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Preface

These are lecture notes for a course on symplectic geometry in the Dutch
Mastermath program. There are several books on symplectic geometry, but
I still took the trouble of writing up lecture notes. The reason is that this one
semester course was aiming for students at the beginning of their masters.
So I took quite some time reviewing basic facts about manifolds, algebraic
topoplogy, de Rham theory and Lie groups.

There was of course not enough time to treat these subjects in a com-
plete way, but I tried to explain the basic theorems with references to the
literature, in order that they could be applied for the development of the
symplectic geometry. For example, the fundamental proof by Moser of the
equivalence under diffeomorphisms of normalized volume forms on compact
connected manifolds uses de Rham theory. Moser’s argument can be eas-
ily adapted to give a proof of the Darboux theorem. In order to explain
the monodromy calculation for the spherical pendulum by Duistermaat as
a Picard–Lefschetz formula I have to use Poincaré duality (admittedly just
for a two dimensional torus).

My original plan was to discuss more examples from classical mechanics,
like the integrable motion of rigid bodies, and the Lagrange points as relative
equilibria. If time permits I plan to write additional parts of the text in the
future in this direction.

I profited greatly from lecture notes of Hans Duistermaat on symplectic
geometry, written for a Spring School in 2004. Because of the sudden decease
of Hans in the spring of 2010 I took the freedom to put his unpublished notes
on my website as well.

A final word of thanks for the students in the class is in place. For their
questions during and after the class, and for their comments on the text. It
was a great pleasure working with them.
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1 Symplectic Linear Algebra

1.1 Symplectic Vector Spaces

Let V be a real finite dimensional vector space, and let V ∗ = Hom(V,R)
denote the dual vector space. A bilinear form b on V is a bilinear map

b : V × V → R

in the sense that the maps u 7→ b(u, v) for fixed v and v 7→ b(u, v) for fixed u
are both linear maps. In turn a bilinear form b determines and is determined
by a linear map b : V → V ∗ by b(u)v = b(u, v) for all u, v. The bilinear form
b is called nondegenerate if and only if the associated linear map b : V →֒ V ∗

is an injection, so explicitly if b(u, v) = 0 for all v then necessarily u = 0,
or equivalently if and only if b : V → V ∗ is a linear isomorphism (because
V is finite dimensional). This latter condition is equivalent to b∗ : V → V ∗

being a linear isomorphism, or explicitly if b(u, v) = 0 for all u ∈ V then
necessarily v = 0.

There are two cases of nondegenerate bilinear forms b on V of interest to
us: b = g is a Euclidean form or b = ω is symplectic form. A Euclidean form
b = g is symmetric (in the sense that g(v, u) = g(u, v) for all u, v) and posi-
tive definite (g(u, u) > 0 for all nonzero u), and (V, g) is called a Euclidean
vector space. By definition a symplectic form b = ω is antisymmetric (in the
sense that ω(v, u) = −ω(u, v) for all u, v) and nondegenerate (ω : V → V ∗

is a linear isomorphism), and (V, ω) is called a symplectic vector space.
Suppose b : V × V → R is a nondegenerate bilinear form on V , which is

either symmetric or antisymmetric. For U < V a linear subspace put

U b = {v ∈ V ; b(u, v) = 0 ∀u ∈ U} = {u ∈ V ; b(u, v) = 0 ∀v ∈ U}

for the orthogonal complement of U with respect to b. Since the form b is
nondegenerate it is clear that dimU + dimU b = dimV . It is obvious that
U < U bb and therefore we get U = U bb. For U1 < U2 < V linear subspaces
we have V > U b1 > U b2 . The restriction of b to U is nondegenerate if and only
if U∩U b = {0}, in which case V = U⊕U b is the direct sum of two subspaces
U and U b with the restriction of b to both subspaces nondegenerate.

The standard example of a Euclidean vector space is the Cartesian vector
space R

m with Euclidean form g(x, y) =
∑

xjyj. If (V, g) is a Euclidean
vector space, then there exists an orthonormal basis (e1, · · · , em) in V , which
means that g(ej , ek) = δjk. Indeed pick a nonzero vector v in V and put
e1 = v/g(v, v)1/2 such that g(e1, e1) = 1. The orthogonal complement (Rv)g

has codimension one, and by induction there exists an orthonormal basis
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(e2, · · · , em) in (Rv)g, which extends to an orthonormal basis (e1, · · · , em)
in V . In case we denote v =

∑

xjej for the coordinates relative to this
basis then (V, g) gets identified with the Cartesian vector space R

m with its
standard Euclidean form.

Example 1.1. A basic example of a symplectic vector space is V = U ⊕U∗

with standard symplectic form

ω((x, ξ), (y, η)) = ξ(y)− η(x)
for x, y ∈ U and ξ, η ∈ U∗. Choose a basis (e1, · · · , en) in U and let
(f1, · · · , fn) be the dual basis in U∗, defined by fj(ek) = δjk. The basis
(e1, · · · , en, f1, · · · , fn) of V satisfies

ω(ej , ek) = ω(fj, fk) = 0 , ω(fj, ek) = −ω(ej , fk) = δjk

and is called a symplectic basis for V . Written out in coordinates relative to
such a symplectic basis we get

ω((x, ξ), (y, η)) =
∑

(ξjyj − ηjxj)

with x =
∑

xjej, y =
∑

yjej , ξ =
∑

ξjfj, η =
∑

ηjfj.
In the context of classical mechanics one usually uses position coordinates

q =
∑

qjej ∈ U and momentum coordinates p =
∑

pjfj ∈ U∗, and so the
standard symplectic form becomes

ω((q, p), (q′, p′)) =
∑

(pjq
′
j − p′jqj)

in canonical coordinates (q, p), (q′, p′) ∈ U × U∗.

Lemma 1.2. In a symplectic vector space (V, ω) one can choose a symplectic
basis (e1, · · · , en, f1, · · · , fn) characterized by

ω(ej , ek) = ω(fj, fk) = 0 , ω(fj, ek) = −ω(ej , fk) = δjk .

In particular symplectic vector spaces have even dimension.

Proof. The proof is similar to the proof of the existence of an orthonormal
basis in a Euclidean vector space. Let (V, ω) be a symplectic vector space,
and choose a nonzero vector e1 in V . Since ω is nondegenerate one can
choose f1 in V with ω(f1, e1) = 1. By the antisymmetry of ω it is clear that
ω(e1, e1) = ω(f1, f1) = 0. The restriction of ω to the plane U = Re1 + Rf1
is clearly nondegenerate. Hence V = U ⊕ Uω and the restriction of ω to
Uω is also nondegenerate. By induction on the dimension we can choose a
symplectic basis (e2, · · · , en, f2, · · · , fn) for Uω, which together with (e1, f1)
extends to a symplectic basis (e1, · · · , en, f1, · · · , fn) of V .
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Let (V, ω) be a symplectic vector space. A linear subspace U < V is
called isotropic if U < Uω, that is ω(u, v) = 0 for all u, v ∈ U . A linear
subspace U < V is called coisotropic if Uω < U , and so U is isotropic
(coisotropic) if and only if Uω is coisotropic (isotropic). If the linear subspace
U < V satisfies U = Uω, so U is both isotropic and coisotropic, then U is
called a Lagrangian subspace. The dimension of a Lagrangian subspace is
half the dimension of the total vector space.

1.2 Hermitian Forms

A complex structure on a finite dimensional real vector space V is a linear
map J : V → V with J2 = −1. Multiplication of a complex scalar z = x+iy
on v ∈ V by zv = xv + yJv turns V into a complex vector space, and so
(V, J) is considered as a complex vector space. A map

h : V × V → C

is called a Hermitian form if u 7→ h(u, v) is complex linear for all v, and
h(v, u) = h(u, v) (and so v 7→ h(u, v) is complex antilinear for all u), and
finally h(u, u) > 0 for all nonzero u. The triple (V, J, h) is called a Hermitian
vector space.

If we denote
h = g + iω , g = ℜ(h) , ω = ℑ(h)

then the real part g is a Euclidean form and the imaginary part ω a sym-
plectic form on V . For example the antisymmetry of ω follows from

ω(v, u) = ℑ(h(v, u)) = ℑ(h(u, v)) = −ℑ(h(u, v)) = −ω(u, v)

for all u, v in V . The relation between the Euclidean form g, the symplectic
form ω and the complex structure J is given by

g(u, v) = ω(Ju, v) , ω(u, v) = g(u, Jv)

for all u, v in V .

Definition 1.3. Let V be a finite dimensional real vector space equiped with
a Euclidean form g, a symplectic form ω and a complex structure J . These
three structures are called compatible if h = g + iω is a Hermitian form on
(V, J), or equivalently if

g(u, v) = ω(Ju, v) , ω(u, v) = g(u, Jv)

for all u, v in V .
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Note that any two of a compatible triple (g, ω, J) on V determine the
third. Observe that for a compatible triple the operator J is orthogonal
with respect to g, and given this orthogonality of J the two equations in the
above definition become equivalent.

Lemma 1.4. Given a symplectic vector space (V, ω) there exist a compatible
Euclidean form g and complex structure J on V .

Proof. Choose an arbitrary Euclidean form G on V , and let A ∈ Aut(V )
be defined by ω(u, v) = G(u,Av) for all u, v. Because G is symmetric and
ω antisymmetric we get G(Au, v) + G(u,Av) = 0. In other words, if A∗ is
the adjoint of A with respect to G then A∗ = −A, so A is skewadjoint with
respect to G. The product A∗A is selfadjoint with respect to G, and positive
definite. Hence the square root

√
A∗A ∈ Aut(V ) exists uniquely as a positive

definite selfadjoint operator. Just take the eigenspace decomposition of A∗A,
and the square root per eigenvalue. Any linear operator on V commuting
with A∗A also commutes with its square root

√
A∗A.

Since A∗A = −A2 commutes with A it is clear that
√
A∗A also commutes

with A. Define J ∈ Aut(V ) by the polar decomposition A =
√
A∗AJ =

J
√
A∗A, and put

g(u, v) = ω(Ju, v) = G(Ju,Av)

for all u, v. Then g(u, v) = G(Ju,
√
A∗AJv) is a Euclidean form on V .

Moreover J2 = A2(A∗A)−1 = −1, and so J is a complex structure on V .
Since J∗ = A∗(

√
A∗A)−1 =

√
A∗AA−1 = J−1 = −J and g(u, v) = ω(Ju, v)

we also get ω(u, v) = G(u,Av) = −G(J2u,Av) = G(Ju, JAv) = g(u, Jv),
and so the three structures g, ω, J are compatible.

An alternative proof goes as follows. By Lemma 1.2 we can choose a
symplectic basis (e1, · · · , en, f1, · · · , fn) in (V, ω). In canonical coordinates
q =

∑

qjej , p =
∑

pjfj we take as complex coordinates z =
∑

zjej with
zj = qj + ipj (so Jej = fj). Then the standard Hermitian form

h(z, z′) =
∑

zjz′j

has the standard symplectic form ω((q, p), (q′, p′)) =
∑

(pjq
′
j−p′jqj) as imag-

inary part, as required. However the first proof has an advantage in later
use.

1.3 Exterior Algebra

Let V be a real vector space of dimension m. Denote by ΛpV ∗ the vector
space of antisymmetric multilinear forms of degree p (for short p-forms) on
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V , so α ∈ ΛpV ∗ means

α : V p = V × · · · × V → R

is linear in each argument while keeping the other arguments fixed, and

α(v1, · · · , vi, · · · , vj, · · · , vp) = −α(v1, · · · , vj , · · · , vi, · · · , vp)

for any pair of indices 1 ≤ i < j ≤ p. For α ∈ ΛpV ∗ and β ∈ ΛqV ∗ the
exterior product α ∧ β ∈ Λp+qV ∗ is defined by

(α ∧ β)(v1, · · · , vp+q) =
∑

ǫ(σ)α(vσ(1) , · · · , vσ(p))β(vσ(p+1), · · · , vσ(p+q))

with the sum taken over left cosets of permutations σ ∈ Sp+q modulo the
subgroup Sp × Sq, and ǫ(σ) denotes the sign of the permutation σ. Note
that terms with equivalent permutations are equal, so the expression is well
defined. The exterior product is associative, that is (α∧β)∧γ = α∧ (β∧γ).
It is anticommutative in the sense that β ∧ α = (−1)pqα ∧ β for α ∈ ΛpV ∗

and β ∈ ΛqV ∗. With this product

ΛV ∗ :=
⊕

p≥0

ΛpV ∗

becomes a graded associative algebra. Here Λ0V ∗ = R by convention.
Clearly Λ1V ∗ = V ∗ generates ΛV ∗ as an associative algebra. Note that
the even degree part of ΛV ∗ is a commutative subalgebra of ΛV ∗.

Let ej be a basis of V and ǫk the dual basis of V ∗, so ǫk(ej) = δjk. For
strictly increasing functions J,K : {1, · · · , p} → {1, · · · ,m} let us write

eJ = (eJ(1), · · · , eJ(p)) ∈ V p , ǫK = ǫK(1) ∧ · · · ∧ ǫK(p) ∈ ΛpV ∗

and so ǫK(eJ ) = δJK . Therefore, for α ∈ ΛpV ∗, we get α =
∑

K α(eK)ǫK ,
by applying both sides to eJ and observing that α is determined by the
numbers α(eJ ). Conversely, if

∑

K aKǫK = 0, then application to eJ yields
aJ = 0. Hence the ǫK form a basis of ΛpV ∗, and so

dimΛpV ∗ =

(

m

p

)

, dimΛV ∗ = 2m .

In particular ΛpV ∗ = 0 for p > m, and the space ΛmV ∗ of volume forms on
V is one dimensional.
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Let ω be a symplectic form on V . In the above terminology ω ∈ Λ2V ∗

is a nondegenerate 2-form . If (e1, · · · , en, f1, · · · , fn) is a symplectic basis
of V , and (ǫ1, · · · , ǫn, φ1, · · · , φn) the dual basis of V ∗, then

ω =
n
∑

1

φj ∧ ǫj

by Lemma 1.2. Hence the n-th exterior power

ωn = ω ∧ · · · ∧ ω = n!φ1 ∧ ǫ1 ∧ · · · ∧ φn ∧ ǫn
of ω is a nonzero volume form on V . This implies that all intermediate
powers ωk ∈ Λ2kV ∗ are also nonzero, 0 ≤ k ≤ n.

The volume form ωn/n! is called the Liouville form associated with the
symplectic form ω on V . The Liouville measure of the unit parallellepiped
spanned by a symplectic basis of V is equal to 1.

1.4 The Word “Symplectic”

The planes through the origin in V = R
m form the Grassmannian G(2,m) of

lines in the projective space P(V ). The Plücker embedding, sending a plane
L = Ru+Rv in V to the element [u∧v] in P(Λ2V ), maps the Grassmannian
G(2,m) into the projective space P(Λ2V ). The image is a smooth projective
variety of dimension 2m− 4, given as an intersection of quadrics. Indeed, if
u = (x1, · · · , xm) and v = (y1, · · · , ym) then u ∧ v has Plücker coordinates
pjk = xjyk − xkyj for j < k, and the Plücker relations are given by

pijpkl + pikplj + pilpjk = 0

for all i < j < k < l. Indeed the expression
∣
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vanishes because both latter matrices have two equal columns. It can be
shown [16] that the quadratic Plücker relations are sufficient to describe the
image of G(2,m) inside P(Λ2V ). For example the Grassmannian G(2, 4)
embedds in P

5 = P(Λ2
R
4) as a smooth quadric fourfold Q.

Since (ΛpV )∗ = Λp(V ∗) a plane L = Ru + Rv in a symplectic vector
space (V, ω) is isotropic if and only if its image [u ∧ v] ∈ P(Λ2V ) under the
Plücker embedding lies on the hyperplane H defined by the linear form ω
on Λ2V . For example, for a four dimensional symplectic vector space (V, ω)
the image of the Lagrangian Grassmannian of Lagrangian planes in G(2, 4)
under the Plücker embedding in P

5 = P(Λ2V ) is a smooth threefold Q ∩H,
so a smooth quadric in P

4.

Definition 1.5. A line complex of degree d is a smooth hypersurface of
the Grassmannian G(2,m), which is obtained as the intersection under the
Plücker embedding G(2,m) →֒ P(Λ2

R
m) with a hypersurface of degree d.

The basic example of a linear line complex is the space of isotropic planes
in a symplectic vector space (V, ω). A well studied example in 19th century
algebraic geometry is the case of a quadric line complex in G(2, 4) and its
beautiful relation with Kummer surfaces [16].

For a symplectic vector space (V, ω) the subgroup of GL(V ) leaving ω
invariant acts transitively on the associated linear line complex, and was
called the linear complex group. In his book “The Classical Groups” of
1936 Hermann Weyl wrote [58]

The name “complex group” formerly advocated by me in allu-
sion to line complexes, as these are defined by the vanishing of
antisymmetric bilinear forms, has become more and more embar-
rassing through collision with the word “complex” in the conno-
tation of complex number. I therefore propose to replace it by
the corresponding Greek adjective “symplectic”.

The word “com-plex” means “plaited together” and the Greek transcription
became “sym-plectic”. Ever since the group Sp(V, ω) of all linear transfor-
mations of V leaving the form ω invariant is called the symplectic group,
(V, ω) is called a symplectic vector space, and ω is called a symplectic form.

1.5 Exercises

Exercise 1.1. Show that for a Hermitian vector space (V, J, h) the complex
structure J is both unitary and skewadjoint, that is h(Ju, Jv) = h(u, v) and
h(Ju, v) + h(u, Jv) = 0 for all u, v ∈ V .
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Exercise 1.2. Suppose V is a finite dimensional real vector space with a
Euclidean form g, a symplectic form ω and a complex structure J . Show
that J is orthogonal with respect to g if and only if J is skew adjoint with
respect to g, and under this assumption g(u, v) = ω(Ju, v) holds for all u, v
if and only if ω(u, v) = g(u, Jv) holds for all u, v.

Exercise 1.3. Let V be a finite dimensional real vector space with compatible
Euclidean form g, symplectic form ω and complex structure J . Let h = g+iω
be the associated Hermitian form. Show that

U(V, J, h) = O(V, g) ∩ Sp(V, ω) = O(V, g) ∩GL(V, J) = Sp(V, ω) ∩GL(V, J)

with O(V, g) the orthogonal group of (V, g), Sp(V, ω) the symplectic group of
(V, ω), GL(V, J) the complex general linear group of (V, J) and U(V, J, h)
the unitary group of (V, J, h).

Exercise 1.4. Show that the Lagrangian Grassmannian of all Lagrangian
subspaces in R

n×R
n with the standard symplectic form ω =

∑

(pjq
′
j − p′jqj)

is isomorphic to U(n,C)/O(n,R). Hint: Identify R
n × R

n with C
n via

(x, y) ≃ (x + iy = z), and let h(z, z′) =
∑

zjz
′
j be the standard Hermitian

form with ω = ℑ(h). Observe that a Lagrangian subspace is obtained as the
real span of an orthonormal (with respect to h) basis of Cn.

Exercise 1.5. Show that (α∧ β)∧ γ = α∧ (β ∧ γ) for α ∈ ΛpV ∗, β ∈ ΛqV ∗

and γ ∈ ΛrV ∗.

Exercise 1.6. Let V be a vector space of dimension m and v a vector in
V . The linear operator iv : Λ

pV ∗ → Λp−1V ∗ is defined by

iv α(v2, · · · , vp) = α(v, v2, · · · , vp)
for α ∈ ΛpV ∗ and vectors v2, · · · , vp ∈ V . The (p−1)-form iv α is called the
inner product or the contraction of the p-form α with the vector v. Show
that iv is an antiderivation of ΛV ∗ in the sense that

iv(α ∧ β) = (iv α) ∧ β + (−1)pα ∧ (iv β)

for α ∈ ΛpV ∗ and β ∈ ΛqV ∗.
Given a nonzero volume form µ on V show that the linear map

V → Λm−1V ∗ , v 7→ iv µ

is a bijection. Given a symplectic form ω on V show that the linear map

V → Λ1V ∗ = V ∗ , v 7→ iv ω

is a bijection. Hint: For reasons of dimension it suffices to prove injectivety
of both linear maps.
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Exercise 1.7. For α ∈ Λ2V ∗ an antisymmetric bilinear form on V the rank
rk(α) is defined as the dimension of V/Ker(α) with Ker(α) = V α. Show
that rk(α) ∈ 2N is even. Show that rk(α) ≤ 2 if and only if α∧α = 0. This
is a set of quadratic equations on α ∈ Λ2V ∗, and the abstract form of the
Plücker relations.

Exercise 1.8. Let (V, ω) be the Cartesian space R
4 = R

2 × R
2 with basis

(e1, e2, f1, f2) and standard symplectic form ω = f1∧ e1+ f2∧ e2. Show that
the vector space Λ2V carries a nondegenerate symmetric bilinear form (·, ·)
defined by

α ∧ β = (α, β)ω2/2

with signature (3, 3). Show that the map Aut(R4) ∋ A 7→ Λ2A ∈ Aut(Λ2
R
4)

induces a natural homomorphism

Sp(4,R)→ O(2, 3,R) ,

which is called the spin homomorphism for the so called anti-de Sitter group
O(2, 3,R).

13



2 Calculus on Manifolds

2.1 Vector Fields and Flows

Throughout these notes we assume that M is a smooth manifold. A smooth
vector field v on M assigns to each point x ∈M a vector vx in the tangent
space TxM of M at x varying smoothly with x. Given a smooth vector field
v on M there exists for each x in M a unique solution curve

γ = γx : Ix →M ,
d γ(t)

d t
= vγ(t) , γ(0) = x

defined on a maximal open interval Ix around 0 in R. In local coordinates
this is just the existence and uniqueness theorem for a first order system of
ordinary differential equations [7]. If s ∈ Ix and t ∈ Iγx(s) then it is clear
that

γx(t+ s) = γγx(s)(t) ,

and so (t + s) ∈ Ix. We also write φt(x) = γx(t). The map φt : Dt → M is
smooth with domain

Dt = {x ∈M ; t ∈ Ix} ,
and is called the flow after time t. The flow satisfies the group property that

φt+s(x) = φt(φs(x))

for x ∈ Ds and φs(x) ∈ Dt .
If for x ∈ M one has s := sup Ix < ∞ then for each compact subset K

of M there exists an ǫ = ǫK > 0 such that γx(t) /∈ K for all t ∈ (s − ǫ, s).
In other words, the solution γx(t) runs out of every compact subset of M in
finite time. In particular ifM is compact we have sup Ix = +∞ and likewise
inf Ix = −∞ for all x in M .

The vector field v on M is called complete if Ix = R for all x in M ,
or equivalently if Dt = M for all t ∈ R. The group property of flows then
implies that t 7→ φt is a homomorphism of the additive group (R,+) to the
group Diff(M) of all diffeomorphisms of M . For this reason t 7→ φt is also
called a one-parameter group of diffeomorphisms. Smooth vector fields on
compact manifolds are always complete.

If the vector field vt depends smoothly on the time parameter t ∈ R

then the solution curve t 7→ γx(t) through x = γx(0) exists likewise for a
maximal open interval Ix around 0 in R. In case of a complete vector field
vt (so Ix = R for all x in M) this leads to a one-parameter family t 7→ φt of
diffeomorphisms of M with φ0 = Id, but the group property need no longer
hold. A one parameter family t 7→ φt of diffeomorphisms of M with φ0 = Id
is also called an isotopy.
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2.2 Lie Derivatives

Let Ωp(M) denote the space of smooth p-forms on the manifold M . So
a smooth p-form α on M assigns to each point x of M an antisymmetric
multilinear form αx of degree p on the tangent space TxM varying smoothly
with x. Note that Ω0(M) = F(M) is the space of smooth real valued
functions on M . With respect to the exterior product the space

Ω(M) =
⊕

p≥0

Ωp(M)

becomes a graded associative algebra. The exterior product is anticommu-
tative in the sense that β∧α = (−1)pqα∧β for α ∈ Ωp(M) and β ∈ Ωq(M).
If M and N are smooth manifolds, and φ : M → N is a smooth map, then
the pullback of a smooth p-form α on N under φ is a smooth p-form φ∗α on
M defined by

(φ∗α)x(v1x, · · · , vpx) = αφ(x)((Txφ)v1x, · · · , (Txφ)vpx)

with Txφ : TxM → Tφ(x)N the tangent map of φ at x and v1x, · · · , vpx in
TxM . Note that the pullback φ∗ is a linear operator from Ωp(N) to Ωp(M),
and the word “pullback” reminds one of the fact that the direction of the
arrow φ∗ : Ωp(N)→ Ωp(M) is reversed compared to the arrow φ :M → N .
It also helps to remember that for ψ : L → M and φ : M → N the order
in the composition formula (φ ◦ ψ)∗ = ψ∗ ◦ φ∗ is reversed. The pullback
φ∗ : Ω(N)→ Ω(M) becomes a homomorphism of algebras by the rule

φ∗(α ∧ β) = (φ∗α) ∧ (φ∗β)

for α, β ∈ Ω(N). In particular if φ : M → N is a diffeomorphism then
φ∗ : Ω(N)→ Ω(M) is an isomorphism of algebras, and an automorphism of
Ω(M) in case N =M .

The exterior derivative d : Ωp(M)→ Ωp+1(M) is a linear map, satisfying
d d = 0 and is an antiderivation of Ω(M) by the rule

d(α ∧ β) = (dα) ∧ β + (−1)pα ∧ (d β)

for α a smooth p-form and β a smooth q-form. For f ∈ F(M) the smooth
1-form d f is given by

d f(v) =
d

d t

{

φ∗t f
}

t=0

for v a smooth vector field on M and t 7→ φt the corresponding one-
parameter group of diffeomorphisms. The function d f(v) is called the
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derivative of f in the direction of v. The exterior derivative behaves natu-
rally under smooth maps, in the sense that

φ∗(dα) = d(φ∗α)

for φ :M → N a smooth map and α a smooth p-form on N . The Poincaré
lemma says that the equation dα = 0 for α ∈ Ωp(M) implies that there
is a neighborhood U around each point of M on which α = dβ for some
β ∈ Ωp−1(U).

Let X (M) denote the vector space of smooth vector fields on M . For
v ∈ X (M) and α ∈ Ωp(M) the contraction iv α ∈ Ωp−1(M) of the p-form α
with the vector field v is defined by

(iv α)(v2, · · · , vp) = α(v, v2, · · · , vp)

for v2, · · · , vp ∈ X (M). The (p−1)-form iv α is also called the inner product
of α with v, which is the reason for the notation iv α. The contraction
operator iv has somewhat similar properties as the exterior derivative d.
Indeed iv : Ω

p(M)→ Ωp−1(M) is a linear map, satisfying iv iv = 0 and is an
antiderivation of Ω(M) by the rule

iv(α ∧ β) = (iv α) ∧ β + (−1)pα ∧ (iv β)

for α ∈ Ωp(M) and β ∈ Ωq(M). The operator iv behaves naturally under a
diffeomorphism φ :M → N , in the sense that

φ∗(iv α) = iφ∗v(φ
∗α)

for v ∈ X (N) and α ∈ Ωp(N). Here the pullback φ∗v ∈ X (M) of v ∈ X (N)
under a diffeomorphism φ :M → N is defined by

(φ∗v)x = (Txφ)
−1vφ(x)

for x ∈M .
For v ∈ X (M) the Lie derivative Lvα of α ∈ Ωp(M) in the direction of

the vector field v is the element of Ωp(M) defined by

Lvα =
d

d t

{

φ∗tα
}

t=0

with the derivative taken in the vector space Ωp(M). The Lie derivative
Lv : Ωp(M) → Ωp(M) is a linear operator, commuting with the exterior
derivative, and becomes a derivation of Ω(M) by the rule

Lv(α ∧ β) = (Lvα) ∧ β + α ∧ (Lvβ)
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for α, β ∈ Ω(M). In particular Lv acts as a derivation of the commutative
subalgebra F(M) of Ω(M). Note that for v ∈ X (M) and f ∈ F(M)

Lvf = d f(v)

is just the derivative of f in the direction of v.

Theorem 2.1. For v ∈ X (M) and α ∈ Ωp(M) we have

Lvα = iv(dα) + d(iv α)

and Lv = iv d+d iv is called the Cartan formula.

Proof. First check that the Cartan formula is correct on Ω0(M) = F(M).
Subsequently check that both sides of the Cartan formula commute with the
exterior derivative d, and that both sides are derivations of the associative
algebra (Ω(M),∧). Finally observe that for U →֒M a coordinate chart the
algebra Ω(U) is generated by F(U) and dF(U). Hence the Cartan formula,
which is local in nature, holds on Ω(M).

For v ∈ X (M) the Lie derivative Lv is also defined as a linear operator
on X (M) by

Lvw =
d

d t

{

φ∗tw
}

t=0

for w ∈ X (M) and t 7→ φt the flow of v at time t. It is customary to
write [v,w] = Lvw and call it the Lie bracket of the vector fields v,w. For
v,w ∈ X (M) and α ∈ Ωp(M) we have

Lv(iw α) =
d

d t

{

φ∗t (iw α)
}

t=0
=

d

d t

{

iφ∗tw(φ
∗
tα)

}

t=0
= i[v,w] α+ iw(Lvα)

by the chain rule. If we substitute α = d f for f ∈ F(M) then the Cartan
formula implies

L[v,w]f = [Lv,Lw]f
in which the bracket on the right hand side denotes the commutator bracket
[A,B] = AB −BA of linear operators A,B on the vector space F(M).

A Lie algebra g is a vector space with a bilinear operation

g× g→ g , (X,Y ) 7→ [X,Y ]

which is antisymmetric and satisfies the Jacobi identity

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0
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for all X,Y,Z ∈ g. If A is an associative algebra then it is easy to check
that the space Der(A) of derivations of A is a Lie algebra with respect to
the commutator product. The conclusion from the previous paragraph is
that the map

X (M)→ Der(F(M)) , v 7→ Lv
is an injective homomorphism of Lie algebras. In particular this shows that
X (M) is a Lie algebra with respect to the Lie bracket of vector fields. It is
customary in differential geometry to identify a smooth vector field v with
the derivation Lv of the commutative algebra F(M). Elements of a Lie
algebra are commonly denoted by capital letters X,Y, · · · and some authors
use these capitals also for smooth vector fields on M . This explains the
notation X (M) for the Lie algebra of smooth vector fields on M .

2.3 Singular Homology

For p ∈ N the standard p-simplex ∆p in R
p+1 is defined as

∆p = {x = (x0, · · · , xp) ∈ R
p+1;xj ≥ 0 ∀ j,

∑

xj = 1}

and so ∆p is just the convex hull of the standard basis (e0, · · · , ep) of Rp+1.
The “boundary” of ∆p consists of (p + 1) codimension-one faces, obtained
by putting one of the coordinates equal to 0. For 0 ≤ j ≤ p denote by

ρpj : ∆
p−1 → ∆p , (x0, · · · , xp−1) 7→ (x0, · · · , xj−1, 0, xj , · · · , xp−1)

the inclusion of the standard (p − 1)-simplex as the j-th boundary face of
the standard p-simplex.

Now let M be a smooth manifold. A smooth singular p-simplex σ in M
is a continuous map σ : ∆p →M which has a smooth extension to an open
neighborhood of ∆p in the hyperplane V p = {x ∈ R

p+1;
∑

xj = 1}. Note
that ρpj is in fact a smooth singular (p−1)-simplex in V p, and likewise is ∆p

via the identity map a smooth singular p-simplex in V p. A smooth p-chain c
inM is a formal finite real linear combination c =

∑

cσσ of smooth singular
p-simplices, and the vector space of smooth p-chains in M is denoted by
Cp(M). A smooth map φ : M → N of manifolds induces a “pushforward”
linear map

φ∗ : Cp(M)→ Cp(N) , φ∗(
∑

cσσ) =
∑

cσφ ◦ σ .

The name pushforward reminds one of the property (φ ◦ψ)∗ = φ∗ ◦ψ∗ when
acting on smooth p-chains.
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Working with chains rather than singular simplices makes it possible to
introduce a boundary operator ∂ = ∂p : Cp(M) → Cp−1(M) for p ≥ 1 as a
linear operator, defined by

∂(σ) =

p
∑

j=0

(−1)jσ ◦ ρpj =
p

∑

j=0

(−1)jσ∗ρpj = σ∗(

p
∑

j=0

(−1)jρpj )

for σ a smooth singular p-simplex. The boundary operator behaves naturally
under smooth maps, in the sense that

φ∗(∂c) = ∂(φ∗c)

for φ : M → N a smooth map and c ∈ Cp(M). It is convenient to put
Cp(M) = 0 for p ∈ Z, p < 0 and likewise ∂p = 0 for p ≤ 0. The choice with
the signs gives rise to a fundamental property of boundary operators.

Theorem 2.2. We have ∂p∂p+1 = 0 for all p ∈ Z.

Proof. It is clear that for all p ≥ 1 and 0 ≤ j ≤ k ≤ p

ρp+1
j ◦ ρpk = ρp+1

k+1 ◦ ρ
p
j

since both sides embed ∆p−1 as a codimension-two face inside ∆p+1 by
putting 0 for the j-th and (k + 1)-th coordinate. For σ a smooth singular
(p + 1)-simplex we get

∂(∂σ) = ∂
{

p+1
∑

j=0

(−1)jσ∗ρp+1
j

}

= σ∗

{

p+1
∑

j=0

(−1)j∂(ρp+1
j )

}

= σ∗

{

p+1
∑

j=0

p
∑

k=0

(−1)j+kρp+1
j ◦ ρpk

}

= σ∗

{

∑

j≤k

(−1)j+kρp+1
j ◦ ρpk +

∑

k<j

(−1)j+kρp+1
j ◦ ρpk

}

= σ∗

{

∑

j≤k

(−1)j+kρp+1
k+1 ◦ ρ

p
j +

∑

j<k

(−1)j+kρp+1
k ◦ ρpj

}

= σ∗

{

∑

j≤k

(−1)j+kρp+1
k+1 ◦ ρ

p
j +

∑

j≤k

(−1)j+k+1ρp+1
k+1 ◦ ρ

p
j

}

= σ∗

{

∑

j≤k

[(−1)j+k + (−1)j+k+1]ρp+1
k+1 ◦ ρ

p
j

}

= 0

and ∂p∂p+1 = 0 on all of Cp+1(M) by linearity.
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The sequence

· · · → Cp+1(M)
∂p+1−−−→ Cp(M)

∂p−→ Cp−1(M)→ · · ·

is called the smooth chain complex of M , where the word “complex” refers
to the fact that the composition of any two arrows is zero. If we introduce
the space Zp(M) of smooth p-cycles and Bp(M) of smooth p-boundaries on
M by

Zp(M) = Ker(∂p) , Bp(M) = Im(∂p+1)

then it is clear from the above theorem that Bp(M) is a linear subspace of
Zp(M). The quotient space

Hp(M) = Zp(M)/Bp(M)

is called the smooth singular homology space of M in degree p. For c in
Zp(M) we denote by [c] the corresponding homology class in Hp(M). If
φ :M → N is a smooth map of manifolds then we have an induced map

φ∗ : Hp(M)→ Hp(N)

which is called the pushforward of φ :M → N in homology.
This all mimics the definition of the continuous singular homology of a

topological spaceM as developed in a standard course on algebraic topology.
The only differences are that we work with smooth rather than continuous
maps, and with real rather than integral coefficients. Since continuous chains
can be uniformly approximated by smooth chains to arbitrary precision we
have

Hsmooth
p (M,R) = R⊗Z H

continuous
p (M,Z)

for all p and any smooth manifold M .

2.4 Integration over Singular Chains and Stokes Theorem

Given a smooth manifold M of dimension m a volume form is a smooth
m-form µ such that µx ∈ ΛmT ∗

xM is nonzero for all x in M . If µ is a
given volume form on M then any smooth m-form on M is of the form fµ
for some f ∈ F(M). For example, on R

p+1 with coordinates (x0, · · · , xp)
we take dx0 ∧ · · · ∧ dxp for the standard Euclidean volume form. On the
hyperplane V p embedded via ι : V p = {x ∈ R

p+1;
∑

xj = 1} →֒ R
p+1 we

take as standard Euclidean volume form

µp = ι∗(in(dx0 ∧ · · · ∧ dxp))
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with n = np = (1, · · · , 1)/√p+ 1 the outward unit normal of V p.
If α ∈ Ωp(M) and σ a smooth p-simplex in M then σ∗α = fµp for some

smooth function f on ∆p. In turn we define the integral of α over σ by
∫

σ
α =

∫

∆p

σ∗α =

∫

∆p

f(x)d|µp|(x)

where the integral on the right hand side is the Riemann integral of f against
the Euclidean measure |µp| on V p. The integral of α over a smooth p-chain
c =

∑

cσσ in M is defined by linearity:
∫

c α =
∑

σ cσ
∫

σ α. If φ :M → N is
a smooth map then

∫

c
φ∗α =

∫

φ∗c
α

for α ∈ Ωp(N) and c ∈ Cp(M).
Perhaps the most important theorem in integration theory on manifolds

is the Stokes theorem.

Theorem 2.3. Let M be a smooth manifold. Then
∫

c
dα =

∫

∂c
α

for c ∈ Cp(M) and α ∈ Ωp−1(M).

For σ : ∆1 →M a smooth singular 1-simplex and f ∈ F(M) we have

∫

σ
d f =

∫

∆1

σ∗(d f) =

∫

∆1

d(f ◦ σ) =
∫ 1

0

d

d t

{

f(σ(1− t, t))
}

d t

= f(σ(0, 1)) − f(σ(1, 0)) =
∫

∂c
f

and so for p = 1 the Stokes’ theorem boils down to the fundamental theorem
of calculus.

The Stokes theorem is a crucial ingredient in the de Rham theory, as
discussed in the next section. For a proof we refer to the text book by
Warner [56].

2.5 De Rham Theorem

Denote by dp : Ω
p(M) → Ωp+1(M) the exterior derivative with subindex p

to emphasize its action on p-forms. Since dp ◦dp−1 = 0 we obtain a cochain
(with “co” indicating that indices go up rather than down) complex

· · · → Ωp−1(M)
dp−1−−−→ Ωp(M)

dp−→ Ωp+1(M)→ · · ·
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with the exterior derivative as coboundary operator. This complex is called
the de Rham complex of M . If we introduce the space Zp(M) of cocycles
(or closed forms) and Bp(M) the space of coboundaries (or exact forms) on
M by

Zp(M) = Ker(dp) , B
p(M) = Im(dp−1)

then the coboundary property d d = 0 implies that Bp(M) is a linear sub-
space of Zp(M). The quotient space

Hp
dR(M) = Zp(M)/Bp(M)

is called the de Rham cohomology space in degree p. For α ∈ Zp(M) we
denote by [α] the corresponding cohomology class in Hp

dR(M).
If z is a p-cycle and γ a p-cocycle on M then the (bilinear in z and γ)

integral
∫

z
γ

is called the period of γ over z. Now the Stokes’ theorem implies that the
period integral remains invariant under additions z 7→ z+∂c and γ+dα for
some c ∈ Cp+1(M) and α ∈ Ωp−1(M). This means that the period integral
defines a period pairing (pairing means bilinear map)

〈·, ·〉 : Hp(M)×Hp
dR(M)→ R

by

〈[z], [γ]〉 =
∫

z
γ

for [z] ∈ Hp(M) and [γ] ∈ Hp
dR(M). The de Rham theorem, obtained by

Georges de Rham in his doctoral thesis of 1931, says that this pairing is
nondegenerate [45].

Theorem 2.4. The period pairing 〈·, ·〉 : Hp(M)×Hp
dR(M)→ R is nonde-

generate.

For a proof of the de Rham theorem we refer again to the text book of
Warner [56].

2.6 Integration on Oriented Manifolds and Poincaré Duality

Let M be a smooth manifold of dimension m. A volume form on M is a
nowhere vanishing smooth m-form on M , andM is called orientable if there
exists a volume form on M . If both µ and ν are volume forms on M then
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µ = fν with f a nowhere vanishing smooth function on M . If f > 0 on all
of M then µ ∼ ν are called equivalent volume forms on M . An orientation
of M is a choice of an equivalence class of volume forms on an orientable
M . For M connected and orientable there are just two orientations of M .
SupposeM has a fixed orientation represented by the volume form ν on M .
The pair (M,ν) is called an oriented manifold.

For µ ∈ Ωm(M) a smooth m-form with compact support we wish to
define the integral

∫

M
µ

over the oriented manifold (M,ν).
A smooth singular m-simplex σ : ∆m →M is called regular if σ extends

to a diffeomorphism on a neighborhood of ∆m in V m. A regular m-simplex
σ in an oriented manifold (M,ν) is called oriented if σ∗ν and the standard
volume form µm on V m are equivalent on that neighborhood.

Lemma 2.5. Suppose (M,ν) is an oriented smooth manifold of dimension
m. Suppose σ, τ : ∆m →M are oriented regular m-simplices. If µ ∈ Ωm(M)
is a smooth m-form with support contained in σ(∆m) ∩ τ(∆m) then

∫

σ
µ =

∫

τ
µ .

Proof. As before, let µm denote the standard Euclidean volume form on the
hyperplane V m containing ∆m, with associated Euclidean measure |µm| on
V m. If σ∗µ = fµm and τ∗µ = gµm with f and g smooth functions on V m

with support contained in ∆m then
∫

σ
µ =

∫

∆m

f(x)d|µm|(x) ,
∫

τ
µ =

∫

∆m

g(y)d|µm|(y)

by definition. Putting σ(x) = τ(y) we can apply the Jacobi substitution
theorem to the orientation preserving diffeomorphism

σ−1(σ(∆m) ∩ τ(∆m))→ τ−1(σ(∆m) ∩ τ(∆m)) , x 7→ y = φ(x) , φ = τ−1σ

yielding
∫

∆m

g(y)d|µm|(y) =
∫

∆m

g(φ(x))Jφ(x)d|µm|(x)

with Jφ the Jacobian of the map φ : ∆m → ∆m. Indeed, Jφ > 0 since
φ is orientation preserving, and therefore we can forget the absolute value
around Jφ in the substitution theorem.
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On the other hand, we have

fµm = σ∗µ = φ∗(τ∗µ) = φ∗(gµm) = φ∗(g)φ∗(µm) = φ∗(g)Jφµm

which in turn implies that f = φ∗(g)Jφ. Equivalently f(x) = g(φ(x))Jφ(x)
for all x ∈ ∆m, which proves the lemma.

Let us write ∆m◦ for the interior of ∆m. For each point x ∈ M we can
choose an oriented regular m-simplex σ with x ∈ σ(∆m◦) by working in a
chart. Now let µ ∈ Ωm(M) with compact support K ⊂ M . We can choose
a finite number of oriented regular m-simplices σj : ∆m → M , such that
K is covered by the open sets Uj = σj(∆

m◦). Let U0 = M − K and let
{fj ; j ≥ 0} be a partition of unity subordinate to the cover {Uj ; j ≥ 0} of
M .

Definition 2.6. The integral of the m-form µ over the oriented manifold
(M,ν) is defined by

∫

M
µ =

∑

j≥1

∫

σj

fjµ .

The above lemma ensures that this definition is independent of the
choices of the open cover {Uj ; j ≥ 0} and the partition of unity {fj ; j ≥ 0}
subordinate to it. The Stokes theorem for integration over oriented mani-
folds takes the following form.

Theorem 2.7. Let (M,ν) be an oriented manifold on dimension m, and let
D be a compact domain in M with smooth (via an outward directed vector
field compatibly) oriented boundary ∂D. Then

∫

D
dα =

∫

∂D
α

for α ∈ Ωm−1(M).

Suppose M is an oriented compact smooth manifold of dimension m.
Under these assumptions we can define the intersection pairing

Hp
dR(M)×Hm−p

dR (M)→ R

by

〈[α], [β]〉 =
∫

M
α ∧ β

for α ∈ Zp(M) and β ∈ Zm−p(M) representatives of the cohomology classes.
It follows from the Stokes theorem that the intersection pairing descends
from closed differential forms to de Rham cohomology classes.
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Theorem 2.8. ForM an oriented compact smooth manifold of dimensionm
the intersection pairing 〈·, ·〉 : Hp

dR(M)×Hm−p
dR (M)→ R is nondegenerate.

Under the above conditions on M the intersection pairing determines a
linear isomorphism

Hp
dR(M) ∼= (Hm−p

dR (M))∗

which is called Poincaré duality. Since H0
dR(M) ∼= R for M connected we

arrive at the following conclusion.

Corollary 2.9. If M is an oriented connected compact smooth manifold of
dimension m then Hm

dR(M) ∼= R.

Theorem 2.10. If M is an oriented compact smooth manifold, then the de
Rham cohomology spaces Hp

dR(M) are all finite dimensional.

For a proof of Poincaré duality and the finite dimensionality result of de
Rham cohomology (using Hodge theory and analysis of elliptic differential
operators) we refer once more to the text book of Warner [56].

2.7 Moser Theorem

Suppose (M,ν) is an oriented connected compact manifold, and suppose
φ :M →M is an orientation preserving diffeomorphism. Then µ = φ∗ν ∼ ν
is another volume form representing the same orientation with

∫

M
µ =

∫

M
ν

by the Jacobi substitution theorem, meaning that the (positive) volume of
M relative to µ and ν is equal. Moser asked himself the converse question
[37].

Question 2.11. Suppose M is an oriented connected compact manifold, and
µ ∼ ν are equivalent volume forms representing the given orientation. Does
the assumption

∫

M
µ =

∫

M
ν

conversely imply that µ = φ∗ν for an orientation preserving diffeomorphism
φ :M →M?

Moser showed that the answer is yes, with a very elegant argument.
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Theorem 2.12. Suppose M is an oriented connected compact manifold and
µ ∼ ν are equivalent volume forms representing the given orientation. Sup-
pose that the volumes of M relative to µ and ν are equal. Then there exists
an orientation preserving diffeomorphism φ :M →M with µ = φ∗ν.

Proof. Let µ0 = µ and µ1 = ν. If we put µt = (1 − t)µ0 + tµ1 for 0 ≤ t ≤ 1
then µt is a volume form, and the volume of M relative to µt is constant.
Since Hm

dR(M) ∼= R by Corollary 2.9 and de Rham cohomology classes are
distinguished by their periods by the de Rham theorem it follows that de
Rham volume form classes are determined by their volume. In turn we find

d

d t
µt = ν − µ = dλ

for some λ ∈ Ωm−1(M).
The Moser trick is the search for an isotopy φt of M such that for all t

φ∗tµt = µ

and so φ = φ1 does the job. Differentiation of the left hand side with respect
to t yields

d

d t

{

φ∗tµt

}

= φ∗t

{

Lvtµt +
d

d t
µt

}

by the chain rule. Here vt is the time dependent vector field whose solution
curves correspond to the isotopy φt of M . Using the Cartan formula this
expression becomes

d

d t

{

φ∗tµt

}

= φ∗t

{

d(ivt µt) + dλ
}

= φ∗t d
{

ivt µt + λ
}

and so will certainly vanish if

ivt µt + λ = 0 .

This is called the Moser equation for the time dependent vector field vt
corresponding to the isotopy φt of M . But this equation determines vt
uniquely as shown in Exercise 1.6.

Remark 2.13. The orientation preserving diffeomorphism φ : M → M is
highly nonunique. At first there is the choice of a smooth path µt of volume
forms on M with µ0 = µ and µ1 = ν. In the proof we chose the linear path
but in fact any smooth path of volume forms on M will do as long as the
volume of M relative to µt is constant. The equation

d

d t
µt = dλt
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has a solution λt ∈ Ωm−1(M) but again nonunique. Indeed the difference of
any two choices for λt will be in Zm−1(M). Having chosen the path µt and
the corresponding (m− 1)-form λt the Moser equation

ivt µt + λt = 0

has indeed a unique solution vt.

In the next chapter we will adapt Moser’s argument for symplectic forms
rather than volume forms.

2.8 Exercises

Exercise 2.1. Suppose we have given a smooth vector field v on M with
flow φt : Dt → M after time t. Show that sup Ix < ∞ for some x ∈ M
implies that the solution curve t 7→ φt(x) runs out of every compact subset
of M in finite time.

Exercise 2.2. Show that the pullback φ∗ : Ω(N)→ Ω(M) of a smooth map
φ :M → N is a homomorphism of associative algebras.

Exercise 2.3. Suppose the smooth vector field v onM has flow φt : Dt →M
after time t. By the previous exercise the pullback φ∗t : Ω(M)→ Ω(Dt) is a
homomorphism. Show that in turn the Lie derivative Lv is a derivation of
Ω(M).

Exercise 2.4. Let Ω(M) = Ω+(M) ⊕ Ω−(M) denotes the decomposition
of differential forms in even and odd degree parts. A linear operator L on
Ω(M) is called odd if α ∈ Ω±(M) impies that Lα ∈ Ω∓(M). Show that
the square L2 of an odd antiderivation L of Ω(M) becomes a derivation.
Conclude that the right hand side of the Cartan formula is a derivation of
Ω(M). Check the further details of the proof of Theorem 2.1.

Exercise 2.5. Let φ : M → N be a diffeomorphism, and let v ∈ X (N)
and φ∗v ∈ X (M). Show that Lφ∗v = φ∗Lv(φ−1)∗ as operators on Ω(M),
and conclude that φ∗[u, v] = [φ∗u, φ∗v] for all u, v ∈ X (N). Hint: Use that
φ∗(iv α) = iφ∗v φ

∗α for all α ∈ Ω(N).

Exercise 2.6. Show that for an associative algebra A the space Der(A) of
derivations of A is a Lie algebra with respect to the commutator bracket.

Exercise 2.7. Show that L[v,w] = [Lv,Lw] as operators on Ω(M) for all
v,w ∈ X (M).
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Exercise 2.8. Show that for a connected smooth manifold H0(M) ∼= R.

Exercise 2.9. Show that for a connected smooth manifold H0
dR(M) ∼= R.

Exercise 2.10. Show that a smooth map φ :M → N induces a well defined
pushforward φ∗ : Hp(M)→ Hp(N) in smooth singular homology, and a well
defined pullback φ∗ : Hp

dR(N)→ Hp
dR(M) in de Rham cohomology.

Exercise 2.11. Suppose (M,ν) is an oriented smooth manifold of dimension
m. Suppose µ ∈ Ωm(M) with compact support K ⊂M . Suppose

∫

M
µ =

∑

j≥0

∫

σj

fjµ ,

∫

M
µ =

∑

k≥0

∫

τk

gkµ

is defined using two pairs {Uj = σj(∆
m◦), fj} and {Vk = τk(∆

m◦), gk} of
open covers of K with subordinate partitions of unity. Show that the outcome
of the two definitions is indeed the same.

Exercise 2.12. Suppose (M,µ) is an oriented connected smooth manifold.
Suppose φ :M →M is an involution in the sense that φ2 = Id while φ 6= Id.
If φ has no fixed points then the quotient N of M by the action of the
order two group {Id, φ} is again a manifold. Show that N is orientable if φ
preserves the orientation, and is not orientable if φ reverses the orientation.
Show that the unit sphere S

m in R
m+1 is orientable, and conclude that the

real projective space Pm(R) is orientable if and only ifm is odd. Hint: If ex =
x is the Euler vector field on R

m+1 then the restriction µ of ie(dx0∧· · ·∧dxm)
to S

m is a volume form on S
m with φ∗µ = (−1)m+1µ for φ the antipodal

map x 7→ −x on S
m.

Exercise 2.13. Suppose M is an oriented connected compact manifold.
Show that the intersection pairing

〈·, ·〉 : Zp(M)× Zm−p(M)→ R

descends to the level of cohomology.

Exercise 2.14. Suppose M is an oriented connected compact manifold of
even dimension m = 2n. Show that for n an odd number the intersection
form gives a symplectic form on the de Rham cohomology space Hp

dR(M) in
the middle dimension p = n.
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3 Symplectic Manifolds

3.1 Riemannian Manifolds

A Riemannian metric g on a smooth manifold M is a function which assigns
to any point x in M a Euclidean form gx on the tangent space TxM of M
at x varying smoothly with x, in the sense that x 7→ gx(ux, vx) is a smooth
function onM for all u, v ∈ X (M). The pair (M,g) of a smooth manifoldM
with a Riemannian metric g is called a Riemannian manifold. Riemannian
metrics exist on each manifold by a partion of unity argument. Suppose
(M,g) is a given Riemannian manifold.

The Euclidean form gx on TxM gives a linear isomorphism

gx : TxM → T ∗
xM , gx(ux)vx = gx(ux, vx) , u, v ∈ X (M)

between tangent and cotangent space of M at x. If f ∈ F(M) is a smooth
function on M then this isomorphism turns the smooth 1-form d f into
a smooth vector field grad f , which is called the gradient vector field of
the function f (relative to the Riemannian metric g). Hence d f(v) =
g(grad f, v) for f ∈ F(M) and v ∈ X (M). The flow φt : M → M cor-
responding to the gradient vector field grad f is called the gradient flow of
f . Note that

Lgrad ff = d f(grad f) = g(grad f, grad f) ≥ 0

which implies that f is nondecreasing along the integral curves of its gradient
flow.

If γ : [a, b]→M is a smooth curve in M from x = γ(a) to y = γ(b) then
the distance L(γ) from x to y along γ is defined by

L(γ) =

∫ b

a

√

gγ(t)(γ̇(t), γ̇(t))dt

with γ̇(t) = d γ/d t the velocity vector of γ at time t. The length L(γ) of γ
is invariant under reparametrizations of the curve. The curve γ is called a
geodesic if it locally minimizes the distance and is traversed with constant
speed. However in the next sections we shall give another definition of
geodesics, which is more natural from the symplectic point of view.

3.2 Symplectic Manifolds

A symplectic form ω on a smooth manifold M is a smooth 2-form ω on
M that is closed and nondegenerate, so ω ∈ Ω2(M) with dω = 0 and ωx is
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nondegenerate on TxM for all x ∈M . The pair (M,ω) of a smooth manifold
M with a symplectic form ω is called a symplectic manifold. A necessary
condition for the existence of a symplectic form ω on M is that M should
have even dimension 2n. Moreover ωn/n! is a volume form (the so called
Liouville form) giving M an orientation. If in addition M is connected and
compact then the even dimensional de Rham cohomology spaces H2p

dR(M)
should be all nonzero for 0 ≤ p ≤ n. Indeed [ω]n = [ωn] 6= 0 which in turn
implies that [ωp] = [ω]p 6= 0 for 0 ≤ p ≤ n. Suppose (M,ω) is a given
symplectic manifold.

The flow φt of a smooth vector field v ∈ X (M) leaves the symplectic
form ω invariant if and only if

0 = Lvω = iv(dω) + d(iv ω) = d(iv ω) ,

and so if and only if iv(ω) is closed. Here we have used the Cartan formula in
the second identity and the fact that ω is closed in the third identity. By the
Poincaré lemma the condition that iv ω is closed is locally equivalent to the
condition that iv ω is equal to the exterior derivative of a smooth function,
so

iv ω = − d f

for a locally defined smooth function, where the minus sign is a matter of
convention. If H1

dR(M) = 0 then there exists a globally defined function
f ∈ F(M) such that the above relation holds. Moreover, if M is connected
then f is uniquely determined up to an additive constant.

Conversely, given f ∈ F(M) the fact that for each x ∈M the linear map

ωx : TxM → T ∗
xM , ωx(vx) = (iv ω)x

is a bijection implies the existence of a unique vector field v ∈ X (M) such
that iv ω = − d f . This smooth vector field v onM is called the Hamiltonian
vector field vf on M defined by the function f , and the function f is called
the Hamiltonian function of the vector field vf . The flow of vf is called the
Hamiltonian flow defined by the function f . It is quite remarkable that there
are so many smooth vector fields whose flows leave ω invariant. Indeed, for
every smooth function f on M the Hamiltonian flow of vf preserves ω.

Note that
Lvf f = d f(vf ) = −ω(vf , vf ) = 0

which implies that the Hamiltonian flow of vf preserves the hypersurfaces
on which f is constant. We say that f is a constant of motion for its
Hamiltonian flow.
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Example 3.1. Let us take M = R
2n with canonical coordinates (q, p) equal

to (q1, · · · , qn, p1, · · · , pn) and standard (translation invariant) symplectic
form ω =

∑

d pj ∧ d qj. Hence iv ω = d qj if v = ∂/∂pj and iv ω = − d pj if
v = ∂/∂qj , and so vqj = −∂/∂pj and vpj = ∂/∂qj . If f is a smooth function
on R2n then

d f =
∑

j

(

∂f

∂qj
d qj +

∂f

∂pj
d pj

)

,

and therefore the Hamiltonian vector field of f becomes

vf =
∑

j

(

∂f

∂pj

∂

∂qj
− ∂f

∂qj

∂

∂pj

)

.

In other words, the integral curves of the Hamiltonian flow of the function
f are solutions of the system of first order differential equations

q̇j =
∂f

∂pj
, ṗj = −

∂f

∂qj
.

This is Hamilton’s equation for the Hamiltonian function f on M , which is
the reason for the sign convention in the equation

iv ω = − d f

for the relation between the Hamiltonian vector field v and the Hamiltonian
function f .

In the particular case that the Hamiltonian function f = H is of the
classical form

H(q, p) = K(p) + V (q)

with kinetic term K(p) =
∑

p2j/2m and potential function V (q) Hamilton’s
equation mq̇ = p, ṗ = − gradV by elimination of p boils down to

F (q) = mq̈ ,

which is the famous Newton equation for the motion of a point particle in
R
n with mass m > 0 in a conservative force field F (q) = − gradV (q), as

formulated by him in the Principia Mathematica of 1687 as the second law
[41].

31



3.3 Fiber Bundles

Suppose E,B and F are smooth manifolds, and π : E → B is a smooth
surjective map.

Definition 3.2. The quadruple (E,B,F, π) is called a smooth fiber bundle
(or smooth fibration) if around each point of B there exists an open neigh-
borhood U and a diffeomorphism

φU : U × F → π−1(U) , π(φU (x, y)) = x

for all x ∈ U and y ∈ F .
We call E the total space, B the base space, F the fiber space and π the

projection map. The diffeomorphism φU is called a local trivialization over
U . The closed submanifold Ex = π−1(x) of E is diffeomorphic to F , and
called the fiber over x ∈ B. A smooth map σ : B → E with π(σ(x)) = x is
called a smooth section.

Suppose (E,B,F, π) is a smooth fibration. Suppose U and V are both
neighborhoods in B with local trivializations φU and φV . For x ∈ U ∩ V
fixed the equation φU (x, y) = φV (x, z) with y, z ∈ F has a unique solution

(x, z) = φ−1
V (φU (x, y))⇐⇒ z = φV U (x)(y)

with φV U (x) a diffeomorphism of F . Note that φUU (x) = Id for all x ∈ U .
These diffeomorphisms of F are called the transition maps from φU to φV .
It is easy to check that

φWV (x) ◦ φV U (x) = φWU(x)

for all x ∈ U ∩ V ∩W . This relation is called the cocycle condition.
Conversely, given smooth manifolds B and F with an open cover {U}

of B, and for each pair U, V from this cover smooth maps φV U : U ∩ V →
Diff(F ) satisfying the cocycle condition, then we can form a smooth fiber
bundle (E,B,F, π) by glueing together the sets U ×F and V ×F by means
of φV U . So put

E =
⋃

U

(U × F )/∼

with U × F ∋ (x, y) ∼ (x, z) ∈ V × F if z = φV U (x)(y). The relation ∼ is
an equivalence relation due to the cocycle condition.

A Lie group G is both a group and a manifold, and the two structures are
compatible in the sense that multiplication G×G→ G and inversion G→ G
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are smooth maps. The prototype example of a Lie group is the general linear
group GL(V ) of all invertible linear transformations of a finite dimensional
vector space V . Indeed, after a choice of basis (e1, · · · , em) in V we can
identify GL(V ) with the group GL(m,R) of nonsingular real matrices of size
m ×m, and GL(m,R) is a Lie group as open subset of Mat(m,R) ∼= Rm

2

.
Hermann Weyl called the general linear group “Her All Embracing Majesty”
in part because of the following result of Élie Cartan [56].

Theorem 3.3. Any closed subgroup G of GL(V ) is itself a Lie group.

Closed subgroups of GL(V ) are called linear Lie groups, and for most
practical purposes linear Lie groups suffice.

If a Lie groupG acts smoothly on the fiber F of a fiber bundle (E,B,F, π)
such that all transition maps φV U (x) : F → F are obtained from the action
of G on F then the Lie group G (together with its action on F ) is called a
structure group for the fiber bundle. For example, the trivial fiber bundle
E = B × F with π projection on the first factor has the trivial group as a
structure group.

Definition 3.4. A fiber bundle (E,B,F, π) with fiber F a finite dimensional
real vector space and structure group the general linear group GL(F ) is called
a real vector bundle.

All fibers of a vector bundle (E,B,F, π) inherit in a natural way the
structure of a finite dimensional real vector space. In turn the space Γ(B,E)
of smooth sections in (E,B,F, π) becomes a real vector space. Constructions
of linear algebra give a natural way of making new vector bundles from old
ones (all vector bundles having the same base space B). For example if
(E1, B, F1, π1) and (E2, B, F2, π2) are two vector bundles then we can form
the direct sum bundle (E1⊕E2, B, F1⊕F2, B, π1⊕π2) and the tensor product
bundle (E1⊗E2, B, F1⊗F2, π1⊗π2). A Euclidean metric on a vector bundle
(E,B,F, π) is a smooth section g ∈ Γ(B,S2E∗) such that gx is a Euclidean
form on Ex for all x ∈ B. Euclidean metrics on vector bundles always exist
by a partition of unity argument. Likewise the space Ωp(M) is just the space
Γ(M,ΛpT ∗(M)) of smooth sections of the vector bundle ΛpT ∗(M) over M .

Suppose (E,B,F, π) is a smooth vector bundle, and φ : A → B is a
smooth map. Then there exists a smooth vector bundle

φ∗E = {(x, y) ∈ A× E;φ(x) = π(y)}

over the base space A. The projection map is the projection on the first
factor. The fiber (φ∗E)x is equal to Eφ(x), and its smooth sections are given
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by Γ(A,φ∗E) = {σ ◦ φ;σ ∈ Γ(B,E)}. The vector bundle φ∗E is called the
pullback of the vector bundle E over B under the smooth map φ : A→ B.

Natural examples of vector bundles are the tangent bundle TN and the
cotangent bundle T ∗N of a smooth manifold N . If ι : S →֒ N is a closed
submanifold then the tangent bundle TS is a vector subbundle of ι∗(TN),
and the quotient bundle NS = ι∗(TN)/TS is called the normal bundle of
S in N . In case N has a Riemannian metric g, the normal bundle NS can
be viewed as vector subbundle of ι∗(TN), namely, the fiber NxS is equal to
the orthogonal complement with respect to gx of TxS in TxN .

Definition 3.5. A principal fiber bundle with structure group a Lie group
G is a fiber bundle (E,B,G, π) with fiber the Lie group G and transition
maps φV U : U ∩V → G with φV U (x) for x ∈ U ∩V acting on the fiber G by
left multiplication.

Note that a principal fiber bundle (E,B,G, π) gives rise to a natural
right action

E ×G→ E , (x, a) 7→ xa

of the structure group on the total space obtained by right multiplication
in the fibers. This right action is free in the sense that the stabilizer group
Gx = {a ∈ G;xa = x} is trivial for all x ∈ E. The base space B is just the
orbit space of G in the total space E.

3.4 Cotangent Bundles

Let N be a smooth manifold of dimension n, and let M = T ∗N be the
cotangent bundle of N of dimension m = 2n. A point of M is a cotangent
vector ξ ∈ T ∗

xN for some x ∈ N . Let π denote the projection map fromM to
N , so π(ξ) = x for all ξ ∈ T ∗

xN . Hence the tangent map Tξπ at ξ is a linear
map from TξM to TxN , and if we subsequently apply ξ ∈ T ∗

xN = (TxN)∗

we obtain a linear form

θξ = ξ ◦ Tξπ = (Tξπ)
∗ξ

on TξM . This defines a smooth 1-form θ on the cotangent bundleM = T ∗N .
Any smooth 1-form α on N is a smooth section α : N → M of the

cotangent bundle π :M → N . It follows that

(α∗θ)x = θα(x) ◦ Txα = α(x) ◦ Tα(x)π ◦ Txα = α(x) ◦ Tx(π ◦ α) = α(x) = αx

where in the first identity we use the definition of pullback, in the second
identity use the definition of θ, in the third identity use the chain rule, and
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in the last identity use π ◦ α = Id. The equation

α∗θ = α ∀α ∈ Ω1(N)

says that every 1-form on N is equal to the pullback of θ under the 1-form
viewed as a mapping from N to M = T ∗N . For this reason θ is called the
tautological 1-form on the cotangent bundle.

The exterior derivative
ω = d θ

of the tautological 1-form on M is a closed (even exact) 2-form on M . In
local coordinates (x1, · · · , xn) on N with corresponding dual coordinates
(ξ1, · · · , ξn) the projection map π :M → N sends (x1, · · · , xn, ξ1, · · · , ξn) to
(x1, · · · , xn), and therefore the tautological 1-form θ takes the form

θ =

n
∑

j=1

ξj dxj .

In turn we get

ω =

n
∑

j=1

d ξj ∧ dxj ,

which shows that ω =
∑

d pj ∧ d qj is the standard symplectic form of
Example 3.1 if we substitute xj = qj and ξj = pj. The conclusion is that
ω = d θ is a symplectic form on M = T ∗N .

Definition 3.6. The form ω = d θ is called the canonical symplectic form
on the cotangent bundle M = T ∗N .

Suppose N1 and N2 are smooth manifolds of dimension n with cotangent
bundles M1 = T ∗N1 and M2 = T ∗N2 and with tautological 1-forms θ1 and
θ2. A diffeomorphism φ : N1 → N2 induces a diffeomorphism

Φ :M1 →M2 , Φ(ξ) = ((Txφ)
∗)−1ξ

for all ξ ∈ T ∗
xN1, which is called the lift of φ, and in such a way that the

diagram

M1
Φ−−−−→ M2

π1





y





y

π2

N1
φ−−−−→ N2

is commutative. The vertical arrows are the two projection maps.
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Lemma 3.7. The pullback of the tautological 1-form θ2 on M2 under the
lift Φ of a diffeomorphism φ : N1 → N2 is equal to the tautological 1-form
θ1 on M1.

Proof. We have to show that

Φ∗θ2 = θ1 .

Suppose φ(x1) = x2 and (Tx1φ)
∗ξ2 = ξ1 for ξ1 ∈ T ∗

x1N1 and ξ2 ∈ T ∗
x2N2,

which amounts to saying that Φ(ξ1) = ξ2. Then we have

(Φ∗θ2)ξ1 = (Tξ1Φ)
∗(θ2)ξ2 = (Tξ1Φ)

∗(Tξ2π2)
∗ξ2 = (Tξ1(π2 ◦ Φ))∗ξ2 =

(Tξ1(φ ◦ π1))∗ξ2 = (Tξ1π1)
∗(Tx1φ)

∗ξ2 = (Tξ1π1)
∗ξ1 = (θ1)ξ1

which proves the lemma.

A diffeomorphism between two symplectic manifolds that preserves the
two symplectic forms is called a symplectomorphism (or a canonical trans-
formation). Because the exterior derivative behaves naturally under smooth
maps we obtain the following corollary.

Corollary 3.8. The lift Φ :M1 →M2 of a diffeomorphism φ : N1 → N2 of
manifolds is a symplectomorphism of cotangent bundles, in the sense that

Φ∗ω2 = ω1

with ω1 and ω2 the canonical symplectic forms.

Definition 3.9. Let (M,ω) be a symplectic manifold. A closed submanifold
L →֒ M is called Lagrangian if for each x ∈ L the tangent space TxL is a
Lagrangian subspace of TxM .

In other words, a submanifold ι : L →֒ M is a Lagrangian submanifold
if the dimension of L is half the dimension of M and ι∗ω = 0.

Example 3.10. Let M = T ∗N with canonical symplectic form ω = d θ.
If we consider a smooth 1-form α on N as a smooth section α : N → M
of the cotangent bundle π : M → N , then the submanifold α : N →֒ M is
Lagrangian if and only if α is closed.

36



3.5 Geodesic Flow

Suppose (N, g) is a Riemannian manifold, so the Riemannian structure is
given by a Euclidean form

gx : TxN × TxN → R

on the tangent space TxN varying smoothly with the base point x ∈ N . In
turn gx determines and is determined by the linear isomorphism

gx : TxN → T ∗
xN , gx(u)v = gx(u, v)

for all u, v ∈ TxN . By abuse of notation we write g : TN → T ∗N for
the natural vector bundle isomorphism between the tangent and cotangent
bundle. Let π : M = T ∗N → N be the cotangent bundle equipped with
its canonical symplectic form ω = d θ. The pullback g∗π : TN → N is the
projection map for the tangent bundle. A commutative diagram

TN
g−−−−→ M = T ∗N

g∗π





y





y

π

N
Id−−−−→ N

might be helpful to visualize the geometry.
Let f be the smooth function on the cotangent bundle M defined by

f(ξ) = g(v, v)/2

with ξ ∈ Ω1(N) and v ∈ X (N) related by ξ = g(v). Let φt : M → M be
the flow of the Hamiltonian vector field vf of the function f on M . For
simplicity of notation we shall assume that this flow is complete, which is
always the case if the manifold N is compact.

Definition 3.11. The conjugated flow ψt : TN → TN defined by

ψt(v) = g−1(φt(g(v))) , v ∈ TxN , x ∈ N

is called the geodesic flow on the tangent bundle. Moreover the smooth curve
γv : R→ N defined by

γv(t) = g∗π(ψt(v)) = π(φt(g(v)))

is called the geodesic in N through x with initial velocity v.
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From the symplectic perspective geodesics are the trajectories for the
motion of a free point particle in a Riemannian landscape. The terminology
geodesic through x = γv(0) with initial velocity v is justified by the following
result.

Theorem 3.12. If γv : R → N is the geodesic through x ∈ N with initial
velocity v ∈ TxN then

d

d t

{

γv(t)
}

t=0
= v .

Proof. Let x ∈ N and v ∈ TxN with ξ = g(v) ∈ T ∗
xN . It is clear that

d

d t

{

γv(t)
}

t=0
= Tξπ((vf )ξ)

with the Hamiltonian vector field vf given by the usual equation

(d f)ξ(r) = ωξ(r, (vf )ξ)

for all r ∈ TξM . The tangent space TξM admits a short exact sequence

0→ T ∗
xN → TξM → TxN → 0

induced by the inclusion map ιx : T ∗
xN →֒ M = T ∗N and the projection

map π : M → N . In fact we already tacitly identified ξ ∼= ιx(ξ) in order to
keep the notation transparent.

Choosing a linear section TxN → TξM yields a linear isomorphism

TξM ∼= TxN × T ∗
xN ∋ (u+ η)

with Tξπ(u + η) = u ∈ TxN the horizontal and (Tξιx)η ∼= η ∈ T ∗
xN the

vertical component of the tangent vector (u+η) ∈ TξM . In these coordinates
the symplectic form on TξM is the standard symplectic form

ωξ(u+ η,w + ζ) = η(w) − ζ(u)
with u,w ∈ TxN and η, ζ ∈ T ∗

xN as in Example 1.1.
We have to show that the horizontal component of (vf )ξ is equal to v.

Taking r = η in the defining equation for vf yields

(ι∗x(d f))ξ(η) = (df)ξ(Tξix(η) ∼= η) = ωξ(η, (vf )ξ) = η(Tξπ((vf )ξ))

for all η ∈ T ∗
xN . Because ι∗xf(ξ) = g(g−1(ξ), g−1(ξ))/2 we get

d(ι∗xf)ξ(η) =
d

d t

{

g(g−1(ξ + tη), g−1(ξ + tη))/2
}

t=0

= g(g−1(η), g−1(ξ)) = η(g−1(ξ)) = η(v)

for all η ∈ T ∗
xN . Since (ι∗x(d f))ξ(η) = d(ι∗xf)ξ(η) for all η ∈ T ∗

xN we
conclude that Tξπ((vf )ξ) = v.
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This proof might become easier if we write things out in local canonical
coordinates (q, p) = (q1, · · · , qn, p1, · · · , pn) on T ∗U with U ⊂ N small and
open and ω =

∑

j dpj ∧ dqj. If the Riemannian metric is given by

ds2 =
∑

i,j

gij(q)dqidqj

with gij a positive definite symmetric matrix depending smoothly on q ∈ U ,
then our function f as given above takes the form f(q, p) =

∑

ij gij(q)pipj/2.
Hence Hamilton’s equations become

q̇k =
∑

j

gkjpj , ṗk = −
∑

i,j

∂gij
∂qk

pipj/2

for k = 1, · · · , n. Inversion of the first equation gives pk =
∑

j g
kj q̇j and

substitution in the second equation gives the geodesic equation. This is a
second order nonlinear ordinary differential equation in q which has a unique
local solution for prescribed initial values qk(0), q̇k(0). It is clear that the
initial velocity q̇(0) is given by g(0)(p), which amounts to γ̇v(0) = v.

Since the Hamiltonian flow of f preserves the level hypersurfaces of f it
is clear that geodesics are traversed with constant speed. The property that
geodesics locally minimize distance can be derived by variational calculus,
and we refer to Chapter 3 of Arnold’s book on classical mechanics for a fine
exposition [2]. The statement of the theorem remains valid if the kinetic
term f(ξ) = g(v, v)/2 is replaced by the function f(ξ) = g(v, v)/2+V (π(ξ))
with V ∈ F(N) a potential function on the configuration space N .

Definition 3.13. For x ∈ N fixed the smooth map

expx : TxN → N , expx(v) = γv(1)

is called the exponential map.

For f(ξ) = g(v, v)/2 and t > 0 the homothety v 7→ tv implies f 7→ t2f
and ω 7→ tω. Hence vf 7→ tvf which in turn implies that γtv(1) = γv(t).
Therefore the above theorem gives the following result.

Corollary 3.14. The tangent map T0(expx) : TxN → TxN of expx at the
origin of TxN is equal to Id.

In turn the inverse function theorem implies that for each x ∈ N there
exists an ǫ > 0 such that

expx : Bǫ(x) = {v ∈ TxN ; gx(v, v) < ǫ2} → N
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is a diffeomorphism onto its image. These coordinates around x are called
geodesic normal coordinates.

Suppose ι : S →֒ N is a connected compact submanifold. The normal
bundle NS of S in N is viewed as a vector subbundle of ι∗TN . Define the
relative exponential map

expS : NS → N

by expS(v) = expx(v) if v ∈ NxS. Under the natural map S →֒ NS as zero
section the tangent map at x ∈ S of the relative exponential map

Tx(expS) : TxNS
∼= TxS ×NxS ∼= TxN → TxN

is equal to Id. Likewise using the inverse function theorem we obtain the
tubular neighborhood theorem.

Theorem 3.15. Let ι : S →֒ N be a connected compact submanifold with
relative exponential map expS : NS → N . Then there exists an ǫ > 0 such
that

expS : Bǫ(S) = {v ∈ NxS;x ∈ S, gx(v, v) < ǫ2} → N

is a diffeomorphism onto its image. This image is called a normal geodesic
tubular neighborhood of S in N .

The restriction of the projection map NS → S turns Bǫ(S) → S into a
fiber bundle with fiber an ǫ-ball of dimension equal to the codimension of S
in N . In case S is disconnected the same theorem holds by working on each
component of S seperately.

3.6 Kähler Manifolds

An almost complex structure on a manifold M is a complex structure

Jx : TxM → TxM , J2
x = − Id

on each tangent space TxM , depending smoothly on x ∈ M . The pair
(M,J) is called an almost complex manifold. If around each point x ∈
M there are complex coordinates from C

n such that the transition maps
from one chart to another are biholomorphic, then M is called a complex
manifold. In turn multiplication by i in the tangent spaces gives rise to
a natural almost complex structure on any complex manifold M . There
are local conditions for an almost complex structure on M to come from
a complex manifold structure on M (the vanishing of the Nijenhuis tensor
of J), which were obtained by Newlander and Nirenberg [40]. Examples
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of almost complex compact manifolds (of dimension 4), which are excluded
on topological grounds (the numerology of Chern numbers) to be complex
manifolds, were found by Van de Ven [55]. The concept of almost complex
structure was introduced by Ehresmann and Hopf around 1945.

The structures of a Riemannian manifold (M,g), a symplectic manifold
(M,ω) and an almost complex manifold (M,J) are called a compatible triple
if for each x ∈ M the three structures (gx, ωx, Jx) are compatible on TxM .
Two out of three compatible structures determine the third since

gx(ux, vx) = ωx(Jxux, vx) , ωx(ux, vx) = gx(ux, Jxvx)

for all u, v ∈ X (M) and all x ∈M . Two out of the three structures (g, ω, J)
on M are called compatible if there exist a (unique) third such that all three
are compatible.

Lemma 3.16. Each symplectic manifold (M,ω) has a compatible almost
complex structure J .

Proof. Suppose (M,ω) is a symplectic manifold. By a partition of unity we
can choose a Riemannian metric G onM . We just carry out the construction
of Lemma 1.4 in the tangent space TxM at each point x ∈ M . Indeed, let
A ∈ Γ(M,End(TM)) be a smooth section with

ω(u, v) = G(u,Av)

for all u, v ∈ X (M). Writing

A =
√
A∗AJ = J

√
A∗A , g(u, v) = ω(Ju, v) = G(Ju,Av)

gives the desired compatible triple (g, ω, J).

Definition 3.17. Suppose M is a complex manifold with associated (almost)
complex structure J . A Kähler structure on M is a Hermitian metric h on
the tangent bundle of M whose imaginary part ω is a closed 2-form. For
h = g+iω the Kähler condition means that the triple (g, ω, J) of Riemannian
metric g, symplectic form ω and complex structure J is compatible. The
symplectic form ω is called the Kähler form, and (M,ω) is called a Kähler
manifold.

Examples of compact symplectic manifolds (of dimension 4), which are
excluded on topological grounds to be Kähler manifolds, were found (using
the structure of the fundamental group) by Thurston [54] and (in the simply
connected case) byMcDuff [35]. An example of a simply connected both
complex and symplectic compact manifold (in dimension 6), which is not
Kähler, was recently found in [3].
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Example 3.18. A lattice L in an Hermitian vector space (V, h) is the Z-span
of an R-basis of V . The imaginary part ω of h is a translation invariant
symplectic structure on V , and the Kähler manifold (V/L, h) is called a
complex torus.

Example 3.19. Let (z0, · · · , zn) be coordinates on C
n+1 and let

π : Cn+1 − {0} → P
n(C)

be the natural projection map with corresponding homogeneous coordinates
[z] = (z0 : · · · : zn) on P

n(C). Let h = g + iω be the standard Hermitian
form

h(z, z′) =
∑

zjz′j

on C
n+1 with g the standard Euclidean form and ω the standard symplectic

form on R
2(n+1) ∼= C

n+1. If ι : S2n+1 →֒ C
n+1 is the inclusion of the unit

sphere in C
n+1 then the diagram

C
n+1 ι←֓ S

2n+1 π
։ P

n(C)

induces a canonical symplectic form ωFS on P
n(C) determined by the relation

π∗ωFS = −ι∗ω/(π = 3.14 · · · )

which is called the Fubini–Study symplectic form on P
n(C).

Indeed, the closed 2-form ι∗ω has a one dimensional kernel at each point
of S2n+1, and the orbits of the circle group U1(C) on S

2n+1 are exactly the
leaves of the null foliation. In turn this defines a unique 2-form ωFS on the
complex projective space P

n(C) as the quotient space of S2n+1 by the action
of the group U1(C). Since the projection map π is a submersion the pullback
π∗ is injective on differential forms. In particular ωFS is closed since

π∗(dωFS) = d(π∗ωFS) = − d(ι∗ω)/π = −ι∗(dω)/π = 0 .

The above construction is called the symplectic reduction method and will
be discussed in greater generality in a later chapter on the moment map.
Together with the natural complex structure (Pn(C), ωFS) becomes a compact
Kähler manifold.

Since holomorphic submanifolds of Kähler manifolds are again Kähler
manifolds (for the restriction of the Kähler form on the ambient space to
the submanifold) we arrive at the following conclusion.
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Corollary 3.20. Smooth projective manifolds (that is compact holomorphic
submanifolds of a complex projective space) are Kähler manifolds.

Hence complex algebraic geometry provides us with an overwhelming
abundance of compact Kähler manifolds. By a theorem of Chow compact
holomorphic submanifolds of projective space are in fact defined by homo-
geneous polynomial equations. However Kähler manifolds are more general
than complex projective manifolds. Examples of compact Kähler manifolds,
which can not be embedded in projective space P

n(C), are complex tori
(V/L, ω = ℑh) of complex dimension at least 2 and L a generic lattice. The
complex tori that can be embedded in projective space are called Abelian
varieties, whose study is a central subject in algebraic geometry.

We have the following diagram of implications of structures

Kaehler −−−−→ symplectic




y





y

complex −−−−→ almost complex

and refer to Section 17.3 in the book of Cannas da Silva for a discussion of
related examples [4].

A long standing question is whether the unit sphere S6 in R
7 has a com-

plex structure. It is known that S6 has an almost complex structure coming
from a transitive action of the exceptional simple Lie group of dimension
14 (of exceptional Cartan type G2) on S

6 with point stabilizer isomorphic
to SU3(C) < SO6(R). It is known that this almost complex structure is
not integrable, and so does not come from an honest complex structure on
S
6. The sphere S

6 can not be symplectic because H2
dR(S

6) = 0. Therefore
S
6 can not be Kähler, and in particular can not be a projective manifold.

But there is nothing known to prevent S
6 from having some odd complex

structure!

3.7 Darboux Theorem

In this section we will adapt the Moser theorem on equivalence of volume
forms to the case of symplectic forms. But first we shall explain a moduli
count in the spirit of Riemann [46], which ”explains” nicely that the Darboux
theorem is a reasonable result to expect.

A Riemannian manifold (M,g) is given in local coordinates (x1, · · · , xm)
by a Riemannian metric

ds2 =
∑

i,j

gij(x) dxi dxj
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with gij(x) = gji(x) freely chosen (under the restriction that the matrix
gij(x) is positive definite for all x) functions of the coordinates. Hence
initially there are m(m+1)/2 functions to be picked, but after removing the
ambiguity of the m coordinates there remains a choice of m(m − 1)/2 free
functions, which are captured by the Riemann curvature tensor. It is not
at all true that any two Riemannian manifolds locally look alike, at least if
the dimension m is greater than 1.

Similarly, a symplectic manifold (M,ω) is given in local coordinates
(x1, · · · , xm) by a (nondegenerate) closed 2-form ω, which by the Poincaré
lemma takes the form ω = d θ, with

θ =
∑

i

θi(x) dxi

some 1-form, and θi(x) are m freely chosen functions of the coordinates
(under the restriction that ω = d θ is nondegenerate). After removing the
ambiguity of the m coordinates one could hope that no choice remains left.
Then any two symplectic manifolds of the same dimension m would locally
look alike. That is the statement of the Darboux theorem.

Theorem 3.21. Let M be a compact manifold, and let ω0 and ω1 be two
symplectic forms on M . Suppose that both symplectic forms have the same
periods, or equivalently by the de Rham theorem that both cohomology classes
[ω0] and [ω1] in H

2
dR(M) are equal. Suppose also that ωt = (1 − t)ω0 + tω1

is nondegenerate for all 0 ≤ t ≤ 1. Then there exists a diffeomorphism
φ :M →M with ω0 = φ∗ω1.

Proof. The proof is rather similar to the proof of the Moser volume theorem.
Indeed t 7→ ωt = (1 − t)ω0 + tω1 for 0 ≤ t ≤ 1 gives a line segment of
closed forms, and by assumption ωt is nondegenerate and [ωt] is constant in
H2

dR(M). Hence the time derivative of ωt is exact, and so

d

d t
ωt = dλ

for some λ ∈ Ω1(M).
The Moser trick searches an isotopy φt of M with

φ∗tωt = ω0

for all 0 ≤ t ≤ 1, and so φ = φ1 will work. Differentiation of the left hand
side with respect to t yields

d

d t

{

φ∗tωt

}

= φ∗t

{

Lvtωt +
d

d t
ωt

}

= φ∗t

{

d(ivt ωt) + dλ
}

= φ∗t d
{

ivt ωt + λ
}
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with vt the time dependent vector field whose solution curves correspond
to the isotopy φt of M . This expression will certainly vanish if the Moser
equation

ivt ωt + λ = 0

holds. But the Moser equation determines the vector field vt uniquely as
shown in Exercise 1.6.

Corollary 3.22. Suppose (M,J) is an almost complex compact manifold,
and ω0 and ω1 are both compatible symplectic forms on M having the same
periods on all of H2(M). Then there exists a diffeomorphism φ : M → M
with ω0 = φ∗ω1.

Proof. The interpolation ωt = (1− t)ω0+ tω1 of closed 2-forms has constant
periods on H2(M), which are compatible with J via the interpolation ht =
(1− t)h0 + th1 of Hermitian forms. Hence ωt is symplectic for all 0 ≤ t ≤ 1,
and we can apply the previous theorem.

Corollary 3.23. Suppose M is a compact complex manifold. If ω0 and ω1

are two Kähler forms on M having the same periods on all of H2(M) then
there existst a diffeomorphism φ :M →M with ω0 = φ∗ω1.

By a minor adaption we also get a clean proof of the Darboux theorem.

Theorem 3.24. If (M,ω) is a symplectic manifold then each point x in M
has a coordinate neighborhood ι : U →֒M with coordinates

(x1, · · · , xn, ξ1, · · · , ξn)

such that ι∗ω =
∑

d ξj ∧ dxj is the standard symplectic form on U .

Proof. By the linear Darboux lemma (Lemma 1.2) we can choose local co-
ordinates (x1, · · · , xn, ξ1, · · · , ξn) with x↔ (0, 0) such that ω in these coor-
dinates becomes ω0 and coincides with the translation invariant symplectic
form ω1 =

∑

d ξj ∧ dxj at the origin (0, 0). Say we work on a small ball Bǫ
of radius ǫ > 0 around (0, 0). By the Poincaré lemma

ω1 − ω0 = dλ

for some λ ∈ Ω1(Bǫ), and we may assume that λ vanishes at the origin.
Writing ωt = (1− t)ω0 + tω1 we can solve the Moser equation

ivt ωt + λ = 0
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for a unique vector field vt which vanishes at the origin 0 of Bǫ for all
0 ≤ t ≤ 1. The corresponding isotopy φt is well defined on Bδ for some
0 < δ ≤ ǫ and leaves the origin fixed. Moreover φ∗tωt = ω0 and in particular
φ∗1ω1 = ω0. This proves the Darboux theorem by the Moser trick.

The Darboux theorem was obtained by Gaston Darboux in 1882 [8]. The
fact that all symplectic manifolds of the same dimension locally look alike
is at first surprising. In this sense symplectic geometry is rather different
from Riemannian geometry, where the Riemann curvature tensor locally
distinguishes Riemannian manifolds.

The classical proof by Darboux of his theorem goes by induction on the
dimension [53]. The proof of the Darboux theorem as given above is due
to Moser [37]. This method of proof has been further refined by Weinstein
obtaining a standard form of a symplectic manifold in a neighborhood of a
closed submanifold rather than just a point [57]. For example this leads to
an equivariant form of the Darboux theorem, usually called the Darboux–
Weinstein theorem, in a neighborhood of the fixed point locus for the action
of a compact Lie group acting canonically on a symplectic manifold [18].

3.8 Exercises

Exercise 3.1. Given a Riemannian manifold (M,g) show that Luf =
g(u, grad f) for u ∈ X (M) and f ∈ F(M). Show that the vector field grad f
gives the direction in which f increases mostly.

Exercise 3.2. For a symplectic manifold (M,ω) show that Luf = ω(u, vf )
for u ∈ X (M) and f ∈ F(M). Conclude that for all regular values r ∈ R

of f (meaning that (d f)x is nonzero for all x ∈M with f(x) = r) the level
hypersurface Mr = {x ∈M ; f(x) = r} is a smooth submanifold with tangent
space TxMr equal to the orthogonal complement with respect to ωx of R(vf )x
in TxM . Here TMr is identified with its image T ιr(TMr) inside TM with
ιr :Mr →֒M the inclusion map.

Exercise 3.3. Let (E,B,G, π) be a principal fiber bundle with structure
group G and let ρ : G→ GL(V ) be a smooth representation of G on a vector
space V . How would you define the associated vector bundle E ×ρ V with
base space B and fiber V ?

Exercise 3.4. In a standard course of algebraic topology it is shown that
Hp(S

m) is one dimensional for p equal to 0 or m, and zero otherwise. Using
this result show that the unit sphere S

m in R
m+1 has a symplectic structure

if and only if m is 0 or 2.
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Exercise 3.5. Let M = T ∗N with canonical symplectic form ω = d θ.
Consider a smooth 1-form α on N as a smooth section α : N → M of the
cotangent bundle π : M → N . Show that α : N →֒ M is Lagrangian if and
only if dα = 0.

Exercise 3.6. Let π : T ∗N → N be the cotangent bundle with canonical
symplectic form ω = d θ. Show that for β a closed 2-form on N the 2-form
ω + π∗β is again a symplectic form on M = T ∗N . For a smooth 1-form α
on N we denote

ωα = ω + π∗(dα) = d(θ + π∗α)

and call (M,ωα) a twisted cotangent bundle (with twist α).

Exercise 3.7. (using some Lie theory) Let σ denote the Euclidean measure
on the unit sphere S

3 in R
4 ∼= C

2. Show that

∫

S3

dσ(x) =

∫ π

0
4π sin2 θ d θ = 2π2

and conclude that
∫

P1(C)
dσFS(y) = 2π2/(2π × π) = 1

with σFS the Fubini–Study measure on P
1(C).

Exercise 3.8. (using Lie theory) Let h(z, z′) = z1z′1 + z2z′2 be the standard
Hermitian metric on C

2. Write h = g+iω for the decomposition of h in real
and imaginary part. Show that ω(z, iz) = −h(z, z) and conclude from the
previous exercise that the Fubini–Study area of P1(C) taken with its natural
orientation is equal to 1.

Exercise 3.9. (using Lie theory) Show that the distance function dFS for
the Fubini–Study metric on P

n(C) is given by

cos(dFS([z], [z
′])) =

|h(z, z′)|
√

h(z, z)
√

h(z′, z′)

for [z], [z′] ∈ P
n(C).

Exercise 3.10. (using integration over compact groups) Suppose we have
given a symplectic action K×M →M of a compact Lie group K on a sym-
plectic manifold (M,ω). Show that there exists a compatible triple (g, ω, J)
on M with g a Riemannian metric and J an almost complex structure that
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are both invariant under this action. Check that our proof of the Darboux
theorem around a fixed point for this action with this g provides Darboux
coordinates in which the action is linearized. Conclude that the fixed point
locus MK is a symplectic submanifold. Hint: Apply the proof of Lemma 3.16
to a Riemannian metric G on M that is invariant under the action. Such
a G can be obtained by averaging an arbitrary Riemannian metric over K.

Exercise 3.11. (using some algebraic geometry) Let x = (x0, · · · , xn) be a
nonzero point of Cn+1, and write [x] = [x0 : · · · : xn] for the corresponding
point of Pn(C). For f ∈ C[x0, · · · , xn] a homogeneous polynomial of degree
d ≥ 1 the locus

{[x] ∈ P
n(C); f(x) = 0}

is called a hypersurface of degree d in P
n(C). Check that the hypersurface is

smooth if the equations

x ∧ grad(f)(x) = 0 , f(x) = 0

do not have a common nonzero solution in C
n+1. Show that the Fermat

cubic hypersurface in P
n(C) with equation f(x) = x30 + · · · + x3n is smooth.

Conclude that a generic cubic hypersurface in P
n(C) is smooth.

Exercise 3.12. Let π : U ։ N be a tubular neighborhood of a submanifold
i : N →֒M with smooth deformation retract (obtained by multiplication with
the scalar t ∈ [0, 1] in the fibers) ρt : U → U, ρt ◦ i = i for all 0 ≤ t ≤ 1
and ρ0 = i ◦ π, ρ1 = Id. Show that for α ∈ Ωp(U) with dα = 0 and i∗α = 0
there exists β ∈ Ωp−1(U) with α = dβ and i∗β = 0. Hint: Let ut be the
smooth vector field on U , whose value at y = ρt(x) is the tangent vector to
the curve s 7→ ρs(x) at s = t. Hence ut satisfies d/dt(ρ∗tα) = ρ∗t (Lutα) for
any α ∈ Ωp(U). Show that the integral

β =

∫ 1

0
ρ∗t (iutα)dt

is well defined and satisfies α = dβ and i∗β = 0 [4].

Exercise 3.13. Suppose (M,ω) is symplectic manifold and L →֒ M is a
compact Lagrangian submanifold. Show by a variation of the Moser trick
that a small tubular neighborhood of L is symplectomorphic with a small
tubular neighborhood of L as the zero section in (T ∗L, dθ). This exercise is
due to Alan Weinstein, and the result is called the Weinstein Lagrangian
neighborhood theorem [57],[18],[4].
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4 Hamilton Formalism

4.1 Poisson Brackets

Suppose (M,ω) is a symplectic manifold. For f ∈ F(M) a smooth function
on M there is a unique vector field vf ∈ X (M)

ivf ω = − d f

and vf is called the Hamiltonian vector field of the function f . The integral
curves of vf are called the solution curves for the Hamiltonian system defined
by f , and the corresponding one parameter group φt :M →M is called the
Hamiltonian flow of f .

In local Darboux coordinates (q1, · · · , qn, p1, · · · , pn) the integral curves
of vf are given by

q̇j =
∂f

∂pj
, ṗj = −

∂f

∂qj

which is called Hamilton’s equation for the Hamiltonian system defined by
f in canonical coordinates.

Definition 4.1. For f, g ∈ F(M) the Poisson bracket {f, g} is the smooth
function on M defined by

{f, g} = Lvf (g) = ivf (d g) = − ivf (ivg ω) = ω(vf , vg)

by using the Cartan formula in the second identity and the antisymmetry of
ω in the fourth identity.

The right hand side of the above definition shows that the Poisson
bracket is antisymmetric in the sense that

{g, f} = −{f, g}

for all f, g ∈ F(M). In canonical local coordinates the Poisson brackets are
given by

{f, g} =
n
∑

j=1

( ∂f

∂pj

∂g

∂qj
− ∂f

∂qj

∂g

∂pj

)

as discussed in Example 3.1. The function space F(M) can be thought of
as the space of classical observables on the phase space (M,ω). For an
observable g ∈ F(M) the equation

d g

d t
= {f, g}
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is the abstract form of Hamilton’s equation for the Hamiltonian f . The
infinitesimal change of a given observable g under the Hamiltonian flow of
f is equal to {f, g}. If {f, g} = 0 on all of M then the observable g is
called a constant of motion for the Hamiltonian system defined by f . Since
{f, f} = 0 the observable f is a constant of motion for the Hamiltonian f
itself. If f is the total energy of a classical mechanical system, then this is
the law of conservation of total energy.

The exterior derivative of {f, g} is given by

d{f, g} = d(Lvf g) = Lvf (d g) = −Lvf (ivg ω) = − i[vf ,vg] ω

using in the last identity Lv(iw α) = i[v,w] α + iw(Lvα) for all v,w ∈ X (M)
and α ∈ Ωp(M). Moreover Lvω = 0 if iv ω is closed, which is the case if
v = vf . In turn we have proven the following result.

Theorem 4.2. We have [vf , vg] = v{f,g} for all f, g ∈ F(M).

If we let both sides of this identity act on a third function h ∈ F(M)
then we get

{f, {g, h}} − {g, {f, h}} = {{f, g}, h}
and using the antisymmetry of the Poisson bracket we obtain

{{f, g}, h} + {{g, h}, f} + {{h, f}, g} = 0

for all f, g, h ∈ F(M). This is the Jacobi identity for Poisson brackets. In
other words, the Poisson bracket {·, ·} defines a Lie algebra structure on the
vector space F(M), just like the commutator bracket [·, ·] is a Lie algebra
structure on the vector space X (M). The above theorem states that the map
f 7→ vf is a Lie algebra homomorphism of the Lie algebra (F(M), {·, ·}) to
the Lie algebra (X (M), [·, ·]).

The pointwise multiplication on F(M) relates to the Poisson bracket by

{f, gh} = {f, g}h + g{f, h}

for all f, g, h ∈ F(M), turning F(M) into a so called Poisson algebra.
The next historical remark I owe to Duistermaat [10]. The Jacobi iden-

tity for the Poisson bracket goes back to Jacobi in a posthumously published
article from 1862 [25]. Jacobi mentioned that the Jacobi identity implies a
theorem of Poisson from 1809, which states that for f and g two constants
of motion for a Hamiltonian system defined by h the Poisson bracket {f, g}
is a third constant of motion [59].
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For someone interested in the history of mathematics no knowledge of
the Latin language is required to appreciate the formulas in volume V of the
collected works of Jacobi [25]. On page 45 he defines for any two functions
f, ϕ on phase space

· · · Designabo sequentibus per [f, ϕ] expressionem sequentum

[f, ϕ] =
∂f

∂q1

∂ϕ

∂p1
+
∂f

∂q2

∂ϕ

∂p2
+ · · ·+ ∂f

∂qn

∂ϕ

∂pn

− ∂f
∂p1

∂ϕ

∂q1
− ∂f

∂p2

∂ϕ

∂q2
− · · · − ∂f

∂pn

∂ϕ

∂qn

unde erit
[f, f ] = 0, [f, ϕ] = −[ϕ, f ] · · ·

and so [f, ϕ] = −{f, ϕ} is just minus the Poisson bracket in our notation.
The modern sign convention is chosen such that [vf , vg] = v{f,g} and so the
map f 7→ vf is a Lie algebra homomorphism from the Poisson algebra of
smooth functions to the Lie algebra of smooth vector fields.

From a direct calculation he concludes on page 46 that for any three
functions f, ϕ, ψ on phase space

· · · in hanc abit:

[[f, ψ], ϕ] − [[f, ϕ], ψ] = [[ϕ,ψ], f ]

quae concinnius sic exhibetur:

[[f, ϕ], ψ] + [[ϕ,ψ], f ] + [[ψ, f ]ϕ] = 0 · · ·

which ever since has been called the ”Jacobi identity”. On the next page
47 its relevance is explained, since any two constants of motion ϕ,ψ for a
Hamiltonian f produce a third constant of motion [ϕ,ψ] for f .

4.2 Integrable Systems

Let (M,ω) be a symplectic manifold of dimension 2n, which we might think
of as the phase space of some physical system.

Definition 4.3. A set of n smooth functions (f1, · · · , fn) on M is called an
integrable system if

{fj, fk} = 0
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for all 1 ≤ j, k ≤ n, and if the regular locus M r, where the differentials

d f1, · · · ,d fn ∈ Ω1(M)

are linearly independent, is a dense open subset of M , and if the flows of the
Hamiltonian vector fields vj of fj on M are complete for all j = 1, · · · , n.

An integrable system on M gives rise to a smooth map

f = (f1, · · · , fn) :M → R
n

called the action coordinates map. The locus D = f(M−M r) of all singular
values, also called the discriminant of the integrable system, is a null set by
the Sard theorem. Its complement R = f(M)−D is the set of regular values
of the integrable system. Clearly the image of f

f(M) = R⊔D

is a disjoint union of the locus of regular values and the discriminant. The
open dense subset M rf = f−1(R) of M r ⊂M is the regular fiber locus.

Because the Hamiltonian vector fields v1, · · · , vn have commuting flows
φ1,t, · · · , φn,t we get an action

R
n ×M →M , (t1, · · · , tn)x = φ1,t1(· · · (φn,tn(x)) · · · )

for all x in M . The action of the additive group (Rn,+) on M preserves the
level sets Mc = f−1(c) for all c ∈ R

n.
If c ∈ R then the level set Mc is contained in M r, and Mc is a smooth

submanifold of M of dimension n invariant under the action of Rn on M .
Since

ω(vj , vk) = {fj , fk} = 0

for all 1 ≤ j, k ≤ n and the vector fields vi are linearly independent on Mc

we conclude that Mc is a Lagrangian submanifold of M .
In addition let us assume that all regular level setsMc are connected. The

action of Rn on Mc is locally free, in the sense that the stabilizer subgroup
R
n
x of x ∈ Mc is a discrete subgroup of the additive group R

n . Therefore
each orbit of Rn in Mc is open, but then also closed as the complement of
the remaining ones. Since Mc is connected it is just a single orbit of Rn.
Any discrete subgroup of the additive group R

n is of the form L = ZB, the
integral span of a linearly independent set B in R

n. Hence Mc
∼= R

n/Lx as
homogeneous spaces for R

n with x ∈ Mc. Because R
n is Abelian we have

Lx = Ly if f(x) = f(y) = c and we write Lx = Ly = Lc. The conclusion

52



is that Mc
∼= R

n/Lc as homogeneous spaces for Rn. But this identification
Mc
∼= R

n/Lc is only possible after picking an origin x ∈Mc.
Finally, if in addition f :M → R

n is a proper map, then Mc
∼= R

n/Lc is
compact for all c ∈ R, which in turn implies that Lc = ZB with B a basis
of Rn, which by definition means that Lc is a lattice in thbbRn. Hence we
have the following result, which is called the Arnold–Liouville theorem.

Theorem 4.4. If f : M → R
n is an integrable system with compact con-

nected fibers then the flows of the Hamiltonian vector fields vi induce a dif-
feomorphism Mc

∼= R
n/Lc for all c ∈ R. The lattice Lc in R

n is called the
period lattice and Mc

∼= R
n/Lc is called the Liouville torus.

A smooth map s : U →M defined on a sufficiently small open ball U ⊂ R
around a fixed base point b ∈ R with f(s(c)) = c for all c ∈ U is called a
local Lagrangian section for f : M → R

n around b if s(U) is a Lagrangian
submanifold of (M,ω). By the Darboux theorem applied around the point
x = s(b) local Lagrangian sections always exist around regular values b ∈ R.
Choose a local Lagrangian section s : U → M around b ∈ R. Choose a
basis li(c) of the lattice Lc/2π ⊂ R

n for i = 1, · · · , n depending smoothly
on c ∈ U .

Define an action of the torus (R/2πZ)n on f−1(U) by

(ϕ, x) = ((ϕ1, · · · , ϕn), x) 7→ ϕ ∗ x = (
∑

ϕili(f(x))s(f(x))

and observe that this action commutes with the original Hamiltonian action
(t, x) 7→ tx of Rn on f−1(U). Define angle coordinates

α : f−1(U)→ (R/2πZ)n, α(x) = ϕ ⇔ x = ϕ ∗ s(f(x))
and observe that the level sets α−1(ϕ) are Lagrangian submanifolds. In-
deed, the zero level set α−1(0) = s(U) is Lagrangian by assumption, and
the Hamiltonian action R

n × f−1(U) → f−1(U) permutes these level sets
and preserves Lagrangian submanifolds. Therefore the angle coordinates αi
satisfy {αi, αj} = 0 for i, j = 1, · · · , n.

In addition there exist action coordinates a : f−1(U) → R
n of the form

a(x) = I(f(x)) with c 7→ I(c) a suitable coordinate transformation around
b ∈ U ⊂ R

n, such that the Hamilton flow of the action coordinate ai onMc is
equal to the angle action of ϕi ∈ R/2πZ. The action coordinates are unique
if we require I(b) = 0. The action together with the angle coordinates (a, α)
on f−1(U) are called action-angle coordinates. It is clear that

{ai, aj} = {αi, αj} = 0 , {ai, αj} = δij

for all i, j = 1, · · · , n [2].
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Theorem 4.5. Suppose f :M → R
n is an integrable system on a symplectic

manifold (M,ω) of dimension 2n. Suppose f : M → R
n is a proper map,

and the fibers Mc are connected for all c ∈ R. Then the smooth map

f :M rf → R

is a principal Lagrangian fibration with structure group a torus (R/2πZ)n of
dimension n and base space R the locus of regular values, and there exist
action-angle coordinates (a, α) : f−1(U) → R

n × (R/2πZ)n with U a small
ball in R around b as above for which ω =

∑

dai ∧ dαi.

Corollary 4.6. Deforming the period lattice Lc in R
n with c moving along

curves γ : [0, 1] → R with a fixed base point γ(0) = γ(1) = b ∈ R gives a
representation

ρ : Π1(R, b)→ GL(Lb) ∼= GLn(Z)

which is called the monodromy representation of the principal Lagrangian
fibration.

Proof. For γ : [0, 1]→R a curve in R we obtain by following vectors in the
period lattice Lγ(t) along the curve a homomorphism ρ(γ) : Lγ(0) → Lγ(1).
If δ : [0, 1]→R is another curve in R with δ(1) = γ(0) then the composition
γδ is defined by tracing out δ and subsequently γ, and ρ(γδ) = ρ(γ)ρ(δ) is
clear by definition. If γs is a homotopy of curves with fixed base point b ∈ R
then ρ(γs) ∈ End(Lb) is an integral matrix, which varies continuously with
s ∈ [0, 1], and therefore is constant in s ∈ [0, 1]. Hence we obtain an induced
homomorphism ρ : Π1(R, b) → GL(Lb) on the level of the fundamental
group.

The monodromy representation being not trivial is an obstruction for
having global action angle coordinates [9].

Definition 4.7. A Hamiltonian system (M,ω,H) is a pair of a symplectic
manifold (M,ω) and a smooth function H ∈ F(M) called the Hamiltonian.

Thinking of (M,ω) as the phase space of states of a physical system
the Hamiltonian H describes the dynamics of states in time via the flow
φt :M →M of its Hamiltonian vector field vH .

Definition 4.8. A Hamiltonian system (M,ω,H) is called a completely
integrable system if there exists an integrable system

f = (f1, · · · , fn) :M → R
n

with {H, fj} = 0 for j = 1, · · · , n.
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Under the additional assumptions of the Arnold–Liouville theorem the
Hamiltonian flow of the vector field vH becomes linearized on each Liouville
torus Mc

∼= R
n/Lc, and so its integral curves describe periodic or quasi-

periodic motion. Indeed on M rf = f−1(R) the Hamiltonian H is constant
on Liouville tori, and so we have H(x) = F (f(x)) for some smooth function
F : R→ R. Hence dH =

∑

j (∂F/∂fj) d fj which in turn implies that

vH =
∑

j

∂F

∂fj
(c)vj

is a constant vector field on the Liouville torus Mc
∼= R

n/Lc for all c ∈ R.
It is ample time to discuss these abstract ideas in a concrete example.

4.3 Spherical Pendulum

In problems of classical mechanics in a Euclidean space R
n it is a standard

convention in handwritten text to denote vectors with an arrow or also an
underline. In print the typesetting for vectors is boldface, so q ∈ R

n while q
denotes the length of the vector q. The scalar product and vector product
of vectors q,p in R

3 are denoted q ·p and q×p respectively. We shall adopt
this convention in this chapter. For example

q · p = qp cos θ , |q× p| = qp sin θ

with θ the angle between two nonzero vectors q,p ∈ R
3

The configuration space S2 = {q ∈ R
3; q = 1} of the spherical pendulum

has phase space T ∗
S
2 = {(q,p) ∈ R

3×R3; q = 1,q·p = 0}. The Hamiltonian

H = p2/2 + q3

describes the motion of a point particle q of unit mass constraint to the unit
sphere S

2 under influence of a constant gravitational field of unit length in
the vertical downward direction (with identification T ∗

S
2 ∼= TS2).

The circle group SO2(R) of rotations around the third axis leaves the
Hamiltonian invariant. The infinitesimal vector field of this action is the
Hamiltonian vector field of the function

J = L3 = q1p2 − q2p1
which is the third component of the angular momentum vector L = q× p.
The fact that H is invariant for this action is equivalent to {H,J} = 0. We
claim that (H,J) : T ∗

S
2 → R

2 is an integrable system, and so the spherical
pendulum is a completely integrable system. More explicitly we have the
following result of Duistermaat [9].
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Theorem 4.9. The image under the energy-momentum map

(H,J) : T ∗
S
2 → R

2

is equal to {(x, y) ∈ R
2;x ≥ r(y)} with r : R→ R the function

r(z−1 − z3) = 1
2z

−2 − 3
2z

2

for 0 < |z| ≤ 1. The locus of regular values of the energy-momentum map
is equal to

R = {(x, y) ∈ R
2;x > r(y)} − {(1, 0)}

with the additional singular value (1, 0) deleted as the image of the unstable
immobile north pole.

Proof. The Hamiltonian vector field vJ of J onM = T ∗
S
2 has just two zeros

at the north pole n and the south pole s, viewed as points of M with zero
cotangent vector. On the complement M −{n, s} the Hamiltonian flow of J
has no fixed points and is periodic with period 2π. The Hamiltonian vector
field vH also vanishes at these two poles, which implies that the energy-
momentum map has rank 0 on M precisely at {n, s} with singular values
{(H,J) = (±1, 0)}.

The energy-momentum map has rank 1 at those points of M − {n, s}
where the vector field vH is a multiple λ of vJ . This scalar function λ in the
equation vH = λvJ is constant along the flow lines of vJ , which implies that
the Hamiltonian flow of H is a horizontal circular motion in the southern
hemisphere with such speed that the centrifugal force and the gravitational
force cancel out. These point are called the stable relative equilibria of the
spherical pendulum.

b

1

1

r

√
1− r2

r

v2/r

v2
√
1− r2/r

v2

Fg

Fc

n

s
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A planar circular motion r(t) = (r cosωt, r sinωt) around the origin with
angular velocity ω > 0 over a circle with radius r > 0 has velocity v(t) =
(−rω sinωt, rω cosωt) and is traversed with constant speed v = rω and has
period T = 2πr/v = 2π/ω. By Huygens and Newton the centripetal force
F = r̈ = −ω2r has length F = v2/r.

We use this to analyze the stable relative equilibria of the spherical
pendulum, with qmoving uniformly over a circle at constant negative height.
A horizontal circular motion of the spherical pendulum at height −1 < q3 <
0 with square radius r2 = 1 − q23 and speed v gives a horizontal centrifugal
force of length Fc = v2/r. Its tangential component has length v2

√
1− r2/r

and should be equal to the length r of the tangential component of the
vertical gravitational force of length Fg = 1. In other words, stable relative
equilibria do occur if

v2
√

1− r2/r = r ⇐⇒ v2 = r2/
√

1− r2 .

If we denote z = ±√−q3 = ± 4
√
1− r2 for −1 ≤ q3 < 0 and 0 ≤ r < 1 then

r2 = 1 − z4 and stable relative equilibria do occur for v2 = z−2 − z2. We
find (with z ∈ [−1, 0) ∪ (0, 1] ∪ {±i})

H = 1
2v

2 + q3 =
1
2z

−2 − 3
2z

2 , J = ±rv = z−1 − z3

as a (rational) parametrization of the discriminant. The theorem follows
using the Lagrange multiplyer theorem as indicated in the remark below.

H

J
D+

D−

R

bb

The above picture describes the image under the energy-momentum
map. The fat drawn curve together with the point (1, 0) is the discrimi-
nant D and the shaded locus R of regular values is bounded by D.

57



Remark 4.10. So the discriminant locus D of the spherical pendulum be-
comes

D = {(x, y) ∈ R
2;x = r(y)} ⊔ {(1, 0)}

with r : R → R given by r(z−1 − z3) = 1
2z

−2 − 3
2z

2 for |z| ∈ (0, 1]. Note
that for z = ±i we get the singular value (1, 0). The discriminant has two
singular points (±1, 0) as images of the unstable equilibrium n and the stable
equilibrium s. The regular part of D has two connected components

D± = {(x, y) ∈ R
2;x = r(y),±y > 0}

corresponding to the stable relative equilibria as described in the above proof.
These are the images of the energy-momentum map where vJ is nonzero
and vH = λvJ for some scalar function λ. We claim that λ > 0 for D− and
λ < 0 for D+. Clearly vH = λvJ is equivalent to dH = λd J . On D+ the
function H has a minimum and J has a maximum, while on D− both H
and J have a minimum. Hence λ < 0 on D+ and λ > 0 on D−. Note that
by the Lagrange multiplyer theorem the set

D+ ⊔ D− ⊔ {(−1, 0)}

is just the image under the energy-momentum map of those points (q,p)
where H is minimal under the constraint that J is constant.

Remark 4.11. It is easy to check that the two assumptions of the Arnold–
Liouville theorem (the map f :M → R

n is proper and the regular fibers Mc

are connected) are satisfied in our example of the spherical pendulum. Indeed
the energy-momentum map f = (H,J) : T ∗

S
2 → R

2 is proper because its
first coordinate H is already a proper function on M = T ∗

S
2. The orbits of

vH go through the north pole n or the south pole s at some speed if and only
if these orbits lie in some plane through n and s, which in turn is equivalent
to J = 0. From this it is clear that the regular fiber Mc for c = (h, 0) and
h > 1 is a connected torus. Since R is connected this proves that the general
regular fiber Mc is connected.

For ǫ > 0 small the curves

θ±(t) = (1 + ǫ cos πt,±ǫ sinπt)

for t ∈ [0, 1] are half circles in R with begin point b = c+ = (1+ǫ, 0) and end
point c− = (1− ǫ, 0). The composition θ = θ−1

− ◦ θ+ is the natural generator
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of the fundamental group Π1(R, b) compatible with the natural orientation
of R2. If we denote the induced lattice transformations by

T± : Lc+ → Lc− , T = T−1
− ◦ T+ : Lb → Lb

then T is the monodromy transformation which we like to compute.
For any c ∈ R the lattice Lc contains the element δ = (0, 2π). Indeed

the Hamiltonian flow of the function J on M r =M −{n, s} with M = T ∗
S
2

is periodic with period 2π. Clearly T±(δ) = δ and therefore T (δ) = δ. A
second generator for Lc with c = (h, 0) with either h > 1 or −1 < h < 1 can
be found as follows.

For h > 1 the flow of the Hamiltionian field vH on the fiber Mc over
c = (h, 0) has a periodic orbit in a vertical plane through north and south
pole. At the north pole n the speed is equal to p =

√

2(h− 1) and at the
south pole s its speed equals p =

√

2(h+ 1). If τ(h) > 0 is the period of
this orbit for h > 1 then γ = (τ(h), 0) lies in Lc. In fact the lattice Lc is
equal to Zγ + Zδ. Note that τ(h) ↑ ∞ if h ↓ 1.

For −1 < h < 1 the flow of the Hamiltionian field vH on the fiber Mc

over c = (h, 0) has again a periodic orbit of vH in a vertical plane through
north and south pole, making a swing forth and back. At the south pole
s its velocity equals p =

√

2(h+ 1). However it does not quite reach the
north pole, but comes only up to height h with zero speed p = 0 to swing
back. If 2τ(h) > 0 is the period of this orbit of vH then (2τ(h), 0) lies in
Lc. However the lattice Z(2τ(h), 0) + Z(0, 2π) has index two in Lc since
(τ(h), (2k + 1)π) ∈ Lc for k ∈ Z. Indeed, just make a half swing for vH (in
a plane through n and s) and at the same time a half integral turn for vJ
around the third axis. Note that τ(h) ↑ ∞ if h ↑ 1.

We shall take γ = (τ(1 + ǫ), 0) and δ = (0, 2π) as a basis of the lattice
Lb over the base point b = c+ = (1 + ǫ, 0). We claim that

T±(τ(1 + ǫ), 0) = (τ(1− ǫ),∓π) .

In words, the continuation along θ+ transforms the periodic orbit of vH on
Mc+ into a loop on Mc− by making just one swing forth of vH and at the
same time a half turn of −vJ . The reason is that during the continuation in

R+ = {(H,J) ∈ R;J > 0}

the image under the natural projection map

π : T ∗
S
2 ∩ (H,J)−1(R+)→ S

2 − {n, s}
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of the transported loop of γ is homotopic inside S
2 − {n, s} to the equator

traversed in negative direction relative to the positive third axis. This follows
from Remark 4.10 since we found for the stable relative equilibria above D+

that vH = λvJ with λ < 0. The integral curve of vH over the point (h, 0)
with h > 1 is a periodic orbit passing through north and south pole with
positive speed. The integral curve of vH over the point (h, δ) (with h > 1
and δ > 0 small) passes the north and south pole on the left side. Correcting
with a small rotation around the third axis the deformed loop of γ remains
a closed curve, and after the projection π remains homotopic to the equator
traversed in negative direction. If we deform (h, c) in R+ so that −1 < h < 1
and c = δ > 0 dropping down to 0 then γ deforms in a half swing in a plane
through north and south pole plus a rotation around the third axis over an
angle −π. In other words, we get T+(τ(1+ǫ), 0) = (τ(1−ǫ),−π) as claimed.

Likewise continuation along θ− transforms the periodic orbit of vH on
Mc+ into a periodic orbit on Mc− by making just one swing forth of vH and
at the same time a half turn of vJ . This proves the above claim.

Using this claim we arrive at

T (τ(1+ ǫ), 0) = T−1
− ◦T+(τ(1+ ǫ), 0) = T−1

− (τ(1− ǫ),−π) = (τ(1+ ǫ),−2π)

and with our notation γ = (τ(1 + ǫ), 0) and δ = (0, 2π) as basis of Lb the
conclusion is

T (γ) = γ − δ , T (δ) = δ .

This is just the classical Picard-Lefschetz formula [32],[5]. Indeed the inte-
gral symplectic form 〈·, ·〉 on Lc = Zγ + Zδ, defined by

〈γ, δ〉 = 1 , 〈γ, γ〉 = 〈δ, δ〉 = 0

is just the intersection form on Lc = H1(Mc,Z) coming from the natural
orientation of Mc = R

2/Lc. Hence we obtain the following result, which was
originally proved by Duistermaat by an analytic argument using symmetry
reduction [9], by topological reasoning.

Theorem 4.12. For λ ∈ Lb the monodromy T of a small positive loop θ in
R around (1, 0) is given by the Picard-Lefschetz formula

T (λ) = λ− 〈λ, δ〉δ

with 〈·, ·〉 the intersection form on the lattice Lb and δ ∈ Lb the so called
vanishing cycle above (1, 0) ∈ D.
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The fiberM(1,0) over (1, 0) has a singular point at the north pole n viewed
as point of M = T ∗

S
2. The complement M(1,0) − {n} has the structure of

the homogeneous space R
2/(0, 2πZ). This is a cylinder R×U1(C) with the

flow of vH acting by translations in the first factor and the flow of vJ acting
by rotations in the second factor. The argument is just the same as for
the Arnold–Liouville theorem. The singular fiber M(1,0) is obtained from
the nearby regular fiber M(1+ǫ,0) by pinching a cycle representing δ. This
explains the terminology vanishing cycle for δ.

Remark 4.13. The spherical pendulum was first studied by Huygens in
1673 (so 14 years before the appearance of the Principia Mathematica of
Newton in 1687) [24]. Our description of the stable relative equilibria is due
to Huygens. It was for this purpose that he found his well known formula
Fc = mv2/r for the centrifugal force of a uniform circular motion. The mon-
odromy for the spherical pendulum was shown to be nontrivial by Cushman
and subsequently computed by Duistermaat [9]. During his lecture in 1980
he expressed his surprise that for such a classical problem this computation
had not been done long before.

4.4 Kepler Problem

The Kepler problem is concerned with planetary motion around the sun. By
a center of mass reduction one is led to the Newtonian differential equation

mq̈ = −kq/q3

with m = m1m2/(m1 + m2) > 0 the reduced mass, k = Gm1m2 > 0 the
coupling constant and q = (q1−q2) ∈ R

3 the radius vector from the sun to
the planet. The method of solution is the search for conserved quantities.

The first conserved quantity follows from the fact that the Newtonian
force field F = −kq/q3 is central. In this case the angular momentum

L = q× p

is conserved, with p = mq̇ the linear momentum. Since L̇ = 0 we conclude
that the motion takes place in the plane perpendicular to the constant vector
L. If A = A(t) is the area of the region traced out by the radius vector q

from a fixed initial time on then the time derivative dA/d t satisfies

Ȧ = |q× q̇|/2 =
L

2m
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by elementary calculus. Therefore the area of the region traced out by the
radius vector in a unit time interval is constant. Equal areas in equal times
is the area law of Kepler.

The second conserved quantity is total energy H, valid in a spherically
symmetric central force field F(q) = f(q)q/q for some smooth function f
on R. Indeed, it is easy to check by elementary calculus that

H =
p2

2m
+ V (q) , V (q) = −

∫

f(q)dq

satisfies Ḣ = 0, which is the law of conservation of total energy.

Theorem 4.14. The Hamiltonian system

(R3 × R
3,
∑

d pj ∧ d qj,H =
p2

2m
+ V (q))

of a spherically symmetric Hamiltonian is completely integrable.

Proof. By a straightforward calculation using {pj , qk} = δjk one checks
that the components of the angular momentum vector L satisfy the Poisson
brackets relations

{Li, Lj} = −ǫijkLk
with ǫijk the Levi-Civita symbol. These are the commutation relations for
the Lie algebra so3(R). From this it is easy to check that the length L of
the angular momentum vector Poisson commutes with all Lj for j = 1, 2, 3.
In turn this implies that (H,L,L3) : R6 → R

3 is an integrable system, at
least under suitable completeness conditions for the flow of H.

We shall now discuss a solution of the Kepler problem with Hamiltonian
H = p2/2m − k/q in terms of Euclidean geometry. Let us suppose that
H < 0 is fixed. Since k/q = p2/2m − H ≥ −H > 0 we get q < −k/H,
and so the motion is bounded inside a sphere of radius −k/H > 0. Under
the assumption that L > 0 the motion takes place in the plane through the
origin 0 perpendicular to L.

The circle C with center 0 and radius −k/H is the boundary of a disc in
which motion with fixed energy H < 0 can take place. Points that fall from
C onto the origin have the same energy H, and for this reason C is called
the fall circle. Let s = −kq/qH be the projection of q from the origin 0 on
this circle C. The line L through q with direction vector p is the tangent
line to the orbit E at the point q. Let t be the orthogonal projection of s in
the line L.
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Theorem 4.15. The point t is equal to K/mH with

K = p× L− kmq/q

the Lenz vector. In addition K̇ = 0 and so K is conserved.

Proof. The line N spanned by n = p× L is perpendicular to L. The point
t is obtained from s by subtracting twice the ortogonal projection of s− q

on the line N , and therefore

t = s− 2((s − q) · n)n/n2.

Since s = −kq/qH as projection of q on C we find

(s− q) · n = −(H + k/q)q · (p× L)/H = −(H + k/q)L2/H

n2 = p2L2 = 2m(H + k/q)L2 ,

and therefore
t = −kq/qH + n/mH = K/mH

with K the Lenz vector as given in the theorem. The fact that K̇ = 0 follows
by a straightforward calculation.

Corollary 4.16. The orbit E is an ellipse with foci 0 and t, and long axis
equal to 2a = −k/H.
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Proof. Since K̇ = 0 we get ṫ = 0, and so

|t− q|+ |q− 0| = |s− q|+ |q− 0| = |s− 0| = −k/H.

Hence E is an ellipse with foci 0 and t, and long axis 2a = −k/H.

The Lenz vector K = (K1,K2,K3) exhibits a remarkable symmetry of
the Kepler problem, first observed by Pauli [44]. Both results are obtained
by (sometimes unpleasant but) straightforward algebraic computations.

Theorem 4.17. The angular momentum L and Lenz vector K satisfy the
Poisson bracket relations

{Li, Lj} = −ǫijkLk , {Li,Kj} = −ǫijkKk , {Ki,Kj} = (2mH)ǫijkLk .

Theorem 4.18. We have (−2mH)L2 +K2 = k2m2.

Corollary 4.19. On the region H < 0 let us write M = K/
√
−2mH. In

turn this gives the Poisson bracket relations

{Li, Lj} = −ǫijkLk , {Li,Mj} = −ǫijkMk , {Mi,Mj} = −ǫijkLk

which are the commutation relations for the standard basis of so4(R). All
these six functions Poisson commute with the Hamiltonian H = p2/2m−k/q
of the Kepler problem. Five of them are functionally independent. Because
we have more than three functionally independent conserved functions the
Kepler problem is sometimes called superintegrable.

Although the rescaled Lenz vector t = K/mH has a clear geometric
meaning as the second focus of the elliptical orbit the above Poisson bracket
relations for L and the other rescaling M = K/

√
−2mH only follow from

algebraic calculations. A geometric explanation of the commutation rela-
tions for the components of L and M (using Moser’s regularization of the
Kepler problem [38]) was found by Heckman and de Laat [22].

The momentum-Lenz map

(L,M) : {(q,p);H(q,p) < 0} → R
6

has image contained in the quadric hypersurface {(L,M);L ·M = 0} of
dimension 5. The one dimensional fibers are the Kepler ellipses for the
Hamiltonian H given by

−2H = k2m/(L2 +M2)
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which is the explanation of the remarkable fact that for H < 0 all orbits are
closed. Note that for each H < 0 there are the collision orbits, where the
flow of vH is no longer complete. The collision orbits for H < 0 are exactly
those orbits that lie on the hypersurface L2 = 0.

Remark 4.20. The Kepler problem was solved in 1687 by Isaac Newton
with a beautiful proof [41]. For a modern exposition of this proof, and a
discussion of various other proofs we refer to an article by van Haandel and
Heckman [19]. The Lenz vector K became popular after its use by Pauli in
1926 for the quantum mechanics of the Kepler problem [44]. Lenz was a
teacher of Pauli and had rediscovered this vector, like several other people
(Runge, Hamilton, Laplace) before him. I learned from Alain Albouy that
the Lenz vector can be traced back to Lagrange in 1781, see pages 131 and
132 of [31].

4.5 Three Body Problem

Since the appearance of Newton’s masterpiece [41] in 1687 many examples
of integrable systems were found during the following two centuries. It was
(and in my opinion still is) a piece of mathematical craftsmanship to find
the Poisson commuting integrals of motion for the given Hamiltonian, and
thereby essentially solving the given system.

However Bruns in 1887 and Poincaré in 1890 found that the three body
problem is not an integrable system. By a center of mass reduction

3
∑

1

miqi = 0

the configuration spaceN has dimension 6, and so the phase spaceM = T ∗N
is of dimension 12. It turns out that the only algebraic (by Bruns) or even
analytic (by Poincaré) integrals of motion for the Hamiltonian

H =
∑

i

p2i /2mi −
∑

i 6=j

Gmimj

|qi − qj |

are the familiar ones, namely total angular momentum

L =
∑

i

qi × pi

and the total energy H itself. The generic integral curves of the Hamiltonian
vector field vH fill out densily a submanifold of dimension 12− 4 = 8 rather
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than of dimension 6 = 12/2 as would be the case for an integrable system.
From this moment on people have realized that the integrable systems are
the rare exceptions, while generically nonintegrability is omnipresent [49].

4.6 Exercises

Exercise 4.1. A Poisson algebra P is both an associative algebra, denoted
P ∋ f, g 7→ fg ∈ P, and a Lie algebra, denoted P ∋ f, g 7→ {f, g} ∈ P, with
the Leibniz rule

{f, gh} = {f, g}h + g{f, h}
as compatibility condition. For a vector space V the symmetric algebra SV
and the algebra PV ∗ of polynomial functions on the dual vector space V ∗ are
naturally identified. Show that for a Lie algebra g the commutative algebra
P = Sg = Pg∗ has a natural Lie bracket turning P into a Poisson algebra.
Hint: Pick a basis (ej) of g with dual basis (fj) of g

∗, and so ∂ej/∂fk = δjk.
Define the Poisson bracket by

{f, g} =
∑

j,k

∂f

∂fj

∂g

∂fk
[ej , ek]

and check that this definition satisfies the Leibniz rule, is independent of the
choice of the basis and is a Lie bracket. Here ∂/∂fj denotes the directional
derivative in the direction fj.

Exercise 4.2. Let L = ZB be a lattice in R
n with B a basis of Rn, and let

R
n/L be the associated torus. Show that the map

L→ H1(R
n/L) , λ 7→ [σλ] , σλ(1− t, t) = tλ+ L , 0 ≤ t ≤ 1

realizes L as sublattice of the first homology space H1(R
n/L).

Exercise 4.3. Let L = Zγ+Zδ be the lattice in R
2 with γ = (τ, 0) for some

τ > 0 and δ = (0, 2π). The torus R
2/L inherits a natural orientation from

the standard orientation of R
2. The de Rham pairing between H1(R

2/L)
and H1

dR(R
2/L) and the Poincaré form H1

dR(R
2/L)×H1

dR(R
2/L)→ R give

a nondegenerate symplectic pairing

〈·, ·〉 : H1(R
2/L)×H1(R

2/L)→ R

which is called the intersection form on the middle homology of R2/L. Sup-
pose α, β : [0, 1]→ R

2/L are smooth closed curves intersecting transversally.
Check that the intersection number 〈[α], [β]〉 of the corresponding classes
counts the number of intersection points of the two representing curves, with
a plus or a minus sign depending on whether
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α
β

β
α

respectively. This explains the terminology intersection form.

Exercise 4.4. Show that for h ≥ −1 the solution of the spherical pendulum
with angular momentum J = 0 and energy H = h correspond to motion in
a plane through north pole n and south pole s, with speed

√
h+ 1 at s and

(for h ≥ 1) with speed
√
h− 1 at n. Conclude that the natural projection

π : T ∗
S
2 → S

2 maps the subset {J > 0} of T ∗
S
2 inside S

2 − {n, s}.
Exercise 4.5. Check that the scalar and vector product on R

3 have the
compatibility relations

u · (v ×w) = (u× v) ·w , u× (v ×w) = (u ·w)v − (u · v)w

for all u,v,w ∈ R
3. Show that the map R

3 → so(R3) sending u to the
antisymmetric linear operator v 7→ u×v is an isomorphism of Lie algebras
from (R3,×) to (so(R3), [·, ·]). If Lj denotes the image under the standard
basis vector ej ∈ R

3 then Lie brackets in so3(R) become [Li, Lj ] = ǫijkLk.

Exercise 4.6. Show that {Li, Lj} = −ǫijkLk implies {Li, L2} = 0, and
conclude that {Li, L} = 0.

Exercise 4.7. Let H = p2/2m+ V (q) be a spherically symmetric Hamilto-
nian on R

3 × R
3. Show that the gradient of −V (q) is equal to F = f(q)q/q

with f = − dV/d q. In other words, a spherically symmetric central force
field is conservative.

Exercise 4.8. Prove the formulas of Theorem 4.17 and Theorem 4.18.

Exercise 4.9. Show that the matrices

L1 =









0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0









, L2 =









0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0









, L3 =









0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0









and

M1 =









0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0









, M2 =









0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0









, M3 =









0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0
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satisfy the commutation relations

[Li, Lj ] = ǫijkLk , [Li,Mj ] = ǫijkMk , [Mi,Mj ] = ǫijkLk

and form a basis of so4(R).

Exercise 4.10. In the notation of the previous exercise show that the three
components of the two vectors

I = (L+M)/2 , J = (L−M)/2

define a new basis of so4(R) with commutation relations

[Ii, Ij ] = ǫijkIk , [Ji, Jj ] = ǫijkJk , [Ii, Jj ] = 0 .

Conclude that so4(R) ∼= so3(R) ⊕ so3(R) as a direct sum of Lie algebras.
Show that the quadric hypersurface L ·M = 0 in the new coordinates takes
the form I2 = J2. Hence the image of the momentum-Lenz map is just the
cone over the direct product S2×S

2 of two unit spheres of dimension 2. This
exercise goes back to Pauli [44]. One can show that the Lie algebra son(R)
for n ≥ 2 is a simple Lie algebra (the only Lie ideals are the two trivial
ideals) with the sole exception of the ”odd” number n = 4.

Exercise 4.11. Consider the Kepler Hamiltonian H = p2/2m− k/q in the
region of phase space with H < 0. Let 2a and 2b be the major and minor
axis of the elliptical orbit, and define c > 0 by a2 = b2 + c2. Check that
2a = −k/H, 2c = K/mH and 2b = 2L/

√
−2mH. Prove that the period T

and semimajor axis a are related by Kepler’s harmonic law

T 2/a3 = 4π2m/k = 4π2/G(m1 +m2)

with m1 the mass of the planet and m2 the mass of the sun. Since m2 ≫ m1

we conlude that the ratio T 2/a3 is (almost) the same for all planets. This
observation was made by Kepler in 1619. Hint: The area of the ellipse equals
πab = LT/2m.
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5 Moment Map

5.1 Lie Groups

A Lie group G is at the same time a manifold and a group, and these two
structures are compatible, in the sense that multiplication and inversion

G×G→ G, (a, b) 7→ ab G→ G, a 7→ a−1

are smooth maps for all a, b ∈ G. A Lie group is a differential geometric
object concerning symmetry. A Lie algebra g is a vector space with a binary
operation (called the Lie bracket)

g× g→ g, (X,Y ) 7→ [X,Y ]

satisfying antisymmetry and Jacobi identity

[X,Y ] + [Y,X] = 0 , [[X,Y ], Z] + [[Y,Z],X] + [[Z,X], Y ] = 0

for all X,Y,Z ∈ g. A Lie algebra is just an algebraic object. The Norwe-
gian mathematician Sophus Lie (1842-1899) discovered the intimate relation
between these two notions.

Let us denote by λa : G → G the smooth map of left multiplication by
a ∈ G. Clearly λa is a diffeomorphism since λa−1 is its inverse. A vector
field X on G is called left invariant if (upper star is pull back)

λ∗aX = X

(or equivalently LX and λ∗a commute on F(G) by Exercise 2.5) for all a ∈ G.
It is clear that the Lie bracket of two left invariant vector fields is again left
invariant. Any left invariant vector field X on G is determined by its value
Xe at the identity element e of G, and conversely any tangent vector Xe at
the identity extends to a left invariant vector fieldX on G. The conclusion is
that the set g of all left invariant vector fields is a vector space of dimension
equal to the dimension of G. Moreover g inherits from X (G) a Lie bracket
turning g into a finite dimensional Lie algebra, called the Lie algebra of the
Lie group G.

Let (G, g) be a Lie group with its Lie algebra. For X ∈ g the integral
curve through the identity e is denoted t 7→ exp(tX). In turn we get for all
smooth functions f on G

LXf(x) =
d

d t

{

f(x exp(tX))
}

t=0
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for all x in G. Since left invariant vector fields are complete it follows that
t 7→ exp(tX) is defined for all t ∈ R. The homomorphism t 7→ exp(tX) is
called the one-parameter subgroup of G with infinitesimal generator X ∈ g.
The exponential map exp : g → G is smooth, and its tangent map at
the identity e is equal to Id : g → g. By the inverse function theorem
exp : g→ G is a diffeomorphism of an open neighborhood of 0 in g onto an
open neighborhood of e in G.

The beautiful discovery of Lie is that the Lie algebra g captures a great
deal of the structure of its Lie group G, and so questions about symmetry in
differential geometry can often be dealt with by algebraic computations. An
important example of this principle is the following theorem of Lie. Suppose
(G, g) and (H, h) are both Lie groups with corresponding Lie algebras. A
map φ : G→ H is called a Lie group homomorphism if it is both smooth and
a homomorphism. A map φ : g → h is called a Lie algebra homomorphism
if it is both linear and preserves the Lie brackets. The next fundamental
result is due to Lie, and we refer to the text books by Duistermaat–Kolk or
Warner for a proof [12],[56].

Theorem 5.1. A Lie group homomorphism φ : G → H induces a Lie
algebra homomorphism φ : g → h (by abuse of notation) such that the
diagram

g
φ−−−−→ h

exp





y





y

exp

G
φ−−−−→ H

is commutative. The Lie algebra homomorphism is obtained by differenti-
ation at the identity of the Lie group homomorphism, and using the linear
isomorphisms TeG ∼= g and TeH ∼= h. If G is connected then the Lie group
homomorphism φ : G → H is completely determined by the Lie algebra
homomorphism φ : g → h. Conversely, if G is connected and simply con-
nected then any Lie algebra homomorphism φ : g → h yields by integration
a unique Lie group homomorphism φ : G→ H for which the above diagram
is commutative.

In the particular case that (H, h) is equal to the general linear group and
algebra (GL(V ), gl(V )) on a finite dimensional vector space V then we get
analoguous relations between a Lie group representation ρ : G → GL(V )
and its corresponding Lie algebra representation ρ : g→ gl(V ).

An action of a Lie group G on a smooth manifold M is a smooth map
G ×M → M, (a, x) 7→ ax with (ab)x = a(bx) and ex = x for all a, b in G
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and e the unit element of G. In turn we get a Lie group representation of
G on F(M) by

ρ : G→ Aut(F(M)) , (ρ(a)f)(x) = f(a−1x)

with Aut(F(M)) the group of invertible linear operators of F(M) preserving
the structure of multiplication of smooth functions. The corresponding Lie
algebra representation becomes

ρ : g→ Der(F(M)) , (ρ(X)f)(x) =
d

d t

{

f(exp(−tX)x)
}

t=0
.

The inverse and minus signs in the above formulas are there to ensure that
the homomorphism property

ρ(ab) = ρ(a)ρ(b) , ρ([X,Y ]) = [ρ(X), ρ(Y )]

holds for all a, b ∈ G and X,Y ∈ g. Here we have written

Der(F(M)) = {D : F(M)→ F(M);D(fg) = D(f)g + fD(g) ∀ f, g}

for the Lie subalgebra of End(F(M)) of all derivations of F(M). Clearly
ρ(X) is a derivation as Lie derivative of a vector field acting on functions. For
x ∈ M the stabilizer group Gx = {a ∈ G; ax = x} of x in G is a closed Lie
subgroup, with Lie subalgebra gx = {X ∈ g; (ρ(X)f)(x) = 0 ∀f ∈ F(M)}.

The conjugation action of G on itself is denoted by

Ca(x) = axa−1

for a, x ∈ G. Since Ca(e) = e is a fixed point for any conjugation the tangent
map Ad(a) = TeCa : g→ g defines an important representation

Ad : G→ GL(g) , Ad(a)X =
d

d t

{

a exp(tX)a−1
}

t=0

which is called the adjoint representation of G on its Lie algebra g. The
associated Lie algebra representation ad : g → gl(g) fits in a commuative
diagram

g
ad−−−−→ gl(g)

exp





y





y

exp

G
Ad−−−−→ GL(g)

and is given by ad(X)Y = [X,Y ] for all X,Y ∈ g. For linear Lie groups the
adjoint representation is just the conjugation representation of G on g, and
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the latter formula follows by a power series expansion. It is not the adjoint
representation, but its dual representation that we are interested in. This
so-called coadjoint representation

Ad∗ : G→ GL(g∗) , ad∗ : g→ gl(g∗)

is defined by

Ad∗(a) = (Ad a−1)∗ , ad∗(X) = (− adX)∗

for a ∈ G and X ∈ g.
For ξ ∈ g∗ the antisymmetric bilinear form on g

ωξ : g× g→ R , ωξ(X,Y ) = 〈ξ, [X,Y ]〉 = 〈− ad∗(X)ξ, Y 〉

has kernel equal to the stabilizer Lie subalgebra

gξ = {X ∈ g; ad∗(X)(ξ) = 0}

in g of the point ξ ∈ g∗. Because of the natural isomorphism Te(G/Gξ) ∼=
g/gξ this gives a nondegenerate 2-form on any coadjoint orbit Gξ ∼= G/Gξ .
This 2-form on a coadjoint orbit is closed by the theorem and remark below,
and so any coadjoint orbit carries a natural symplectic form.

Theorem 5.2. Let ω be a 2-form on a manifold M that is nondegenerate at
each point. For f ∈ F(M) let v = vf ∈ X (M) be defined by iv ω = − d f like
the definition of Hamilton vector field in case that ω is a symplectic form on
M . Likewise define on F(M) the antisymmetric bracket {f, g} = ω(vf , vg)
as for the Poisson bracket. Then ω is a closed (and hence a symplectic)
form on M if and only if the Jacobi identity

{{f, g}, h} + {{g, h}, f} + {{h, f}, g} = 0

holds for all f, g, h ∈ F(M).

Proof. By definition {f, g} = ω(vf , vg) = ivf (d g) = Lvf (g) for all functions
f, g ∈ F(M). In turn this implies

d{f, g} = d(Lvf g) = Lvf (d g) = −Lvf (ivg ω) = − i[vf ,vg ] ω − ivg(Lvfω) ,

and so [vf , vg] = v{f,g} for all f, g ∈ F(M) if and only if

Lvfω = 0

for all f ∈ F(M). This is equivalent to dω = 0 since Lvfω = ivf dω. The
theorem follows because [vf , vg] = v{f,g} for all f, g ∈ F(M) is equivalent to
the Jacobi identity for the Poisson bracket {·, ·}.
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The fact that the nondegenerate 2-form on a coadjoint orbit as defined
above is closed follows from Exercise 4.1 and the following remark.

Remark 5.3. Let (ej) and (fj) be dual bases of a Lie algebra g and its dual
g∗ respectively. For f, g smooth functions on g∗ the formula for the Poisson
bracket (as derived in Exercise 4.1)

{f, g} =
∑

j,k

∂f

∂fj

∂g

∂fk
[ej , ek]

coincides, after restriction to a coadjoint orbit, with the definition of the
Poisson bracket for functions on that coadjoint orbit as in the previous the-
orem. Indeed let M be the coadjoint orbit Ad∗(G)ξ through ξ ∈ g∗. It is
sufficient to check this for f = X ∈ g and g = Y ∈ g viewed as linear
functions on g∗. In that case

{f, g}(ξ) =
∑

j,k

fj(X)fk(Y )ξ([ej , ek]) = ξ([X,Y ])

coincides with ωξ(X,Y ).

Remark 5.4. Suppose G is a connected Lie group with Lie algebra g. The
center of the Poisson algebra Sg = Pg∗ of polynomial functions on g∗ is
equal to the subalgebra (Sg)G of polynomial functions on g∗ invariant under
G for the coadjoint action. An invariant polynomial on g∗ is also called a
Casimir function, after the Dutch physicist Hendrik Casimir. Casimir was
the first to clearly see the relevance of these invariant functions (in his thesis
written with Niels Bohr and Paul Ehrenfest), both for Lie group theory itself
and for questions of symmetry in quantum mechanics [6].

Definition 5.5. The natural symplectic form on a coadjoint orbit of a Lie
algebra will be denoted ωKK, and is called the Kirillov–Kostant symplectic
form (going back to the thesis of Alexander Kirillov from 1962 on the orbit
method for nilpotent Lie groups [27], and to lecture notes by Bertram Kostant
from 1970 on geometric quantization [29]).

All in all, we have seen three natural classes of symplectic manifolds:
cotangent bundles with the exterior derivative ω = d θ of the tautologi-
cal 1-form θ as the canonical symplectic form, Kähler manifolds and com-
plex projective manifolds with respect to the restriction of the Fubini–Study
symplectic form ωFS as particular examples, and coadjoint orbits with the
Kirillov–Kostant symplectic form ωKK. These three classes might overlap in
examples.
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5.2 Moment Map

Suppose (M,ω) is a connected symplectic manifold, and

G×M →M , (a, x) 7→ ax

is an action of a connected Lie group G on M . For X ∈ g we denote by XM

the vector field on M whose flow is given by left multiplication on M with
the one parameter group t 7→ exp(tX). This vector field XM on M is called
the infinitesimal vector field of X ∈ g for the action of G on M . We shall
denote by Xx ∈ TxM the value of the vector field XM at the point x ∈M .

One should pay attention to the fact that the linear map

g→ X (M) , X 7→ XM

is an antihomomorphism of Lie algebras, in the sense that

[X,Y ]M = −[XM , YM ]

for all X,Y ∈ g. Indeed, in the notation of the previous section

LXM
= ρ(−X)

as linear operators on F(M), and the map ρ : g → Der(F(M)) is a Lie
algebra homomorphism by a formal application of Theorem 5.1.

The symplectic form ω is invariant under the action of the Lie group G
if and only if ω is infinitesimally invariant under the Lie algebra g, in the
sense that

LXM
ω = 0

for all X ∈ g. Therefore ω is invariant under this action if and only if

LXM
ω = (d iXM

+ iXM
d)ω = d(iXM

ω) = 0

for all X ∈ g, so if the 1-forms iXM
ω are closed for all X ∈ g. This will

certainly be the case if the 1-forms iXM
ω are exact for all X ∈ g. This

brings us to the following definition.

Definition 5.6. The action G × M → M of the Lie group G on the
symplectic manifold (M,ω) is called Hamiltonian, if there exists a map
µ : M → g∗, whose coordinate functions µX : M → R, which are given
by µX(x) = 〈µ(x),X〉 for X ∈ g, satisfy

iXM
ω = − dµX , {µX , µY } = −µ[X,Y ]

for all X,Y ∈ g. The map µ : M → g∗ is called the moment map (or
momentum map) of the Hamitonian action of G on M .
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The first condition says that the infinitesimal vector field XM for X ∈ g

is equal to the Hamiltonian vector field of some function µX : M → R.
Because M is connected this determines the function µX up to a constant
depending on X ∈ g. In addition we require that

g→ F(M) , X 7→ µX

is a linear map, so there exists a function µ : M → g∗ with coordinate
functions µX for all X ∈ g.

Under these assumptions the second condition {µX , µY } = −µ[X,Y ] for
all X,Y ∈ g implies that the moment map µ :M → g∗ is equivariant for the
two actions. Indeed, the infinitesimal vector field for the coadjoint action is
the linear vector field

Xg∗ = (− adX)∗ : g∗ → g∗ , Xξ = Xg∗ξ

or, more explicitly
〈Xξ, Y 〉 = 〈ξ,−[X,Y ]〉

for ξ ∈ g∗ and X,Y ∈ g. Taking ξ = µ(x) yields by Definition 5.6

(LXM
µY )(x) = {µX , µY }(x) = −µ[X,Y ](x) = −〈ξ, [X,Y ]〉 ,

for all x ∈M and X,Y ∈ g, or equivalently

(LXM
µ)(x) = Xµ(x)

for all x ∈ M and X ∈ g. Hence (Txµ)Xx = Xµ(x) which implies that µ
intertwines the Hamiltonian action of G on M and the coadjoint action of
G on g∗. In fact the second condition {µX , µY } = −µ[X,Y ] for all X,Y ∈ g

is easily seen to be equivalent with the equivariance of the moment map
µ :M → g∗.

Example 5.7. Let T ∗
R
3 = {(q,p);q,p ∈ R

3} with standard symplectic
form ω =

∑

d pj ∧ d qj. The action R
3 × T ∗

R
3 → T ∗

R
3 given by

x(q,p) = (x+ q,p)

is the natural action on phase space induced by the action on configuration
space of the translation group R

3. We claim that a (rather than the) moment
map µ : T ∗

R
3 → R

3 is given by the linear momentum µ(q,p) = p. Indeed
the function µj(q,p) = pj has Hamiltonian vector field ∂/∂qj as shown in
Example 3.1, and these vector fields are the infinitesimal generators for the
above action of the additive group R

3 acting on the configuration space by
translations.
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Example 5.8. Let T ∗
R
3 = {(q,p);q,p ∈ R

3} with standard symplectic
form ω =

∑

d pj ∧ d qj. The action SO3(R)× T ∗
R
3 → T ∗

R
3 given by

a(q,p) = (aq, ap)

is the natural action on phase space induced by the action on configuration
space of the rotation group SO3(R). We claim that the moment map is given
by (q,p) 7→ L = (q × p) which is just the angular momentum vector. For
example L3 = q1p2 − q2p1 has Hamilton vector field

vL3
= −q2

∂

∂q1
+ q1

∂

∂q2
− p2

∂

∂p1
+ p1

∂

∂p2

which is the infinitesimal generator of the circle group action by rotations
in the planes with coordinates (q1, q2) and (p1, p2). Using the formula

a(q× p) = det(a)(aq × ap)

for all a ∈ O3(R) and q,p ∈ R
3 we also have equivariance for SO3(R).

Hence the simplest examples of moment maps are linear and angular
momentum. This explains the terminology momentum map for µ :M → g∗

as above. Linear momentum is also called momentum and angular momen-
tum is also called moment of momentum. The word moment reminds one of
the rotation group SO3(R) of the configuration space R

3, whereas momen-
tum relates to the translation group R

3 of the configuration space R3. Since
the applications of Hamiltonian actions in case of compact Lie groups are
the most interesting I prefer the word moment map rather than momentum
map. Another (admittedly not so strong) argument is that moment map is
just shorter than momentum map.

The moment map is functorial with respect to symmetry breaking. The
easy proof is left to the reader as an exercise.

Theorem 5.9. Suppose a Lie group G acts on a symplectic manifold (M,ω)
in a Hamiltonian way with moment map µ :M → g∗. Let H be a closed Lie
subgroup of G with Lie algebra h as Lie subalgebra of g. Then the action of
H on (M,ω) is Hamiltonian with moment map the composition

π ◦ µ :M → h∗

of the original moment map µ : M → g∗ with the natural projection map
π : g∗ ։ h∗ as the dual of the natural inclusion map ι : h →֒ g.
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Theorem 5.10. Let N be a connected manifold and G×N → N a smooth
action of a connected Lie group G on N . Then the corresponding action
G× T ∗N → T ∗N on the cotangent bundle (T ∗N,ω = d θ) is a Hamiltonian
action. For q ∈ N and p ∈ T ∗

qN the moment map µ : T ∗N → g∗ is given by

µX(q, p) = 〈p,Xq〉

with Xq ∈ TqN the infinitesimal vector field of X ∈ g at the point q ∈ N .

Proof. If the action of a ∈ G on N is denoted by λa : N → N then the
corresponding action of G on M = T ∗N , also denoted by λa : M → M , is
given by

λa(q, p) = (λaq, p ◦ Tλaqλa−1)

for q ∈ N and p ∈ T ∗
qN .

First observe that the tautological 1-form θ, defined by θξ = ξ ◦ Tξπ for
all ξ ∈ M , is invariant under the action of G on M . Indeed, for all a ∈ G,
p ∈ T ∗

qN and ξ = (q, p) ∈M we have

(λ∗aθ)ξ = θλaξ ◦ Tξλa = ((λaξ) ◦ Tλaξπ) ◦ Tξλa =
(p ◦ Tλaqλa−1) ◦ Tλaξπ ◦ Tξλa = p ◦ Tξ(λa−1 ◦ π ◦ λa) = ξ ◦ Tξπ = θξ

because the projection map π : M → N is equivariant for the actions of G
on M and N .

Hence LXM
θ = 0 for all X ∈ g, which by the Cartan formula implies

d(ιXM
θ) + ιXM

(d θ) = 0 .

Because ω = d θ we find that the infinitesimal vector field XM is equal to
the Hamiltonian vector field of the function µX = ιXM

θ. The equivariance
of this map µ follows from

µAd(a)X (λaξ) = 〈p ◦ Tλaqλa−1 , (Ad(a)X)λaq〉 = 〈p,Xq〉 = µX(ξ)

for all a in G.

The above theorem is the natural generalization of the examples of linear
and angular momentum as moment maps for the actions of the translation
and rotation groups on a Euclidean vector space.

Theorem 5.11. Let the symplectic manifold (M,ω) be a finite dimensional
complex vector space (V, J) with symplectic form ω the imaginary part of a
Hermitian form h : V × V → C. Let K be a connected compact Lie group
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and ρ : K → U(V, J, h) a unitary representation of K on (V, J, h). Then
this action of K on (M,ω) is Hamiltonian with moment map

µ :M → k∗ , µX(v) = ih(ρ(X)v, v)/2

for X ∈ k and v ∈ V .

Proof. The equivariance of this map µ :M → k∗ follows from

µAd(a)X(ρ(a)v) = µX(v)

for a ∈ K, X ∈ k and v ∈ V , which is clear since ρ is a unitary representation.
An alternative proof of the equivariance of µ follows from

{µX , µY }(v) = ω(XV , YV )(v) = ℑ(h(ρ(X)v, ρ(Y )v))

= (h(ρ(X)v, ρ(Y )v)− h(ρ(Y )v, ρ(X)v))/2i

= h(ρ([X,Y ])v, v)/2i = −µ[X,Y ](v)

for all X,Y ∈ k.
In addition this component function µX satisfies

〈(dµX)v, w〉 = i(h(ρ(X)w, v) + h(ρ(X)v,w))/2 = −ω(ρ(X)v,w)

since h(ρ(X)w, v) = −h(w, ρ(X)v) = −h(ρ(X)v,w) for all v,w ∈ V . Since
the infinitesimal vector field XM of X ∈ k at the point v ∈ V is equal to
Xv = ρ(X)v we get

iXM
ω = − dµX

for all X ∈ k. Hence the Hamiltonian vector field of the function µX is equal
to XM .

Corollary 5.12. Let ρ : K → U(V, J, h) be a unitary representation of
a connected compact Lie group K on a finite dimensional Hilbert space
(V, J, h). Consider a holomorphic submanifold (M,ω) of the projective space
P(V ) as a Kähler manifold for the restriction of the Fubini–Study form ωFS.
If M is invariant under K then the action of K on (M,ω) is Hamiltonian
with moment map

µ :M → k∗ , µX([v]) =
h(ρ(X)v, v)

2πih(v, v)

for all X ∈ k and [v] ∈M with nonzero representative v ∈ V .
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Proof. Consider V as symplectic manifold with respect to the normalized
symplectic form −ℑ(h)/π. The standard action U1(C)×V → V of the circle
group U1(C) on V is given by exp(iθ)v = cos(θ)v + sin(θ)Jv.

The unit sphere ι : S(V ) = {v ∈ V ;h(v, v) = 1} →֒ V is invariant under
this action of U1(C) with quotient π : S(V ) ։ P(V ) = S(V )/U1(C). The
Fubini–Study form ωFS was defined by π∗ωFS = −ι∗ℑ(h)/π. According to
Exercise 3.8 the Fubini–Study form ωFS gives a projective line in P(V ) unit
area.

All in all, the moment map µ :M → k∗ for the Hamiltonian action of K
on (M,ω) with ω the restriction of the Fubini-Study form to M is given by
the previous theorem as

µX(v) =
h(ρ(X)v, v)

2πih(v, v)

under the restriction h(v, v) = 1. Indeed moving the i from numerator
to denominator gives a minus sign, and together with the factor π in the
denominator matches with the normalization of the Fubini–Study form ωFS.
This proves the formula.

It really took a long time to come to the insight that the correct notion
for symmetry of a Lie group G with Lie algebra g on a symplectic manifold
(M,ω) is that of a Hamiltonian action with moment map µ :M → g∗. The
oldest examples of momentum (for the translation group on R

3) and angular
momentum (for the rotation group on R

3) can be traced back to Galilei and
Newton. A fundamental paper by Emmy Noether from 1918 was the first to
discuss arbitrary Lie group symmetries in connection with conservation laws
[42]. Noether worked in the Lagrangian formalism with variational calculus.
A recent book by Yvette Kosmann–Schwarzbach discusses the relevance of
this work by Noether throughout the past century [28]. In the Hamiltonian
formalism the Noether theorem takes the following form.

Theorem 5.13. Suppose that the connected Lie group G with Lie algebra
g acts on a symplectic manifold (M,ω) in a Hamiltonian way with moment
map µ :M → g∗. Then a Hamiltonian H : M → R is invariant under G if
and only if all components µX of the moment map Poisson commute with
H.

In particular, invariance of a Hamiltonian H under a Hamiltonian action
of a Lie group G leads to as many independent conserved quantities as the
dimension of the Lie group G. In short, symmetry is the primary cause for
conservation laws.
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The breakthrough of the present concept of the moment map µ as a
map from the symplectic manifold M to the dual g∗ of a Lie algebra came
in 1970 after its advocation in the text book by Jean-Marie Souriau [52] and
the lecture notes by Bertram Kostant [29].

5.3 Symplectic Reduction

Suppose (M,ω) is a connected symplectic manifold, and G ×M → M is
a Hamiltonian action of a connected Lie group G with Lie algebra g, with
moment map µ :M → g∗. By Definition 5.6 this means that

ωx(Xx, v) = −(dµX)x(v) = −〈(Txµ)v,X〉
for all v ∈ TxM and X ∈ g. This formula is crucial for understanding the
rest of this section.

For x ∈ M the stabilizer algebra gx = {X ∈ g;Xx = 0} of x in g is the
Lie algebra of the stabilizer group Gx = {a ∈ G; ax = x} of x in G. Now
the tangent map Txµ : TxM → g∗ has kernel and image equal to

Ker(Txµ) = (Tx(Gx))
ωx , Im(Txµ) = g⊥x

with Tx(Gx) = {Xx;X ∈ g} the tangent space at x ∈M to the orbit of Gx
and the superscript ωx denotes the orthogonal complement with respect to
ωx on TxM , and the superscript ⊥ denotes the annihilator of gx in the dual
space g∗. Therefore the following lemma is clear.

Lemma 5.14. The Hamiltonian action of G on (M,ω) with moment map
µ : M → g∗ is locally free at x ∈ M (by definition gx = 0) if and only if x
is a regular point of µ (by definition Txµ is a surjection).

Let M r be the set of all regular points of the moment map µ in M . By
equivariance M r is invariant under G, and the action of G on M r is locally
free. For x ∈M r and ξ = µ(x) the locus

M r ∩ µ−1(ξ)

is a smooth submanifold of M r by the implicit function theorem, and the
restriction of ωx to the tangent space

Tx(µ
−1(ξ)) = Ker(Txµ) = (Tx(Gx))

ωx

has kernel

Tx(Gx) ∩ (Tx(Gx))
ωx = Tx(Gx) ∩Ker(Txµ) = {Xx;X ∈ gξ} = Tx(Gξx)

with gξ the stabilizer algebra and Gξ the stabilizer group of ξ ∈ g∗ for the
coadjoint action on g∗. Hence the next lemma is again clear.
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Lemma 5.15. If ιξ :M
r ∩ µ−1(ξ) →֒M is the natural inclusion map, then

the pull-back ι∗ξω is a closed 2-form on M r ∩ µ−1(ξ), and the leaves of the

null foliation of ι∗ξω are just the orbits of Gξ on M r ∩ µ−1(ξ).

We need the following result on Lie group actions.

Theorem 5.16. If a compact Lie group G acts freely on a manifold M then
the quotient space M/G has a natural manifold stucture, and the quotient
map π :M ։M/G is a principal fibration.

If the action of the compact Lie group G on the manifold M is no longer
free, then the quotient space M/G might get singular points. However it
is a Hausdorff topological space. In differential geometry these orbit spaces
are called orbifolds, a terminolgy that goes back to Thurston. Even though
they might have singular points a good deal of the manifold properties goes
through. This result has the following consequence in the situation at hand.

Theorem 5.17. Let us suppose that the action of G on M is effective,
which we tacitly will assume by replacing G by the factor group G/N with
N = ∩xGx a normal subgroup of G. Let M r be the set of regular points for
µ in M , where the action of G is locally free. Let M sr be the subset of M r

of strongly regular points for µ in M , where the action of G is free. Assume
that M sr →֒M r →֒M are open dense subsets.

Suppose that the value ξ ∈ µ(M sr) has a compact stabilizer group Gξ.
By the above theorem the quotient space M sr

ξ = {M sr ∩ µ−1(ξ)}/Gξ is a
manifold, and the quotient map

πξ : {M sr ∩ µ−1(ξ)}։M sr
ξ

is a principal fibration. Moreover the manifold M sr
ξ inherits a natural sym-

plectic form ωξ characterized by

π∗ξωξ = ι∗ξω

with
ιξ : {M sr ∩ µ−1(ξ)} →֒M

the natural embedding. The symplectic manifold (M sr
ξ , ωξ) is called (the

strongly regular part of) the reduced phase space or the symplectic quotient
at ξ ∈ g∗. Likewise denote

M r
ξ = {M r ∩ µ−1(ξ)}/Gξ , Mξ = {µ−1(ξ)}/Gξ

as topological Hausdorff spaces.
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Finally if the fiber µ−1(ξ) is compact then

M sr
ξ →֒M r

ξ →֒Mξ

gives a compactification of the reduced symplectic manifold (M sr
ξ , ωξ) by a

topological Hausdorff space. The partial compactification M sr
ξ →֒ M r

ξ adds
so called finite quotient singular points, whereas M r

ξ →֒ Mξ adds worse
singular points.

This theorem describes the symplectic reduction method. It is quite
a mouthful, but the proof is really short given our discussion before the
theorem. The only thing that might not be obvious is whether ωξ is a
closed form. Because πξ is a submersion the pullback π∗ξ is an injection on
differential forms. So dωξ = 0 if and only if π∗ξ (dωξ) = 0, which follows
from

π∗ξ (dωξ) = d(π∗ξωξ) = d(ι∗ξω) = ι∗ξ(dω)

and the fact that ω is closed.
For general Hamiltonian Lie group actions on symplectic manifolds the

symplectic reduction theorem goes back (independently of each other) to
Marsden–Weinstein [34] and to Meyer [36]. However in particular examples
the reduction procedure had been carried out long before. For example, for
a Hermitian vector space (V, J, h) the action of the circle group U1(C) on V
by exp(iθ)v = cos(θ)v + sin(θ)Jv with infinitesimal generator d /d θ = J is
Hamiltonian with moment map µJ(v) = −h(v, v)/2 by Theorem 5.11. The
construction of the Fubini–Study form ωFS on P(V ) in Example 3.19 is just
the symplectic reduction method on the inverse image µ−1

J (−1/2π).
Lemma 5.18. Suppose G × M → M is a Hamiltonian action of a Lie
group G with Lie algebra g on a symplectic manifold (M,ω) with moment
map µ :M → g∗. If η = Ad∗(a)ξ then the action

λa : {M sr ∩ µ−1(ξ)} → {M sr ∩ µ−1(η)}

by a ∈ G induces a natural symplectomorphism

(M sr
ξ , ωξ)→ (M sr

η , ωη)

of reduced symplectic manifolds.

This lemma is obvious since the moment map is equivariant for the
action of G on M and the coadjoint action of G on g∗. The next theorem is
a further elaboration of the Noether theorem using the concept of symplectic
reduction.
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Theorem 5.19. Suppose G ×M → M is a Hamiltonian action of a Lie
group G with Lie algebra g on a symplectic manifold (M,ω) with moment
map µ :M → g∗. Suppose the Hamiltonian function H ∈ F(M) is invariant
under G. Then the Hamiltonian flow of vH leaves µ−1(ξ) invariant, and
commutes with the action of Gξ on µ−1(ξ), and so it induces a canonical
flow on the reduced symplectic manifold (M sr

ξ , ωξ). This flow on M sr
ξ is

Hamiltonian with reduced Hamiltonian Hξ characterized by

Hξ ◦ πξ = H ◦ ιξ

with ιξ : {M sr ∩ µ−1(ξ)} →֒M and πξ : {M sr ∩ µ−1(ξ)}։M sr
ξ the natural

inclusion and projection maps of the previous theorem.

Proof. Replace M by M sr and hence Mξ by M sr
ξ . The symplectic form ωξ

on the reduced phase space Mξ was defined by the sequence

M
ιξ←− µ−1(ξ)

πξ−→Mξ = µ−1(ξ)/Gξ

and the relation π∗ξωξ = ι∗ξω. Let φt be the flow onM of the Hamilton vector
field vH of the function H. Since H is invariant under G all component
functions µX of the moment map Poisson commute with H. Hence the flow
φt preserves the fiber µ

−1(ξ) and commutes with the action of Gξ on µ
−1(ξ).

The induced flow φξ,t on Mξ is defined by φξ,tπξ = πξι
−1
ξ φtιξ. Hence

π∗ξφ
∗
ξ,tωξ = ι∗ξφ

∗
t ι

∗−1
ξ π∗ξωξ = ι∗ξφ

∗
tω = ι∗ξω = π∗ξωξ

and because πξ is a submersion we conclude that φ∗ξ,tωξ = ωξ. Therefore the
flow φξ,t on Mξ preserves the reduced symplectic form ωξ as should.

It remains to check that the infinitesimal generator of the flow φξ,t is
equal to the Hamilton field of Hξ, where the function Hξ on Mξ is charac-
terized by Hξπξ = Hιξ. If we denote for a point x ∈ µ−1(ξ) and a tangent
vector vx ∈ Txµ−1(ξ) by vπξx

.
= (Txπξ)vx ∈ TπξxMξ the image of vx under

Txπξ then

(dHξ)πξxvπξx = (d(Hξπξ))xvx = (dHιξ)xvx = (ι∗ξ dH)xvx =

−(ι∗ξω)x((vH)x, vx) = −(π∗ξωξ)x((vH)x, vx) = −(ωξ)πξx((vH)πξx, vπξx)

which in turn implies that the Hamilton field of the function Hξ on (Mξ, ωξ)
is equal to the image under Tπξ of the vector field vH restricted to µ−1(ξ).
In other words, the Hamiltonian flow φt of H on µ−1(ξ) projects via πξ to
the Hamiltonian flow φξ,t of Hξ on Mξ.
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Definition 5.20. Equilibrium points of the reduced Hamiltonian system
(M sr

ξ , ωξ,Hξ) are called relative equilibria of the original Hamiltonian system
(M,ω,H) with symmetry group G.

The notion of relative equilibria was already encountered (by Christiaan
Huygens) in the example of the spherical pendulum.

5.4 Symplectic Reduction for Cotangent Bundles

Let N be a connected manifold and let G×N → N be a smooth action of
a connected Lie group G on N . The induced action G × T ∗N → T ∗N on
the cotangent bundle (M = T ∗N,ω = d θ) is Hamiltonian by Theorem 5.10
with moment map µ : T ∗N → g∗ given by (the equality of functions on N)

µX ◦ α = iXN
α

with α ∈ Ω1(N) also viewed as a section in the cotangent bundle M → N
and XN ∈ X (N) the infinitesimal vector field of X ∈ g on N . Under a
suitable condition on the regular value ξ ∈ µ(M), namely the existence of a
smooth 1-form αξ on N as below, the reduced symplectic manifold (Mξ, ωξ)
is given by the following theorem of Abraham and Marsden [1].

Theorem 5.21. Suppose G × N → N is a smooth action with induced
moment map µ : T ∗N → g∗ given by

µX ◦ α = iXN
α

with α ∈ Ω1(N) and XN ∈ X (N) the infinitesimal vector field of X ∈ g.
Let ξ ∈ µ(M) be a regular value of the moment map, and suppose that there
exists a Gξ-invariant 1-form αξ ∈ Ω1(N) with µ ◦ αξ equal to the constant
function ξ on N . If Gξ is compact and acts freely on µ−1(ξ) then there exists
a smooth symplectic embedding

φξ :Mξ →֒ T ∗(N/Gξ)

from the reduced symplectic manifold (Mξ, ωξ) at the point ξ ∈ g∗ into the
cotangent bundle T ∗(N/Gξ) equipped with the twisted symplectic form

d θ + π∗ dαξ = d(θ + π∗αξ) .

Here d θ is the canonical symplectic form on T ∗(N/Gξ) and

π : T ∗(N/Gξ)→ N/Gξ

is the natural projection map.
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Proof. For 0 ∈ g∗ a (strongly) regular value of the moment map µ the space

µ−1(0) = {p ∈ T ∗
qN ; p(Xq) = 0 ∀X ∈ g} = {p ∈ T ∗

qN ; p(Tq(Gq)) = 0}

is a smooth submanifold of M , and the natural map

φ0 :M0 = µ−1(0)/G→ T ∗(N/G)

is a diffeomorphism, and even a symplectomorphism from the symplectic
reduction (M0, ω0) to the cotangent bundle (T ∗(N/G),d θ). Likewise for
ξ ∈ g∗ we have an embedding

φ0,ξ : µ
−1(0)/Gξ → T ∗(N/Gξ)

with the property that π∗0,ξφ
∗
0,ξ(d θ) = ι∗0ω on µ−1(0). By abuse of notation

d θ is now the canonical symplectic form on T ∗(N/Gξ), and the maps

ι0 : µ
−1(0) →֒M , π0,ξ : µ

−1(0)→ µ−1(0)/Gξ

are the natural embedding and the natural submersion respectively.
Under the hypothetical existence of a differential αξ ∈ Ω1(N), which is

invariant under Gξ and satisfies µ ◦ αξ = ξ, the translation map

Ω1(N)→ Ω1(N) , α 7→ (α − αξ)

induces under the usual assumption that both 0 and ξ are (strongly) regular
values of the moment map µ a diffeomorphism

ψξ : µ
−1(ξ)→ µ−1(0)

of manifolds. Since ψξ is equivariant for the locally free (free) action of Gξ
there is a natural embedding

φξ :Mξ →֒ T ∗(N/Gξ)

such that the composition φ0,ξπ0,ξψξ = φξπξ holds. Here πξ : µ
−1(ξ) →Mξ

is the quotient map for the action of Gξ in the usual notation. The discussion
so far can be summarized in a commutative diagram

µ−1(ξ)
ψξ−−−−→ µ−1(0)

πξ





y





y

φ0,ξπ0,ξ

Mξ
φξ−−−−→ T ∗(N/Gξ)
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The twisted cotangent bundle was introduced in Exercise 3.6. Using
Exercise 5.9 the diffeomorphism ψξ : µ

−1(ξ)→ µ−1(0) induced by the map

Ω1(N)→ Ω1(N) , α 7→ (α − αξ)

relates the restriction to µ−1(ξ) of the canonical symplectic form ω on T ∗N
to the restriction to µ−1(0) of the twisted symplectic form ωαξ

on T ∗N . This
induces a smooth symplectic embedding

φξ :Mξ →֒ T ∗(N/Gξ)

relative to reduced symplectic form ωξ on the reduced space Mξ and the
twisted symplectic form d θ+π∗ dαξ on the cotangent bundle T ∗(N/Gξ).

Remark 5.22. The following remark concerning the symplectic reduction
of the cotangent bundle is due to Ortega and Ratiu [43]. Under the above
assumptions there is a commutative diagram

µ−1(ξ) −−−−→ Mξ = µ−1(ξ)/Gξ
φξ−−−−→ T ∗(N/Gξ)





y

ι ∼=





y
δ





y

π

µ−1(Gξ) −−−−→ Mξ
∼= µ−1(Gξ)/G

φGξ−−−−→ T ∗(N/G)

with the top horizontal line as discussed in the above theorem. The left
vertical arrow in an immersion, the middle vertical arrow a diffeomorphism
and the right vertical arrow a submersion. The top horizontal map φξ is an
immersion with codimension of the image equal to the dimension of G/Gξ.
The bottom horizontal map φGξ is a submersion with dimension of the fiber
equal to the dimension of G/Gξ. In turn this realizes the reduced manifold
Mξ as a fiber bundle with base T ∗(N/G) and fiber the coadjoint orbit Gξ. The
map φξ is a diffeomorphism of the reduced manifold Mξ onto the cotangent
bundle T ∗(N/G) if and only if Gξ = G.

Under suitable conditions there is a natural choice for the smooth 1-form
αξ on N with values in µ−1(ξ) as required in the above theorem. Suppose
that the stabilizer group Gξ of ξ ∈ g∗ is equal to all of G. In addition let G be
compact and act freely on N , so that the quotient space N/G is a manifold.
Under these assumptions the map φξ :Mξ →֒ T ∗(N/G) is a diffeomorphism.
The element ξ defines a bi invariant 1-form ξ on G and likewise an invariant
1-form ξ on any orbit of G on N . Let g be a Riemannian metric on N , which
is invariant under the action of G. Using the Riemannian structure there
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exists a unique 1-form αξ on N , which vanishes in the direction normal to
the orbits and restricts to ξ along the orbits of G on N . By Theorem 5.10
we get µ ◦ αξ = ξ as desired.

Theorem 5.23. Let (N, g) be a Riemannian manifold with a compact Lie
group G acting freely on N by isometries. Let ξ ∈ g∗ be a regular value
of the moment map µ : T ∗N → g∗ with Gξ = G. Then the smooth map
φξ : Mξ → T ∗(N/G) is a symplectomorphism from the reduced symplectic
manifold (Mξ, ωξ) onto the cotangent bundle T ∗(N/G) with its canonical
symplectic form.

Proof. By our discussion above we only have to show that dαξ = 0, which in
turn implies that the twisted symplectic form and the canonical symplectic
form on T ∗(N/G) coincide.

Any left and right invariant 1-form α on a Lie group is closed. Indeed,
this follows from the Cartan formula Lvα = d iv α + iv dα. If v is a left
invariant vector field X on G and α a left invariant 1-form on G, then iX α
is a left invariant and hence constant function on G. Therefore d iX α = 0.
On the other hand, the flow of X is given by right multiplication with
exp(tX). Since α is also right invariant we get LXα = 0. Hence iX dα = 0
for all X ∈ g and so dα = 0.

Applied to our setting this means that for a regular value ξ ∈ g∗ with
gξ = g the 1-form ξ on G is closed. In turn this implies that the 1-form
αξ ∈ Ω1(N) is also closed. Indeed, in tubular neighborhood coordinates
around an orbit Gx in N the form αξ is just the pullback of ξ under the
normal bundle projection map N(Gx) → Gx. Since pullback commutes
with exterior derivative we conclude that dαξ = 0, which in turn implies
that the twisted symplectic structure on the cotangent bundle T ∗(N/G) is
just the canonical symplectic structure.

Conclusion 5.24. Let G×N → N be an action of a compact connected Lie
group on a Riemannian manifold (N, g) preserving the Riemannian metric.
Let θ be the tautological 1-form on T ∗N and ω = d θ the canonical symplectic
form. The action of G on T ∗N is Hamiltonian with moment map

µX ◦ α = iXN
α

for all X ∈ g and α ∈ Ω1(N), also viewed as section of the natural cotangent
bundle projection π : T ∗N → N . The Riemannian metric induces a vector
bundle isomorphism g : TN → T ∗N mapping a vector field v ∈ X (N) to
the corresponding 1-form α = g(v) ∈ Ω1(N). Let K(α) = g(v, v)/2 be
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the kinetic energy viewed as function on T ∗N , which was also encountered
before in Theorem 3.12. Let V ∈ F(N) be a potential energy function, which
is invariant under the action of G. If the Hamiltonian H is defined as the
sum of kinetic and potential energy

H = (K + V ◦ π) : T ∗N → R

then the Hamiltonian system

(T ∗N,d θ,H)

is called the Newtonian system on the Riemannian manifold (N, g) with
potential V ∈ F(N).

Let the action G × N → N be free, and let ξ ∈ g∗ be a regular value
of the moment map µ with stabilizer group Gξ equal to all of G. Then the
symplectic reduction at the point ξ of the Newtonian system (T ∗N,d θ,H)
is again a Newtonian system. The reduced Newtonian system lives on the
cotangent bundle T ∗(N/G) of N/G with its canonical symplectic structure.
The reduced Riemannian metric on N/G is the natural one induced from
the Riemannian metric on N . The reduced Hamiltonian Hξ has reduced
kinetic energy corresponding to this reduced Riemannian metric. However
the reduced (or effective or amended) potential energy is given by

Vξ = V +K(αξ)

with V the natural function on N/G obtained from the original invariant
potential V on N . Here we use that g(v,w) = 0 for g(v) = αξ and g(w) the
pull back under the quotient map N ։ N/G of an element of Ω1(N/G). The
stationary points of the effective potential Vξ are equilibrium points for the
reduced Newtonian system and are called relative equilibria for the original
Newtonian system.

The above result in the setting of a general Lie group symmetry goes back
to the work of Smale [50] with refinements due to Satzer [48] and Kummer
[30]. But in particular examples, notably with symmetry group the circle
group U1(C) or the rotation group SO3(R), this is the truely centuries old
idea that polar or spherical coordinates in problems of circular or rotational
symmetry are helpful to reduce the number of variables.

Example 5.25. The spherical coordinates on S
2 minus north and south pole

are given by

(R/2πZ)× (0, π) ∋ (φ, θ) 7→ r = (cosφ sin θ, sinφ sin θ, cos θ) ∈ S
2
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and in these coordinates the Riemannian metric becomes

(d s)2 = (sin θ)2(dφ)2 + (d θ)2

by the chain rule. The Lie group G = R/2πZ acts on S
2 by rotations around

the third axis. The Lie algebra g = R has standard generator the vector field
d /dφ, and the dual vector space g∗ = R has standard generator the 1-form
dφ. In these coordinates the total energy H and the angular momentum
J = L3 of the spherical pendulum become

H = (φ̇ sin θ)2/2 + (θ̇)2/2 + cos θ , J = φ̇(sin θ)2

and so the effective potential VJ(θ) is given by

HJ = (θ̇)2/2 + VJ(θ) , VJ(θ) = cos θ +
J2

2(sin θ)2

relative to the canonical symplectic form d θ̇ ∧ d θ.

V (θ) = cos θ

VJ(θ)

0 π

The stationary points of the effective potentials VJ for J 6= 0 correspond to
the stable relative equilibria of the spherical pendulum as found by Huygens.
Indeed, the stability of these relative equilibria is a consequence of the fact
that these stationary points are nondegenerate minima.

5.5 Geometric Invariant Theory

Let K be a closed connected subgroup of the unitary group U(V, h) of a
complex vector space V , equipped with a Hermitian inner product h. In
turn K is a compact connected Lie group, and any such K occurs in the
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above way for some pair (V, h). The complexification G of K is a holomor-
phic (and even algebraic) subgroup of the general linear group GL(V ). By
definition any such G is called a complex reductive algebraic group. The
remarkable interplay between a connected compact linear Lie group K and
its complex connected reductive algebraic complexification G goes back to
Hermann Weyl, who called it the ”unitary trick”. The unitary trick gives
a bridge between the smooth topological world of connected compact Lie
groups and the algebraic geometric world of complex connected reductive
algebraic groups.

Theorem 5.26. Let ρ : G → GL(W ) be a representation of a reductive
complex Lie group G on a finite dimensional complex vector space W . Then
any invariant linear subspace U of W has an invariant complement U⊥, and
so W = U ⊕ U⊥ is a direct sum of two subrepresentations.

Proof. Given a compact real form K of G we can average an arbitrary
Hermitian inner product on W over K with respect to the normalized Haar
measure, and obtain a Hermitian inner product that is invariant under K.
Let U⊥ be the orthogonal complement of U with respect to this Hermitian
form. Then the direct sumW = U⊕U⊥ is invariant underK, or equivalenty
the orthogonal projection P : W → U (with kernel U⊥) commutes with
K. Let σ : G → GL(End(W )) be the natural representation defined by
σ(a)A = ρ(a)Aρ(a−1) for a ∈ G and A ∈ End(W ). Hence P ∈ EndW
is a fixed vector for K, and hence also for G. In turn this implies that G
preserves the decomposition W = U ⊕ U⊥.

The following theorem was obtained by Weyl as an application of the
unitary trick.

Theorem 5.27. Let ρ : G → GL(W ) be a representation of a reductive
complex Lie group G on a finite dimensional complex vector space W . Let
PW = ⊕P dW be the commutative algebra of polynomial functions on W ,
and let Pρ = ⊕P dρ : G → GL(PW ) be the natural representation of G on
PW , defined by Pρ(a)f(w) = f(ρ(a−1)w). Let (PW )G be the algebra of
invariant polynomials on W . Then there exists a linear (Reynolds) operator
R : PW → PW , such that R(P dW ) ⊂ (P dW )G for all d (so R preserves
the degree), R2 = R (so R is a projection operator) and R(fg) = fR(g) for
f ∈ (PW )G and g ∈ PW .

Proof. Just take for the Reynolds operator

Rf(w) =

∫

K
f(ρ(a−1)w)dµ(a)
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with µ the normalized Haar measure on K, and use that (PW )G = (PW )K .

Using the Hilbert basis theorem we obtain the finite generation for the
algebra of invariant polynomials of a reductive group.

Theorem 5.28. Let ρ : G → GL(W ) be a representation of a reductive
complex Lie group G on a finite dimensional vector space W . Then the
commutative algebra (PW )G is finitely generated.

Proof. Let I+ be the ideal of PW generated by the homogeneous invariant
polynomials of positive degree. By the Hilbert basis theorem any ideal of
P (W ) is finitely generated, so

I+ = f1PW + · · ·+ fkPW

for some homogeneous invariant polynomials f1, · · · , fk of positive degree.
We claim that f1, · · · , fk generate the commutative algebra (PW )G. Indeed,
let f ∈ (PW )G be a homogeneous invariant polynomial of degree d > 0.
Then f ∈ I+ and therefore

f = f1g1 + · · ·+ fkgk

for some homogeneous polynomials g1, · · · , gk in PW of degree strictly less
than d. By application of the Reynolds operator R we can assume that
g1, · · · , gk are invariant polynomials of degree strictly less than d. Hence
the result follows by induction on the degree d of the invariant polynomial
f .

The projective space P(V ) has the polynomial algebra PV as the graded
coordinate algebra. Suppose M is a compact holomorphic (hence complex
algebraic by the GAGA principle of Serre) submanifold of P(V ) with coordi-
nate algebra PV/I(M) and I(M) the graded ideal of polynomials vanishing
on M . If G leaves the space M invariant, then we like to describe the
”points” of the quotient spaceM�G with coordinate algebra (PV )G/I(M),
which is finiteley generated by Weyl’s theorem.

Mumford’s answer to this question was given in his book on Geometric
Invariant Theory from 1965 (when Mumford was just 28 years old), and
goes as follows. A vector [v] ∈M is called unstable if the orbit Gv contains
the origin 0 ∈ V in its closure. If Gv does not contain 0 in its closure then
[v] ∈ M is called semistable. In the latter case [v] ∈ M is called stable if
both the orbit Gv is closed in V and the stabilizer group Gv is finite. If
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[v] ∈ M is semistable but not stable then it is called polystable (or strictly
semistable). Therefore we have disjoint unions

M =M ss ⊔Mus , M ss =M s ⊔Mps

of the semistable locus M ss and the unstable locus Mus (also called the
nilcone) for M , and of the stable locus M s and the polystable locus Mps for
M ss.

The minimal semistable locus Mmss is the set of all semistable points
[v] ∈M with Gv closed in V . Clearly

Mmss =M s ⊔Mmps

withMmps the (minimal polystable) complement ofM s inMmss. In general
the algebra (PV )G of invariant polynomials need not separate the orbits of
G on M . Indeed, if G[v] lies in the closure of G[w] for [v], [w] ∈M then the
graded algebra (PV )G = ⊕(P dV )G takes the same value on G[v] and G[w].
Mumford showed that essentially this is the only exception for separation
of orbits by invariants. In other words, the algebra of invariants is the
coordinate algebra of

M�G =Mmss/G

whose ”points” are the orbits of G inMmss. The results below together with
Theorem 5.17 imply that this ”GIT-quotient” is smooth at those orbits G[v]
with Gv closed in V and Gv trivial. It is possibly mildly singular (with
finite quotient singularities) at orbits in M s, and most singular at orbits of
Mmps. The following result is due to Kempf and Ness [26], and we refer
to lecture notes by Woodward for an exposition of the proof [60]. Another
recent reference is Georgoulas, Robbin and Salamon [14].

Theorem 5.29. For K < U(V, h) a compact connected linear Lie group
and G < GL(V ) its reductive complexification the restriction of the norm
function v 7→ h(v, v)/2 on V to an orbit Gv has as critical points only
minima, and such critical points exist if and only if Gv is a closed subset
of V . If this minimum is attained at v then Kv consists of all minima of
the norm function on Gv and the transverse Hessian of the norm function
along Kv is nondegenerate.

The Kempf–Ness theorem implies that [v] ∈ M is minimal semistable
if and only if Gv is closed in V . The following result of Guillemin and
Sternberg [17] is an important consequence. It can be considered as an
elaboration of the unitary trick for GIT.
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Theorem 5.30. Under suitable regularity assumptions we have an isomor-
phism M �G ∼= M0 between the GIT-quotient M �G and the symplectic
quotient M0 = µ−1(0)/K. Here µ : M → k∗ is the moment map for the
Hamiltonian action of K on the symplectic manifold M with repect to the
Fubini–Study form ωFS on M . Finally the symplectic quotient M0 inher-
its a natural structure of Kähler manifold with Kähler form ω0 obtained by
symplectic reduction at 0 ∈ k∗ of the Fubini–Study form ωFS on M .

Proof. The regularity assumption is that 0 is a regular value of the moment
map µ : M → k∗ and therefore µ−1(0) is a smooth submanifold of M and
the action of K on µ−1(0) is locally free. By Corollary 5.12 the moment
map is given by

µ :M → k∗ , µX([v]) =
h(Xv, v)

2πih(v, v)

for all X ∈ k and [v] ∈M .
In turn we get µX([v]) = 0 for [v] ∈ M and all X ∈ k if and only if

(say h(v, v) = 1) we have h(Xv, v) = 0 for all X ∈ k, or equivalently if
and only if h(Zv, v) = 0 for all Z ∈ g. But this means that the norm
function on Gv has a critical point at v. By the theorem of Kempf and
Ness this implies that [v] ∈ Mmss and we conclude that µ([v]) = 0 if and
only if the norm function of the orbit Gv has a minimum along Kv. Hence
µ−1(0)/K =M0

∼=M�G.

The Guillemin–Sternberg theorem is expressed as the principle that
”quantization commutes with reduction”, or in short [Q,R] = 0. The
quantization of the symplectic manifold (M,ωFS) is the coordinate algebra
PV/I(M) and its quantum reduction, which is the algebra (PV )G/I(M)G

of invariants in PV/I(M), equals the coordinate algebra (or quantization)
of the classical symplectic reduction (M0, ω0). However, the two natural
Hilbert space structures on PV/I(M) and (PV )G/I(M)G coming from the
Liouville volume forms on (M,ωFS) and (M0, ω0) respectively do not match,
and presumably a correction term coming from the Fubini theorem needs to
be added [20].

5.6 Exercises

Exercise 5.1. Show that a left invariant vector field on a Lie group is always
complete.

Exercise 5.2. Show that the connected component of the identity G◦ of a
Lie group G is the subgroup of G generated by exp(g). Under the condition
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that G is a connected Lie group conclude that in Theorem 5.1 the Lie group
homomorphism φ : G → H is completely determined by the Lie algebra
homomorphism φ : g→ h.

Exercise 5.3. Show that the formula (ρ(a)f)(x) = f(a−1x) for f ∈ F(M)
and a, x ∈ G satisfies ρ(ab) = ρ(a)ρ(b) for all a, b ∈ G with the product on
the right hand side being composition of linear operators on F(M).

Exercise 5.4. Show that Ad(ab) = Ad(a)Ad(b) for all elements a, b in a
Lie group G.

Exercise 5.5. Check the relation ad(X)Y = [X,Y ] for all X,Y in the Lie
algebra g of a linear Lie group G.

Exercise 5.6. Prove Theorem 5.9.

Exercise 5.7. Verify that the moment map in Theorem 5.10 given by the
formula µX = ιXM

θ is indeed equivariant.

Exercise 5.8. Show that the quotient space M/G for a continuous action of
a compact topological group G on a topological Hausdorff space M is again
Hausdorff.

Exercise 5.9. Let π : M = T ∗N → N be a cotangent bundle with its
canonical symplectic form ω = d θ. Let α ∈ Ω1(N) be a fixed 1-form on
N and consider α : N → T ∗N also as a section in the cotangent bundle
π : T ∗N → N . Let

tα :M →M , tα(ξ) = ξ + απ(ξ)

be the translation over α in the fibers of the cotangent bundle. Show that tα
is a diffeomorphism of M . Show that

t∗αθ = θ + π∗α

and conclude that
t∗αω = ωα

with ωα = ω+π∗(dα) = d(θ+π∗α) the twisted symplectic form on M . Hint:
Rewrite (t∗αθ)ξ = θtα(ξ) ◦ Tξtα = · · · = θξ + (π∗α)ξ for ξ ∈ TxN .

Exercise 5.10. Show that the moment map for a coadjoint orbit (M,ωKK)
in g∗ for the coadjoint action of G is equal to minus the identity.
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Exercise 5.11. Show that for a transitive Hamiltonian action G×M →M
of a connected Lie group G on a connected symplectic manifold (M,ω) the
moment map is a local diffeomorphism onto a coadjoint orbit.

Exercise 5.12. Show that in the coordinates on the two sphere S
2 minus

north and south pole

(R/2πZ)× (0, π) ∋ (φ, θ) 7→ r = (cosφ sin θ, sinφ sin θ, cos θ) ∈ S
2

the Riemannian metric on S
2 induced by the embedding S

2 →֒ R
3 is given

by
(d s)2 = (sin θ)2(dφ)2 + (d θ)2 .

Moreover the angular momentum L on T ∗
S
2 ∼= TS2 is given by

L = r× v = r× ṙ = r× (rφφ̇+ rθθ̇)

with in turn implies that J = L3 = (sin θ)2φ̇. Conclude that the effective
potential for the spherical pendulum is equal to

VJ(θ) = cos θ +
J2

2(sin θ)2

as given in Example 5.25. Check that for all J 6= 0 the effective potential VJ
has a nondegenerate minimum corresponding to the stable relative equilibria
as found by Huygens.
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