1

)
ψ′2 Λ2 A1 ⊕A1(2)

(
1 1 + i
1 1− i

)
ψ′2 Λ1,1 A1(2)⊕ (2)

(
1− i 1
1 + i 1

)

ψ4 Λ2
2 D4(2)


−1 i −i −i
0 i 0 −1− i
−i 1 −1 −1
0 −i 0 −1 + i


Table 3.1: Some anti-unitary transformations of Gaussian lat-
tices of small rank.

Lemma 3.3.2. Let ψ1, ψ2, ψ
′
2 and ψ4 be the transformations obtained by com-

posing the following matrices with complex conjugation.

M1 = (1) , M2 =

(
i 0
0 1

)
, M ′2 =

(
0 1
1 0

)
, M4 =


0 0 i 0
0 0 0 1
i 0 0 0
0 1 0 0

 .

They define anti-unitary involutions χ on certain Gaussian lattices Λ shown in
Table 3.1. The fixed point lattices Λχ are also computed along with a matrix
Bχ such that the columns of this matrix form a Z-basis for the fixed point
lattice Λχ.

Proof. Using the conditions on Mi from Proposition 3.3.1 it is a straightfor-
ward calculation to prove that the ψi are anti-unitary involutions. Further-
more we need to check that the columns of Bψi form a basis for the fixed point

lattice and that Λψi = Bψi
t
ΛBψi . For example the fixed point lattice (Λ2

2)ψ2

is given by the subset

{(z1, z2, iz̄1, z̄2) ; z1, z2 ∈ G} ⊂ Λ2
2

and it is not difficult to check that the columns of Bψ2 indeed form a Z-basis.
The verification for the other lattices proceeds similarly.
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Lemma 3.3.3. The anti-unitary involution ψ2 (rep. ψ′2) is conjugate to iψ2

(resp. iψ′2) in U(Λ2) as well as in U(Λ1,1). The anti-unitary involution ψ4 is
conjugate to iψ4 in U(Λ2

2).

Proof. The matrix N = ( 0 i
1 0 ) satisfies N

t
Λ2N = Λ2 and N

t
Λ1,1N = Λ1,1 so

it is contained in U(Λ2) and U(Λ1,1). It also satisfies Nψ2N
−1

= iψ2 and

Nψ′2N
−1

= iψ′2. Similarly conjugation by the matrix
(

0 N
N 0

)
∈ U(Λ2

2) maps
ψ4 to iψ4.

3.4 Ball quotients from hyperbolic lattices

Let Λ be a Gaussian lattice of hyperbolic signature (1, n) with n ≥ 2 such
that Λ ⊂ (1 + i)Λ∨. We can associate to Λ a complex ball:

B = P{x ∈ Λ⊗G C ; h(x, x) > 0}.

The group PΓ = PU(Λ) acts properly discontinuously on B. The ball
quotient PΓ\B is a quasi-projective variety of finite hyperbolic volume by the
theorem of Baily-Borel [7]. Recall that a root r ∈ Λ is an element of norm
−2. We denote by H ⊂ B the union of all the root mirrors Hr and write
B◦ = B \ H. The divisor H is a hyperplane arrangement and the mirrors
are its irreducible components. In all the examples we consider later on the
space PΓ\B◦ is a moduli space for certain smooth objects. The image of H in
this space is called the discriminant and parametrizes certain singular objects.
The following lemma describes how two mirrors in H can intersect.

Lemma 3.4.1. Let r1, r2 be two roots in Λ such that Hr1 ∩ Hr2 6= ∅. The
projective classes [r1] and [r2] are either identical, orthogonal or they span a
Gaussian lattice of type Λ2.

Proof. Since the images of Hr1 and Hr2 meet in B there is a vector x ∈ Λ with
h(x, x) > 0 orthogonal to both r1 and r2. This implies that r1 and r2 span a
negative definite space so that the Hermitian matrix:(

−2 h(r1, r2)
h(r2, r1) −2

)
is negative definite. This is equivalent to |h(r1, r2)|2 < 4 and since h(r1, r2) ∈
(1 + i)G we see that either h(r1, r2) = 0 or h(r1, r2) = ±1 ± i. In the second
case we can assume that h(r1, r2) = 1 + i by multiplying r1 and r2 by suitable
units in G∗.

Let Bχ be the fixed point set in B of the real form [χ]. Since the fixed
point lattice Λχ is of hyperbolic signature this is a real ball given by:

Bχ = P{x ∈ Λχ ⊗Z R ; h(x, x) > 0}.
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Note that the lattice Λiχ defines the same real ball. The isomorphism type
of the unordered pair (Λχ,Λiχ) is an invariant of the PΓ-conjugacy class of
[χ] as shown by the following lemma. This invariant will prove very useful to
distinguish between classes up to PΓ-conjugacy.

Lemma 3.4.2. If the projective classes [χ] and [χ′] of two anti-unitary invo-
lutions χ and χ′ of Λ are conjugate in PΓ then the isomorphism classes of the
pairs of lattices (Λχ,Λiχ) and (Λχ

′
,Λiχ

′
) are equal.

Proof. Suppose [χ] and [χ′] are conjugate in PΓ. Then there is a g ∈ Γ such
that [gχg−1] = [χ′]. This implies that gχg−1 = λχ′ for some unit λ ∈ G∗ so
that the anti-unitary involutions χ and λχ′ are conjugate in Γ. From this we
deduce that Λχ ∼= Λλχ

′
. Since g ∈ Γ commutes with multiplication by i the

involutions iχ and iλχ′ are also conjugate in Γ and we get Λiχ ∼= Λiλχ
′
.

Proposition 3.4.3. Let PΓχ be the stabilizer of Bχ in PΓ. Then:

PΓχ = {[g] ∈ PΓ ; [g] ◦ [χ] = [χ] ◦ [g]}

Proof. The following statements are equivalent:

[g] ∈ PΓχ,

[gx] ∈ Bχ for all [x] ∈ Bχ,
[χ(gx)] = [g(χx)] for all [x] ∈ Bχ,
[χ(gz)] = [g(χz)] for all [z] = [x+ iy] , [x], [y] ∈ Bχ,
[g ◦ χ] = [χ ◦ g].

From Proposition 3.4.3 we see that for every element [g] ∈ PΓχ precisely
one of the following holds:

I. There is a g ∈ [g] such that: gχg−1 = χ so that: gΛχ = Λχ.

II. There is a g ∈ [g] such that gχg−1 = iχ so that: gΛχ = Λiχ.

We use Chu’s convention from [12] and say that [g] ∈ PΓχ is of type I respec-
tively of type II. The elements of type I form a subgroup of PΓχ which we
denote by PΓχI . If there exists an element of type II then this subgroup is of
index 2, otherwise every element of PΓχ is of type I.

Every element [g] ∈ PΓχ of type I determines a unique element in PO(Λχ)
so there is a natural embedding: PΓχ ↪→ PO(Λχ). In general not every
element [g] ∈ PO(Λχ) extends to the group PΓ. Let B be a matrix whose
columns represent a basis for the lattice Λχ in Λ. Then we have:

PΓχI = {[M ] ∈ PO(Λχ) ; BMB−1 ∈ Gn+1×n+1} (3.2)

so that PΓχI is the subgroup of PO(Λχ) consisting of all elements that extend
to unitary transformations of the Gaussian lattice Λ.



36 CHAPTER 3. GAUSSIAN LATTICES

Theorem 3.4.4. The groups PΓχ and PO(Λχ) are commensurable.

Proof. We have seen that the intersection of the two groups is given by:

PΓχ ∩ PO(Λχ) = PΓχI

and has at most index 2 in PΓχ. We now prove that this intersection is a
congruence subgroup of PO(Λχ) so that in particular it has finite index. Recall
that the adjoint matrix Badj has coefficients in G and satisfies (detB)B−1 =
Badj. If we write M = 1 + X then by Equation 3.2 we have [M ] ∈ PΓχI if
and only if detB divides BXBadj. This is certainly the case if detB divides
X so if M ≡ 1 mod (detB). This implies that PΓχI contains the principal
congruence subgroup:

{[M ] ∈ PO(Λχ) ; M ≡ 1 mod (detB)}.

In the examples we encounter the lattice Λχ is reflective so that the reflec-
tions generate a finite index subgroup in PO(Λχ). By the results of Section
2.4 the group PO(Λχ) is of the form W (C) o S(C) where C ⊂ Bχ is a Cox-
eter polytope of finite volume, W (C) its reflection group and S(C) a group
of automorphisms of C. The polytope C can be determined by Vinberg’s al-
gorithm. We will see that in many cases the reflection subgroup of the group
PΓχI is also of finite index. This can be determined by applying Vinberg’s
algorithm with the condition that in every step we only accept roots r such
that the reflection sr ∈ PO(Λχ) satisfies Equation 3.2. This is equivalent to
the condition:

2r

h(r, r)
∈ Λ∨. (3.3)

We finish this section by describing how a root mirror Hr ∈ H can meet
the real ball Bχ. This intersection can be of codimension one or two as shown
by the following lemma.

Lemma 3.4.5. Suppose r ∈ Λ is a root such that Bχ∩Hr 6= ∅. Then Bχ∩Hr

is equal to Bχ ∩ L with L⊥ a lattice in Λχ of type A1, A1(2), A1 ⊕ A1(2) or
A1(2)2.

Proof. If x ∈ Hr ∩ Bχ then x is fixed by both sr and sχr so the intersection
Hr ∩Hχr is non-empty and we are in the situation of Lemma 3.4.1. Suppose
that χ[r] = [r]. If χr = ±r then either r or ir is a root of Λχ. Both have
lenght −2 so they span a root system of type A1. If χr = ±ir then one of
(1± i)r is a root of Λχ. Both have norm −4 so they span a root system of type
A1(2). If χ[r] 6= [r] then the roots r and χr span a rank two Gaussian lattice
that is either (−2)⊕ (−2) or Λ2 according to Lemma 3.4.1. The involution χ
acts on these lattices as the anti-unitary involution ψ′2. The fixed point lattice
for (−2)⊕ (−2) is A1(2)2 as follows from a straightforward computation. For
Λ2 we get the fixed point lattice A1⊕A1(2) as follows from Lemma 3.3.2.
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3.5 Examples

The Gaussian lattice Λ1,2

The lattice Λ1,2 = Λ2 ⊕ (2) of signature (1, 2) is related to the moduli space
M(3213) of eight-tuples of points on P1 such that there are unique points of
multiplicity 3 and 2 and three distinct points of multiplicity 1. We study the
anti-unitary involutions of this lattice in some detail. Using Table 3.1 we can
immediately write down two anti-unitary involutions of Λ1,2, namely ψ2 ⊕ ψ1

and ψ′2 ⊕ ψ1. We will prove that their projective classes are distinct modulo
conjugation in PΓ = PU(Λ1,2). There is however a another anti-unitary
involution of Λ1,2 given by ψ3 = M3 ◦ conj where M3 is the complicated
matrix:

M3 =

−2 + i 2− 2i −2− 2i
2 −1 2i

1 + 3i −2− 2i −3 + 2i

 .

This anti-unitary involution takes on a much simpler form if we change to a
different basis for Λ1,2 as shown by the following lemma.

Lemma 3.5.1. The Gaussian lattices Λ2⊕(2) and (−2)⊕Λ1,1 are isomorphic.
The anti-unitary involution ψ3 of Λ2⊕ (2) maps to the anti-unitary involution
ψ1 ⊕ ψ2 of (−2)⊕ Λ1,1 under this isomorphism.

Proof. The underlying Z-lattices of the Gaussian lattices Λ2⊕ (2) and (−2)⊕
Λ1,1 are D4⊕ (2) and U ⊕U(2)⊕A1. Both are even 2-elementary lattices and
the invariants (r+, r−, l, δ) of Theorem 2.2.1 are easily seen to be (1, 2, 3, 1) for
both lattices hence they are isomorphic. An explicit base change is given by:
B
t
(Λ2 ⊕ (2))B = (−2)⊕ Λ1,1 for the unimodular matrix

B =

1 + i i 0
1− i 0 1

1 1 i

 .

The final statement follows from the equality B(ψ1 ⊕ ψ2)B
−1

= ψ3.

Proposition 3.5.2. The projective classes of the three anti-unitary involu-
tions χ given by ψ2 ⊕ (2), ψ′2 ⊕ (2) and ψ3 of Λ1,2 are distinct modulo con-
jugation in PΓ. The groups PΓχ of these involutions are hyperbolic Coxeter
groups and their Coxeter diagrams are shown in Table 3.2.

Proof. We will use Lemma 3.4.2 to show that the projective classes of the three
anti-unitary involutions are not PΓ-conjugate. For this we need to calculate
the fixed point lattices of χ and iχ for all three anti-unitary involutions. These
can be read of from Table 3.1 for the anti-unitary involutions ψ2 ⊕ ψ1 and
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ψ′2 ⊕ ψ1. For ψ3 we use Lemma 3.5.1 combined with Table 3.1. We also use
Lemma 2.2.5 to simplify the lattices. For example:

Λ
i(ψ2⊕ψ1)
1,2

∼= (4)⊕A2
1

∼= (2)⊕A1 ⊕A1(2)

where the first isomorphism follows from Table 3.1 and Lemma 3.3.3 and the
second follows from Lemma 2.2.5. The results are listed in Table 3.2. The
lattices (2) ⊕ A1 ⊕ A1(2) and U(2) ⊕ A1(2) in this table are not isomorphic:
if we scale them by a factor 1

2 then one is even while the other is not. This
proves that the PΓ-conjugation classes of ψ2 ⊕ ψ1 and ψ3 are distinct. We
can distinguish the fixed point lattices of ψ′2 ⊕ ψ1 from the previous two by
calculating their discriminants.

To prove that the group PΓχ is a hyperbolic Coxeter group we use Vin-
berg’s algorithm with the condition that we only accept roots that satisfy
Equation 3.3. A vector x = (x1, x2, x3) ∈ Λ1,2⊗G Q is contained in Λ∨1,2 if and

only if x1, x2 ∈ 1
1+iG and x3 ∈ 1

2G so that we can rewrite Equation 3.3 as:

2(1 + i)xi
h(x, x)

∈ G for i = 1, 2 ,
4x3

h(x, x)
∈ G. (3.4)

These equations are satisfied if h(x, x) = −2, so for short roots. If h(x, x) = −4
the equations are equivalent to x1 and x2 being divisible by 1 + i. We demon-
strate Vinberg’s algorithm with conditions for the anti-unitary involution
ψ′2 ⊕ ψ1 since this is the most complicated case. For the other anti-unitary
involutions the execution of the algorithm is similar. The fixed point lattice

Λ
ψ′2⊕ψ1

1,2 is isomorphic to (2) ⊕ A1 ⊕ A1(2) and a basis in Λ1,2 is given by the
columns {e0, e1, e2} of the matrix:

B =

0 1 1 + i
0 1 1− i
1 0 0

 .

Equations 3.4 can be checked by writing a root on this basis. For example
the root e0 − e1 − e2 of norm −4 and height 1

2 is not accepted. The output of
Vinberg’s algorithm with the condition on the roots is shown in Figure 3.1.
The resulting Coxeter diagram has a diagram automorphism whose matrix
with respect to the basis {e0, e1, e2} is:

T =

 2 1 2
−1 0 −2
−1 −1 −1

 .

A small calculation shows that the matrix BTB−1 /∈ G3×3 so that from Equa-
tion 3.2 we see that T /∈ PΓψ

′
2⊕ψ1 .
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e0 e1 e2

p 1 0 0
height 0

r1 0 0 1
r2 0 1 0

height 1
r3 1 0 −1

height 2
r4 2 −2 −1

r3 r1 r4 r2

Figure 3.1: Vinberg’s algorithm with conditions on the roots
for the lattice (2)⊕A1 ⊕A1(2).

χ Λχ1,2 Λiχ1,2 PΓχ

ψ2 ⊕ ψ1 (2)⊕A2
1 (2)⊕A1 ⊕A1(2)

ψ3 (2)⊕A2
1 U(2)⊕A1(2)

ψ′2 ⊕ ψ1 (2)⊕A1 ⊕A1(2) (2)⊕A1(2)2

Table 3.2: The three classes of anti-unitary involutions of the
lattice Λ1,2.

We will see in Section 4.5 that the moduli space M(3213) has three con-
nected components so the three projective classes actually form a complete
set of representatives for PΓ-conjugation classes of anti-unitary involutions in
Λ1,2.

The Gaussian lattice Λ1,6

The lattice Λ1,6 = Λ3
2 ⊕ (2) is related to the moduli space of plane quartic

curves which is the topic of Chapter 5. In this section we collect some use-
ful properties of this lattice that will be used in that chapter. We start by
introducing a very convenient basis.

Lemma 3.5.3. There is a basis {e1, . . . , e7} for Λ1,6 so that the basis vectors
are enumerated by the vertices of the Coxeter diagram of type E7 as in Example
2.3.4. By this we mean that the basis satisfies:

h(ei, ej) =


−2 if i = j

1 + sign(j − i)i if i,j connected

0 else.
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Proof. An example of such a basis is given by the column vectors of the matrix:

BE7 =



1 −1− i 0 0 0 0 0
0 −1 0 0 0 0 0
0 −1− i 1 −1− i 0 0 0
0 −1 0 −1 0 0 1
0 0 0 −1− i 1 0 0
0 0 0 −1 0 1 0
0 1 0 1 0 0 0


.

The tetraflections sei,i ∈ U(Λ1,6) with i = 1, . . . , 7 satisfy the commutation
and braid relations of the Artin group A(E7) of type E7 so that they induce
a representation: A(E7) → U(Λ1,6) by tetraflections. If this homomorphism
is surjective then the lattice Λ1,6 is tetraflective. We suspect this is the case
but will not need it in what follows.

Proposition 3.5.4. Let V be the F2 vectorspace defined by

V = Λ1,6/(1 + i)Λ1,6
∼= (F2)7.

with the invariant quadratic form q(x) ≡ 1
2h(x, x) mod 2. Reduction modulo

(1 + i) induces a surjective homomorphism:

U(Λ1,6)→ O(V, q) ∼= W (E7)+.

where we denote by W (E7)+ the Weyl group of type E7 divided out by its
center {±1}. This group is generated by the images of the tetraflections sei,i
with i = 1, . . . , 7.

Proof. The tetraflections sei,i with i = 1, . . . , 7 act as reflections on the vec-
torspace V since their squares act as the identity. This defines a representation
of the Weyl group W (E7) on V . The matrices of these tetraflections mod-
ulo (1 + i) are identical to the matrices of the simple generating reflections
of W (E7) modulo 2. These act naturally on the F2-vectorspace V ′ = Q/2Q
where Q is the root lattice of type E7. This space is equipped with the invari-
ant quadratic form defined by q′(x) ≡ 1

2(x, x) mod 2 where (·, ·) is the natural
bilinear form on Q defined by the Gram matrix of type E7. We conclude that
the representation spaces (V, q) and (V ′, q′) for W (E7) are isomorphic. The
proposition now follows from [9], §4 Ex. 3 in which it is stated that there is
an exact sequence:

1→ {±1} →W (E7)→ O(V, q)→ 1.
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Let U(Λ1,6)a be the set of anti-unitary transformations of Λ1,6. Reduction
modulo (1 + i) also induces a map

U(Λ1,6)a → O(V, q) ∼= W (E7)+

since complex conjugation induces the identity map on V . The projective
class of an anti-unitary involution [χ] maps to an involution u of W (E7)+

under this map. Its image does not depend on the choice of representative for
the class [χ] since multiplication by i acts as the identity on V . This implies
that the conjugation class of the involution u in W (E7)+ is an invariant of the
PΓ-conjugation class of [χ]. The conjugation classes of involutions of W (E7)
were determined in Example 2.3.4. There are ten conjugation classes that
come in five pairs {u,−u}. Since both u and −u map to the same involution
u ∈W (E7)+ each pair determines a unique conjugation class in W (E7)+. We
will use this to prove the following theorem.

Theorem 3.5.5. The transformations χi with i = 1, . . . , 6 defined by:

χ1 = ψ3
2 ⊕ ψ1 χ2 = ψ2

2 ⊕ ψ′2 ⊕ ψ1 χ3 = ψ2 ⊕ (ψ′2)2 ⊕ ψ1

χ4 = (ψ′2)3 ⊕ ψ1 χ5 = ψ4 ⊕ ψ2 ⊕ ψ1 χ6 = ψ4 ⊕ ψ3

are anti-unitary involutions of the lattice Λ3
2 ⊕ (2). Their projective classes

are distinct modulo conjugation by PΓ.

Proof. According to Lemma 3.3.2 and the previous example it is clear that
the χi are anti-unitary involutions of the lattice Λ3

2 ⊕ (2). By reducing the χi
modulo (1+ i) they map to involutions ui in W (E7)+. To distinguish them we
calculate the dimensions of the fixed point spaces in V and compare them to
those of the involutions in W (E7)+. From this we conclude that u1, u2 and u4

are of type (1, E7), (A1, D6) and (A3
1, A

4
1) respectively. It is clear that u5 = u6.

We used the computer algebra package SAGE to determine that both are of
type (D4, A

3′
1 ) and that u3 is of type (A2

1, D4A1). All of this is summarized in
Table 3.3.

This method is insufficient to distinghuish the classes of χ5 and χ6. For this
we determine the fixed point lattice Λχi1,6 and Λiχi1,6 for i = 5, 6 and use Lemma

3.4.2. The lattices Λχ5
1,6 and Λχ6

1,6 are both isomorphic to (2)⊕A2
1⊕D4(2). The

lattice Λiχ5
1,6 is isomorphic to:

(2)⊕A1 ⊕A1(2)⊕D4(2) ∼= (2)⊕A3
1 ⊕A1(2)3

where we used Lemma 2.2.5. The fixed point lattice Λiχ6
1,6 is isomorphic to

U(2) ⊕ A1(2) ⊕ D4(2). After scaling by a factor 1
2 we see that Λiχ5

1,6 is odd

while the Λiχ6
1,6 is even so that they are not isomorphic. Consequently the

PΓ-conjugacy classes of the [χ5] and [χ6] are distinct.
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χi Type of ui dimV ui

χ1 (1, E7) 7
χ2 (A1, D6) 6
χ3 (A2

1, D4A1) 5
χ4 (A3

1, A
4
1) 4

χ5 (D4, A
3′
1 ) 5

χ6 (D4, A
3′
1 ) 5

Table 3.3: The six projective classes of anti-unitary involutions
of Λ1,6 and the type of the involution they induce in W (E7)+

by reducing modulo 1 + i.

χi Λχi1,6 d(Λχi1,6) Λiχi1,6 d(Λiχi1,6)

χ1 (2)⊕A6
1 27 (2)⊕A5

1 ⊕A1(2) 28

χ2 (2)⊕A5
1 ⊕A1(2) 28 (2)⊕A4

1 ⊕A1(2)2 29

χ3 (2)⊕A4
1 ⊕A1(2)2 29 (2)⊕A3

1 ⊕A1(2)3 210

χ4 (2)⊕A3
1 ⊕A1(2)3 210 (2)⊕A2

1 ⊕A1(2)4 211

χ5 (2)⊕A2
1 ⊕D4(2) 29 (2)⊕A3

1 ⊕A1(2)3 210

χ6 (2)⊕A2
1 ⊕D4(2) 29 U(2)⊕A1(2)⊕D4(2) 210

Table 3.4: The fixed point lattices for χj and iχj for j =
1, . . . , 6 and their discriminants.

Remark 3.5.6. The question remains whether the list of anti-unitary involu-
tions from Theorem 3.5.5 is complete. This is in fact the case as we will see in
Chapter 5, Proposition 5.6.1. It is a consequence of the fact that the moduli
space of smooth real quartics consists of six connected components.

Theorem 3.5.7. The hyperbolic lattices Λχ1,6 for χ = χj , iχj where j =
1, . . . , 6 from Table 3.4 are all reflective and the hyperbolic Coxeter diagrams
for the groups PO(Λχ1,6) are shown in Figure 3.2. By projecting the diagrams
for χj with j = 1, . . . , 5 onto a wall defined by a short root we recover Chu’s
diagrams [12].

Proof. We observe from Table 3.4 that there are seven distinct hyperbolic
lattices. To prove that they are reflective we apply Vinberg’s algorithm. We
demonstrate this for the hyperbolic lattice (2) ⊕ A2

1 ⊕ D4(2) corresponding
to the anti-unitary involutions χ5 and χ6. Let {e0, e1, e2} be an orthonormal
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e0 e1 e2 u1 u2 u3 u4

p 1 0 0 0 0 0 0
height 0

r1 0 1 −1 0 0 0 0
r2 0 0 1 0 0 0 0
r3 0 0 0 1 −1 −1 −1
r4 0 0 0 0 0 0 2
r5 0 0 0 0 0 1 −1
r6 0 0 0 0 1 −1 0

height1
2

r7 1 −1 0 −1 −1 0 0
height1
r8 1 −1 −1 0 0 0 0

Table 3.5: Vinberg’s algorithm for the hyperbolic lattice (2)⊕
A2

1 ⊕D4(2). This lattice corresponds to the two anti-unitary
involutions χ5 and χ6.

basis for (2)⊕A2
1. Recall that the root lattice D4(2) is given by:

D4(2) = {(u1, u2, u3, u4) ∈ Z4 ;

4∑
i=0

ui ≡ 0 (mod 2)}.

It contains root of norm −4 and −8 and both form a root system of type
D4. Together these roots form a root system of type F4. If we choose the
controlling vector e0 the height 0 root system is of type B2F4 spanned by the
roots {r1, . . . , r6} from Table 3.5. This table also shows how the algorithm
proceeds. The resulting Coxeter diagram is shown in Figure 3.2. The Coxeter
diagrams for the other six hyperbolic lattices can be computed similarly and
are also shown in this figure.
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(a) χ1

(b) iχ1 and χ2

(c) χ3 and iχ4

(d) iχ4 (e) iχ3, χ4 and iχ5

r8 r2 r1 r7 r6 r5 r4 r3

(f) χ5 and χ6

(g) iχ6

Figure 3.2: The Coxeter diagram of the groups PO(Λχ1,6) for
χ = χj , iχj with j = 1, . . . , 6.



Chapter 4

Hyperelliptic curves of genus
three

4.1 Introduction

A smooth complex curve C of genus 3 is hyperelliptic if it admits a degree 2
cover of the projective line P1(C). By the Riemann-Hurwitz formula such a
double cover is ramified over eight distinct points in P(C)1. Conversely this
eight-tuple of distinct points determines a complex curve C of genus 3 by the
formula:

C = {w2 = f(x, y)}

where f(x, y) is a smooth complex binary octavic whose zeroes on the pro-
jective line are the eight points. The eight-tuple of distinct points on P(C)1,
or rather its Aut(P(C)1)-orbit determines the curve C up to isomorphism.
Consequently the moduli space of smooth hyperelliptic curves of genus 3 is
isomorphic to the moduli space M(18) of eight distinct unordered points on
the projective line. This moduli space has a description as an arithmetic com-
plex ball quotient due to the work of Deligne and Mostow [15]. It has since
been studied by many authors. Chu [12] has shown that the five components
of the moduli spaceMR(18) of smooth real binary octavics are isomorphic to
arithmetic real ball quotients. In this chapter we review this work and prove
some new results on the maximal real component of this moduli space where
all zeroes of the real binary octavic are real. We also study the moduli spaces
of certain stable real binary octavics.

4.2 Configurations of eight points on the
projective line

A complex binary octavic is a homogeneous polynomial in two variables of
degree eight with complex coefficients. The zero set of a binary octavic p(x, y)

45
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consists of eight points in P(C)1. Conversely an eight-tuple of unordered points
determines a binary octavic up to scalar multiplication by the formula:

p(x, y) =
8∏
i=1

(βix− αiy)

where the points are given up to permutation by: pi = [αi : βi]. The space
of binary octavics up to scalar multiplication is the projective space P8,2 =
P Sym8(C2)∨ of dimension eight. The locus of singular octavics ∆ ⊂ P8,2 con-
sists of all octavics such that two (or more) points coincide, is of codimension
one. The moduli space of smooth binary octavics or equivalently of 8 distinct
unordered points on P(C)1 is given by:

M(18) = PGL2(C)\ (P8,2(C)−∆(C)) .

There is a period map Per : M(18) → Γ\B5 that maps this moduli space to
a ball quotient of dimension five. The construction follows from the work of
Deligne and Mostow in [15]. There is also a construction of this ball quotient
using periods of K3 surfaces by Kondo [27]. We will not review these con-
structions but we will give a description of the ball quotient in terms of the
Gaussian lattice Λ1,5 = Λ2

2⊕Λ1,1 due to Matsumoto and Yoshida in [33]. This
lattice determines a complex ball by the expression:

B5 = P{x ∈ Λ1,5 ⊗G C ; h(x, x) > 0}.

The discriminant locus H ⊂ B is the collection of all root mirrors Hr. We will
also write B◦ = B \ H and Γ for the unitary group U(Λ1,5).

Theorem 4.2.1 (Deligne-Mostow). The period map induces an isomorphism:

Per :M(18)→ PΓ\B◦5

This isomorphism can be extended to include certain singular octavics.
A binary octavic called semi-stable if at most four of its zeroes coincide and
stable if at most three coincide. We will denote the moduli space of stable
octavics byMs and use the notationM(4n43n32n21n1) for the locus of octavics
with ni points of multiplicity i. The strictly semi-stable octavics correspond
to a single point in the GIT-compactification Ms of Ms. The extension of
the period isomorphism to this GIT-compactification maps the non-smooth
stable octavics to PΓ\H and the strictly semi-stable octavics to the unique
cusp of PΓ\B.

For a smooth point x ∈ H there is a unique root r ∈ Λ1,5 such that the
mirror Hr contains x. There is a single PΓ-orbit of roots and for every root
the lattice r⊥ is isomorphic to the hyperbolic Gaussian lattice Λ2

2 ⊕ (2). A
smooth point of H corresponds to an octavic whose eight-tuple of zeroes has
precisely two points that coincide. By the above discussion we see that moduli
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18

216

2214 315

2312 3213

24 3221 3212

42 322

Locus in Ms Gaussian lattice

18 Λ2
2 ⊕ Λ1,1

216 Λ2
2 ⊕ (2)

2214 Λ2 ⊕ (−2)⊕ (2)
315 Λ2 ⊕ Λ1,1

2312 (−2)2 ⊕ (2)
3213 (−2)⊕ Λ1,1

24 U(2)
3221 (−2)⊕ (2)
3212 Λ1,1

Figure 4.1: The loci of binary octavics and their corresponding
hyperbolic Gaussian lattices

space of such octavicsM(216) is the ball quotient corresponding to the lattice
Λ2

2⊕(2). We can iterate this construction: in the lattice Λ2
2⊕(2) there are two

orbits of roots which should correspond to the lociM(315) andM(2214). We
can calculate r⊥ in each case and compare this to Table 1 of [27] to determine
which root corresponds to which type of octavic . The results are listed in
Figure 4.1.

4.3 Real binary octavics

The moduli space of real binary octavics is studied by Chu in [12]. We review
the main results in this section. A real binary octavic is an element of the space
P8,2(R) so that it has real coefficients. The eight points constituting the zero
set of such an octavic need not be real: a zero is either real or part of a pair of
complex conjugate zeroes. There are five possibilities: the number of complex
conjugate pairs of zeroes can be 0, 1, 2, 3 and 4. Each of these possibilities
determines a component in the moduli space of smooth real binary octavics:

MR(18) = PGL2(R)
∖

(P8,2(R)−∆(R)) .

We denote the five components byMR
j (18) where j is the number of complex

conjugate pairs of zeroes of a representative octavic . One of the main results
of Chu is that each of these components admits a real hyperbolic structure.

Theorem 4.3.1 (Chu). There are isomorphisms of real analytic orbifolds:

MR
j (18)→ PΓχj

∖
(Bχj5 )◦ j = 0, . . . , 4
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j χj Λ
χj
1,5 Type of u ∈ S8

0 ψ3
2 (2)⊕A5

1 (1)
1 ψ′2 ⊕ ψ2

2 (2)⊕A4
1 ⊕A1(2) (2)

2 (ψ′2)2 ⊕ ψ2 (2)⊕A3
1 ⊕A1(2)2 (2)2

3 (ψ′2)3 (2)⊕A2
1 ⊕A1(2)3 (2)3

4 ψ4 ⊕ ψ2 U(2)⊕D4(2) (2)4

Table 4.1: The real forms and their fixed point lattices.

for certain anti-unitary involutions χj of Λ1,5. The group PΓχj is the stabilizer
of the real ball Bχj5 in PΓ. It is commensurable with the orthogonal group
PO(Λ

χj
1,5) which is a hyperbolic Coxeter group of finite co-volume.

We can express the anti-unitary involutions χj in the elementary ones from
Lemma 3.3.2. For χ4 this gives a simpler expression for the fixed point lattice
compared to Chu’s.

Proposition 4.3.2. The real forms χj and their fixed point lattices given in
Table 4.1 correspond to the ones defined in Appendix B of [12].

Proof. The real forms χ0, χ1 and χ2 are in fact identical to the ones given
in [12]. For χ3 and χ4 we see that the fixed point lattices are isomorphic to
L3 and L4 given in B.3 of [12]. This is immediate for L3 and for L4 we need
to perform a change of basis: BtL4B = D4(2)⊕ U(2) where det(B) = 1 and:

L4 =



−4 −4 2 0 0 −4
−4 −12 6 0 0 −8
2 6 −4 0 0 4
0 0 0 −4 2 −2
0 0 0 2 0 0
−4 −8 4 −2 0 −8

 , B =



−1 1 0 0 0 0
1 0 0 0 0 0
1 0 1 −1 0 0
0 0 0 0 1 0
0 0 0 −1 1 1
0 0 0 −1 0 0

 .

Remark 4.3.3. Note that according to Lemma 3.3.3 the anti-unitary involu-
tions χj and iχj are conjugate in Γ = U(Λ1,5) for j = 0, . . . , 4.

As in Proposition 3.5.4 we can reduce the lattice Λ1,5 modulo (1 + i). Let
V6 be the F2-vectorspace Λ1,5/(1 + i)Λ1,5 equipped with the quadratic form
q(x) ≡ 1

2h(x, x) mod 2. There is a natural map U(Λ1,5)a → O(V6, q) ∼= S8

where U(Λ1,5)a is the collection of anti-unitary transformations of the Gaus-
sian lattice Λ1,5. The image of an anti-unitary involution of Λ1,5 under this
map is an involution of S8. It is well known that there are five conjugation
classes of involutions in S8 distinguished by their cycle type which is (2)j with
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j = 0, . . . , 4. This type is a full invariant for the PΓ-conjugation class of
[χ]. The group S8 also has a geometric meaning: its generating transpositions
(i i + 1) act by Dehn twists on the space of ordered eight-tuples of points.
As a result the number of transpositions of an involution u ∈ S8 belonging to
χ ∈ U(Λ1,5)a corresponds to the number of complex conjugate pairs of points
of a smooth octavic fixed by χ.

4.4 The maximal real component

We now study the component MR
0 (18) consisting of eight real points in more

detail. This component is called maximal since it corresponds to real binary
octavics with the maximum number of real points. The corresponding fixed
point lattice Λχ0

1,5 = (2)⊕A5
1 is reflective and the group PO(Λχ0

1,5) is a Coxeter
group; its Coxeter diagram can be found in Figure 2.3. We see from the
diagram that there are two possible root norms: either a root has norm −2
or −4. Recall that PΓχ0

I consists of all elements of PO(Λχ0
1,5) that are induced

from U(Λ1,5). A reflection sr is in PΓχ0

I if and only if it satisfies Equation 3.3.
Since the lattice Λ1,5 satisfies Λ1,5 = (1 + i)Λ∨1,5 this is equivalent to:

2r ∈ h(r, r)

1 + i
Λ1,5

If r has norm −2 then this condition is satisfied. If r has norm −4 it is
equivalent to r ∈ (1 + i)Λ1,5 so that r = (1 + i)r′ with r′ a primitive vector
of norm −2. This means that r is primitive in Λχ0

1,5 but not in Λ1,5. Consider
the matrix B0 shown below whose columns ei with i = 0 . . . , 5 form a basis
for Λχ0

1,5. The condition can be checked by writing a root r of norm −4 on this
basis.

B0 =



0 0 0 1 + i 0 0
0 1 0 1 0 0
0 0 1 + i 0 0 0
−1 0 1 0 1 1

1 + i 0 0 0 −1− i 0
1 0 0 0 0 −1


Theorem 4.4.1. The group PΓχ0 is isomorphic to the semi-direct product:

W (C5) o Aut(C5)

where C5 ⊂ Bχ0
5 is a hyperbolic Coxeter polytope with finite volume whose

Coxeter diagram is shown in Figure 4.2. Its automorphism group Aut(C5) is
isomorphic to a dihedral group D8 of order 16.

Proof. We apply Vinberg’s algorithm with the condition that in each step of
the algorithm we only accept roots such that the reflection sr is induced from
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e0 e1 e2 e3 e4 e5

p 1 0 0 0 0 0
height 0

r1 0 1 0 −1 0 0
r2 0 0 0 1 0 0
r3 0 0 1 0 −1 0
r4 0 0 0 0 1 0
r5 0 0 0 0 0 1

height 1
2

r6 1 −1 0 −1 0 −1
r7 1 0 −1 0 −1 −1

height 1
r8 1 −1 −1 0 0 0

r1 r2 r6

r5

r7r4r3

r8

Figure 4.2: The hyperbolic Coxeter polytope C5

U(Λ1,5). This implies that r has norm −2 or it has norm −4 and is divisible
by 1 + i. For example we see directly from the matrix B0 that the only height
0 vectors of norm −4 are e1 − e3 and e2 − e4. The algorithm proceeds as
in Figure 4.2 and terminates. The result is the hyperbolic Coxeter polytope
C5. The group PΓχ0 is the semi-direct product of W (C5) by the subgroup
of Aut(C5) that is contained in PΓχ0 . The two involutions t1, t2 ∈ PO(Λχ0

1,5)
shown below are contained in the subgroup PΓχ0

I ; we can verify that the
matrices B0 · t1 ·B−1

0 and B0 · t2 ·B−1
0 have coefficients in G so that Equation

3.2 is satisfied. Together the elements t1 and t2 generate a dihedral group D4

of order 8. To get the full automorphism group of the polytope C5 we also
need to add the element t3 shown below. It can be verified by straightforward

computation that the element g = B0 ·
√

2
1+i t3 · B

−1
0 is an element of PΓχ0 of

type II; simply check that it has coefficients in G and satisfies gχ0g
−1 = iχ0.

t1 = se4−e5 · se0−e1−e2−e3
t2 = se1−e2 · se3−e4

t3 =
1√
2
·



2 0 1 0 1 0
0 1 0 1 0 0
−1 0 −1 0 −1 1
0 1 0 −1 0 0
−1 0 −1 0 −1 −1
0 0 1 0 −1 0


The factor 1/

√
2 in the expression for t3 comes from the fact that t2 exhanges

long and short roots. The rotation t1t3 has order 8 and induces a cyclic
permutation of the nodes of the Coxeter diagram of C5. We can conclude that
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2

2

(a) 2214

2

2

(b) 21321

2

2

(c) 212212

Figure 4.3: The three configuration of zeroes on P1(R) of max-
imal real stable octavics of type 2214.

the group generated by t1, t3 is a dihedral group of order 16 and is in fact the
full automorphism group Aut(C5).

There is a unique central point κ of C5 that is invariant under the action
of Aut(C5). It is also the unique point that has equal distance to all the walls
of C5. In terms of the basis {e0, . . . , e5} for Λχ0

1,5 ⊗Z R this point is given by:

κ = (−3− 2
√

2, 1 +
√

2, 1 +
√

2, 1, 1, 1).

The point κ corresponds to a binary octavic p(x, y) whose symmetry group is
D8. To see this it is convenient to map P1(R) conformally to the unit circle
in C by a Möbius transformation. This maps the zeroes of such an octavic
p(x, y) to the eight roots of unity. These form a regular 8-gon so the symmetry
group of the corresponding octavic is indeed dihedral of order 16.

The orbits under the group Aut(C5) ∼= D8 of the faces of the polytope
C5 ⊂ Bχ0

5 correspond to the different loci in the moduli spaceMR
0,s of maximal

real stable octavics. The real type of such a locus inMR
0,s is determined up to

cyclic permutation and orientation reversal by an ordered r-tuple of integers
(n1, . . . , nr) such that

∑r
i=1 ni = 8. It corresponds to a real stable octavic of

the form:

f(x, y) =
r∏
i=1

(x− αiy)ni , α1 < . . . < αr , α1, . . . , αr ∈ R.

In visualizing the real type of an octavic f(x, y) it is convenient to represent
P1(R) as a circle and the zeroes of f(x, y) as points on the circle with mul-
tiplicity. Examples of this are shown in Figure 4.3. The representatives for
some types are shown in Figure 4.3. All information on the faces of C5 and
the corresponding octavics are listed in Table 4.2.

4.5 The moduli space MR(3213)

The moduli space of real stable octavics of type 3213 consists of three con-
nected components. We see in Figure 4.3 that the two maximal real types



52 CHAPTER 4. HYPERELLIPTIC CURVES OF GENUS THREE

k Type Octavic #D8-orbits Representatives

0 B̃2
2 [42] 1 [414, 4212, 4121, 422, 431, 42]

B2
2A1 322 1 322

1 B2
2 3212 2 3212, 3131

B2A
2
1 3221 2 3221, 3212

A4
1 24 1 24

2 B2A1 3213 2 3213, 31221
A3

1 2312 2 2312, 21212
3 B2 315 1 315

A2
1 2214 3 2214, 21321, 212212

4 A1 216 1 216

Table 4.2: The k-faces of the polytope C5 and their orbits
under Aut(C5) ∼= D8 along with the real types of their rep-
resentatives. The unique cusp of type B̃2

2 corresponds to the
union of all strictly semi-stable orbits.

3213 and 31221 account for two connected components. The third component
consists of octavics of type 3213 such that two points of multiplicity one form
a pair of complex conjugate points. We denote this locus by 321(11c). These
three components correspond to the three anti-unitary involutions:

ψ2 ⊕ ψ1 , ψ3 , ψ
′
2 ⊕ ψ1

of the Gaussian lattice Λ1,2 = Λ2 ⊕ (2) that we found in Section 3.5.

Proposition 4.5.1. The correspondence between the three real types of stable
octavics of type 3213 and the three anti-unitary involutions of Λ1,2 is as follows:

3213 ←→ ψ2 ⊕ ψ1

31221←→ ψ3

321(11c)←→ ψ′2 ⊕ ψ1.

Proof. Just like we did for the lattice Λ1,5 we can reduce the Gaussian lattice
Λ1,2 modulo (1 + i) to obtain the three dimensional F2 vectorspace:

V3 = Λ1,2/(1 + i)Λ1,2
∼= F3

2

with the quadratic form q(x) = 1
2h(x, x) mod 2. There is a natural map

U(Λ1,2)a → O(V3, q) ∼= S3. It is easy to check from the defining matrices that
the anti-unitary involutions ψ2 ⊕ψ1 and ψ3 map to the identity in S3 so that
they correspond to maximal real stable octavics. Recall from Table 3.2 that
the Coxeter diagram of the groups PΓχ for these real forms are given by:
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(a) ψ2 ⊕ ψ1 (b) ψ3

Only the diagram corresponding to ψ2 ⊕ ψ1 has an edge with two actual
vertices (and no cusp). This edge corresponds to the real type 3212 which
cannot degenerate to a semi-stable real type: it can only degenerate to the
stable real type 332 or to an unstable real type with a point of multiplicity
≥ 5. The real type 3213 can degenerate to 3212 while 31221 cannot. We
conclude that the anti-unitary involution ψ2⊕ψ1 corresponds to the real type
3213 and ψ3 corresponds to the real type 31221. The anti-unitary involution
ψ′2 ⊕ ψ1 reduces modulo 1 + i to the matrix:0 1 0

1 0 0
0 0 1

 ∈ O(V3, q)

so it maps to a transposition in S3. As a consequence the anti-unitary invo-
lution ψ′2 ⊕ ψ1 corresponds to real stable octavics of type 321(11c) with two
complex conjugate points of multiplicity one.





Chapter 5

Real plane quartic curves and
real hyperbolic geometry

5.1 Introduction

In this chapter we study a real period map for the moduli space of smooth
real plane quartic curves in the spirit of Allcock, Carlson and Toledo [5]. This
moduli space has six connected components and we prove that each is isomor-
phic to an arithmetic real ball quotient. For the component corresponding
to maximal quartics we obtain much more information by studying a certain
real hyperbolic Coxeter polytope. Our starting point is Kondo’s construction
in [26] of a period map for the moduli space of smooth complex plane quartic
curves using the period map for K3 surfaces.

5.2 Plane quartic curves

The set of complex points of a plane quartic curve is the zero locus in the pro-
jective plane P2(C) of a homogeneous polynomial f(x, y, z) of degree four with
coefficients in C. The space of all such polynomials up to scalar multiplication
is the projective space P4,3(C) = P Sym4(C3)∨ of dimension 14. We denote the
locus of codimension one that defines singular quartics by ∆(C) ⊂ P4,3(C).
The moduli space of smooth quartic curves is the space:

Q = PGL3(C)\ (P4,3(C)−∆(C)) .

We briefly recall some terminology from Mumford’s geometric invariant theory
of quartic curves. A complex quartic curve is called stable if it has at worst
ordinary nodes and cusps as singularities and semi-stable if it has at worst
tacnodes as singularities or is a smooth conic of multiplicity 2.

A complex plane quartic is real if it is invariant under complex conjugation
of P2(C) or equivalently if its defining polynomial has real coefficients. The

55
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moduli space of smooth real plane quartics is the space:

QR = PGL3(R)\ (P4,3(R)−∆(R)) .

As we have seen in Example 2.5.2 the space P4,3(R) − ∆(R) consists of six
connected components. Since the group PGL3(R) is connected this implies
that the moduli space QR also consists of six connected components which we
denote by QR

i for i = 1, . . . , 6. These components are distinguished by the
topological type of C(R) ⊂ P2(R) of a representative curve C. The real point
set C(R) can consist of 0, 1, 2, 3 or 4 ovals and in the case of two ovals they
can be nested or not. The correspondence is shown in Table 5.1.

QR
1 QR

2 QR
3 QR

4 QR
5 QR

6

∅

Table 5.1: The topological types of representative curves C(R)
for the six components of QR

i ⊂ QR for i = 1, . . . , 6.

5.3 Kondo’s period map

In this section we review Kondo’s construction of a period map for complex
plane quartic curves in [26]. Let C be a smooth quartic curve in P2 defined
by a homogeneous polynomial f(x, y, z) of degree four. We define the surface
X to be the four-fold cyclic cover of P2 ramified over C so that:

X = {w4 = f(x, y, z)} ⊂ P3.

The surface X is a K3-surface of degree four with an action of the group of
covering transformations of the cover π : X → P2. This group is cyclic of
order four and a generator is given by the transformation:

ρX · [w : x : y : z] = [iw : x : y : z].

The involution τX = ρ2
X also acts on X and the quotient surface Y = X/τX

is a double cover of P2 ramified over the quartic C. It is a del Pezzo surface
of degree two. The situation is summarized by the following commutative
diagram.

X

Y

P2

π1
π

π2
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The cohomology group H2(X,Z) is isomorphic to the K3 lattice L = E2
8 ⊕U3

and a choice of isomorphism φ : H2(X,Z)→ L is called a marking of X. We
fix a marking and let ρ and τ denote the automorphisms of L induced by ρX
and τX . Kondo [26] proves that the eigenlattices of τ for the eigenvalues +1
and −1 are isomorphic to:

L+
∼= A7

1 ⊕ (2) , L− ∼= D3
4 ⊕ (2)2. (5.1)

Remark 5.3.1. The expression for L− in Equation 5.1 is different from the
lattice U(2)2 ⊕D8 ⊕ A2

1 given by Kondo. Since the lattice L− is even and 2-
elementary its isomorphism type is determined by the invariants (r+, r−, a, δ)
from Theorem 2.2.1. These invariants are (2, 12, 8, 1) for both lattices so that
the lattices are isomorphic. For the lattice U ⊕U(2)⊕D2

4 ⊕A2
1 the invariants

also take these values so that it is isomorphic to the previous two lattices.

For applications later on it is convenient to have a more explicit desciption
of the involution τ . This is provided by the following lemma.

Lemma 5.3.2. Let L = U3 ⊕ E2
8 be the K3 lattice. The involution τ is

conjugate in O(L) to the involution given by:

−I2 ⊕
(

0 I2

I2 0

)
⊕ u⊕ u (5.2)

where u ∈ O(E8) is an involution of type D4A1.

Proof. Since the involution u is of type D4A1, its negative −u is of type A3
1.

This implies that the eigenlattice for the eigenvalue 1 of u in E8 is isomorphic
to A3

1. The ±1 eigenlattices in L of the involution in Equation 5.2 are then
given by:

U(2)⊕A6
1
∼= (2)⊕A7

1

U ⊕ U(2)⊕D2
4 ⊕A2

1
∼= D3

4 ⊕ (2)2
(5.3)

The lattice (2) ⊕ A7
1 has a unique embedding into the K3 lattice L up to

automorphisms in O(L) by Theorem 2.2.4. This implies that the involution
of Equation 5.2 is conjugate to τ in O(L).

The map π1 induces a primitive embedding of lattices π∗1 : PicY → PicX
and the image is precisely the lattice φ−1(L+). It is the Picard group of the
del Pezzo surface Y scaled by a factor two which comes from the fact that the
map π1 is of degree 2.

The powers ρ, ρ2 and ρ3 act on the lattice L− without fixed points. This
action turns L− into a Gaussian lattice of signature (1, 6) isomorphic to the
Gaussian lattice Λ1,6 = Λ3

2 ⊕ (2). From now on we identify L− considered
as a Gaussian lattice with Λ1,6 and write L− for the underlying Z-lattice. If
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γ ∈ π∗1 Pic(Y ) then (ω, γ) = 0 for all ω ∈ H2,0(X,C) so that the the complex
ball

B = P{x ∈ Λ1,6 ⊗G C ; h(x, x) > 0}

is a period domain for smooth plane quartic curves. Let Γ = U(Λ1,6) be
the unitary group of the Gaussian lattice Λ1,6. Equivalently it is the group of
orthogonal transformations of the lattice L− that commute with ρ. The period
map Per : Q → PΓ\B is injective by the Torelli theorem for K3 surfaces but
not surjective. Its image misses certain divisors in B which we now describe.
An element r ∈ Λ1,6 is called a root if h(r, r) = −2 and for every root we
define the mirror Hr = {z ∈ B ; h(r, z) = 0}. We denote by H ⊂ B the union
of all the root mirrors Hr and write B◦ = B \ H.

Theorem 5.3.3 (Kondo). The period map defines an isomorphism of orb-
ifolds:

Per : Q → PΓ\B◦.

Proof. The proof consists of constructing an inverse map of the period map.
We give a brief sketch of the main arguments used in [26]. Let z ∈ B◦. There
is a K3 surface X together with a marking φ : H2(X,Z) → L such that the
period point of X is z. This K3 surface X has an automorphism ρX of order
four such that its action on H2(X,Z) corresponds to the action of ρ on L. The
quotient surface Y = X/ 〈τX〉 with τX = ρ2

X is a del Pezzo surface of degree
two. Its anticanonical map: |KY | : Y → P2 is a double cover of P2 ramified
over a smooth plane quartic curve C. The inverse period map associates to
the PΓ-orbit of z ∈ B◦ the isomorphism class of this quartic curve C.

Furthermore Kondo proves in [26] Lemma 3.3 that there are two Γ-orbits
of roots in Λ1,6. This determines a decomposition H = Hn ∪Hh where:

Hn =
{
Hr ∈ H ; Hr ∩ Λ1,6

∼= Λ2
2 ⊕

(−2 0
0 2

)}
Hh =

{
Hr ∈ H ; Hr ∩ Λ1,6

∼= Λ2
2 ⊕ Λ1,1

}
.

(5.4)

A smooth point of a mirror Hr ∈ Hn corresponds to a plane quartic curve
with a node and a smooth point of a mirror Hr ∈ Hh corresponds to a smooth
hyperelliptic curve of genus three. This last case we studied in Chapter 4.

5.4 The lattices L+ and L−

The main result of this section is Lemma 5.4.4 which states that an anti-
unitary involution of the Gaussian lattice Λ1,6 can be lifted to an involution
of the K3 lattice such that its fixed point lattice is of hyperbolic signature.
This will be an important ingredient in the proof of one of our main results:
the real analogue of Kondo’s period map for real quartic curves in Section 5.5.
We start with a detailed analysis of the lattices L+ and L−.
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The lattice L+
∼= (2)⊕A7

1 has an orthogonal basis {e0, . . . , e7} that satisfies
(e0, e0) = 2 and (ei, ei) = −2 for i = 1, . . . , 7. According to Kondo the
automorphism ρ acts on L+ by fixing the element k = −3e0 +e1 + . . .+e7 and
acting as −1 on its orthogonal complement k⊥ in L+. This special element k
satisfies (k, k) = 4 and represents the canonical class of the del Pezzo surface Y
as we have seen in Section 2.6. The orthogonal complement k⊥ is isomorphic
to the root lattice E7(2). By the results of Section 2.4 there is an isomorphism
of groups:

O(L+) ∼= O(L+)+ o Z/2Z

where the second factor is generated by −1 ∈ O(L+). The group O(L+)+ is
a hyperbolic Coxeter group as we have seen in Example 2.4.2 and its Coxeter
diagram shown is Figure 5.1.

Figure 5.1: The Coxeter diagram of the group O(L+)+.

From this diagram we see that the reflections in the long negative simple
roots of L+ form a subgroup W (E7) < O(L+)+ of type E7. It is precisely the
stabilizer of the element k ∈ L+. Recall from Section 2.2 that the discriminant
group of a lattice L is defined by AL = L∨/L. Since the dual lattice L∨+ can
be naturally identified with the lattice 1

2L+ we have:

AL+ =
1

2
L+/L+

∼= (Z/2Z)8.

Proposition 5.4.1. The natural map O(L+) → O(AL+) maps the subgroup
W (E7) < O(L+)+ isomorphically onto O(AL+).

Proof. The bilinear form on L+
∼= (2)⊕A7

1 is even valued so that a reflection
sr in a short root r of norm ±2 satisfies:

sr(x) = x± (r, x)r ≡ x mod L+

for x ∈ 1
2L+. This implies that these reflections are contained in the kernel

of the map O(L+) → O(AL+). A consequence is that the image of this map
is generated by the subgroup W (E7) < O(L+)+ of reflections in negative
simple long roots. According to Kondo [26] Lemma 2.2 the group O(AL+) is
isomorphic to W (E7)+ × Z/2Z ∼= W (E7). Since the natural map O(L+) →
O(AL+) is surjective by Theorem 2.2.2 the proposition follows.

The K3 lattice L is an even unimodular lattice and the primitive sublat-
tices L+ and L− satisfy: L⊥− = L+. According to Proposition 2.2.3 there is
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a natural isomorphism O(AL−) ∼= O(AL+) which allows us to identify these
groups. In particular we have: O(AL−) ∼= W (E7)+ × Z/2Z. We prefer to
consider L− as the Gaussian lattice Λ1,6 so that:

AΛ1,6 = Λ∨1,6/Λ1,6

∼=
(

1

1 + i
G/G

)6

× 1

2
G/G

(5.5)

Remark 5.4.2. Note that 1
1+iG/G ∼= Z/2Z and that 1

2G/G ∼= Z/2Z × Z/2Z.

The generators of this last group are 1
2 and i

2 and they are exchanged by
multiplication by i.

Proposition 5.4.3. The composition of homomorphisms:

U(Λ1,6)→ O(AΛ1,6) ∼= W (E7)+ × Z/2Z

is given by reduction modulo 1 + i on the first factor and the second factor is
generated by the image of the central element ρ ∈ U(Λ1,6).

Proof. Let A′Λ1,6
be the subset of AΛ1,6 where the discriminant quadratic form

takes values in Z/2Z. The Gaussian lattice Λ1,6 satisfies Λ1,6 ⊂ (1 + i)Λ∨1,6 so
that the following equalities hold:

A′Λ1,6
= {x ∈ Λ∨1,6/Λ1,6 ; h(x, x) ∈ Z}

=
1

1 + i
Λ1,6/Λ1,6.

By writing: h( 1
1+ix,

1
1+ix) = 1

2h(x, x) for x ∈ Λ1,6 we see that the F2-
vectorspace A′Λ1,6

with its induced quadratic form qΛ1,6 is isomorphic to the

quadratic space (V, q) from Proposition 3.5.4. According to this proposition
there is an isomorphism: O(A′Λ1,6

) ∼= W (E7)+ and the composition of natural
maps:

U(Λ1,6)→ O(AL−)→ O(A′L−) ∼= W (E7)+

corresponds to mapping an element g ∈ U(Λ1,6) to its reduction g modulo
(1+ i). The automorphism ρ ∈ U(Λ1,6) corresponds to multiplication by i and
by definition commutes with every element in U(Λ1,6). It maps to the identity
in O(A′Λ1,6

) but acts as a non-trivial involution in O(AΛ1,6) by Remark 5.4.2.

This implies that O(AΛ1,6) is isomorphic to the direct product of O(A′Λ1,6
)

with the subgroup Z/2Z / O(AΛ1,6) generated by ρ.

Lemma 5.4.4. Let χ− ∈ U(Λ1,6)a be an anti-unitary involution of Λ1,6.
There is a unique χ ∈ O(L) that restricts to χ− on L− so that the fixed
point lattice Lχ is of hyperbolic signature.



5.5. PERIODS OF REAL QUARTIC CURVES 61

Proof. Since complex conjugation on Λ1,6 induces the identity on O(AΛ1,6)
the statement of Proposition 5.4.3 is also true for the composition of homo-
morphisms:

U(Λ1,6)a → O(AΛ1,6) ∼= W (E7)+ × Z/2Z.

Consider the image of the anti-unitary transformation χ− ∈ U(Λ1,6)a under
this composition. This image is of the form (ū,±1) where the involution
ū ∈ W (E7)+ is obtained by reducing χ− ∈ U(Λ1,6)a modulo (1 + i). Observe
that if the anti-unitary involution χ− maps to (ū, 1) then iχ maps to (ū,−1).
The involution

χ+ = (±u,−1) ∈W (E7)× Z/2Z < O(L+) (5.6)

maps to (ū,±1) ∈ O(AL+) by Proposition 5.4.1. Since χ+ maps k 7→ −k and
(k, k) = 4 the lattice of fixed points L

χ+
+ is negative definite. By Proposition

2.2.3 there is a unique involution χ ∈ O(L) that restricts to χ− ∈ U(Λ1,6)
and χ+ ∈ O(L+) respectively. Since Λ

χ−
1,6 is of hyperbolic signature and L

χ+
+

is negative definite the fixed point lattice Lχ is of hyperbolic signature.

Proposition 5.4.5. Consider the 12 anti-unitary involutions χj and iχj for
j = 1, . . . , 6 from Theorem 3.5.5. For each of them the corresponding involu-
tion χ+ ∈ O(L+) is of the form (u,−1) ∈ W (E7) × Z/2Z. The conjugation
classes of the involutions u ∈W (E7) are shown in Table 5.2.

j 1 2 3 4 5 6

χj 1 A1 A2
1 A3

1 D4 D4

iχj E7 D6 D4A1 A4
1 A3′

1 A3′
1

Table 5.2: The conjugation classes in W (E7) of the 12 anti-
unitary involutions χj , iχj ∈ U(Λ1,6)a for j = 1, . . . , 6.

Proof. This follows from Table 3.3 and the proof of Lemma 5.4.4.

5.5 Periods of real quartic curves

Let C = {f(x, y, z) = 0} ⊂ P2 be a smooth real plane quartic curve. This
means that C is invariant under complex conjugation of P2(C) or equivalently
that the polynomial f has real coefficients. TheK3 surfaceX that corresponds
to C is also defined by an equation with real coefficients. Complex conjugation
on P3(C) induces an anti-holomorphic involution χX on X.

Remark 5.5.1. There are two anti-holomorphic involutions on the K3 surface
X = {w4 = f(x, y, z)}. Since we chose the sign of f(x, y, z) to be positive on
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the interior of the curve C(R) in Section 2.5 the anti-holomorphic involution
χX is determined without ambiguity.

By fixing a marking φ : H2(X,Z) → L of the K3 surface X we associate
to χX the involution:

χ = φ ◦ χ∗X ◦ φ−1

of the K3 lattice L. Since the involution χ commutes with τ it preserves the
±1-eigenlattices of the involution τ . We denote by χ− (resp. χ+) the induced
involution on L− (resp. L+). It is clear that χ and ρ satisfy the relation:

ρ ◦ χ = τ ◦ χ ◦ ρ

so that on the eigenlattice L− where τ acts as −1 they anti-commute and on
L+ they commute. This implies that χ− is an anti-unitary involution of the
Gaussian lattice Λ1,6.

By the results of Section 5.3.3 on Kondo’s period map we can associate
to a smooth real plane quartic curve C a period point [x] ∈ B◦ and the real
form [χ−] of B we just defined fixes [x]. The following lemma shows that the
PΓ-conjugation class of [χ−] does not change if we vary C in its connected
component of QR.

Lemma 5.5.2. If two smooth real plane quartic curves C and C ′ are real
isomorphic then the projective classes [χ−] and [χ′−] of their corresponding
anti-unitary involutions in Λ1,6 are conjugate in PΓ.

Proof. Since C and C ′ are real plane curves a real isomorphism C → C ′ is
induced from an element in PGL(3,R). We can lift this element to PGL(4,R)
so that it induces an isomorphism αC : X → X ′ that commutes with the
covering transformations ρX and ρC′ of X and X ′. Since the real forms χX
and χ′X of X and X ′ are both induced by complex conjugation on P3 they
satisfy χ′X = αC ◦χX ◦α−1

C . By fixing markings of the K3 surfaces X and X ′

we obtain induced orthogonal transformations χ, χ′ and α of the K3-lattice L
and they satisfy: χ′ = α ◦ χ ◦ α−1. Since α commutes with ρ the restriction
α− of α to L− is contained in Γ. This proves the lemma.

Let Bχ− be the fixed point set in B of the real form [χ−]. The fixed point
lattice Λ

χ−
1,6 has hyperbolic signature (1, 6) so that Bχ− is the real ball:

Bχ− = P{x ∈ Λ
χ−
1,6 ⊗Z R ; h(x, x) > 0}.

As before we denote by PΓχ− the stabilizer of Bχ− in the ball B. Since the
period point of a smooth real quartic curve C is fixed by [χ−] it lands in the
real ball quotient: PΓχ−\(Bχ−)◦. This gives rise to a real period map. More
precisely we have the following real analogue of Theorem 5.3.3.
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Theorem 5.5.3. The real period map PerR that maps a smooth real plane
quartic to its period point in PΓ\B◦ defines an isomorphism of real orbifolds:

PerR : QR →
∐
[χ−]

PΓχ−
∖

(Bχ−)◦ (5.7)

where [χ−] varies over the PΓ-conjugacy classes of projective classes of anti-
unitary involutions of Λ1,6.

Proof. We construct an inverse to the real period map. Let z ∈ B◦ be such that
χ−(z) = z for a certain anti-unitary involution of Λ1,6. From the proof of 5.3.3
we see that there is a marked K3 surface X that corresponds to z. According
to Lemma 5.4.4 the involution χ− lifts to an involution χ ∈ O(L) such that for
its restriction χ+ to L+ the fixed point lattice L

χ+
+ is negative definite. Since

Λ
χ−
1,6 is of hyperbolic signature the lattice Lχ is also of hyperbolic signature.

According to Theorem 2.7.5 this implies that the marked K3 surface X is real.
Its real form χX commutes with τX so that it induces a real form on χY on the
del Pezzo surface Y = X/ 〈τX〉. The anticanonical system | −KY | : Y → P2

is the double cover of P2 ramified over a smooth real plane quartic curve C.
The inverse of the real period map associates to the PΓχ− orbit of z ∈ (Bχ−)◦

the real isomorphism class of the real quartic curve C.

5.6 The six components of QR

In this section we complete our description of the real period map PerR by
connecting the six connected components of the moduli space QR of smooth
real plane quartic curves to the six projective classes of anti-unitary involutions
of the Gaussian lattice Λ1,6 from Theorem 3.5.5. We first prove that these six
anti-unitary involutions are in fact all of them.

Proposition 5.6.1. There are six projective classes of anti-unitary involu-
tions of the Gaussian lattice Λ1,6 up to conjugation by PΓ.

Proof. Since QR consists of six connected components and the real period
map PerR is surjective the number of projective classes is at most six. In
Theorem 3.5.5 we found six projective classes of anti-unitary involutions up
to conjugation by PΓ so these six are all of them.

The following corollary follows from the proof of Theorem 5.5.3.

Corollary 5.6.2. Suppose z ∈ B◦ is a real period point so that it is fixed by
an anti-unitary involution χ ∈ U(Λ1,6)a. By the real period map we associate
to z ∈ B◦ a real del Pezzo surface Y of degree two together with a marking:

H2(Y,Z)→ L+

(
1
2

)
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such that the induced involution of the real form of Y on L+(1
2) is given by

χ+.

We review some results of [43] on real del Pezzo surfaces of degree two.
Other references on this subject are Kollár [25] and Russo [36]. A real del
Pezzo surface Y of degree two is the double cover of the projective plane P2

ramified over a smooth real plane quartic curve C ⊂ P2 so that:

Y = {w2 = f(x, y, z)}.

Recall from section 2.5 that we choose the sign of f so that f > 0 on the
orientable interior part of C(R). By using the deck transformation ρY of the
cover we see that there are two real forms of Y :

χ+
Y : [w : x : y : z] 7→ [w̄ : x̄ : ȳ : z̄]

χ−Y : [w : x : y : z] 7→ [−w̄ : x̄ : ȳ : z̄].
(5.8)

These real forms satisfy: χ−Y = ρY ◦χ+
Y and we denote the real point sets of χ+

Y

and χ−Y by Y +(R) and Y −(R) respectively. Note that Y +(R) is an orientable
surface while Y −(R) is non-orientable. Suppose that H2(Y,Z) → L+(1

2) is a
marking of Y . The deck transformation ρY induces the involution:

ρ = (−1, 1) ∈W (E7)× Z/2Z.

in O(L+(1
2)). This implies that the two real forms χ±Y form a pair:

(χ+
Y , χ

−
Y )←→ (±u,−1) ∈W (E7)× Z/2Z.

In [43] Wall determines the correspondence between the conjugation classes
of the u ∈ W (E7) and the topological type of Y (R). The results are shown
in Table 5.3. We use the notation kX for the disjoint union and #kX for
the connected sum of k copies of a real surface X. From this table we see
that except for the classes of D4 and A3′

1 the conjugation class of u ∈ W (E7)
determines the topological type of the real plane quartic curve C(R).

Theorem 5.6.3. The correspondence between the six projective classes of
anti-unitary involutions of the lattice Λ1,6 up to conjugation by PΓ and the
real components of QR is given by:

QR
j ←→ χj j = 1, . . . , 6.

The index j on the left is given by Table 5.3 and the index j on the right by
Table 5.2.

Proof. For j = 1, 2, 3, 4 the statement follows by comparing Table 5.3 and
Table 5.2. Unfortunately this does not work for the projective classes anti-
unitary involutions χ5 and χ6 since both correspond to the involutions D4 ∈
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j C(R) u ∈W (E7) Y (R)

1
1 #8P2(R)
E7 4S0

2
A1 #6P2(R)
D6 3S0

3
A2

1 #4P2(R)
D4A1 2S0

4
A3

1 #2P2(R)
A4

1 S0

5
D4 S0 t#2P2(R)
A3′

1 S1

6 ∅ D4 2P2(R)
A3′

1 ∅

Table 5.3: The real topological types of real del Pezzo surfaces
of degree two and their corresponding involutions in the Weyl
group W (E7).

W (E7). To distinguish these two we will prove that the anti-unitary involution
iχ6 extends to an involution of the K3 lattice whose real K3 surface X has
no real points. This implies that the projective class of χ6 corresponding to
the component QR

6 of smooth real quartic curves with no real points.

For this let L = U3 ⊕ E2
8 be the K3 lattice and consider the involution:

χ = −I2 ⊕
(

0 I2

I2 0

)
⊕
(

0 I8

I8 0

)
∈ O(L). (5.9)

It is clear from the expression for χ that the fixed point lattice Lχ is isomorphic
to U(2)⊕E8(2). The invariants (r, a, δ) of this lattice are given by (10, 10, 0)
so that X(R) = ∅ according to Theorem 2.7.6. Using the explicit embedding
of L+ and L− into the K3 lattice L from Lemma 5.3.2 it is easily seen that:

L
χ−
−
∼= U(2)⊕D(4)⊕A1(2) , L

χ+
+
∼= A1(2)3. (5.10)

By consulting Table 3.4 we now deduce that χ is conjugate to iχ6 in PΓ.
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5.7 The geometry of maximal quartics

We now study the componentQR
1
∼= PΓχ1\Bχ1

6 that corresponds toM -quartics
in more detail. An M -quartic is a smooth real plane quartic curve C such that
its set of real points C(R) consists of four ovals. Much of the geometry of such
quartics is encoded by a hyperbolic polytope C6 ⊂ Bχ1

6 .

Theorem 5.7.1. The group PΓχ1 is isomorphic to the semi-direct product:

W (C6) o Aut(C6)

where C6 ⊂ Bχ1
6 is a hyperbolic Coxeter polytope whose Coxeter diagram is

shown in Figure 5.7. Its automorphism group Aut(C6) is isomorphic to the
symmetric group S4.

Proof. Recall that an element [g] ∈ PΓχ is of type II if and only if there
is a g ∈ [g] such that gΛχ1,6 = Λiχ1,6. We see from Table 3.4 that the lattice

Λχ1,6 is not isomorphic to the lattice Λiχ1,6 so that the group PΓχ does not
contain elements of type II. Therefore the group PΓχ1 consists of all element
of PO(Λχ1

6,1) that are induced from U(Λ1,6). The lattice Λχ1
1,6 is isomorphic to

(2)⊕A6
1. A basis {e0, . . . , e6} in Λ1,6 is given by the columns of the matrix:

B1 =



0 1 + i 0 0 0 0 0
0 1 1 0 0 0 0
0 0 0 1 + i 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 + i 0
0 0 0 0 0 1 1
1 0 0 0 0 0 0


.

It is a reflective lattice and the group PO(Λχ1
1,6) is a Coxeter group whose

Coxeter diagram can be found in Figure 3.2. A reflection sr ∈ PO(Λχ1
1,6) is

induced from U(Λ1,6) if and only if the root r satisfies Equation 3.3. Note
that a vector r = (r1, . . . , r7) ∈ Λ1,6 ⊗G Q is contained in Λ∨1,6 if and only if

ri ∈ 1
1+iG for i = 1, . . . , 6 and r7 ∈ 1

2G so that we can rewrite this equation as:

2(1 + i)ri
h(r, r)

∈ G for i = 1, . . . , 6 ,
4r7

h(r7, r7)
∈ G.

These equations are automatically satisfied if h(r, r) = −2 and if h(r, r) = −4
they are equivalent to: (1 + i) divides ri for i = 1, . . . , 6. This can be checked
from the matrix B1. Now we run Vinberg’s algorithm with this condition and
the result is the hyperbolic Coxeter polytope C6 shown in Figure 5.7. The
vertices r1, r3, r5 and r13 of norm −4 roots form a tetrahedron. Every symme-
try of this tetrahedron extends to the whole Coxeter diagram. Consequently
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the symmetry group of the Coxeter diagram is the symmetry group of a tetra-
hedron which is isomorphic to S4. Consider the two elements s, t ∈ PO(Λχ1

1,6)
defined by:

s = se4−e6 · se3−e5 · se1−e3 · se2−e4
t = se0−e1−e3−e4 · se0−e1−e5−e6 .

(5.11)

The element s has order three and corresponds to the rotation of the tetrahe-
dron that fixes r13 and cyclically permutes (r1r5r3). The element t has order
two and corresponds to the reflection of the tetrahedron that interchanges r1

and r13 and fixes r3 and r5. Together these transformations generate S4. We
can check that both are contained in PΓχ1 by using Equation 3.2.

We see from the Coxeter diagram of the polytope C6 that there are three
orbits of roots under the automorphism group Aut(C6) ∼= S4. The orbit
of a root r corresponding to a grey node of norm −2 satisfies r⊥ ∼= Λ2

2 ⊕
Λ1,1. According to Equation 5.4 the mirror of such a root is of hyperelliptic
type. This means that the smooth points of such a mirror correspond to a
smooth hyperelliptic genus three curves. The Coxeter diagram of the wall
that corresponds to the hyperelliptic root r11 is the subdiagram consisting of
the nodes belonging to the roots:

{r1, r2, r3, r5, r6, r7, r9, r13}.

It is isomorphic to the Coxeter diagram of Figure 4.2. This is also the case
for the other two hyperelliptic roots so they correspond to the maximal real
component of real hyperelliptic genus three curves of Section 4.4.

The other two orbits of roots satisfy r⊥ ∼= Λ2
2⊕
(−2 0

0 2

)
so that their mirrors

are of nodal type. For a white root of norm −2 the orthogonal complement
r⊥ in the lattice Λχ1

1,6 is isomorphic to (2) ⊕ A5
1. The smooth points of such

a mirror correspond to quartic curves with a nodal singularity such that the
tangents at the node are real. Locally such a node is described by the equation
x2 − y2 = 0. This happens when two ovals touch each other; since there are
four ovals this can happen in

(
4
2

)
= 6 ways; hence there are six mirrors of this

type.
For a nodal root of norm −4 the orthogonal complement is given by r⊥ ∼=

(2) ⊕ A4
1 ⊕ A1(2) in Λχ1

1,6. The smooth points of such a mirror correspond
to quartic curves with a nodal singularity such the tangents at the node are
complex conjugate. Locally this is described by x2 + y2 = 0. It happens when
an oval shrinks to a point which can occur for each of the four ovals; hence
there are four mirrors of this type.

The complex ball quotient PΓ\B◦6 has a single cusp that corresponds to
the unique minimal semi-stable orbit of quartics consisting of a conic of mul-
tiplicity two. The real ball quotient PΓχ1\Bχ1

6 however has two cusps. This
can be seen from the Coxeter diagram of the polytope C6 since there are two

Aut(C6)-orbits of cusps both of type B̃2
2
×Ã1. The geometric meaning of this
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e0 e1 e2 e3 e4 e5 e6

p 1 0 0 0 0 0 0
height 0

r1 0 1 −1 0 0 0 0
r2 0 0 1 0 0 0 0
r3 0 0 0 1 −1 0 0
r4 0 0 0 0 1 0 0
r5 0 0 0 0 0 1 −1
r6 0 0 0 0 0 0 1

height 1
r7 1 −1 0 −1 0 0 0
r8 1 −1 0 0 0 −1 0
r9 1 0 0 −1 0 −1 0
r10 1 −1 −1 0 0 0 0
r11 1 0 0 −1 −1 0 0
r12 1 0 0 0 0 −1 −1

height 2
r13 2 −1 −1 −1 −1 −1 −1

(a) Vinberg’s algorithm

r5

r8

r1

r7

r3

r9

r13

r4
r2

r6 r11

r10r12

(b) The Coxeter diagram of the reflection part of the group PΓχ1
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is that there are two real minimal semi-stable orbits: a double conic can have
real points or not. Examples are given by the two conics:

C0 = {(x2 + y2 + z2 + 1)2 = 0} , C1 = {(x2 + y2 + z2 − 1)2 = 0}.

A point [x] ∈ C6 that is invariant under the action of Aut(C6) ∼= S4

corresponds to an M -quartic whose automorphism group is isomorphic to S4.
These points are described by the following lemma.

Lemma 5.7.2. A point [x] ∈ C6 with x = (x0, . . . , x6) ∈ Λχ1
1,6⊗ZR is invariant

under Aut(C6) ∼= S4 if and only if it lies on the hyperbolic line segment:

L = P{(−2b− a, b, a, b, a, b, a) ; a, b ∈ R} ⊂ C6.

The line segment L has fixed distances d1, d2 and d3 to mirrors of type ,
and respectively and these distances satisfy:

[sinh2 d1 : sinh2 d2 : sinh2 d3] = [a2 : b2 : (a− b)2/2].

Proof. The group Aut(C6) is generated by the two elements s and t from
Equation 5.11. A small computation shows that a point x ∈ Λχ1

1,6 ⊗Z R is
invariant under these two generators if and only if it is of the form

x = (−2b− a, b, a, b, a, b, a).

The second statement of the Lemma follows from the formula for hyperbolic
distance (Equation 2.8) and the equalities:

(x, ri) =


−a i = 2, 4, 6, 7, 8, 9

−b i = 10, 11, 12

a− b i = 1, 3, 5, 13.

(5.12)

The line segment L connects the vertex L0 = (−2, 1, 0, 1, 0, 1, 0) ∈ C6

of type A6
1 to the point L1 = (−3, 1, 1, 1, 1, 1, 1). A consequence of the real

period map of Theorem 5.5.3 is that there is a unique one-parameter family of
smooth plane quartics with automorphism group S4 that corresponds to the
line segment L ⊂ C6. It is described by the following proposition.

Proposition 5.7.3. The one-parameter family of quartic curves Ct by:

Ct =
∏

(±x± y + z) + t(x4 + y4 + z4) , 0 ≤ t ≤ 1.

corresponds to the line segment L under the real period map.

Proof. This family is invariant under permutations of the coordinates (x, y, z)
and the transformations: (x, y, z) 7→ (±x,±y, z). Together these generate a
group S3 o V4

∼= S4. The curve C0 is a degenerate quartic that consists of
four lines and has six real nodes corresponding to the intersection points of
the lines. For 0 < t < 1 the curve Ct is an M -quartic. The quartic C1 has no
real points except for four isolated nodes.
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(a) t = 0 (b) t = 1
2

(c) t = 1

Figure 5.2: The one-parameter family of quartic curves Ct

5.8 Concluding remarks

It would be interesting to also describe the Weyl chambers of the other five
components of the moduli space of smooth real plane quartic curves. A similar
question can be asked for the other components of the moduli space of smooth
real binary octavics. For the component that corresponds to binary octavics
with six points real and one pair of complex conjugate points we managed
to compute by hand the Coxeter diagram of this chamber. The result was
already much more complicated then the diagram of Figure 4.2. This leads
us to believe that the Coxeter diagrams of the remaining five components of
the moduli space of smooth real plane quartics will be even more complicated.
Computing them would require implementing our version of Vinberg’s algo-
rithm in a computer and the result will likely be a very complicated diagram.



Chapter 6

Moduli of real pointed
quartic curves

6.1 Introduction

In this chapter we describe a natural open stratum in the moduli space of
smooth real plane quartic curves equipped with a point and determine its
connected components. This stratum consists of real isomorphism classes of
pairs (C, p) with p ∈ C(R) such that the tangent line at p intersects the curve
in two other distinct points. It can be described very explicitly in terms of
real tori defined by involutions in the Weyl group of type E7. This allows
us to prove that is has 20 connected components and we find representative
curves for each one.

6.2 Moduli of del Pezzo pairs

We start by studying del Pezzo surfaces obtained by blowing up r points on
a fixed plane singular cubic. The strict transform of this cubic is a singular
anti-canonical curve on the del Pezzo surface. This is the situation studied
by Looijenga for del Pezzo surfaces of degree two in [29] and for general del
Pezzo surfaces in [30]. In this text we restrict ourselves to the case of del
Pezzo surfaces of degree two.

Definition 6.2.1. A del Pezzo pair of degree two is a pair (Y,Z) consisting of
a del Pezzo surface Y of degree two and a singular anti-canonical curve Z ⊂ Y .
We denote the moduli space of del Pezzo pairs of degree two by DPP2. By
adding a marking to the del Pezzo surface Y we obtain a marked del Pezzo
pair (Y, Z, φ) with φ : Z1,7 → Pic(Y ) a marking of Y . The moduli space of

marked del Pezzo pairs is denoted by D̃PP2.

The smooth points of an irreducible plane cubic admit a group law. For
smooth cubics this is well known. A similar construction for the group law

71
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can be applied to singular cubics as follows. Let Z be a irreducible plane cubic
curve and let O be an inflection point of Z. The map:

Zns(C)→ Pic0(Z)

P 7→ [P ]− [O]

is a bijection and defines a group law on Zns(C). For a nodal cubic it is well
known that there is an isomorphism of groups: Pic0(Z) ∼= C∗. It is unique up
to multiplication by an element of Aut(C∗) ∼= {±1}. Similarly for a cuspidal
cubic we have an isomorphism Pic0(Z) ∼= C unique up to multiplication by an
element of Aut(C) ∼= C∗. A useful property of the group law is the following.

Proposition 6.2.2. Let Z be a plane cubic curve and let P1, . . . P3d be points
on Zns. Then

∑3d
i=1 Pi = 0 if and only if {P1, . . . , P3d} = Cns ∩D for some

plane curve D of degree d. In particular three points of Zns add up to zero if
and only if they are colinear.

Proof. The condition
∑3d

i=1 Pi = 0 is equivalent to
∑3d

i=1 ([Pi]− [O]) = 0 in

Pic0(C). This implies that the divisor
∑3d

i=1 (Pi −O) is principal of the form
div(f/gd) with g the equation of the flex line at O and f a homogeneous
polynomial of degree d which defines the curve D.

Suppose that (Y, Z, φ) is a marked del Pezzo pair and π : Y → P2 is the
corresponding blowup map. The anti-canonical curve Z ⊂ Y is the strict
transform of a plane singular cubic ZB through the set of 7 blown up points
B = {P1, . . . , P7}. Since the points are in general position the cubic ZB is
irreducible, otherwise there would be 3 points on a line or 6 on a conic. In
Table 6.1 we distinguish four cases according to the type (nodal or cuspidal)
of ZB and the location of the points B. We also list the Kodaira type of the
curve Z in each of these cases.

These four types of Z ⊂ Y each define a stratum in the moduli space of del
Pezzo pairs. The stratum of type I1 where ZB is a nodal cubic and B ⊂ Zns

B is
generic and defines an open subset DPP◦2 ⊂ DPP2. Assume for now that Z
is of type I1 and identify Z with ZB so that we can make use of the group law
on the singular cubic ZB. By composing the marking φ : Z1,7 → Pic(Y ) with
the restriction homomorphism Pic(Y )→ Pic(Z) we obtain a map that assigns
ei 7→ [Pi] for 1 ≤ i ≤ r and e0 7→ 3[O] where [O] is an inflection point of Z.
Restricting this map to the root lattice Q < Z1,7 induces a homomorphism
χ ∈ Hom(Q,Pic0(Z)) characterized by the relations:

χ(ei − ei+1) = [Pi]− [Pi+1]

χ(e0 − e1 − e2 − e3) = 3[O]− [P1]− [P2]− [P3].
(6.1)

Proposition 6.2.3. No root lies in the kernel of χ : Q→ Pic0(Z).
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Z ZB

I1 Nodal cubic and the points B are contained in the
smooth locus Zns

B of Z. In this case π|Z is an isomor-
phism and we can identify Z with ZB.

I2 Nodal cubic and the node coincides with a blown up
point. In this case Z consists of two smooth rational
curves intersecting transversally in two distinct points.

II Cuspidal cubic and B ⊂ Zns. In this case Z ∼= ZB.
III Cuspidal cubic and the cusp of ZB coincides with a

blown up point. In this case Z consists of two smooth
rational curves intersecting with multiplicity 2 in a
single point.

Table 6.1: Strata in the moduli space of del Pezzo pairs (Y,Z)
of degree two according to the Kodaira type of Z.

Proof. From the construction of χ and Proposition 6.2.2 we see that:

χ(ei − ej) = 0⇔ Pi = Pj

χ(e0 − ei − ej − ek) = 0⇔ Pi, Pj , Pk colinear

χ(2e0 − e1 − . . .− êi − . . .− e7) = 0⇔ P1, . . . , P̂i, . . . , P7 conconic

so that the points being in general position is equivalent to χ(α) 6= 0 for all
roots α ∈ R.

After fixing an isomorphism Pic0(Z) ∼= C∗ we can identify the space:

Hom(Q,Pic0(Z))

with the complex torus T = Hom (Q,C∗). This identification is not canonical
but is unique up to multiplication by an element of Aut(C∗) ∼= {±1} which
acts on T. The Weyl group W of type E7 acts on T by its natural action on
Q and we denote the complement of the toric mirrors for this action by T◦.

Theorem 6.2.4 (Looijenga). Let (Y,Z, φ) be a marked del Pezzo pair of degree
two with Z a nodal anti-canonical curve. The association:

(Y,Z, φ) 7→
(
χ : Q→ Pic0(Z)

)
extends to an isomorphism of orbifolds:

D̃PP
◦
2 → {±1}\T◦. (6.2)

The left hand side is the open stratum of the moduli space of marked del Pezzo
pairs of degree two with Z of type I1. Similarly we have an isomorphism of
orbifolds:

DPP◦2 →W\T◦
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Proof. Let χ be an element of T◦ = Hom(Q,C∗)◦. We construct an inverse to
the map of Equation 6.2 by constructing seven points on a fixed nodal cubic
Z. Fix an isomorphism C∗ → Zns by choosing one of the three inflection
points O on Z as a unit element. The group law then satisfies titjtk = 1 if
and only if the corresponding points Pi, Pj , Pk on Zns are colinear. Since the
seven points should satisfy (6.1) they must also satisfy the equality:

Pi = χ(ei − e0/3) (6.3)

where we consider χ as an element of Hom(Q ⊗Z C,C∗). This determines
the seven points uniquely up to addition of an inflection point of Zns (or
equivalently multiplication by a third root of unity of C∗). Blowing up these
seven points determines a marked del Pezzo surface Y and the pullback of Z
under the blowup map defines a nodal anti-canonical curve on Y isomorphic
to Z.

To conclude this section we obtain explicit descriptions of the standard
Cremona transformation centered in three points on a plane nodal cubic Z
and of the Geiser involution in terms of the coordinate t ∈ C∗ ∼= Zns(C). The
Cremona map ρ(s7) centered in the points P1, P2, P3 of Z with coordinate t
maps Z to another nodal cubic Z ′ which can be mapped back to Z with new
coordinate t′ by an element of PGL(3,C). If ti, tj , tk, t1, t2, t3 ∈ Z are distinct
points lying on a conic, then t′i, t

′
j , t
′
k lie on a line by the properties of the

standard Cremona transformation so that:

1 = titjtkt1t2t3 = t′it
′
jt
′
k.

Similarly, the standard Cremona transformation maps the line L12 to t′3, so
that for a point ti on L12:

1 = tit1t2 = t′3t
′−1
i .

From these formulas we compute:

t′ =

{
t(t1t2t3)−2/3 t = t1, t2, t3
t(t1t2t3)1/3 t general

(6.4)

which determines t′ up to multiplication by a third root of unity. These
formulas can also be derived by computing the action of s7 ∈W on Equation
6.3. From Proposition 6.2.2 we see that if the seven points {P1, . . . , P7} lie on
a nodal cubic then the Geiser involution is given by:

γ : t 7→ t−1(t1 . . . t7)−1 (6.5)
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6.3 Strata of smooth pointed quartic curves

We have seen that the moduli space DP2 of del Pezzo surfaces of degree two
and the moduli space Q of plane quartic curves are isomorphic. In this section
we relate the moduli space DPP2 of del Pezzo pairs of degree two and its strata
to the moduli space of smooth pointed plane quartics Q1. We first define this
latter space Q1.

Definition 6.3.1. Let k be the field of real or complex numbers. A pointed
plane quartic curve is a pair (C, p) with C a plane quartic curve and p ∈ C(k).
The space Γ of smooth pointed quartics curve is defined by:

Γ(k) = {(C, p) ; p ∈ C(k)} ⊂ P4,3(k)× P2.

The group PGL(3, k) acts on Γ and the quotient:

Q1 = PGL(3, k)
∖

Γ(k)

is a (coarse) moduli space for smooth pointed plane quartics.

To a pointed quartic (C, p) we can associate a del Pezzo pair (Y,Z) in the
following way. The del Pezzo surface Y of degree two defined by:

Y =
{
w2 = f(x, y, z)

}
⊂ P(2, 1, 1, 1) (6.6)

in weighted projective space. The morphism defined by the anti-canonical
map | −KY | is realized by the projection map ψ : Y → P2 given by:

[w : x : y : z] 7→ [x : y : z].

Every anti-canonical curve on Y is the pullback under ψ of a line in P2. We
define Z = ψ−1TpC to be the pullback of the tangent line to C at p. It is
a singular anti-canonical curve on Y of arithmetic genus 1. Its Kodaira type
is determined by the type of the intersection divisor D = (C · TpC) defined
below.

Definition 6.3.2. Let D =
∑k

i=1 di(pi) be a divisor on a curve C with the pi
distinct and ordered in such a way that d1 ≥ . . . ≥ dr. The type of D is the
r-tuple d = (d1, . . . , dr).

There are four possibilities for the type of D corresponding to the types
for Z in Table 6.1. Similarly we obtain four strata in the space Γ. The strata
Γbit and Γflex where the point p is respectively a bitangent and an inflection
point have codimension one and the stratum Γhflex where p is a hyperflex has
codimension two in the space Γ.
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Stratum D Z Codim.

Γ◦ (2, 1, 1) I1 0
Γbit (2, 2) I2 1
Γflex (3, 1) II 1
Γhflex (4) III 2

Table 6.2: Strata in the space of pointed quartics

6.4 Moduli of real del Pezzo pairs of degree two

Let (C, p) be a smooth real pointed plane quartic curve. By the results of
Section 5.6 and the previous section we can associate to (C, p) a real del
Pezzo pair (Y,Z) with real form χ−Y such that Y −(R) in nonorientable. The
real form restricts to Z which is a real curve of arithmetic genus 1 on Y and
Zns(R) 6= ∅. If (C, p) is in the open stratum Γ◦ then the tangent line TpC
intersects C in two other distinct points which can both be real or a pair of
complex conjugate points. In both cases the curve Z is of type I1 (it has a
single node). Since Zns(R) 6= ∅ there are two possibilities for the real form
induced by χ−Y on Zns(C) ∼= C∗. Either it maps: t 7→ t̄ and Zns(R) ∼= R∗ or
t 7→ t̄−1 and Zns(R) ∼= S1. An example of both is given in figure 6.1.

(a) R∗

(b) S1

Figure 6.1: The two possibilities for Zns(R) for a quartic curve
with one component.
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Theorem 6.4.1. The map (C, p) 7→
(
χ : Pic0 Y → Pic0 Z

)
extends to an iso-

morphism:

(Q◦1)R ∼= (W\T◦)(R)

where T◦ denotes the complement in T = Hom(Q,C∗) of the mirrors of the
action of the Weyl group W of type E7.

Proof. A lot of work has already been done in the proof of Theorem 6.2.4.
We need to show that the element χ : Q→ C∗ we associate to (C, p) is a real
point of W\T◦. By definition this means that w · χ = χ̄ for some element
w ∈ W . The real structure χ−Y of Equation 5.6 acts on Pic0(Y ) ∼= Q as an
involution u ∈ W . Since Y −(R) is nonorientable we see from Table 5.3 that
this involution is of type 1, A1, A

2
1, A

3
1 orD4. The action of the restriction of χ−Y

to Pic0(Y ) ∼= C∗ is one of t 7→ t̄±1 so the element χ satisfies u ·χ = χ̄±1. Since
the Weyl group W of type E7 contains −1 we can rewrite this as ±u · χ = χ̄
so that χ is indeed a real element of W\T◦.

Conversely, let χ be a real point of (W\T◦)(R). By Proposition 6.5.6 we
can assume that u · χ = χ̄±1 with u ∈ W an involution of type 1, A1, A

2
1, A

3
1

or D4. As in the proof of Theorem 6.2.4 we fix a real nodal cubic Z in P2

and an isomorphism Zns(C) ∼= C∗ by choosing a real inflection point. The
real form of Z is then equivalent to one of t 7→ t̄±1. As in Equation 6.2 the
element χ determines seven points in C∗ by the formula ti = χ(ei− e0

3 ) which
we interpret as points on Zns(C). Since χ is real these points satisfy:

u · (t1, . . . , t7) = (t̄±1
1 , . . . , t̄±1

7 ).

where the involution u ∈W acts by the Cremona action of the Weyl group as a
birational involution of P2. This involution lifts an anti-holomorphic involution
of the del Pezzo surface Y obtained by blowing up the seven points. These
two construction are inverse to each other.

6.5 Reflection groups and real tori

In this section we study the connected components of the space (W\T◦)(R)
where T is the complex torus T = Hom(Q,C∗) for Q a root lattice of type
ADE. For type E7 this space has 20 connected components which we describe
explicitly as quotients of certain real subtori of T.

Reflection groups and root systems

We start by recalling some facts about reflection groups and root systems. Our
main reference is [9] Chapter VI. Let V be a real, finite dimensional vector
space of dimension n with an inner product (·, ·). For every nonzero α ∈ V
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we define the reflection sα ∈ O(V ) by:

sα(x) = x− 2
(α, x)

(α, α)
α

for all x ∈ V . The mirror Hα is defined as the fixed point locus of the reflection
sα. A root system R ⊂ V is a finite set of nonzero vectors called roots that
satisfy the following properties:

R1 The R-span of R is V .

R2 If α ∈ R then R ∩ Rα = {α,−α}.

R3 sαR = R for all α ∈ R.

R4 2 (β,α)
(α,α) ∈ Z for all α, β ∈ R.

A system of simple roots ∆ = {α1, . . . , αr} ⊆ R is a basis for V such that
every root is an integral linear combination

∑r
i=1 ciαi of simple roots of the

same sign. From now on we assume we have fixed a system of simple roots
∆ ⊂ R. For every root α ∈ R we define the coroot α∨ by:

α∨ =
2α

(α, α)
.

The set of coroots R∨ is again a root system (the coroot system) with cor-
responding coroot lattice Q∨ = ZR∨. A root system R is called irreducible
if it is non-empty and cannot be decomposed as an orthogonal direct sum
R = R1 ⊕ R2 of two non-empty root systems R1 and R2. Let R be an irre-
ducible root system. We define the highest root α̃ of R with respect to ∆ as
the unique root such that

∑r
i=1 ci is maximal. We also define α0 = −α̃. The

Weyl group W is the group generated by the reflections sα with α ∈ R or
equivalently by the simple reflection sα with α ∈ ∆. It is a finite group and
acts simply transitively on the connected components of V \ ∪Hα which are
called chambers. The fundamental chamber C is defined by:

C = {x ∈ V | (αi, x) > 0 for 1 ≤ i ≤ r} .

Its closure C̄ is a fundamental domain for the action of W on V .
The affine Weyl group Wa is the group generated by the affine reflections

sα,k with α ∈ R and k ∈ Z defined by:

sα,k(x) = x− (α, x)α∨ + kα∨.

The mirror of sα,k is the affine hyperplane Hα,k = {x ∈ V ; (α, x) = k}. The
affine Weyl group Wa is the semidirect product of W by the coroot lattice:
Wa = Q∨oW . This allows us to write sα,k = t(kα∨)sα where t(kα∨) denotes
translation over kα∨ in V . The group Wa acts simply transitively on the
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connected components of the space V ◦ = V \ ∪Hα,k which are called alcoves.
The fundamental alcove A is the simplex given by:

A = {x ∈ V | (α̃, x) < 1, (αi, x) > 0 for 1 ≤ i ≤ r}

and its closure Ā is a fundamental domain for the action of Wa on V . The
r + 1 closed facets Āi of Ā are given by:

Āi =

{
Hαi ∩ Ā if 1 ≤ i ≤ r
Hα̃,1 ∩ Ā if i = 0

A reducible root system R can be decomposed into a direct sum of ir-
reducible root systems {Ri}i∈I for some finite index set I. The Weyl group
W (R) of R is the direct product of the Weyl groups {W (Ri)}i∈I . This decom-
position is unique up to permutation of the factors. A fundamental domain for
the action of W (R) on V is now the direct product of the fundamental cham-
bers of the factors. Similarly for the affine Weyl group Wa(R) = Q∨ oW (R)
a fundamental domain on V is the product of the fundamental alcoves of the
factors.

We want to determine the stabilizer StabWa(x) of an x ∈ V in the affine
Weyl group. Since all points in the orbit Wa · x have conjugate stabilizers,
we can assume that x ∈ Ā. The stabilizer StabWa(x) is the group generated
by the reflections in the mirrors Hα,k that contain x. It is a Weyl group with
root system R(x) and system of simple roots ∆(x) given by:

R(x) = {α ∈ R ; (α, x) ∈ Z} , ∆(x) =
{
αi ; 0 ≤ i ≤ r, x ∈ Āi

}
. (6.7)

These root systems can be reducible, even if the root system R is irreducible.

The extended affine Weyl group

The coweight lattice P∨ is defined by:

P∨ = {Z ∈ V ; (Z, α) ∈ Z ∀α ∈ R}

and contains Q∨ as a subgroup of finite index. It has a basis {$∨1 , . . . , $∨r }
dual to the basis of simple roots of R, so that (αi, $

∨
j ) = δij . The extended

affine Weyl group W ′a is defined as the semidirect prodct P∨ oW with P∨

acting on V by translations. We will prove that W ′a is the extension of Wa by
a finite group of automorphisms of the fundamental alcove.

Let ni = (α̃,$∨i ) be the coefficient of αi in the highest root α̃. For notation
it is convenient to define $∨0 = 0 ∈ P∨ and n0 = 1. The fundamental alcove
A is the open n-simplex with vertices {$∨i /ni}ri=0. Let J be the set of indices
0 ≤ i ≤ r such that ni = 1. The vertices $∨i with i ∈ J or equivalently:
R($∨i /ni)

∼= R are called special. Put R0 = R and let w0 be the longest
element of W with respect to the basis of simple roots in equation {αi}ri=1.
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We also define for every i ∈ J \{0} the root system Ri generated by the simple
roots:

{α1, . . . , α̂i, . . . , αr}. (6.8)

Let wi be the longest element of the Weyl group W (Ri) with respect to the
basis of simple roots (6.8). For every i ∈ J we now define the following element
of the extended affine Weyl group:

γi = t($∨i )wiw0.

Observe that γi(0) = $∨i and γ0 = w2
0 = 1. Proposition 6 from [9] §2 VI

states that we have equality:

{w ∈W ′a;w(A) = A} = {γi}i∈J (6.9)

and we can identify the group (6.9) with the finite Abelian group P∨/Q∨ by
assigning to γi the class of $i mod Q∨ where i ∈ J . We see that the group
P∨/Q∨ acts simply transitively on the special points. Since the affine Weyl
group Wa acts simply transitively on the alcoves it follows from the above that
we have an isomorphism:

Wa o P∨/Q∨
∼−→ P∨ oW = W ′a (6.10)

by assigning (t(Z)w, γi) 7→ t(Z + w$∨i )wwiw0. The extended affine Weyl
group acts transivitely connected components of V ◦, but the action need not
be free. The action of P∨/Q∨ on the fundamental alcove A can have fixed
points. Also W ′a is in general not a Coxeter group.

Lemma 6.5.1. Let x ∈ Ā, then:

StabW ′a(x) = StabWa(x) o StabP∨/Q∨(x)

Proof. Let t(Z)w ∈ Wa and γ ∈ P∨/Q∨ be such that t(Z)wγ(x) = x. Define
y := γ(x) ∈ Ā. Now t(Z)w(y) = x with x, y ∈ Ā, and because Ā is a strict
fundamental domain for the action of Wa we can conclude x = y, so γ(x) = x.
This also implies that t(Z)w(x) = x.

The centralizer of an involution in a reflection group

Let (W,S) be a finite Coxeter group and let u ∈ W be an involution. We
want to determine the centralizer CW (u) of u in W . By the classification of
involutions in Coxeter groups there is a subset I ⊆ S such that u is conjugate
in W to the involution wI : the unique longest element −1 in the parabolic
subgroup WI . Felder en Veselov in [19] observe the following:

Proposition 6.5.2. If WI is a parabolic subgroup of W that satisfies the (−1)
condition then CW (wI) = NW (WI).
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Proof. The element u is the unique longest element of WI , so that wuw−1 = u
for all w ∈ NW (WI) and NW (WI) < CW (u). For the other inclusion let w ∈
CW (u). We need to prove that wsαiw

−1 ∈ W−u , or equivalently: w · αi ∈ R−u
for all i ∈ I. The element w preserves the eigenspace decomposition of V so
that w · αi ∈ R ∩ V −u = R−u .

This allows us to use the classification of normalizers of parabolic sub-
groups of reflection groups by Howlett [22]. Note that a lot of the results
of this section also appear in [28]. Let u = wI and decompose V into ±1-
eigenspaces for u: V = V +

u +V −u where V −u = VI . This defines two orthogonal
root systems and corresponding Coxeter groups:

R±u = R ∩ V ±u , W±u = W (R±u ).

Observe that W−u = WI and that the eigenspace V −u is spanned by the roots of
R−u . The group Wu = W−u ×W+

u is generated by all reflections that commute
with u and is contained in the centralizer CW (u) of u. This centralizer also
contains a non-reflection part Gu which now describe. Consider the elements:

ρ± =
1

2

∑
α∈R±u (+)

α

where the sum runs over all positive roots of R±u . The set:

Rcu = {α ∈ R ; (α, ρ+) = (α, ρ−) = 0}

is a root system which can be written as an orthogonal disjoint union of
subroot systems Rcu = R1 ∪ R2. These factors are isomorphic root systems
and are exchanged by the involution u. The Weyl group W (Rcu) is a product:

W (Rcu) = W (R1)×W (R2)

whose factors are exchanged by conjugation with u. The group Gu consists
of all elements of W (Rcu) that commute with u and is the diagonal of this
product:

Gu = {(w, uwu) ; w ∈W (R1)}.
This group is generated by pairs of commuting reflections sαsu·α with α ∈ R1

and is isomorphic to W (R1). Now we can formulate the main theorem of this
section.

Theorem 6.5.3. The centralizer of an involution u ∈W splits as a semidirect
product:

CW (u) ∼= Wu oGu
∼= W−u oG+

u

where G+
u is the reflection group defined by G+

u = {w ∈ W ; wI = I} which
contains W+

u as a normal subgroup.
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Root tori and their invariants

If the type of a root system R occurs in Equation 2.10 we say it is of del Pezzo
type. Such root systems are products of root systems of type ADE so that all
roots have the same length. This implies that we can identify the root (resp
weight) and the coroot (resp coweight) lattices R and R∨ (resp P and P∨). To
simplify notation we use this identification from now on. To a root system R
of del Pezzo type we associate the complex torus T = C∗ ⊗ P = Hom(Q,C∗).
It has a natural action of the Weyl group W .

Theorem 6.5.4. The quotient W\T is an affine toric variety and the algebra
of W -invariants of Z[Q] is the semi-group algebra given by

Z[Q]W ∼= Z[P+ ∩Q] (6.11)

where P+ =
∑n

i=1 Z≥0$i is the lattice cone spanned by the fundamental
weights.

Proof. For the proof of the isomorphism of Equation 6.11 we refer to [31]
Section 6.3.5. The coordinate ring of W\T is C[T]W ∼= C⊗Z Z[P+ ∩Q]. It is
the complexification of a semi-group algebra and its spectrum is by definition
an affine toric variety.

This theorem is a generalisation of classical exponential invariant theory
for root systems as described in [9] VI §3. The main theorem of that section
states that the algebra of W -invariants of Z[P ] is a polynomial algebra:

Z[P ]W ∼= Z[P+].

This is a toric analogue of a well known theorem of Chevalley. The algebra
C[P ] is the coordinate ring of the algebraic torus T = C∗ ⊗Q. Since the W -
invariants form a polynomial algebra we can rephrase the theorem as W\T ∼=
Cn. The torus T is a finite cover of T where the group of deck transformations
is isomorphic to P/Q and there is an isomorphism of orbifolds:

W\T ∼= (P/Q)\Cn.

The action of W on T on the complement of the mirrors T◦ is not free
in general: the group P/Q can have fixed points in T◦. The stabilizers are
described by the following lemma.

Lemma 6.5.5. For t ∈ T the stabilizer StabW (t) is the extension of a reflec-
tion group StabrW (t) by a finite group of diagram automorphisms.

Proof. Consider the exponential sequence

0 Z C C∗ 1
exp
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where exp : z 7→ e2πiz. By tensoring from the right with P we obtain another
exact sequence:

0 P VC T 1
exp

where VC = C ⊗ V is the complexification of V . From the sequence we
read off that W\T ∼= W ′a\VC where the extended affine group W ′a = P oW
acts on VC by the formula:

t(λ)w · (x+ iy) = (w · x+ Z) + i(w · y)

for Z ∈ Q and w ∈ W . Write z = log t, by Lemma 6.5.1 the group StabW (t)
is isomorphic to:

StabW ′a(z) ∼= StabWa(z) o StabP/Q(z).

The group StabWa(z) is a Weyl group generated by the reflection in the mirrors
that contain z.

Real root tori and their connected components

Complex conjugation on C∗ defines a real form on the complex torus T = C∗⊗
P . This in turn defines a real form on the quotient W\T. Let q : T → W\T
be the quotient map. The real points of W\T are the points q(t) such that t
and t̄ are in the same W -orbit so that:

q(t) ∈ (W\T)(R)⇐⇒ w · t = t̄ for some w ∈W.

We will prove in Proposition 6.5.6 that we can assume that w is an involution
in W . Every involution in W defines a real form on T by composing with
complex conjugation. The real points of such a real form are given by:

Tu(R) = {t ∈ T ; u · t = t̄} .

The following proposition is a slight modification of a result due to Tits ( [28],
Proposition 2.2) to the present situation. The proof is similar to the one given
there.

Proposition 6.5.6 (Tits). The following equality holds:

q−1(W\T)(R) =
⋃

u∈W ;u2=1

Tu(R).

Proof. Let t ∈ T be such that w · t = t̄ for some w ∈ W . We will prove that
there is a w′ in the reflection part StabrW (t) of the stabilizer StabW (t) such
that u = ww′ is an involution in StabW (t). The reflection part of the stabilizer
is a finite reflection group which acts on the tangent space TtT through its
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complexified reflection representation. Since StabW (t) is also the stabilizer of
t̄ we see that:

w StabW (t)w−1 = StabW (w · t) = StabW (t̄) = StabW (t).

This implies that w permutes the chambers of StabrW (t) so that we can find a
w′ ∈ StabrW (t) such that u = ww′ leaves a chamber invariant. Since StabrW (t)
acts simply transitively on its chambers it follows that u2 = 1.

The group W permutes the real tori Tu according to:

w · Tu = Twuw−1

so W -equivalent real tori correspond to conjugate involutions. Furthermore
the stabilizer of a real torus Tu(R) in W is precisely the centralizer CW (u)
of u in W . We want to study the real tori Tu and especially their connected
components in more detail. The involution u acts naturally on the weight
lattice P and there exists a so called normal basis for P such that:

u = In1 ⊕ (−In2)⊕
(

0 1
1 0

)n3

P = P1,u ⊕ P2,u ⊕ P3,u.

(6.12)

This is described in detail in [11]. The decomposition of Equation 6.12 is
not unique but the triple (n1, n2, n3) which we call the type of the involution
u ∈ W is an invariant of the involution. A choice of normal basis determines
an isomorphism:

Tu(R) ∼= (R∗)n1 × (S1)n2 × (C∗)n3 (6.13)

with n1, n2, n3 ∈ N and n1 +n2 + 2n3 = n. This product consists of factors of
split (R∗), compact (S1) and complex (C∗) type. To determine the numbers
ni we have the following lemma from [11].

Lemma 6.5.7. There are isomorphisms of abelian groups:

ker(u− 1)

im(u+ 1)
∼= (Z/2Z)n1 ,

ker(u+ 1)

im(u− 1)
∼= (Z/2Z)n2

where the first of these can be identified with the component group π0(Tu(R)).

Proof. We construct the first of these isomorphisms. After choosing a normal
basis for P we can use the lattice decomposition (6.12) to see that the lattice
ker(u − 1) is isomorphic to P1,u ⊕ P3,u. Similarly the lattice im(u + 1) is
isomorphic to 2P1,u⊕P3,u and the quotient of these lattices is P1,u/2P1,u.

To determine the number of connected components of CW (u)\Tu(R) we
need to compute the number of orbits under the action of CW (u) on the
connected components of Tu(R). The following lemma shows that in fact only
W+
u acts non-trivially on the components.
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Lemma 6.5.8. The group W−u oGu is contained in the kernel of the action
of CW (u) on ker(u− 1)/ im(u+ 1).

Proof. Suppose x ∈ ker(u− 1). In particular x ∈ V +
u so that w · x = x for all

w ∈W−u . The group is Gu is generated by products of commuting reflections
sαsu·α where α ∈ R1. Such an element acts trivially on the class of x in
ker(u− 1)/ im(u+ 1) since:

sαsu·α · x− x = (u+ 1) ((α, x)α) ∈ im(u+ 1).

Connected components of W\T1

For the trivial involution u = 1 the real torus T1 is maximally split and we
have:

Tu(R) ∼= (R∗)n ,
keru− 1

imu+ 1
∼=

P

2P
, CW (u) = W.

The decomposition of this real torus into connected components is described
by:

T1(R) =
⊔

[$]∈P/2P

T$1 where T$1 = exp

(
1

2
$ + iV

)
.

We can use the basis of fundamental weights {$1, . . . , $n} of P to identify T
with (C∗)n through the isomorphism:

C∗ ⊗ P → (C∗)n
n∑
i=1

ti ⊗$i 7→ (t1, . . . , tn).

In this way we can also identify the component group P/2P of T1 with the
subgroup {−1, 1}n ⊂ (R∗)n.

Remark 6.5.9. An element of P/2P can be represented by a colouring of
the Coxeter diagram of W where the ith node is coloured white if the corre-
sponding coefficient of $i is 1 and coloured black if it is −1. To determine
the action of W on two-coloured Coxeter diagrams first observe that a simple
reflection for W acts on the fundamental weights as:

si ·$j =

{
$i i 6= j

−$i +
∑

k∈Ij $j i = j
(6.14)

where the sum runs over the set Ij of neighbouring vertices of the jth vertex
of the Coxeter diagram. Now the generator si only acts nontrivially if the
ith node vi is black. In this case the action of si changes the colour of all
neighbouring vertices of vi but leaves vi unchanged.



86 CHAPTER 6. POINTED QUARTIC CURVES

It is often convenient to use the group 1
2P/P for representing the connected

components of Tu(R) instead of the group P/2P . The reason for this is that
there are bijections of orbit spaces:

W
∖(1

2
P/P

)
∼= (P oW )

∖1

2
P ∼= (P/Q)

∖(1

2
P ∩ Ā

)
. (6.15)

We can count the points in the intersection 1
2P ∩ Ā and the group P/Q is

typically small. Its action is easily determined for Weyl groups of type ADE.
We do this for root systems of type An in Example 6.5.10.

Example 6.5.10 (An). We will use the above method to describe the orbit
space W\ (P/2P ) for type An. This will be used frequently in the next section.
Representatives for the orbits are given by:{

{0, $1, . . . , $n/2} n even

{0, $1, . . . , $(n+1)/2} n odd.

Proof. For a root system of type An all the roots have coefficient 1 in the
highest root so the fundamental alcove is the convex hull of the fundamental
weights. From this we determine:

Ā ∩ 1

2
P =

{
0,
$i

2
,
$i +$j

2

}
1≤i 6=j≤n

.

The group P/Q is cyclic of order n + 1 and is generated by γ1 which acts as
the permutation (01 . . . n) on the indices of the fundamental weights {$i}. A
small calculation shows that:

γ1

($i

2

)
=
$i+1 +$1

2

where we use the notation $0 = 0 and the indices are considered mod n+ 1.
A typical γ1-orbit (for which n+ 1 6= 2i) is of the form:

$i

2
7→ $i+1 +$1

2
7→ . . . 7→ $n +$n−i

2
7→ $n−i+1

2

7→ $n−i+2 +$1

2
7→ . . . 7→ $n +$i−1

2
7→ $i

2
.

A representative is given by $i/2. If n is even then all orbits are of this form
and there are n/2 orbits. If n is odd then there is one additional orbit with
n+ 1 = 2i given by:

$(n+1)/2

2
7→ $i+1 +$1

2
7→ . . . 7→ $n +$n−i

2
7→

$(n+1)/2

2
.

A representative is given by $(n+1)/2.
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For non-trivial involutions u it is more complicated to determine the con-
nected components of:

CW (u)\Tu(R).

After choosing a normal basis for P in which u takes a normal form we can
identify the component group π0(Tu(R)) with P1,u/2P1,u. However since there
is no canonical choice for P1,u we have to compute:

W+
u \ (P1,u/2P1,u)

case by case. The real torus Tu(R) can be written as the disjoint union of its
connected components in the following way:

Tu(R) =
⊔

[$]∈ 1
2
P1,u/P1,u

T$u where T$u = exp

(
1

2
$ + iV +

u + V −u

)
. (6.16)

Connected components of real tori of type E7

In this section we determine all connected components of the space:

CW (u)
∖
Tu(R)

where u ∈ W is an involution in the Weyl group W of type E7 and Tu is
the corresponding real torus. The results are listed in Table 6.3. In the first
column are the pairs of conjugation classes of involutions W we determined in
Example 2.3.4. The total number of connected components equals 20. Recall
that the nodes of the E7 diagram are numbered as in the diagram below.

1 2 3 4

7

5 6

Figure 6.2: The labelling of the nodes of the Coxeter graph of
type E7.

If u is an involution with n1 = 0 then the real torus Tu(R) is connected.
Consequently the quotient CW (u)\Tu(R) is also connected. Now suppose
that n1 = 1 so that P1,u/2P1,u

∼= Z/2Z. Since {0} is a single W+
u -orbit, so

is {$} with $ ∈ P a generator for P1,u/2P1,u and there are two connected
components. From Table 6.3 we see that this is the case for A3

1 and D4 which
we represent by I = {s2, s4, s7} and I = {s2, s3, s4, s7} respectively. In both
cases the fundamental weight $6 is a generator for P1,u/2P1,u. For n1 > 2 the
situation becomes more complicated and we have to determine the action of
W+
u on the generators of P1,u/2P1,u. These cases are u = 1, A1, A

2
1 or A3′

1 and
we treat them below.
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u ∈W n1 n2 n3 #components representatives

1 7 0 0 4 {0, $5, $6, $7}
E7 0 7 0 1 {0}
A1 5 0 1 3 {0, $3, $4}
D6 0 5 1 1 {0}
A2

1 3 0 2 3 {0, $4, $5}
D4A1 0 3 2 1 {0}
A3

1 1 0 3 2 {0, $6}
A4

1 0 1 3 1 {0}
D4 1 2 2 2 {0, $6}
A3′

1 2 1 2 2 {0, $1}

Table 6.3: The number of components of CW (u)\Tu(R) for
all conjugation classes of involutions u ∈ W . We also list the
corresponding representatives in W+

u \ (P1,u/2P1,u).

1 The involution u = 1 is of type (7, 0, 0) so that we can use Formula 6.15.
The closure of the fundamental alcove A intersected with lattice of half
weights:

Ā ∩ 1

2
P = Conv

(
0,
$1

2
,
$2

3
,
$3

4
,
$4

3
,
$5

2
, $6,

$7

2

)
∩ 1

2
P

consists of the six elements {0, $1/2, $5/2, $6, $6/2, $7/2}. The group
P/Q is of order two and acts on this set by γ6 which interchanges 0↔ $6

and $1/2↔ $5/2. We conclude that there are four orbits in W\ (P/2P )
represented by {0, $5, $6, $7}.

A1 The involution A1 is of type (5, 0, 1). As a representative we pick I =
{s1}. Let Su be the matrix of u with respect to the basis of fundamental
weights for P and let Bu be a matrix whose columns represent a normal
basis in the sense of Equation 6.12. The normal basis for P is not
uniquely determined but we fix the choice below.

Su =

(
−1 0
1 1

)
⊕ I5 , Bu =

(
1 −1
0 1

)
⊕ I5.

A basis for P1,u and system of simple roots for W+
u are then given by

respectively:

P1,u = Z{$7, $3, $4, $5, $6} , ∆(D6) = {α7, α3, α4, α5, α6, αI}

where αI = e0 − e3 − e4 − e5. The lattice P1,u is a weight lattice of
type A5 and the group W+

u which acts on P1,u is of type D6. All this
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is shown in the picture below. The black nodes represent the set I of
W−u , the crossed nodes the root system of W+

u and the grey nodes the
fundamental weights of P1,u.

α7

α3 α4 α5 α6

αI

We need to determine the action of W+
u on P1,u. First we observe

that the parabolic subgroup W (A5) of W+
u generated by the reflections

represented by grey nodes in the diagram is of type A5 and acts on P1,u

in the usual way. We see from example 6.5.10 that there are four orbits
for W (A5)\ (P1,u/2P1,u) represented by {0, $7, $3, $4}. The remaining
generating reflection sI acts on the basis for P1,u as

sαI ($7, $3, $4, $5, $6) = ($7 +$5, $3 + 2$5, $4 +$5, $5, $6).

A small calculation using Equation 6.14 shows that

s4s3s7sI($7) = s4s3s7($7 +$5)

= s4s3($7 +$3 +$5)

= s4($3 +$4 +$5)

= $4

so that the reflection sI exchanges the orbits $7 ↔ $4. This leaves
three orbits for W (D6)\ (P1,u/2P1,u) represented by {0, $3, $4}.

A2
1 The involution A2

1 is of type (3, 0, 2). As a representative we choose
I = {s1, s6}. As a basis for the lattice P1,u we can choose Z{$3, $4, $7}
which is of type A3. The group W+

u is of type D4A1 with simple system:

∆(D4A1) = {α3, α4, α7, αI , αII}

where αI = e0 − e3 − e6 − e7 and αII = −e0 + e3 + e4 + e5. The
corresponding diagram is given below.

α3 α4

α7

αI

αII

The parabolic subgroup W (A3) of W+
u of type A3 generated by the

reflection represented by the grey nodes of the diagram acts on P1,u
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in the usual way. We can represent the orbits of W (A3)\ (P1,u/2P1,u)
by {0, $3, $4}. The reflection sαII acts trivially on these orbits. The
reflection sαI acts as:

sαI ($7, $3, $4) = ($7 +$3, $3, $4).

This action is identical to that of s7 ∈W (A3) so the number of orbits of
W (D4A1)\ (P1,u/2P1,u) remains three with representatives {0, $3, $4}.

A3′
1 The involutionA3′

1 is of type (2, 1, 2) and is represented by I = {s4, s6, s7}.
The group W+

u is of type D4 with simple system

∆(D4) = {α1, α2, αI , αII}

where αI = e0 − e1 − e4 − e5 and αII = e0 − e1 − e6 − e7. As a basis for
P1,u we can choose Z{$1, $2}. The diagram is shown below.

αI

αII α2α1

The parabolic subgroup W (A2) of W+
u generated by the reflections rep-

resented by the grey nodes in the diagram acts on P1,u in the usual way.
The space W (A2)\ (P1,u/2P1,u) consists of a single orbit represented by
{$1}. The reflections sαI and sαII both act as s2 on P1,u. So there are
two W+

u orbits in W (D4)\ (P1,u/2P1,u) represented by {0, $1}.

The complement of the mirrors

In this section we prove that for a root system of type ADE satisfying certain
assumptions the connected components of the space (W\T◦)(R) are of the
form:

StabW (T$u )\(T$u )◦ where [$] ∈ P1,u/2P1,u. (6.17)

This implies that removing the mirrors from Tu(R) does not add new compo-
nents to the quotient CW (u)\Tu(R). In particular the number of connected
components of CW (u)\T◦u(R) for involutions u in W (E7) are the same as the
numbers in Table 6.3.

Definition 6.5.11. Let q : T→W\T be the quotient map. The discriminant
DT is the set of critical values of q. It consists of union of the q-images of the
toric mirrors and the q-image of the set:

TP/Q =
⋃
i

exp(V γi
C )

where we denote by V γi
C the fixed points in VC of the generator γi for P/Q.
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Lemma 6.5.12. The q-images of the real tori Tu(R) are disjoint in:

(W\T)(R)−DT(R).

Proof. Suppose that t ∈ Tu1∩Tu2 for involutions u1, u2 ∈W . This implies that
u1 · t = u2 · t = t̄ so that in particular u1u2 · t = t. But then q(t) ∈ DT(R).

Since we are interested in connected components it suffices to consider the
part of DT(R) of codimension 1 in (W\T)(R). This motivates the following
definition.

Definition 6.5.13. The real discriminant DT,R of (W\T)(R) is the closure
of the nonsingular part of DT(R). The difference is a DT(R) − DT,R has
codimension ≥ 2 in (W\T)(R).

Proposition 6.5.14. If we assume that TP/Q ∩ Tu has codimension ≥ 2 for
all involutions u ∈W then:

q−1DT,R =
⋃

(Tu ∩Hs)

where the union runs over all involutions u ∈ W and reflections s ∈ W that
commute with u.

Proof. Under the assumption of the proposition the set TP/Q does not con-
tribute to the real discriminant. In this case an element t ∈ Tu is mapped to
a nonsingular point of DT(R) by q if and only if there is a unique reflection
s ∈ W that fixes t. Since the reflection usu also fixes t, we must have that s
commutes with u.

The assumption is satisfied for type E7. In that case P/Q is generated by
the involution γ6. The locus of fixed points V γ6 has dimension four so that the
codimension of TP/Q ∩ Tu ≥ 3. In order to prove that the space of equation
(6.17) is connected it is sufficient to prove that the space:

StabW (T$u )\T$u −DT$u ,R

is connected. We prove the slightly stronger result that the quotient

StabWu(T$u )\T$u −DT$u ,R

by the smaller group StabWu(T$u ) is connected. We start with a lemma on the
decomposition V = V +

u ⊕ V −u into ±1-eigenspaces for u on the weight lattice
P . Denote by P+

u and P−u the orthogonal projections of P into V +
u and V −u

respectively.

Lemma 6.5.15. The lattice P−u is equal to the weight lattice P (W−u ) of W−u .
If we also assume that −1 ∈W then P+

u = P (W+
u ) and R+

u spans V +
u .
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Proof. The simple system {αi}i∈I for the root system R−u is a basis for V −u .
The dual basis is given by {$−i }i∈I where $−i = ProjV −u ($i). We have:

P (W−u ) = {Z ∈ V −u ; (Z, αi) ∈ Z ∀i ∈ I}
= Z

{
$−i
}
i∈I

= P−u .

If−1 ∈W then for every involution u ∈W its opposite−u is also an involution
in W . Furthermore V ±u = V ∓−u and W±u = W∓−u so that we have equalities

P (W+
u ) = P (W−−u) = ProjV −−u

(P ) = ProjV +
u

(P ).

Similarly we have RR+
u = RR−−u = V −−u = V +

u so that R+
u spans V +

u .

Theorem 6.5.16. Assume that −1 ∈W and that TP/Q∩Tu has codimension
≥ 2 for all involutions u ∈W . Let A−u be the fundamental alcove for the action
of the affine Weyl group Q−u oW−u on V −u and let C$+

u be the fundamental
chamber of the action of the Weyl group StabW+

u

(
1
2$
)

on the affine space
1
2$ + iV +

u . Then there is an isomorphism of orbifolds:

StabWu(T$u )
∖
T$u −DT$u ,R

∼= StabP+
u /Q

+
u

(
1

2
$

)∖
C$+
u ×

(
P−u /Q

−
u

) ∖
A−u .

Proof. Similar to the decomposition V = V +
u ⊕ V −u there is a decomposition:

T$u = exp

(
1

2
$ + iV +

u + V −u

)
∼= exp

(
1

2
$ + iV +

u

)
× exp

(
V −u
)

where [$] ∈ P1,u/2P1,u (so that in particular $ ∈ V +
u ). The stabilizer of T$u

in Wu also splits into a product:

StabWu (T$u ) ∼= StabW+
u

exp

(
1

2
$ + iV +

u

)
× StabW−u exp

(
V −u
)

∼= StabP+
u oW+

u

(
1

2
$

)
× StabP−u oW−u

(
V −u
)
.

The result now follows from applying Lemma 6.5.1 to these factors and taking
the quotient.

Remark 6.5.17. While the roots of the Weyl group W+
u span the vector

space V +
u the same need not be true for the Weyl group StabW+

u
(1

2$), even
if the group W contains −1. An example is given by the Weyl group of type
E7 and the trivial involution u = 1. In that case the Weyl group StabW (1

2$6)
is of type E6 and has rank six while V is of dimension seven. A fundamental



6.6. THE GEOMETRY OF THE 20 COMPONENTS 93

domain for this action is the product of a Weyl chamber of type E6 and its
orthogonal complement in V which is a copy of R. From this discussion we see
that the chamber C$+

u is not a Weyl chamber in the traditional sense but the
product of a Weyl chamber and an affine space. In particular it is connected,
as is the alcove A−u so that the following corollary is immediate.

Corollary 6.5.18. Under the assumptions of Theorem 6.5.16 the space

StabWu(T$u )
∖
T$u −DT$u ,R

is connected.

6.6 The Geometry of the 20 components

In this section we relate the 20 connected components of the space (W\T◦)(R)
for a root system of type E7 to the components of the moduli space (Q◦1)R. For
each of these components we find a representative pair (C, p) with p ∈ C(R).
The results are listed in the tables of Section 6.7.

Theorem 6.6.1. The curves in the tables of Section 6.7 represent the 20
different components of (Q◦1)R.

Proof. It is clear that for the curves in the left columns the associated del
Pezzo pair (Y, Z) satisfies Zns(R) ∼= R∗ so that they belong to the space
StabW (Tu)\T◦u for u of type 1, A1, A

2
1, A

3
1 or D4. Similarly the curves in the

right column satisfy Zns(R) ∼= S1 and belong to StabW (T−u)\T◦−u (so −u is of
type E7, D6, D4A1, A

4
1 or A3′

1 ). Just check from the pictures whether Zns(R)
has one or two components. With the exception of the two M -curves labeled
$6 and $7 for all of the curves in the table the topological types of the pairs
(C(R), TpC(R)) are distinct. It is not possible to deform one of them into the
other without passing through one of the strata (Qflex

1 )R, (Qbit
1 )R or (Qhflex

1 )R

so that they lie indeed in different components of (Q◦1)R. We need to prove
that the M -curves labeled $6 and $7 are not in the same component. For
this consider the affine quartics obtained by placing the tangent line TpC at
infinity for these two curves. They are shown in the following figure.

$6 $7



94 CHAPTER 6. POINTED QUARTIC CURVES

The triangle drawn in the picture forms an obstruction to deforming one into
the other: it is not possible to move the central oval of the curve $6 out of
the triangle without contradicting Bezout’s theorem (a line intersects C in
four points). This is in agreement with Table 15 in Appendix 1 of [13] where
certain affine M -quartics are classified.

To obtain an alternative description of the components of (W\T◦) (R) we
explicitly use the construction from the proof of Theorem 6.4.1 to associate
to χ ∈ T$u (R) seven points in general position on the nonsingular locus of a
real plane nodal cubic Z ⊆ P2. As before we identify Zns(C) ∼= C∗ so that the
points are defined by the formula:

χ 7→ (P1, . . . , P7) with Pi = χ
(
ei −

e0

3

)
up to addition of an inflection point of Z. We start with the components
corresponding to M -quartics.

If χ is an element of the compact torus T−1
∼= Hom(Q,S1) then this

construction determines seven points on the real point set Z(R) of a real
plane nodal cubic with Zns(R) ∼= S1.

If χ is an element of the split torus T1
∼= Hom(Q,R∗) then the construction

determines seven points on the real point set of a real plane nodal cubic
with Zns(R) ∼= R∗. If we choose the unique real inflection point of Z as the
unit element for the group law on Zns then these seven points are real. The
Weyl group W acts on (R∗)7 by permuting the coordinates and by Cremona
transformations in triples of points. For a seven-tuple t = (t1, . . . , t7) ∈ (R∗)7

let m+ denote the number of positive coordinates and m− the number of
negative coordinates. The permutation orbit of t is uniquely determined by
the pair (m+,m−). From Formula 6.4 we see that if we perform a Cremona
transformation in ti, tj , tk the sign of these points remains unchanged and the
remaining points change sign if and only if one or three of the three points are
negative. This describes the action of W on the pairs (m+,m−) and there are
four orbits. These correspond to the four components of:

W\T◦1 =
⊔

[$]∈W\(P/2P )

StabW (T$1 )
∖

(T$1 )◦

where $ ∈ {0, $5, $6, $7}. The precise correspondence is shown in Table 6.4.
The stabilizers for the components in the table are calculated using Formula
6.7 and Lemma 6.5.1.

To determine which picture from the tables in Section 6.7 for u = 1 be-
longs to which of the components from Table 6.4 we determine the adjacency
relations between the five components corresponding to pointed M -quartics in
(Q◦1)R. Two components are adjacent if their corresponding pointed quartics
(C, p) can be deformed into each other by moving through the stata (Qbit

1 )R
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representative StabW (T$1 ) W · (m+,m−)

[0] W (E7) {(7, 0)}
[$6] W (E6) o Z/2Z {(6, 1), (2, 5)}
[$5] W (D6A1) {(5, 2), (3, 4), (1, 6)}
[$7] W (A7) o Z/2Z {(4, 3), (0, 7)}

Table 6.4: Connected components for W\T1(R). The first
column lists the representatives for W\ (P/2P ).

or (Qflex
1 )R of codimension one. The effect of these two deformations is shown

in figure 6.3.

(a) Deforming through a flex.

(b) Deforming through a bitangent.

Figure 6.3: The two ways of passing through a codimension
one stratum in the moduli space (Q◦1)R.

Proposition 6.6.2. The adjacency graph for the five components of real
pointed M -curves in (Q◦1)R is given by:

(7) (7, 0) (6, 1) (5, 2) (4, 3)

where we label components of W\T◦1 by a representative for the corresponding
orbit W · (m+,m−) and the component W\T◦−1 by (7).

Proof. A curve in the component coresponding to W\T◦1 can only be deformed
to one in the component of W\T◦−1 by deforming through a flex point. This is
a transition from (7) to (7, 0). By repeatedly deforming through a bitangent
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one moves through the components

(7, 0)↔ (6, 1)↔ (5, 2)↔ (4, 3).

This proves the proposition and shows that the pictures corresponding to the
components are indeed the ones shown in the table for u = 1.

For χ ∈ Tu(R) with u of type Ai1 with i = 1, 2, 3 we can do a similar
analysis. In this case the construction associates to χ: 7− 2i real points and i
pairs of complex conjugate points for a suitable representative u (not involving
the reflection s7). For example the involution u = s6s4 of type A2

1 acts as

s6s4 · (P1, P2, P3, P4, P5, P6, P7) = (P1, P2, P3, P5, P4, P7, P6)

on the Pi so that χ ∈ Ts6s4 produces seven points in Zns(C) ∼= C∗ with
P1, P2, P3 real points and (P4, P5) and (P6, P7) complex conjugate pairs. The
centralizer CW (u) is more complicated in this case. It acts on the points
by permutations preserving the real points and conjugate pairs and Cremona
transformations centered in a triples of real points or a real point and a pair
of conjugate points. The orbits are calculated in Table 6.5 and confirm the
numbers we computed earlier in Table 6.3.

u representative CW (u) · (m+,m−)

A1 [0] {(5, 0)}
[$4] {(4, 1), (2, 3), (0, 5)}
[$3] {(3, 2), (1, 4)}

A2
1 [0] {(3, 0)}

[$4] {(2, 1), (0, 3)}
[$3] {(1, 2)}

A3
1 [0] {(1, 0)}

[$6] {(0, 1)}

Table 6.5: Connected components of CW (u)\Tu(R) for u of
type Ai1. The second column shows the representatives for
CW (u)\ (P1,u/2P1,u) from Table 6.3.

Recall that the Geiser involution centered in the seven points on Zns(R) ⊂
P2 lifts to an involution of Y whose fixed points correspond to the quartic
curve C. The unique node of Z corresponds to the point p ∈ C(R) of the pair
(C, p). The remaining two fixed points on Y (corresponding to the remaining
two points of TpC ∩ C) can be calculated using Equation 6.5 for the Geiser
involution restricted to Z. They are the solutions to the equation:

t2 =
1

t1 · . . . · t7
.
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If m− is even then these points are real and if m− is odd they are complex
conjugate. This is in agreement with the data in the tables.

For χ ∈ Tu with u of type D4 or A′3 the situation is different. In this case
u acts as a nontrivial Cremona transformation on the points. In fact it acts
as a de Jonquiéres involution of order three centred in 5 of the points (for the
definition we refer to [36]). The curve C(R) consists of two nested ovals and
only the outer oval can contain an inflection point, otherwise we would again
get a contradiction with Bezout’s theorem. This implies that the component
with p on the outer oval is the unit component of Tu(R) for u of type D4 and
A′3.
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6.7 Tables

1 E7

(a) 0 (b) $6

(c) 0

(d) $5 (e) $7

A1 D6

(f) 0 (g) $4

(h) 0

(i) $3
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A2
1 D4A1

(j) 0 (k) $4

(l) 0

(m) $3

A3
1 A4

1

(n) 0 (o) $6 (p) 0

D4 A3′
1

(q) 0 (r) $6

(s) 0

(t) $1
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Samenvatting

De hoofdrolspelers van dit proefschrift zijn de vlakke reële krommen van graad
vier. Dit soort krommen wordt volledig bepaald door vergelijkingen van de
vorm:

ax4 + bx3y + cx2y2 + dxy3 + ey4 + fx3 + gx2y + . . . o = 0

waar de 15 coëfficienten a, b, c, . . . , o reële getallen zijn. Deze coëfficienten zijn
vrij te kiezen zolang de resulterende kromme maar glad is. Dit betekent
dat deze zichzelf niet doorsnijdt en geen scherpe randen heeft. Door de
coëfficienten en het coördinatensysteem geschikt te kiezen kunnen alle zes de
verschijningsvormen uit onderstaande figuur gemaakt worden en geen andere.

De kromme rechtsonder heeft geen reële punten en wordt bijvoorbeeld
gegeven door de vergelijking x4 + y4 = −1.

Dit proefschrift bestaat uit twee delen. In het eerste deel bestuderen we
de meetkunde van de ruimte van gladde vlakke reële krommen van graad vier
met behulp van een periodenafbeelding. Deze afbeelding slaat een brug tussen
de meetkundige wereld en de arithmetische wereld van de balquotiënten. Het
hoofdresultaat van dit deel is dat voor elk van de zes soorten gladde vlakke
reële krommen van graad vier de ruimte van dit soort krommen volledig
beschreven wordt door een zesdimensionaal hyperbolisch polytoop van eindig
volume. Voor krommen die bestaan uit vier ovalen (zoals linksboven in het
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bovenstaande plaatje) wordt het Coxeterdiagram van dit polytoop gegeven
door de figuur op de kaft van dit proefschrift.

In het tweede deel van het proefschrift bestuderen we de ruimte van gladde
vlakke reële krommen van graad vier met een punt zodanig dat de raaklijn in
dit punt de kromme snijdt in twee verschillende punten. Deze twee punten zijn
reëel of vormen een complex geconjugeerd paar. We bewijzen dat deze ruimte
bestaat uit 20 componenten die we expliciet beschrijven met behulp van een
soort van periodenafbeelding. Voorbeelden van de 20 soorten gepunteerde
krommen zijn te zien in onderstaande figuur.
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