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Abstract. These notes are based on the introductory mini-course on Dirac

Geometry given at the 10th International Young Researcher Workshop on Ge-
ometry, Mechanics and Control, Institut Henri Poincaré, Paris, January 13-15,

2016. The notes are focused on canonical operations with Dirac structures, but

they do not cover some important topics in Dirac geometry, e.g. twisted Dirac
structures, cohomology and deformations, coisotropic submanifolds, represen-

tation by spinors, generalized complex structures, Lie algebroids, integration

by presymplectic Lie groupoids etc. Also, many proofs are just sketched and
left as exercises, or are even completely omitted. For more on Dirac Geometry,

I warmly recommend [2, 4, 9].
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1. Lagrangian subspaces in (V ⊕ V ∗, (·, ·))

1.1. Let V be a real vector space of dimension n. We denote

V := V ⊕ V ∗ = {v + α : v ∈ V, α ∈ V ∗}.
This space carries a bilinear symmetric 2-form of signature (n, n):

(V, (·, ·)), (v + α,w + β) := α(w) + β(v).

1.2. A linear subspace L ⊂ V is said to be a Lagrangian subspace if it satisfies:

(a) (L,L) = 0;
(b) dimL = n.

1.3. Exercise. Show that a subspace L ⊂ V is Lagrangian if and only if it satisfies
the following maximality condition:

∀ v + α ∈ V : (L, v + α) = 0 ⇐⇒ v + α ∈ L.

1.4. We denote the space of all Lagrangian subspaces of V by Lag(V). Then
Lag(V) is a compact submanifold of the Grassmanian of n-subspaces in V: Gr(n;V)
of

dim Lag(V) =

(
n

2

)
=
n(n− 1)

2
.

Charts on Lag(V) will be described below.
1



2 IOAN MĂRCUT,

1.5. Examples. V ∈ Lag(V) and V ∗ ∈ Lag(V). The annihilator of a linear
subspace W ⊂ V is denoted:

W ◦ := {α ∈ V ∗ : α|W = 0}.
For every linear subspace W ⊂ V , we have that

LW := W ⊕W ◦ ∈ Lag(V).

1.6. Lemma. Denote by pV : V → V the projection pV (v + α) := v. Then, for
every L ∈ Lag(V), we have that

ker pV |L = L ∩ V ∗ = (pV (L))◦.

Proof. The first equality is obvious. Denote W := pV (L). Note that:

(L,W ◦) = (pV (L),W ◦) = (W,W ◦) = 0.

By 1.3, we have that W ◦ ⊂ L; thus W ◦ ⊂ L ∩ V ∗ = ker pV |L. The other inclusion
follows from the dimension count:

dim(W ◦) = n− dim(W ) = dim(L)− dim(pV (L)) = dim(ker pV |L).

1.7. The Lagrangian subspaces L1, L2 ∈ Lag(V) are said to be transverse, de-
noted by L1 t L2, if L1 +L2 = V. This condition is equivalent L1∩L2 = 0, and also
to V = L1⊕L2. Such a decomposition of V is called a Lagrangian splitting, and
L2 is called a Lagrangian complement of L1. Note that a Lagrangian splitting
V = L1 ⊕ L2 gives a linear isomorphism

L2
∼−→ L∗1,

v + α ∈ L2 7→ (v + α, ·)|L1
: L1 → R.

1.8. Exercise. Prove that for every L ∈ Lag(V) has a Lagrangian complement.

1.9. Example. Let us determine the set of Lagrangian subspaces L ∈ Lag(V)
transverse to V ∗, i.e. L ∩ V ∗ = 0. By Lemma 1.6, also equivalent to

pV |L : L ∼−→ V being a linear isomorphism.

The inverse of this map has the form v 7→ v + Av, where A : V → V ∗ is a linear
map. Thus, L must be of the form:

L = {v +Av : v ∈ V }.
Condition (a), (L,L) = 0 gives:

Av(w) +Aw(v) = 0 ∀ v, w ∈ V ;

which is equivalent to A being skew symmetric: A∗ = −A, where A∗ : V → V ∗.
Such maps are in 1-1 correspondence with the space

∧2
V ∗ of skew-symmetric 2-

forms on V ; the correspondence is given by:

2∧
V ∗ ∼−→ {A : V → V ∗ : A∗ = −A},

ω 7→ A ⇐⇒ Av = ιvω,

where ιv :
∧2

V ∗ → V ∗ denotes interior product with v ∈ V . Hence, L is of the
form

V ω := {v + ιvω : v ∈ V } ∈ Lag(V).

We conclude that the map

2∧
V ∗ −→ Lag(V), ω 7→ V ω

gives a local parameterization of the open subset of Lag(V) consisting of Lagrangian
subspaces L so that L t V ∗.
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1.10. Example. Interchanging the roles of V and V ∗ in 9, we conclude that
∧2

V
parameterizes the open neighborhood of V ∗ in Lag(V) consisting of Lagrangian

subspaces transverse to V . Namely, for π ∈
∧2

V , we denote the induced skew-
symmetric map by

π] : V ∗ −→ V, π](α)(β) := π(α, β),

and denote the corresponding Lagrangian subspace by:

V ∗π := {π](α) + α : α ∈ V ∗}.
Then, these Lagrangian subspaces transverse to V are parameterized by:

2∧
V −→ Lag(V), π 7→ V ∗π .

1.11. By Exercise 1.8, any Lagrangian L ∈ Lag(V) has a Lagrangian complement
C, and by 1.7, C ∼= L∗. The analysis from 9 can be applied to parameterize an
open neighborhood of L by the vector space

∧2
L∗. This produces charts on Lag(V),

which can be used to construct a smooth atlas on the manifold Lag(V).

1.12. Main Example. This is a combination of 1.5 and 1.9. Consider a linear
subspace W ⊂ L and a 2-form ω ∈

∧2
W ∗. Define:

L(W,ω) := {v + ιvω̃ + α : v ∈W α ∈W ◦},

where ω̃ ∈
∧2

V ∗ is any 2-form extending ω:

ω̃|W = ω.

Note that the construction is independent of the chosen extension: If ω̃′ ∈
∧2

V ∗

is a second such extension, the for any v ∈ V we have that

η(v) := ιv(ω̃
′ − ω̃) ∈W ◦,

and therefore

v + ιvω̃
′ + α = (v + ιvω) + (η(v) + α) ∈ L(W,ω).

It is easy to see that

L(W,ω) ∈ Lag(V).

1.13. Theorem. For every L ∈ Lag(V) there exists a unique subspace W ⊂ V and

a unique 2-form ω ∈
∧2

W ∗ so that L = L(W,ω). These are defined as follows:

W := pV (L), ω(v1, v2) := α1(v2) = −α2(v1), v1 + α1, v2 + α2 ∈ L.

Proof. Let W := pV (L). By Lemma 1.6, we have the exact sequence of vector
spaces:

0 −→W ◦ −→ L
pV−→W −→ 0.

A splitting of the surjection pV |L : L→W has the form

W −→ L, v 7→ v +Av,

where A : W → V ∗. Fixing such a splitting, L can be written as:

L = {v +Av + η : v ∈W, η ∈W ◦}.
Condition (L,L) = 0 is equivalent to (Av)(w) + (Aw)(v) = 0 for all v, w ∈ W .
Therefore, the map

W −→W ∗, v 7→ Av|W
is skew-symmetric, and so, it is given by a 2-form ω ∈

∧2
W ∗:

Av|W = ιvω.
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If ω̃ ∈
∧2

V ∗ an extension of ω, then, Av − ω̃v ∈ W ◦ for all v ∈ W . This implies
that:

L = {v+Av+η : v ∈W, η ∈W ◦} = {v+ ιvω̃+η : v ∈W, η ∈W ◦} = L(W,ω).

Finally, consider v1 + α1, v2 + α2 ∈ L. Then αi = ιviω + ηi, with ηi ∈ W ◦; and
therefore:

α1(v2) = ιv1ω(v2) = ω(v1, v2) = . . . = −α2(v1).

1.14. Exercise. Prove that Lag(V) has two connected components which can be
described by:

Lag(V)od = {L(W,ω) : dim(W ) ≡ 1 mod 2}
Lag(V)ev = {L(W,ω) : dim(W ) ≡ 0 mod 2}.

1.15. Scalar multiplication. We define an action of (R\{0}, ·) on Lag(V):

t · L := {v + tα : v + α ∈ L}, t 6= 0, L ∈ Lag(V).

In fact this action is generated by a vector field X ∈ X(Lag(V)), whose flow is

φtX(L) = et · L.

Writing L = LωW , as in Theorem 1.13, scalar multiplication becomes just rescaling
of the 2-form ω:

t · L(W,ω) = L(W, tω).

1.16. Exercise. Prove that the zeroes of the vector field X from 1.15 are given by

XL = 0 ⇐⇒ L ∈ {LW : W ⊂ V }.

1.17. Product of Lagrangian subspaces. One can define a product on Lag(V):

? : Lag(V)× Lag(V) −→ Lag(V),

L1 ? L2 = {v + α1 + α2 : v + α1 ∈ L1, v + α2 ∈ L2}.
Let us check that L1?L2 ∈ Lag(V). Let v+α1, w+β1 ∈ L1 and v+α2, w+β2 ∈ L2.
Then we have that:

(v + α1 + α2, w + β1 + β2) = (v + α1, w + β1) + (v + α2, w + β2) = 0;

therefore (L1 ? L2, L1 ? L2) = 0. Denote Wi := pV (Li). By the definition of the
product, we have that:

pV (L1 ? L2) = W1 ∩W2.

On the other hand ker(pV |L1?L2
) consists of elements α1 + α2, with αi ∈ Li ∩ V ∗,

which, by Lemma 6, is equivalent to αi ∈ W ◦i . We conclude that ker(pV |L1?L2
) =

W ◦1 +W ◦2 , hence, L1 ? L2 fits in the short exact sequence:

0 −→W ◦1 +W ◦2 −→ L1 ? L2 −→W1 ∩W2 −→ 0.

Since W ◦1 +W ◦2 = (W1 ∩W2)◦, we obtain that:

dim(L1 ? L2) = dim(W1 ∩W2) + dim((W1 ∩W2)◦) = n.

Hence, L1 ? L2 ∈ Lag(V).

1.18. Exercise. Prove that, in the description of 1.13:

L1 = L(W1, ω1) and L2 = L(W2, ω2),

the product has the following geometric description:

L(W1, ω1) ? L(W2, ω2) = L(W1 ∩W2, ω1 + ω2).
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1.19. Properties of the product. Exercise 16 can be used to prove that the product
satisfies the following algebraic properties:

L1 ? L2 = L2 ? L1

(L1 ? L2) ? L3 = L1 ? (L2 ? L3)

L ? V = L = V ? L

L ? V ∗ = V ∗ = V ∗ ? L

t · (L1 ? L2) = (t · L1) ? (t · L2)

for all L1, L2, L3 ∈ Lag(V) and t 6= 0.

1.20. The product ? is not a smooth map on the entire Lag(V)× Lag(V), but
it is smooth when restricted to the open set:

U := {(L1, L2) : pV (L1) + pV (L2) = V } ⊂ Lag(V)× Lag(V).

Two Lagrangian subspaces L1, L2 so that pV (L1) + pV (L2) = V (i.e. (L1, L2) ∈ U)
will be called tangentially-transverse.

1.21. Exercise. Prove that the product restricted to the set U , defined in 1.20, is
smooth.

1.22. Gauge transformations. Note that for any ω ∈
∧2

V ∗, and any L ∈ Lag(V),
we have that V ω and L are t-transverse. Their product is denoted by:

Lω := V ω ? L = {v + ιvω + α : v + α ∈ L},
and is called the gauge transformation of L by ω. Note that the elements V ω

are precisely the invertible elements for the product ?.

1.23. Consider W ⊂ V and ω ∈
∧2

W ∗. If ω̃ ∈
∧2

V ∗ is an extension of ω, then
we have the decomposition:

L(W,ω) = Lω̃W .

1.24. Push forward and pull back operations. Consider now a second vector space
U and denote U := U ⊕ U∗. Let A : V → U be a linear map. The push forward
along A is the map:

A∗ : Lag(V) −→ Lag(U),

A∗(L) := {Av + β : v +A∗β ∈ L}.
The pull back along A is the map:

A∗ : Lag(U) −→ Lag(V),

A∗(L) := {v +A∗β : Av + β ∈ L}.

1.25. Exercise. The following items give a proof that the push forward and pull-
back maps are well-defined:

(a) For W ⊂ Lag(U) and ω ∈
∧2

W ∗, denote

A∗ω := (A|A−1W )∗ω ∈
2∧

(A−1W )∗.

Prove that

A∗(L(W,ω)) = L(A−1W,A∗ω).

The following relation might be useful: (A−1W )◦ = A∗(W ◦).
Conclude that A∗(L) ∈ Lag(V) for all L ∈ Lag(U).

(b) By exchanging the roles of V and V ∗, and of U and U∗, conclude also that
A∗(L) ∈ Lag(U) for all L ∈ Lag(V).
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1.26. A linear map A : V → U is said to be transverse to a linear subspace
W ⊂ U , denoted A tW , if

AV +W = U.

The pull back operation is not smooth globally (in A and L); an open set on which
it is smooth is given by pairs of transverse maps and Lagrangian subspaces:

O := {(A,L) : A t pU (L)} ⊂ Lin(V,U)× Lag(U).

1.27. Exercise. Prove that the pull back restricts to a smooth map on open set
O, defined in 1.26:

O −→ Lag(V), (A,L) 7→ A∗(L).

1.28. Exercise. Let A : V → U be a linear map. Prove the following relations for
the pullback along A:

A∗(U) = V, A∗(U∗) = Lker(A),

A∗(Uω) = V A
∗(ω), A∗(LW ) = LA−1W ,

A∗(L1 ? L2) = A∗(L1) ? A∗(L2).

where L1, L2 ∈ Lag(V), ω ∈
∧2

U∗, and W ⊂ U .
Prove the following relations for the push forward along A:

A∗(V ) = LAV , A∗(V
∗) = U∗, A∗(LW ) = LAW ,

where W ⊂ V is a linear subspace. Show that in general

A∗(L1 ? L2) 6= A∗(L1) ? A∗(L2)

Hint: use Lagrangian spaces of the form LW .

1.29. Duality. Note that V and V ∗ play symmetric roles; in fact for any construc-
tion there is a dual construction, in which V and V ∗ are interchanged. For example,
a dual version of Theorem 1.13 is: for every Lagrangian subspace L ∈ Lag(V) there

exists a unique subspace W ⊂ V and an unique element π ∈
∧2

V/W so that

L = L(W ◦, π) = {v + π̃](α) + α : α ∈W ◦, v ∈W}.

Also, one can define a dual product

~ : Lag(V)× Lag(V) −→ Lag(V)

L1 ~ L2 = {v1 + v2 + α : v1 + α ∈ L1, v2 + α ∈ L2},
for which the dual versions of 20-27 hold; in particular

A∗(L1 ~ L2) = A∗(L1) ~A∗(L2).

2. Dirac structures: definition and examples

2.1. Let M be a smooth manifold of dim(M) = n. Denote the direct sum of the
tangent and cotangent bundle of M by

TM := TM ⊕ T ∗M = {v + α : v ∈ TpM, α ∈ T ∗pM, p ∈M}.

This vector bundle carries a nondegenerate symmetric bilinear 2-form of signature
(n, n)

(TM, (·, ·)),
defined on each fiber TpM = TpM ⊕ T ∗pM as in the previous section.
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2.2. On the space of sections of TM we define the so-called Dorfman bracket,
which extends the Lie bracket of vector fields:

[·, ·] : Γ(TM)× Γ(TM) −→ Γ(TM),

[v + α,w + β] := [v, w] + Lvβ − ιwdα,

for

v, w ∈ X(M) := Γ(TM) and α, β ∈ Ω1(M) := Γ(T ∗M).

Using Cartan’s magic formula for the Lie derivative:

Lx = d ◦ ιx + ιx ◦ d, x ∈ X(M),

we can rewrite the Dorfman bracket in the following ways

[v + α,w + β] =[v, w] + Lvβ − ιwdα =

=[v, w] + Lvβ −Lwα+ d(α,w) =

=[v, w] + ιvdβ − ιwdα+ d(β, v),

each expression being useful in computations.

2.3. The Dorfman bracket satisfies the following relations:

(a) The Leibniz type relation:

[a1, fa2] = LpT (a1)(f)a2 + f [a1, a2].

(b) It is skew-symmetric up to an exact form:

[a1, a2] + [a2, a1] = d(a1, a2).

(c) It satisfies the Jacobi identity written in the following form:

[a1, [a2, a3]] = [[a1, a2], a3] + [a2, [a1, a3]].

(d) It preserves the metric (·, ·) in the following sense:

LpT (a1)(a2, a3) = ([a1, a2], a3) + (a2, [a1, a3]),

for all a1, a2, a3 ∈ Γ(TM) and all f ∈ C∞(M), where we have denoted

pT : TM −→ TM, pT (v + α) = v.

The Dorfman bracket is not a Lie bracket, in the sense that (Γ(TM), [·, ·]) is not
a Lie algebra, because the bracket is not skew-symmetric (b). The relations above
are precisely the axioms of a so-called Courant Lie algebroid, but this discussion is
outside of the scope of this lectures.

2.4. Exercise. Prove the relations from 2.3.

2.5. A vector subbundle L ⊂ TM is called a Lagrangian subbundle if for every
p ∈M , we have that Lp is a Lagrangian subspace of TpM ; equivalently, L satisfies

(a) (L,L) = 0;
(b) rank(L) = n = dim(M).

A Lagrangian subbundle is also called an almost Dirac structure on M .

2.6. A Lagrangian subbundle L ⊂ TM is called a Dirac structure on M , if it is
involutive:

[a1, a2] ∈ Γ(L), for all a1, a2 ∈ Γ(L).

We denote the set of all Dirac structures on M by Dir(M).

2.7. If L ∈ Dir(M), then for all a1, a2 ∈ Γ(L), we have that (a1, a2) = 0; therefore,
by 2.3 (b), we have that the bracket is skew-symmetric on Γ(L): [a1, a2] = −[a2, a1].
Thus, we have that (Γ(L), [·, ·]) is a Lie algebra.
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2.8. Exercise. Let L ⊂ TM be a Lagrangian subbundle. Prove that the map

Γ(L)× Γ(L)× Γ(L) −→ C∞(M), (a1, a2, a3) 7→ ([a1, a2], a3)

is C∞(M)-multi-linear and alternating. Conclude that there is unique 3-form on L

ΥL ∈ Γ
( 3∧

L∗
)

so that for all a1, a2, a3 ∈ Γ(L) and all p ∈M we have that:

(ΥL)p(a1,p, a2,p, a3,p) = ([a1, a2], a3)p.

2.9. Recall that, by 1.2, an element b ∈ TpM we have that

b ∈ Lp ⇐⇒ (b, Lp) = 0.

Therefore, by the previous exercise, we have that:
Proposition: A Lagrangian subspace L ⊂ TM is a Dirac structure on M if and

only if ΥL = 0.
This has the immediate consequence:
Corollary : Let L ⊂ TM be a Lagrangian subspace. If there exists an open dense

subset U ⊂M so that L|U ⊂ TU is a Dirac structure, then L is a Dirac structure.

2.10. Examples. We have that TM ∈ Dir(M), and the bracket on X(M) = Γ(TM)
is the usual bracket on vector fields. Also T ∗M ∈ Dir(M), and the bracket on
Ω1(M) = Γ(T ∗M) is trivial.

2.11. Presymplectic forms. Consider Lagrangian subspaces L ⊂ TM so that L t
T ∗M , i.e. Lp ∩ T ∗pM = 0 for all p ∈ M . By example 1.9, there exists a unique
2-form

ω ∈ Ω2(M) = Γ(

2∧
T ∗M)

so that

L = TMω = {v + ιvω : v ∈ TM}.

Let us prove that integrability of TMω is equivalent to ω being closed:

TMω ∈ Dir(M) ⇐⇒ dω = 0.

For all v, w ∈ X(M) we have that:

[v + ιvω,w + ιwω] = [v, w] + Lvιwω − ιwdιvω =

= [v, w] + (Lvιw − ιwLv)ω + ιwιvdω =

= [v, w] + ι[v,w]ω + ιwιvdω,

where we have used the relations

Lw = d ◦ ιw + ιw ◦ d and Lv ◦ ιw − ιw ◦Lv = ι[v,w].

The last term belongs to TMω iff ιwιvdω = 0 for all v, w ∈ X(M), which is
equivalent to dω = 0.

Thus, every closed 2-form ω ∈ Ω2
cl(M) can be regarded as a Dirac structure onM .

The pair (M,ω) is also called a presymplectic manifold, and ω a presymplectic
form; and if ω is nondegenerate, then it called a symplectic form, and (M,ω) a
symplectic manifold.
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2.12. Foliations. Recall that a (regular) foliation F of dimension r on M is a
decomposition

M =
⊔
λ∈Λ

Fλ,

where each Fλ ⊂ M is a connected, regularly immersed submanifold of M with
dim(Fλ) = r, and around every point in M there is a chart

(U, χ), χ : U ∼−→ Rr × Rn−r, χ(p) = (x(p), y(p))

so that the connected components of Fλ ∩ U correspond under χ to the parallel
r-planes Rr × {y0}, with y0 ∈ Rn−r. The submanifold Fλ are called the leaves of
the foliation.

A smooth subbundle W ⊂ TM (also called a distribution on M) is said to be
involutive, if

[Γ(W ),Γ(W )] ⊂ Γ(W ).

Recall: Frobenius Theorem. Involutive subbundles W ⊂ TM of rank(W ) = r
are in 1-1 correspondence with r-dimensional foliations F on M . Namely if F =
{Fλ}λ∈Λ is a foliation, then the corresponding involutive distribution is given by

TF :=
⊔
λ∈Λ

TFλ ⊂ TM.

Conversely, let W ⊂ TM be an involutive distribution. Then the corresponding
foliation F with leaves {Fλ}λ∈Λ can be described as follows: two point p, q ∈ M
belong to the same leaf iff there exists a smooth path γ : [0, 1]→M so that:

γ(0) = p, γ(1) = q,
d

dt
γ(t) ∈Wγ(t), ∀ t ∈ [0, 1].

To any distribution W ⊂ TM one can associate the Lagrangian subbundle

LW := W ⊕W ◦ ⊂ TM.

We have that LW is a Dirac structure on M if and only if W is involutive. Thus,
the class of Dirac structures on M includes foliations on M .

2.13. Exercise. For a distribution W ⊂ TM , prove that LW ∈ Dir(M) iff W is
involutive.

2.14. Poisson structures. A Poisson structure on M is a bilinear operation

{·, ·} : C∞(M)× C∞(M) −→ C∞(M),

satisfying:

(a) skew-symmetry:
{f, g} = −{g, f},

(b) the Leibniz-type relation:

{f, gh} = g{f, h}+ h{f, g},
(c) and the Jacobi identity:

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.

Condition (b) says that the map

Xf : C∞(M) −→ C∞(M),

g 7→ Xf (g) = {f, g}
is a vector field on M (i.e. a derivation of C∞(M)); this vector field is called the
Hamiltonian vector field of f :

Xf ∈ X(M).

Conditions (a) and (c) say that (C∞(M), {·, ·}) is a Lie algebra.
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Operations satisfying (a) and (b) are in 1-1 correspondence with bivector fields

on M , i.e. sections of the bundle
∧2

TM ; this correspondence is given by

π ∈ X2(M)←→ {·, ·},

{f, g} := π(df, dg),

where we denote by Xk(M) := Γ(
∧k

TM). There is a natural extension of the Lie
bracket of vector fields to an operation

[·, ·] : Xk(M)× Xl(M) −→ Xk+l−1(M),

called the Schouten bracket. The Jacobi identity (c) can be written in terms of
the bivector field π using this operation as

[π, π] = 0.

The Hamiltonian of f ∈ C∞(M) can be written in terms of the bivector as:

Xf = π](df),

where π] : T ∗M → TM is π viewed as a skew-symmetric map.

2.15. Poisson structures as Dirac structures. By 1.10, for any Lagrangian sub-
bundle L ⊂ TM satisfying L t TM there is a unique bivector field π ∈ X2(M) so
that

L = T ∗Mπ = {π](α) + α : α ∈ T ∗M}.
Let us prove that T ∗Mπ ∈ Dir(M) iff π is a Poisson structure. For this, we show
that the 3-tensor ΥT∗Mπ

from 2.8 vanishes iff π is Poisson. Since T ∗Mπ is spanned
by elements of the form Xf+df , it suffices calculate ΥT∗Mπ

on such sections. Using
the third formula for the Dorfman bracket in 2.2, we obtain:

ΥT∗Mπ
(Xf + df,Xg + dg,Xh + dh) = ([Xf + df,Xg + dg], Xh + dh) =

= ([Xf , Xg] + dιXfdg,Xh + dh) =

= [Xf , Xg](h) +Xh(Xf (g)) =

= {f, {g, h}} − {g, {f, h}}+ {h, {f, g}}.

This shows that ΥT∗Mπ = 0 iff {·, ·} satisfies the Jacobi identity, which is equivalent
to π being a Poisson structure. We conclude the Dirac structures includes also the
class of Poisson structures.

2.16. Nondegenerate Poisson structures and symplectic structures. Let ω ∈ Ω2(M)
be a symplectic structure. Then π := ω−1 ∈ X2(M) is a nondegenerate Poisson
structure; and conversely the inverse of a non-degenerate Poisson structure is a
symplectic structure. This follows because both types of structures are encoded by
Dirac structures L ∈ Dir(M) so that L t TM and L t T ∗M .

2.17. Regular Dirac structures. The rank of a Lagrangian subbundle L ⊂ TM at
p ∈M is defined as:

rank(L, p) := dim(pT (Lp));

and L is said to be regular is its rank is constant.
To a regular Lagrangian subbundle L ⊂ TM one can associate the (smooth)

distribution

W := pT (L) ⊂ TM,

and the (smooth) 2-form on the vector bundle W :

ω ∈ Ω2(W ) := Γ
( 2∧

W ∗
)
,

ωp(v1, v2) := α1(v2) = −α2(v1), v1 + α1, v2 + α2 ∈ Lp.
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Using Theorem 1.13, one can prove that L is given by:

L = L(W,ω) = {v + ιvω̃ + α : α ∈W ◦p , v ∈Wp, p ∈M},

where ω̃ ∈ Ω2(M) is a 2-form extending ω:

ω̃p(v1, v2) = ωp(v1, v2), ∀ v1, v2 ∈Wp.

Then we have that L(W,ω) ∈ Dir(M) iff

(a) W is an involutive distribution:

[v1, v2] ∈ Γ(W ) ∀ v1, v2 ∈ Γ(W )

(b) and ω̃ is closed on W , i.e.

dω̃(v0, v1, v2) = 0

for all v0, v1, v2 ∈ Γ(W ).

If (a) holds, by using the standard formula for the exterior derivative, we see that
(b) is independent of the extension ω̃:

dω̃(v0, v1, v2) =Lv0(ω(v1, v2))−Lv1(ω(v0, v2)) + Lv2(ω(v0, v1))

− ω([v0, v1], v2) + ω([v0, v2], v1)− ω([v1, v2], v0).(*)

By Frobenius Theorem, W comes from a regular foliation F = {Fλ}λ∈Λ. Since,
for p ∈ Fλ, we have that Wp = TpFλ, we can regard the 2-form ω as a family of
2-forms on the leaves of F ; namely, define:

ωλ ∈ Ω2(Fλ), ωλ(v1, v2) := ω(v1, v2), v1, v2 ∈W |Fλ = TFλ.

Then condition (b) is equivalent to dωλ = 0 for all λ ∈ Λ. Thus, we can regard
a regular Dirac structure L on M as a decomposition of M into presymplectic
manifolds:

(M,L) =
⊔
λ∈Λ

(Fλ, ωλ).

2.18. Local description of regular Dirac structures. Let L = L(W,ω) be a regular
Dirac structure, and let F = {Fλ}λ∈Λ denote the associated foliation. Consider a
chart on M adapted to the foliation F :

χ : U ∼−→ Rr × Rn−r, χ(p) = (x1(p), . . . , xr(p), y1(p), . . . , yn−r(p));

thus the leaves of F correspond to the parallel r-planes Rr × {y}, with y ∈ Rn−r.
Then the 2-form ω is given by a smooth family

{ωy ∈ Ω2(Rr)}y∈Rn−r , ωy =
1

2

∑
i,j

ωi,j(x, y)dxi ∧ dxj ,

so that for each y ∈ Rn−r we have that dxωy = 0, where dx denotes the exterior
derivative with respect to the x-coordinates.

By the Poincaré Lemma the forms ωy are exact; and by applying the standard
construction of homotopy operators, we can find a smooth family of 1-forms

{ηy ∈ Ω1(Rr)}y∈Rn−r

so that dxηy = ωy; e.g. one can define:

ηy :=
∑
i,j

(∫ 1

0

tωi,j(tx, y)dt
)
xidxj .

Consider a 1-form η̃ ∈ Ω1(Rr × Rn−r) which extends η, i.e. η̃ satisfies:

η̃|Rr×{y} = ηy, ∀ y ∈ Rn−r.
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Then ω̃ := dη̃ is an extension of ω:

ω̃|Rr×{y} = ωy, ∀ y ∈ Rn−r.

This argument proves the following:
Lemma. Let L = L(W,ω) be a regular Dirac structure on M . Then, for every

point in M there exists an open set U and a closed 2-form ω̃ ∈ Ω2(U) so that
ω̃|W = ω; i.e.

L|U = {v + ιvω̃ + α : v ∈W |U , α ∈W ◦|U}.

2.19. Regular points. Let L be a Dirac structure on M . A point p ∈ M is called
a regular point of L, if the rank of L is constant in a neighborhood of p. If p is
not regular, then p is called a singular point.

Note that the rank map p 7→ rank(L, p) is a lower semi-continuous, i.e. every
p ∈M has a neighborhood U so that

rank(L, q) ≥ rank(L, p), ∀q ∈ U.

This implies that the set of regular points on M is open and dense.

2.20. General structure. Any Dirac structure L on M , can be described geomet-
rically as a singular presymplectic foliation:

(M,L) =
⊔
λ∈Λ

(Fλ, ωλ).

More precisely, M comes with a partition into connected, regularly immersed sub-
manifolds Fλ, called the leaves of the foliation; each leaf Fλ comes with a closed
2-form ωλ ∈ Ω2(Fλ). The Dirac structure L can be reconstructed from these data
as follows: if p ∈M belongs to the leaf Fλ, then, in the notation of Example 1.12:

Lp = L(TpFλ, ωλ,p).

Conversely, given L, then: the singular foliation F can be described as follows:
two points p, q ∈M are in the same leaf iff there exists a smooth path γ : [0, 1]→M
so that

γ(0) = p, γ(1) = q,
d

dt
γ(t) ∈ pT (Lγ(t)), ∀ t ∈ [0, 1];

if Fλ is the leaf through p ∈M then

TpFλ = pT (Lp),

and the 2-form ωλ at p is given as above by

ωλ,p(v1, v2) := α1(v2) = −α2(v1), v1 + α1, v2 + α2 ∈ Lp.

The proof of this correspondence is based on a version of the Frobenius Theorem
for singular foliations.

2.21. Thinking of a Dirac structure L on a connected manifold M as a singular
presymplectic foliation {(Fλ, ωλ)}λ∈Λ, we have that:

(a) L is corresponds to a closed 2-form iff the foliation consists only of one leaf;
(b) L is corresponds to a foliation iff ωλ = 0 for all λ, and this conditions implies

also that {Fλ}λ∈Λ is a regular foliation;
(c) L is corresponds to a Poisson structure iff each ωλ is a symplectic structure on

Fλ, i.e. ωλ is nondegenerate.

2.22. Exercise. Let L be a Dirac structure on a connected manifold M . Prove that
either all presymplectic leaves of L are even dimensional, or all are odd-dimensional.
(Hint: Use Exercise 1.14.)
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2.23. Linear Poisson structures and Lie algebras. A Poisson structure π on Rn is
called a linear Poisson structure, if the coefficients of the bivector π are linear
functions on Rn, i.e.

π =
∑
i,j,k

1

2
Cki,jxk

∂

∂xi
∧ ∂

∂xj
.

A linear bivector as above is a Poisson structure if and only if the number {Cki,j}
are the structure constants of a Lie algebra i.e. if the bilinear operation:

[·, ·] : Rn × Rn −→ Rn, [ei, ej ] =
∑
k

Cki,jek

satisfies the Jacobi identity (here e1, . . . , en denotes the standard basis of Rn). In
fact, linear Poisson structures are in 1-1 correspondence with Lie algebra structure.
Coordinate-free, this correspondence works as follows. Consider a Lie algebra

(g, [·, ·]).

The corresponding linear Poisson structure, lives on the dual space

πg ∈ X2(g∗),

and it is given by the Lie bracket under the obvious identifications:

πg,ξ = ξ ◦ [·, ·] ∈
2∧
g∗ =

2∧
Tξg
∗, ξ ∈ g∗.

The symplectic leaves of the Poisson manifold (g∗, πg) are the so-called coadjoint
orbits, i.e. the orbits of canonical the action of a connected Lie group G integrating
g on g∗.

2.24. Examples: 3-dimensional Lie algebras. To illustrate how singular the un-
derlying foliation of a Dirac structure can be, we will consider the linear Poisson
structures corresponding to 3-dimensional Lie algebras. It is in fact not very diffi-
cult to classify all real 3-dimensional Lie algebras; but we will discuss only some of
them.

(a) The linear Poisson structure corresponding to the Lie algebra so(3) is given by:

πso(3) = x
∂

∂y
∧ ∂

∂z
+ y

∂

∂z
∧ ∂

∂x
+ z

∂

∂x
∧ ∂

∂y
∈ X2(R3).

Its symplectic leaves (i.e. coadjoint orbits) are: the origin of R3 and all the
spheres centered at the origin:

In standard spherical coordinates,

x = r cos(θ) sin(φ), y = r sin(θ) sin(φ), z = r cos(φ),

0 ≤ r, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π,
the Poisson tensor becomes

πso(3) =
1

r sin(φ)

∂

∂φ
∧ ∂

∂θ
,
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and the symplectic structure on the leaf

S2
r := {(x, y, z) : x2 + y2 + z2 = r2}

is given by

ωS2
r

= rd(cos(φ)) ∧ dθ.

Note that the following holds: if (Fp, ωp) is the leaf through a point p ∈ g∗,
then for s 6= 0, the leaf through the point s · p is given by

(Fsp, ωsp) = (sFp, sωp),

where sFp = {sq : q ∈ Fp} and we regard ωp as a 2-form on sFp via pullback
by the obvious diffeomorphism sFp

∼−→ Fp, q 7→ 1/sq. So both the foliation
and the closed 2-forms vary linearly. It is easy to check that this property is
shared by all linear Poisson structures, and in fact this property can be used
to characterize linear Poisson structures.

(b) By using suitable coordinates, the coadjoint orbits of the Lie algebra sl2(R) are
given by the connected components of the fibers of the map x2 + y2 − z2 ∈
C∞(R3):

More precisely: the level set x2 + y2 − z2 = 0 is composed of three leaves
(the origin, the upper part and the lower part of the cone), each level set
x2 + y2− z2 = c > 0 is a leaf which is a one sheeted hyperboloids, and the level
sets x2 + y2 − z2 = c < 0 are each decompose into two leaves, which are the
two sheets of a hyperboliod (one with z > 0 and the other with z < 0).

(c) Besides the so(3) and sl2(R) all other linear Poisson structures can be decom-
posed as follows:

πg = X ∧ ∂

∂z
,

where X is a linear vector field on R2, i.e.

X = (ax+ by)
∂

∂x
+ (cx+ dy)

∂

∂y
.

Such vector fields are easily classified; namely, they correspond to the conjugacy

class of the matrix A =

(
a b
c d

)
. Rescaling of this matrix by a non-negative

number is equivalent to rescaling the z-direction, so one also obtains an iso-
morphic Poisson structure (hence Lie algebra). The 2-dimensional leaves of the
Poisson structure are the C × R, for C ⊂ R2 a (nontrivial) flow line of X, and
points of the form (p, z) where p is a zero of X. Let us discuss some examples.

First, if A has purely imaginary eigenvalues, e.g. A =

(
0 1
−1 0

)
, then the leaves



AN INTRODUCTION TO DIRAC GEOMETRY 15

will be concetric cylinders and each point on the z-axis:

When the eigenvalues of A are neither real nor purely imaginary, the leaves
spiral towards the z-axis (and each point on the z-axis is a 0-dimensional leaf):

If A is the idendity matrix, the symplectic foliation looks like an open book:

If A has eigenvalues 1 and 0, then the Lie algebra is the direct product aff(1)×R;
its Poisson bivector becomes x ∂

∂x ∧
∂
∂z ; its symplectic foliations looks as follows

(note that the y- and z-axis were interchanged):

i.e. the leaves are the points on the plane x = 0, and parallel half-planes, all
arriving tranversely at this plane.

Quite different looks the symplectic foliation corresponding to the Heisenberg
algebra x ∂

∂y ∧
∂
∂z (i.e. when A is nilpotent); in this case the leaves are the points

on the plane x = 0 and all the planes parallel to this plane i.e. x = c, for c 6= 0.

3. The product of Dirac structures

3.1. Let L1, L2 ⊂ TM be two Lagrangian distributions. At every point p ∈M we
can define the Lagrangian subspace:

(L1 ? L2)p := L1,p ? L2,p ⊂ TpM.

In general, L1 ? L2 ⊂ TM might fail to be a smooth distribution.
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3.2. Theorem. Consider two Dirac structures L1, L2 ∈ Dir(M). We have that

(a) If L1 ? L2 ⊂ TM is a smooth subbundle, then L1 ? L2 is a Dirac structure on
M .

(b) If the vector spaces

pT (L1,p) + pT (L2,p), p ∈M
have constant dimension, then L1 ? L2 is smooth. In particular, if L1 and L2

are tangentially transverse:

pT (L1,p) + pT (L2,p) = TpM, ∀ p ∈M,

then L1 ? L2 is smooth.

Remark. Note that annihilator of the space pT (L1,p) + pT (L2,p) is given by

(pT (L1,p) + pT (L2,p))
◦

= L1,p ∩ L2,p ∩ T ∗pM.

Therefore, the first condition in (b) is equivalent to this bundle being of constant
dimension, and the second is equivalent to this space being trivial.

Proof. (a) Consider the set U consisting of points p ∈ M so that L1, L2 and
L1 ? L2 all have constant rank around p. Then U is the intersection of three open
and dense sets 2.19; therefore U is itself open and dense. Since L1 ? L2 is smooth,
by Corollary 2.9, it suffices to check that L1?L2 is involutive on U . So, by replacing
M by U , we can assume that L1, L2 and L1 ? L2 are all three regular Lagrangian
subbundles of TM . The Dirac structures L1 and L2 are determines by the smooth
distributions W1 := pT (L1), W2 := pT (L2) and corresponding smooth 2-forms ω1 ∈
Ω2(W1) and ω2 ∈ Ω2(W2); i.e. L1 = L(W1, ω1) and L2 = L(W2, ω2). Integrability
of L1 and L2 is equivalent to W1 and W2 being involutive, and to ω1 and ω2 being
closed on W1 and W2. We have that L1 ? L2 = L(W1 ∩W2, (ω1 + ω2)|W1∩W2

), and
we are assuming that W1∩W2 has constant rank. Since W1 and W2 are involutive,
it follows that also W1 ∩W2 is involutive; since ω1 (resp. ω2) is closed on W1 (resp.
W2) so is the restriction of ω1 (resp. ω2) to W1∩W2: the closeness condition can be
expressed by formula (*) in 2.17; therefore if it holds for v0, v1, v2 ∈ Γ(W1) (resp.
Γ(W2)) it certainly also holds for v0, v1, v2 ∈ Γ(W1 ∩W2). This proves (a).

(b). The assumption implies that the vector bundle map

L1 ⊕ L2 −→ TM, (v + α,w + β) 7→ v − w
has constant rank; therefore its kernel is a smooth vector bundle:

K := {(v + α, v + β) : v + α ∈ L1, v + β ∈ L2} ⊂ L1 ⊕ L2

Note that L1 ? L2 is the image of K under the smooth vector bundle map

K −→ TM, (v + α, v + β) 7→ v + α+ β.

Since this map has constant rank (we know that n = dim(L1 ? L2)p for all p ∈M),
it follows that its image, which is L1 ? L2, is smooth. This proves (b).

3.3. Let L1 and L2 be two Dirac structures so that L1 ?L2 is smooth. Let (F1, ω1)
and (F1, ω2) be presymplectic leaves of L1 and L2, respectively. Let p ∈ F1 ∩ F2,
and consider the presymplectic leaf (F, ω) of L1 ? L2 through p. Then

F ⊂ F1 ∩ F2, TpF = TpF1 ∩ TpF2, ω = ω1|F + ω2|F .
The first two conditions mean that F1 and F2 intersect cleanly at p in F . In
particular, if F1 ∩ F2 is a connected submanifold, then

(F, ω) = (F1 ∩ F2, ω1|F1∩F2
+ ω2|F1∩F2

).

In general F1∩F2 might have several connected components of different dimensions;
but one can show that the leaves of L1 ?L2 which intersect F1 ∩F2 are the smooth
path-connected components of F1 ∩ F2.



AN INTRODUCTION TO DIRAC GEOMETRY 17

The condition that L1 and L2 be tangentially transverse:

TM = pT (L1) + pT (L2),

is equivalent to any leaf of F1 of L1 be transverse to any leaf F2 of L2:

F1 t F2, i.e. TpF1 + TpF2 = TpM, ∀ p ∈ F1 ∩ F2.

This implies automatically that F1 ∩ F2 is a smooth submanifold of

dim(F1 ∩ F2) = dim(F1) + dim(F2)− dim(M).

In this case, the leaves of L1 ?L2 are the connected components of the leaves of the
intersections F1 ∩ F2, where F1 and F2 are leaves of L1 and L2, respectively.

3.4. Intersections of foliations. Let F1 and F2 be two foliations, and assume they
are transverse: TF1 + TF2 = TM . This is equivalent to their corresponding Dirac
structures LTF1

and LTF2
be tangentially transverse. The product LTF1

? LTF2

corresponds to the foliation F1 ∩F2 with leaves the intersection of the leaves of F1

and F2.

3.5. Gauge transformations. Let ω ∈ Ω2(M) be a closed 2-form on M . Then

TMω := {v + ιvω : v ∈ TM}

is tangentially transverse to any Dirac structure L ∈ Dir(M). The product

Lω := L ? TMω = {v + ιvω + α : v + α ∈ L}

is called the gauge transformation of L by ω. If {(Fλ, ωλ)}λ∈Λ is the singular
presymplectic foliation of L, then the singular presymplectic foliation of Lω is given
by

{(Fλ, ωλ + ω|Fλ)}λ∈Λ.

3.6. Let π be a Poisson structure, with corresponding Dirac structure

T ∗Mπ = {π](α) + α : α ∈ T ∗M}.

The gauge transformation of T ∗Mπ by a closed 2-form ω ∈ Ω2(M) is

(T ∗Mπ)ω = {π](α) + (id + ω ◦ π])α : α ∈ T ∗M}.

We have that (T ∗Mπ)ω is a Poisson structure iff the map:

id + ω ◦ π : T ∗M −→ T ∗M, α 7→ α+ ιπ]αω

is a linear isomorphism; and in this case the corresponding Poisson bivector is given
by:

πω ∈ X2(M), πω = π ◦ (id + ω ◦ π)−1 = (id + π ◦ ω)−1 ◦ π.

If π is nondegenerate, i.e. π = η−1, where η ∈ Ω2(M) is a symplectic structure,
then (T ∗Mπ)ω is Poisson iff η+ω is again a symplectic structure, and in this case:

πω = (η + ω)−1.

3.7. Lemma 2.18 implies that around every regular point of a Dirac structure L
there is an open set U , a foliation F on U and a closed 2-form ω̃ on U so that

L|U = L(TF)ω̃.
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3.8. Exercise.

(a) Let L1 and L2 be two Dirac structures. If L1 and −L2 are transverse:

L1 ⊕ (−L2) = TM,

prove that L1 ? L2 is a Poisson structure.
(b) Let π1 and π2 be two Poisson structures so that π1+π2 is nondegenerate. Prove

that the bivector

π1 ? π2 = π1 ◦ (π1 + π2)−1 ◦ π2 ∈ X2(M)

is a Poisson structure on M (Hint: consider the product of the corresponding
Dirac structures).

3.9. The dual product. By duality, one can consider the also the dual product
of two Lagrangian subbundles L1, L2 ⊂ TM , which is defines as in 1.29,

(L1 ~ L2)p := L1,p ~ L2,p.

In general, if L1 ~L2 is not a smooth subbundle; a sufficient condition for smooth-
ness is that L1 and L2 are co-tangentially transverse:

pT∗(L1) + pT∗(L1) = T ∗M,

where pT∗ denotes the projection map

pT∗ : TM −→ T ∗M, pT∗(v + α) = α.

Even if L1 and L2 are Dirac structures and L1 ~L2 is smooth, we don’t necessarily
have that L1~L2 is again a Dirac structure. Nevertheless the involutivity condition
on L1 ~L2 appears in various geometric settings where it plays an important role.

3.10. Bi-Hamiltonian systems. Let π1 and π2 be two Poisson structures. Then,
the dual product of their Dirac structures is given by:

T ∗Mπ1 ~ T ∗Mπ2 = T ∗Mπ1+π2 .

Thus the integrability condition on their product is equivalent to π1 + π2 be also
a Poisson structure. Two Poisson structures π1 and π2 which have this property
are called compatible; i.e. they satisfy [π1, π2] = 0. A bi-Hamiltonian system
(M,π1, π2, f) consists of compatible Poisson structures π1 and π2 and a smooth
function f ∈ C∞(M) which has the same Hamiltonian vector field for both Poisson
structures:

Xπ1

f = Xπ2

f , Xπi
f := π]idf.

4. The pullback of Dirac structures

4.1. Let f : N →M be a smooth map and let L be a Dirac structure on M . The
pullback of L along f is the family of Lagrangian subspaces of TN given by:

f∗(L)p := (dpf)∗(Lf(p)) = {v + f∗(α) ∈ TpN : dpf(v) + α ∈ Lf(p)},

for all p ∈ N . In general, f∗(L) is not a smooth subbundle.
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4.2. Theorem. Let f : N →M be a smooth map and let L ∈ Dir(M).

(a) If f∗(L) is a smooth subbundle of TN , then f∗(L) ∈ Dir(N).
(b) If the family of vector spaces

dpf(TpN) + pT (Lf(p)) ⊂ TpM, p ∈ N

have constant dimension, then f∗(L) is smooth; hence f∗(L) ∈ Dir(N). In
particular, this condition is satisfied if f is transverse to L, f t L, i.e.

dpf(TpN) + pT (Lf(p)) = Tf(p)M, ∀ p ∈ N.

Proof. The proof is similar to that of Theorem 3.2; see [2]. Note that the
annihilator of the space dpf(TpN) + pT (Lf(p)) is given by:(

dpf(TpN) + pT (Lf(p))
)◦

= ker((dpf)∗) ∩ Lf(p),

so the first condition in (b) is equivalent to the condition appearing in [2].

4.3. If ω ∈ Ω2(M) is a closed 2-form, then any map f : N → M is transverse to
TNω, and the pullback generalizes the pullback of closed 2-forms:

f∗(TNω) = TMf∗(ω).

4.4. Let f : N → M be a smooth map and let L ∈ Dir(M) be so that f∗(L) is
smooth. Let p ∈ N . Denote by (FN , ωN ) the presymplectic leaf of f∗(L) through
p, and by (FM , ωM ) the presymplectic leaf of L through f(p). Then, by Exercise
1.25, we have that:

TpFM = (dpf)−1(Tf(p)FN ).

Note that this implies that, if γ : [0, 1] → M is a smooth path in FM , then f ◦ γ :
[0, 1]→ N is a smooth path in FN . Therefore:

FM ⊂ f−1(FN ),

and also by Exercise 1.25, we have that

ωM = (f |FM )∗(ωN ).

In general, equality does not need to hold; f−1(FN ) can be have several connected
components; and can be made out of leaves of various dimensions. However, the
above argument can be used to show that FM is the smooth-path connected com-
ponent of f−1(FN ).

The map f satisfies f t L if and only if f is transverse to any leaf (FN , ωN ) of
L, i.e.

dpf(TpN) + Tf(p)FN = Tf(p)N,

for all p ∈ f−1(FN ) and all presymplectic leaves FN ⊂ N . In this case, f−1(FN ) is
a smooth manifold of the same codimension as FN , and its connected components
are precisely the leaves of f∗(L) which intersect f−1(FN ).

4.5. Assume that f : M → N is a submersion. Then

f t L ∀ L ∈ Dir(M),

and therefore the pullback is a well-defined map

f∗ : Dir(M) −→ Dir(N).

If f has connected fibers then, on the presymplectic foliations, f∗ acts as:

f∗{(Fλ, ωλ)}λ∈Λ = {(f−1(Fλ), f |∗f−1(Fλ)ωλ)}λ∈Λ.
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4.6. Let L1, L2 ∈ Dir(N), and let f : M → N be a smooth map. If L1 ? L2,
f∗(L1), f∗(L2) and f∗(L1 ? L2) are smooth, then also f∗(L1) ? f∗(L2) is smooth,
because:

f∗(L1) ? f∗(L2) = f∗(L1 ? L2).

This follows from Exercise 1.28. In particular, if L ∈ Dir(N) and f∗(L) is smooth,
and ω ∈ Ω2(N) is a closed 2-form, we have that

f∗(Lω) = f∗(L)f
∗(ω).

4.7. Exercise. Let f : N → M be a smooth map, where N is connected. Show
that

f∗(T ∗M) = ker(df)⊕ ker(df)◦,

and conclude that f∗(T ∗M) is smooth if and only if f is a constant rank map.

4.8. Exercise. Let f : N →M be a smooth map and L ∈ Dir(M) be so that f∗(L)
is a Poisson structure on N . Prove that f is an immersion.

5. Push forward of Dirac structures

5.1. Let f : N →M be a smooth, and assume that L is Lagrangian distribution.
Then for any p ∈ N , we can define the Lagrangian subspace:

f∗(Lp) := {dpf(v) + α : v + f∗(α) ∈ Lp} ⊂ Tf(p)N.

Clearly, this does not define a Lagrangian subbundle of TN (unless f is a diffeo-
morphism).

Given Dirac structures LN ∈ Dir(N) and LM ∈ Dir(M), the map f : N →M is
said to be a forward Dirac map if

f∗(LN,p) = LM,f(p), ∀ p ∈ N.

5.2. If (N, πN ) and (M,πM ) are two Poisson manifolds, a smooth map f : N →M
is said to be a Poisson map, if

{a ◦ f, b ◦ f}πN = {a, b}πM ◦ f, ∀ a, b ∈ C∞(M);

in other words, the pullback map along f is a Lie algebra morphism:

f∗ : (C∞(M), {·, ·}πM ) −→ (C∞(N), {·, ·}πN ).

In terms of the bivector fields, this condition means that πN is f -related to πM :

dpf(πN,p) = πM,f(p), ∀ p ∈ N.
In terms of the Dirac structures, the condition is equivalent to f being a forward
Dirac map:

f∗(T
∗
pNπN ) = T ∗f(p)MπM , ∀ p ∈ N.

5.3. Let (P, π) be a Poisson manifold. Consider the action of a Lie group G by
Poisson diffeomorphisms on (P, π). Assume that the action is so that the quotient
P/G is a smooth manifold, for which the projection map pr : P → P/G is a smooth
submersion (e.g. one can assume that the action is free and proper so that P is a
principal G-bundle over P/G). We claim that there is a unique Poisson structure
πP/G on P/G so that

pr : (P, π) −→ (P/G, πP/G).

is a Poisson map. Since pr is a submersion, note that we can identify smooth
functions on the quotient P/G with G-invariant smooth functions on P , i.e.

C∞(P/G) ∼−→ C∞(P )G, a 7→ a ◦ pr.

Since the Poisson bracket is G-invariant, C∞(P )G is a Lie subalgebra of

(C∞(P ), {·, ·}π);
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thus C∞(P )G has an induced Poisson bracket, and therefore there is an induced
bracket {·, ·}P/G on C∞(P/G) so that pr is a Poisson map.

5.4. A particular case of the above is when π is nondegenerate, i.e. π = ω−1, where
ω is a symplectic structure. Moreover, assume that the action is Hamiltonian, i.e.
there exists a smooth G-equivalent map (called the moment map)

µ : (P, ω) −→ g∗,

which satisfies

ιξω = d
(
µ(ξ)

)
, ∀ ξ ∈ g,

where g denotes the Lie algebra of G, and for ξ ∈ g we have denoted by ξ ∈ X(P )
the infinitesimal action on P :

ξp :=
d

dε
p · exp(εξ)

∣∣
ε=0

, p ∈ P.

Then the symplectic leaves of (P/G, πP/G) are the quotients µ−1(O)/G, where
O ⊂ g∗ is a coadjoint orbit of G.

5.5. The following gives a characterization of which Dirac structures can be pushed
down via a submersion:

Theorem. Let f : N → M be a surjective submersion with connected fibers,
and let LN ∈ Dir(N). Then there exists a (necessarily unique) Dirac structure
LM ∈ Dir(M) so that f : (N,LN )→ (M,LM ) is a forward Dirac map if and only
if the following is a (smooth) Dirac structure on N :

LfN := LN ~
(

ker(df)⊕ ker(df)◦
)
⊂ TN.

The following exercise constitutes a proof of this Theorem.

5.6. Exercise. Let f : N → M be a surjective submersion with connected fibers,
and let LN ∈ Dir(N).

(a) Prove the following relation:

f∗f∗(LN,p) = LfN,p, p ∈ N.

If there exists LM ∈ Dir(M) so that f : (N,LN )→ (M,LM ) is a forward Dirac

map, prove that LfN is a Dirac structure on N .
(b) If ker(df) ⊂ LN , prove that there exists a Dirac structure LM on M so that

f : (N,LN )→ (M,LM ) is a forward Dirac map. Hint: By using flows of vector
fields in ker(df), show first that f∗(LN,p) = f∗(LN,q) for all p, q ∈ N so that
f(p) = f(q). To show involutivity, see [2].

(c) Show that

f∗(L
f
N,p) = f∗(LN,p).

Using this relation and (b), prove the following: if LfN is a smooth Dirac
structure on N then there exists a Dirac structure LM ∈ Dir(M) so that
f : (N,LN )→ (M,LM ) is a forward Dirac map.

5.7. Let f : (N,LN ) → (M,LM ) be a forward Dirac map, which is a surjective
submersion. If LN corresponds to a Poisson structure, prove that also LM corre-
sponds to a Poisson structure.
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5.8. Libermann’s Theorem. Let (N,ω) be a symplectic manifold, and let f : N →
M be a surjective submersion with connected fibers. There exists a Poisson struc-
ture π on M so that f : (N,ω) → (M,π) is a Poisson map if and only if the
symplectic orthogonal to the fibers of f ,

ker(df)⊥ := {v ∈ TM : ω(v, w) = 0 ∀ w ∈ ker(df)} ⊂ TN

is an involutive subbundle.
Let us show that this classical result fits into the framework of Theorem 5.5.

Denote

W := ker(df), W⊥ := ker(df)⊥.

It is easy to check that

TNω ~ (W ⊕W ◦) = W ⊕ (W⊥)ω,

where we have denoted

(W⊥)ω = {v + ιvω : v ∈W⊥}.

Since ω is nondegenerate, note that the above is indeed a direct sum decomposition,
because:

(W⊥)ω ∩ TM = 0.

By Theorem 5.5, and Exercise 5.7, it suffices to show that W ⊕ (W⊥)ω ∈ Dir(N) if
and only if W⊥ ⊂ TN is an integrable distribution.

First assume that W ⊕ (W⊥)ω ∈ Dir(N). Consider v1, v2 ∈ Γ(W⊥). Since
dω = 0, by 2.11, we have that

[v1 + ιv1ω, v2 + ιv2ω] = [v1, v2] + ι[v1,v2]ω.

By assumption, this element is in W ⊕ (W⊥)ω, so it can be written uniquely as:

[v1, v2] + ι[v1,v2]ω = w + v + ιvω,

with w ∈ Γ(W ) and v ∈ Γ(W⊥). Since ω is non-degenerate, it follows that v =
[v1, v2] and so w = 0. Thus, we have that W⊥ is involutive:

[v1, v2] ∈ Γ(W⊥), ∀ v1, v2 ∈ Γ(W⊥).

Conversely, assume that W⊥ is involutive. The above argument shows that

[Γ((W⊥)ω, (W⊥)ω)] ⊂ Γ((W⊥)ω),

and clearly we also have that:

[Γ(W ),Γ(W )] ⊂ Γ(W ).

Let us check that also:

[Γ(W ),Γ((W⊥)ω)] ⊂ Γ(W )⊕ Γ((W⊥)ω).

For this, let w ∈ Γ(W ) and v ∈ Γ(W⊥). We have that

[w, v + ιvω] = [w, v] + Lw(ιvω).

By Exercise 1.3, to show that [w, v + ιvω] ∈ W ⊕ (W⊥)ω, it suffices to show that
for all w1 ∈ Γ(W ) and for all v1 ∈ Γ(W⊥), we have that

(w1, [w, v + ιvω]) = 0, (v1 + ιv1ω, [w, v + ιvω]) = 0.

Using that Lw ◦ ιw1
− ιw1

◦Lw = ι[w,w1], the first relation is equivalent to:

ιw1Lwιvω = ι[w1,w]ιvω + Lwιw1ιvω = ω([w1, w], v) + Lw(ω(w1, v)) = 0,



AN INTRODUCTION TO DIRAC GEOMETRY 23

and the right hand side is zero because [w1, w], w ∈ Γ(W ) and v ∈ Γ(W⊥). The
second relation holds as well:

ι[w,v]ιv1ω + ιv1Lwιvω = ιv1
(
Lwιv − ι[w,v]

)
ω = ιv1ιvLwω = ιv1ιvdιwω =

= (dιwω)(v, v1) = Lv(ω(w, v1))−Lv1(ω(w, v))− ω(w, [v, v1]) = 0,

where in the last equality we have used that v, v1, [v, v1] ∈ Γ(W⊥) and w ∈ Γ(W ),
and before that, we have used the classical formula:

dη(x, y) = Lx(η(y))−Ly(η(x))− η([x, y]),

for η = ιwω. This ends the proof.

6. Poisson transversals

6.1. By Theorem 4.2, a submanifold N ⊂ M of a Dirac manifold (M,L) has an
induced Dirac structure, provided that i∗(L) is a smooth subbundle of TN , where
i : N →M is the inclusion map. This condition is insured by certain transversality
conditions of the bundle L|N ⊂ TM |N and the bundles TN and TN◦; and corre-
sponding to these conditions there are several classes of interesting submanifolds
in Dirac geometry: e.g. Dirac submanifold, Poisson-Dirac submanifold, co-isotropic
submanifold, cosymplectic submanifold etc. Here, we will only discuss the class of
Poisson transversals; these other types of submanifolds are discussed in [2, 5, 13].

6.2. A Poisson transversal of a Dirac manifold (M,L) is an embedded subman-
ifold i : N →M which satisfies any of the equivalent conditions:

(a)

(TpN ⊕ TN◦p )◦ ∩ Lp = {0}, ∀ p ∈ N ;

(b) N t pT (L), i.e.

TpN + pT (Lp) = TpM,

and i∗(L) is given by a Poisson structure πN on N ;
(c) For every presymplectic leaf (F, ω) of L, we have that F t N , i.e.

TpF + TpN = TpM, ∀ p ∈ F ∩N,
and ω|F∩N is a symplectic structure on F ∩N .

In other words, N is a Poisson transversal if and only if N intersects all presymplec-
tic leaves of L transversally and symplectically. The symplectic leaves of (N, πN )
are the connected components of the intersections (F ∩N,ω|F∩N ), where (F, ω) is
a presymplectic leaf of L which hits N .

6.3. Exercise. Check that the conditions above are indeed equivalent.

6.4. Example. Let (F, ω) be a presymplectic of (M,L). Consider a complementary
transversal submanifold N ⊂M through a point p ∈ L, i.e.

TpF ⊕ TpN = TpM.

Then there is an open neighborhood U of p in N which is a Poisson transversal. To
see this, consider assume that (v + α) ∈ (TpN ⊕ TpN◦)∩Lp. Since TpF = pT (Lp),
note that v = 0, because:

v ∈ TpF ∩ TpN = 0.

So α ∈ Lp, and therefore:

0 = (α,Lp) = α(pT (Lp)),

hence α ∈ pT (Lp)
◦. We conclude that α = 0, because

α ∈ TpN◦ ∩ pT (Lp)
◦ =

(
TpN + pT (Lp)

)◦
= TpM

◦ = 0.
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We have shown that
(TpN ⊕ TpN◦) ∩ Lp = 0.

Note that this is an open condition on the points of N , so if it holds for p, it also
holds for q in an open neighborhood U ⊂ N of p.

6.5. A Poisson transversal N inside a symplectic manifold (M,ω) is the same as
a symplectic submanifold.

6.6. In Poisson geometry, Poisson transversals are also called cosymplectic sub-
manifolds (e.g. [2]; we prefer not to use this terminology, since the word cosym-
plectic has a well-established meaning in symplectic geometry); and in mechanics,
Poisson transversals are the same as second-class constraints. Let us explain this
terminology. Consider a Poisson transversal N of a Poisson manifold (M,π). That
N is a Poisson transversal is equivalent to the following direct sum decomposition:

TpM = TpN ⊕ π](TpN◦), ∀ p ∈ N.
This also equivalent to the fact that π restricts to a nondegenerate pairing on the
conormal bundle:

π|TpN◦ : TpN
◦ × TpN◦ −→ R,

and this is the origin of the term cosymplectic.
Let us think about the submanifold N as being a constraint, which in local

coordinated it is given by the vanishing of the independent functions y1, . . . , yk,
i.e. N = {y1 = . . . = yk = 0}. That N is a Poisson transversal is equivalent to
non-degeneracy along N of the matrix:

ci,j := {yi, yj}π.
In mechanics terminology, N is also called a second-class constraint. The induced
Poisson bracket on N corresponding to πN is given by the Dirac formula:

{f, g}πN =
(
{f̃ , g̃}π −

∑
i,j

{f̃ , yi}πci,j{yj , g̃}π
)
|N ,

where ci,j denotes the entries of the inverse of the matrix ci,j , and for f, g ∈ C∞(N)

we have denoted by f̃ , g̃ smooth extensions of the functions f and g to a neighbor-
hood of N .

6.7. Around a Poisson transversal, the Dirac structure can be written in special
coordinates:

Theorem[1] Let N be a Poisson transversal in (M,L), with induced Poisson
structure πN . Around every point p ∈ N there exists:

(a) an open neighborhood U of p, and a diffeomorphism: ϕ : U ∼−→ O × V , where
V := U ∩N is an open neighborhood of p in N ,

(b) a closed 2-form ω ∈ Ω2(O × V )

so that the restriction of L to U corresponds under ϕ to

ϕ : (U,L|U ) ∼−→ (TO × T ∗VπN )ω.

6.8. In the previous theorem, if L is corresponds to a Poisson structure π on M ,
then the closed 2-form ω can be replaced by the standard symplectic structure on
O; in this case we obtain Weinstein’s splitting theorem:

Theorem[12] Let (N, πN ) be a Poisson transversal in the Poisson manifold (M,π).
Then, around every point in N there is an open set U with coordinates

(x1, . . . , xn, p1, . . . , pk, q1, . . . , qk) : U −→ Rn+2k,

so that
N ∩ U = {pi = qj = 0},
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and in these coordinates the Poisson structure becomes:

π|U =

n∑
u,v=1

1

2
πu,vN (x)

∂

∂xu
∧ ∂

∂xv
+

k∑
i=1

∂

∂qi
∧ ∂

∂pi
,

where the first sum is the Poisson structure πN |N∩U .

6.9. Here is a global version of theorem 6.8:
Theorem[8] Let (N, πN ) be an embedded Poisson transversal of the Poisson man-

ifold (M,π). There exists a tubular neighborhood ϕ : E ↪→ M of N in M with
projection p : E → N1 and there exists a closed 2-form ω on E, so that

ϕ∗(T ∗Mπ) = (p∗(T ∗NπN ))ω.

7. The linearization problem around presymplectic leaves

7.1. In this section we will discuss the linearization problem for Dirac structures
around presymplectic leaves. We will construct a first order linear model for the
Dirac structure around a leaf (actually, it is an “affine” model, instead of a linear
one).

As an analogy, which will be useful to have in mind in the next subsection, let
us first discuss a simpler problem, namely that of linearizing a smooth map

f :M−→ R,
around a point p on a manifoldM. Consider a chart around p with coordinates x =
(x1, . . . , xm) for which p corresponds to 0 ∈ Rm. The first order approximation
of f around p can be defined in this chart as follows:

flin,p = f(0) + lim
t→0

1

t

(
f(tx)− f(0)

)
= m∗0(f) + lim

t→0

1

t

(
m∗t (f)−m∗0(f)),

where mt denotes rescaling by t, i.e. mt(x) = tx. We say that f is linearizable
around p, if there is a chart centered at p, ϕ : Rm ∼−→ U ⊂M, so that f ◦ϕ = flin,p.
For example, if p is a regular point of f , then we know that f is linearizable around
p.

7.2. Consider a Dirac manifold (M,L), and let (F, ω) denote a compact2 presym-
plectic leaf of L. We are interested in the local structure of L around F , and
therefore we will replace M by a tubular neighborhood of F ; i.e. we will assume
that L is defined on the total space E of a vector bundle

p : E −→ F,

for which the zero-section is the presymplectic leaf (F, ω). In analogy with the
discussion of linearization of maps, this passage to a tubular neighborhood, cor-
responds to taking a chart around p. Denote by mt : E → E the fiberwise mul-
tiplication by t ∈ R. In the definition of linearization of maps from the previous
subsection, let us replace the map f by the Dirac structure L, and the operations +
and t· with the product ∗ of Dirac structures and the product of a Dirac structure
by a scalar (see 1.15) respectively. We obtain the following path of Dirac structure:

Lt := m∗0(L) ?
1

t

(
m∗t (L) ? m∗0(−L)

)
, t 6= 0.

To see that these form indeed a smooth path of Dirac structures, note first that:

m∗0(L) = TEω̃,

1i.e. p : E → N is a vector bundle and ϕ : E ↪→ M is an open embedding which sends the
zero-section of E to N

2For most of the discussion, it would be enough to assume that F is an embedded submanifold;
but for simplicity, we will also assume compactness.
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where we have denoted by ω̃ the pullback of ω to E:

ω̃ = p∗(ω) ∈ Ω2
closed(E).

Therefore, Lt can be also written as:

Lt :=
(1

t

(
m∗t (L)−ω̃)

)ω̃
=
(1

t
m∗t (L)

) t−1
t ω̃

.

The following Lemma can be proven for example by using local coordinates (for
more conceptual proofs see e.g. [10] [7])

Lemma. The following limit exists as a Dirac structure on E

Llin,F := lim
t→0

Lt ∈ Dir(E).

The Dirac structure Llin,F is called the linearization of L at the presymplectic
leaf F . The Dirac structure L is called linearizable around F if there is a dif-
feomorphism ϕ : U → V , where U and V are open neighborhoods of F in E, so
that

ϕ∗(L|V ) = Llin,F |U , and ϕ(p) = p, ∀ p ∈ F.
The linearization problem around leaves in Dirac geometry is to find sufficient
conditions on L at F (preferably on the first jet of L at F ) which ensure that L is
linearizable at F . These conditions turn out to be quite strong, they usually involve
certain “compactness assumptions”; this will become clearer in the examples below.

7.3. Let us mention that the natural isomorphisms between Dirac structures are
not just diffeomorphisms, but are made out of a diffeomorphism and a 1-form.
Namely, we say that two Dirac manifolds (N,LN ) and (M,LM ) are isomorphic if
there exists a pair (ϕ, α)

ϕ : N ∼−→M, α ∈ Ω1(N),

where ϕ is a diffeomorphism and α is a 1-form so that(
ϕ∗LM

)dα
= LN .

The linearization problem should be stated using these isomorphisms; but, for
simplicity, we will consider just diffeomorphisms.

7.4. Consider the family Lt appearing in the linearization problem 7.2. Then we
have that

L−ω̃t = 1/tm∗t (L
−ω̃).

Thus, for all s 6= 0, we have that:

m∗s(L
−ω̃
t ) = 1/tm∗st(L

−ω̃) = sL−ω̃st .

Taking the limit at t = 0, we obtain that:

m∗s(L
−ω̃
lin,F ) = sL−ω̃lin,F .

This translates into the following geometric property of the linearization (which
we have already observed for linear Poisson structures 2.24): Let (Fe, ωe) be the
presymplectic leaf of Llin,F through a point e ∈ E. Then the leaf through ms(e) =
se is given by

(Fse, ωse) = (sFe, ω̃ + s(ωe − ω̃)),

where, to be precise, the notation means: sFe := ms(Fe) and

ω̃ + s(ωe − ω̃) := ω̃|sFe + s(m∗s(ωe)− ω̃|sFe) ∈ Ω2(sFe).

This shows that the foliation varies linearly on the fibers, and the closed 2-forms
on the leaves vary in an affine fashion, with ω0 = ω.
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7.5. Linearization of Foliations. Consider the case when L is given by a foliation
F , i.e.

L = TF ⊕ TF◦.
In this situation, it is not difficult to prove that:

Lemma. The foliation F is linearizable at the compact leaf F if and only if the
holonomy action is linearizable at F .

Let us sketch the definition of the holonomy action; for more details see [11]. Fix
a point p ∈ F , and fix a complementary transverse submanifold N ⊂ F through p,
i.e.

TpF ⊕ TpN = TpM.

Consider a loop γ : [0, 1] → F based at p, i.e. γ(0) = γ(1) = p. For every q ∈ N ,
which is close enough to p, we associate a point hol(γ)(q) ∈ N as follows. Let
Fq denote the leaf through q. If q is close enough to p then there exists a path
γ̃q : [0, 1] → Fq which is close enough to γ, which starts at q, i.e. γ̃q(0) = q, and
which ends at a point in N , i.e. γ̃q(1) ∈ N . Such a path can be constructed by
covering γ([0, 1]) with a finite number of foliated charts. Define

hol(γ)(q) := γ̃q(1).

If we fix the cover of γ([0, 1]), this operation can be made into a diffeomorphism

hol(γ) : U ∼−→ V,

where U, V are open neighborhoods of p in N , and which fixes p. It can be shown
that the germ of this map at p is independent on the chosen charts, and depends
only on the homotopy class [γ] ∈ π1(F, p) of the loop γ (i.e. if we change all these
data, the final diffeomorphisms will agree on a small neighborhood of p in N). The
holonomy action is defined as the resulting group homomorphism:

hol : π1(F, p) −→ Γp(N),

where we have denoted by Γp(N) the group of diffeomorphisms between neighbor-
hoods of p which fix p, modulo the equivalence relation that two such diffeomor-
phisms are the same iff they coincide on a small neighborhood of p; Γp(N) is called
the group of germs at p of diffeomorphisms of N . The holonomy action is said
to be linearizable if there is a chart on N centered at p, so that for the resulting
coordinates, we have that hol[γ] is a linear map (around p) for every [γ] ∈ π1(F, p).
The holonomy group of F at p, it the quotient:

Hol(F, p) := π1(F, p)/(ker hol),

which is also isomorphic to the image of the holonomy action. In this setting, we
have:

Theorem (Reeb-Thurston)[11]. If F is compact and the holonomy group Hol(F, p)
is finite, then the foliation F is linearizable around F .

Notice the “compactness assumptions” in the statement: F and Hol(F, p) are
compact.

7.6. Linearization around fixed points. Consider the linearization problem in the
case when the leaf F is just a point F = {p}. In this case, pT (Lp) = 0, hence
Lp ∩ TpM = 0. This condition is open on p ∈ M , therefore, after restricting to a
neighborhood of p, we may assume that L ∩ TM = 0, i.e. L is given by a Poisson
structure π. Let us write the bivector in a chart centered at p:

π =
1

2

∑
i,j

πi,j(x)
∂

∂xi
∧ ∂

∂xj
.
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The point 0 being a leaf is equivalent to πi,j(0) = 0 for all i, j. The Dirac structure
Lt corresponding to this chart given by the bivector:

πt =
1

2

∑
i,j

1

t
πi,j(tx)

∂

∂xi
∧ ∂

∂xj
.

Using that πi,j(0) = 0, we obtain that the linearization Llin,0 is given by the
bivector:

πlin,0 =
1

2

∑
i,j,k

Cki,jxk
∂

∂xi
∧ ∂

∂xj
,

where the numbers Cki,j are

Cki,j =
∂πi,j
∂xk

(0).

We see that πlin,0 is a linear Poisson structure, and therefore (see the discussion
in item 2.23) it corresponds to a Lie algebra (gp, [·, ·]), called the isotropy Lie
algebra of π at p. Coordinate free, this Lie algebra can be described as follows:

gp := T ∗pM, [a, b] := [π](α) + α, π](β) + β]|p, a, b ∈ T ∗pM,

where α, β ∈ Ω1(M) are any 1-forms so that αp = a and βp = b, and the bracket
on the right is the Dorfman bracket. Because πp = 0, this operation is independent
on the chosen extensions. Thus, can identify πlin,p = πgp . In this setting, we have:

Theorem (Conn [3]) If the isotropy Lie algebra }p at p is semisimple of compact
type, then π is linearizable around p.

The “compactness assumption” in this case can be restated as any of the follow-
ing equivalent conditions:

(a) gp is semisimple of compact type;
(b) the Killing form of gp is negative definite;
(c) the connected and simply connected Lie group integrating gp is compact.

Finally, let us mention that there is a generalization of Conn’s theorem to com-
pact symplectic leaves of a Poisson manifold; the reader is referred to [6, 10].
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