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Avec toute l'algebre du monde on n’est souvent qu’un sot
lorsqu’on ne sait pas autre chose. Peut-étre dans dix ans la
société tirera-t-elle de I’avantage des courbes que des
songe-creux d’algébristes auront carrées laborieusement.
J’en félicite d’avance la postérité.

— FREDERICK II (THE GREAT) OF PRUSSIA (1712-86),
letter 93 to Voltaire

Introduction

A thorough perusal of the first three chapters of Macdonald’s impressive book [Macdon] has
revealed that the basics of the theory of (affine) root systems, as expected, are a rather lengthy
string of lemmas and auxiliary results through which the reader should carefully and diligently
manceuvre lest he drown. As such, I'm writing this abridgement of sorts to keep track of the
important results (skipping intermediate lemmas and proofs, for I aim not to copy the book
verbatim) and make sure the most pertinent elements of the story remain unravelled for the
weary reader who may wish to consult the book later on (i.e., myself).

At the end of each chapter, we'll exhibit some of its content in the examples A; and/or C; for
concreteness.



A fine root system Weyl you wait

1.1 Notational nonsense

The first part is mainly introducing notation. Let us immediately fix our base field to be R and
E areal affine space. That is, it carries a faithful and transitive action by translations of a real
vector space V by

v-x=:x+0, veV,xeE.

For any x,y € E there exists a unique v € V such that y = x + v and we write y — x for this v.
A map f: E — E'is called affine-linear if there exists a ‘derivative’ Df € Homg(V, V') such
that f(x+v) = f(x) + Df(v) forallv € V, x € E. Let

F := {affine-linear maps E — R}

and
D:F—V* f+—(Df:V—R)

be the (IR-linear) derivative map, whose kernel F° comprises precisely the constant functions.
NOTATION 1.1.1. We henceforth fix n := dimgr V > 0 and equip V with an inner prod-

uct (—, —). This identifies E with A}, as affine space and gives it a metric by d(x,y) =
V{y —x,y —x) for x,y € E with y — x as above. The space F becomes (1 + 1)-dimensional.

Importantly, we identify V with its dual V* via (—, —), viz. by identifying linear functionals
on V with the elements of V to whose inner product they correspond. In particular, for f € F
we write f(x +v) = f(x) + (Df,v).

Moreover, we equip F with a positive-semidefinite symmetric bilinear form, also written
(—,—) by (f,g) :== (Df, Dg), which vanishes on F°.

As usual, for v € V we define
v 20

(v,0)

in V (or V* if you will) and the same formula also defines fV = % for f € F\ F. Whilst all
definitions so far have been nothing new, we give the next one an environment because it’s so
ubiquitous.



DEFINITION 1.1.2. Let f € F\ F°. The reflection in the affine hyperplane f~1(0) C E is the
isometry of E given by

sptE—E, x——x—f'(x)Df =x— f(x)Df".

Such reflections, indeed any isometry :: E — E, are affine-linear and act on F > g by
precomposition, i.e., for f € F and x € E we have

In particular, s; - ¢ = ¢ — (g, f) f.
DEFINITION 1.1.3. For v € V, the translation by v is the isometry

t(v): E— E, x+——x+0.

Clearly, t(v)(x +u) = x+u+v = t(v)(x) + (Dt(v), u), whence we see that the derivative of
a translation is the constant function V — R, u +—— 1.

NOTATION 1.1.4. We write ¢ for this constant function 1 on V1]
Unravelling the action on F we see that t(v) - f = f — (Df,v) ¢ and for any isometry ¢,

tot(v) o™t = t(Di(v)).

1.2 Affine roots and alcoves

Throughout, the letter R will be used for [finite] root systems, whereas S is reserved for affine
root systems. Elements of the former use Greek letters and of the latter, Latin.

DEFINITION 1.2.1. An affine root system is a subset S C F \ F’ such that
(A1) RS = F,

(A2) Foralla,b € S wehave thats,(b) = b — (a,b) a" again lies in S,
(A3) Foralla,b € S, the numbers (a",b) are integers,

(A4) The affine Weyl group Ws, generated by all reflections s, for a € S, acts properly on E

The rank of S is n. As with root systems, if a € S and pa € S then p € {+£1, +3,+2}. An affine
root a is called indivisible if :I:% ¢ S. Notice that Ws = Wgsv. An isomorphism between two
affine root system is a bijection obtained as the restriction of some isometry of the ambient
Euclidean spaces and two affine root systems are called similar if they are isomorphic up to a
global nonzero scalar.

[ Happily, the speed of light is also ¢ = 1!
[21Viz. for all compacta Ki, Ky C E, the number of elements w € Ws such that wK; N K # o is finite.
[BAt this point we resist the temptation to abbreviate these objects by referring to ARS’es.
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DEFINITION 1.2.2. An affine root system S is called
i) reduced if every affine root is indivisible, i.e., the only multiple in S of any s € S is +a,

ii) irreducible if S # S; U Sy for any nonempty subsets S; that are orthogonal with respect
to (—, —).

As it turns out, any affine root system can be described as a root system ‘with translations’.
More precisely:

THEOREM 1.2.3. Let R be an irreducible root system inside a vector space V. For « € Randr € Z,
define a,, € F by a + rc. In other words, forv € V,

Agr(0) == (a,0) + 7.

Then the set

S=S(R):= {aw

Z ifin ¢ R
« € Randr € l,fflxé
2Z+1 iflaeR

is a reduced, irreducible affine root system.

Conversely, any reduced, irreducible affine root system is similar to S(R) or S(R)" for some irreducible
(though not necessarily reduced!) root system R.

Explicit expressions for affine coroots are nice in the root part;

NOTATION 1.2.4. Observe that for a,, € S(R) we have
v 20,y 20 2r

s = (Dag,, Dag, ) N (Da, Da) " (Da, Dtx>c 2/ (Db

Let S be an irreducible (not necessarily reduced) affine root system. One can show that the
complement of the union of the affine hyperplanes associated to the affine roots is open in E
and its connected components are alcoves. The affine Weylgroup acts on these faithfully and
transitively. Their closures are n-simplices as expected

NOTATION 1.2.5. We henceforth fix a distinguished Weyl alcove C. If S = S(R), choose it
inside a fixed Weyl chamber of R for consistency with the forthcoming. We thus obtain a basis
of S of size n + 1, comprising those indivisible affine roots a € S whose affine hyperplanes
a~1(0) go through a wall of C and that are positive everywhere inside C.

This basis of simple affine roots is written {a; | i € I} for an index set I of size n + 1.

Fori # j, we have (a;, a;) < 0and hence the Cartan integers (a;,a;) are also nonpositive in that
case (and equal to 2 if i = j).

As expected, we can now define the positive and negative roots of S by
St:={acS|=+a(x) >0forallx € C}, (1.2.1)
such that S~ = —S* and S = S* US~. An affine root a € S* can be written

a= Zniai with £n; € Z>y.
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Let us now move towards identifying E and V. To do so, set «; := Da; € V foreachi € [
Since there are n + 1 of these, there is a unique linear dependence 0 = ) ; m;a; with m; € Z,,
at least one of which equals 1. There exists at least one vertex x; of C with m; = 1 and such that
{«; | j # i} forms a basis of the root system D(S) C V* = V.

NOTATION 1.2.6. We henceforth fix one such vertex xq, or, more saliently, we fix one special
index 0 € I with my = 1 and thus identify E with V by fixing x¢ as the origin. In particular we
havea; = a; forall0 #i € I.

We denote s; := s,, for all i. These simple reflections generate Ws, which is thus a Coxeter
group on the generating set of simples

Macdonald proceeds with the famous classification theorem using (affine) Dynkin diagrams,
which we skip here.

1.3 From finite to affine

If S = S(R), then set Ig := I\ {0} such that {«; | i € Iz} is a basis of simple roots for R and
a; = ocz-@ln particular, Da = « for all @« € R. Remains to determine ay € S.

NOTATION 1.3.1. Henceforth fix ¢ € R to be the highest root, say ¢ = ) ¢, m;a; with the m;
nonnegative and their sum maximised. Then

apg=—@+c

completes the simple affine roots, for then indeed

Zmiai =cC

i€l
is constantly 1. Define ap = Dag = —¢. We assume |¢|? = 2 (so ¢V = ¢) is the long root length.

We assume R to be reduced and irreducible now in view of the resulting Weyl groups. As
usual, let P be the weight lattice

P={veV|{a¥,v) € Zforalla € R},

and Q, the root lattice ZR therein. Similarly define P¥, Q". In view of dualities of various
objects in the forthcoming, we outline what shall be known as ‘the three cases’. The notation
introduced therewith shall recur throughout, so we give it a green bar.

[410f course, this notation is confusing if S = S(R) for some R, so let us keep S abstract for now.
BlTo wit, s? =1foralli and (sisj)™i =1 for all finite such orders m;;, where i # j.
[6]Macdonald uses I; for Ig but that feels ambiguous.



NOTATION 1.3.2. We define three pairs (R, R’), (S,5’), and (L, L") of (reduced and irreducible)
root systems, (irreducible) affine root systems, and latticenside V, respectively, as follows.
In the first two cases, R can be any root system with aforementioned requirements.

() RR=RVand S=S(R)and S’ = S(RY)and L = Pand L' = P".
(I) R"=Rand S=S(R)V=Sand L=P" =1L
() R=Cy,and R" =Rand S=S(R)"US(R) =S and L =Q"V =L".

In each case, define the assignment ( )’: R — R’ mapping a to &/, being a if R = R and a" if
R’ = RY. This can be extended to S.

Moreover, define ¢ € R to be such that ¢ is the highest root of R’, viz. y = ¢ if R = R and
¢ is the highest short root if R” = R". Because we have normalised ¢ to 2, it follows from
Notation that in case I we have aj; = —¢" + ¢ and in the other cases a, = —¢ +c.

In any case, both (A, &) and (M, ) liein Z foralla € R,A € Land ) € L.

DEFINITION 1.3.3. Let e be the exponent of the finite group (Y := L'/QV, ie., the least
common multiple of the orders of all elements, unless R = R’ is of type B, or Cy,, in which
case it is set to 1.

NOTATION 1.3.4. Set ¢ := e lc € F°.

We define a new lattice inside F by A := L ® Zcy. Note it carries an obvious action of the
extended affine Weyl group (to be defined anon; q.v. Definition 2.1.3).

We postpone the definition of what Macdonald calls a W-labelling and what Eric and Heckman
call multiplicity functions to when it is actually needed in Chapter 2.

1.4 Examples

Throughout this document, we shall restrict ourselves to types A; and B, = C, vis-a-vis exam-
ples, for these provide ample intuition (and anything higher-dimensional induces headache).

EXAMPLE 1.4.1. Let R = A; = {#+a} C Rwitha; = a = ¢ = V2 and a¥ = a. We view
the (co)weight lattice as P = PV = 271/2Z C R on the nose and the (co)root lattice is 2'/2Z.
Therefore, ()’ has order e = 2. The Weyl chamber is R~ and the Weyl group is Wr = {1,s1}
with s; = —1id (the longest element).

We have S = {£a +rc | r € Z} and ag = —a + c. We have that for x € R (see Notation[2.1.2]
ahead),

ap(x) = — (w,x) +1=—V2x+1,

[7IElements of these lattices shall always be denoted A and )/, respectively.



which is positive for x in the Weyl chamber if and only if x < 1/2), so the alcove is the interval
C= (0, 12 ). The positive affine roots are all +«a + rc where r > 0 for the plus signandr > 1
for the minus sign.

EXAMPLE 1.4.2. Let R = C; = {(2¢,0),(0,2¢), (¢,€') | &,¢ = +£1} C R? and pick the basis
a; = (1,—1) and @y = (0,2). We see that af = a7 and &) = 3a,. One sees that

01 1 0
51:10 and 52:0—1'

s152 has order 4 and so the longest element of Wr = Dy is 51525152 = 52515251 = — id. Clearly,
QY = ZR" whilst Q = Zay @& Zua; is ‘missing’ half the points on any horizontal line of odd y-
coordinate compared to QY. An element A € P is of the form (a,b) with a,a — b € Z, wherefore
P equals Z(1,1) ® Z(1,0). Similarly, the coweight lattice is of the form )" = (a,b) € PV with
2a,a—b € Z and so PV = Z(},3) © Z(1,0) has ‘twice the points’ on half the lines compared
to P.

The Weyl chamber is the positive cone walled by the hyperplanes spanned by (1,1) and (1,0).
The highest root is ¢ = 2a7 + ay = (2,0). As Macdonald remarks, this conflicts with our
normalisation |@|? = 2, but we shall not worry about this. The Weyl alcove C contains all those
(x,y) in the Weyl chamber such that

ap(x,y) =-2x+1>0 <<= x<

Its closure is thus the triangle with vertices the origin, (%, 0) and %, %)
In principle, we allow any of the three cases for (S,S’) and so on.

(I) If R" = RY, then ¢ € R is the highest short root 1 +a; = (1,1) and so aj, = —¢" +c.
As ¥ = ¢, the Weyl alcove is given by all those (x,y) in the Weyl chamber such that
—x—y+1>0,1ie, that lie below the line y = 1 — x. The (closure of the) alcove C’ is
thus the triangle with vertices the origin, (%, %) and (1,0) (i.e., two copies of C). We have
Q) = L'/Q" of order and exponent 2.

We have S = S(R) and S’ = S(RY). Now RY = B, on the nose if we define B, =
{(&,0),(0,¢), (¢,€) | &,¢’ = £1} with basis f1 = a1 (now a long rather than a short root)
and B, = a; (now a short root).

() fR"=Rand L = L' = PY, wehave aj = ap = —¢" + c and so C = C". Whilst (Y is still
order 2, its exponent is (manually set to) 1.

(ITT) The reducible case is somewhat cumbersome; we remark that ()’ = 1 itself now.

EXAMPLE 1.4.3. Now, for caseIII, let S be of type (Cy, C1) so that R = R’ = {+a} with [a|? = 2
as for A; and
S={xa+4c,F2a+rc|reZ}.

We have ag = —a + %c and a; = a (This is from Section 6.4; in Section 1.4, Macdonald says
a; = 5 instead.) with lattices L = L' = QY = Za. Note bene the difference with A;. The action
onV =Risay(x) = 3 — (a,x) = 1 — xand a;(x) = x. No idea what Macdonald is doing here

since « # 1 by choice of norm; but then for A; he also didn’t bother with V27s. Anyway it



should be ay(x) =  —v/2x and a1(x) = v/2'x. The Weyl alcove is (0, 1) only if you believe
the action on V.



An expedition to the Weyl group

2.1 A lengthy disquisition

With notation as prior, S = S(R) is now a reduced and irreducible affine root system with
affine Weyl group Ws generated by the simple reflections s;, where i € I = Ig U {0}.

NOTATION 2.1.1. The Weyl group of R is written Wr C O(V)ts longest element is written
wo.

We continue identifying V with its dual so that a root & € R corresponds to the functional
(a, —) and
S={a+rc|acRandr e Z}.

NOTATION 2.1.2. For utmost clarity, an affine root a = a 4 rc actson x € V by
a(x) = (a,x) +re(x) = (a,x) + 1.

Using Definition the corresponding reflection thus acts by (recall that, under our identifi-
cations, the ‘derivative’ D is the identity on R)

Sasrc(x) =x — (o +rc)(x)Da” = x — (r + {a, x))a”.

It is easy to show by direct computation that for any « € R we have
Sg OSytc = S—a+cSa = t(lxv)-

Thus #(Q") is a subgroup of Ws. This subgroup, being isomorphic to QV, inherits an obvious
action of Wg by postcomposition, whence we conclude that

WS = WR X t(Qv).

We can extend these translations to all coweights (except in case III).
DEFINITION 2.1.3. The extended affine Weyl group W (R, L) is

W =W(R,L') := Wg x t(L'")[?]

mAgain, Macdonald uses Wy, which is fine, but let us be consistent with the index set’s nomenclature.
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Clearly Ws < W and W/Wjs is (). Dually, one may define W = W(R’,L) for which the
analogues of all forthcoming results hold. One easily sees that W permutes S (and the alcoves)
by virtue of the following expression (which we label as a theorem only to make it stand out).

THEOREM 2.1.4. Let w € W, written w = vt()) forv € Wgand\' € L'. Foranya=a +rc € S
we have
wa =va— (N,a)c,
R/_/
€z

meaning for any x € V
(wa)(x) = (va,x) +r— (N, a).

Let us now, for w € W, count the number of positive affine roots that w makes negative.
DEFINITION 2.1.5. The length £(w) of w € W is defined to be |S(w)|, where

S(w):=STNw'S™ ={aecS|a(x)>0and (wa)(x) <0 forall x € C}.

Of course, {(w™!) = £(w) for S(w™1) = —wS(w). Moreover, clearly £(s;) = 1 foralli € I.
NOTATION 2.1.6. We define

Q:={ueW|{l(u)=0}
One can show ) = () and W = Ws x (); we shall encounter this group later.

The length satisfies a number of properties. In general, ¢(vw) < ¢(v) 4+ ¢(w) and equality is
equivalent to four particular conditions on the sets S(w) and so on. These are important for
proofs but morally boil down to “the positive roots turned negative by vw are those a € S*
such that either wa is already negative or wa is positive but vwa is negative,” which is probably
not super enlightening. What one can say is that S(v) = S(w) if and only if vw~! € Q.

NOTATION 2.1.7. We define two characteristic functions for future usage. Let

o:=1g+ —15-: S — {£1} and x:=1x-: R — {0,1}.

Notice from Notation and Equation (1.2.1) that
St={a+rcla€Randr > x(a)}.

The length is nicely behaved when composing with simple reflections, namely for w € W and
i € I we have

((siw) = L(w) +o(w la;) and L(ws;) = L(w) + o(wa;). (2.1.1)

Using induction on the length, one can hence derive existence of the following.

[2Eric writes W for Wg, W? for Ws and W° for W in [Opdam].
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DEFINITION 2.1.8. Letw € Wand p := ¢(w). A reduced form of w is a (nonunique) expression
of the form

w:I/lSil-...'Sip

for certainu € Qand i; € [, with1 <j < p.

With this notation, we can show easily that S(w) = {b; } _y withbj:=s;, -...-5; a5

Finally, the general length formula of any w € Wr X t(L’) is nice to have. It depends on the
order of the two factors of the semidirect product.

THEOREM 2.1.9. Let ) € L' and v € Wg. Then

2(vt(V)) Z |\, ) + x(va)| and  £(t(M)v) = Z ‘<)J,(x> —X(U_llx)’.

aERT aERT
In particular, £(t(X)) = Lpers (N, ) and £(v) = ¥pep+ x(va).
As an interesting corollary, for a simple root &; we have

0(t(a)) = (o) i) + 2 (af ,a) =2.

lX,‘;éDCGR+

2.2 Vees and yous and omega again

NOTATION 2.2.1. For )’ € L/, let )/, be the unique dominant weight in its Wg-orbit and 1",
the antidominant weight.

DEFINITION 2.2.2 (Cherednik). Let X' € L'
i) Let v(1X") be the shortest element of Wg such that v(\))" = A"_.

ii) Let u()") be the shortest element of the coset t(\)Wr of W. Explicitly, it is given by

u()) :==t(W)o(W)!

We see t()) = u())o()), whereas t(\_) = v())u()'). Their lengths are additive. In fact,
¢ is additive on all elements of a coset of the form u(\")Wg. These elements’ S(—) sets are
concretely computable, as follows.

THEOREM 2.2.3. Let ) € L' anda = a +rc € S.
i) S(o()')) ={BeR"|(N,B) >0},
ii) a € S(u(l)) <= waeR and 1<r< () )+ 3, o)) 1),

>

iii) 2 € S(u())!) = x() —<
Equivalently, using Notatlon ( ) <0

So far we have not discussed the fundamental weights; time to rectify this transgression!
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NOTATION 2.2.4. Fori € I, let 7t/ € L’ be the fundamental weights for R, i.e., <7rzf, zx]'> = 0jj
and set 7}y := 0.

Dually, define 7; to be the fundamental coweights for R’, i.e., <7rz-, (x;.> = 4;j and 7 := 0.

Recall m; and i from Notations and analogously to define m] for i € I (with mj = 1).

Using these we can give an explicit description of (), the group of length-0 elements.
NOTATION 2.2.5.

i) Fori € I, setu; := u(m}).
ii) Fori € I, setv; := v(7t}) and w; := v(71;).
i) Lef]
Ji={jel|mel andmj=1} and ] :={kel|m€Landm =1}

The 7t} for j € ] are called minuscule weights. Of course, m; = <7r]’., q)>.

Observe that0 € [, ]’ and ug = vg = wy = 1.
THEOREM 2.2.6. The {u; | j € ]} form a group that coincides with Q.

We can turn | into an abelian group by declaring that ] — (), j —— u; be an isomorphism.
The v; then also obey the relations vy = v, = v4v; for j, k € J. One can show that for any
Jj € ], we have ujayg = aj, whence u;a; = a;,; now for any i € I. This defines an additive action
of J on I and moreover vja; = zxi_j Given this, then forany i € I and j, k € | we have

/ - -1/ S | -1/
My = M+ 0 m and 70, = m + 0,77,

n

REMARK 2.2.7. For j € ], set wp; to be the longest element of Stabyy, (7'(;) = <5a1; e, sT,x\],, .., 84 > [5]

(This equality is obvious from the definition of the fundamental coweights.) Then the shortest
element of Wy sending 7t} to (77/) - (see Notation h must be v; = wowy.

2.3 Order, order!

Let us define the partial dominance ordering on the lattice L. To do so, we first need the Bruhat
ordering on the Weyl group and its extension.

DEFINITION 2.3.1. Let G be a Coxeter group. The Bruhat ordering < on G is defined by

some (not necessarily connected) substring of some

< <= . . .
gsh reduced expression for / is a reduced expression for g.

BICS. Eric’s O* in [Opdam], which in our notation corresponds to J \ {0}. The seemingly superfluous requirement
that the fundamental (co)weights lie in the appropriate lattice is to ensure all three cases are covered.
[4IRecall &g from Notation 1‘3‘1l

[3IIn Eric’s notation, wo; is 'w;\f where ; is our 7Tj/-‘

13



Apply this to Ws and extend it to W = Q) x W separately on each coset of W, viz. by declaring
that for u, 1’ € Q and w, w’ € Ws we have uw < u'w’ if and only if u = v’ and w < w'.

NOTATION 2.3.2. Let L/, :={} € L' | (M, a;) > Oforalli € Iz} be the dominant elements.

As usual, set QY = Y ;c;, Z>on,'. The dominance ordering on L', , is the usual one:
N>y = V-—yeqQl.
Quite some work goes into showing that the following extension is sensible.

DEFINITION 2.3.3 (Heckman). Let ), ' € L. We declare

either we have that A, > ¢/, in L', ,,

/> /
M= or X, =y, and v(}') < v(p') in Wg.

The appropriate analogue holds in L as well.

As Eric observes in [Opdam, f. 8], the last inequality is not a typographical error. With this
ordering, " is the dominant element of the orbit WgA'! We cherrypick some results.

THEOREM 2.3.4. Let N € L.

(i) Foranyi € I we have
(M) >0 < s\ >\

(ii) Let v,w € W. Then v < w implies that v(0) < w(0) in L.

(iiia) Leto(X) =sj +...- si, be a reduced form. For 0 < j < p, set k} =S, e sipk’. Then
Moo=k >0 > >0y, =1
(iiib) Let v(—)\)"1 = Sj, - - 8}, be a reduced form. For 0 <k < g, set py :=s;, - ... -siqk’. Then

Me=pp<py <...<pg=».

2.4 Labellings and other things

DEFINITION 2.4.1. A multiplicity function of S is a map k: S — IR that is constant on
W-orbits.

If R is simply laced (of type ADE), then any such k must be constant. If R # R", then k assumes
at most two values (for there are long and short roots). In case III (see Notation[I.3.2), there
are five possible values. If k takes an argument from R C S, we write it as a subscript to be
consistent with Eric. We define a dual function k' on S’ on a case-by-case basis:

(1) Fora' =a" +rce S, setk'(a') := k(a+rc),
(I) Simply set k' :=k,

(III) [something specific and ugly].
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Let us define what Bourbaki would call the demi-somme des racines positives weighted by
multiplicity.
NOTATION 2.4.2. Set

1 1
o =5 Z kiva and p) = 5 Z ko'

aERT aERT

One easily observes (perhaps recalling Notation that w~! € Wg maps either of these two
expressions to themselves with an additional factor o(wa) in each term. In particular, s; = s,,
for i € Ig simply subtracts k(a)a; from either expression with the appropriate placement
of apostrophes. Therefore, if k (resp. k') does not assume the value 0, then p;. (resp. px) are
stabilised only by 1 € Wg.

NOTATION 2.4.3. Akin to Definition 2.2.2]i), for A € L we define u’()) be the shortest element
of the coset t(A)Wg of W. (Note that Wgs = Wx on the nose in all cases.)

NOTATION 2.4.4. For ) € L/, let

Forh € L, let

These can be explicitly computed.
NOTATION 2.4.5. Let7: R — +1 be given by 1.9 — 1.

Then actually
RO =03 S () kel and () =0t 5 D) n((ha) Ko
x€R* aERT

One can show that r;.: L' — V thus defines an injective map whose image excludes elements
of the form s;7, (1) for any ' € L’ that are fixed by s; for some i € I. One can actually be
slightly more precise: for any i € I we have

0 if s; £\
st (M) = ri(s;N) + ! ’ 2.4.1
! k( ) k( : ) {k(“;)vﬁcg if Sik/ = }\./. ( )

Finally, r, commutes with the action of Q on L.

2.5 Examples

EXAMPLE 2.5.1. We use the same notation as in Example Letw = t(\) € W = W,
where ' =n-2"Y2 ¢ P, forn € Z. Then

S(w)={ta+rceS|tx+r>0and +x+r < £A forall x € C}
={a+rc|r>0andr <n}U{—a+rc|r>0andr < —n},
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whence we conclude that the allowed values of r (for precisely one affine root £« + rc) are

%) N =0,
re<{0,1,....n—=1} N >0,
{1,2,...,|n|} ) <.

In any case, the length is 1|, which evidently agrees with the length formula Theorem[2.1.9]
For v = s1t(\') € W we get

S(v)={a+rc|r=>0andr<n}U{—a+rc|r>0andr < —n}

by similar analysis and so the length is now |n + 1|, which agrees with the formula for ¢(s;w)
involving .

The new generator for Ws compared to Wr is
50 = S_qiec = t(a)sy = t(a/2)s1.
For )/ = na/2, we have A, = +|n|a/2, such that v(}') is trivial if and only if n < 0. The

unique fundamental weight is 777 = 2712 = x/2 € PV s0 v; = s;. The ‘minuscule indices’ are
J ={0,1} = I and so we see

0= {1,272} = 2127 /7127 — PV /Q" =V,
as expected. The dominant weights are L', |, = Z>qmj.
Finally, for k(a) = k = k'(«"), we have p = p}, = py = 1ka so that for A" = na/2 we get

t(W)s1(—p) =N +p=m+ka/2 n>0
t(M)(—p) =N —p=(m—ka/2 n<O0.

e () = u(l)(—p) =t )o ()7} (—p) = {
Indeed, Equation (2.4.T) applied to A" = a/2 is true, as
sitp(/2) =s1(1+k)a/2 = (—1—k)a/2 = rp(s1a/2)
and, since son /2 = a/2 +s510/2 =0 # a/2,
sorp (a/2) = a/2+s1rp(a/2) = —kay = —p = t(0)v(0) "} (—p) = r¢(0)(—p) = 71 (50a/2)(—p)-

On to C2.

EXAMPLE 2.5.2. Now to C; again from Example and let us stick to case I. We see that s,
is the reflection in the x-axis and so equals

Sq) = —Sp = 5182518% = 515281.

The coweight lattice is spanned by 71} := (1,0) and 7t := (3, 1), as one easily checks. (The
fundamental coweights, spanning P, are r; = (1,0) and 7, = (1,1).) As such, then,

S0 = S_gtc = t(¢")sp = t(71])515251.
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In Wy, we have s, = —s1 (because ¢ L a1) and so s = s_yvic = t(¢P)sy = t(712)525150.

Take w = t(7t5)s1 € W as an example. The length formula predicts

(w) = Y [ 0) = x(s10)]

aERT
= [=x(—a1)|+ |1 — x(—2a1 + 201 + @) + |1 — x(—a1 + 201 + a2) [ + [1 — x(2a1 + a2))|
a=xq a=2x1+ar=¢ a=a1+xr=1 a=ny

=1+1+1+1=4
To find these elements of S(w), we need a reduced expression for w.

We have ¢ = 2a1 + ap and so | = {0,2}. We see that the shortest element of Wg mapping 7t}
to the antidominant element in its orbit, being minus itself, is wowp, by Remark where
wp = —id = 53515251, the longest element overall, and wp, = s;. Therefore v, = 55155, which
one easily verifies to effect 77, — —7), = (7t5)_. The nontrivial element of Q) is therefore

up = u(%, 1) = t(mh)v(rh) ! = t(71h)s0s150.

Indeed, we see that (using the same summation order as above)
up) = L(t(ry)) —l(v2) = (0+1+14+1)—(0+14+1+1) =0,

as expected. Therefore, a reduced expression of our w above is w = t(7))s; = u252515251,
which shows the length is indeed 4. We conclude that

S(w) ={b1,...,bs} ={az, a1 +a2,201 + 12,01} = R+@

Now that we have u,, one we can also explicitly verify that uyap = a» (and vice versa) and
Uunay = ay.

Finally, since = a1 + ax = B1 + 22, we see that ] = {0, 1} and the nontrivial element of )/
is u(7r1). The entire analysis is analogous to the apostropheless case.

EXAMPLE 2.5.3. The goup Ws is generated by sp: x — x — (1 + (a,x))a¥ = 1 — x (again,
this cannot be right; since & = /2, this should be 2 /2 — x) and of course s; (x) = —x. Since
L’ = QY, the extended affine Weyl group W is just Ws.

[l Apparently, there are no “strictly” affine roots in this set; if nonetheless a + rc € S(w), then r > x(a) and
also w(a 4 rc) = sya + (r — (715, a))c must be in S~ and so we should have r — (7}, &) < x(s1a). If « € R" then
<7Té, zx> is either 0 or 1. If it is 0 then sy& = —a sor < 1 and r > 0 allows for no translations. If it is 1 then & # &y
and so s;¢ € RT and we have r — 1 < 0 and r > 0. The situation for « € R~ is similar.
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Jack of all braids, master of none

3.1 Generators and relations

DEFINITION 3.1.1. The braid group 28 (W) associated to W is the group with presentation

B=BW)=(T(w) | T(vw) = T(v)T(w) forallv,w € W s.t. {(vw) = {(v) + L(w)) .

Let us define some special generators.
| NOTATION 3.1.2. Weset T; := T(s;) fori € I and U; := T(u;) for j € J.

A warning: the assignment w — T(w) is not a group homomorphism. For example, T? # 1
since 0 = ((s?) # 2{(s;) = 2. (Of course, T(1) = 1, though.)

Lets;, s; € W be such that s;s; has finite order m;;. Then we know s;s;s; - ... = s;s;8; - ... with m;;
simple reflections on either side and this is a reduced form. Recalling the bit beneath Theorem
for j,k € ] we have ujuy = u; with all factors having length zero. Finally, we knew that
forielandj €],

Ll]'SZ' = suja,.u]- = Si+]'u]'

is a reduced expression of length 1. Concluding, we obtain the following relations between the
generators of B.

NOTATION 3.1.3 (Braid relations). With notation as above, we have
@ T,TT;-...=TT;T;-... foralli # j € I with m;j < oo,

(b) Ujuk = uj+k for all j,k €],

(c) ujTiu].—1 = T;,jforalli € Iandj € J.

Actually, these are precisely all of the relations.
| THEOREM 3.1.4. B is generated by the T;, U;, for i € 1, j € ], subject to the relations (a), (b) & (c).

The assignment T behaves controlledly on reduced expressions. First of all, we can immediately
use Equation (2.1.T) to see that for all w € W and i € I we have T(ws;) = T(w)T-a(w”i) and

1
T(s;w) = ”I’lfr(“ﬂ”")T(w). By induction, we obtain:
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THEOREM 3.1.5. Let v,w € W and let v™'w = UjSiy « ... Si, be a reduced form. For 1 < j < p, set
bj := ujsi, - ...-si_,a; and e; := o' (vb;). Then

T(v) 'T(w) = T ... - T;".

tp

Theorem immediately shows that £ is additive on ¢(L/, | ). Hence we may do the following.

NOTATION 3.1.6. For )/ € L/, set Y* := T(t(}')). Then the set of all such elements lies in the
centre of ‘B.

Forany ) € L/, pick ¢/,v' € L., such that ' = 3 — v/ and define Y* := Y* (Y")~!, which is
well-defined by the above.

This defines YL = {Y* |’ € L'} as abelian subgroup in B, isomorphic to L.

The Y’s associated to the minuscule weights are written Yj’ = Y™

Earlier results then give the following, albeit after some labour.

THEOREM 3.1.7. Let \' € L' and i € Ig such that (X, a;) is either 0 or 1. In the first case, s;\’ = \'
and then T,Y" = YV'T,. In the second, s;).| =) — &) and TY* —% = YN T 71,

REMARK 3.1.8. Itis indeed true that (A, a;) = 1if and only if s;." = A" — . From right to left

is clear, whereas from left to right we see 1 = (), a;) = — (s;}, #;), from which obtain that
(=siM +2,a;) =2 = (a}, ;). From this we obtain that —s;\’ + 1" — &) € a;* and hence it is
tixed by s;. But it is also mirrored by s; and therefore zero. d

We can give some more expressions for some of our distinguished elements entirely in terms
of our basic generators.

THEOREM 3.1.9. We have
To = Y? T(s,) !

and
U]‘ = Y]-,T(U]')_l

forall j € J. Moreover, if\' € L' and u(\') = wjs;, - ... - s;, is a reduced form, then

YN =T leT(v(x’))

for certain e; € {£1}, where1 < j < g.

Finally, if we define B (again, Macdonald uses By) to be the subgroup of B generated by the
T; for i € Ig only, then Ty and the U; can be replaced by YL as follows.

| THEOREM 3.1.10. B is generated by Bg and Y subject to the relations in Theoremm
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3.2 Don’t ‘B a braid; fear not the tilde

Recall A = L & Z(e !c) from Notation Its elements are viewed as functions on V in
analogy with Notation (with an extra factor e~ ! in the latter term) and the extended affine
Weyl group acts on it analogously to the action in Theorem (with the appropriate e~ 1).

NOTATION 3.2.1. Turn A into a multiplicative group X comprising multipliable formal
symbols X/, where f € A, by declaring that

A— XN, fr— XS

be an isomorphism. Denote X* = {X* | A € L}.

DEFINITION 3.2.2 (Cherednik). The double braid group 93 is the group generated by B and
X subiject to the relations

i) Foralli € I and f € A such that f(a}) =0or 1
T, X Xt = X/,
with e = —1if f(a}) = 0 and ¢ = 1 otherwise,
ii) Forallj € Jand f € A,
uxut = x4,

We can enrich Theorem [3.1.10|to give generators and relations for B, as follows.

NOTATION 3.2.3. Define the element gg := X% € B. It is not difficult to check that it commutes
with all T; and U; and is therefore central. Also, let g := X© = g5.

The relations in the next theorem are not actually all independent, but we omit the details.

THEOREM 3.2.4. The double braid group B is generated by Br, X*, YY" and qq subject to the following
relations:

@) TEYXT; = Y5 forall i € Ig and X' € L' such that (), a;) is either 0 — in which case
e=—1—or1, inwhichcasee =1,

(b) T, X*T¢ = X" with the same conditions as (a) except with (L', R) replaced by (L, R),
(€) ToX"Ty = q~' X% forall h € Lwith (), ¢') = —17]
(d) ToX"T,* = X forall . € L with (A, ¢') =0,

(e) UX'U; " = q‘<*'”f”f">xvf *foralln € Land j € J.

The reader may now wish to recall Notation and

[llMacdonald writes (f,«}) but, interpreting f as a function on V, our notation makes more sense and is
consistent with the action of affine roots on V, which is also written as evaluation.
[2IWe suspect the apostrophe is for notational consistency amongst expressions of the form (L, —'), since in

Notation wesetp = ¢V,
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! . T ! :
NO";ATION 3.2.5. For k € |/, set Xy := X" as the dual counterpart to Y] from Notation
je.

Cherednik computed the commutator
X Y = X)X, = g0 T () T (o) T(oy)
foranyj e Jand k € J'.
X
Xk
NOTATION 3.2.6. We can define the dual double braid group B/, generated by % and X*
where, of course, A’ := L' @® Zcy.
The counterparts of Notation (or actually Theorem 3.1.9) are
T =T, T5:=YY)'T(sy)™" and Uj:=Y™*T(wy)"

fori € Ig and k € J. (See Notation for ¢.)

We know from the definition of L and L’ in all three cases (Notation [1.3.2) that they are ‘the
same’, possibly up to taking V’s. This is formalised as follows.

THEOREM 3.2.7. There exists an anti-isomorphism w : B = B such that

D) w(X¥) =Y forall N € L,
i) w(Y) = X"*forall\ € L,
itia) w(T;) = T;foralli € Ig,
iiib) w(T}) = Ty = T(sy) 1 X~ W),
iv) w(Up) = Vi := T(wy) 'X,  forallk € T,
v) w(qo) = 4o

These Vi and T satisfy the anti-analogues of the braid relations

Ti+k l+k#0/

V.V, =V, and VTV, =
kVi k+1  LiVk {Ta‘ itk=0

foralli € Igand k,l € J'.

The proof of the theorem is done separately for each of the three cases and boils down to
showing that T; and the V} satisfy the appropriate relations in Theorem 3.2.4} As far as labours
go in this book, it’s rather Herculean. Like the Keryneian hind, we therefore run like the
clappers. “Aha!” exclaims the reader, ‘into the next chapter?’ Yes, but first the examples.
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3.3 Examples

EXAMPLE 3.3.1. Continuing Example we see B is generated by Ty, T1 and U (since
Uy = T(1w) = 1s) subject to the braid relations. Explicitly, we see that sos1 = S_y4cS¢ = H(a")
has infinite order, so the braid relations reduce to:

(a) empty statement,
(b) U3 =1,
(C) UlToul = Tl.

Therefore, given a word in these generators we can move any and all U;’s to the left, swapping
Tp with T as they are passed. There are no relations amongst these latter two, so any element
of B is written Tél Tiz Té3 -...or Uy times such an element. Alternatively, we can get rid of all
To’s using (c) so the element is written as a word in T; and U; subject to (b).

Moreover, Theorernsays that Y] = T(t(n})) = UhT(v1) = UhTy and Ty = Y°T; ! =
T(t(a))T; ' Since £(tH(a)) = (x,a) =2 =1+1=2(n},a) = 2¢(t(71})) using Theorem@
we get that Y* = (Y] )2 = U T{U;T; = ToTy, 50 Ty = ToTh T, 1 — T,, which says nothin'g. Of
course, we have Y] = 1.

We see By is the free group on one generator T; and Y"' is generated by Y] = U;T;. They
satisfy the relation T1(Y])~! = Y{T; ! and indeed both are equal to U;. Checking Theorem
then, we should be able to retrieve the two nontrivial braid relations. Indeed, this single
relation gives both, for U? = Y{T; 'T;(Y{)~! = 1 and

UiTolh = Ti(Y)) "ToTh(Y]) ' = Tu(Y) ' (V)*T; ' (Yq) ' = Th.
The double braid group has an additional generating set X, where A = 271/2Z © 27 1Zc. It is

alternatively generated by U, T1, X7 := X" and Y] with the appropriate relations. (Mind that
71 = 1 generates both L and L'; see Example ) The relations in Theorem are

(@) Ti(Y{)'Ty =],

(b) TiXTp = X,

(c) ToX; Ty = g X% (M) = ¢71X;,

(d) empty statement,

(e) Uh X Uy = q*<”l'*ﬂi>Xsl‘1ﬂ1 _ ql/zXfl.

Note that e = 2 s0 g4'/2 = qo.

EXAMPLE 3.3.2. The braid group for our C; example is generated by Ty, T1, T>, U subject to the
braid relations. Again, sgs1 = t(q)v)slsz has infinite order, as does sgsy, and m1, = 4. Therefore,
using the identities for u, from Example

(@ T, I'T, = T I Ty,

(b) U5 =1,
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(C) UzToUz = T2 and U2T1u2 = Tl.

We moreover have

To=Y?T(s) ' = YT (s18081) " = YT T, T,
for £(s1sps1) = 3 = £(s1) + £(s2) + €(s1), as one verifies, and
U =Y;T(02) " = LT, ' T ' T,
for the same reason. Thus, B is generated by T3, T, Y™ and Y} subject to the following relations:
i) TYn— =T (Y)Y ™ = YT,
ii) 1Y; = YT,
i) Y™ = Y™T,,
iv) LY % = T,Y™(Y)) 1 = V5T, L.
We should be able to retrieve the braid relations from these. For example, (b) follows from
us = V37, ' T o Y 15, T T
Y 1y (v)) T Y (Y)) T T
2 LY (1) 7 (%)Y T () T T T

ii)

= LYY YY) T T T,
=1,

where the second to last equality also used commutativity of Y*'.
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Aha! Affine Hecke algebras!

4.1 More generators and relations

If but we could turn the braid group into an algebra... and we can!
NOTATION 4.1.1. Henceforth fix forever:

e Areal number g € (0,1),

* Real numbers 7; € R for each i € I, such that 7; = 7; whenever s; and s; are conjugate
inW,

e A subfield K C R containing all 7; and g := q'/°.

In particular, 4 and go will from now on refer to the above rather than the double braid group
element from Notation (Of course, the two are related.)

DEFINITION 4.1.2. The Hecke algebra $ of W over K is the K-algebra
9=K[3] /(T -w)(T+7Y)|iel).

The basis elements of the group algebra of 5 are written as elements of B (rather than using
e’s or ¢’s). Its unit element is 1.

By previous results, ) is generated as K-algebra by the T; and U; (with i € [ and j € ]) subject
to the braid relations as well as the Hecke relations
NOTATION 4.1.3.

d) (T; — %)(T; + Ti_l) = 0foralli € I. Equivalently, T; — 7; = Ti_1 — 1L

1

The Hecke relations modify the previous result that T(s;w) = Tf(wila")T(w) in the Hecke
algebra, namely

TT(w) = T(siw) + x(w™'a;) (1 =77 )T(w) and T(w)T; = T(ws;) + x(wa;) (-7 )T (w).

1 1
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Let t,u € R* be parameters and x, a formal indeterminate.
NOTATION 4.1.4. We define

t—t 4+ (u—ut)x
1— x2

b(x) = b(t,u;x) :=

and
tx — (tx) P4 u—ut

x —x1

c(x) =c(t,u;x) :=
A priori, consider these as formal rational functions in x.

The following results are crucial for the forthcoming and follow by direct computation.
PROPOSITION 4.1.5.

i) c(t,u;x) =c(t~1,u"t;x71),

iia) b(t, t;x) = tl_f;l,
iib) c(t,t;x) = rll%xtx/
iii) c(x) =t —b(x) =t +b(x),
+eo(x ) =t+t71,
+b(x ) =t—t71,

(

(
iva) c(x
ivb) b(x

(

)
)
)
v) c(x)e(x1) = b(x)b(x71) = 1.

The generalisation of Theorem to $ is an important result called the Lusztig relation. We
need some new letters first because when do we not?

NOTATION 4.1.6. Leti € Ig and set

7 if (U, ) =2Z,
v; =
1 1 if (L, a;) = 2Z.

The latter possibility only occurs in case (III) (q.v.[1.3.2) for a; the unique long root.

Fix i € Ir (the dependence will be left out of notation) and define, for j € Z,

A 1 if jeven,
. v, —v; ' ifjodd.

The tilde, absent in Macdonald, I added to avoid any confusion with the elements of ().

(Case (III) haunting the notation is a recurring theme.) Recall Notation
THEOREM 4.1.7 (Lusztig). Let \' € L' and i € Ir. Then

YNT, — Y = b(1,0; Y4 (YY — Y5, 4.1.1)

We can deduce the following explicit formulee from Lusztig’s result.
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COROLLARY 4.1.8.

r—1 .
St
r>0 =0

i) If ()M, a;) = < r <0, then @11) equals i Al respectively,
j
0

\

iia) (Ti — ) Y" — Y (T; = 1) = —c(z, 05 Y4 ) (Y¥ = Y5),
iib) (T; + 7 HYY — Y (T, + 771 = (w05 Y4 ) (YY — ).

Considerable effort proves the following theorem, showing that the relations are more or less
‘precisely enough’ compared to those in 8.

THEOREM 4.1.9. The set {T(w) | w € W} forms a basis for $ as K-module.

Generalising Theorem 3.1.10, we similarly have the following.

THEOREM 4.1.10. The set {T(w)Y" | w € Wg and )| € L'} forms a basis for § as K-module. The
same is true for all Y T (w).

4.2 Time for a representation

NOTATION 4.2.1. Let A’ := K[L'] as group algebra, with basis {¢" | \' € L'} behaving in
the expected manner. We have an action of Wg on A’ by wet = e¥" forw € Wg, extended
K-linearly. The invariants for this action are denoted A% = (A’)"x nalogously define
A = K[L] and Ag = AWk,

Elements f € A’ will be written f = ¥, f,.¢" with almost all f,; € K equal to 0. We then define
fY) = ZfNYx ’
}\1/

which span a commutative subalgebra A’(Y) inside $ isomorphic to A’.

COROLLARY 4.2.2. By Lusztig, forall f € A" and i € Ig, we have
FONTi = Ty(sif )(Y) = bl 05 Y ) (F(Y) = (sif)(Y))

in AR(Y).
THEOREM 4.2.3. The centre of the Hecke algebra is Z($)) = AR (Y).

We include the construction of the basic representation from first principles. Skip ahead to the
next asterism for the final result.

11 As usual, Macdonald uses the subscript 0 here.
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| NOTATION 4.2.4. Set Hr to be the K-subalgebra of §) generated by the T(w) for w € Wrg.

Defined on the basis from Theorem 4.1.10} the map
H§— A 2 Hr, Y¥T(w) — ¢ ® T(w)
is an isomorphism of K-modules. Thus, if M is a left $r-module, then we identify
Ind) (M) :ﬁgiM -~ A’%M

via f(Y)T(w) @ x — f @ T(w) - x for f € A’, w € Wg and x € M. Thus, using Lusztig, for
any i € Ig, the induced $g-action on A’ ®g M is given on pure tensors by

T;- (f®x) =s;f @ (T; x) + b(t, v ) (f — sif) @ x.

Now fix the $ir-module M = K, spanned over K by some element x, with action T; - x := T;x.
The induced representation is then identified with A" with action

T;- f = wsif + (f —sif)b(T, vize ™)
for i € Ig. This defines a K-algebra representation (q.v. Notation ahead for the X inside b)
Hr — EndK(A’), T, — T;s; + b(Tl’, Vi, X_afv)(id —Si) (421)

that turns out to be faithful. The full action of §) will appear shortly.

*
k%

We can view L inside F, so that 4 € L acts on x € V by evaluation y(x) = (p, x) and the action
of W on F by precomposition restricts to L as follows.

NOTATION 4.2.5. For w = t()')v € W with )’ € L' and v € Wy, and for x € V, we have

(@-p)(x) = (pw'x) = (wo 'l (x=1)),
sothatw -y = vp — (v, ) ) c.

Recall g from Notation[4.1.1}

NOTATION 4.2.6. For f = y + rc € F with u € L, define its action on A (from Notation 4.2.1])
as follows. Define ¢f := g’¢" € A and let X/ € Endk A be defined by multiplication by e/.

In general, for any ' € L' or u € L, let X* € Endg(A’) and X* € Endg(A) be given by
multiplication by ¢* and e#, respectively.

Finally, with this notation to hand, the Wg-action on A from Notation can be extended to
W as follows.

NOTATION 4.2.7. Letw = t(\')v € W with v € Wg. Then for u € L,
w- el = U — q—<vm’>evu,
This action is in fact faithful.
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Now comes a rather annoying bit of notation entirely due to the existence of case IIIL
NOTATION 4.2.8. Hearkening back to Notation define for i € I numbers 7/ € R~ by

e Forall i we set 7/ := 7; in cases I and II.
e Forall 0 # i # n weset T/ := T; in case IIL

Le., 7, T,, in case III are new.

These new numbers satisfy an appropriate version of the Hecke relations
NOTATION 4.2.9. In case III only, set

Tp:=X"T," and T, :=X "T,"!

(and T/ := T; for 0 # i # n). Then

(T — ) (T, +7 ') =0

foralli € I.

We now define a bunch of operators on A to appear frequently in the forthcoming.
NOTATION 4.2.10. Fori € I, set

b :=b(7,t;e%) and ¢ :=c(T,T;e%).
For ¢ = %1, use these expressions to define operators (as in Notation 4.2.6)

bi(XS) = b(Ti/TiI}XSai) and Ci(x&) — C(Ti/Ti/} Xmi).

Set1:=id € Endg A and identify elements of W with their action on A according to Notation

427
REMARK 4.2.11. A warning: whilst the b; and ¢; commute amongst each other, the b;(X®) and
so on do not commute with W. Indeed, one can easily show that

bi(X)s; = Sib,‘(Xfl)
and similarly for c;. More generally, for any w € W and p € L, we have
wX'w ™ = XV
as operators.

In view of the induced representation (4.2.1), one can prove the following.

THEOREM 4.2.12 (Cherednik). There exists a representation B: $ — Endg A such that for all
i € I, we have

B(T;) = Tisi + bi(X)(1 — ;)
and for all j € | we have
B(U)) = uj.
Moreover, the set {X*B(T(w)) | p € L,w € W} is K-linearly independent in End(A) and hence B is
faithful. It is called the basic representation of ).
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By virtue of the faithfulness of this basic representation, we henceforth identify each h € §) with
the operator B(h). For instance, we shall write

T; = 1si + b;(X)(1—s;) and LI]- = uj.

Proposition (together with Remark 4.2.10) then yield more useful results.
PROPOSITION 4.2.13. Leti € I, e = £l and y € L. Then

) T—t=c(X)(si—1),
i) T+ = (1+s)a(X ),
iii) Tf = ebi(X?) + ci(X)s;,
iv) T, X! — XSFT; = b;(X)(XF — X5ik).

From this, explicit computation reveals that the T; and X" satisfy the %5 relations from Theorem

B24

4.3 More identities in the affine Hecke algebra

Any ‘function’ f € A% gives rise to a central operator f(Y) € Z($) that maps Ag into itself.
For functions living in A, now, we want to look at what they do “to leading order’, as follows.

NOTATION 4.3.1. Let f € A = K[L] and write
f= Z fue"

p<h

for some A € L dominating (q.v. Definition [2.3.3) the (finitely many) u’s with f, # 0. We shall
write
f = fie" +1OT

to disregard the lower-order terms.

Recall the map # from Notation To leading order, we can compute the action of $) on A
explicitly. For simples; leti € Ig and A € L, then

—1( (ha! )
Tl._lek =T 1 lx’>)eslk + LOT.

To be able to present the generalisation to arbitrary T(w), we need mote notation as usual.
Recall Notation
NOTATION 4.3.2.

e Define a function x on the simple roots of R by «; := x(«;) such that 7; = ¢ /2,
* Extend « to all of R by setting x, := «x; for « € Wga;.

* Similarly define k" on R using the /. Also define x, «, in this manner.

e Forw e Wrand A € L, set

Flwy= 5 3 n(- (e )x(wa)se.

aERT
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By applying the previous result to a reduced form, we get:
THEOREM 4.3.3. Let w € Wgand M € L. Then

T(w )~ le = qf(w’)‘)ewX + LOT.
NOTATION 43.4. Ifw =s; -...- Si, € Wk is a reduced form, let

4

1
Ty =Ty ven T, = (2 Laer+ X(wa)xy

which is well-defined.
PROPOSITION 4.3.5. On 1,4 € A, the operator T(w), where w € Wy, acts by T.

Of course, we want to generalise this to all of W (equivalently, all of §)), which requires... you
guessed it. The spanner in the works is, as usual, case III. Let S; = {a € S | 2a ¢ S}, which
equals S except in case III. In general, it equals the union of all orbits Wa;, fori € I.

NOTATION 4.3.6. Henceforth fix a multiplicity function k on S;, which we for convenience
assume never to hit 0, by

k(a) :== (ki +«}) and k(2a) := 1(x; —x])
if 2 € Wa;. Define its dual labelling k" as in Section 2.4}

In cases I and II, 7; = 7/ and so k(a) = «; for alla € S (and 24 is moot).

*sips tea*
NOTATION 4.3.7. Let a € S such that a = wa; for some w € W and i € I. Define

=7 and T, =T
in accordance with Notation [4.2.8| Using these, define
bg =bop:=b(1,7;¢") and ¢, = cpx = c(Ta, Tp; %)

and the corresponding operators b,(X), ¢,(X) € End(A), as the analogues of Notation
Indeed, b, = wb; and ¢, = wc; evidently.

*burns mouth*
NOTATION 4.3.8. Let w € W. With S;(w) as in Definition let

c(w) =csp(w) := ] ca

aeS1(w)

*sips tea more carefully*
NOTATION 4.3.9. Let @ be the field of fractions of A. Define a K-subalgebra hereof by

Alc):=Alca | a € 8].

(Note thatany a € S\ Sj is of the form 2b for some b € S;, which defines c,.)
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With this to hand, we can say, for instance that
THEOREM 4.3.10. Let u,v € W. Then, as operators on A,

Tu)'T)= ) foX)w

Waw<u v

for certain f,, € Alc] such that f, 1, = c(v"'u). Furthermore, for \' € L', we have

Y = c(u®) )X u)TM) + > go(X)w
weW
w(0)<)

and
Y =TM) () (X)u®) " + > ho(X)w™!
weW
w(0)<N

for certain gy, hy € Alcl.
In particular, if A" is antidominant (i.e., wo)’ € L' ),
Y¥ = (=) (X)) + ...,

whence we can derive the a complicated formula that becomes useful in the next chapter.

NOTATION 4.3.11. For )’ (anti)dominant, let

!
My 1= Z et

HIGWRN

which lies in A% and hence m;; (Y)g := m;;(Y)| ,, lands in A} again. Similarly define 1, for
R
p € Ly (anti)Jdominant.

THEOREM 4.3.12. Let )\ be antidominant. Then

my(Y)r =Y, (we(t(=1))X)t@N) + 3 guw(X)t),

wGW}{ werR()

where g, € Alc], W}{/ is rnsversao the isotropy group Staby, (\'), and ZR()') = Z()) — Wrd/,
with $()') the saturatiof>pf {N'} in L'.

In the cases to be treated, 2R (") will be contained inside {0} and so the precise definition does
not matter for now.

Recalling Notation [4.2.5] we can view elements f € A (or, analogously, A’) as functions on V.

[BIMeaning it intersects each coset of the isotropy group in Wy, in exactly one element.

[BIWe have omitted saturated sets; Z(1’) is the smallest subset of L’ containing ), such that for all o’ € Z()),
a € Rand r € Z with 0 < r < {¢’, &), the entire string )’ — ra" lies in £()'). (In particular, s,0’ does, and so this
saturation carries a Wg-action.)
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NOTATION 4.3.13. For f = ¥ fie* € A and x € V, define

flx) = 3 fig™.

reL

Ifth = é: € @, define h(x) := % wherever g(x) # 0.

EXAMPLE 4.3.14. As an important example, for i € I we have c;(x) = ¢(7, 7/;¢%)(x), whose
denominator is g%~ — (=%~} This is nonzero as long as (a;, x) = a;(x) # 0.

There are several more results in section 4.5, which we skip at least for now.
NOTATION 4.3.15. For a € 51, define

Goi=T+bs(X (s, —1) = co(X7H) + b, (X Vs,
as operators on A. In particular, let
Gi = Gui = SiTl’.

One easily verifies (using Remark 4.2.11) that wG,w ™! = Gy, and G, ! = ¢,(X) — b (X 1)s,
forallw € W.

One may easily verify that if W 5 w = u;s; -...-s;, is a reduced expression, and b, :=
Siy " -+ " Si,,, @, (for 1 < r < p, these are precisely the elements of S;(w)), we have
T(w) :ZUGb] Gb .

p
THEOREM 4.3.16. Let a € Sy such that « = Da € R*. Then forany y € L,
Get = Tu_”(<”’“v>)e” + LOT.
Hence, if w € W is such that Da € R" forall a € S(w), then
w I T(w)e! = T(w, u)e" + LOT,
with T(w, u) defined below.

Compare the following to Notation
NOTATION 4.3.17.

e For a € 51 in the W-orbit of a;, define x, := x;. In other words,

T, = q"”/z.

e Forw € Wand u € L, define t(w, y) := Haesl(w) T;W((y,DW))'
o Similarly, set f(w, }t) := 5 Yaes, (w) 71(— (4, Da"))x,, such that

(w, u) = /@M.
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Recall rp from Notation For )" € L', , dominant and y € L arbitrary, one can show that
fEO) ) = Wop—rio () -
From this one can deduce the action of Y on A; for any Nel,
YVet = g~ (M) en 4 Lo, (4.3.1)
Consequently, for f € A’ and y € L we have
f(Y)e! = f(—rp(n))e" + LOT. (4.3.2)
If, in fact, f € A% and yu is dominant, then (see Notation

f(Y)my, = f(—p — pp)m, + LOT. (4.3.3)

4.4 Double affine, double the fun

Recall the double braid group Definition as well as Notations and
DEFINITION 4.4.1 (Cherednik). The double affine Hecke algebra 9 (DAHA) is

5— K3/ (- )T+ |ied).

This quotient is simply the Hecke relations (d) from Notation except in case Il fori = 0, n,
where the apostrophes mean something.

By virtue of Theorem m the DAHA is generated by the AHA § and X’ (q.v. Notation
3.2.1) as K-algebra, subject to the relations in the theorem. The correct analogue of Proposition
4.2.13jv) to A D Listhatforalli € Iand f € A,

T, X/ — X5/ Ty = by(X) (XS — X5iF). (4.4.1)

Hence, Theorem extends as follows.

THEOREM 4.4.2 (Cherednik). The representation B extends to a faithful representation (also written
B because why not) $ — Endk A, such that forall y € L,

IB(XV) = XH#
as operators (i.e., multiplication by e*).

We also get the familiar statements that the sets

{T(w)X! |weW,ueL}, {XtT(w)|weW,uclL},
(YYT(w)X" |weWg,ue LN €L’} and {X'T(w)Y" |we Wg,ueL N elL'}

each form K-bases of §) as vector space.

Now recall Notation and Theorem
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NOTATION 4.4.3. Let )/ be the dual DAHA, defined as follows.
e In cases I and II, it is obtained by swapping R with R’ and L with L'.
e In case III, it is obtained by swapping 1} and Ty’l

Of course, the analogues of the above bases for $) are bases for this dual.

THEOREM 4.4.4. The map
w:H —H, XFT(w)Y* — X FT(w Y,
where w € Wg, € Land \' € L', is an anti-isomorphism of K-algebras.

This now follows easily by checking the new Hecke relations compared to B’ and B.

By virtue of faithfulness, we henceforth identify $ with f(£)) C End(A) as we did for . Also
recall from Notation that we view A as functions on V.

NOTATION 4.4.5 (Cherednik). Define K-linear maps as follows
193.% — K, hl—>h(1A)(—p]/<) and 19/15/ — K, hl|—>h(1A/)(—pk1).

Let$H > h = f(X)T(w)g(Y~!) forsome f € A, g € A’ and w € Wg. By (@3.2) and the absence
of lower-order terms for y = 0, we know

g(Y N)(1a) = g(=r(0)1a = g(—pp)1a-
By Proposition T(w)lg = Twla. Hence

8(h) = f(—pi)Twg(ox)

as operators on A. From this we get that
PROPOSITION 4.4.6. ¥ = Yo w.

NOTATION 4.4.7 (Cherednik). Let i € § and I € §'. Define two ‘commutators’
1] == &' (w L (W) = (arl(h)h’) (14)(—pp) and [W,H] := O(w (K )h).
Actually, they are equal on the nose by virtue of the proposition above.

For any 7 € ) we have
[y, W) =8 (@™ () = ' (@™ (W™ (V)h) = [h,w™ (7)H].

We can therefore extend this pairing to arbitrary functions.
NOTATION 4.4.8. Let f € Aand f' € A’. Define

[F, 1= PO, £ (0] = 8 (FO ) (0) = (FOF) (=)

If, dually, [, f] :== (f' (Y1) f) (—p}), then the two are equal, and the pairing is thus symmetric.

[4IMacdonald says Ty and T),; presumably the missing apostrophe is a typo.
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4.5 Examples

EXAMPLE 4.5.1 (A lite). Let us consider Ay with 7p = 1 = 7 and K = R to keep things overly
simple. Recall from Example that the braid relations on the three generators Ty, T; and U;
were U% =W ToUr T, 1= 1. Because 7; = 'L’i_l for both i € I, the Hecke relations read

T, =T

Write PV = 271/2Z =: dZ for convenience (d = 71}), let ' = nd (with n € Z) and recall
so = t(a")s; with oV = a = ay = 2d and also ayg = —¢ = —2d. Lusztig’s relations are

YndTO _ T()Y(Z_n)d — b(]., 1; Y—Zd)(ynd _ Y(Z—n)d) =0,
because of Proposition [£.1.5}ia), and similarly
YT - Tyy ™ =0.

Since 7; = T/ for both i, we find that b; = 0 and ¢; = 1. Correspondingly, in the basic
representation 8, the T; act as s; and Uj as u; = u(d). This trivially agrees with all the formulee.

We have TfleX = ¢%* for all A € L on the nose, so there are no lower-order terms.

Our simple choice of 71 does mean that x; = x(«) should be such that 1 = g*1/2. Since g # 1,
we see ¥ = 0 and so the results of the last section do not apply.

Foralla € S we have 17, = 1 = 7, and so again b, = 0 and ¢, = 1, wherefore G, = 1 (the
constant). Indeed, this agrees with G,, = s;T; = s? and T(w) = w as operators.

The double braid group is given in Example In its R-linearisation, we apply the Hecke
relations T; = T, ! for both i again to get the DAHA.

The previous examples in rank 1 that I worked out myself agree with Chapter 6 of Macdonald,
except for the action of a. (We both normalise ||?> = 2 yet Macdonald’s ag actson x € V = R
by 1 — x, rather than my 1 — /2 x.) Let us follow his calculation of the Hecke algebras.

EXAMPLE 4.5.2 (A; proper). Recall from Examplethat v = s1, so that s = t(71})%s1 =
u1s1u1. Moreover, u2 = 1 since Q = {1,u; }. Therefore, 7y = 7y =: T and K = Q(g'/2, 7) is the
‘minimal’ field we can take. From Example the braid group was generated by T; and
U := U; with relation U? = 1. Therefore, § is the K-algebra generated by T; and U with U? = 1
and (Ty — 7)(Ty + 7 1) = 0. (The Hecke relation for Ty is redundant, being the U-conjugate of
this.) Moreover, we must have T = g*/2 for the multiplicity function k.

The double affine Hecke algebra is the K-algebra generated by the double braid group %
subject to the same Hecke relation above. Explicitly, using Theorem it is generated by T7,
X:=Xjand Y := Y] with

Y Ty =Y, T XTy=X1! UXU=¢"2X"1 and (T, -7)(T1+7 1) =0,

where we already have U = YT, ' = U~! = T} Y ! by virtue of Theorem We also have
To = UT U as before and q/% € Z($). Because 7t} = 4, wehave L =P = PV = L' = Z4% and
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so A = K[L] = K[x, x~1] for x := e*/2. Let

T—11! tX?— 11
_ LY2\
=% and ¢(X) =c(T,T;X%) = 1

b(X) =b(t,T; X?) =

For f € A, the action of ) is as follows. The generator X = X™ acts by (left) multiplication
with e™ = x. Similarly, U acts by u; = t(5)s1 on the left; a monomial ¢’ = /2 is mapped by
U to q"/2¢* using Notation Therefore,

(Uf)(x) = f(q"x71). (4.5.1)

Since, for i = 1, say, we have by = b(t,7;¢*) = b(t, T;x%) = b(X) ‘evaluated at X = x’ by
Notation (and similarly for c), Proposition {4.2.13fii) tells us that

Tif = (b(X) +c(X)s1) f- (4.5.2)
We use this to consider already the shift operators from Section (q.v.). As elements of
Endg A, we have s; = ¢(X) 1Ty — b(X)). Since w(T1) = w(T(s1)) = Ty, applying w to the
identity s; X = X151, we get

Y H T = b(Y ))e(Y ) =(Ty —b(Y " D)e(Y 1Ly,

Thus, &1 = Ty — b(Y™!) = UY — b(Y!) satisfies Y 'a; = a;Y (since Y commutes with
c(Y~=1)~1). Similarly,

B =w (U ) =w Y (T1Y 1) = XT; = XUY,
such that (using the third relation above)
Y_l,Bl — Y_1XUY — ql/zy—lux—ly — ql/Zﬁlyl

as desired.
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In for a penny, in for a polynomial

51 Some awful triangles

Let S be an irreducible affine root system, S = {a € S | %a ¢ S} and assume it falls under
one of the three cases (in particular, not BC,). Consider ST C AT := L& Z>oco T A D S. If
A > f = p+rep, recall from Notation we wrote ef = g'/el".

NOTATION 5.1.1. Fora € S, let t, € Ryg be such that t, = t;, whenever a € Wb. This
determines a multiplicity function k on S by defining, for a € Sy,

g0 = t,\/t, and g%V = {I/E ia Z z,
aé¢s.

We then have «(a) = k(a) + k(2a) and «’(a) = k(a) — k(2a), where 1, = ¢*(")/2 = \/£,f», and
T, =g“@/2 = /1, of. Notation In cases I and II, the apostrophes remain meaningless.

NOTATION 5.1.2. Fora € §, set

. 1— qk(Zu)ea
Ba = Bak 1= 1 — gk(@)ea
A simple calculation shows that for a € Sy,
1 __EZa

A A a — s
a2 (1 — gk@en)(1 4 gk(2a)ea)

with inverse 1,¢, = T,¢(T,, T);€%).
DEFINITION 5.1.3. The weight function is the product

A=Agp:=]] Aa

aeSt

Similarly define A’ = Ag/ .

Viewed as element of (R[fs, v/f2, | a € St])[e% | i € I] and taking ST as subset of AT, we can
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expand this as

A= Z uk+rcqrek/
ML
r=0
for certain coefficients u; . € Rtz /s |2 € ST] =: R. Then the multiplication fA, where
f € A, makes sense.

DEFINITION 5.1.4. For f = Y, fie" € A, the constant term of fA is

ct(fA) = Z <Z ”HrCJc?x) g € R[q].

r=0 \A€L

NOTATION 5.1.5. Let

A = =: v,(q,t)e*
1 ct(A) p;L i(q )

for certain functions v such that vy(g,t) = 1. With much effort, one proves that v,(q,t) =
v,y(q_l, t~1) are rational functions in g and t,, v/f2, -

There are some case-specific results that we largely skip.
NOTATION 5.1.6. For n € N U {oo}, define

|
—

n

(x;q)n = [ J(1—xq").

1

Il
o

It is called the g-Pochhammer symbol and has loads of propertiesor instance, for all y € IR,

(X9)e. A, (1—x)Y.

(4Y%;9)c0

We can use these to express A in the three cases. In case I, for instance, we have (cf. Eric’s Jy)

(e%;q)e0(q6™% 7)o g1 k(@)
Ap = TS T (1 = ek, (5.1.1)
le—RI (75®)e%; q) oo (g% g ) oo ugz
*
kX k

Let K be the ‘minimal’ field of interest, generated over Q by the 7, and 7} (where a € S) as well

as qo = q'/¢. Recall Notation
NOTATION 5.1.7.

e Define the star involution on K 3 x by x*(q0, %, 72) := x(q5 ', 7, %, 7, 1). (And of course
x*=xifx € Q.)

* Define the star involution on A by mapping f = Y, fie*, where of course f; € K, to
fri=fie

[1See www. en. wikipedia.org/wiki/Q-Pochhammer_symbol.
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On basis elements, therefore, (¢*)* = ™.

If the values of k on R are nonnegative integers, then A is a finite product, hence an element of
A, and its star is g N A, where N(k) is some modification of 3, .+ k(«)? depending on the
case.

NOTATION 5.1.8 (Cherednik). We define a sesquilinear (with respect to the star) scalar product
on A via

(f,8) = (f, &)k 1= ct(fg"A).

Normalise it by

(f.8).
1,1)

1 € K. Moreover, both are nondegen-

(f 8 = ct(fg"M) =

this is K-valued and Hermitian, meaning (f,g)1 = (g, f
erate, as (f, f) # 0forall0 # f € A.

Similarly, define a product (—, —)" on A" using A’.

Recall that {T(w)f(X) |w € W & f € A} forms a K-basis of $§ C Endg A.

PROPOSITION 5.1.9. Every F € $) has an adjoint with respect to (—, —), denoted F*, and (T (w) f(X))*
F(X)T(w)~. In particular, T = T, ' and ur = uj_lfor alli€ landj € J.

NOTATION 5.1.10.

e Consider the finite root sytem Sop = {a € S | a(0) = 0} and SJ := So N ST.If S = S(R),
the former seems to be just R.

* Set

aeSy

= AA foralli € Ig.

NOTATION 5.1.11 (Macdonald).
* Forg =2 ,c gue! € A, define
(i) §:= 2, 8-net =2, 8ue™" (then V = V),
(i) g°:= 2, gpe" =g
e Define another symmetric scalar product on A (and its analogue on A’) by

(.8) = {8 = gpgectFEY) and (£, ), = .

* For w € Wy, define, recalling Definition and Notation

Zk and Wg(g Zq th.—Z IT ta

aeS(w) weWR weWR weWR a€S(w)

Recalling Notation we have Wg(g¥) = (AL (=pp)) " = Wr(7°).
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PROPOSITION 5.1.12. Forall f,g € Ar we have

(f,8) = Wr(q") (f,8").

5.2 Orthogonal polynomials

At last we come to the orthogonal polynomials, discovered in various stages by Opdam, Macdon-
ald and Cherednik, that simultaneously diagonalise the Dunkl-Cherednik operators and form
an orthogonal eigenbasis of A. Recall Notation [4.3.1]

THEOREM 5.2.1. Forall \ € L, there exists a unique E; € A, such that
(i) E, ="+ LOT,
(i) (Eye*) =0forall y <.
. / ! / /
Dually, define E,, € A’ for y" € L',

As a special case, note that Eg = E; = 1. Using Proposition and Equation (4.3.2), we have
forall f € A”and A > p € L that

(f(Y)Ewe") = (Ei, f7(Y)e!) =0,

whence Theorem ii) gives the first statement of the following.

THEOREM 5.2.2. Forall f € A" we have f(Y)E) = f(—rp(\))Ey. Moreover, {E; | A € L} forms an
orthogonal K-basis of A with respect to (—, —) that diagonalises the action of A’(Y) on A. The dual
result applies to the E;,. The two are related by

Ex(ri(1)Epy (—pr) = En(—pr) Epy(rie (1))

forallh € Land ' € L.

The orthogonal polynomials do not form an orthonormal basis, though; the goal is to compute
(Ex, Ey)1- One easily shows that E; (—p;) # 0, so we can define the normalised polynomials
below.

NOTATION 5.2.3. ForA € L, ' € L', set

N E’,
2 and E/,:= ¥

Epi= —— =
VTR ¥ L (pr)

Recall the Definition 2.1.3] and its dual as well as Notations £.3.7 and [£.3.9] Of course, the
dualised versions of the results below also hold.
PROPOSITION 5.2.4. Let \, u € L.

(i) As operators on A’, we have

Y = Z wgw(X) and Y= Z fu(X)w™!

W ow<t()) W sw<t())
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for certain fy, g € Alc).

(ii) Moreover:

CEi= Y folre(W)Eu and e E= Y gu(w  (re(w)Ey 1y
W sw<t()) W sw<t())
w(ry (u)) =y (wp) w (ry () =rp (wp)

We shortcircuit the proof of the 1-norm of the orthogonal polynomials and skip to the result.

Recall Notations and (the dual of)
NOTATION 5.2.5. For A € L, let

(Pit = CS’,ik’(u/(}")_l) = H Cu’,ik“
a €St
a’'(L)<0

The equality follows from Theorem [2.2.3jii) and S} = {a’ € S'* | 1a' ¢ §'}.

Now recall Notation [4.3.4 and note that the dual of Definition [2.2.2}) is the same on the nose
since Wg = Wgs on the nose (so there is no v-analogue of Notation [2.4.3). Once you're done
recalling, behold the final result

THEOREM 5.2.6. Forall . € L, we have
Ev(—=pk) = T,y 95 (re () and (i, E2)1 = @7 (ro (W) @; (re (1))

/
The dual results of course hold for the E,,,.

We saw that the orthogonal polynomials diagonalise A’(Y). They turn out to be the only
elements of A to do so.

THEOREM 5.2.7. Let 0 # f € A be a simultaneous eigenfunction of all YY with eigenvalue g € (L')*.
Then f is a scalar multiple of some E,, and the eigenvalues are g(\") = q_<7‘/'rk’(ﬂ)> € K.

We are interested in finding out how $ C Endk A acts on the symmetric polynomials. We first
state some auxiliary results. Recall Notation
LEMMA 5.2.8. Let L € L, i € Ig and set b} := b(Ti,vi;e”r,‘).

i) If (\ a}) > 0 then (T; — bi(ry(\)))Es = T 'Esp.
ii) If L = s;\ then the above holds with 0 instead of Tz-_l and moreover E; = s;E;.

Recall Notation
| NOTATION 5.2.9. For A € L, |, consider the f)-submodule A; := K{E, | u € WgL} of A.

[lnitially, Macdonald assumes Stabyy: (ox) to be trivial in order to derive this, but then states it holds for any k.
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THEOREM 5.2.10. For any dominant ), this A, is an irreducible $)-module and equal to HRE;. If h is
moreover regular, which is to say #Wgr = |WRg\|, it is free of rank 1 as $Hr-module.

5.3 Symmetric polynomials

Next, we repeat a Wr-invariant analogue of the previous construction to produce the symmetric
polynomials. Recall Notations4.3.11jand 5.1.11}

THEOREM 5.3.1. Forall A € L, there exists a unique P, € Ag,

(i) P, =m +LOT,
(ii) (P, myu) =0forall Ly > p <A\
Dually, define Py, € Ag for " € L', ..
The lower-order terms in (i) are now referring to K{m, | L, 1 > u < A}.It’s easy to see that

P} = P, for m) = m;. Similarly to what we did for the orthogonal polynomials — now using
that f(Y)(Agr) C Ag forall f € A}, —, Equation (4.3.3) shows that

(OB )y = (B (£ (O)m,)0), =0

if 4 < \. The analogue of Theorem is then the following, with the last statement due to
Koornwinder.

THEOREM 5.3.2. For all f € A} we have f(Y)P, = f(—\ — px)P.. Moreover, the symmetric
polynomials are orthogonal with respect to (—, —) and diagonalise the action of AR (Y) on Ag. The
dual result applies to the P),. The two are related by
iz
Pu(i' + p1) Py (or) = Pi(pof) Py (M + pi)
forallh€ Ly andy' € L/, .

Again, we want to compute the polynomials’ norm in (—, —);.
NOTATION 5.3.3. Forh e L, ' € L/, set

P]{l/

P, := :
’ P (pr)

Y
and Py, =

We once more skip to the final result. Recall Notation again.
NOTATION 5.3.4. Let L € L, and set ¢} := cg i (t(1)). (Of course, there is a dual hereof.)

THEOREM 5.3.5. Forall L € L., we have

Pi(pr) = cilpw) and (P, Pp)y = (= — pr)ci(pr)-

The dual results of course hold for the P;/u-
There is an alternative characterisation for triangle enthusiasts. First, we need more triangles,
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cf. Notations and

NOTATION 5.3.6. Let A;{k = J] Asand Agt,,k, analogously.

aeSt
DacR*

PROPOSITION 5.3.7. We have
(nor) Do 4+ pi)
A;/,k/ (Pk’)

A},k/ (A + Pk/)As_/,fk/ (=A—px)

d (P, P), =
an (P, Pp)y A;,k/(pk')Ag/r—k'(_pk/)

Ppoy) =g~

We conclude with some special cases.
(@) Ifk=0thenA = A" =V = 1,50 P, = m;.

Proof. If y < hin L, then

<mx,m},> = #Vlvct< Z eV . Z e(j) =0,
R

veEWRA CGWR‘H

as Wru N WrA = @. To see this; if A = wy for some w € Wg, then [Bour456, Prop. V1.6.18]
says 4 = wi = . 3

(b) Suppose we are in case I; S = S(R) reduced and k = 1 on R. Then one can show, using
the obvious fact that [T,z e~%/? = 1, that

V=[]a-e)=]]("*—e*?) =45,

a€ER a€R

where as usual

5 = H (ea/z o efoc/Z) _ Z (_1)€(zu)ewp

xERT weWr

is the Weyl denominator. (Here, p = py = 3 >, cp+ «.) Forh € Ly, let

Xn = (S_l Z (_1)€(w)ew()‘+P)

weWr

be the character of the Lie algebra associated with R of the highest-weight representation
for A. Then x; = m; + LOT and these characters are orthonormal, so that P, = x;.

In the particular case S = S(A;,_1), the P, are Macdonald’s symmetric polynomials.
(c) Case Il is similar except that x; now belongs to the Lie algebra of RY and k¥ =k’ = 1.

(d) Expectedly, case III for a particular k (sometimes 1, sometimes 0) again has V = 65 for
the Weyl denominator associated to C,. In general, in case III, the P, are the Koornwinder
polynomials and, if S = S(CY, C1), the Askey—Wilson ones.
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5.4 Symmetrisers and intertwiners

In the proof of Proposition it was shown that s} = ¢;(X)c;(X 1) !s;, which we shall need
from now on.

NOTATION 5.4.1. Fix e: Wg — C* to be a linear character of Wr. (In particular, £(s;) = £1
for all i € I and it is constant on conjugacy classes.) If R is of ADE type, then & = triv or sign;
otherwise there are two other possibilities.

s; ife(s;) =1, )
Setst: =< ' (5:) For Wg 2w =s;, -...-s; any reduced form, w® :=s¢ - ... s is
' s ife(s;) = —1. ! ’ "

well-defined. Recall Notation again.

Recall that wX* = X“Fw for all p € L and w € Wg, so that w*X* = X“Fw®, because X°*#
commutes with ¢;(X)c¢;(X~1)~1.

T ifE(Sl’) = 1,

—T 1 ife(s) = -1

NOTATION 5.4.2. Fori € I, set T := { and 15, = 'L’i o Ti‘;, indepen-

dent of the reduced form of w € Wg.

Recall the longest element wy, e.g. Notation[2.1.1}
DEFINITION 5.4.3. Define the e-symmetriser U, as the element of §§ C Endx A given by

U := (T;O)_l Z T (w).

weWRr

As special cases, we have

U = Uiy = T TT(w) and U~ = Uggn = (—1)" )7, Y (=1)" 1, ' T(w).

weWgr weWr

These symmetrisers kill T; — 7/ and are the only operators to do so.
THEOREM 5.4.4. Leti € Ig.

(i) We have (T; — t¥)Ue = 0 = Ue(T; — 7).

1

(ii) Conversely, if h € A(X) - 9 is such that h(T; — 1) = 0 for all i € Ig (resp., (T; — 7 )h = 0),
then in fact h = f(X)U, for some f € A (resp., h = U f(X)).

The symmetrisers also behave nicely with respect to (—, —). First, if Wg > w =s;, - ... - Si, isa
reduced form, recall from Section [2.1|that the elements of S(w) were the B, = Siy * e e " Siyq X,
for 1 < r < p. Define the dual b:z/’k, of the b’s in Notation One can then show that for any
x € rp(L), the expression

p
Fo(x) := q (Ti, = b, (x))

is well-defined. Recall the first point of Notation 5.1.10
PROPOSITION 5.4.5.



) Ue = Fuy(0) forx = pu = 5 3. e(su)¥ (@)a

b) Ue = Vecy (X7°), where Ve := e(wo) Y e(w)w’ and ¢y (X™) = T cqu(X~

weWg aeSy

c) U? = (T;O)_le(tg)Ug, where Wg () := Z (Tfu)z.

weWr

d) Uy = Uy, so in particular, for all f,g € A we get (Uef, Ucg) = (T5,) "W (£) (ULf, 9)-

We want a Y-analogue of w*X# = X“¥w*. Using Propositions the Hecke relation, and
we see that, for any i € I, the operator T; — b;(X) is selfadjoint with respect to (—, —),
with the analogue holding for the dualised operator, and that s; = (T; — b; (X))c;(X1)~! €
Endg(A’). Therefore, we may compute its adjoint with respect to (—, —)’, not to be confused
with s¥, which is the (—, —)-adjoint.

NOTATION 5.4.6. The dual adjoint of s; is written

(s7)" = (T = b(X))ci(X) ™" = cf(X™) TH(T; = bi(X)).

In analogy with Notation define

i ife(s;) =1, (s — V-

(=45 T b 0)e () = X (T - ().
(sf)' ife(s;) =—1

This extends to reduced forms of any w € Wg by (w®)" = (s¢ )" -...- (st ).

I

Recall the anti-isomorphism from Theorem
DEFINITION 5.4.7. The Y-intertwiners are defined on the simple roots i € Ig by

= w((55)) = ) (T = B(Y 1)) = (T = B )y <60y

1 1

and on reduced forms of w € W by 11 =17 - ... ’75,,-

The point is that quYN = wa/qfu forallw € Wg and )" € L'. Now recall Notationm
PROPOSITION 5.4.8. Let . € Land i € Ig such that (A, a) # 0. Let & denote the parity of this last
expression. Then

ni By = 77 ci(e(si)ri () T Es.

Moreover, if G5, := Ty(3)cs,ek (0(1)) (i (M) with (k') () = e(sa )K' (), then 115, Ex = (&) 'E, .
In analogy with Proposition[5.4.5p), define
V! = ¢e(wy) Z e(w)(w)" and (X7 :=]] Co o (X7EGA)),

wEWR aesy

so that U, = U, = Vec! (X79).
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NOTATION 5.4.9.

e Let U, := w(V!) = e(wo) Z e(w)ns,

weWr

e Set —¢ to be the character (—1)“(~)e(—) of Wg, such that for example —triv = sign.

Then from the definition we get (17{)* = 7, “. Relevance of this last bit is not plain.

5.5 Symmetric polynomials with a twist
NOTATION 5.5.1. For A € L, set F; := U.E,.

It is not difficult to show that if A = s;A for some i € I such that ¢(s;) = —1, then F{ = 0.1f, on
the other hand, (A, a}) > 0, then

FSy, = e(si)mici(e(si)r (1) .
Thus, we may assume we have a dominant A, recalling Notation for then dim(UA;) < 1.

In view of the situation for A = s;\, we henceforth assume that

£|StabWR o =1

This is satisified for e.g. ¢ = triv and, if A is moreover regular, for ¢ = sign. Observe that
Theorem 5.4.4{i) then implies that this isotropy subgroup fixes F{ and, for & = triv, all of Wg
does. Let

Wr, = Stabyw, (1) and Wk = {o(—p)"" | u € Wrr}[7]
We proceed with the e-twisted analogues of Theorems and
NOTATION 5.5.2. For A € L, define

Pf i= Ty Wr, (%) "1 Ff = € 4 LOT,

with W, (12) := Z 2.

wEWR}\

The following results in particular imply that PV = P, as one might have hoped.
PROPOSITION 5.5.3. Leth € L.

i)y Py = Z e(v())g,, with the & as in Proposition |5.4.8|except with —e from Notation 5.4.9
]/IGWR)\

ii) Let f € Al Then f(Y)PE = f(—\— pp) PE.
(PP &°

iii) (PP (fiign'

. . . . C Vk’O“*’Pk’)
iv) If e = sign and \ is also dominant, then v(\) = wq and so iii) becomes A L
If g (A) 0 ale_RL R

[BIEach coset wWg, has a unique shortest element, which is also the shortest element of Wg mapping A, — 1. In
analogy with Cherednik’s v, it is denoted 7(wh) by Macdonald but he immediately shows that it equals o(—wh) 1.
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It’s about to get nasty again. Assume S is irreducible and falls under the three cases, again
write S; for the indivisible roots and Sy for the ‘finite roots’ as in Notation|5.1.10| Let So+1 =
So N S; N ST. We shall consider three multiplicity functions on S: k as before, an ¢ satisfying

0(a) = {1 if s, is conjugate in W to some s; with i # 0 and (s;) = —1,

0 otherwise,

and k + ¢ defined pointwise. On Sy, we have ek: a — €(s,)k(a) as prior. Maybe see Notations

again as well as and

NOTATION 5.5.4.

* Fora € 51, define é, = 6, by

qk(a)/Zea/Z o q—k(a)/Ze—a/Z — (ea/Z _ e—u/Z) ok if 2a e S,
(qk(a)/Zeu/Z _qfk(a)/zefa/Z)(qk(Za)/Zeu/Z qfk(Za)/Z fa/Z) (8 — e )Ca,k if2a € S.

It is clear that 6, = —J,.
¢ Then, let 5. := H Oa k-
a €Sy,

la)=1

* Similarly define §, for a’ € S/ as well as &, using S({

Recalling Notations5.1.3|and [5.1.10, one can show that Oe k0 Bsk = Ve / A(S) - Recalling
Notations5.1.1}[5.1.8|and [5.1.11} one can also show that, for all f, g € Ag,

k-t
(f/&)kse = W(‘Se,kﬁ e k8 k-

Using an auxiliary result on how ¢, , multiplies with T; — 7;, one shows that U, (A) = J.x(AR).

Now note that the symmetric polynomials implicitly depend on (—, —), which depends on
Vs k. We therefore write P, j to indicate which multiplicity function is used.

NOTATION 5.5.5. Letn(k, /) Z k(a)l(a)and p; := 5 Z u,l(a)a, whereu,is1if2a ¢ S
aeS+ aesy

and 2 if 2a € S.
Furthermore, for f € A, let |f|? = (f, f),-
Here is a first result and two consequences, showing how, in a sense, ¢ shifts the symmetric
polynomials by £.
PROPOSITION 5.5.6. Forall h € L, we have
Py = e(wo)q" "0 26, Py k.

COROLLARY 5.5.7. We have P} | = e(wo)q" 0725, 1 and s0 Py gy = Py, k/ ok
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Recall Notation The following lemma provides the inductive step for an important
theorem.
LEMMA 5.5.8. Forallh € L, we have

2 — —
Poreliee — Wr(d) Sitp Do+ oe)Bg oo (=4 — pi)

Pl WRG@T) g8 A (ptpe)Ag (=i — o)

with y := A+ py.
THEOREM 5.5.9. [Norm formula] For all h € L, we have

2 _
|Pikly = As+/,1</<7L + pk’)As/,_k/(_)‘ —PK)-

Finally, a significant amount of insufferably boring effort goes into showing the following. Set
S'(\) :={a" € §" | x(Da") + (A, Da") > 0}

forany A € L.
THEOREM 5.5.10. We have

(Ek/Ex)k: H (Au/,k/Aa/,—k’)(rk’(k))'
aes(n)

5.6 Shifting into different G.ars

This section gives another proof of Lemma using shift operators. Recall Notation[5.5.4}
DEFINITION 5.6.1. The shift operators are defined as

Ge := 0ep(X) 1L (YY) and G 1= 6L (Y)Gek(X 7).

They both map Ay into itself and behave as adjoints with respect to (—, —) except that they
shift the associated multiplicity function. That is, for f,g € Ar we have

(Gef 8%V isr = qn(k,ﬁ) <f’ (6\88)0>k’

where m =) e 55 k(a)l(a), cf. Notation|5.5.5, The nomenclature stems from the following
result, which shows that they shift the symmetric polynomials (up to a scalar), cf. Proposition
G5.d

THEOREM 5.6.2. Let L € Ly .. Then

GePripyk = diyMPipie & GePrpps = dit (W Py p o

where

—

dio(h) := qn(k'g)/zfsé,_kf A+popge) & die(h) = €(w0)q7n(k'€)/25§,kf(7\ + Ok y0r)-
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Finally, we shall see how the orthogonal polynomials can be created from Ey = 1 = E| by
repeatedly applying certain kinds of operators. First, recall that S and W act on V according
to Notation[2.1.2land W acts on F (see Section [1.1) by precomposition with the inverse as in
Theorem[2.1.4 To A € L, say, we associate the function f, = (A, —) on V, so that, if w € W\ Wg,
there is a difference between f,; and wf,. Therefore, recalling Notation we have sy =
S_g1c = t(@)sy, so that syb = ¢ + sk as element of L and sq - A = sy + (k, @) ¢ as element of
F. Fori € Ig, however, s;h = s; - \.

Recalling Notation we have X% = gX ™% as operators on A Also, from Equation (4.4.1),
we get that
(Ti = bi (X)) X" = X*™(T; — by (X))

foralld € Land i € I. Applying w™! from Theorem we thus see that, fori # 0,
YT = bi(Y ) = (T; = bi(Y )Y,
Y Hw H(To) = bo(qY?)) = ™7 (@ (To) — bo(qY?))Y 7"

DEFINITION 5.6.3. For i € Ig we define the a-creation operators
wj:=T; —b;(Y™™) and ag:=w Y(Ty) —bo(qY?)
as elements of Endg (A”).

Then the equations above reduce to

By Theorem [5.2.2, then, we get Y*a;E/, = q_<si>"r;<(”/)>zxiE;l, for all 4 € L, and something
similar for i = 0. Recall Equations in combination with Theorem[5.2.7)(these two applied
to the previous equation prove that aiE;/ is a scalar multiple of Egi v+ it remains to determine
the scalar), as well as Definition[2.3.3

PROPOSITION 5.6.4. Leti € Ig, p’ € L' and assume sip’ > p'. Then a;E), = Tl-_lE;m,. Similarly, if

-1 l
SOV/)TU(}!/) ESOV,'

sop’ > ', then aoE, = Ty

Recalling Notation if necessary, we define a second set of operators.
DEFINITION 5.6.5. For all j € |, define the B-creation operators by

By Theorem [3.2.4(e), we have for A € L that LI]._lX_"Uj — x4 M 2 q<}”’nf/'>va>‘, so that

Y'B ;= q_<}"nf/'> B jY”fX. A fully analogous argument proves the following.

PROPOSITION 5.6.6. Forall j € J and y' € L', we have BE;, = Ty, ) Ty( E'/W"
Thus, by Definition and Theorem we can derive the promised result explaining the

creation operators’ name.

)

[4IExcept in case III, but we ignore that case in this final section.
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THEOREM 5.6.7. Let y' € L' and suppose u(p') = u;s;, - ... - s;, is a reduced form. Then

E;/ = T;(;l,)ﬁjtxl’l SN Déip(l).

Dually, we of course have a} and ,B; that build E; from 1.

5.7 Example: the grand A; finale

5.71 TheE,

We continue Example in which the creation operators had already been computed. First,
recall Notation for n < co. We have to define an analogue of the usual binomial coefficient
as polynomial in g, where the g stands for Gaufs.

DEFINITION 5.7.1. Letn € IN and 0 < r < n. Then the g-binomial coefficient is

(n) _ gg. (=g (1-g")
g (@4

r @ @n—r (A=gq)-..-(1=7q)

as element of Z|[q].

. n o n . . n . n
Obviously, (,)q = (”—V)q and it turns out that 1q1%1 <r> q = <r> .

PROPOSITION 5.7.2 (g-binomial theorem). For any indeterminate x, we have

§ r r(r— n r - - n+r—1 r
=202 (M) e wet =2 (") v
r=0 q

q r=0

Recall Equation (5.1.T) for A, to be applied to S = S(A1). (Ignore the limit ¢ T 1.) Assume
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k = k(a) € Z~,. For us, x = ¢*/?, so we obtain

< (1—x%)(1—x"2g"t)

A= L (1= x2g7+k) (1 — x—2gFHT)
= 2 it
= H (1-2%")(1—x72g"")
i=0
2%—1 k-1 ‘
= [Ta-x¢""]T0 x4
i—k i=0
k.2 = 2 ko1 2 il 2 i1
= (% [ [0 =) [ [(—x2¢ (1 =227
i—0 =0
ko—2k A4tk —k.2 e e R xzq_k)

= (-1)"x""q (g "x ﬂi)zk.

_ (_1>k kaqk(kJrl)/Z(qkaZ;q)

— (—1)kxZegk(e) /22 yg =172 <2k> g
q

r
r=0

k
2k 2
— (_1\ky—2k k(k+1)/2 r+k r(r—=1)/2 rk (k>—k)/ —rk ,—k*,2r . 2k
(=1)x™%q r:Ek( 1™ 974 <r+k>qq g xx

k
2k
— E 1\ Lr(r—=1)/2 2r
(=1)q <r+k)qx '

r=—k

Therefore, we can explicitly compute (f,g) = ct(fg*A) on A if we want to. Recall from
Example the expression for ry(na/2), withn € Z. For E, := E,5 2 € A = K[x,x7 1], we
know it is a monic polynomial of degree n and moreover Y = Y| = Y*/2 acts, through Notation

A3T3 by

(/2,—(n+k)a/2))E  — g—(ntk)/2F 4 >0
— f(_ — (a/2,—ri(na/2)) _ q n q n
YE, f( rk(i’lOé/z))En q E, {q<¢x/2,(k—n)o¢/2)>En — q(k—ﬂ)/ZEn n <0,

where f = x € A. By Notation[5.1.7/and Theorem the adjoint for this action of Y is clearly
Y~!, which acts by the inverses of the powers of g. Therefore, the polynomials are indeed
orthogonal: for example, if n,m > 0 and n # m, then

(En/ Em) — q(n+k)/2(YEn, Em) — q(n-‘rk)/Z(En, Y_lEm) — q(n—m)/Z(En, Em) ; 0.
N——
#1
PROPOSITION 5.7.3. Let n > 0. The only monomials x™ that can appear in E, are those with
m=mn—2ifor0<i<n—1andin E_,, those withm = n — 2i but now 0 < i < n.

Proof. By the ordering Definition 2.3.3|(which we now denote by = to avoid confusion), we
know that if n > 0, then m < n if and only if [m| < n; and if n < 0, then m < #n if and only
if n < m < |n| = —n. This restricts the possible monomials x™ that can appear in E, apart
from x". Remains to prove that only the m with even difference with n can appear; the claimed
ranges for i then work out.
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Because (E,, x™) = ct(E,x~™A) = 0 for all m < n, write (in the case that n > 0; the other case
is similar)
n
E, = Z eixi with e, = 1.
i=—n+1

Then the inner product is

2k
— _1\rar(r=1)/2
0 Z( 1)q (k—l—r) qemer

r

-1
mn g msl,

ranging over —k <r < kaswellas —n +1 < m — 2r < n or, equivalently
The next step is best illustrated using examples.

—n
2

Forn = 1 and m = 0, we see that the equation reduces to ¢y = 0, since (2kk)q # 01in K. Therefore,

E; = x, sans constant term. For n = 2 and m = 0, assuming k to be sufficiently large, only
r = —1,0 are allowed and so

2k 2k
—q (k - 1>qez + <k>qeo = 0, whence

1—g)..-0=¢") (Q—gq)-...-(1-¢"

CTT A A=) Q- (1)
1—qk
AT gt

If m = 1, we see that r = 0, 1 contribute, so that

2k 2k —gt2y (1 =g
<k>qel - (k—|—1>q61 - (1(1i4))(£—q3) )((1_qk+1)81 - (1_qk)eil) -0

Finally, if m = —1, we have r = —1, 0 again but now the equation is

_gkt2y . (1 — g2k
_C’(kz—I{l) “art (Zkk) o (1(12;))- ":(1(1— 5 J(g(1— g + (1= g e 1) =0
g g

Since the common prefactor in both equations is not zero in K, we have both

B 1_qk B 1_qk+1
= 1—£]k+1€_1 and €1 = q(l—qk)
1

Then either both are zero, or, setting the quotient to 1, one solves for k = —3, which is a
contradiction. (Notice we have now fully computed E.) Since "5* > —% and ”*T”H <1, our
assumption on k’s being sufficiently large actually meant k > 1, which we assumed from the

onset anyway. The arguments for higher n are similar. 3

€1 e_1.

Recall we found a1 = UY — b(Y™!) and B; = XUY in Example
PROPOSITION 5.7.4. Let n > 0. Then

w By = qik/zE,nfl and ﬂlE—n = k/zEn+1.
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Proof. First, we have YayE, 1 = a1Y 1E .y = qU+tF1)/201F, 11, so by Theorem (in
accordance with the action of Y computed above), we find that a1 E,, 1 is a scalar times E_,,_;.
Now

01Ep1 = UYE;1 —b(Y )Eypia.

The second term has b(Y~!) = (g¥/2 — g7 %/2)(1 + Y2+ Y~ +...) so E,.11 is an eigenvector
and hence the coefficient of x ! lies outside the range of allowed monomials. The first term
is

uYEn+1 — qf(n+k+1)/2YTlfl (xl’l+1 + LOT)

e qi(
= g (nk41)/2

n+k+1)/2y(qfk/2xfn71 + LOT)

g~ (1R /20 —k/2 (1 4y o),

where we used Theorem (computing f(s1, (n + 1)a/2) from Notation easily) and
Equation (#3.T). The coefficient of x "~ is therefore 4~*/2. This is therefore the scalar we were
looking for, proving the first statement. The second follows by an analogous computation. [d

COROLLARY 5.7.5. For any n > 0, we have

Eny1 = q_k/2ﬁ1(“1ﬁl)n(1) and  E_y = (a1B1)"(1).

Proof. Clearly q=*/28,Ey = E; and moreover
alﬁ1E0 _ “1qk/2E1 _ qk/quk/2E_1 and qik/z,l;l“lﬁlEO — qfk/ZﬁlE_l = E,,

and so forth. o

Next, we can explicitly calculate the orthogonal polynomials. For no apparent reason, introduce

the following.
NOTATION 5.7.6. Let
1 - n - <k—|—1’— 1) <k+s> r—s_r+s
= X,z):= = X)zW = X Z ’
f=fdxz) (xz; )i (x 7125 @)k nzof"( ) Zo r g\ S /g

where the last step is the g-binomial theorem, which also guarantees there are no negative

powers of z. We can read off f,(x) = >, ., (kﬁ*l)q(kis)qxr_s. Similarly, set

- - k+r—1 k+s 74 8—r+1 n
§= T = Z = Z Z q x z".
(XZ Q)k+1(qx Z; q n=0 n=0 \r+s=n r q S q

gn(x)

LEMMA 5.7.7. We have

Tif(x,z) = 47 f(q"*x1,q"%2) and Tig(x,z) =q “2f(q"x7,q9"%2).
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Proof. Using Equation (4.5.2),
Tif(x,2) = (b(X) +C(X) 1)f(x,2)

k/z1 X - qik -1
=475 zf(x Z)+6/ )
_ 9" ( 1-q* ¥ —q >
1-2\ (z (2 knn (x129)k(x29)kn
I N (Y )(1 —xzq") — (2% — cf")(l —x'zq")
1—x2 (1—xz) ..o (1—xzg") (1 —x~1z) - ...+ (1 — x~1zgF)
_ q7? . (1—x2)(1—x"12)
1—x2 (1—xz) ... (1—xzg")(1 —x~1z) - ... (1 — x~1zgk)
k/z

Cxlz q)k(XZ'q)k+1

=q7f(q"x7,q"2),
as desired. The argument for g is analogous. 3
COROLLARY 5.7.8. Let n € Z>¢. The orthogonal polynomials are given by

E_nz(’””) Th) Enﬂz(":”);gn(x).

n

Proof. Recall Y = UTj, so that by Equation (4.5.1),

[ee]

Yf(x Z) _ qk/Zuf( /2, ’ql/Z ) qk/Zf(x q1/2 ) 2 q(m+k)/2fn(x)zn.
n=0

We see that f,(x) are eigenfunctions of Y with the ‘correct’ eigenvalue and so by arguments
employed earlier, they are scalar multiples of E_,. The monomial x~" appears in f, with

coefficient
Z <k—|—r—1> <k+s> _<k—1> <k+n> _<k+n>
rs=n roJgN s Jg N0 J i )y
r—s=-n
giving the desired equality. The case with g is similar. 3

Let’s compute some of these. As an addendum to Definition we set (’;)‘7 tobe0ifs < 0.1t
is clearly 1if s = 0.
EXAMPLE 5.7.9.

* As a sanity check,



* Next, something happens for

E_1_<kjltl> filx) = <kJ1rl>q§<k+:_1>q<k11j1>qﬂl'

In the sum, only r = 0, 1 are allowed, so we get

== (9, (9,00 0,007)

(1-9)(1-q9

:x71—|—
(T—g"1)(1—-9)

_ -1 1—qk

=x + 1 _qk+lx'

Note that indeed a/2 < —a/2, since 1y, = v(—a/2) < s1 = v(a/2) by Example
so that E_; is x ! plus terms of lower order (in accordance with Proposition |5.7.3).

e We already know E, from this Prop.; on to E3. Only r = 0,1, 2 contribute to g»(x), so that

By = <k4£2>q‘1 (<k61>q<k;2>qx3+ <’I>q<k~;1>qqx+ (k;l)q(ﬁ)qqzxA)
s A=) =g 5 14

-1
(1= —g) T ga

e For later purposes, let’s take a look at two more.

-1
eamene () (). () < () 7)
q q q q
2 k k
2y 1-¢91—-9g") | 1-gq" ,
=x q)( k+2)—|—1_qk+2x and

(

() (D)0 00
L A=) -¢ 4 0-g)1 -4 -¢"") -7 5
(1 q)(l—qk+3) (1—q)(1 —gF2)(1 — g5+3)

=X X+

1— qk+3

5.7.2 The P,

Clearly, Ax = K[x, x 1] = K[x + x~!]. The scalar product (—, —) restricted to Ar (where the
bar does nothing) is (f,g) = 3ct(fgV) for f,g € Ag, where

6“,' o k—1 . Ny B
v=T1 k(()iz) =10 —2*4) (1 —x7%4") = (% )k (x %)k
ek (e q)e i
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By Proposition [5.1.12/and the fact that S(1w, ) = @ while S(s1) = {a}, we have

(L1 = (1+49 7111

k
2k
— ky—1 _1\rLr(r=1)/2 2r
=(1+¢4" ct(é (=1)'q <r k)qx )

r=—k

= (1+4" <2kk>q

_ (=g (1%
(A=) (A= gN) A+ )
_(A=g"h . (-g
=g (A9

B <2k - 1)
k=1/,
Again, for A = na/2 € L, let P, := P, = x" + x~" + LOT. As with the orthogonal polynomials
(now using Theorem and once more Notation 4.3.13), we have that

(Y+Y VP, = f(—n& — )P, = (q<%ﬁ(n+k)%> g (2 <n+k>%>>pn _ (q—<n+k)/z+q<n+k>/z)Pn

for f = x+ x~! € Ag. Now let Z := (Y + Y‘l)‘AR. Then, as operator on Ag, we have

T1 = 11 = 7 (see Theorem , 50, using that Y = UT; = tU and Y-l = T U, the Hecke
relation and Proposition 4.2.13ji),

Z=(t+T WU =(T1+7 HU = (1+s1)c(X u=c(X Vu+c(X)s1u.

Furthermore, let

Filx,2) = (xzq) “Tz;q) ZP" g :i<2 <k+:_1)q<k+z_l>qxrs>zn’

n=0 \r+s=n

cf. Notation Observe that this object is Wg-invariant, i.e., invariant under x — x~!
LEMMA 5.7.10. We have

ZF(x,z) = TF(x,9"%2) + T 'R (x,q "2). (5.7.1)

Proof. We have

2 2

— -1 -1

X — T 1/2.—1 CNTXT =T 1/
L =

1 1

= (tx —tx HE(g %, 2) + (tx — T 2 Y F(g"x, 2).

(x —x DZF(x,z) = (x —x7 1)

The equality (5.7.1) is equivalent to the one obtained by multiplying both sides by the element
Ar(x,2) == % 22(g72x2;q)11 (7 *x 2, q)k1 € Kx,z]*, which is what we shall prove
using the equality just derived.

Define, for convenience, the following:

wi=1- qufl/zr p:=1- x_lzqfl/zf yi=1- xzqk_1/2 and 6:=1-— x_lzqk_l/z.

56



The left-hand side is

Au(x,2) ZF(x,2) = f;f:;_zl) <(qk/2x P Y E(d %, 2) + (7 — qk/zx—l)Pk(q—l/zx,Z)>

B G PN .7 TSN i ) 129
x—xt (q'2xz; q)k(q™/2x 1z )k

ko (a7 Pxz k(g7 lez;q)k+1>
AN T =R RS T
= # ((B—7)ad + (6 —a)By). (5.7.2)

Meanwhile, the right-hand side becomes

k/2

Ak(x/ Z) (TFk(-xl ql/ZZ) + Tﬁle<xl qil/zz)) = Ak(x,Z)( (ql/zxz. q)kq(qT/leZ. q)k

—k/z
n q
(g7 2xz;q)k(g 2x1z; q)k>
=q z(q"aB + 9)

T x —1x—1 (6=map+(B—a)ys). (57.3)

Clearly, (5.7.2) and (5.7.3) are equal, proving (5.7.1). D

This, combined with the expression for ZP,, implies that F; is a scalar multiple of P,. The scalar
is the coefficient of x* + x~", which is (k+':l_l)q by inspection.
-1

THEOREM 5.7.11. P,(x) = (k+”*1)q Fu(x).

n

REMARK 5.7.12. These are the continuous g-ultraspherical polynomial of Rogers Specifically,
if we view x = ¢'? as an indeterminate on S?, then

(459) gt e
Fa(x) = Caleos 3" | q) = -T2 ( Tl saa 2,

k

where we use the g-hypergeometric series

a -+ 4a; > (al;q)g-...-(ai;q)g ‘ (é) 1+j—i /
Q. ;0,2 | = —1)"gh z".
lq)f(h b I > Z;) (buq)e- - (bi;9)e(g:9) <( ) >

FOI‘ l - 2 and ] - 1, thlS SImphfleS to
a az a ;q Y4 az;q Y4
2(P1< ! l ;q,Z> - E —( 1' ) ( : ) Zé.

By [Macdon, f. 106], we have

2. —2.
A+ — M and A_ — M.
£ )e @)

BIQ.v. www.d1lmf .nist.gov/18.284v]
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Therefore, Theorem becomes, employing Notation

P2 = (% 9)oo ((n+k)vc> 7 (gx % q)e (7(n+k)a)

(quz.q) 2 qlkafz;q)oo 2
2 1— qr+1x—2
N H k+rx2 (n+k)a 1-— qr+17kx72 —(n+k)a
2 2
1— qr+<2a/2,(n+k)a/2> 1— q7+1+(—20¢/2,—(n+k)¢x/2>

) grr+2a/2,(n+k)a/2) 1_ gkt (-20/2,~ (nk)a/2)

13-
© 1 _ r+n+k 1— qr+1+n+k
=117

2k+r+n ) _ gl+n+r
r=0 1 q

S ( r+n+k)/(1 _ q1+n+r)

- 1—[?0 o (1= gty J(1 = gntr)
k— r+n+k

- H01_ 1+n+r

A=A (A —g) ... (1
(T—gm) (=g (1 —¢q)-...- (1—g")

B <2k+n—1> (n+k>1
k q k q

PROPOSITION 5.7.13. Foralln > 0 (viz. A € Ly) we have

q"
P,=E ,+4q" 1_qk+nE

Proof. For n = 0, indeed 1 = 1 4 0. Notice that the right-hand side is an eigenvector for
(Y + Y~1) with the expected eigenvalue q+™)/2 4 g=(k+1)/2 and hence a scalar multiple of P,
the scalar being the coefficient of x” + x~". The coefficient of x " in E_, is 1 and it is 0 in E, by
Proposition[5.7.3] That of x" in E_, we can compute with Corollary[5.7.§|to be

k+n\ " (k+n—1 k—1\  1-4
n/, n ] 0 1 — gkt
Hence the total coefficient of x" is

1-¢* k 1=q"
1— gktn q 1— gktn -

and so the total coefficient of x” + x~" is 1, whence we conclude the claim. Cd

EXAMPLE 5.7.14. We have computed a few E, so let’s see.

* Most easily (apart from Py = 1..),

k
_ q p _ .1, 1—9q k1—q
Py = E1+q1 quEl—x +1_qk+1x+q 1_qk+1x_x +x

as expected.
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e Next,
B 1— 2 1— k 1— k 1— 2

P=x 2+<(1_qq)()1<_qk7+2)>+1_qZ+2x2+qk1_qZ+2< T qZ+l>
(1-g»)Q-g901—g") g (1-q)(1-¢»)(1 -4
(1—q)(1 =gk 1)(1—g"+2) (1-qg)(1—gF1)(1 - g"+2)
- 1-¢°)(1—-4" + +
= g (10 0 -0)
(1-¢H(1—¢"
(T—q)(1—g+1)’

=x 24224

=x 2422+

* And finally, we can compute

e, A=) -4dY o (-g)(1 -0 —g"")
B T i S T g

— 3 _ 2 _ _ Ak
| <x3+q(1 g°)(1 q)qul q x_1>

1— qk+3 ( )( qk+2) 1— qk+2
- (1-)1 g1 —g¢""?) (1-g)(1-¢*(1—q _
=44 (o e ) T )
n ( (1-¢)(1—g"(1— k“) gt p == -4 )x
(1-q)(1—g+2)(1 - (1 —q)(1 —q**2)(1 — g*+3)
—3_|_x + ( []3)(1 ) ( -1 +x)

(1—g)(1 - q"“)

Finally, we compute the symmetrisers’ and shift operators” actions. Notations and
become the following. We set ¢ = sign and omit it from notation if we consider the trivial
character. Then s; = s; (gasp) and

(X2 -1t H(X2-1) (t+t HA1-X3)+ 1t 1(X2-X?)

1-—
€ — of — (X X—l -1 — .
s1=81=cX)eX) T = r e ax — o) T rr XD e —x2)
Similarly, ¢ = —7~! and the symmetrisers are
Ur=71141th) =1t '+T; and U =—-71(1-7!TY)=T1 -1

Indeed, U™ kills Ty — T whilst U~ does T; — 7° since this is precisely the Hecke relation. Clearly,
Wy, is trivial for any A # 0 so we set Fni = U*E, for any n # 0 and, if n > 0, then Notation
B.5.2lbecomes

s1(1+ Sl)c(x_l)En = (1+s1) Txxizzijlil E, if+,
s1¢(X)(s1 —1)Ey = (X 1) (1 —s1)E, if —,

Pf=sFf =5 (Ty +17)E, = {
by Proposition To do: figure out why P, = P, = E_, + blah - E,,. Using the formula
with the ¢ doesn’t seem to work either.

From Notation wehaved =8, = (x—x Vg = (x—x He(X) =tx—1tIx L. In
the present case,
Sqy ={xa+rceS|r=0>x(+a)} = {a} =R"
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and ¢(a) = 1if ¢ = sign but 0 if & = triv (same for —a). Therefore dj, x = 1 and Jgjgnx = 9.
Indeed, the shift operators Gy, are expected to be the identity from Theorem m since / =0
for that character and indeed they are by definition. Henceforth, fix ¢ = sign, so that ¢ = 1.

Evaluating ¢ at Y-l = T U as operator on Ag (where, recall, T; acts by T), we get

s(y 1 a T U -t U = (7T - DU = o(T7 - U
5(X)
=1(Th — 1)U =1c(X)(s1 — DU = TW(sl —1U.

Then by definition,

which acts on f € Ag by
T
Gf_ — _1 (Sluf—llf) ﬁ(SlM—Msl)f.
Only the T = ¢*/2 involves k, so G := 7~1G does not. Using Equation (5.1}, therefore

CF(x) = = (F(g"/x) — f(gx 7)) = —

———(f(q"%x) — f(g7"/*x)).

X — X —x
Take f = F;

k—

—~

x,z). Then, first of all, F(q"/?x,z) — F(q~"?x,z) is equal to

[ay
[ay

1 B ’i:[ 1
(1= xzq+72) (1 —x7tzq=2) 5 (1 —xzg5"2)(1 — x~12g5+12)

S

r=
(g ) —x g — (1 x g (1 xag )
ﬁ 1/2 1 x—lzqr—l/Z)

r=
= (1= xzq7 ) (1 = 2712 — (1= x'2g ) (1 - 2207%) B (x, 07 %2).
We claim that éFk(% z) = q‘l/z(qk —1)zF41(x, g7 "?2). Tt suffices to prove that

1—xzqg= ) (1 — x71zg""2) — (1 — x 127 ?) (1 — xzg"—/> _
(1 —xzq7)( q x)_x(l A =x2q7 ") _ g gy

o

The left-hand numerator is clearly equal to z(x — x~1)(g¥="/> — g='/?), proving this equality.
Book says (1 — g¥) but I believe this is WRONG; you seem to get this extra minus sign which
you really need to make sure GP = dP below. We continue working with my version. Of course,

GF(x,z) Z GF,x(x Z(q — 1)E, g (x)g "2

n=0 n=0

GPyy = <k+”_1>

k+n—-1 o
< > h q __1 n—1,k+1
q

k+1 n_l 1 —n
<( )+ n—l )= > 97" (¢" = 1)Fy 101
q

—q )Py 1 g1

whence

= (q"
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Indeed, this is what we wanted from Theorem aspy = %E (a)a = a/2, so that

~ k/2/ (n+1) —(n+1)
GsignPrtpk = GPusrp = TGPu1 = 472(q" " = """ Py s,

1

whilst (when replacing k — —k, in c this has the effect T — 77" or, equivalently, x — x 1)

die(M) Py jse = qn(kll)/Zésign,fk((n +k+1)a/2)Pyjiq

=g (x —x Vo ((n+k+1)a/2)Pypia

y —1.,.(+k+1)/2 —(n+k+1)/2
k/2 -1 —

= X —X

q"%( ) ——

T X X
k (n+1) —(n+1)
— q/z(q +1)/2 —q + /Z)Pn,k-i-l/

P, n,k+1

as desired, where the last equality used Notation 4.3.13|again. We really need that minus sign!
Maybe Macdonald forgot to substitute —k for k in this?

Having done this, let ¢ := sju — us; and @1 := (x — x~!)~1V} as operators. By orthog-
onality of the symmetric polynomials, we then have, for m # n (say both positive to avoid
Z€ero),

0= (Pu-1h+1, Pi-1h11)41 = <épm,k/ Pnfl,k+l> = ct((Py k) Prs1Pu—1k+1),

k+1

or, alternatively, ct(P,, x® (P 1P,—1x+1)) = 0, where we used that the bar does nothing on Ag
and ¢* is a multiple of itself lalalalalallalalala

61



References

[Bourd56] NICOLAS BOURBAKI, Groupes et algébres de Lie: Chapitres 4 i 6, Eléments de mathé-
matique, Masson, Paris, 1981.

[Macdon] IAN GRANT MACDONALD, Affine Hecke Algebras and Orthogonal Polynomials, Cam-
bridge Tracts in Mathematics 157, Cambridge University Press, 2003.

[Opdam] ERIC M. OPDAM, Lecture Notes on Dunkl Operators for Real and Complex Reflection
Groups, MS] Memoirs 8, Mathematical Society of Japan, 2000.

62



	Introduction
	A fine root system Weyl you wait
	Notational nonsense
	Affine roots and alcoves
	From finite to affine
	Examples

	An expedition to the Weyl group
	A lengthy disquisition
	Vees and yous and omega again
	Order, order!
	Labellings and other things
	Examples

	Jack of all braids, master of none
	Generators and relations
	Don't B a braid; fear not the tilde
	Examples

	Aha! Affine Hecke algebras!
	More generators and relations
	Time for a representation
	More identities in the affine Hecke algebra
	Double affine, double the fun
	Examples


	In for a penny, in for a polynomial
	Some awful triangles
	Orthogonal polynomials
	Symmetric polynomials
	Symmetrisers and intertwiners
	Symmtric polynomials with a twist
	Shifting into different Gbold0mu mumu rs
	Example: the grand A1 finale

	References

