Crystal basis Contents

Crystal basis theory for quantum
symmetric pairs
April 26, 2023

Contents

[1 Crystal basis theory for quantum symmetric pairs| 1

[2__Introduction 1
2.1 Structure of the talkl . . . . . . ... ... ... ... ... ... .. 1

I3 Quantum symmetric pairs of type Alll| 2

4 -Crystal basis theory| 3
4.1 Tensor product rules and decompositions| . . . . . . . ... ... ... )

[References| 8

1 Crystal basis theory for quantum symmetric pairs

These are some rough notes that are made when preparing for the talk, they are far
from polished and may contain some errors.

2 Introduction

The goal of this talk is to give an introduction to the crystal basis theory of quan-
tum symmetric pairs. Crystal basis theory for quantum groups was developed by
Kashiwara in the 90’s, the rough intuition was that at ¢ = 0, there should appear
pleasant structure in the quantum group. This particular structure is best observed
in the modules instead of the quantum group itself. The parameter ¢ in quantum
groups arose from statistical mechanical models, and ¢ = 0 corresponds to the ab-
solute zero in these models, motivated by this intuaition Kahiwara tought that the
modules ”crystallize” at ¢ = 0. Hence the name crystal basis. Crystal basis the-
ory in the classical sense have two key features: Firstly they form pleasant basis of
U,(g) modules in a way that their structure becomes of a combinatorial nature. The
second is that they are ”cannonical”. In this talk we will introduce crystal basis
theory for quantum symmetric pairs of type AIII, and in particular look at the
connections to ordinary crystal basis theory.

2.1 Structure of the talk

We will first introduce the quantum symmetric pairs of type AIII. Afterwards,
we will introduce the crystal basis theory for quantum symmetric pairs and look at
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their crystal graphs. The main goal of the talk will be to highlight the connections
to ordinary crystal basis theory. This talk will be based on [HW22] and ocasionaly
we will use [HLO02].

3 Quantum symmetric pairs of type Alll

We will be interested in quantum symmetric pairs related to the quantum group

U, (su(2r + 1)) of type As,. over Q(p,q) with generators E;, Fj, K, i e T = {(r —

3)....(r+ 1)} subject to the relations

K 'K, = K,K; ' =1,
K,K; = K;K;,
KiEjKi_l - q(ai,aj)Ej’
KF K = g,
K, — K; !

q—q '’
E}E; + (q+ ¢ VEEE + E;E}  |i—j|=1,
FFy + (¢ +q EEF + FF li—jl =1,
E;E; — E;E; =0 li —j] > 1,
FiFy — I5F, =0 i—jl>1.

EiF; — F3E; = 0y

Here we consider p, ¢ as transcendental parameters. Then U, (su(2r + 1)) becomes a
Hopf algebra by

ANE)=19E +EQK"', AF)=FI+KQF AK)=KQK;
e(E;) = €(F;) = 0, e(K;) = 1.
Remark 3.1. This coproduct structure is a twisted version of the ”standard” coprod-
uct.

We can visualise the Satake diagram corresponding to the symmetric pair (S(2r +
1),S(U(r) x U(r + 1)) as follows;

N

T

T

We introduce the coideal subalgebrs B, = U*. The algebra ‘B, is the subalgebra
generated by

+ -1 +
ki = (G Ko y)
e = L1+ (p>_§j’1F—(j—%)Kj_,1%
6;,1 7—1 . Lo
fj :E*(]*%)_‘_(p)] K—(g—%)sz% ]EI —{1,...,7’}.
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We will refer to U} as the coideal subalgra ¢/* when » = 1. Note that U; — U" for
general r = 1 by the map

€1 — €1, f1'—>f1, ky — k.

Remark 3.2. The algebra B, can be intrinsically characterized by generators and
relations, see [HW22].

Remark 3.3. For each 1 # j € I' the triple (e;, k;, f;) is a sly triple. Let us check the

nontrivial condition e; f; — f;e; = ’Z::i_ll. We have
-1 ~1
(Bjoy + Fogoy KB oy + K2 4 Fyon)
—1 —1
(B T B B p)) By = Flg ) K7y)
. —1 —1
= BBy -y Egp -Gy
-1
— Ky Eiak  t F gy K E G
_ 1 —1 -1 ~1 -
Cg—q! <K7(Jf%)(KJ*% N Kjfé) N Kjf%u{*(ﬂ*%) N K*(]*%Q)
1
= ki — kit
)

4 -Crystal basis theory

Our first goal will be to study suitable analogs of the Kashiwara operators. Let
M € Oy be a integrable U*-module. For this we first note that, for each 1 # j e I
the module M becomes a U,(sly) by the inclusion

Uq(5[2) — Uy, Ei—e, Fi—fi, k— K.

Hence for 7 # 1 we might define the analogs of the Kashiwara operators fj,éj €
End(M). Sow we only have to worry about the case that j = 1. For this we use the
representation theory of U*, that can be found in [HW22, Section 3]. By complete
reducibility of U; — B. we can decompose

M= @ LX), LX) = @ Qp,q) fDva,
AeP! i=1

into irreducible U{ modules, where vy is a highest weight vector of L(A). With
respect to this decomposition, on can naturally define the Kashiwara opertaor f,
é; With this description we can naturally introduce -Cystal basis. Let A = {f/g €

Q(q,p) : glgg)(}gg) f(a,p)/9(p, q) exists}.

Remark 4.1. If p = ¢, then A coincides with Ay defined earlier by Erik. Furthermore
this definition can be motivated by the fact that we again look at the quotient by
gL which again should result in a free Q vector space.

Definition 4.2 (:-crystal lattice). Let M be a finite dimensional U*—module and
L an A—submodule of M. We say that L is a quasi-tcrystal lattice of M if
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(i) £is a free A—module of rank dimg,q M and Q(p,q) ®a L = M,
(ii) £ =@ Ly where L) = L n M,.
(i) fi(£) < £ and &(L) < L for all i e T
O

Definition 4.3 (Quasi t-crystal basis). Let M be a finite dimensional «*—module,
L an A—submodule of M and B be an subset of £/qL. We say that (£, B) is a quasi
t—basis if

(i) L is a quasi-¢ crystal lattice of M,

(ii) Bis a Q basis of L/qL,

(iii

= ubB,, where By, = B n (E,\/qﬁ)\),

(iv

i)
) B
)
(v)

fi(B) € B {0} and &(B) c BL {0} fo all i € I,
for each b, b € B and i € I*, one has f;b = ¥ if and only if b = &(¥/).

O

Definition 4.4. For a quasi (-crsytal base (£, B) and i € I*, we define three maps
w; B> Zsq, € : B— Z>o and wt* : B — A*

@i (D) = max{n : f*(b) # 0}, €(b) = max{n :ée"(b) #0}, wt'(b) = if be B,.

¢
Example 4.5. In the case that » = 1 any U* irreducible module M can be described
as .,
M = @A)
for some highest weight vector v, see [HW22, Thm 3.1.5]. Then
L =spany {fPv : 1 <i<n}
is a t-crystal lattice and
{(fDv+ L/qL : 1 <i<n}
is the corresponding ¢-crystal basis. <

Definition 4.6 (:-crystal graph). Let (£,B) be a quasi t—crystal basis. The ¢-
crystal gmph associated to (£, B) is the colored directed graph with vertex set B

and edges b 5 b if fib = O

Example 4.7. In the case of r = 1 any crystal graph of a ¢/*-module will have the
structure

@ f1 1 > f1 >> L o

~
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Remark 4.8. At this point we do not have existence and uniqueness, this is shown
in [HW22]. What we do remark is that by completer reducibility each U{-module
has a crystal base.

Theorem 4.9 ([HW22|[Thm 6.2.9]). Let M € Oy be a U module. Then M has
a crystal basis. Moreover there exists a isomorphism M — ®>\eP1L LA®™) of U}
modules which induces an isomorphism

(£,B) — <@ LAT™), D B(A@m*)> :

AePy AePy
that is unique up to highest weight vector.

Proof. One checks that direct sums of crystal basis are crystal basis and that a
direct sum of crystal basis is a crystal basis if and only if all its components have
crystal basis. The uniqueness follows by the fact that crystal lattices are unique up
to highest weight vector. O]

4.1 Tensor product rules and decompositions

Recall that U* is a right coideal subalgebra, meaning that A(U") < U' Q U, (su(2r +
1)). If M is a Y* module and N is a U,(su(2r + 1)) module, then M ® N becomes
a U" module via the coproduct A.

Remark 4.10. Consider the one dimensional module M = Q(p, ¢) with the action of
eon M and let N be ald,(su(2r+1)) module. As vector spaces we have Q(p, ¢)QN =
N and the action on N is given by

(e®1)o A =1.

Meaning that this action corresponds to restricting the module N to the coideal
subalgebra U*.

Remark 4.11. The philosophy of studying crystal basis, in the classical case and also
in the ¢-setting, will be the following. In the vector representation, the structure of
the crystal basis is reasonably well understood as well as their tensor products. To
study crystal basis in general, we recall that each representation is an irreducible
factor of a high enough tensor power, for some details see the notes of Japsers talk
from last time, we extract the information from the vector representation.

As mentioned one of the accomplishments of Watanabe is the characterisation of
irreducible Y* modules, see [HW22], Cor 4.3.8]. In particular they are parameterized
by (a,b) € Z" x 7., with a; = b; © € I'\{1}, using analogs of Verma modules.

Proposition 4.12. Let a € Z, be Z~y. Then we have the isomorphism
L(a;b) ®V = L(a+2;b+1)® L(a — 1;0) @ L(a — 1;0 — 1)

of Uy modules. Moreover L(a; b)QL, B(a; b)®B) is a quasi-v crystal basis of L(a;b)®
V.
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Proof. The proof is a direct computation, it is quite lengthy and I do not think it
is well suited for the talk. For the proof see [HW22l Prop 6.3.1] m

Example 4.13. If one carries out the computation, the crystal graph of L(a;b) @V
can be read of to be

—1/2
U_1 — Uy Uq

—_

‘—
[y
.(T.(—.
&
—
.(T.(—.

—_

<«

—
.(T.<
@ {— @<~

—
.<T.<

where the vertices are interpreted as simple tensors in B(a;b) ® B. <

Proposition 4.14. Let a € Z and b € Z=q then (L(a;b) ® L®", B(a;b) ® B®") is a
quasi—t crystal basis for L(a;b) ® V&,

Proof. By (4.12)) it follows that (E(a; b) ® L, B(a; b) ® B) is a quasi—: crystal basis
for L(a;b) ® V. Again by (4.12)) we note that

L(a;b) ® Venr-1) @L ai; b;)

and that
L(a;b) @ VO ~ @L a;; b

Each of the L(a;; b;) ®V has a quasi—t crystal basis (L£(a;; b;) QLE", B(a;; b;) @B®™).
As a result of [HW22, Thm 6.2.9]

(®iL(as; b;) @ LE", @;B(a;; b;) @ BE")
is a quasi—: crystal basis for L(a;b) ® V&, O

Corollary 4.15. Let M be a U} module with quasi—t crystal base (L, B) and N be
a Uy(su(3)) module with crystal base (L',B'). Then M ® N has a quasi—t crystal
basis (L ® L', B® B'), where the Kashiwara operators act as

bR E 1) ifer(b) < e 1p(t)
fl( )R if e1(b) = e_12(b)

s N b®]:11/2(b') if e1(b) < e_1p(b)
1(<b®b) {é (b) ®b/ Zf 61(b> > 6_1/2<b/)

foon- {2,
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Proof. Note that there exists a natural number N with an embedding M < V&~
as a irreducible component which preserves the crystal basis by uniqueness. By
Proposition it follows that (L ® L', B® B') is a crystal base. So it suffices to
check this action on modules of the form L(a;,b;) ® V. The action on these modules
follows from (4.12]) or examine (4.13]). O]

Up until now all the calculations have been in rank 1. Luckily we do not have to
do much work to extend the results for general r, by a rank 1 reduction.

Theorem 4.16. Let M be alU*-module and N be a U, (su(2r+1)) module with crystal
bases (L, B) and (L',B'). Then (L ®a, L', B x B') is a crystal base for M ® N.

Proof. The strategy of the proof combines two of our tricks. The first trick is the rank
1 reduction and the second is the embedding into V®™. We will first worry about
the Kashiwara operators. Let i € I*, we want to show that é;, f;(u®v) € Ly ® L.

Consider a u € Ly and v € Ly. We may assume that u = fi(k)uo and v = vy for some
ug € Ly nkere; and vy € Ly N ker Fyjs. Now Uju = L(a;b) and U, (sly)v — VO™
for some positive integer m. By Proposition and uniqueness of the Kashiwara
operators we know that that fju ® v € Ly ® L. Similarly one verifies that the
crystal basis are invariant under the Kashiwara operators. The ¢-crystal lattice
conditions are easy to verify the ”basis” conditions, as well as the weight space
considerations. O

Corollary 4.17. Let N be a Uy(su(2r + 1)) module with crystal basis (L', B"). Then
(L', B') is a quasi—t crytal basis of N. Furthermore for r = 1 the action of the
Kashiwara operators is given by

fl(b) = E71/2(b), é1(b) = F,l/g(b), beB.

Proof. Apply Theorem (4.16)) to the /* module Q(p, ¢). The action of the Kashiwara
operators can be read of by (4.15)) ]

Example 4.18 (The crystal graph of L(p)). The crystal graph of (L(p), B(p) can
be visualised as

Hel1elo]

-1]®[-1] 0]®[-1]®[0]
lﬁ_l lﬁo
0]®[-1] [1]e[-1]®[0]
Olel]el] 1]e[-1]e1]

x

[1]e[0]®[1]
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Using [HW22, Cor 6.3.7], we obtain the (-crystal graph of L(p) restricted to the
coideal subalgebra U/*

®®@\
Teel N
H
0]e[-1e[1] [1]e[1]e[0]
3
[0]elo]®[1] e[ 1le[1]

[1]e[0]®[1]

As in classical crystal basis theory, the connected components of the crystal graph
correspond to the irreducible components of the module. As a result we see that we

can identify the trivial module with the crystal ®®@. <

The upshot of the crystal basis theory is that the actions of the Kashiwara op-
erators on the vector represenation are described in a combinatorial nature. As a
result, for instance, finding the irreducible components of a module is reduced to a
combinatorial problem of finding the highest weight vectors in the vector represen-
tation. Even more can be said about the branching rules via a translation to Young
tablaux, the branching rules are made ”explicit” by finding Yamanouchi biwords.
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