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1 Crystal basis theory for quantum symmetric pairs

These are some rough notes that are made when preparing for the talk, they are far
from polished and may contain some errors.

2 Introduction

The goal of this talk is to give an introduction to the crystal basis theory of quan-
tum symmetric pairs. Crystal basis theory for quantum groups was developed by
Kashiwara in the 90’s, the rough intuition was that at q “ 0, there should appear
pleasant structure in the quantum group. This particular structure is best observed
in the modules instead of the quantum group itself. The parameter q in quantum
groups arose from statistical mechanical models, and q “ 0 corresponds to the ab-
solute zero in these models, motivated by this intuaition Kahiwara tought that the
modules ”crystallize” at q “ 0. Hence the name crystal basis. Crystal basis the-
ory in the classical sense have two key features: Firstly they form pleasant basis of
Uqpgq modules in a way that their structure becomes of a combinatorial nature. The
second is that they are ”cannonical”. In this talk we will introduce crystal basis
theory for quantum symmetric pairs of type AIII, and in particular look at the
connections to ordinary crystal basis theory.

2.1 Structure of the talk

We will first introduce the quantum symmetric pairs of type AIII. Afterwards,
we will introduce the crystal basis theory for quantum symmetric pairs and look at
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their crystal graphs. The main goal of the talk will be to highlight the connections
to ordinary crystal basis theory. This talk will be based on [HW22] and ocasionaly
we will use [HL02].

3 Quantum symmetric pairs of type AIII

We will be interested in quantum symmetric pairs related to the quantum group
Uqpsup2r ` 1qq of type A2r over Qpp, qq with generators Ei, Fi, K

˘
i , i P I “ tpr ´

1
2
q, . . . pr ` 1

2
qu subject to the relations

K´1
i Ki “ KiK

´1
i “ 1,

KiKj “ KjKi,

KiEjK
´1
i “ qpαi,αjqEj,

KiFjK
´1
i “ q´pαi,αjqFj,

EiFj ´ FjEi “ δi,j
Ki ´ K´1

i

q ´ q´1
,

E2
i Ej ` pq ` q´1

qEiEjEi ` EjE
2
i |i ´ j| “ 1,

F 2
i Fj ` pq ` q´1

qFiFjFi ` FjF
2
i |i ´ j| “ 1,

EiEj ´ EjEi “ 0 |i ´ j| ą 1,

FiFj ´ FjFi “ 0 |i ´ j| ą 1.

Here we consider p, q as transcendental parameters. Then Uqpsup2r ` 1qq becomes a
Hopf algebra by

△pEiq “ 1 b Ei ` Ei b K´1, △pFiq “ Fi b 1 ` Ki b Fi △pKiq “ Ki b Ki,

ϵpEiq “ ϵpFiq “ 0, ϵpKiq “ 1.

Remark 3.1. This coproduct structure is a twisted version of the ”standard” coprod-
uct.

We can visualise the Satake diagram corresponding to the symmetric pair pSp2r`

1q, SpUprq ˆ Upr ` 1qq as follows;

τ
τ
τ
τ
τ

.

We introduce the coideal subalgebrs Bc “ U ι. The algebra Bc is the subalgebra
generated by

k˘
j “ pKj´ 1

2
K´1

´pj´ 1
2

q
q

˘

ej “ Ej´ 1
2

` ppq
´δj ,1F´pj´ 1

2
qK

´1
j´ 1

2

fj “ E´pj´ 1
2

q ` ppq
δj ,1K´1

´pj´ 1
2

q
Fj´ 1

2
j P Iι “ t1, . . . , ru.
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We will refer to U ι
1 as the coideal subalgra U ι when r “ 1. Note that U ι

1 ãÑ U ι for
general r “ 1 by the map

e1 ÞÑ e1, f1 ÞÑ f1, k1 ÞÑ k1.

Remark 3.2. The algebra Bc can be intrinsically characterized by generators and
relations, see [HW22].

Remark 3.3. For each 1 ‰ j P Iι the triple pei, ki, fiq is a sl2 triple. Let us check the

nontrivial condition eifi ´ fiei “
ki´k´1

i

q´q´1 . We have

pEj´ 1
2

` F´pj´ 1
2

qK
´1
j´ 1

2

qpE´pj´ 1
2

q ` K´1
´pj´ 1

2
q
Fpj´ 1

2
qq

´ pE´pj´ 1
2

q ` K´1
´pj´ 1

2
q
Fpj´ 1

2
qqpEj´ 1

2
´ F´pj´ 1

2
qK

´1
j´ 1

2

q

“ Ej´ 1
2
K´1

´pj´ 1
2

q
Fpj´ 1

2
q ` E´pj´ 1

2
qF´pj´ 1

2
qK

´1
j´ 1

2

´ K´1
´pj´ 1

2
q
Fj´ 1

2
Ej´ 1

2
` F´pj´ 1

2
qK

´1
j´ 1

2

E´pj´ 1
2

q

“
1

q ´ q´1

´

K´1
´pj´ 1

2
q
pKj´ 1

2
´ K´1

j´ 1
2

q ´ K´1
j´ 1

2

pK´pj´ 1
2

q ´ K´1
´pj´ 1

2
q
q

¯

“
1

q ´ q´1

`

ki ´ k´1
i q

˘

.

4 ι-Crystal basis theory

Our first goal will be to study suitable analogs of the Kashiwara operators. Let
M P Oint be a integrable U ι-module. For this we first note that, for each 1 ‰ j P Iι

the module M becomes a Uqpsl2q by the inclusion

Uqpsl2q Ñ U ι
1, Ei Ñ ei, Fi Ñ fi, ki Ñ Ki.

Hence for j ‰ 1 we might define the analogs of the Kashiwara operators f̃j, ẽj P

EndpMq. Sow we only have to worry about the case that j “ 1. For this we use the
representation theory of U ι, that can be found in [HW22, Section 3]. By complete
reducibility of U ι

1 ãÑ Bc we can decompose

M “
à

λPP ι
1

Lpλq, Lpλq –

nλ
à

i“1

Qpp, qqf piqvλ,

into irreducible U ι
1 modules, where vλ is a highest weight vector of Lpλq. With

respect to this decomposition, on can naturally define the Kashiwara opertaor f̃1,
ẽ1 With this description we can naturally introduce ι-Cystal basis. Let A “ tf{g P

Qpq, pq : lim
qÑ0

plim
pÑ0

fpq, pq{gpp, qq existsu.

Remark 4.1. If p “ q, thenA coincides withA0 defined earlier by Erik. Furthermore
this definition can be motivated by the fact that we again look at the quotient by
qL which again should result in a free Q vector space.

Definition 4.2 (ι-crystal lattice). Let M be a finite dimensional U ι´module and
L an A´submodule of M. We say that L is a quasi-ιcrystal lattice of M if
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(i) L is a free A´module of rank dimQpp,qq M and Qpp, qq bA L “ M ,

(ii) L “ ‘λLλ where Lλ “ L X Mλ.

(iii) f̃ipLq Ă L and ẽipLq Ă L for all i P Iι

♢

Definition 4.3 (Quasi ι-crystal basis). Let M be a finite dimensional U ι´module,
L an A´submodule of M and B be an subset of L{qL. We say that pL,Bq is a quasi
ι´basis if

(i) L is a quasi-ι crystal lattice of M ,

(ii) B is a Q basis of L{qL,

(iii) B “ \Bλ, where Bλ “ B X pLλ{qLλq,

(iv) f̃ipBq Ă B \ t0u and ẽipBq Ă B \ t0u fo all i P Iι,

(v) for each b, b1 P B and i P Iι, one has f̃ib “ b1 if and only if b “ ẽipb
1q.

♢

Definition 4.4. For a quasi ι-crsytal base pL,Bq and i P Iι, we define three maps
φi : B Ñ Zě0, ϵi : B Ñ Zě0 and wtι : B Ñ Λι

φipbq “ maxtn : f̃n
i pbq ‰ 0u, ϵipbq “ maxtn : ẽni pbq ‰ 0u, wtιpbq “ if b P Bλ.

♢

Example 4.5. In the case that r “ 1 any U ι irreducible module M can be described
as

M “

n
à

i“1

Qpp, qqf
piq
1 v,

for some highest weight vector v, see [HW22, Thm 3.1.5]. Then

L “ spanAtf piqv : 1 ď i ď nu

is a ι-crystal lattice and

tf piqv ` L{qL : 1 ď i ď nu

is the corresponding ι-crystal basis. Ÿ

Definition 4.6 (ι-crystal graph). Let pL,Bq be a quasi ι´crystal basis. The ι-
crystal graph associated to pL,Bq is the colored directed graph with vertex set B
and edges b

i
ÝÑ b1 if f̃ib “ b1. ♢

Example 4.7. In the case of r “ 1 any crystal graph of a U ι-module will have the
structure

0 1 2 3 n-1 n
f̃1 f̃1 f̃1 f̃1

Ÿ
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Remark 4.8. At this point we do not have existence and uniqueness, this is shown
in [HW22]. What we do remark is that by completer reducibility each U ι

1-module
has a crystal base.

Theorem 4.9 ([HW22][Thm 6.2.9]). Let M P Oint be a U ι
1 module. Then M has

a crystal basis. Moreover there exists a isomorphism M Ñ
À

λPP ι
1
Lpλ‘mλq of U ι

1

modules which induces an isomorphism

pL,Bq Ñ

˜

à

λPP ι
1

Lpλ‘mλq,
à

λPP ι
1

Bpλ‘mλq

¸

,

that is unique up to highest weight vector.

Proof. One checks that direct sums of crystal basis are crystal basis and that a
direct sum of crystal basis is a crystal basis if and only if all its components have
crystal basis. The uniqueness follows by the fact that crystal lattices are unique up
to highest weight vector.

4.1 Tensor product rules and decompositions

Recall that U ι is a right coideal subalgebra, meaning that △pU ιq Ă U ι bUqpsup2r `

1qq. If M is a U ι module and N is a Uqpsup2r ` 1qq module, then M b N becomes
a U ι module via the coproduct △.

Remark 4.10. Consider the one dimensional module M “ Qpp, qq with the action of
ϵ onM and let N be a Uqpsup2r`1qq module. As vector spaces we have Qpp, qqbN –

N and the action on N is given by

pϵ b 1q ˝ △ “ 1.

Meaning that this action corresponds to restricting the module N to the coideal
subalgebra U ι.

Remark 4.11. The philosophy of studying crystal basis, in the classical case and also
in the ι-setting, will be the following. In the vector representation, the structure of
the crystal basis is reasonably well understood as well as their tensor products. To
study crystal basis in general, we recall that each representation is an irreducible
factor of a high enough tensor power, for some details see the notes of Japsers talk
from last time, we extract the information from the vector representation.

As mentioned one of the accomplishments of Watanabe is the characterisation of
irreducible U ι modules, see [HW22, Cor 4.3.8]. In particular they are parameterized
by pa, bq P Zr ˆ Zr

ě0 with ai ě bi i P Iιzt1u, using analogs of Verma modules.

Proposition 4.12. Let a P Z, b P Zě0. Then we have the isomorphism

Lpa; bq b V – Lpa ` 2; b ` 1q b Lpa ´ 1; bq ‘ Lpa ´ 1; b ´ 1q

of U ι
1 modules. Moreover Lpa; bqbL,Bpa; bqbBq is a quasi-ι crystal basis of Lpa; bqb

V.
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4.1 Tensor product rules and decompositions Crystal basis

Proof. The proof is a direct computation, it is quite lengthy and I do not think it
is well suited for the talk. For the proof see [HW22, Prop 6.3.1]

Example 4.13. If one carries out the computation, the crystal graph of Lpa; bq bV
can be read of to be

u´1 u0 u1

v ‚ ‚

rf1pvq ‚ ‚ ‚

rf 2
1 pvq ‚ ‚ ‚

rf b´1
1 pvq ‚ ‚ ‚

rf b
1pvq ‚ ‚ ‚

´1{2

1 1

1

1

1 1 1 1

1 1 1

1 1 1 1

where the vertices are interpreted as simple tensors in Bpa; bq b B. Ÿ

Proposition 4.14. Let a P Z and b P Zě0 then pLpa; bq b Lbn,Bpa; bq b Bbnq is a
quasi´ι crystal basis for Lpa; bq b Vbn.

Proof. By (4.12) it follows that pLpa; bq b L,Bpa; bq b Bq is a quasi´ι crystal basis
for Lpa; bq b V. Again by (4.12) we note that

Lpa; bq b V bpn´1q
–

â

i

Lpai; biq

and that
Lpa; bq b V bpnq

–
â

i

Lpai; biq b V.

Each of the Lpai; biqbV has a quasi´ι crystal basis pLpai; biqbLbn,Bpai; biqbBbnq.
As a result of [HW22, Thm 6.2.9]

pbiLpai; biq b Lbn,biBpai; biq b Bbn
q

is a quasi´ι crystal basis for Lpa; bq b Vbn.

Corollary 4.15. Let M be a U ι
1 module with quasi´ι crystal base pL,Bq and N be

a Uqpsup3qq module with crystal base pL1,B1q. Then M b N has a quasi´ι crystal
basis pL b L1,B b B1q, where the Kashiwara operators act as

f̃1pb b b1
q “

#

b b Ẽ´1{2pb1q if ϵ1pbq ă ϵ´1{2pb
1q

f̃1pbq b b1 if ϵ1pbq ě ϵ´1{2pb1q

ẽ1ppb b b1
q “

#

b b F̃´1{2pb
1q if ϵ1pbq ď ϵ´1{2pb

1q

ẽ1pbq b b1 if ϵ1pbq ą ϵ´1{2pb
1q

6



Crystal basis 4.1 Tensor product rules and decompositions

Proof. Note that there exists a natural number N with an embedding M ãÑ Vbn,
as a irreducible component which preserves the crystal basis by uniqueness. By
Proposition (4.12) it follows that pL b L1,B b B1q is a crystal base. So it suffices to
check this action on modules of the form Lpai, biq bV . The action on these modules
follows from (4.12) or examine (4.13).

Up until now all the calculations have been in rank 1. Luckily we do not have to
do much work to extend the results for general r, by a rank 1 reduction.

Theorem 4.16. Let M be a U ι-module and N be a Uqpsup2r`1qq module with crystal
bases pL,Bq and pL1,B1q. Then pL bA0 L1,B ˆ B1q is a crystal base for M b N .

Proof. The strategy of the proof combines two of our tricks. The first trick is the rank
1 reduction and the second is the embedding into Vbn. We will first worry about
the Kashiwara operators. Let i P Iι, we want to show that ẽi, f̃ipu b vq P LN b LM .

Consider a u P LM and v P LN . We may assume that u “ f
pkq

i u0 and v “ v0 for some
u0 P LN X ker ei and v0 P LN X kerF1{2. Now U ι

1u – Lpa; bq and Uqpsl2qv ãÑ Vbm

for some positive integer m. By Proposition (4.12) and uniqueness of the Kashiwara
operators we know that that f̃iu b v P LN b LM . Similarly one verifies that the
crystal basis are invariant under the Kashiwara operators. The ι-crystal lattice
conditions are easy to verify the ”basis” conditions, as well as the weight space
considerations.

Corollary 4.17. Let N be a Uqpsup2r`1qq module with crystal basis pL1,B1q. Then
pL1,B1q is a quasi´ι crytal basis of N . Furthermore for r “ 1 the action of the
Kashiwara operators is given by

f̃1pbq “ Ẽ´1{2pbq, ẽ1pbq “ F̃´1{2pbq, b P B1.

Proof. Apply Theorem (4.16) to the U ι module Qpp, qq. The action of the Kashiwara
operators can be read of by (4.15)

Example 4.18 (The crystal graph of Lpρq). The crystal graph of pLpρq,Bpρq can
be visualised as

-1 b -1 b 0

-1 b -1 b 1 0 b -1 b 0

0 b -1 b 1 1 b -1 b 0

0 b 0 b 1 1 b -1 b 1

1 b 0 b 1

rF´1

rF0

rF´1 rF0

rF´1 rF0

rF0

rF´1
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Using [HW22, Cor 6.3.7], we obtain the ι-crystal graph of Lpρq restricted to the
coideal subalgebra U ι

-1 b -1 b 0

-1 b -1 b 1 0 b -1 b 0

0 b -1 b 1 1 b -1 b 0

0 b 0 b 1 1 b -1 b 1

1 b 0 b 1

rf´1

rf´1

rf´1

rf´1

As in classical crystal basis theory, the connected components of the crystal graph
correspond to the irreducible components of the module. As a result we see that we
can identify the trivial module with the crystal 1 b -1 b 0 . Ÿ

The upshot of the crystal basis theory is that the actions of the Kashiwara op-
erators on the vector represenation are described in a combinatorial nature. As a
result, for instance, finding the irreducible components of a module is reduced to a
combinatorial problem of finding the highest weight vectors in the vector represen-
tation. Even more can be said about the branching rules via a translation to Young
tablaux, the branching rules are made ”explicit” by finding Yamanouchi biwords.
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