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Avec toute l’algèbre du monde on n’est souvent qu’un sot
lorsqu’on ne sait pas autre chose. Peut-être dans dix ans la
société tirera-t-elle de l’avantage des courbes que des
songe-creux d’algébristes auront carrées laborieusement.
J’en félicite d’avance la postérité.

— FREDERICK II (THE GREAT) OF PRUSSIA (1712–86),
letter 93 to Voltaire

Introduction

A thorough perusal of the first three chapters of Macdonald’s impressive book [Macdon] has
revealed that the basics of the theory of (affine) root systems, as expected, are a rather lengthy
string of lemmas and auxiliary results through which the reader should carefully and diligently
manœuvre lest he drown. As such, I’m writing this abridgement of sorts to keep track of the
important results (skipping intermediate lemmas and proofs, for I aim not to copy the book
verbatim) and make sure the most pertinent elements of the story remain unravelled for the
weary reader who may wish to consult the book later on (i.e., myself).

At the end of each chapter, we’ll exhibit some of its content in the examples A1 and/or C2 for
concreteness.
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A fine root system Weyl you wait

1.1 Notational nonsense

The first part is mainly introducing notation. Let us immediately fix our base field to be R and
E a real affine space. That is, it carries a faithful and transitive action by translations of a real
vector space V by

v · x =: x + v, v ∈ V, x ∈ E.

For any x, y ∈ E there exists a unique v ∈ V such that y = x + v and we write y− x for this v.
A map f : E −→ E′ is called affine-linear if there exists a ‘derivative’ D f ∈ HomR(V, V ′) such
that f (x + v) = f (x) + D f (v) for all v ∈ V, x ∈ E. Let

F := {affine-linear maps E −→ R}

and
D : F −→ V∗, f 7−→ (D f : V −→ R)

be the (R-linear) derivative map, whose kernel F◦ comprises precisely the constant functions.
NOTATION 1.1.1. We henceforth fix n := dimR V > 0 and equip V with an inner prod-
uct 〈−,−〉. This identifies E with An

R as affine space and gives it a metric by d(x, y) =√
〈y− x, y− x〉 for x, y ∈ E with y− x as above. The space F becomes (n + 1)-dimensional.

Importantly, we identify V with its dual V∗ via 〈−,−〉, viz. by identifying linear functionals
on V with the elements of V to whose inner product they correspond. In particular, for f ∈ F
we write f (x + v) = f (x) + 〈D f , v〉.

Moreover, we equip F with a positive-semidefinite symmetric bilinear form, also written
〈−,−〉 by 〈 f , g〉 := 〈D f , Dg〉, which vanishes on F◦.

As usual, for v ∈ V we define

v∨ :=
2v
〈v, v〉

in V (or V∗ if you will) and the same formula also defines f ∨ = 2 f
〈 f , f 〉 for f ∈ F \ F0. Whilst all

definitions so far have been nothing new, we give the next one an environment because it’s so
ubiquitous.
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DEFINITION 1.1.2. Let f ∈ F \ F◦. The reflection in the affine hyperplane f−1(0) ⊂ E is the
isometry of E given by

s f : E −→ E, x 7−→ x− f ∨(x)D f = x− f (x)D f ∨.

Such reflections, indeed any isometry ι : E −→ E, are affine-linear and act on F 3 g by
precomposition, i.e., for f ∈ F and x ∈ E we have

(ι · f )(x) := f (ι−1x).

In particular, s f · g = g− 〈g, f 〉 f ∨.
DEFINITION 1.1.3. For v ∈ V, the translation by v is the isometry

t(v) : E −→ E, x 7−→ x + v.

Clearly, t(v)(x + u) = x + u + v = t(v)(x) + 〈Dt(v), u〉, whence we see that the derivative of
a translation is the constant function V −→ R, u 7−→ 1.

NOTATION 1.1.4. We write c for this constant function 1 on V.[1]

Unravelling the action on F we see that t(v) · f = f − 〈D f , v〉 c and for any isometry ι,

ι ◦ t(v) ◦ ι−1 = t(Dι(v)).

1.2 Affine roots and alcoves

Throughout, the letter R will be used for [finite] root systems, whereas S is reserved for affine
root systems. Elements of the former use Greek letters and of the latter, Latin.

DEFINITION 1.2.1. An affine root system is a subset S ⊂ F \ F0 such that

(A1) RS = F,

(A2) For all a, b ∈ S we have that sa(b) = b− 〈a, b〉 a∨ again lies in S,

(A3) For all a, b ∈ S, the numbers 〈a∨, b〉 are integers,

(A4) The affine Weyl group WS, generated by all reflections sa for a ∈ S, acts properly on E.[2]

The rank of S is n. As with root systems, if a ∈ S and pa ∈ S then p ∈ {±1,± 1
2 ,±2}. An affine

root a is called indivisible if ± 1
2 /∈ S. Notice that WS = WS∨ . An isomorphism between two

affine root systems[3] is a bijection obtained as the restriction of some isometry of the ambient
Euclidean spaces and two affine root systems are called similar if they are isomorphic up to a
global nonzero scalar.

[1]Happily, the speed of light is also c = 1!
[2]Viz. for all compacta K1, K2 ⊂ E, the number of elements w ∈WS such that wK1 ∩ K2 6= ∅ is finite.
[3]At this point we resist the temptation to abbreviate these objects by referring to ARS’es.
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DEFINITION 1.2.2. An affine root system S is called

i) reduced if every affine root is indivisible, i.e., the only multiple in S of any s ∈ S is ±a,

ii) irreducible if S 6= S1 t S2 for any nonempty subsets Si that are orthogonal with respect
to 〈−,−〉.

As it turns out, any affine root system can be described as a root system ‘with translations’.
More precisely:
THEOREM 1.2.3. Let R be an irreducible root system inside a vector space V. For α ∈ R and r ∈ Z,
define aα,r ∈ F by α + rc. In other words, for v ∈ V,

aα,r(v) := 〈α, v〉+ r.

Then the set

S = S(R) :=

{
aα,r

∣∣∣∣∣ α ∈ R and r ∈
{

Z if 1
2 α /∈ R

2Z + 1 if 1
2 α ∈ R

}
is a reduced, irreducible affine root system.

Conversely, any reduced, irreducible affine root system is similar to S(R) or S(R)∨ for some irreducible
(though not necessarily reduced!) root system R.

Explicit expressions for affine coroots are nice in the root part;

NOTATION 1.2.4. Observe that for aα,r ∈ S(R) we have

a∨α,r =
2aα,r

〈Daα,r, Daα,r〉
=

2α

〈Dα, Dα〉 +
2r

〈Dα, Dα〉 c = aα∨,2r/〈Dα,Dα〉.

Let S be an irreducible (not necessarily reduced) affine root system. One can show that the
complement of the union of the affine hyperplanes associated to the affine roots is open in E
and its connected components are alcoves. The affine Weylgroup acts on these faithfully and
transitively. Their closures are n-simplices as expected

NOTATION 1.2.5. We henceforth fix a distinguished Weyl alcove C. If S = S(R), choose it
inside a fixed Weyl chamber of R for consistency with the forthcoming. We thus obtain a basis
of S of size n + 1, comprising those indivisible affine roots a ∈ S whose affine hyperplanes
a−1(0) go through a wall of C and that are positive everywhere inside C.

This basis of simple affine roots is written {ai | i ∈ I} for an index set I of size n + 1.

For i 6= j, we have
〈

ai, aj
〉
6 0 and hence the Cartan integers

〈
a∨i , aj

〉
are also nonpositive in that

case (and equal to 2 if i = j).

As expected, we can now define the positive and negative roots of S by

S± := {a ∈ S | ±a(x) > 0 for all x ∈ C}, (1.2.1)

such that S− = −S+ and S = S+ t S−. An affine root a ∈ S± can be written

a =
ÿ

i∈I

niai with ± ni ∈ Z>0.
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∗ ∗∗

Let us now move towards identifying E and V. To do so, set αi := Dai ∈ V for each i ∈ I.[4]

Since there are n + 1 of these, there is a unique linear dependence 0 = ∑i miαi with mi ∈ Z>0,
at least one of which equals 1. There exists at least one vertex xi of C with mi = 1 and such that
{αj | j 6= i} forms a basis of the root system D(S) ⊂ V∗ ∼= V.
NOTATION 1.2.6. We henceforth fix one such vertex x0, or, more saliently, we fix one special
index 0 ∈ I with m0 = 1 and thus identify E with V by fixing x0 as the origin. In particular we
have ai = αi for all 0 6= i ∈ I.

We denote si := sai for all i. These simple reflections generate WS, which is thus a Coxeter
group on the generating set of simples.[5]

Macdonald proceeds with the famous classification theorem using (affine) Dynkin diagrams,
which we skip here.

1.3 From finite to affine

If S = S(R), then set IR := I \ {0} such that {αi | i ∈ IR} is a basis of simple roots for R and
ai = αi.[6] In particular, Dα = α for all α ∈ R. Remains to determine a0 ∈ S.
NOTATION 1.3.1. Henceforth fix ϕ ∈ R to be the highest root, say ϕ = ∑i∈IR

miαi with the mi
nonnegative and their sum maximised. Then

a0 = −ϕ + c

completes the simple affine roots, for then indeed
ÿ

i∈I

miai = c

is constantly 1. Define α0 = Da0 = −ϕ. We assume |ϕ|2 = 2 (so ϕ∨ = ϕ) is the long root length.

We assume R to be reduced and irreducible now in view of the resulting Weyl groups. As
usual, let P be the weight lattice

P = {v ∈ V |
〈
α∨, v

〉
∈ Z for all α ∈ R},

and Q, the root lattice ZR therein. Similarly define P∨, Q∨. In view of dualities of various
objects in the forthcoming, we outline what shall be known as ‘the three cases’. The notation
introduced therewith shall recur throughout, so we give it a green bar.

[4]Of course, this notation is confusing if S = S(R) for some R, so let us keep S abstract for now.
[5]To wit, s2

i = 1 for all i and (sisj)
mij = 1 for all finite such orders mij, where i 6= j.

[6]Macdonald uses I0 for IR but that feels ambiguous.

6



NOTATION 1.3.2. We define three pairs (R, R′), (S, S′), and (L, L′) of (reduced and irreducible)
root systems, (irreducible) affine root systems, and lattices[7]inside V, respectively, as follows.
In the first two cases, R can be any root system with aforementioned requirements.

(I) R′ = R∨ and S = S(R) and S′ = S(R∨) and L = P and L′ = P∨.

(II) R′ = R and S = S(R)∨ = S′ and L = P∨ = L′.

(III) R = Cn and R′ = R and S = S(R)∨ ∪ S(R) = S′ and L = Q∨ = L′.

In each case, define the assignment ( )′ : R −→ R′ mapping α to α′, being α if R′ = R and α∨ if
R′ = R∨. This can be extended to S.

Moreover, define ψ ∈ R to be such that ψ′ is the highest root of R′, viz. ψ = ϕ if R′ = R and
ψ is the highest short root if R′ = R∨. Because we have normalised ϕ to 2, it follows from
Notation 1.2.4 that in case I we have a′0 = −ψ∨ + c and in the other cases a′0 = −ϕ + c.

In any case, both 〈λ, α′〉 and
〈
λ
′, α
〉

lie in Z for all α ∈ R, λ ∈ L and λ′ ∈ L′.

DEFINITION 1.3.3. Let e be the exponent of the finite group Ω′ := L′
/

Q∨ , i.e., the least
common multiple of the orders of all elements, unless R = R′ is of type Bn or C2n, in which
case it is set to 1.

NOTATION 1.3.4. Set c0 := e−1c ∈ F◦.

We define a new lattice inside F by Λ := L⊕Zc0. Note it carries an obvious action of the
extended affine Weyl group (to be defined anon; q.v. Definition 2.1.3).

∗ ∗∗

We postpone the definition of what Macdonald calls a W-labelling and what Eric and Heckman
call multiplicity functions to when it is actually needed in Chapter 2.

1.4 Examples

Throughout this document, we shall restrict ourselves to types A1 and B2 ∼= C2 vis-à-vis exam-
ples, for these provide ample intuition (and anything higher-dimensional induces headache).

EXAMPLE 1.4.1. Let R = A1 = {±α} ⊂ R with α1 = α = ϕ =
√

2 and α∨ = α. We view
the (co)weight lattice as P = P∨ = 2−1/2Z ⊂ R on the nose and the (co)root lattice is 21/2Z.
Therefore, Ω′ has order e = 2. The Weyl chamber is R>0 and the Weyl group is WR = {1, s1}
with s1 = − id (the longest element).

We have S = {±α + rc | r ∈ Z} and a0 = −α + c. We have that for x ∈ R (see Notation 2.1.2
ahead),

a0(x) = − 〈α, x〉+ 1 = −
√

2 x + 1,

[7]Elements of these lattices shall always be denoted λ and λ′, respectively.
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which is positive for x in the Weyl chamber if and only if x < 1
2

√
2 , so the alcove is the interval

C = (0, 1
2

√
2 ). The positive affine roots are all ±α + rc where r > 0 for the plus sign and r > 1

for the minus sign.

EXAMPLE 1.4.2. Let R = C2 = {(2ε, 0), (0, 2ε), (ε, ε′) | ε, ε′ = ±1} ⊂ R2 and pick the basis
α1 = (1,−1) and α2 = (0, 2). We see that α∨1 = α1 and α∨2 = 1

2 α2. One sees that

s1 =

(
0 1
1 0

)
and s2 =

(
1 0
0 −1

)
,

s1s2 has order 4 and so the longest element of WR ∼= D4 is s1s2s1s2 = s2s1s2s1 = − id. Clearly,
Q∨ = ZR∨ whilst Q = Zα1 ⊕Zα2 is ‘missing’ half the points on any horizontal line of odd y-
coordinate compared to Q∨. An element λ ∈ P is of the form (a, b) with a, a− b ∈ Z, wherefore
P equals Z(1, 1)⊕Z(1, 0). Similarly, the coweight lattice is of the form λ′ = (a, b) ∈ P∨ with
2a, a− b ∈ Z and so P∨ = Z( 1

2 , 1
2 )⊕Z(1, 0) has ‘twice the points’ on half the lines compared

to P.

The Weyl chamber is the positive cone walled by the hyperplanes spanned by (1, 1) and (1, 0).
The highest root is ϕ = 2α1 + α2 = (2, 0). As Macdonald remarks, this conflicts with our
normalisation |ϕ|2 = 2, but we shall not worry about this. The Weyl alcove C contains all those
(x, y) in the Weyl chamber such that

a0(x, y) = −2x + 1 > 0 ⇐⇒ x <
1
2

.

Its closure is thus the triangle with vertices the origin, ( 1
2 , 0) and ( 1

2 , 1
2 ).

In principle, we allow any of the three cases for (S, S′) and so on.

(I) If R′ = R∨, then ψ ∈ R is the highest short root α1 + α2 = (1, 1) and so a′0 = −ψ∨ + c.
As ψ∨ = ψ, the Weyl alcove is given by all those (x, y) in the Weyl chamber such that
−x− y + 1 > 0, i.e., that lie below the line y = 1− x. The (closure of the) alcove C′ is
thus the triangle with vertices the origin, ( 1

2 , 1
2 ) and (1, 0) (i.e., two copies of C). We have

Ω′ = L′
/

Q∨ of order and exponent 2.

We have S = S(R) and S′ = S(R∨). Now R∨ = B2 on the nose if we define B2 =

{(ε, 0), (0, ε), (ε, ε′) | ε, ε′ = ±1} with basis β1 = α1 (now a long rather than a short root)
and β2 = α∨2 (now a short root).

(II) If R′ = R and L = L′ = P∨, we have a′0 = a0 = −ϕ∨ + c and so C = C′. Whilst Ω′ is still
order 2, its exponent is (manually set to) 1.

(III) The reducible case is somewhat cumbersome; we remark that Ω′ = 1 itself now.

EXAMPLE 1.4.3. Now, for case III, let S be of type (C∨1 , C1) so that R = R′ = {±α}with |α|2 = 2
as for A1 and

S = {±α + r
2 c,±2α + rc | r ∈ Z}.

We have a0 = −α + 1
2 c and a1 = α (This is from Section 6.4; in Section 1.4, Macdonald says

a1 = α
2 instead.) with lattices L = L′ = Q∨ = Zα. Note bene the difference with A1. The action

on V = R is a0(x) = 1
2 − 〈α, x〉 = 1

2 − x and a1(x) = x. No idea what Macdonald is doing here
since α 6= 1 by choice of norm; but then for A1 he also didn’t bother with

√
2 ’s. Anyway it
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should be a0(x) = 1
2 −
√

2 x and a1(x) =
√

2 x. The Weyl alcove is (0, 1
2 ) only if you believe

the action on V.
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An expedition to the Weyl group

2.1 A lengthy disquisition

With notation as prior, S = S(R) is now a reduced and irreducible affine root system with
affine Weyl group WS generated by the simple reflections si, where i ∈ I = IR t {0}.
NOTATION 2.1.1. The Weyl group of R is written WR ⊂ O(V).[1]Its longest element is written
w0.

We continue identifying V with its dual so that a root α ∈ R corresponds to the functional
〈α,−〉 and

S = {α + rc | α ∈ R and r ∈ Z}.

NOTATION 2.1.2. For utmost clarity, an affine root a = α + rc acts on x ∈ V by

a(x) = 〈α, x〉+ rc(x) = 〈α, x〉+ r.

Using Definition 1.1.2, the corresponding reflection thus acts by (recall that, under our identifi-
cations, the ‘derivative’ D is the identity on R)

sα+rc(x) = x− (α + rc)(x)Dα∨ = x− (r + 〈α, x〉)α∨.

It is easy to show by direct computation that for any α ∈ R we have

sα ◦ sα+c = s−α+csα = t(α∨).

Thus t(Q∨) is a subgroup of WS. This subgroup, being isomorphic to Q∨, inherits an obvious
action of WR by postcomposition, whence we conclude that

WS = WR n t(Q∨).

We can extend these translations to all coweights (except in case III).

DEFINITION 2.1.3. The extended affine Weyl group W(R, L′) is

W = W(R, L′) := WR n t(L′).[2]

[1]Again, Macdonald uses W0, which is fine, but let us be consistent with the index set’s nomenclature.
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Clearly WS E W and W/WS is Ω′. Dually, one may define W ′ = W(R′, L) for which the
analogues of all forthcoming results hold. One easily sees that W permutes S (and the alcoves)
by virtue of the following expression (which we label as a theorem only to make it stand out).

THEOREM 2.1.4. Let w ∈ W, written w = vt(λ′) for v ∈ WR and λ′ ∈ L′. For any a = α + rc ∈ S
we have

wa = va−
〈
λ
′, α
〉︸ ︷︷ ︸

∈Z

c,

meaning for any x ∈ V
(wa)(x) = 〈vα, x〉+ r−

〈
λ
′, α
〉

.

∗ ∗∗

Let us now, for w ∈W, count the number of positive affine roots that w makes negative.

DEFINITION 2.1.5. The length `(w) of w ∈W is defined to be |S(w)|, where

S(w) := S+ ∩ w−1S− = {a ∈ S | a(x) > 0 and (wa)(x) < 0 for all x ∈ C}.

Of course, `(w−1) = `(w) for S(w−1) = −wS(w). Moreover, clearly `(si) = 1 for all i ∈ I.
NOTATION 2.1.6. We define

Ω := {u ∈W | `(u) = 0}.

One can show Ω ∼= Ω′ and W = WS o Ω; we shall encounter this group later.

The length satisfies a number of properties. In general, `(vw) 6 `(v) + `(w) and equality is
equivalent to four particular conditions on the sets S(w) and so on. These are important for
proofs but morally boil down to ‘the positive roots turned negative by vw are those a ∈ S+

such that either wa is already negative or wa is positive but vwa is negative,’ which is probably
not super enlightening. What one can say is that S(v) = S(w) if and only if vw−1 ∈ Ω.
NOTATION 2.1.7. We define two characteristic functions for future usage. Let

σ := 1S+ − 1S− : S −→ {±1} and χ := 1R− : R −→ {0, 1}.

Notice from Notation 2.1.2 and Equation (1.2.1) that

S+ = {α + rc | α ∈ R and r > χ(α)}.

The length is nicely behaved when composing with simple reflections, namely for w ∈W and
i ∈ I we have

`(siw) = `(w) + σ(w−1ai) and `(wsi) = `(w) + σ(wai). (2.1.1)

Using induction on the length, one can hence derive existence of the following.

[2]Eric writes W for WR, Wa for WS and We for W in [Opdam].
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DEFINITION 2.1.8. Let w ∈W and p := `(w). A reduced form of w is a (nonunique) expression
of the form

w = usi1 · . . . · sip

for certain u ∈ Ω and ij ∈ I, with 1 6 j 6 p.

With this notation, we can show easily that S(w) = {bj}
p
j=1 with bj := sip · . . . · sij+1 aij .

Finally, the general length formula of any w ∈ WR n t(L′) is nice to have. It depends on the
order of the two factors of the semidirect product.

THEOREM 2.1.9. Let λ′ ∈ L′ and v ∈WR. Then

`(vt(λ′)) =
ÿ

α∈R+

∣∣〈λ′, α
〉
+ χ(vα)

∣∣ and `(t(λ′)v) =
ÿ

α∈R+

∣∣∣〈λ′, α
〉
− χ(v−1α)

∣∣∣ .

In particular, `(t(λ′)) = ∑α∈R+

〈
λ
′, α
〉

and `(v) = ∑α∈R+ χ(vα).

As an interesting corollary, for a simple root αi we have

`(t(α∨i )) =
〈
α∨i , αi

〉
+

ÿ

αi 6=α∈R+

〈
α∨i , α

〉
= 2.

2.2 Vees and yous and omega again

NOTATION 2.2.1. For λ′ ∈ L′, let λ′+ be the unique dominant weight in its WR-orbit and λ′−,
the antidominant weight.

DEFINITION 2.2.2 (Cherednik). Let λ′ ∈ L′.

i) Let v(λ′) be the shortest element of WR such that v(λ′)λ′ = λ′−.

ii) Let u(λ′) be the shortest element of the coset t(λ′)WR of W. Explicitly, it is given by
u(λ′) := t(λ′)v(λ′)−1.

We see t(λ′) = u(λ′)v(λ′), whereas t(λ′−) = v(λ′)u(λ′). Their lengths are additive. In fact,
` is additive on all elements of a coset of the form u(λ′)WR. These elements’ S(−) sets are
concretely computable, as follows.

THEOREM 2.2.3. Let λ′ ∈ L′ and a = α + rc ∈ S.

i) S(v(λ′)) = {β ∈ R+ |
〈
λ
′, β
〉
> 0},

ii) a ∈ S(u(λ′)) ⇐⇒ α ∈ R− and 1 6 r 6 χ(v(λ′)−1α) +
〈
λ
′, v(λ′)−1α

〉
,

iii) a ∈ S(u(λ′)−1) ⇐⇒ χ(α) 6 r 6 −
〈
λ
′, α
〉
.

Equivalently, using Notation 2.1.2, a(λ′) < 0.

∗ ∗∗

So far we have not discussed the fundamental weights; time to rectify this transgression!

12



NOTATION 2.2.4. For i ∈ IR, let π′i ∈ L′ be the fundamental weights for R∨, i.e.,
〈
π′i , αj

〉
= δij

and set π′0 := 0.

Dually, define πi to be the fundamental coweights for R′, i.e.,
〈

πi, α′j

〉
= δij and π0 := 0.

Recall mi and ψ from Notations 1.3.1 and 1.3.2 analogously to define m′i for i ∈ I (with m′0 = 1).

Using these we can give an explicit description of Ω, the group of length-0 elements.
NOTATION 2.2.5.

i) For i ∈ I, set ui := u(π′i).

ii) For i ∈ I, set vi := v(π′i) and wi := v(πi).

iii) Let[3]

J := {j ∈ I | π′j ∈ L′ and mj = 1} and J′ := {k ∈ I | πk ∈ L and m′k = 1}.

The π′j for j ∈ J are called minuscule weights. Of course, mj =
〈

π′j, ϕ
〉

.

Observe that 0 ∈ J, J′ and u0 = v0 = w0 = 1.

THEOREM 2.2.6. The {uj | j ∈ J} form a group that coincides with Ω.

We can turn J into an abelian group by declaring that J −→ Ω, j 7−→ uj be an isomorphism.
The vj then also obey the relations vjvk = vj+k = vkvj for j, k ∈ J. One can show that for any
j ∈ J, we have uja0 = aj, whence ujai = ai+j now for any i ∈ I. This defines an additive action
of J on I and moreover vjαi = αi−j.[4] Given this, then for any i ∈ I and j, k ∈ J we have

π′k+j = π′j + v−1
j π′k and π′i+j = miπ

′
j + v−1

j π′i .

REMARK 2.2.7. For j ∈ J, set w0j to be the longest element of StabWR(π
′
j) =

〈
sα1 , . . . , ŝαj , . . . , sαn

〉
.[5]

(This equality is obvious from the definition of the fundamental coweights.) Then the shortest
element of WR sending π′j to (π′j)− (see Notation 2.2.1) must be vj = w0w0j.

2.3 Order, order!

Let us define the partial dominance ordering on the lattice L′. To do so, we first need the Bruhat
ordering on the Weyl group and its extension.
DEFINITION 2.3.1. Let G be a Coxeter group. The Bruhat ordering 6 on G is defined by

g 6 h ⇐⇒ some (not necessarily connected) substring of some
reduced expression for h is a reduced expression for g.

[3]Cf. Eric’s O∗ in [Opdam], which in our notation corresponds to J \ {0}. The seemingly superfluous requirement
that the fundamental (co)weights lie in the appropriate lattice is to ensure all three cases are covered.

[4]Recall α0 from Notation 1.3.1.
[5]In Eric’s notation, w0j is wλj where λj is our π′j.
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Apply this to WS and extend it to W = ΩnWS separately on each coset of WS, viz. by declaring
that for u, u′ ∈ Ω and w, w′ ∈WS we have uw 6 u′w′ if and only if u = u′ and w 6 w′.

NOTATION 2.3.2. Let L′++ := {λ′ ∈ L′ |
〈
λ
′, αi
〉
> 0 for all i ∈ IR} be the dominant elements.

As usual, set Q∨+ = ∑i∈IR
Z>0α∨i . The dominance ordering on L′++ is the usual one:

λ
′ > µ′ ⇐⇒ λ

′ − µ′ ∈ Q∨+.

Quite some work goes into showing that the following extension is sensible.

DEFINITION 2.3.3 (Heckman). Let λ′, µ′ ∈ L′. We declare

λ
′ > µ′ ⇐⇒ either we have that λ′+ > µ′+ in L′++,

or λ′+ = µ′+ and v(λ′) 6 v(µ′) in WR.

The appropriate analogue holds in L as well.

As Eric observes in [Opdam, f. 8], the last inequality is not a typographical error. With this
ordering, λ′− is the dominant element of the orbit WRλ

′! We cherrypick some results.

THEOREM 2.3.4. Let λ′ ∈ L′.

(i) For any i ∈ I we have
ai(λ

′) > 0 ⇐⇒ siλ
′ > λ.

(ii) Let v, w ∈W. Then v 6 w implies that v(0) 6 w(0) in L′.

(iiia) Let v(λ′) = si1 · . . . · sip be a reduced form. For 0 6 j 6 p, set λ′j := sij+1 · . . . · sipλ
′. Then

λ
′
− = λ′0 > λ′1 > . . . > λ′p = λ′.

(iiib) Let v(−λ′)−1 = sjq · . . . · sj1 be a reduced form. For 0 6 k 6 q, set µ′k := sjk+1 · . . . · siqλ
′. Then

λ
′
+ = µ′0 < µ′1 < . . . < µ′q = λ

′.

2.4 Labellings and other things

DEFINITION 2.4.1. A multiplicity function of S is a map k : S −→ R that is constant on
W-orbits.

If R is simply laced (of type ADE), then any such k must be constant. If R 6= R∨, then k assumes
at most two values (for there are long and short roots). In case III (see Notation 1.3.2), there
are five possible values. If k takes an argument from R ⊂ S, we write it as a subscript to be
consistent with Eric. We define a dual function k′ on S′ on a case-by-case basis:

(I) For a′ = α∨ + rc ∈ S′, set k′(a′) := k(α + rc),

(II) Simply set k′ := k,

(III) [something specific and ugly].
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Let us define what Bourbaki would call the demi-somme des racines positives weighted by
multiplicity.
NOTATION 2.4.2. Set

ρk′ :=
1
2

ÿ

α∈R+

k′α∨α and ρ′k :=
1
2

ÿ

α∈R+

k(α′)∨α′.

One easily observes (perhaps recalling Notation 2.1.7) that w−1 ∈WR maps either of these two
expressions to themselves with an additional factor σ(wα) in each term. In particular, si = sαi

for i ∈ IR simply subtracts k(α∨i )αi from either expression with the appropriate placement
of apostrophes. Therefore, if k (resp. k′) does not assume the value 0, then ρ′k (resp. ρk′) are
stabilised only by 1 ∈WR.

NOTATION 2.4.3. Akin to Definition 2.2.2ii), for λ ∈ L we define u′(λ) be the shortest element
of the coset t(λ)WR of W. (Note that WR′ = WR on the nose in all cases.)

NOTATION 2.4.4. For λ′ ∈ L′, let

r′k(λ
′) := u(λ′)(−ρ′k).

For λ ∈ L, let
rk′(λ) := u′(λ)(−ρk′).

These can be explicitly computed.
NOTATION 2.4.5. Let η : R −→ ±1 be given by 1>0 − 160.

Then actually

r′k(λ
′) = λ′ +

1
2

ÿ

α∈R+

η(
〈
λ
′, α
〉
)k(α′)∨α′ and rk′(λ) = λ+

1
2

ÿ

α∈R+

η(
〈
λ, α′

〉
)k′α∨α.

One can show that r′k : L′ −→ V thus defines an injective map whose image excludes elements
of the form sir′k(λ

′) for any λ′ ∈ L′ that are fixed by si for some i ∈ I. One can actually be
slightly more precise: for any i ∈ I we have

sir′k(λ
′) = r′k(siλ

′) +

{
0 if siλ

′ 6= λ′,
k(α′i)∨α′i if siλ

′ = λ′.
(2.4.1)

Finally, r′k commutes with the action of Ω on L′.

2.5 Examples

EXAMPLE 2.5.1. We use the same notation as in Example 1.4.1. Let w = t(λ′) ∈ W = WS,
where λ′ = n · 2−1/2 ∈ P, for n ∈ Z. Then

S(w) = {±α + rc ∈ S | ±x + r > 0 and ± x + r < ±λ′ for all x ∈ C}
= {α + rc | r > 0 and r < n} ∪ {−α + rc | r > 0 and r 6 −n},
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whence we conclude that the allowed values of r (for precisely one affine root ±α + rc) are

r ∈


∅ λ

′ = 0,

{0, 1, . . . , n− 1} λ
′ > 0,

{1, 2, . . . , |n|} λ
′ < 0.

In any case, the length is |n|, which evidently agrees with the length formula Theorem 2.1.9.
For v = s1t(λ′) ∈W we get

S(v) = {α + rc | r > 0 and r 6 n} ∪ {−α + rc | r > 0 and r < −n}

by similar analysis and so the length is now |n + 1|, which agrees with the formula for `(siw)

involving σ.

The new generator for WS compared to WR is

s0 = s−α+c = t(α∨)s1 = t(α/2)s1.

For λ′ = nα/2, we have λ′± = ±|n|α/2, such that v(λ′) is trivial if and only if n 6 0. The
unique fundamental weight is π′1 = 2−1/2 = α/2 ∈ P∨ so v1 = s1. The ‘minuscule indices’ are
J = {0, 1} = I and so we see

Ω = {1, 2−1/2} = 21/2Z
/

2−1/2Z = P∨
/

Q∨ = Ω′,

as expected. The dominant weights are L′++ = Z>0π′1.

Finally, for k(α) = k = k′(α∨), we have ρ = ρ′k = ρk′ =
1
2 kα so that for λ′ = nα/2 we get

rk′(λ
′) = u(λ′)(−ρ) = t(λ′)v(λ′)−1(−ρ) =

{
t(λ′)s1(−ρ) = λ′ + ρ = (n + k)α/2 n > 0

t(λ′)(−ρ) = λ′ − ρ = (n− k)α/2 n 6 0.

Indeed, Equation (2.4.1) applied to λ′ = α/2 is true, as

s1rk′(α/2) = s1(1 + k)α/2 = (−1− k)α/2 = rk′(s1α/2)

and, since s0α/2 = α/2 + s1α/2 = 0 6= α/2,

s0rk′(α/2) = α/2+ s1rk′(α/2) = −kα2 = −ρ = t(0)v(0)−1(−ρ) = rk′(0)(−ρ) = rk′(s0α/2)(−ρ).

On to C2.
EXAMPLE 2.5.2. Now to C2 again from Example 1.4.2 and let us stick to case I. We see that sϕ

is the reflection in the x-axis and so equals

sϕ = −s2 = s1s2s1s2
2 = s1s2s1.

The coweight lattice is spanned by π′1 := (1, 0) and π′2 := ( 1
2 , 1

2 ), as one easily checks. (The
fundamental coweights, spanning P, are π1 = (1, 0) and π2 = (1, 1).) As such, then,

s0 = s−ϕ+c = t(ϕ∨)sϕ = t(π′1)s1s2s1.
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In WS′ , we have sψ = −s1 (because ψ ⊥ α1) and so s′0 = s−ψ∨+c = t(ψ)sψ = t(π2)s2s1s2.

Take w = t(π′2)s1 ∈W as an example. The length formula predicts

`(w) = ∑
α∈R+

∣∣〈π′2, α
〉
− χ(s1α)

∣∣
= |−χ(−α1)|︸ ︷︷ ︸

α=α1

+ |1− χ(−2α1 + 2α1 + α2)|︸ ︷︷ ︸
α=2α1+α2=ϕ

+ |1− χ(−α1 + 2α1 + α2)|︸ ︷︷ ︸
α=α1+α2=ψ

+ |1− χ(2α1 + α2)|︸ ︷︷ ︸
α=α2

= 1 + 1 + 1 + 1 = 4.

To find these elements of S(w), we need a reduced expression for w.

We have ϕ = 2α1 + α2 and so J = {0, 2}. We see that the shortest element of WR mapping π′2
to the antidominant element in its orbit, being minus itself, is w0w02 by Remark 2.2.7, where
w0 = − id = s2s1s2s1, the longest element overall, and w02 = s1. Therefore v2 = s2s1s2, which
one easily verifies to effect π′2 7−→ −π′2 = (π′2)−. The nontrivial element of Ω is therefore

u2 = u( 1
2 , 1

2 ) = t(π′2)v(π
′
2)
−1 = t(π′2)s2s1s2.

Indeed, we see that (using the same summation order as above)

`(u2) = `(t(π′2))− `(v2) = (0 + 1 + 1 + 1)− (0 + 1 + 1 + 1) = 0,

as expected. Therefore, a reduced expression of our w above is w = t(π′2)s1 = u2s2s1s2s1,
which shows the length is indeed 4. We conclude that

S(w) = {b1, . . . , b4} = {a2, a1 + a2, 2a1 + a2, a1} = R+.[6]

Now that we have u2, one we can also explicitly verify that u2a0 = a2 (and vice versa) and
u2a1 = a1.

Finally, since ψ = α1 + α2 = β1 + 2β2, we see that J′ = {0, 1} and the nontrivial element of Ω′

is u(π1). The entire analysis is analogous to the apostropheless case.

EXAMPLE 2.5.3. The goup WS is generated by s0 : x 7−→ x − ( 1
2 + 〈α, x〉)α∨ = 1− x (again,

this cannot be right; since α =
√

2 , this should be 2−1/2 − x) and of course s1(x) = −x. Since
L′ = Q∨, the extended affine Weyl group W is just WS.

[6]Apparently, there are no ‘strictly’ affine roots in this set; if nonetheless α + rc ∈ S(w), then r > χ(α) and
also w(α + rc) = s1α + (r−

〈
π′2, α

〉
)c must be in S− and so we should have r−

〈
π′2, α

〉
< χ(s1α). If α ∈ R+ then〈

π′2, α
〉

is either 0 or 1. If it is 0 then s1α = −α so r < 1 and r > 0 allows for no translations. If it is 1 then α 6= α1
and so s1α ∈ R+ and we have r− 1 < 0 and r > 0. The situation for α ∈ R− is similar.
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Jack of all braids, master of none

3.1 Generators and relations

DEFINITION 3.1.1. The braid group B(W) associated to W is the group with presentation

B = B(W) = 〈T(w) | T(vw) = T(v)T(w) for all v, w ∈W s.t. `(vw) = `(v) + `(w)〉 .

Let us define some special generators.

NOTATION 3.1.2. We set Ti := T(si) for i ∈ I and Uj := T(uj) for j ∈ J.

A warning: the assignment w 7−→ T(w) is not a group homomorphism. For example, T2
i 6= 1

since 0 = `(s2
i ) 6= 2`(si) = 2. (Of course, T(1) = 1, though.)

Let si, sj ∈W be such that sisj has finite order mij. Then we know sisjsi · . . . = sjsisj · . . . with mij
simple reflections on either side and this is a reduced form. Recalling the bit beneath Theorem
2.2.6, for j, k ∈ J we have ujuk = uj+k with all factors having length zero. Finally, we knew that
for i ∈ I and j ∈ J,

ujsi = sujai uj = si+juj

is a reduced expression of length 1. Concluding, we obtain the following relations between the
generators of B.
NOTATION 3.1.3 (Braid relations). With notation as above, we have

(a) TiTjTi · . . . = TjTiTj · . . . for all i 6= j ∈ I with mij < ∞,

(b) UjUk = Uj+k for all j, k ∈ J,

(c) UjTiU−1
j = Ti+j for all i ∈ I and j ∈ J.

Actually, these are precisely all of the relations.
THEOREM 3.1.4. B is generated by the Ti, Uj, for i ∈ I, j ∈ J, subject to the relations (a), (b) & (c).

The assignment T behaves controlledly on reduced expressions. First of all, we can immediately
use Equation (2.1.1) to see that for all w ∈ W and i ∈ I we have T(wsi) = T(w)Tσ(wai)

i and

T(siw) = Tσ(w−1ai)
i T(w). By induction, we obtain:
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THEOREM 3.1.5. Let v, w ∈W and let v−1w = ujsi1 · . . . · sip be a reduced form. For 1 6 j 6 p, set
bj := ujsi1 · . . . · sij−1 aij and ε j := σ(vbj). Then

T(v)−1T(w) = UjT
ε1
i1
· . . . · Tεp

ip
.

Theorem 2.1.9 immediately shows that ` is additive on t(L′++). Hence we may do the following.

NOTATION 3.1.6. For λ′ ∈ L′++, set Yλ
′

:= T(t(λ′)). Then the set of all such elements lies in the
centre of B.

For any λ ∈ L′, pick µ′, ν′ ∈ L′++ such that λ′ = µ′ − ν′ and define Yλ
′

:= Yµ′(Yν′)−1, which is
well-defined by the above.

This defines YL′ = {Yλ′ | λ′ ∈ L′} as abelian subgroup in B, isomorphic to L′.

The Y’s associated to the minuscule weights are written Y′j := Yπ′j .

Earlier results then give the following, albeit after some labour.

THEOREM 3.1.7. Let λ′ ∈ L′ and i ∈ IR such that
〈
λ
′, αi
〉

is either 0 or 1. In the first case, siλ
′ = λ′

and then TiYλ
′
= Yλ

′
Ti. In the second, siλ

′ = λ′ − α∨i and TiYλ
′−α∨i = Yλ

′
T−1

i .

REMARK 3.1.8. It is indeed true that
〈
λ
′, αi
〉
= 1 if and only if siλ

′ = λ′ − α∨i . From right to left
is clear, whereas from left to right we see 1 =

〈
λ
′, αi
〉
= −

〈
siλ
′, αi
〉
, from which obtain that〈

−siλ
′ + λ′, αi

〉
= 2 = 〈α∨i , αi〉. From this we obtain that −siλ

′ + λ′ − α∨i ∈ α⊥i and hence it is
fixed by si. But it is also mirrored by si and therefore zero. ���

We can give some more expressions for some of our distinguished elements entirely in terms
of our basic generators.
THEOREM 3.1.9. We have

T0 = Yϕ∨T(sϕ)
−1

and
Uj = Y′j T(vj)

−1

for all j ∈ J. Moreover, if λ′ ∈ L′ and u(λ′) = ujsi1 · . . . · siq is a reduced form, then

Yλ
′
= UjT

ε1
i1
· . . . · Tεq

iq
T(v(λ′))

for certain ε j ∈ {±1}, where 1 6 j 6 q.

Finally, if we define BR (again, Macdonald uses B0) to be the subgroup of B generated by the
Ti for i ∈ IR only, then T0 and the Uj can be replaced by YL′ , as follows.

THEOREM 3.1.10. B is generated by BR and YL′ subject to the relations in Theorem 3.1.7.
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3.2 Don’t B a braid; fear not the tilde

Recall Λ = L⊕Z(e−1c) from Notation 1.3.4. Its elements are viewed as functions on V in
analogy with Notation 2.1.2 (with an extra factor e−1 in the latter term) and the extended affine
Weyl group acts on it analogously to the action in Theorem 2.1.4 (with the appropriate e−1).

NOTATION 3.2.1. Turn Λ into a multiplicative group XΛ comprising multipliable formal
symbols X f , where f ∈ Λ, by declaring that

Λ −→ XΛ, f 7−→ X f

be an isomorphism. Denote XL = {Xλ | λ ∈ L}.

DEFINITION 3.2.2 (Cherednik). The double braid group B̃ is the group generated by B and
XΛ subject to the relations

i) For all i ∈ I and f ∈ Λ such that f (α′i) = 0 or 1,[1]

TiX f Xε
i = Xsi f ,

with ε = −1 if f (α′i) = 0 and ε = 1 otherwise,

ii) For all j ∈ J and f ∈ Λ,
UjX f U−1

j = Xuj f .

We can enrich Theorem 3.1.10 to give generators and relations for B̃, as follows.

NOTATION 3.2.3. Define the element q0 := Xc0 ∈ B̃. It is not difficult to check that it commutes
with all Ti and Uj and is therefore central. Also, let q := Xc = qe

0.

The relations in the next theorem are not actually all independent, but we omit the details.

THEOREM 3.2.4. The double braid group B̃ is generated by BR, XL, YL′ and q0 subject to the following
relations:

(a) Tε
i Y−λ

′
Ti = Y−siλ

′
for all i ∈ IR and λ′ ∈ L′ such that

〈
λ
′, αi
〉

is either 0 — in which case
ε = −1 — or 1, in which case ε = 1,

(b) TiXλTε
i = Xsiλ with the same conditions as (a) except with (L′, R) replaced by (L, R′),

(c) T0XλT0 = q−1Xsϕλ for all λ ∈ L with 〈λ, ϕ′〉 = −1,[2]

(d) T0XλT−1
0 = Xλ for all λ ∈ L with 〈λ, ϕ′〉 = 0,

(e) UjXλU−1
j = q−

〈
λ,vjπ

′
j

〉
Xv−1

j λ for all λ ∈ L and j ∈ J.

The reader may now wish to recall Notation 2.2.4 and 2.2.2.

[1]Macdonald writes
〈

f , α′i
〉

but, interpreting f as a function on V, our notation makes more sense and is
consistent with the action of affine roots on V, which is also written as evaluation.

[2]We suspect the apostrophe is for notational consistency amongst expressions of the form 〈L,−′〉, since in
Notation 1.3.1 we set ϕ = ϕ∨.
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NOTATION 3.2.5. For k ∈ J′, set Xk := Xπk as the dual counterpart to Y′j from Notation 3.1.6,
j ∈ J.

Cherednik computed the commutator

[Xk, Y′j ]
−1 = X−1

k (Y′j )
−1XkY′j = q

〈
π′j ,πk

〉
T(w−1

k )T(vjw−1
k )T(vj)

for any j ∈ J and k ∈ J′.

∗ ∗∗

NOTATION 3.2.6. We can define the dual double braid group B̃′, generated by B and XΛ′

where, of course, Λ′ := L′ ⊕Zc0.

The counterparts of Notation 3.1.2 (or actually Theorem 3.1.9) are

T′i := Ti, T′0 := Y(ψ′)∨T(sψ)
−1 and U′k := Yπk T(wk)

−1

for i ∈ IR and k ∈ J′. (See Notation 1.3.2 for ψ.)

We know from the definition of L and L′ in all three cases (Notation 1.3.2) that they are ‘the
same’, possibly up to taking ∨’s. This is formalised as follows.

THEOREM 3.2.7. There exists an anti-isomorphism ω : B̃′ ∼−→ B̃ such that

i) ω(Xλ
′
) = Y−λ

′
for all λ′ ∈ L′,

ii) ω(Yλ) = X−λ for all λ ∈ L,

iiia) ω(Ti) = Ti for all i ∈ IR,

iiib) ω(T′0) = T∗0 := T(sψ)−1X−(ψ
′)∨ ,

iv) ω(U′k) = Vk := T(wk)
−1X−1

k for all k ∈ J′,

v) ω(q0) = q0.

These Vk and T∗0 satisfy the anti-analogues of the braid relations 3.1.3:

VkVl = Vk+l and V−1
k TiVk =

{
Ti+k i + k 6= 0,

T∗0 i + k = 0,

for all i ∈ IR and k, l ∈ J′.

The proof of the theorem is done separately for each of the three cases and boils down to
showing that T∗0 and the Vk satisfy the appropriate relations in Theorem 3.2.4. As far as labours
go in this book, it’s rather Herculean. Like the Keryneian hind, we therefore run like the
clappers. ‘Aha!’ exclaims the reader, ‘into the next chapter?’ Yes, but first the examples.
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3.3 Examples

EXAMPLE 3.3.1. Continuing Example 2.5.1, we see B is generated by T0, T1 and U1 (since
U0 = T(1W) = 1B) subject to the braid relations. Explicitly, we see that s0s1 = s−α+csα = t(α∨)
has infinite order, so the braid relations reduce to:

(a) empty statement,

(b) U2
1 = 1,

(c) U1T0U1 = T1.

Therefore, given a word in these generators we can move any and all U1’s to the left, swapping
T0 with T1 as they are passed. There are no relations amongst these latter two, so any element
of B is written Ti1

0 Ti2
1 Ti3

0 · . . . or U1 times such an element. Alternatively, we can get rid of all
T0’s using (c) so the element is written as a word in T1 and U1 subject to (b).

Moreover, Theorem 3.1.9 says that Y′1 = T(t(π′1)) = U1T(v1) = U1T1 and T0 = YαT−1
1 =

T(t(α))T−1
1 . Since `(t(α)) = 〈α, α〉 = 2 = 1 + 1 = 2 〈π′1, α〉 = 2`(t(π′1)) using Theorem 2.1.9,

we get that Yα = (Y′1)
2 = U1T1U1T1 = T0T1, so T0 = T0T1T−1

1 = T0, which says nothing. Of
course, we have Y′0 = 1.

We see BR is the free group on one generator T1 and YL′ is generated by Y′1 = U1T1. They
satisfy the relation T1(Y′1)

−1 = Y′1T−1
1 and indeed both are equal to U1. Checking Theorem

3.1.10, then, we should be able to retrieve the two nontrivial braid relations. Indeed, this single
relation gives both, for U2

1 = Y′1T−1
1 T1(Y′1)

−1 = 1 and

U1T0U1 = T1(Y′1)
−1T0T1(Y′1)

−1 = T1(Y′1)
−1(Y′1)

2T−1
1 T1(Y′1)

−1 = T1.

The double braid group has an additional generating set XΛ, where Λ = 2−1/2Z⊕ 2−1Zc. It is
alternatively generated by U1, T1, X1 := Xπ1 and Y′1 with the appropriate relations. (Mind that
π1 = π′1 generates both L and L′; see Example 1.4.1.) The relations in Theorem 3.2.4 are

(a) T1(Y′1)
−1T1 = Y′1,

(b) T1X1T1 = X−1
1 ,

(c) T0X−1
1 T0 = q−1Xsϕ(−π1) = q−1X1,

(d) empty statement,

(e) U1X1U1 = q−〈π1,−π′1〉Xs−1
1 π1 = q1/2X−1

1 .

Note that e = 2 so q1/2 = q0.

EXAMPLE 3.3.2. The braid group for our C2 example is generated by T0, T1, T2, U2 subject to the
braid relations. Again, s0s1 = t(ϕ∨)s1s2 has infinite order, as does s0s2, and m12 = 4. Therefore,
using the identities for u2 from Example 2.5.2,

(a) T1T2T1T2 = T2T1T2T1,

(b) U2
2 = 1,
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(c) U2T0U2 = T2 and U2T1U2 = T1.

We moreover have

T0 = Yϕ∨T(sϕ)
−1 = Yπ′1 T(s1s2s1)

−1 = Yπ′1 T−1
1 T−1

2 T−1
1 ,

for `(s1s2s1) = 3 = `(s1) + `(s2) + `(s1), as one verifies, and

U2 = Y′2T(v2)
−1 = Y′2T−1

2 T−1
1 T−1

2

for the same reason. Thus, B is generated by T1, T2, Yπ′1 and Y′2 subject to the following relations:

i) T1Yπ′1−α∨1 = T1(Y′2)
2Y−π′1 = Yπ′1 T−1

1 ,

ii) T1Y′2 = Y′2T1,

iii) T2Yπ′1 = Yπ′1 T2,

iv) T2Yπ′2−α∨2 = T2Yπ′1(Y′2)
−1 = Y′2T−1

2 .

We should be able to retrieve the braid relations from these. For example, (b) follows from

U2
2 = Y′2T−1

2 T−1
1 T−1

2 Y′2T−1
2 T−1

1 T−1
2

iv)
= T2Yπ′1(Y′2)

−1T−1
1 T−1

2 T2Yπ′1(Y′2)
−1T−1

1 T−1
2

i)
= T2Yπ′1(Y′2)

−1(Y′2)
2Y−π′1 T1(Y′2)

−1T−1
1 T−1

2
ii)
= T2Yπ′1Y−π′1Y′2(Y

′
2)
−1T1T−1

1 T−1
2

= 1,

where the second to last equality also used commutativity of YL′ .
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Aha! Affine Hecke algebras!

4.1 More generators and relations

If but we could turn the braid group into an algebra... and we can!
NOTATION 4.1.1. Henceforth fix forever:

• A real number q ∈ (0, 1),

• Real numbers τi ∈ R>0 for each i ∈ I, such that τi = τj whenever si and sj are conjugate
in W,

• A subfield K ⊆ R containing all τi and q0 := q1/e.

In particular, q and q0 will from now on refer to the above rather than the double braid group
element from Notation 3.2.3. (Of course, the two are related.)
DEFINITION 4.1.2. The Hecke algebra H of W over K is the K-algebra

H = K[B]
/(

(Ti − τi)(Ti + τ−1
i )

∣∣∣ i ∈ I
)

.

The basis elements of the group algebra of B are written as elements of B (rather than using
e’s or δ’s). Its unit element is 1.

By previous results, H is generated as K-algebra by the Ti and Uj (with i ∈ I and j ∈ J) subject
to the braid relations 3.1.3 as well as the Hecke relations
NOTATION 4.1.3.

(d) (Ti − τi)(Ti + τ−1
i ) = 0 for all i ∈ I. Equivalently, Ti − τi = T−1

i − τ−1
i .

The Hecke relations modify the previous result that T(siw) = Tσ(w−1ai)
i T(w) in the Hecke

algebra, namely

TiT(w) = T(siw)+χ(w−1ai)(τi− τ−1
i )T(w) and T(w)Ti = T(wsi)+χ(wai)(τi− τ−1

i )T(w).

∗ ∗∗
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Let t, u ∈ R× be parameters and x, a formal indeterminate.
NOTATION 4.1.4. We define

b(x) = b(t, u; x) :=
t− t−1 + (u− u−1)x

1− x2

and

c(x) = c(t, u; x) :=
tx− (tx)−1 + u− u−1

x− x−1 .

A priori, consider these as formal rational functions in x.

The following results are crucial for the forthcoming and follow by direct computation.
PROPOSITION 4.1.5.

i) c(t, u; x) = c(t−1, u−1; x−1),

iia) b(t, t; x) = t−t−1

1−x ,

iib) c(t, t; x) = t−1−tx
1−x ,

iii) c(x) = t− b(x) = t−1 + b(x−1),

iva) c(x) + c(x−1) = t + t−1,

ivb) b(x) + b(x−1) = t− t−1,

v) c(x)c(x−1)− b(x)b(x−1) = 1.

The generalisation of Theorem 3.1.7 to H is an important result called the Lusztig relation. We
need some new letters first because when do we not?
NOTATION 4.1.6. Let i ∈ IR and set

υi :=

{
τi if 〈L′, αi〉 = Z,

τ0 if 〈L′, αi〉 = 2Z.

The latter possibility only occurs in case (III) (q.v. 1.3.2) for αi the unique long root.

Fix i ∈ IR (the dependence will be left out of notation) and define, for j ∈ Z,

ũj :=

{
τi − τ−1

i if j even,

υi − υ−1
i if j odd.

The tilde, absent in Macdonald, I added to avoid any confusion with the elements of Ω.

(Case (III) haunting the notation is a recurring theme.) Recall Notation 3.1.6.

THEOREM 4.1.7 (Lusztig). Let λ′ ∈ L′ and i ∈ IR. Then

Yλ
′
Ti − TiYsiλ

′
= b(τi, υi; Y−α∨i )(Yλ

′
−Ysiλ

′
). (4.1.1)

We can deduce the following explicit formulæ from Lusztig’s result.
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COROLLARY 4.1.8.

i) If
〈
λ
′, αi
〉
=


r > 0

r < 0

0

, then (4.1.1) equals



r−1
ÿ

j=0

ũjYλ
′−jα∨i

−r
ÿ

j=1

ũjYλ
′+jα∨i

0

, respectively,

iia) (Ti − τi)Yλ
′ −Ysiλ

′
(Ti − τi) = −c(τi, υi; Y−α∨i )(Yλ

′ −Ysiλ
′
),

iib) (Ti + τ−1
i )Yλ

′ −Ysiλ
′
(Ti + τ−1

i ) = c(τi, υi; Y−α∨i )(Yλ
′ −Ysiλ

′
).

Considerable effort proves the following theorem, showing that the relations are more or less
‘precisely enough’ compared to those in B.

THEOREM 4.1.9. The set {T(w) | w ∈W} forms a basis for H as K-module.

Generalising Theorem 3.1.10, we similarly have the following.

THEOREM 4.1.10. The set {T(w)Yλ
′ | w ∈ WR and λ′ ∈ L′} forms a basis for H as K-module. The

same is true for all Yλ
′
T(w).

4.2 Time for a representation

NOTATION 4.2.1. Let A′ := K[L′] as group algebra, with basis {eλ′ | λ′ ∈ L′} behaving in
the expected manner. We have an action of WR on A′ by weλ

′
= ewλ′ for w ∈ WR, extended

K-linearly. The invariants for this action are denoted A′R := (A′)WR .[1]Analogously define
A = K[L] and AR = AWR .

Elements f ∈ A′ will be written f = ∑λ′ fλ′e
λ
′

with almost all fλ′ ∈ K equal to 0. We then define

f (Y) :=
ÿ

λ
′

fλ′Y
λ
′
,

which span a commutative subalgebra A′(Y) inside H isomorphic to A′.

COROLLARY 4.2.2. By Lusztig, for all f ∈ A′ and i ∈ IR, we have

f (Y)Ti − Ti(si f )(Y) = b(τi, υi; Y−α∨i )( f (Y)− (si f )(Y))

in A′R(Y).
THEOREM 4.2.3. The centre of the Hecke algebra is Z(H) = A′R(Y).

∗ ∗∗

We include the construction of the basic representation from first principles. Skip ahead to the
next asterism for the final result.

[1]As usual, Macdonald uses the subscript 0 here.
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NOTATION 4.2.4. Set HR to be the K-subalgebra of H generated by the T(w) for w ∈WR.

Defined on the basis from Theorem 4.1.10, the map

H −→ A′⊗
K
HR, Yλ

′
T(w) 7−→ eλ

′
⊗ T(w)

is an isomorphism of K-modules. Thus, if M is a left HR-module, then we identify

IndH
HR
(M) = H⊗

HR

M ∼−→ A′⊗
K

M

via f (Y)T(w)⊗ x 7−→ f ⊗ T(w) · x for f ∈ A′, w ∈ WR and x ∈ M. Thus, using Lusztig, for
any i ∈ IR, the induced HR-action on A′ ⊗K M is given on pure tensors by

Ti · ( f ⊗ x) = si f ⊗ (Ti · x) + b(τi, υi; e−α∨i )( f − si f )⊗ x.

Now fix the HR-module M = K, spanned over K by some element x, with action Ti · x := τix.
The induced representation is then identified with A′ with action

Ti · f = τisi f + ( f − si f )b(τi, υi; e−α∨i )

for i ∈ IR. This defines a K-algebra representation (q.v. Notation 4.2.6 ahead for the X inside b)

HR −→ EndK(A′), Ti 7−→ τisi + b(τi, υi; X−α∨i )(id−si) (4.2.1)

that turns out to be faithful. The full action of H will appear shortly.

∗ ∗∗

We can view L inside F, so that µ ∈ L acts on x ∈ V by evaluation µ(x) = 〈µ, x〉 and the action
of W on F by precomposition restricts to L as follows.

NOTATION 4.2.5. For w = t(λ′)v ∈W with λ′ ∈ L′ and v ∈WR, and for x ∈ V, we have

(w · µ)(x) =
〈

µ, w−1x
〉
=
〈

µ, v−1(x− λ′)
〉

,

so that w · µ = vµ−
〈
vµ, λ′

〉
c.

Recall q from Notation 4.1.1.
NOTATION 4.2.6. For f = µ + rc ∈ F with µ ∈ L, define its action on A (from Notation 4.2.1)
as follows. Define e f := qreµ ∈ A and let X f ∈ EndK A be defined by multiplication by e f .

In general, for any λ′ ∈ L′ or µ ∈ L, let Xλ
′ ∈ EndK(A′) and Xµ ∈ EndK(A) be given by

multiplication by eλ
′

and eµ, respectively.

Finally, with this notation to hand, the WR-action on A from Notation 4.2.1 can be extended to
W as follows.

NOTATION 4.2.7. Let w = t(λ′)v ∈W with v ∈WR. Then for µ ∈ L,

w · eµ = ewµ = q−〈vµ,λ′〉evµ.

This action is in fact faithful.
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Now comes a rather annoying bit of notation entirely due to the existence of case III.

NOTATION 4.2.8. Hearkening back to Notation 4.1.1, define for i ∈ I numbers τ′i ∈ R>0 by

• For all i we set τ′i := τi in cases I and II.

• For all 0 6= i 6= n we set τ′i := τi in case III.

I.e., τ′0, τ′n in case III are new.

These new numbers satisfy an appropriate version of the Hecke relations 4.1.3.
NOTATION 4.2.9. In case III only, set

T′0 := X−a0 T−1
0 and T′n := X−an T−1

n

(and T′i := Ti for 0 6= i 6= n). Then

(T′i − τ′i )(T
′
i + τ′i

−1
) = 0

for all i ∈ I.

We now define a bunch of operators on A to appear frequently in the forthcoming.
NOTATION 4.2.10. For i ∈ I, set

bi := b(τi, τ′i ; eai) and ci := c(τi, τ′i ; eai).

For ε = ±1, use these expressions to define operators (as in Notation 4.2.6)

bi(Xε) := b(τi, τ′i ; Xεai) and ci(Xε) := c(τi, τ′i ; Xεai).

Set 1 := id ∈ EndK A and identify elements of W with their action on A according to Notation
4.2.7.
REMARK 4.2.11. A warning: whilst the bi and ci commute amongst each other, the bi(Xε) and
so on do not commute with W. Indeed, one can easily show that

bi(X)si = sibi(X−1)

and similarly for ci. More generally, for any w ∈W and µ ∈ L, we have

wXµw−1 = Xwµ

as operators.

In view of the induced representation (4.2.1), one can prove the following.
THEOREM 4.2.12 (Cherednik). There exists a representation β : H −→ EndK A such that for all
i ∈ I, we have

β(Ti) = τisi + bi(X)(1− si)

and for all j ∈ J we have
β(Uj) = uj.

Moreover, the set {Xµβ(T(w)) | µ ∈ L, w ∈W} is K-linearly independent in End(A) and hence β is
faithful. It is called the basic representation of H.
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By virtue of the faithfulness of this basic representation, we henceforth identify each h ∈ H with
the operator β(h). For instance, we shall write

Ti = τisi + bi(X)(1− si) and Uj = uj.

Proposition 4.1.5 (together with Remark 4.2.10) then yield more useful results.
PROPOSITION 4.2.13. Let i ∈ I, ε = ±1 and µ ∈ L. Then

i) Ti − τi = ci(X)(si − 1),

ii) Ti + τ−1
i = (1 + si)ci(X−1),

iii) Tε
i = εbi(Xε) + ci(X)si,

iv) TiXµ − XsiµTi = bi(X)(Xµ − Xsiµ).

From this, explicit computation reveals that the Ti and Xµ satisfy the B̃ relations from Theorem
3.2.4.

4.3 More identities in the affine Hecke algebra

Any ‘function’ f ∈ A′R gives rise to a central operator f (Y) ∈ Z(H) that maps AR into itself.
For functions living in A, now, we want to look at what they do ‘to leading order’, as follows.

NOTATION 4.3.1. Let f ∈ A = K[L] and write

f =
ÿ

µ6λ

fµeµ

for some λ ∈ L dominating (q.v. Definition 2.3.3) the (finitely many) µ’s with fµ 6= 0. We shall
write

f = fλeλ + LOT

to disregard the lower-order terms.

Recall the map η from Notation 2.4.5. To leading order, we can compute the action of H on A
explicitly. For simples; let i ∈ IR and λ ∈ L, then

T−1
i eλ = τ

−η(〈λ,α′i〉)
i esiλ + LOT.

To be able to present the generalisation to arbitrary T(w), we need more notation as usual.
Recall Notation 4.1.1.
NOTATION 4.3.2.

• Define a function κ on the simple roots of R by κi := κ(αi) such that τi = qκi/2.

• Extend κ to all of R by setting κα := κi for α ∈WRαi.

• Similarly define κ′ on R′ using the τ′i . Also define κ0, κ′0 in this manner.

• For w ∈WR and λ ∈ L, set

f (w, λ) :=
1
2

ÿ

α∈R+

η(−
〈
λ, α′

〉
)χ(wα)κα.
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By applying the previous result to a reduced form, we get:
THEOREM 4.3.3. Let w ∈WR and λ ∈ L. Then

T(w−1)−1eλ = q f (w,λ)ewλ + LOT.

NOTATION 4.3.4. If w = si1 · . . . · sip ∈WR is a reduced form, let

τw := τi1 · . . . · τip = q
1
2 ∑α∈R+ χ(wα)κα ,

which is well-defined.
PROPOSITION 4.3.5. On 1A ∈ A, the operator T(w), where w ∈WR, acts by τw.

Of course, we want to generalise this to all of W (equivalently, all of H), which requires... you
guessed it. The spanner in the works is, as usual, case III. Let S1 = {a ∈ S | 1

2 a /∈ S}, which
equals S except in case III. In general, it equals the union of all orbits Wai, for i ∈ I.
NOTATION 4.3.6. Henceforth fix a multiplicity function k on S1, which we for convenience
assume never to hit 0, by

k(a) := 1
2 (κi + κ′i) and k(2a) := 1

2 (κi − κ′i)

if a ∈Wai. Define its dual labelling k′ as in Section 2.4.

In cases I and II, τi = τ′i and so k(a) = κi for all a ∈ S (and 2a is moot).

*sips tea*
NOTATION 4.3.7. Let a ∈ S1 such that a = wai for some w ∈W and i ∈ I. Define

τa := τi and τ′a = τ′i

in accordance with Notation 4.2.8. Using these, define

ba = ba,k := b(τa, τ′a; ea) and ca = ca,k := c(τa, τ′a; ea)

and the corresponding operators ba(X), ca(X) ∈ End(A), as the analogues of Notation 4.2.10.
Indeed, ba = wbi and ca = wci evidently.

*burns mouth*

NOTATION 4.3.8. Let w ∈W. With S1(w) as in Definition 2.1.5, let

c(w) = cS,k(w) := ∏
a∈S1(w)

ca.

*sips tea more carefully*
NOTATION 4.3.9. Let Φ be the field of fractions of A. Define a K-subalgebra hereof by

A[c] := A[ca | a ∈ S].

(Note that any a ∈ S \ S1 is of the form 2b for some b ∈ S1, which defines ca.)
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With this to hand, we can say, for instance that
THEOREM 4.3.10. Let u, v ∈W. Then, as operators on A,

T(u)−1T(v) =
ÿ

W3w6u−1v

fw(X)w

for certain fw ∈ A[c] such that fu−1v = c(v−1u). Furthermore, for λ′ ∈ L′, we have

Yλ
′
= c(u(λ′)−1)(X)u(λ′)T(v(λ′)) +

ÿ

w∈W
w(0)<λ′

gw(X)w

and
Y−λ

′
= T(v(λ′)−1)c(u(λ′))(X)u(λ′)−1 +

ÿ

w∈W
w(0)<λ′

hw(X)w−1

for certain gw, hw ∈ A[c].

In particular, if λ′ is antidominant (i.e., w0λ
′ ∈ L′++),

Yλ
′
= c(t(−λ′))(X)t(λ′) + . . . ,

whence we can derive the a complicated formula that becomes useful in the next chapter.

NOTATION 4.3.11. For λ′ (anti)dominant, let

mλ′ :=
ÿ

µ′∈WRλ
′

eµ′ ,

which lies in A′R and hence mλ′(Y)R := mλ′(Y)
∣∣

A′R
lands in A′R again. Similarly define mµ for

µ ∈ L++ (anti)dominant.

THEOREM 4.3.12. Let λ′ be antidominant. Then

mλ′(Y)R =
ÿ

w∈Wλ′
R

(wc(t(−λ′)))(X)t(wλ′) +
ÿ

µ′∈ΣR(λ′)

gµ′(X)t(µ′),

where gµ′ ∈ A[c], Wλ
′

R is transversal[2]to the isotropy group StabWR(λ
′), and ΣR(λ′) = Σ(λ′)−WRλ

′,
with Σ(λ′) the saturation[3]of {λ′} in L′.

In the cases to be treated, ΣR(λ′) will be contained inside {0} and so the precise definition does
not matter for now.

∗ ∗∗

Recalling Notation 4.2.5, we can view elements f ∈ A (or, analogously, A′) as functions on V.

[3]Meaning it intersects each coset of the isotropy group in WR in exactly one element.
[3]We have omitted saturated sets; Σ(λ′) is the smallest subset of L′ containing λ′, such that for all σ′ ∈ Σ(λ′),

α ∈ R and r ∈ Z with 0 6 r 6 〈σ′, α〉, the entire string λ′ − rα∨ lies in Σ(λ′). (In particular, sασ′ does, and so this
saturation carries a WR-action.)
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NOTATION 4.3.13. For f = ∑ fλeλ ∈ A and x ∈ V, define

f (x) :=
ÿ

λ∈L

fλq〈λ,x〉.

If h = f
g ∈ Φ, define h(x) := f (x)

g(x) wherever g(x) 6= 0.

EXAMPLE 4.3.14. As an important example, for i ∈ I we have ci(x) = c(τi, τ′i ; eai)(x), whose
denominator is q〈ai ,x〉 − q〈−ai ,x〉. This is nonzero as long as 〈ai, x〉 = ai(x) 6= 0.

There are several more results in section 4.5, which we skip at least for now.
NOTATION 4.3.15. For a ∈ S1, define

Ga := τa + ba(X−1)(sa − 1) = ca(X−1) + ba(X−1)sa

as operators on A. In particular, let

Gi := Gai = siTi.

One easily verifies (using Remark 4.2.11) that wGaw−1 = Gwa and G−1
a = ca(X)− ba(X−1)sa

for all w ∈W.

One may easily verify that if W 3 w = ujsi1 · . . . · sip is a reduced expression, and br :=
sip · . . . · sir+1 air (for 1 6 r 6 p, these are precisely the elements of S1(w)), we have

T(w) = wGb1 · . . . · Gbp .

THEOREM 4.3.16. Let a ∈ S1 such that α = Da ∈ R+. Then for any µ ∈ L,

Gaeµ = τ
−η(〈µ,α∨〉)
a eµ + LOT.

Hence, if w ∈W is such that Da ∈ R+ for all a ∈ S(w), then

w−1T(w)eµ = τ(w, µ)eµ + LOT,

with τ(w, µ) defined below.

Compare the following to Notation 4.3.2.
NOTATION 4.3.17.

• For a ∈ S1 in the W-orbit of ai, define κa := κi. In other words,

τa = qκa/2.

• For w ∈W and µ ∈ L, define τ(w, µ) := ∏a∈S1(w) τ
−η(〈µ,Da∨〉)
a .

• Similarly, set f (w, µ) := 1
2 ∑a∈S1(w) η(− 〈µ, Da∨〉)κa, such that

τ(w, µ) = q f (w,µ).
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Recall rk′ from Notation 2.4.4. For λ′ ∈ L′++ dominant and µ ∈ L arbitrary, one can show that

f (t(λ′), µ) =
〈
λ
′, µ− rk′(µ)

〉
.

From this one can deduce the action of YL′ on A; for any λ′ ∈ L′,

Yλ
′
eµ = q−〈λ

′,rk′ (µ)〉eµ + LOT. (4.3.1)

Consequently, for f ∈ A′ and µ ∈ L we have

f (Y)eµ = f (−rk′(µ))eµ + LOT. (4.3.2)

If, in fact, f ∈ A′R and µ is dominant, then (see Notation 4.3.11)

f (Y)mµ = f (−µ− ρk′)mµ + LOT. (4.3.3)

4.4 Double affine, double the fun

Recall the double braid group Definition 3.2.2 as well as Notations 4.2.8 and 4.2.9.

DEFINITION 4.4.1 (Cherednik). The double affine Hecke algebra H̃ (DAHA) is

H̃ = K[B̃]
/(

(T′i − τ′i )(T
′
i + τ′i

−1
)
∣∣∣ i ∈ I

)
.

This quotient is simply the Hecke relations (d) from Notation 4.1.3 except in case III for i = 0, n,
where the apostrophes mean something.

By virtue of Theorem 3.2.4, the DAHA is generated by the AHA H and XL (q.v. Notation
3.2.1) as K-algebra, subject to the relations in the theorem. The correct analogue of Proposition
4.2.13iv) to Λ ⊃ L is that for all i ∈ I and f ∈ Λ,

TiX f − Xsi f Ti = bi(X)(X f − Xsi f ). (4.4.1)

Hence, Theorem 4.2.12 extends as follows.
THEOREM 4.4.2 (Cherednik). The representation β extends to a faithful representation (also written
β because why not) H̃ −→ EndK A, such that for all µ ∈ L,

β(Xµ) = Xµ

as operators (i.e., multiplication by eµ).

We also get the familiar statements that the sets

{T(w)Xµ | w ∈W, µ ∈ L}, {XµT(w) | w ∈W, µ ∈ L},

{Yλ
′
T(w)Xµ | w ∈WR, µ ∈ L, λ′ ∈ L′} and {XµT(w)Yλ

′
| w ∈WR, µ ∈ L, λ′ ∈ L′}

each form K-bases of H̃ as vector space.

Now recall Notation 3.2.6 and Theorem 3.2.7.
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NOTATION 4.4.3. Let H̃′ be the dual DAHA, defined as follows.

• In cases I and II, it is obtained by swapping R with R′ and L with L′.

• In case III, it is obtained by swapping τ′0 and τ′n.[4]

Of course, the analogues of the above bases for H̃ are bases for this dual.

THEOREM 4.4.4. The map

ω : H̃′ −→ H̃, Xλ
′
T(w)Yµ 7−→ X−µT(w−1)Y−λ

′
,

where w ∈WR, µ ∈ L and λ′ ∈ L′, is an anti-isomorphism of K-algebras.

This now follows easily by checking the new Hecke relations compared to B̃′ and B̃.

By virtue of faithfulness, we henceforth identify H̃ with β(H̃) ⊂ End(A) as we did for H. Also
recall from Notation 4.3.13 that we view A as functions on V.
NOTATION 4.4.5 (Cherednik). Define K-linear maps as follows

ϑ : H̃ −→ K, h 7−→ h(1A)(−ρ′k) and ϑ′ : H̃′ −→ K, h′ 7−→ h(1A′)(−ρk′).

Let H̃ 3 h = f (X)T(w)g(Y−1) for some f ∈ A, g ∈ A′ and w ∈WR. By (4.3.2) and the absence
of lower-order terms for µ = 0, we know

g(Y−1)(1A) = g(−rk′(0))1A = g(−ρk′)1A.

By Proposition 4.3.5, T(w)1A = τw1A. Hence

ϑ(h) = f (−ρ′k)τwg(ρk′)

as operators on A. From this we get that
PROPOSITION 4.4.6. ϑ′ = ϑ ◦ω.

NOTATION 4.4.7 (Cherednik). Let h ∈ H̃ and h′ ∈ H̃′. Define two ‘commutators’

[h, h′] := ϑ′(ω−1(h)h′) =
(

ω−1(h)h′
)
(1A)(−ρk′) and [h′, h] := ϑ(ω(h′)h).

Actually, they are equal on the nose by virtue of the proposition above.

For any γ ∈ H̃ we have

[γh, h′] = ϑ′(ω−1(γh)h′) = ϑ′(ω−1(h)ω−1(γ)h) = [h, ω−1(γ)h′].

We can therefore extend this pairing to arbitrary functions.

NOTATION 4.4.8. Let f ∈ A and f ′ ∈ A′. Define

[ f , f ′] := [ f (X), f ′(X)] = ϑ′( f (Y−1) f ′(X)) =
(

f (Y−1 f ′
)
(−ρk′).

If, dually, [ f ′, f ] :=
(

f ′(Y−1) f
)
(−ρ′k), then the two are equal, and the pairing is thus symmetric.

[4]Macdonald says τ0 and τ′n; presumably the missing apostrophe is a typo.
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4.5 Examples

EXAMPLE 4.5.1 (A1 lite). Let us consider A1 with τ0 = 1 = τ1 and K = R to keep things overly
simple. Recall from Example 3.3.1 that the braid relations on the three generators T0, T1 and U1

were U2
1 = U1T0U1T−1

1 = 1. Because τi = τ−1
i for both i ∈ I, the Hecke relations read

Ti = T−1
i .

Write P∨ = 2−1/2Z =: dZ for convenience (d = π′1), let λ′ = nd (with n ∈ Z) and recall
s0 = t(α∨)s1 with α∨ = α = α1 = 2d and also α0 = −ϕ = −2d. Lusztig’s relations are

YndT0 − T0Y(2−n)d = b(1, 1; Y−2d)(Ynd −Y(2−n)d) = 0,

because of Proposition 4.1.5iia), and similarly

YndT1 − T1Y−nd = 0.

Since τi = τ′i for both i, we find that bi = 0 and ci = 1. Correspondingly, in the basic
representation β, the Ti act as si and U1 as u1 = u(d). This trivially agrees with all the formulæ.

We have T−1
i eλ = esiλ for all λ ∈ L on the nose, so there are no lower-order terms.

Our simple choice of τ1 does mean that κ1 = κ(α) should be such that 1 = qκ1/2. Since q 6= 1,
we see κ ≡ 0 and so the results of the last section do not apply.

For all a ∈ S we have τa = 1 = τ′a and so again ba = 0 and ca = 1, wherefore Ga = 1 (the
constant). Indeed, this agrees with Gai = siTi = s2

i and T(w) = w as operators.

The double braid group is given in Example 3.3.1. In its R-linearisation, we apply the Hecke
relations Ti = T−1

i for both i again to get the DAHA.

The previous examples in rank 1 that I worked out myself agree with Chapter 6 of Macdonald,
except for the action of α. (We both normalise |α|2 = 2 yet Macdonald’s a0 acts on x ∈ V = R

by 1− x, rather than my 1−
√

2 x.) Let us follow his calculation of the Hecke algebras.

EXAMPLE 4.5.2 (A1 proper). Recall from Example 2.5.1 that v1 = s1, so that s0 = t(π′1)
2s1 =

u1s1u1. Moreover, u2
1 = 1 since Ω = {1, u1}. Therefore, τ0 = τ1 =: τ and K = Q(q1/2, τ) is the

‘minimal’ field we can take. From Example 3.3.1, the braid group was generated by T1 and
U := U1 with relation U2 = 1. Therefore, H is the K-algebra generated by T1 and U with U2 = 1
and (T1 − τ)(T1 + τ−1) = 0. (The Hecke relation for T0 is redundant, being the U-conjugate of
this.) Moreover, we must have τ = qk/2 for the multiplicity function k.

The double affine Hecke algebra is the K-algebra generated by the double braid group B̃

subject to the same Hecke relation above. Explicitly, using Theorem 3.2.4, it is generated by T1,
X := X1 and Y := Y′1 with

T1Y−1T1 = Y, T1XT1 = X−1, UXU = q1/2X−1 and (T1 − τ)(T1 + τ−1) = 0,

where we already have U = YT−1
1 = U−1 = T1Y−1 by virtue of Theorem 3.1.9. We also have

T0 = UT1U as before and q1/2 ∈ Z(H̃). Because π′1 = α
2 , we have L = P = P∨ = L′ = Z α

2 and
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so A = K[L] = K[x, x−1] for x := eα/2. Let

b(X) = b(τ, τ; X2) =
τ − τ−1

1− X2 and c(X) = c(τ, τ; X2) =
τX2 − τ−1

X2 − 1
.

For f ∈ A, the action of H̃ is as follows. The generator X = Xπ′1 acts by (left) multiplication
with eπ′1 = x. Similarly, U acts by u1 = t( α

2 )s1 on the left; a monomial eλ
′
= enα/2 is mapped by

U to qn/2e−λ using Notation 4.2.7. Therefore,

(U f )(x) = f (q1/2x−1). (4.5.1)

Since, for i = 1, say, we have b1 = b(τ, τ′; eα) = b(τ, τ; x2) = b(X) ‘evaluated at X = x’ by
Notation 4.2.10 (and similarly for c), Proposition 4.2.13iii) tells us that

T1 f =
(
b(X) + c(X)s1

)
f . (4.5.2)

We use this to consider already the shift operators from Section 5.6 (q.v.). As elements of
EndK A, we have s1 = c(X)−1(T1 − b(X)). Since ω(T1) = ω(T(s1)) = T1, applying ω to the
identity s1X = X−1s1, we get

Y−1(T1 − b(Y−1))c(Y−1)−1 = (T1 − b(Y−1))c(Y−1)−1Y.

Thus, α1 = T1 − b(Y−1) = UY − b(Y−1) satisfies Y−1α1 = α1Y (since Y commutes with
c(Y−1)−1). Similarly,

β1 = ω−1(U−1) = ω−1(T1Y−1) = XT1 = XUY,

such that (using the third relation above)

Y−1β1 = Y−1XUY = q1/2Y−1UX−1Y = q1/2β1Y,

as desired.
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In for a penny, in for a polynomial

5.1 Some awful triangles

Let S be an irreducible affine root system, S1 = {a ∈ S | 1
2 a /∈ S} and assume it falls under

one of the three cases (in particular, not BCn). Consider S+ ⊂ Λ+ := L⊕Z>0c0 ( Λ ⊃ S. If
Λ 3 f = µ + rc0, recall from Notation 4.2.6 we wrote e f = qr/eeµ.
NOTATION 5.1.1. For a ∈ S, let ta ∈ R>0 be such that ta = tb whenever a ∈ Wb. This
determines a multiplicity function k on S by defining, for a ∈ S1,

qk(a) := ta
√

t2a and qk(2a) :=

{√
t2a 2a ∈ S,

1 2a /∈ S.

We then have κ(a) = k(a) + k(2a) and κ′(a) = k(a)− k(2a), where τa = qκ(a)/2 =
√

tat2a and
τ′a = qκ′(a)/2 =

√
ta , cf. Notation 4.3.2. In cases I and II, the apostrophes remain meaningless.

NOTATION 5.1.2. For a ∈ S, set

∆a = ∆a,k :=
1− qk(2a)ea

1− qk(a)ea
.

A simple calculation shows that for a ∈ S1,

∆a∆2a =
1− e2a

(1− qk(a)ea)(1 + qk(2a)ea)
,

with inverse τaca = τac(τa, τ′a; ea).
DEFINITION 5.1.3. The weight function is the product

∆ = ∆S,k := ∏
a∈S+

∆a.

Similarly define ∆′ = ∆S′,k′ .

Viewed as element of
(
R[ta,

√
t2a | a ∈ S+]

)
Jeai | i ∈ IK and taking S+ as subset of Λ+, we can
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expand this as
∆ =

ÿ

λ∈L
r>0

uλ+rcqreλ,

for certain coefficients uλ+rc ∈ R[ta,
√

t2a | a ∈ S+] =: R̃. Then the multiplication f ∆, where
f ∈ A, makes sense.

DEFINITION 5.1.4. For f =
ř

λ∈L fλeλ ∈ A, the constant term of f ∆ is

ct( f ∆) =
ÿ

r>0

(
ÿ

λ∈L

uλ+rc f−λ

)
qr ∈ R̃JqK.

NOTATION 5.1.5. Let
∆1 :=

∆
ct(∆)

=:
ÿ

µ∈L

vµ(q, t)eµ

for certain functions v such that v0(q, t) ≡ 1. With much effort, one proves that vµ(q, t) =

v−µ(q−1, t−1) are rational functions in q and ta,
√

t2a .

There are some case-specific results that we largely skip.

NOTATION 5.1.6. For n ∈N∪ {∞}, define

(x; q)n :=
n−1

∏
i=0

(1− xqi).

It is called the q-Pochhammer symbol and has loads of properties.[1]For instance, for all y ∈ R,

(x; q)∞

(qyx; q)∞

q↑1−→ (1− x)y.

We can use these to express ∆ in the three cases. In case I, for instance, we have (cf. Eric’s δk)

∆I = ∏
α∈R+

(eα; q)∞(qe−α; q)∞

(qk(α)eα; q)∞(qk(α)+1e−α; q)∞

q↑1−→ ∏
α∈R

(1− eα)k(α). (5.1.1)

∗ ∗∗

Let K be the ‘minimal’ field of interest, generated over Q by the τa and τ′a (where a ∈ S) as well
as q0 = q1/e. Recall Notation 4.2.1.
NOTATION 5.1.7.

• Define the star involution on K 3 x by x∗(q0, τa, τ′a) := x(q−1
0 , τ−1

a , τ′−1
a ). (And of course

x∗ = x if x ∈ Q.)

• Define the star involution on A by mapping f =
ř

λ fλeλ, where of course fλ ∈ K, to
f ∗ :=

ř

λ f ∗
λ

e−λ.

[1]See www.en.wikipedia.org/wiki/Q-Pochhammer_symbol.
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On basis elements, therefore, (eλ)∗ = e−λ.

If the values of k on R are nonnegative integers, then ∆ is a finite product, hence an element of
A, and its star is q−N(k)∆, where N(k) is some modification of

ř

α∈R+ k(α)2 depending on the
case.
NOTATION 5.1.8 (Cherednik). We define a sesquilinear (with respect to the star) scalar product
on A via

( f , g) = ( f , g)k := ct( f g∗∆).

Normalise it by

( f , g)1 := ct( f g∗∆1) =
( f , g)
(1, 1)

;

this is K-valued and Hermitian, meaning ( f , g)1 = (g, f )∗1 ∈ K. Moreover, both are nondegen-
erate, as ( f , f ) 6= 0 for all 0 6= f ∈ A.

Similarly, define a product (−,−)′ on A′ using ∆′.

Recall that {T(w) f (X) | w ∈W & f ∈ A} forms a K-basis of H̃ ⊂ EndK A.
PROPOSITION 5.1.9. Every F ∈ H̃ has an adjoint with respect to (−,−), denoted F∗, and (T(w) f (X))∗ =

f ∗(X)T(w)−1. In particular, T∗i = T−1
i and U∗j = u−1

j for all i ∈ I and j ∈ J.
NOTATION 5.1.10.

• Consider the finite root sytem S0 = {a ∈ S | a(0) = 0} and S+
0 := S0 ∩ S+. If S = S(R),

the former seems to be just R.

• Set
∆0 = ∆0

S,k := ∏
a∈S+

0

∆−a,k and ∇ = ∇S,k := ∆S,k∆0
S,k.

This ∇ is WR-invariant, as one can easily show that si∆0

∆0 = ∆
si∆

for all i ∈ IR.

NOTATION 5.1.11 (Macdonald).

• For g =
ř

µ∈L gµeµ ∈ A, define

(i) g :=
ř

µ g−µeµ =
ř

µ gµe−µ (then ∇ = ∇),

(ii) g0 :=
ř

µ g∗µeµ = g∗.

• Define another symmetric scalar product on A (and its analogue on A′) by

〈 f , g〉 = 〈 f , g〉k :=
1

#WR
ct( f g∇) and 〈 f , g〉1 :=

〈 f , g〉
〈1, 1〉 .

• For w ∈WR, define, recalling Definition 2.1.5 and Notation 5.1.1,

k(w) :=
ÿ

a∈S(w)

k(a) and WR(qk) =
ÿ

w∈WR

qk(w) =
ÿ

w∈WR

tw :=
ÿ

w∈WR

∏
a∈S(w)

ta.

Recalling Notation 2.4.2, we have WR(qk) = (∆0
S,k(−ρ′k))

−1 = WR(qk′).
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PROPOSITION 5.1.12. For all f , g ∈ AR we have

( f , g) = WR(qk)
〈

f , g0〉 .

5.2 Orthogonal polynomials

At last we come to the orthogonal polynomials, discovered in various stages by Opdam, Macdon-
ald and Cherednik, that simultaneously diagonalise the Dunkl–Cherednik operators and form
an orthogonal eigenbasis of A. Recall Notation 4.3.1.
THEOREM 5.2.1. For all λ ∈ L, there exists a unique Eλ ∈ A, such that

(i) Eλ = eλ + LOT,

(ii) (Eλ, eµ) = 0 for all µ < λ.

Dually, define E′µ′ ∈ A′ for µ′ ∈ L′.

As a special case, note that E0 = E′0 = 1. Using Proposition 5.1.9 and Equation (4.3.2), we have
for all f ∈ A′ and λ > µ ∈ L that

( f (Y)Eλ, eµ) = (Eλ, f ∗(Y)eµ) = 0,

whence Theorem 5.2.1(ii) gives the first statement of the following.

THEOREM 5.2.2. For all f ∈ A′ we have f (Y)Eλ = f (−rk′(λ))Eλ. Moreover, {Eλ | λ ∈ L} forms an
orthogonal K-basis of A with respect to (−,−) that diagonalises the action of A′(Y) on A. The dual
result applies to the E′µ′ . The two are related by

Eλ(r′k(µ
′))E′µ′(−ρk′) = Eλ(−ρ′k)E′µ′(rk′(λ))

for all λ ∈ L and µ′ ∈ L′.

The orthogonal polynomials do not form an orthonormal basis, though; the goal is to compute
(Eλ, Eλ)1. One easily shows that Eλ(−ρ′k) 6≡ 0, so we can define the normalised polynomials
below.

NOTATION 5.2.3. For λ ∈ L, µ′ ∈ L′, set

Ẽλ :=
Eλ

Eλ(−ρ′k)
and Ẽ′µ′ :=

E′µ′
E′µ′(−ρk′)

.

Recall the Definition 2.1.3 and its dual as well as Notations 4.3.7 and 4.3.9. Of course, the
dualised versions of the results below also hold.
PROPOSITION 5.2.4. Let λ, µ ∈ L.

(i) As operators on A′, we have

Yλ =
ÿ

W ′ 3w6 t(λ′)

wgw(X) and Y−λ =
ÿ

W ′ 3w6 t(λ′)

fw(X)w−1
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for certain fw, gw ∈ A[c].

(ii) Moreover:

eλẼµ =
ÿ

W ′ 3w6 t(λ′)
w(rk′ (µ)) = rk′ (wµ)

fw(rk′(µ))Ẽwµ and e−λẼµ =
ÿ

W ′ 3w6 t(λ′)
w−1(rk′ (µ)) = rk′ (w

−1µ)

gw(w−1(rk′(µ)))Ew−1µ

∼
.

We shortcircuit the proof of the 1-norm of the orthogonal polynomials and skip to the result.
Recall Notations 2.4.3 and (the dual of) 4.3.8.
NOTATION 5.2.5. For λ ∈ L, let

ϕ±
λ

:= cS′,±k′(u′(λ)−1) = ∏
a′ ∈ S′+1
a′(λ)<0

ca′,±k′ .

The equality follows from Theorem 2.2.3iii) and S′+1 = {a′ ∈ S′+ | 1
2 a′ /∈ S′}.

Now recall Notation 4.3.4 and note that the dual of Definition 2.2.2i) is the same on the nose
since WR = WR′ on the nose (so there is no v-analogue of Notation 2.4.3). Once you’re done
recalling, behold the final result.[2]

THEOREM 5.2.6. For all λ ∈ L, we have

Eλ(−ρ′k) = τ−1
v(λ)ϕ−

λ
(rk′(λ)) and (Eλ, Eλ)1 = ϕ+

λ
(rk′(λ))ϕ−

λ
(rk′(λ)).

The dual results of course hold for the E′µ′ .

∗ ∗∗

We saw that the orthogonal polynomials diagonalise A′(Y). They turn out to be the only
elements of A to do so.

THEOREM 5.2.7. Let 0 6= f ∈ A be a simultaneous eigenfunction of all Yλ
′
with eigenvalue g ∈ (L′)∗.

Then f is a scalar multiple of some Eµ and the eigenvalues are g(λ′) = q−〈λ
′,rk′ (µ)〉 ∈ K.

We are interested in finding out how H ⊂ EndK A acts on the symmetric polynomials. We first
state some auxiliary results. Recall Notation 4.1.6.
LEMMA 5.2.8. Let λ ∈ L, i ∈ IR and set b′i := b(τi, υi; ea′i).

i) If 〈λ, α′i〉 > 0 then (Ti − b′i(rk′(λ)))Eλ = τ−1
i Esiλ.

ii) If λ = siλ then the above holds with 0 instead of τ−1
i and moreover Eλ = siEλ.

Recall Notation 4.2.4.

NOTATION 5.2.9. For λ ∈ L++, consider the H-submodule Aλ := K{Eµ | µ ∈WRλ} of A.

[2]Initially, Macdonald assumes StabW ′ (ρk′ ) to be trivial in order to derive this, but then states it holds for any k.
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THEOREM 5.2.10. For any dominant λ, this Aλ is an irreducible H-module and equal to HREλ. If λ is
moreover regular, which is to say #WR = |WRλ|, it is free of rank 1 as HR-module.

5.3 Symmetric polynomials

Next, we repeat a WR-invariant analogue of the previous construction to produce the symmetric
polynomials. Recall Notations 4.3.11 and 5.1.11.
THEOREM 5.3.1. For all λ ∈ L++, there exists a unique Pλ ∈ AR,

(i) Pλ = mλ + LOT,

(ii)
〈

Pλ, mµ

〉
= 0 for all L++ 3 µ < λ.

Dually, define P′µ′ ∈ A′R for µ′ ∈ L′++.

The lower-order terms in (i) are now referring to K{mµ | L++ 3 µ < λ}. It’s easy to see that
P0
λ
= Pλ for m0

λ
= mλ. Similarly to what we did for the orthogonal polynomials — now using

that f (Y)(AR) ⊂ AR for all f ∈ A′R —, Equation (4.3.3) shows that〈
f (Y)Pλ, mµ

〉
1 =

〈
Pλ, ( f ∗(Y)mµ)

0〉
1 = 0

if µ < λ. The analogue of Theorem 5.2.2 is then the following, with the last statement due to
Koornwinder.

THEOREM 5.3.2. For all f ∈ A′R we have f (Y)Pλ = f (−λ − ρk′)Pλ. Moreover, the symmetric
polynomials are orthogonal with respect to 〈−,−〉 and diagonalise the action of A′R(Y) on AR. The
dual result applies to the P′µ′ . The two are related by

Pλ(µ′ + ρ′k)P′µ′(ρk′) = Pλ(ρ′k)P′µ′(λ+ ρk′)

for all λ ∈ L++ and µ′ ∈ L′++.

Again, we want to compute the polynomials’ norm in 〈−,−〉1.

NOTATION 5.3.3. For λ ∈ L++, µ′ ∈ L′++, set

P̃λ :=
Pλ

Pλ(ρ′k)
and P̃′µ′ :=

P′µ′
P′µ′(ρk′)

.

We once more skip to the final result. Recall Notation 4.3.8 again.

NOTATION 5.3.4. Let λ ∈ L++ and set c′
λ

:= cS′,k′(t(λ)). (Of course, there is a dual hereof.)

THEOREM 5.3.5. For all λ ∈ L++, we have

Pλ(ρ′k) = c′λ(ρk′) and 〈Pλ, Pλ〉1 = c′λ(−λ− ρk′)c′λ(ρk′).

The dual results of course hold for the P′µ′ .

There is an alternative characterisation for triangle enthusiasts. First, we need more triangles,
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cf. Notations 5.1.2 and 5.1.10.

NOTATION 5.3.6. Let ∆±S,k := ∏
a∈ S+

Da∈ R±

∆a and ∆±S′,k′ analogously.

PROPOSITION 5.3.7. We have

Pλ(ρ′k) = q−〈λ,ρ′k〉
∆+

S′,k′(λ+ ρk′)

∆+
S′,k′(ρk′)

and 〈Pλ, Pλ〉1 =
∆+

S′,k′(λ+ ρk′)∆−S′,−k′(−λ− ρk′)

∆+
S′,k′(ρk′)∆−S′,−k′(−ρk′)

.

∗ ∗∗

We conclude with some special cases.

(a) If k ≡ 0 then ∆ = ∆0 = ∇ = 1, so Pλ = mλ.

Proof. If µ < λ in L++, then

〈
mλ, mµ

〉
=

1
#WR

ct

 ÿ

ν∈WRλ

eν ·
ÿ

ξ∈WRµ

e−ξ

 = 0,

as WRµ∩WRλ = ∅. To see this; if λ = wµ for some w ∈WR, then [Bour456, Prop. VI.6.18]
says µ > wµ = λ. ���

(b) Suppose we are in case I; S = S(R) reduced and k ≡ 1 on R. Then one can show, using
the obvious fact that ∏α∈R e−α/2 = 1, that

∇ = ∏
α∈R

(1− eα) = ∏
α∈R

(eα/2 − e−α/2) = δδ,

where as usual
δ = ∏

α∈R+

(eα/2 − e−α/2) =
ÿ

w∈WR

(−1)`(w)ewρ

is the Weyl denominator. (Here, ρ = ρk =
1
2

ř

α∈R+ α.) For λ ∈ L++, let

χλ := δ−1
ÿ

w∈WR

(−1)`(w)ew(λ+ρ)

be the character of the Lie algebra associated with R of the highest-weight representation
for λ. Then χλ = mλ + LOT and these characters are orthonormal, so that Pλ = χλ.

In the particular case S = S(An−1), the Pλ are Macdonald’s symmetric polynomials.

(c) Case II is similar except that χλ now belongs to the Lie algebra of R∨ and k∨ = k′ ≡ 1.

(d) Expectedly, case III for a particular k (sometimes 1, sometimes 0) again has ∇ = δδ for
the Weyl denominator associated to Cn. In general, in case III, the Pλ are the Koornwinder
polynomials and, if S = S(C∨1 , C1), the Askey–Wilson ones.
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5.4 Symmetrisers and intertwiners

In the proof of Proposition 5.1.9, it was shown that s∗i = ci(X)ci(X−1)−1si, which we shall need
from now on.

NOTATION 5.4.1. Fix ε : WR −→ C× to be a linear character of WR. (In particular, ε(si) = ±1
for all i ∈ IR and it is constant on conjugacy classes.) If R is of ADE type, then ε = triv or sign;
otherwise there are two other possibilities.

Set sε
i :=

{
si if ε(si) = 1,

s∗i if ε(si) = −1.
For WR 3 w = si1 · . . . · sip any reduced form, wε := sε

i1 · . . . · sε
ip

is

well-defined. Recall Notation 4.3.4 again.

Recall that wXµ = Xwµw for all µ ∈ L and w ∈ WR, so that wεXµ = Xwµwε, because Xsiµ

commutes with ci(X)ci(X−1)−1.

NOTATION 5.4.2. For i ∈ IR, set τε
i :=

{
τi if ε(si) = 1,

−τ−1
i if ε(si) = −1

and τε
w = τε

i1 · . . . · τε
ip

, indepen-

dent of the reduced form of w ∈WR.

Recall the longest element w0, e.g. Notation 2.1.1.
DEFINITION 5.4.3. Define the ε-symmetriser Uε as the element of H ⊂ EndK A given by

Uε :=
(
τε

w0

)−1 ÿ

w∈WR

τε
wT(w).

As special cases, we have

U+ := Utriv = τ−1
w0

ÿ

w∈WR

τwT(w) and U− := Usign = (−1)`(w0)τw0

ÿ

w∈WR

(−1)`(w)τ−1
w T(w).

These symmetrisers kill Ti − τε
i and are the only operators to do so.

THEOREM 5.4.4. Let i ∈ IR.

(i) We have (Ti − τε
i )Uε = 0 = Uε(Ti − τε

i ).

(ii) Conversely, if h ∈ A(X) ·HR is such that h(Ti − τε
i ) = 0 for all i ∈ IR (resp., (Ti − τε

i )h = 0),
then in fact h = f (X)Uε for some f ∈ A (resp., h = Uε f (X)).

The symmetrisers also behave nicely with respect to (−,−). First, if WR 3 w = si1 · . . . · sip is a
reduced form, recall from Section 2.1 that the elements of S(w) were the βr = sip · . . . · sir+1 αir
for 1 6 r 6 p. Define the dual b′a′,k′ of the b’s in Notation 4.3.7. One can then show that for any
x ∈ rk′(L), the expression

Fw(x) :=
p

∏
r=1

(
Tir − b′βr

(x)
)

is well-defined. Recall the first point of Notation 5.1.10.
PROPOSITION 5.4.5.
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a) Uε = Fw0(x) for x = ρεk′ :=
1
2

ÿ

α∈R+

ε(sα)k′(α′)α.

b) Uε = Vεc+(X−ε), where Vε := ε(w0)
ÿ

w∈WR

ε(w)wε and c+(X−ε) := ∏
a∈S+

0

ca,k(X−ε(sa)).

c) U2
ε =

(
τε

w0

)−1WR(tε)Uε, where WR(tε) :=
ÿ

w∈WR

(
τε

w
)2.

d) U∗ε = Uε, so in particular, for all f , g ∈ A we get (Uε f , Uεg) =
(
τε

w0

)−1WR(tε)(Uε f , g).

∗ ∗∗

We want a Y-analogue of wεXµ = Xwµwε. Using Propositions 4.1.5, the Hecke relation, and
4.2.13, we see that, for any i ∈ I, the operator Ti − bi(X) is selfadjoint with respect to (−,−),
with the analogue holding for the dualised operator, and that si = (Ti − bi; (X))ci(X−1)−1 ∈
EndK(A′). Therefore, we may compute its adjoint with respect to (−,−)′, not to be confused
with s∗i , which is the (−,−)-adjoint.
NOTATION 5.4.6. The dual adjoint of si is written

(s∗i )
′ = (Ti − b′i(X))c′i(X)−1 = c′i(X−1)−1(Ti − b′i(X)).

In analogy with Notation 5.4.1, define

(sε
i )
′ :=

{
si if ε(si) = 1,

(s∗i )
′ if ε(si) = −1

= (Ti − b′i(X))c′i(X−ε(si))−1 = c′i(Xε(si))−1(Ti − b′i(X)).

This extends to reduced forms of any w ∈WR by (wε)′ = (sε
i1)
′ · . . . · (sε

ip
)′.

Recall the anti-isomorphism from Theorem 4.4.4.
DEFINITION 5.4.7. The Y-intertwiners are defined on the simple roots i ∈ IR by

ηε
i := ω((sε

i )
′) = c′i(Y

ε(si))−1(Ti − b′i(Y
−1)) = (Ti − b′i(Y

−1))c′i(Y
−ε(si))−1

and on reduced forms of w ∈WR by ηw = ηε
i1 · . . . · ηε

ip
.

The point is that ηε
wYλ

′
= Ywλ′ηε

w for all w ∈WR and λ′ ∈ L′. Now recall Notation 2.2.1.
PROPOSITION 5.4.8. Let λ ∈ L and i ∈ IR such that 〈λ, α′i〉 6= 0. Let ± denote the parity of this last
expression. Then

ηε
i Eλ = τ∓i c′i(±ε(si)rk′(λ))

∓Esiλ.

Moreover, if ξε
λ

:= τv(λ)cS′,εk′(v(λ))(rk′(λ)) with (εk′)(α′) = ε(sα)k′(α′), then ηε
v(λ)Eλ =

(
ξε
λ

)−1Eλ− .

In analogy with Proposition 5.4.5b), define

V ′ε := ε(w0)
ÿ

w∈WR

ε(w)(wε)′ and c′+(X−ε) := ∏
a∈S+

0

ca′,k′(X−ε(sa)),

so that Uε = U′ε = Vεc′+(X−ε).
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NOTATION 5.4.9.

• Let Vε := ω(V ′ε ) = ε(w0)
ÿ

w∈WR

ε(w)ηε
w.

• Set −ε to be the character (−1)`(−)ε(−) of WR, such that for example −triv = sign.

Then from the definition we get (ηε
i )
∗ = η−ε

i . Relevance of this last bit is not plain.

5.5 Symmεtric polynomials with a twist

NOTATION 5.5.1. For λ ∈ L, set Fε
λ

:= UεEλ.

It is not difficult to show that if λ = siλ for some i ∈ IR such that ε(si) = −1, then Fε
λ
= 0. If, on

the other hand, 〈λ, α′i〉 > 0, then

Fε
siλ

= ε(si)τic′i(ε(si)rk′(λ))Fε
λ .

Thus, we may assume we have a dominant λ, recalling Notation 5.2.9, for then dim(Uε Aλ) 6 1.
In view of the situation for λ = siλ, we henceforth assume that

ε
∣∣
StabWR (λ)

≡ 1.

This is satisified for e.g. ε = triv and, if λ is moreover regular, for ε = sign. Observe that
Theorem 5.4.4(i) then implies that this isotropy subgroup fixes Fε

λ
and, for ε = triv, all of WR

does. Let
WRλ = StabWR(λ) and Wλ

R = {v(−µ)−1 | µ ∈WRλ}.[3]

We proceed with the ε-twisted analogues of Theorems 5.3.1 and 5.3.2.
NOTATION 5.5.2. For λ ∈ L++, define

Pε
λ := τw0WRλ(τ

2)−1Fε
λ = ew0λ + LOT,

with WRλ(τ
2) :=

ÿ

w∈WRλ

τ2
w.

The following results in particular imply that Ptriv
λ

= Pλ as one might have hoped.
PROPOSITION 5.5.3. Let λ ∈ L++.

i) Pε
λ =

ÿ

µ∈WRλ

ε(v(µ))ξ−ε
µ , with the ξ as in Proposition 5.4.8 except with −ε from Notation 5.4.9.

ii) Let f ∈ A′R. Then f (Y)Pε
λ
= f (−λ− ρk′)Pε

λ
.

iii)
(Pε
λ
, Pε
λ
)

(Pλ, Pλ)
=

ξ−ε
λ

ξ
sign
λ

.

iv) If ε = sign and λ is also dominant, then v(λ) = w0 and so iii) becomes ∏
α∈R+

cα∨,k′(λ+ ρk′)

cα∨,−k′(λ+ ρk′)
.

[3]Each coset wWRλ has a unique shortest element, which is also the shortest element of WR mapping λ′+ 7−→ λ′. In
analogy with Cherednik’s v, it is denoted v(wλ) by Macdonald but he immediately shows that it equals v(−wλ)−1.
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It’s about to get nasty again. Assume S is irreducible and falls under the three cases, again
write S1 for the indivisible roots and S0 for the ‘finite roots’ as in Notation 5.1.10. Let S+

01 :=
S0 ∩ S1 ∩ S+. We shall consider three multiplicity functions on S: k as before, an ` satisfying

`(a) =

{
1 if sa is conjugate in W to some si with i 6= 0 and ε(si) = −1,

0 otherwise,

and k + ` defined pointwise. On S0, we have εk : a 7−→ ε(sa)k(a) as prior. Maybe see Notations
5.1.1 again as well as 4.3.7 and 4.1.4.
NOTATION 5.5.4.

• For a ∈ S1, define δa = δa,k by{
qk(a)/2ea/2 − q−k(a)/2e−a/2 = (ea/2 − e−a/2)ca,k if 2a /∈ S,

(qk(a)/2ea/2 − q−k(a)/2e−a/2)(qk(2a)/2ea/2 − q−k(2a)/2e−a/2) = (ea − e−a)ca,k if 2a ∈ S.

It is clear that δ∗a = −δa.

• Then, let δε,k := ∏
a∈ S+

01
`(a) = 1

δa,k.

• Similarly define δa′ for a′ ∈ S′1 as well as δ′ε,k′ using S′+01 .

Recalling Notations 5.1.3 and 5.1.10, one can show that δε,kδ∗ε,k∆S,k = ∇S,k+`

/
∆0

S,εk . Recalling
Notations 5.1.1, 5.1.8 and 5.1.11, one can also show that, for all f , g ∈ AR,

( f , g)k+` =
WR(qk+`)

WR(qεk)
(δε,k f , δε,kg)k.

Using an auxiliary result on how δε,k multiplies with Ti − τi, one shows that Uε(A) = δε,k(AR).

Now note that the symmetric polynomials implicitly depend on 〈−,−〉, which depends on
∇S,k. We therefore write Pλ,k to indicate which multiplicity function is used.

NOTATION 5.5.5. Let n(k, `) :=
1
2

ÿ

a∈S+
0

k(a)`(a) and ρ` :=
1
2

ÿ

a∈S+
01

ua`(a)a, where ua is 1 if 2a /∈ S

and 2 if 2a ∈ S.

Furthermore, for f ∈ A, let | f |2k = 〈 f , f 〉k.

Here is a first result and two consequences, showing how, in a sense, ε shifts the symmetric
polynomials by `.
PROPOSITION 5.5.6. For all λ ∈ L++, we have

Pε
λ+ρ`,k = ε(w0)qn(k,`)/2δε,kPλ,k+`.

COROLLARY 5.5.7. We have Pε
ρ`,k

= ε(w0)qn(k,`)/2δε,k and so Pλ,k+` = Pε
λ+ρ`,k

/
Pε

ρ`,k .
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Recall Notation 5.3.6. The following lemma provides the inductive step for an important
theorem.
LEMMA 5.5.8. For all λ ∈ L++, we have

|Pλ,k+`|2k+`∣∣Pµ,k
∣∣2
k

=
WR(qk)

WR(qεk)
·

ξ−ε
λ+ρ`

ξ
sign
λ+ρ`

=
∆+

S′,k′+`′(µ + ρk′)∆−S′,−k′−`′(−µ− ρk′)

∆+
S′,k′(µ + ρk′)∆−S′,−k′(−µ− ρk′)

,

with µ := λ+ ρ`.
THEOREM 5.5.9. [Norm formula] For all λ ∈ L++, we have

|Pλ,k|2k = ∆+
S′,k′(λ+ ρk′)∆−S′,−k′(−λ− ρk′).

Finally, a significant amount of insufferably boring effort goes into showing the following. Set

S′(λ) := {a′ ∈ S′+ | χ(Da′) +
〈
λ, Da′

〉
> 0}

for any λ ∈ L.
THEOREM 5.5.10. We have

(Eλ, Eλ)k = ∏
a′∈S′(λ)

(∆a′,k′∆a′,−k′)(rk′(λ)).

5.6 Shifting into different Gεαrs

This section gives another proof of Lemma 5.5.8 using shift operators. Recall Notation 5.5.4.
DEFINITION 5.6.1. The shift operators are defined as

Gε := δε,k(X)−1δ′ε,k′(Y
−1) and Ĝε := δ′ε,k′(Y)δε,k(X−1).

They both map AR into itself and behave as adjoints with respect to 〈−,−〉 except that they
shift the associated multiplicity function. That is, for f , g ∈ AR we have

〈
Gε f , g0〉

k+`
= qn(k, `)
∼〈

f ,
(
Ĝεg

)0
〉

k
,

where n(k, `)
∼

:= ∑a∈S+
01

k(a)`(a), cf. Notation 5.5.5. The nomenclature stems from the following
result, which shows that they shift the symmetric polynomials (up to a scalar), cf. Proposition
5.5.6.
THEOREM 5.6.2. Let λ ∈ L++. Then

GεPλ+ρ`,k = dk,`(λ)Pλ,k+` & ĜεPλ,k+` = dk,`
∧

(λ)Pλ+ρ`,k,

where

dk,`(λ) := qn(k, `)
∼/

2δ′ε,−k′(λ+ ρk′+`′) & dk,`
∧

(λ) := ε(w0)q
−n(k, `)
∼/

2δ′ε,k′(λ+ ρk′+`′).
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Finally, we shall see how the orthogonal polynomials can be created from E0 = 1 = E′0 by
repeatedly applying certain kinds of operators. First, recall that S and W act on V according
to Notation 2.1.2 and W acts on F (see Section 1.1) by precomposition with the inverse as in
Theorem 2.1.4. To λ ∈ L, say, we associate the function fλ = 〈λ,−〉 on V, so that, if w ∈W \WR,
there is a difference between fwλ and w fλ. Therefore, recalling Notation 1.3.1, we have s0 =

s−ϕ+c = t(ϕ)sϕ, so that s0λ = ϕ + sϕλ as element of L and s0 · λ = sϕλ+ 〈λ, ϕ〉 c as element of
F. For i ∈ IR, however, siλ = si · λ.

Recalling Notation 4.2.6, we have Xa0 = qX−ϕ as operators on A.[4] Also, from Equation (4.4.1),
we get that

(Ti − bi(Xai))Xλ = Xsi ·λ(Ti − bi(Xai))

for all λ ∈ L and i ∈ I. Applying ω−1 from Theorem 4.4.4, we thus see that, for i 6= 0,

Y−λ(Ti − bi(Y−ai)) = (Ti − bi(Y−ai))Y−siλ,

Y−λ(ω−1(T0)− b0(qYϕ)) = q〈λ,ϕ〉(ω−1(T0)− b0(qYϕ))Y−sϕλ.

DEFINITION 5.6.3. For i ∈ IR we define the α-creation operators

αi := Ti − bi(Y−ai) and α0 := ω−1(T0)− b0(qYϕ)

as elements of EndK(A′).

Then the equations above reduce to

Yλαi = αiYsiλ and Yλα0 = q−〈λ,ϕ〉α0Ysϕλ.

By Theorem 5.2.2, then, we get YλαiE′µ′ = q−〈siλ,r′k(µ
′)〉αiE′µ′ for all µ′ ∈ L′, and something

similar for i = 0. Recall Equations (2.4.1) in combination with Theorem 5.2.7 (these two applied
to the previous equation prove that αiE′µ′ is a scalar multiple of E′siµ′

; it remains to determine
the scalar), as well as Definition 2.3.3.
PROPOSITION 5.6.4. Let i ∈ IR, µ′ ∈ L′ and assume siµ

′ > µ′. Then αiE′µ′ = τ−1
i E′siµ′

. Similarly, if
s0µ′ > µ′, then α0E′µ′ = τv(s0µ′)τ

−1
v(µ′)E

′
s0µ′ .

Recalling Notation 2.2.5 if necessary, we define a second set of operators.
DEFINITION 5.6.5. For all j ∈ J, define the β-creation operators by

βj := ω−1(U−1
j ).

By Theorem 3.2.4(e), we have for λ ∈ L that U−1
j X−λUj = Xu−1

j ·(−λ) = q
〈
λ,π′j

〉
Xvjλ, so that

Yλβj = q−
〈
λ,π′j

〉
βjY

vjλ. A fully analogous argument proves the following.
PROPOSITION 5.6.6. For all j ∈ J and µ′ ∈ L′, we have βjE

′
µ′ = τv(ujµ′)τv(µ′)E′ujµ′

.

Thus, by Definition 2.1.8 and Theorem 2.2.6, we can derive the promised result explaining the
creation operators’ name.

[4]Except in case III, but we ignore that case in this final section.

49



THEOREM 5.6.7. Let µ′ ∈ L′ and suppose u(µ′) = ujsi1 · . . . · sip is a reduced form. Then

E′µ′ = τ−1
v(µ′)βjαi1 · . . . · αip(1).

Dually, we of course have α′i and β′j that build Eλ from 1.

5.7 Example: the grand A1 finale

5.7.1 The En

We continue Example 4.5.2, in which the creation operators had already been computed. First,
recall Notation 5.1.6 for n < ∞. We have to define an analogue of the usual binomial coefficient
as polynomial in q, where the q stands for Gauß.
DEFINITION 5.7.1. Let n ∈N and 0 6 r 6 n. Then the q-binomial coefficient is(

n
r

)
q

:=
(q; q)n

(q; q)r(q; q)n−r
=

(1− qn−r+1) · . . . · (1− qn)

(1− q) · . . . · (1− qr)

as element of Z[q].

Obviously, (n
r)q = ( n

n−r)q and it turns out that lim
q↑1

(
n
r

)
q
=

(
n
r

)
.

PROPOSITION 5.7.2 (q-binomial theorem). For any indeterminate x, we have

(x; q)n =
n

ÿ

r=0

(−1)rqr(r−1)/2
(

n
r

)
q
xr & (x; q)−1

n =
∞
ÿ

r=0

(
n + r− 1

r

)
q
xr.

Recall Equation (5.1.1) for ∆, to be applied to S = S(A1). (Ignore the limit q ↑ 1.) Assume
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k = k(α) ∈ Z>0. For us, x = eα/2, so we obtain

∆ =
∞

∏
i=0

(1− x2qi)(1− x−2qi+1)

(1− x2qi+k)(1− x−2qi+k+1)

=
k−1

∏
i=0

(1− x2qi)(1− x−2qi+1)

=
2k−1

∏
i=k

(1− x2qi−k)
k−1

∏
j=0

(1− x−2qj+1)

= (q−kx2; q)2k

k−1

∏
i=0

(1− x2qi−k)−1
k−1

∏
j=0

(−x−2qj+1)(1− x2q−j−1)

= (−1)kx−2kq1+...+k(q−kx2; q)2k

k−1

∏
i=0

(1− x2q−1) · . . . · (1− x2q−k)

(1− x2q−k) · . . . · (1− x2q−1)

= (−1)kx−2kqk(k+1)/2(q−kx2; q)2k

= (−1)kx−2kqk(k+1)/2
2k
ÿ

r=0

(−1)rqr(r−1)/2
(

2k
r

)
q
q−rkx2r

= (−1)kx−2kqk(k+1)/2
k

ÿ

r=−k

(−1)r+kqr(r−1)/2qrkq(k
2−k)/2

(
2k

r + k

)
q
q−rkq−k2

x2rx2k

=
k

ÿ

r=−k

(−1)rqr(r−1)/2
(

2k
r + k

)
q
x2r.

Therefore, we can explicitly compute ( f , g) = ct( f g∗∆) on A if we want to. Recall from
Example 2.5.1 the expression for rk(nα/2), with n ∈ Z. For En := Enα/2 ∈ A = K[x, x−1], we
know it is a monic polynomial of degree n and moreover Y = Y′1 = Yα/2 acts, through Notation
4.3.13, by

YEn = f (−rk(nα/2))En = q〈α/2,−rk(nα/2)〉En =

{
q〈α/2,−(n+k)α/2)〉En = q−(n+k)/2En n > 0

q〈α/2,(k−n)α/2)〉En = q(k−n)/2En n 6 0,

where f = x ∈ A. By Notation 5.1.7 and Theorem 5.1.9, the adjoint for this action of Y is clearly
Y−1, which acts by the inverses of the powers of q. Therefore, the polynomials are indeed
orthogonal: for example, if n, m > 0 and n 6= m, then

(En, Em) = q(n+k)/2(YEn, Em) = q(n+k)/2(En, Y−1Em) = q(n−m)/2︸ ︷︷ ︸
6=1

(En, Em)
!
= 0.

PROPOSITION 5.7.3. Let n > 0. The only monomials xm that can appear in En are those with
m = n− 2i for 0 6 i 6 n− 1 and in E−n, those with m = n− 2i but now 0 6 i 6 n.

Proof. By the ordering Definition 2.3.3 (which we now denote by � to avoid confusion), we
know that if n > 0, then m ≺ n if and only if |m| < n; and if n < 0, then m ≺ n if and only
if n < m 6 |n| = −n. This restricts the possible monomials xm that can appear in En apart
from xn. Remains to prove that only the m with even difference with n can appear; the claimed
ranges for i then work out.
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Because (En, xm) = ct(Enx−m∆) = 0 for all m ≺ n, write (in the case that n > 0; the other case
is similar)

En =
n

ÿ

i=−n+1

eixi with en = 1.

Then the inner product is

0 =
ÿ

r
(−1)rqr(r−1)/2

(
2k

k + r

)
q
em−2r

ranging over −k 6 r 6 k as well as −n + 1 6 m− 2r 6 n or, equivalently m−n
2 6 r 6 n+m−1

2 .
The next step is best illustrated using examples.

For n = 1 and m = 0, we see that the equation reduces to e0 = 0, since (2k
k )q 6= 0 in K. Therefore,

E1 = x, sans constant term. For n = 2 and m = 0, assuming k to be sufficiently large, only
r = −1, 0 are allowed and so

−q
(

2k
k− 1

)
q
e2 +

(
2k
k

)
q
e0 = 0, whence

e0 = q
(1− qk+2) · . . . · (1− q2k)

(1− q) · . . . · (1− qk−1)
· (1− q) · . . . · (1− qk)

(1− qk+1) · . . . · (1− q2k)

= q
1− qk

1− qk+1 .

If m = 1, we see that r = 0, 1 contribute, so that(
2k
k

)
q
e1 −

(
2k

k + 1

)
q
e−1 =

(1− qk+2) · . . . · (1− q2k)

(1− q) · . . . · (1− qk)
((1− qk+1)e1 − (1− qk)e−1) = 0.

Finally, if m = −1, we have r = −1, 0 again but now the equation is

−q
(

2k
k− 1

)
q
e1 +

(
2k
k

)
q
e−1 =

(1− qk+2) · . . . · (1− q2k)

(1− q) · . . . · (1− qk)
(−q(1− qk)e1 + (1− qk+1)e−1) = 0.

Since the common prefactor in both equations is not zero in K, we have both

e1 =
1− qk

1− qk+1 e−1 and e1 =
1− qk+1

q(1− qk)
e−1.

Then either both are zero, or, setting the quotient to 1, one solves for k = − 1
2 , which is a

contradiction. (Notice we have now fully computed E2.) Since m−n
2 > − 3

2 and n+m−1
2 6 1, our

assumption on k’s being sufficiently large actually meant k > 1, which we assumed from the
onset anyway. The arguments for higher n are similar. ���

Recall we found α1 = UY− b(Y−1) and β1 = XUY in Example 4.5.2.
PROPOSITION 5.7.4. Let n > 0. Then

α1En+1 = q−k/2E−n−1 and β1E−n = qk/2En+1.
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Proof. First, we have Yα1En+1 = α1Y−1En+1 = q(n+k+1)/2α1En+1, so by Theorem 5.2.7 (in
accordance with the action of Y computed above), we find that α1En+1 is a scalar times E−n−1.
Now

α1En+1 = UYEn+1 − b(Y−1)En+1.

The second term has b(Y−1) = (qk/2 − q−k/2)(1 + Y−2 + Y−4 + . . .) so En+1 is an eigenvector
and hence the coefficient of x−n−1 lies outside the range of allowed monomials. The first term
is

UYEn+1 = q−(n+k+1)/2YT−1
1 (xn+1 + LOT)

= q−(n+k+1)/2Y(q−k/2x−n−1 + LOT)

= q−(n+k+1)/2q−(−n−1−k)/2q−k/2(x−n−1 + LOT),

where we used Theorem 4.3.3 (computing f (s1, (n + 1)α/2) from Notation 4.3.2 easily) and
Equation (4.3.1). The coefficient of x−n−1 is therefore q−k/2. This is therefore the scalar we were
looking for, proving the first statement. The second follows by an analogous computation. ���

COROLLARY 5.7.5. For any n > 0, we have

En+1 = q−k/2β1(α1β1)
n(1) and E−n = (α1β1)

n(1).

Proof. Clearly q−k/2β1E0 = E1 and moreover

α1β1E0 = α1qk/2E1 = qk/2q−k/2E−1 and q−k/2β1α1β1E0 = q−k/2β1E−1 = E2,

and so forth. ���

Next, we can explicitly calculate the orthogonal polynomials. For no apparent reason, introduce
the following.
NOTATION 5.7.6. Let

f = fk(x, z) :=
1

(xz; q)k(x−1z; q)k+1
=

∞
ÿ

n=0

fn(x)zn =
∞
ÿ

r,s=0

(
k + r− 1

r

)
q

(
k + s

s

)
q
xr−szr+s,

where the last step is the q-binomial theorem, which also guarantees there are no negative
powers of z. We can read off fn(x) =

ř

r+s=n (
k+r−1

r )q(
k+s

s )qxr−s. Similarly, set

g =
x

(xz; q)k+1(qx−1z; q)k
=

∞
ÿ

n=0

gn(x)zn =
∞
ÿ

n=0

(
ÿ

r+s=n

(
k + r− 1

r

)
q

(
k + s

s

)
q
qrxs−r+1

)
︸ ︷︷ ︸

gn(x)

zn.

LEMMA 5.7.7. We have

T1 f (x, z) = qk/2 f (q1/2x−1, q1/2z) and T1g(x, z) = q−(k+1)/2 f (q1/2x−1, q1/2z).
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Proof. Using Equation (4.5.2),

T1 f (x, z) = (b(X) + c(X)s1) f (x, z)

= qk/2 1− q−k

1− x2 f (x, z) + qk/2 x2 − q−k

x2 − 1
f (x−1, z)

=
qk/2

1− x2

(
1− q−k

(xz; q)k(x−1z; q)k+1
− x2 − q−k

(x−1z; q)k(xz; q)k+1

)
=

qk/2

1− x2 ·
(1− q−k)(1− xzqk)− (x2 − q−k)(1− x−1zqk)

(1− xz) · . . . · (1− xzqk)(1− x−1z) · . . . · (1− x−1zqk)

=
qk/2

1− x2 ·
(1− x2)(1− x−1z)

(1− xz) · . . . · (1− xzqk)(1− x−1z) · . . . · (1− x−1zqk)

=
qk/2

(qx−1z; q)k(xz; q)k+1

= qk/2 f (q1/2x−1, q1/2z),

as desired. The argument for g is analogous. ���

COROLLARY 5.7.8. Let n ∈ Z>0. The orthogonal polynomials are given by

E−n =

(
k + n

n

)−1

q
fn(x) and En+1 =

(
k + n

n

)−1

q
gn(x).

Proof. Recall Y = UT1, so that by Equation (4.5.1),

Y f (x, z) = qk/2u f (q1/2x−1, q1/2z) = qk/2 f (x, q1/2z) =
∞
ÿ

n=0

q(m+k)/2 fn(x)zn.

We see that fn(x) are eigenfunctions of Y with the ‘correct’ eigenvalue and so by arguments
employed earlier, they are scalar multiples of E−n. The monomial x−n appears in fn with
coefficient

ÿ

r+s=n
r−s=−n

(
k + r− 1

r

)
q

(
k + s

s

)
q
=

(
k− 1

0

)
q

(
k + n

n

)
q
=

(
k + n

n

)
q
,

giving the desired equality. The case with g is similar. ���

Let’s compute some of these. As an addendum to Definition 5.7.1, we set (n
s)q to be 0 if s < 0. It

is clearly 1 if s = 0.
EXAMPLE 5.7.9.

• As a sanity check,

E0 =

(
k
0

)−1

q
f0(x) =

∞
ÿ

r=0

(
k + r− 1

r

)
q

(
k− r
−r

)
q
x2r = 1.

• Similarly, we have

E1 =

(
k
0

)−1

q
g0(x) =

∞
ÿ

r=0

(
k + r− 1

r

)
q

(
k− r
−r

)
q
qrx = x.
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• Next, something happens for

E−1 =

(
k + 1

1

)−1

q
f1(x) =

(
k + 1

1

)−1

q

∞
ÿ

r=0

(
k + r− 1

r

)
q

(
k− r + 1

1− r

)
q
x2r−1.

In the sum, only r = 0, 1 are allowed, so we get

E−1 =

(
k + 1

1

)−1

q

((
k− 1

0

)
q

(
k + 1

1

)
q
x−1 +

(
k
1

)
q

(
k
0

)
q
x1

)

= x−1 +
(1− q)(1− qk)

(1− qk+1)(1− q)
x

= x−1 +
1− qk

1− qk+1 x.

Note that indeed α/2 ≺ −α/2, since 1WR = v(−α/2) < s1 = v(α/2) by Example 2.5.1,
so that E−1 is x−1 plus terms of lower order (in accordance with Proposition 5.7.3).

• We already know E2 from this Prop.; on to E3. Only r = 0, 1, 2 contribute to g2(x), so that

E3 =

(
k + 2

2

)−1

q

((
k− 1

0

)
q

(
k + 2

2

)
q
x3 +

(
k
1

)
q

(
k + 1

1

)
q
qx +

(
k + 1

2

)
q

(
k
0

)
q
q2x−1

)

= x3 + q
(1− q2)(1− qk)

(1− q)(1− qk+2)
x + q2 1− qk

1− qk+2 x−1.

• For later purposes, let’s take a look at two more.

E−2 = x−2 +

(
k + 2

2

)−1

q

((
k
1

)
q

(
k + 1

1

)
q
+

(
k + 1

2

)
q
x2

)

= x−2 +
(1− q2)(1− qk)

(1− q)(1− qk+2)
+

1− qk

1− qk+2 x2 and

E−3 = x−3 +

(
k + 3

3

)−1

q

((
k
1

)
q

(
k + 2

2

)
q
x−1 +

(
k + 1

2

)
q

(
k + 1

1

)
q
x +

(
k + 2

2

)
q
x3

)

= x−3 +
(1− q3)(1− qk)

(1− q)(1− qk+3)
x−1 +

(1− q3)(1− qk)(1− qk+1)

(1− q)(1− qk+2)(1− qk+3)
x +

1− q3

1− qk+3 x3.

5.7.2 The Pn

Clearly, AR = K[x, x−1]s1 = K[x + x−1]. The scalar product 〈−,−〉 restricted to AR (where the
bar does nothing) is 〈 f , g〉 = 1

2 ct( f g∇) for f , g ∈ AR, where

∇ = ∏
α∈R

(eα; q)∞

(qk(α)eα; q)∞
=

k−1

∏
i=0

(1− x2qi)(1− x−2qi) = (x2; q)k(x−2; q)k.
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By Proposition 5.1.12 and the fact that S(1WR) = ∅ while S(s1) = {α}, we have

〈1, 1〉k = (1 + qk)−1(1, 1)k

= (1 + qk)−1ct

(
k

ÿ

r=−k

(−1)rqr(r−1)/2
(

2k
r + k

)
q
x2r

)

= (1 + qk)−1
(

2k
k

)
q

=
(1− qk+1) · . . . · (1− q2k)

(1− q) · . . . · (1− qk)(1 + qk)

=
(1− qk+1) · . . . · (1− q2k−1)

(1− q) · . . . · (1− qk−1)

=

(
2k− 1
k− 1

)
q
.

Again, for λ = nα/2 ∈ L, let Pn := Pλ,k = xn + x−n + LOT. As with the orthogonal polynomials
(now using Theorem 5.3.2 and once more Notation 4.3.13), we have that

(Y+Y−1)Pn = f (−n α
2 − ρk)Pn =

(
q〈

α
2 ,−(n+k) α

2 〉 + q−〈
α
2 ,−(n+k) α

2 〉
)

Pn =
(
q−(n+k)/2 + q(n+k)/2

)
Pn

for f = x + x−1 ∈ AR. Now let Z := (Y + Y−1)
∣∣

AR
. Then, as operator on AR, we have

T1 = τ1 = τ (see Theorem 4.2.12), so, using that Y = UT1 = τU and Y−1 = T−1
1 U, the Hecke

relation and Proposition 4.2.13ii),

Z = (τ + T−1
1 )U = (T1 + τ−1)U = (1 + s1)c(X−1)u = c(X−1)u + c(X)s1u.

Furthermore, let

Fk(x, z) :=
1

(xz; q)k(x−1z; q)k
=

∞
ÿ

n=0

Fn(x)zn =
∞
ÿ

n=0

(
ÿ

r+s=n

(
k + r− 1

r

)
q

(
k + s− 1

s

)
q
xr−s

)
zn,

cf. Notation 5.7.6. Observe that this object is WR-invariant, i.e., invariant under x 7−→ x−1.
LEMMA 5.7.10. We have

ZFk(x, z) = τFk(x, q1/2z) + τ−1Fk(x, q−1/2z). (5.7.1)

Proof. We have

(x− x−1)ZFk(x, z) = (x− x−1)
τx−2 − τ−1

x−2 − 1
Fk(q

1/2x−1, z) + (x− x−1)
τx2 − τ−1

x2 − 1
Fk(q

1/2x, z)

= (τ−1x− τx−1)Fk(q
−1/2x, z) + (τx− τ−1x−1)Fk(q

1/2x, z).

The equality (5.7.1) is equivalent to the one obtained by multiplying both sides by the element
Ak(x, z) := q(k−1)/2z(q−1/2xz; q)k+1(q

−1/2x−1z; q)k+1 ∈ K[x, z]×, which is what we shall prove
using the equality just derived.

Define, for convenience, the following:

α := 1− xzq−1/2, β := 1− x−1zq−1/2, γ := 1− xzqk−1/2 and δ := 1− x−1zqk−1/2.

56



The left-hand side is

Ak(x, z)ZFk(x, z) =
Ak(x, z)
x− x−1

(
(qk/2x− q−k/2x−1)Fk(q

1/2x, z) + (q−k/2x− qk/2x−1)Fk(q
−1/2x, z)

)
=

q−1/2z
x− x−1

(
(qkx− x−1)

(q−1/2xz; q)k+1(q
−1/2x−1z; q)k+1

(q1/2xz; q)k(q−1/2x−1z; q)k

+ (x− qkx−1)
(q−1/2xz; q)k+1(q

−1/2x−1z; q)k+1

(q−1/2xz; q)k(q1/2x−1z; q)k

)
=

1
x− x−1

(
(β− γ)αδ + (δ− α)βγ

)
. (5.7.2)

Meanwhile, the right-hand side becomes

Ak(x, z)
(

τFk(x, q1/2z) + τ−1Fk(x, q−1/2z)
)
= Ak(x, z)

(
qk/2

(q1/2xz; q)k(q1/2x−1z; q)k

+
q−k/2

(q−1/2xz; q)k(q−1/2x−1z; q)k

)
= q−1/2z(qkαβ + γδ)

=
1

x− x−1

(
(δ− γ)αβ + (β− α)γδ

)
. (5.7.3)

Clearly, (5.7.2) and (5.7.3) are equal, proving (5.7.1). ���

This, combined with the expression for ZPn, implies that Fn is a scalar multiple of Pn. The scalar
is the coefficient of xn + x−n, which is (k+n−1

n )q by inspection.

THEOREM 5.7.11. Pn(x) = (k+n−1
n )

−1
q Fn(x).

REMARK 5.7.12. These are the continuous q-ultraspherical polynomial of Rogers.[5] Specifically,
if we view x = eiθ as an indeterminate on S1, then

Fn(x) = Cn(cos θ; qk | q) =
(qk; q)n

(q; q)n
xn

2ϕ1

(
q−n qk

q1−n−k ; q, x−2q1−k
)

,

where we use the q-hypergeometric series

i ϕj

(
a1 · · · ai
b1 · · · bj

; q, z
)

:=
∞
ÿ

`=0

(a1; q)` · . . . · (ai; q)`
(b1; q)` · . . . · (bj; q)`(q; q)`

(
(−1)`q(

`
2)
)1+j−i

z`.

For i = 2 and j = 1, this simplifies to

2ϕ1

(
a1 a2

b
; q, z

)
=

∞
ÿ

`=0

(a1; q)`(a2; q)`
(b; q)`(q; q)`

z`.

By [Macdon, f. 106], we have

∆+
k =

(x2; q)∞

(qkx2; q)∞
and ∆−−k =

(qx−2; q)∞

(q1−kx−2; q)∞
.

[5]Q.v. www.dlmf.nist.gov/18.28#v.
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Therefore, Theorem 5.5.9 becomes, employing Notation 4.3.13,

|Pn|2 =
(x2; q)∞

(qkx2; q)∞

(
(n+k)α

2

)
· (qx−2; q)∞

(q1−kx−2; q)∞

(
−(n+k)α

2

)
=

∞

∏
r=0

1− qrx2

1− qk+rx2

∣∣∣∣
(n+k)α

2

1− qr+1x−2

1− qr+1−kx−2

∣∣∣∣−(n+k)α
2

=
∞

∏
r=0

1− qr+〈2α/2,(n+k)α/2〉

1− qk+r+〈2α/2,(n+k)α/2〉 ·
1− qr+1+〈−2α/2,−(n+k)α/2〉

1− q−k+r+1+〈−2α/2,−(n+k)α/2〉

=
∞

∏
r=0

1− qr+n+k

1− q2k+r+n ·
1− qr+1+n+k

1− q1+n+r

=
∏∞

r=0 (1− qr+n+k)
/
(1− q1+n+r)

∏∞
r=k (1− qr+n+k)

/
(1− q1+n+r)

=
k−1

∏
r=0

1− qr+n+k

1− q1+n+r

=
(1− qn+k) · . . . · (1− q2k+n−1)(1− q) · . . . · (1− qk)

(1− qn+1) · . . . · (1− qn+k)(1− q) · . . . · (1− qk)

=

(
2k + n− 1

k

)
q

(
n + k

k

)−1

q
.

PROPOSITION 5.7.13. For all n > 0 (viz. λ ∈ L++) we have

Pn = E−n + qk 1− qn

1− qk+n En.

Proof. For n = 0, indeed 1 = 1 + 0. Notice that the right-hand side is an eigenvector for
(Y + Y−1) with the expected eigenvalue q(k+n)/2 + q−(k+n)/2 and hence a scalar multiple of Pn,
the scalar being the coefficient of xn + x−n. The coefficient of x−n in E−n is 1 and it is 0 in En by
Proposition 5.7.3. That of xn in E−n we can compute with Corollary 5.7.8 to be(

k + n
n

)−1

q

(
k + n− 1

n

)
q

(
k− 1

0

)
=

1− qk

1− qk+n .

Hence the total coefficient of xn is

1− qk

1− qk+n + qk 1− qn

1− qk+n = 1

and so the total coefficient of xn + x−n is 1, whence we conclude the claim. ���

EXAMPLE 5.7.14. We have computed a few En so let’s see.

• Most easily (apart from P0 = 1...),

P1 = E−1 + qk 1− q
1− qk+1 E1 = x−1 +

1− qk

1− qk+1 x + qk 1− q
1− qk+1 x = x−1 + x,

as expected.
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• Next,

P2 = x−2 +
(1− q2)(1− qk)

(1− q)(1− qk+2)
+

1− qk

1− qk+2 x2 + qk 1− q2

1− qk+2

(
x2 + q

1− qk

1− qk+1

)
= x−2 + x2 +

(1− q2)(1− qk)(1− qk+1)

(1− q)(1− qk+1)(1− qk+2)
+ qk+1 (1− q)(1− q2)(1− qk)

(1− q)(1− qk+1)(1− qk+2)

= x−2 + x2 +
(1− q2)(1− qk)

(1− q)(1− qk+1)(1− qk+2)

(
(1− qk+1) + qk+1(1− q)

)
= x−2 + x2 +

(1− q2)(1− qk)

(1− q)(1− qk+1)
.

• And finally, we can compute

P3 = x−3 +
(1− q3)(1− qk)

(1− q)(1− qk+3)
x−1 +

(1− q3)(1− qk)(1− qk+1)

(1− q)(1− qk+2)(1− qk+3)
x +

1− q3

1− qk+3 x3

+ qk 1− q3

1− qk+3

(
x3 + q

(1− q2)(1− qk)

(1− q)(1− qk+2)
x + q2 1− qk

1− qk+2 x−1
)

= x−3 + x3 +

(
(1− q3)(1− qk)(1− qk+2)

(1− q)(1− qk+2)(1− qk+3)
+ qk+2 (1− q)(1− q3)(1− qk)

(1− q)(1− qk+2)(1− qk+3)

)
x−1

+

(
(1− q3)(1− qk)(1− qk+1)

(1− q)(1− qk+2)(1− qk+3)
+ qk+1 (1− q2)(1− q3)(1− qk)

(1− q)(1− qk+2)(1− qk+3)

)
x

= x−3 + x3 +
(1− q3)(1− qk)

(1− q)(1− qk+2)
(x−1 + x).

Finally, we compute the symmetrisers’ and shift operators’ actions. Notations 5.4.1 and 5.4.2
become the following. We set ε = sign and omit it from notation if we consider the trivial
character. Then s1 = s1 (gasp) and

sε
1 = s∗1 = c(X)c(X−1)−1s1 =

(τX2 − τ−1)(X−2 − 1)
(X2 − 1)(τX−2 − τ−1)

s1 =
(τ + τ−1)(1− X2) + τ−1(X2 − X−2)

(τ + τ−1)(1− X2) + τ(X2 − X−2)
s1.

Similarly, τε = −τ−1 and the symmetrisers are

U+ = τ−1(1 + τT1) = τ−1 + T1 and U− = −τ(1− τ−1T1) = T1 − τ.

Indeed, U+ kills T1− τ whilst U− does T1− τε since this is precisely the Hecke relation. Clearly,
WRλ is trivial for any λ 6= 0 so we set F±n = U±En for any n 6= 0 and, if n > 0, then Notation
5.5.2 becomes

P±n = s1F±n = s1(T1 ± τ∓)En =

{
s1(1 + s1)c(X−1)En = (1 + s1)

τx−2−τ−1

x−2−1 En if +,

s1c(X)(s1 − 1)En = c(X−1)(1− s1)En if −,

by Proposition 4.2.13. To do: figure out why P+
n = Pn = E−n + blah · En. Using the formula

with the ξε doesn’t seem to work either.

From Notation 5.5.4, we have δ := δα,k = (x− x−1)cα,k = (x− x−1)c(X) = τx− τ−1x−1. In
the present case,

S+
01 = {±α + rc ∈ S | r = 0 > χ(±α)} = {α} = R+

59



and `(α) = 1 if ε = sign but 0 if ε = triv (same for −α). Therefore δtriv,k = 1 and δsign,k = δ.
Indeed, the shift operators Gtriv are expected to be the identity from Theorem 5.6.2 since ` ≡ 0
for that character and indeed they are by definition. Henceforth, fix ε = sign, so that ` ≡ 1.

Evaluating δ at Y−1 = T−1
1 U as operator on AR (where, recall, T1 acts by τ), we get

δ(Y−1)
∣∣∣

AR
= τT−1

1 U − τ−1UT1 = (τT−1
1 − 1)U = τ(T−1

1 − τ−1)U

= τ(T1 − τ)U = τc(X)(s1 − 1)U = τ
δ(X)

X− X−1 (s1 − 1)U.

Then by definition,
G := Gε = δ(X)−1δ(Y−1),

which acts on f ∈ AR by

G f =
τ

x− x−1 (s1u f − u f ) =
τ

x− x−1 (s1u− us1) f .

Only the τ = qk/2 involves k, so G̃ := τ−1G does not. Using Equation (4.5.1), therefore

G̃ f (x) =
1

x− x−1 ( f (q1/2x)− f (q1/2x−1)) =
1

x− x−1 ( f (q1/2x)− f (q−1/2x)).

Take f = Fk(x, z). Then, first of all, Fk(q
1/2x, z)− F(q−1/2x, z) is equal to

k−1

∏
r=0

1
(1− xzqr+1/2)(1− x−1zqr−1/2)

−
k−1

∏
s=0

1
(1− xzqs−1/2)(1− x−1zqs+1/2)

=
(1− xzq−1/2)(1− x−1zqk−1/2)− (1− x−1zq−1/2)(1− xzqk−1/2)

k

∏
r=0

(1− xzqr−1/2)(1− x−1zqr−1/2)

=
(
(1− xzq−1/2)(1− x−1zqk−1/2)− (1− x−1zq−1/2)(1− xzqk−1/2)

)
Fk+1(x, q−1/2z).

We claim that G̃Fk(x, z) = q−1/2(qk − 1)zFk+1(x, q−1/2z). It suffices to prove that

(1− xzq−1/2)(1− x−1zqk−1/2)− (1− x−1zq−1/2)(1− xzqk−1/2)

x− x−1 = q−1/2(1− qk)z.

The left-hand numerator is clearly equal to z(x− x−1)(qk−1/2 − q−1/2), proving this equality.
Book says (1− qk) but I believe this is WRONG; you seem to get this extra minus sign which
you really need to make sure GP = dP below. We continue working with my version. Of course,

G̃Fk(x, z) =
ÿ

n>0

G̃Fn,k(x)zn =
ÿ

n>0

(qk − 1)Fn,k+1(x)q−(n+1)/2zn+1,

whence

G̃Pn,k =

(
k + n− 1

n

)−1

q
G̃Fn,k

=

(
k + n− 1

n

)−1

q
q−n/2(qk − 1)Fn−1,k+1

=

(
(k + 1) + (n− 1)− 1

n− 1

)−1

q
q−n/2(qn − 1)Fn−1,k+1

= (qn/2 − q−n/2)Pn−1,k+1.
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Indeed, this is what we wanted from Theorem 5.6.2, as ρ` =
1
2`(α)α = α/2, so that

GsignPλ+ρ`,k = GPn+1,k = τG̃Pn+1,k = qk/2(q(n+1)/2 − q−(n+1)/2)Pn,k+1,

whilst (when replacing k 7−→ −k, in c this has the effect τ 7−→ τ−1 or, equivalently, x 7−→ x−1)

dk,`(λ)Pλ,k+` = qn(k, 1)
∼/

2δsign,−k
(
(n + k + 1)α/2

)
Pn,k+1

= qk/2(x− x−1)cα,−k
(
(n + k + 1)α/2

)
Pn,k+1

= qk/2(x− x−1)
τ−1x(n+k+1)/2 − τx−(n+k+1)/2

x− x−1 Pn,k+1

= qk/2(q(n+1)/2 − q−(n+1)/2)Pn,k+1,

as desired, where the last equality used Notation 4.3.13 again. We really need that minus sign!
Maybe Macdonald forgot to substitute −k for k in this?

Having done this, let ϑ := s1u− us1 and Φk+1 := (x− x−1)−1∇k+1 as operators. By orthog-
onality of the symmetric polynomials, we then have, for m 6= n (say both positive to avoid
zero),

0 = 〈Pm−1,k+1, Pn−1,k+1〉k+1 =
〈

G̃Pm,k, Pn−1,k+1

〉
k+1

= ct(ϑ(Pm,k)Φk+1Pn−1,k+1),

or, alternatively, ct(Pm,kϑ(Φk+1Pn−1,k+1)) = 0, where we used that the bar does nothing on AR

and ϑ∗ is a multiple of itself lalalalalallalalala
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