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Chapter 1

Introduction

This is the set of lecture notes for the course Analysis 1. The notes are deliberately written
in English in order to have the notes accessible to a large audience. For several mathematical
terms we have introduced the Dutch translation directly after the introduction of the English
mathematical term, so e.g. after defining a bounded set we add “begrensde verzameling” as
the Dutch translation. In these lecture notes we have added to each chapter a set of exercises,
but there are also exercises throughout the text. You should try to do the exercises in order
to increase your understanding. For some exercises there are hints in Appendix B. Moreover,
in Appendix A there are additional exercises which discuss extensions of results discussed in
these lecture notes. The exercises of Appendix A are a bit more challenging, but they do come
with hints and intermediate steps.

There are many names throughout the text; Abel, d’Alemenbert, Bolzano, Borel, Cauchy,
Dirichlet, Heine, Newton, Riemann, Taylor, Weierstrass, etc. The names of these mathemati-
cians are often attached to classical results and form part of the mathematical culture, and
you can find more information on their life and work at the website

https://mathshistory.st-andrews.ac.uk/.
This set of lecture notes is a very concise introduction to the basics of real analysis, and

there are many more elaborate sources available. We mention previously used books by Tao
(Fields Medal in 2006) [6] and Garling [3]. A very classic book is Rudin’s book [5]. These and
other books can be consulted for more information. We need several notions from the course
Inleiding in de wiskunde, see [4], and this includes the real numbers and some of its properties
and the notion of a function. This is recalled in Chapter 2.

The notes have been used in the academic year 2020-2021, 2021-2022 and the feedback by
students and colleagues has been very useful. Thanks to all who have pointed out errors and
typos, and have come up with suggestions.

1.1 Why analysis?

Historically, functions were considered as explicit expression, which is more of a calculus
approach. Once the idea of limits arose in relation to differentation, integral, series, etc.,
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2 Chapter 1: Introduction

they naturally lead to various problems of which we sketch a few here very briefly. This was
resolved by the rigorous development of analysis, where we study the abstract development
of these notions involving limits. The key person in this development is Weierstrass. A nice
discussion of this history can be found in Bressoud’s book [2].

Let us discuss a few simple examples which give rise to these paradoxes. The first one goes
back to the Middle Ages, and proves that 0 = 1 via a sequence of equalities as follows:

0 = (1− 1) + (1− 1) + (1− 1) + (1− 1) + (1− 1) + (1− 1) + · · ·
= 1 + (−1 + 1) + (−1 + 1) + (−1 + 1) + (−1 + 1) + (−1 + 1) + · · ·
= 1 + 0 + 0 + 0 + 0 + · · · = 1.

On the other hand we could also try to find the value of

S = 1− 1 + 1− 1 + 1− 1 + 1− 1 + 1− 1 + 1− 1 + · · ·

= 1− S =⇒ S =
1

2
,

so what is it? Should we attach the value 0, 1
2
or 1 to 1−1+1−1+1−1+1−1+1−1+1−1+· · · ?

They all seem to be reasonable values for this infinite sum.
We get in the same vein the equality 0 = 1 by summing all the entries of the matrix

1 0 0 0 0 0 · · ·
−1 1 0 0 0 0 · · ·
0 −1 1 0 0 0 · · ·
0 0 −1 1 0 0
...

. . . . . .


Summing over the rows first, we get 1, and summing over the columns first we obtain 0. Why
do these two ways of summing the same numbers lead to different outcomes?

An example from Calculus is the following; take fn : R → R, defined by
fn(x) = ((x+ n)2 + 1)−1, then

lim
n→∞

∫
R

1

(x+ n)2 + 1
dx = π

and on the other hand
∫
R limn→∞ fn(x) dx = 0. So we cannot interchange limit and integration

without additional conditions. Another example for an integral over a finite interval is the
following. Put f0(x) = 64(x − 1

4
) for 1

4
≤ x ≤ 3

8
and f0(x) = 64(1

2
− x) for 3

8
≤ x ≤ 1

2
and

f0(x) = 0 elsewhere. Put fn(x) = 2nf0(2
nx). Then

lim
n→∞

∫ 1

0

fn(x) dx = 1 ̸= 0 =

∫ 1

0

( lim
n→∞

fn(x)) dx

since limn→∞ fn(x) = 0 for x ∈ [0, 1].
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The common phenomenon in these cases is that they deal with limit processes, and it
shows that we cannot work carelessly with limit processes. So how do we need to treat limit
processes rigorously in such a way that we can ensure that interchanging limits is indeed valid?
This is the main topic of Analysis 1.

After recalling some notions in Chapter 2 and fixing notation, we start by studying se-
quences and limits of sequences in Chapter 3. This is used to describe the topological nature
(what is an ‘open’ or ‘closed’ set?) of the real numbers in Chapter 4. Next we discuss real
valued functions on R and the important notion of continuity in Chapter 5. In Chapter 6 we
discuss differentiability of functions, and in Chapter 7 we introduce the Riemann integral and
derive some of its main properties. In Chapter 8 we study series of numbers, i.e. infinite sums
of numbers, and series of functions.

This course is not about calculating limits, derivatives, integrals, series, etc., but it is
about what are precisely the conditions that make the Fundamental Theorem of Calculus
valid, when can limit processes be interchanged, etc. In Calculus A, see [1], you have learned
how to do the explicit calculations, and in this course you will learn to understand why this
is true. So the emphasis is on general structures and on proofs, not on specific functions.
Although sometimes an example will be discussed and we define the logarithm function, the
exponential function and the Γ-function in the exercises, see Exercises 7.6.9, 7.6.14.
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Chapter 2

Prerequisites

The purpose of Chapter 2 is to recall some of the notions that play an important part in this
course. The most important notions we need are the notion of supremum of a subset of the
real numbers and the notion of a function.

2.1 Notation and numbers

We use the standard notation N for the set of natural numbers “natuurlijke getallen”. Here
the number zero, 0, is also considered as a natural number. So

N = {0, 1, 2, 3, 4, · · · }

and the inclusion of 0 is a matter of convention. Moreover we have

N ⊂ Z ⊂ Q ⊂ R ⊂ C.

Here Z denotes the set of integers “gehele getallen”:

Z = {· · · ,−3,−2,−1, 0, 1, 2, 3, · · · }

Q denotes the set of rational numbers “rationale getallen”, i.e. the fractions obtained from Z:

Q = { n
m

| n,m ∈ Z,m ̸= 0}.

The real numbers “reële getallen” R have been introduced in Inleiding Wiskunde [4], and we
discuss the important properties of R for this course in Section 2.2. The natural numbers
N, integers Z, rational numbers Q and the real numbers R all come with a natural ordering:
x ≤ y.

Finally, C denotes the complex numbers “complexe getallen”. Recall that a complex
number z ∈ C can be written as

z = a+ ib = r(cosϕ+ i sinϕ) = reiϕ

5



6 Chapter 2: Prerequisites

where a = ℜz ∈ R is the real part of z, b = ℑz ∈ R is the imaginary part of z and
r = |z| =

√
zz̄ ≥ 0 is the modulus of z and ϕ is the argument of z. Recall that z̄ = a − ib

is the complex conjugate. The element i is the imaginary unit satisfying i2 = −1, and this
defines the multiplication and addition in C. Explicitly, recall that

z + w = (a+ ib) + (c+ id) = (a+ c) + i(b+ d),

z · w = (a+ ib) · (c+ id) = (ac− bd) + i(ad+ bc).

For subsets A and B of the real numbers we use the standard notation A ⊂ B to indicate
that all elements of A are contained in B. In particular, this can also mean that A = B, i.e.
A = B ⇒ A ⊂ B. Similarly, A ∪ B denotes the union of A and B, and A ∩ B denotes the
intersection of A and B;

A ∪B = {x ∈ R | x ∈ A or x ∈ B}, A ∩B = {x ∈ R | x ∈ A and x ∈ B}.

The complement of the set A ⊂ R is the set Ac = {x ∈ R | x /∈ A}. We also use the notation
A \B = {x ∈ A | x /∈ B} = A ∩Bc.

Exercise 2.1.1. Assume that we have sets Bα, α ∈ I, indexed by an index set I. Then⋂
α∈I

Bα = {x ∈ R | ∀α ∈ I : x ∈ Bα},
⋃
α∈I

Bα = {x ∈ R | ∃α ∈ I : x ∈ Bα}.

Show the de Morgan’s laws(⋂
α∈I

Bα

)c

=
⋃
α∈I

Bc
α,

(⋃
α∈I

Bα

)c

=
⋂
α∈I

Bc
α.

We use the following notation for intervals “intervallen” as subsets of R, where in general
we assume a ≤ b;

(a, b) = {x ∈ R | a < x < b}, (a, b] = {x ∈ R | a < x ≤ b},
[a, b) = {x ∈ R | a ≤ x < b}, [a, b] = {x ∈ R | a ≤ x ≤ b},

(a,∞) = {x ∈ R | a < x}, [a,∞) = {x ∈ R | a ≤ x},
(−∞, b) = {x ∈ R | x < b}, (−∞, b] = {x ∈ R | x ≤ b}.

So in particular, [a, a] = {a} and (a, a] = [a, a) = (a, a) = ∅ is the empty set, and any interval
with b < a is also defined as the empty set ∅.

The absolute value (or in case of C, the modulus) satisfies the following properties. First,
|x| = 0 if and only if x = 0 and the triangle inequality “driehoeksongelijkheid”

∀x, y |x+ y| ≤ |x|+ |y| (2.1.1)

holds for real numbers as well as complex numbers. Sometimes it is convenient to have the
reverse triangle inequality “omgekeerde driehoeksongelijkheid”;

∀x, y
∣∣|x| − |y|

∣∣ ≤ |x− y|. (2.1.2)
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Exercise 2.1.2. (i) Show that |x| ≤ |x− y|+ |y| and conclude that |x| − |y| ≤ |x− y|.

(ii) Show that |y| ≤ |x− y|+ |x| and conclude that |x| − |y| ≥ −|x− y|.

(iii) Finish the proof of (2.1.2).

We recall the notation for sums and products;

m∑
i=n

ai = an + an+1 + · · ·+ am,

m∏
i=n

ai = an · an+1 · · · am

here n and m are integers and ai, i ∈ {n, n+1, · · · ,m}, are numbers. In case m < n we define
the empty sum as 0 (being the identity for addition) and the empty product as 1 (being the
identity for multiplication).

Finally, we recall the factorial and binomial coefficients;

n! =
n∏

i=1

i,

(
n

k

)
=

n!

k! (n− k)!

for which we assume that n, k ∈ N with k ≤ n. Following the convention above we set 0! = 1.
The binomial coefficients

(
n
k

)
for which k ∈ Z \ {0, 1, · · · , n} are set to 0. Then Newton’s

binomial formula states that

(x+ y)n =
n∑

k=0

(
n

k

)
xkyn−k, (2.1.3)

which generalises the familiar (x + y)2 = x2 + 2xy + y2 to arbitrary positive integer powers.
A generalisation of Newton’s binomial formula (2.1.3) is presented in Chapter 8.

Exercise 2.1.3. (i) Show Pascal’s identity;(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
(ii) Prove Newton’s binomial formula by induction on n.

2.2 The real numbers

The most important property of the real numbers R is the supremum or least upper bound
“kleinste bovengrens”.

Definition 2.2.1. A subset A ⊂ R is bounded from above “van boven begrensd” if there
exists M ∈ R so that each a ∈ A is smaller than or equal to M . Or

∃M ∈ R ∀ a ∈ A a ≤M.
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A subset A ⊂ R is bounded from below “van onderen begrensd” if

∃L ∈ R ∀ a ∈ A a ≥ L.

A subset A ⊂ R is bounded “begrensd” if the set A is bounded from above and bounded from
below.
A subset A ⊂ R is unbounded “onbegrensd” if the set A is not bounded.

Exercise 2.2.2. Show that the set A is bounded if and only if

∃M > 0 ∀ a ∈ A |a| ≤M.

Exercise 2.2.3. (i) Give an example of a non-empty bounded set A.

(ii) Give an example of a non-empty unbounded set A.

(iii) Give an example of a non-empty unbounded set A, which is bounded from above.

(iv) Give an example of a non-empty unbounded set A, which is bounded from below.

In Inleiding Wiskunde [4] the real numbers have been constructed and Theorem 2.2.4 has
been proved.

Theorem 2.2.4 (Completeness of R). Let A ⊂ R be a non-empty subset, which is bounded
from above. Then A has a least upper bound, and this least upper bound is denoted sup(A).

The notation sup(A) stands for supremum “supremum” of A. The fact that the supremum
is the least upper bound means the following: for any L < sup(A) there exists a ∈ A with
L < a ≤ sup(A);

L < sup(A) =⇒ ∃ a ∈ A L < a

Exercise 2.2.5. Show that the least upper bound is unique.

Exercise 2.2.6. Prove the following statement: let A ⊂ R be a non-empty subset, which is
bounded from below. Then A has a greatest lower bound, and this greatest lower bound is
denoted inf(A). This is called the infimum “infimum”.

Exercise 2.2.7. Let A ⊂ R be a non-empty set, which is bounded from below. Show that

L > inf(A) =⇒ ∃ a ∈ A a < L.

Show that the infimum is unique.

Remark 2.2.8. It is sometimes convenient to extend the real numbers R with the elements
+∞ and −∞, and we denote the extended real numbers by R∗. The standard ordering can
then be extended by saying that x ≤ +∞ and x ≥ −∞ for all elements x in the extended
number field. Then we can define the supremum of a non-empty set A ⊂ R which is not
bounded from above as sup(A) = +∞. Similarly, we can define infimum of a non-empty set
A ⊂ R which is not bounded from below as inf(A) = −∞. Note that one has to be very
careful with extending the standard arithmetic from R to the extended real numbers, and we
will avoid this. The convention can also be extended to the empty set ∅, and then we put
sup(∅) = −∞ and inf(∅) = ∞.
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2.3 Functions

Recall that functions can be defined in terms of the graph. We think of functions as maps

f : A→ B

from the domain “domein” A to its codomain “codomein” B with the property that for all
a ∈ A there exists a unique b ∈ B with (a, b) element of the corresponding graph. Then we
write f(a) = b. Recall that the range “bereik” or image “beeld” is given by

Ran (f) = f(A) = {f(a) | a ∈ A} ⊂ B.

More generally we write for C ⊂ A

f(C) = {f(a) | a ∈ C} ⊂ B.

The function f is surjective “surjectief” (also known as onto) if its range equals its codomain,
i.e. f(A) = B. The function f is injective “injectief” (also known as one-to-one) if

f(a1) = f(a2) =⇒ a1 = a2.

The function f is bijective “bijectief” if f is injective and surjective. In case f is a bijection
(i.e. a bijective function), there exists an inverse function f−1 : B → A defined by f−1(b) = a
if and only if f(a) = b.

Remark 2.3.1. It is important to realise that the domain and codomain of the function play
a role in injectivity and surjectivity issues. E.g. consider the function f defined by f(x) = x2.
Then f is an injective function when considered as f : [0,∞) → R, but f : R → R is not
injective. Similarly, f : [0,∞) → [0,∞) is surjective, whereas f : [0,∞) → R is not surjective.

Exercise 2.3.2. Assume we have functions f : A → B and g : B → C, and the composition
g ◦ f : A→ C.

(i) Assume that f and g are surjective, show that g ◦ f is surjective.

(ii) Assume that f and g are injective, show that g ◦ f is injective.

(iii) Assume that f and g are bijective, show that (g ◦ f)−1 = f−1 ◦ g−1.

For a subset U ⊂ B of the codomain, we define the inverse image “volledig origineel” or
“inverse beeld” as

f−1(U) = {a ∈ A | f(a) ∈ U}.

Note that we use the notation f−1 even though f is not necessarily a bijection.
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Exercise 2.3.3. Let f : A → B be a function, and let U and V be subsets of the codomain
B. Show that

f−1(U∩V ) = f−1(U)∩f−1(V ), f−1(U∪V ) = f−1(U)∪f−1(V ), f−1(U c) = (f−1(U))c

where U c = B \U and (f−1(U))c = A\f−1(U) are complements with respect to the codomain
and domain, respectively.

For a function f : A → B we can define for a subset Y ⊂ A its restriction, or restricted
function, f |Y : Y → B by

∀y ∈ Y f |Y (y) = f(y).

Note that this is a different function, since the domains differ.
Note that for real valued functions f : A → R and g : A → R for some set A ⊂ R we can

define the linear combination cf + dg : A→ R for c, d ∈ R by

(cf + dg)(a) = c · f(a) + d · g(a)

and also the product fg and quotient f
g
(assuming that ∀a ∈ A we have g(a) ̸= 0) by

(fg)(a) = f(a) · g(a), f

g
(a) =

f(a)

g(a)
,

where we have used the dot · to emphasise the product. This is not used in general.
We say that for a function f : A → R with domain A ⊂ R that f is strictly increasing

“strikt stijgend” if ∀x, y ∈ A we have that x < y ⇒ f(x) < f(y). Analogously, f is strictly
decreasing “strikt dalend” if ∀x, y ∈ A we have that x < y ⇒ f(x) > f(y). We also use
the definition f is increasing “stijgend” if ∀x, y ∈ A we have that x < y ⇒ f(x) ≤ f(y).
Analogously, f is decreasing “dalend” if ∀x, y ∈ A we have that x < y ⇒ f(x) ≥ f(y).



Chapter 3

Sequences

In Chapter 3 we start with the important notion of convergence of sequences, and this is the
first instance where we rigorously define what a limit is. We then derive various properties of
sequences, one of the most important ones being the Bolzano-Weierstrass Theorem 3.2.12.

3.1 Sequences and subsequences

Definition 3.1.1. A sequence “rij” is a function a : N → R, denoted as (an)n∈N.

Other notations in use are

(a0, a1, a2, a3, a4, · · · ), (an)
∞
n=0

where the first is considered as an ordered set. It is not essential to start at n = 0, and
sometimes it is more convenient to consider the sequence from another starting point, e.g.
( 1
n
)∞n=1. We recall from Section 2.3 the definition of increasing functions specialised to functions

on N.

Definition 3.1.2. A sequence (an)
∞
n=0 is called

• increasing “stijgend” if ∀n ∈ N an ≤ an+1;

• strictly increasing “strikt stijgend” if ∀n ∈ N an < an+1;

• decreasing “dalend” if ∀n ∈ N an ≥ an+1;

• strictly decreasing “strikt dalend” if ∀n ∈ N an > an+1;

• constant if ∀n ∈ N an = an+1.

A sequence is called monotonous “monotoon” if the sequence is an increasing sequence or a
decreasing sequence.

11
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Exercise 3.1.3. Show that Definition 3.1.2 is the same as the definitions for (strictly) in-
creasing and (strictly) decreasing functions as in Section 2.3 when considering a sequence
a : N → R as a function on the domain N ⊂ R. Hint: see Lemma 3.2.10.

Remark 3.1.4. Note that the notions of Definition 3.1.2 overlap. For example, a constant
sequence is also a decreasing (or increasing) sequence. In particular, a constant sequence is
also a monotonous sequence. Note as well that there are sequences that do not not have any
of the properties in Definition 3.1.2, e.g. ( (−1)n

n+1
)n∈N.

Definition 3.1.5. Let a : N → R be a sequence. For a strictly increasing function f : N → N
the sequence obtained by composition, i.e. a ◦ f : N → R, is called a subsequence “deelrij” of
the sequence (an)

∞
n=0. Using the notation f(j) = nj a subsequence is denoted as (anj

)∞j=0.

Looking at the sequence (an)n∈N = ( (−1)n

n+1
)n∈N, we can obtain the sequence ( 1

2n+1
)n∈N as

a subsequence by taking f(n) = 2n. Note that the subsequence is monotonous, since it is
decreasing.

Exercise 3.1.6. Consider the sequence (an)
∞
n=0 and define sequences (bn)

∞
n=0, (cn)

∞
n=0 and

(dn)
∞
n=0 by bn = a2n, cn = a3n, dn = a4n. Indicate whether or not the following are true:

(a) (bn)
∞
n=0 is a subsequence of (an)

∞
n=0;

(b) (cn)
∞
n=0 is a subsequence of (an)

∞
n=0;

(c) (dn)
∞
n=0 is a subsequence of (an)

∞
n=0;

(d) (cn)
∞
n=0 is a subsequence of (bn)

∞
n=0;

(e) (dn)
∞
n=0 is a subsequence of (bn)

∞
n=0;

(f) (dn)
∞
n=0 is a subsequence of (cn)

∞
n=0.

Proposition 3.1.7. Any sequence has a monotonous subsequence.

Proof. Let us denote the sequence (an)n∈N, and we define the set

H = {n ∈ N | ∀m > n an > am}.

So n ∈ H if an dominates the remaining terms in the sequence. The subset H ⊂ N is either
a finite or an infinite subset of N.

Assume first that H is an infinite subset of N, then we construct a sequence (ni)i∈N, ni ∈ H

for all i ∈ N, with ni < ni+1 for all i. The subsequence (ani
)i∈N is a decreasing subsequence,

which is even strictly decreasing.
Next we assume that H is a finite subset of N. So there exists N ∈ N so that n < N for all

n ∈ H. We define an increasing subsequence inductively. We take n0 = N , and since n0 ̸∈ H

there exists n1 ∈ N with n1 > n0 and an0 ≤ an1 . In general, having defined an0 , an1 , · · · , ank
,

k ∈ N, with ni < ni+1 and ani
≤ ani+1

for all i ∈ {0, 1, · · · , k − 1}, we define nk+1 as follows.
Since nk > N we have nk ̸∈ H, so that there exists nk+1 ∈ N with nk+1 > nk and ank

≤ ank+1
.

It follows that (ank
)k∈N is an increasing subsequence.
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In Exercise 3.4.1 you are asked to prove a refinement of Proposition 3.1.7.
The boundedness of sequences is defined in terms of the boundedness of the image of

a : N → R, see Definition 2.2.1.

Definition 3.1.8. The sequence (an)n∈N is bounded from above if the set {an | n ∈ N} ⊂ R
is bounded from above.
The sequence (an)n∈N is bounded from below if the set {an | n ∈ N} ⊂ R is bounded from
below.
The sequence (an)n∈N is bounded if the set {an | n ∈ N} ⊂ R is bounded.

Exercise 3.1.9. Consider the sequence (an)
∞
n=0, and assume that for each j ∈ N there is a

subsequence (a
n
(j)
k
)∞k=0. We moreover assume that each of these subsequences is a subsequence

of the previous one, so for all j ∈ N the sequence (a
n
(j+1)
k

)∞k=0 is a subsequence of (a
n
(j)
k
)∞k=0.

Show that (a
n
(k)
k
)∞k=0 is a subsequence of the the sequence (an)

∞
n=0. This subsequence is the

so-called diagonal subsequence.

3.2 Convergent sequences

Definition 3.2.1. The sequence (an)
∞
n=0 is convergent “convergent” if there exists L ∈ R so

that for all ε > 0 there exists N ∈ N so that for all n ∈ N with n ≥ N we have |an − L| < ε.
Or,

∀ ε > 0 ∃N ∈ N ∀n ≥ N |an − L| < ε.

Then we say that (an)
∞
n=0 is convergent to L and we denote this by

lim
n→∞

an = L.

Example 3.2.2. Let an = c for all n ∈ N, so we consider the constant sequence. Then (an)n∈N
is convergent, and L = c. Indeed, for any ε > 0 we can take N = 0, since for any n ∈ N we
have |an − L| = |c− c| = 0 < ε.

Exercise 3.2.3. Assume that (an)n∈N is convergent with limn→∞ an = 0. Show that (|an|)n∈N
is convergent with limn→∞ |an| = 0. What happens if the sequence converges to a non-zero
limit? Hint: use the reversed triangle inequality (2.1.2).

Note that we can check Definition 3.2.1 by taking an arbitrary ε > 0 and proving that
there exists N ∈ N, which in general depends on ε, so that for all n ≥ N we have |an−L| < ε.

Note also that convergence of a sequence expresses information on the tail of the sequence.
If we would change a finite numbers of terms in a convergent sequence, then the series remains
convergent with the same limit.

Exercise 3.2.4. Let (an)n∈N be a convergent sequence and limn→∞ an = L. Assume that
(bn)n∈N is a sequence such that there exists M ∈ N so that for all n ≥ M we have bn = an.
Show that (bn)n∈N is a convergent sequence and limn→∞ bn = L.
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Exercise 3.2.5. (i) Let (an)n∈N be a sequence and L ∈ R. Assume that all subsequences
are convergent with limit L. Show that (an)n∈N is convergent with limn→∞ an = L. Hint:
argue by contradiction.

(ii) Let (an)n∈N be a convergent sequence with limn→∞ an = L. Let (anj
)j∈N be an arbi-

trary subsequence of (an)n∈N. Show that (anj
)j∈N is a convergent sequence and that

limj→∞ anj
= L.

Remark 3.2.6. We use the adjective divergent “divergent” for a sequence which is not con-
vergent. A special class of divergent sequences are the sequences that diverge to infinity. Even
though such sequences are not convergent, we sometimes use the notation

lim
n→∞

an = +∞

for such a divergent sequence. We will not use this kind of divergence, but we can define
limn→∞ an = +∞ as follows

∀M ∈ R ∃N ∈ N ∀n ≥ N an > M

Exercise 3.2.7. Give a suitable definition for limn→∞ an = −∞.

Before we continue, we discuss a relation between convergence and boundedness of a se-
quence.

Proposition 3.2.8. A convergent sequence is bounded.

Proof. With the notation as in Definition 3.2.1, we take ε = 1 and the corresponding N . Then
for all n ≥ N we have |an − L| < 1, so that L− 1 < an < L + 1 and hence |an| < 1 + |L|. If
we now put

M = max(|a0|, |a1|, · · · , |aN−1|, 1 + |L|)
then |an| ≤M for all n ∈ N. So (an)n∈N is bounded.

The importance of Proposition 3.2.8 is that an unbounded sequence is divergent, so it
can be used as a criterion for divergence. For example, the sequence (an)n∈N with an = n or
an =

√
n is divergent.

We can now formulate a basic and important result, which gives a large class of convergent
sequences.

Theorem 3.2.9. An increasing sequence (an)n∈N which is bounded from above is convergent.
Moreover, in this case

lim
n→∞

an = sup{an | n ∈ N}.

Note that the set {an | n ∈ N} is non-empty (it contains a0), and bounded from above by
Definition 3.1.8. So by Theorem 2.2.4, the supremum exists. We often use the abbreviation

sup{an | n ∈ N} = sup
n∈N

an.

Before starting the proof of Theorem 3.2.9, we need a result on increasing sequences.
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Lemma 3.2.10. Let (an)n∈N be an increasing sequence. Then for any n ∈ N we have that for
all m ≥ n the inequality am ≥ an holds.

Proof. We can prove this by induction on m, the initial case m = n obviously being true.
The induction step follows from am+1 ≥ am ≥ an, where the last inequality is the induction
hypothesis.

Proof of Theorem 3.2.9. Put L = sup{an | n ∈ N} = supn∈N an. In order to verify the
conditions of Definition 3.2.1 we pick an arbitrary ε > 0. We need to find N ∈ N, which may
depend on ε, as in Definition 3.2.1. In order to do so, we observe that L− ε is not an upper
bound for {an | n ∈ N}, since L is the least upper bound. So there exists aN ∈ {an | n ∈ N}
with L− ε < aN ≤ L. Now this gives the required N .

To see that N meets the condition of Definition 3.2.1 we take n ≥ N arbitrary. Then, by
Lemma 3.2.10, we have an ≥ aN , so that

L− ε < aN ≤ an.

On the other hand, L is an upper bound, so that an ≤ L as well. So in total, we get for any
n ≥ N that

L− ε < aN ≤ an ≤ L =⇒ L− ε < an < L+ ε =⇒
−ε < an − L < ε =⇒ |an − L| < ε

so that we have established Definition 3.2.1.

Exercise 3.2.11. (i) Consider the statement: a decreasing sequence which is bounded from
below is convergent, and it converges to its infimum.

(a) Give a direct proof of (i) mimicking the proof of Theorem 3.2.9.

(b) Give another proof of (i) using the result of Theorem 3.2.9.

(ii) Prove the following statement: a bounded monotonous sequence is convergent.

Now that we have Theorem 3.2.9 and its variants in Exercise 3.2.11 available we can
establish some explicit limits rigorously. But first we establish an important theoretical con-
sequence, the Bolzano-Weierstrass Theorem 3.2.12.

Theorem 3.2.12 (Bolzano-Weierstrass). A bounded sequence has a convergent subsequence.

Proof. Take a monotonous subsequence of the sequence, which we can do by Proposition 3.1.7.
Since the sequence is bounded, the monotonous subsequence is bounded. By Theorem 3.2.9
and Exercise 3.2.11, the monotonous subsequence is convergent.

This proof is a simple combination of the established results, and we discuss another proof
of the Bolzano-Weierstrass Theorem 3.2.12 in Exercise 3.4.9.
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Exercise 3.2.13. The boundedness condition is essential in the Bolzano-Weierstrass The-
orem 3.2.12. Show that the unbounded sequence (an)n∈N with an = n has no convergent
subsequence. Hint: show that |an − am| ≥ 1 for all n ̸= m.

Next we use Theorem 3.2.9 and Exercise 3.2.11 to establish a well-known limit rigorously.

Proposition 3.2.14. The sequence (an)
∞
n=1 with an = 1

n
is convergent, and

lim
n→∞

1

n
= 0.

By Exercise 3.2.11(i) we can expect that inf
n≥1

1

n
plays a role. So we establish this first.

Lemma 3.2.15. Let A = { 1
n
| n ∈ N, n ≥ 1} ⊂ R, then inf(A) = 0.

Proof. Firstly, A is not empty, since it contains 1. Moreover, it is bounded from below by 0,
since 1

n
> 0 for all n ≥ 1. Hence, by Exercise 2.2.6, the infimum exists, and inf(A) ≥ 0 since 0

is a lower bound. In order to show that inf(A) = 0, we show that inf(A) > 0 is not possible.
So assume that L = inf(A) > 0, then 2L > L > 0. In particular, 2L is not a lower bound

for the set A. So by Exercise 2.2.7, there exists 1
N

∈ A with

L ≤ 1

N
< 2L =⇒ 1

2N
< L.

Since 1
2N

∈ A, we see that L is not a lower bound for A. This gives the required contradiction.

Proof of Proposition 3.2.14. First we establish that an = 1
n
is a decreasing sequence for n ≥ 1.

Now for any natural number n ≥ 1 we have

1

n+ 1
≤ 1

n
⇐⇒ n+ 1 ≥ n ⇐⇒ 1 ≥ 0.

By Lemma 3.2.15 we know that the sequence (an)
∞
n=1 is bounded from below, so that by

Exercise 3.2.11(i) and again Lemma 3.2.15, we have

lim
n→∞

1

n
= inf{ 1

n
| n ∈ N, n ≥ 1} = 0.

Corollary 3.2.16. We have the following results on real, rational and natural numbers:

(i) ∀x ∈ R ∃n ∈ N with x ≤ n;

(ii) ∀x, y ∈ R with x < y ∃ q ∈ Q with x < q < y;

(iii) (Archimedean property) ∀x > 0, ∀ ε > 0, ∃N ∈ N with Nε > x;

(iv) if x ≤ y + ε ∀ ε > 0, then x ≤ y.
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Proof. For (i) we can take n = 0 if x ≤ 0. For x > 0 we have 0 < 1
x
so that 1

x
is not a lower

bound for A as in Lemma 3.2.15. So there exists n ∈ N with 1
n
< 1

x
or x < n. Now (iii) follows

from (i) by replacing x by x
ε
. Finally, (ii) and (iv) are proved in Exercise 3.2.17.

Exercise 3.2.17. We first prove Corollary 3.2.16(ii).

(i) Show that it suffices to consider the case 0 ≤ x < y. Hint: the cases x < y ≤ 0 and
x < 0 < y are simple or can be reduced to this case.

(ii) Show that there exists N ∈ N with 0 < 1
N
< y − x.

(iii) Show that there exists k ∈ N with k
N

≤ x < k+1
N

. Hint: consider A = {m ∈ N | m ≤ Nx}
and take k the greatest element of A after showing that A is non-empty and finite (use
(i)).

(iv) Finish the proof of Corollary 3.2.16(ii).

For the proof of Corollary 3.2.16(iv), reduce first to the case y = 0. Then argue by contra-
diction; so assume that 0 < x, and use (ii) to find ε ∈ Q with ε > 0 and 0 < ε < x giving a
contradiction.

Exercise 3.2.18. In order to check that a sequence is convergent, see Definition 3.2.1, we need
to find the value L. The goal of this exercise is to prove that for a convergent sequence the
L in Definition 3.2.1 is uniquely determined. So let M ∈ R satisfy the condition in Definition
3.2.1.

(i) Show that for any n ∈ N

0 ≤ |L−M | ≤ |L− an|+ |M − an|

(ii) Show that for any ε > 0 we have |L−M | < ε.

(iii) Conclude that L =M using Corollary 3.2.16.

Now that we have worked with convergent sequences, we can also consider how sequences
relate to the arithmetic of the real numbers. This is given in Theorem 3.2.19

Theorem 3.2.19. Let (an)n∈N, (bn)n∈N be convergent sequences with limn→∞ an = L and
limn→∞ bn =M .

(i) For any c ∈ R the sequence (can)n∈N is convergent and limn→∞ can = cL.

(ii) The sequence (an + bn)n∈N is convergent and limn→∞(an + bn) = L+M .

(iii) For c, d ∈ R the sequence (can+dbn)n∈N is convergent and limn→∞(can+dbn) = cL+dM .

(iv) The sequence (anbn)n∈N is convergent and limn→∞ anbn = LM .
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(v) If bn ̸= 0 for all n ∈ N and M ̸= 0, then the sequence (an
bn
)n∈N is convergent and

limn→∞
an
bn

= L
M
.

(vi) Assume that there exists N ∈ N so that for all n ≥ N we have an ≤ bn, then L ≤M .

(vii) (Sandwich principle) Let (cn)n∈N be a sequence and assume that there exists N ∈ N so
that for all n ≥ N we have an ≤ cn ≤ bn. If L = M , then (cn)n∈N is a convergent
sequence and limn→∞ cn = L.

Exercise 3.2.20. Prove Theorem 3.2.19(i).

(i) First consider the case c = 0.

(ii) Consider c ̸= 0, and use |can − cL| = |c| |an − L|.

Proof of Theorem 3.2.19(ii). We need to show

∀ε > 0 ∃N ∈ N ∀n ≥ N |(an + bn)− (L+M)| < ε.

So we pick ε > 0 arbitrarily and we need to etablish the existence of N ∈ N with the above
property.

Now observe that

|(an + bn)− (L+M)| = |(an − L) + (bn −M)| ≤ |an − L|+ |bn −M |

by the triangle inequality, and we can make each of the terms as small as we want for sufficiently
large n. So we show that we can makes each of these terms smaller than 1

2
ε. To make this

precise, we use the convergence of the sequence (an)n∈N to L as in Definition 3.2.1 with 1
2
ε

instead of ε. So we know that there exists N1 ∈ N so that ∀n ≥ N1 we have |an − L| < 1
2
ε.

Similarly, we know that there exists N2 ∈ N so that ∀n ≥ N2 we have |bn −M | < 1
2
ε. Now

we put N = max(N1, N2), so that for any n ≥ N we have

|(an + bn)− (L+M)| ≤ |an − L|+ |bn −M | < 1

2
ε+

1

2
ε = ε.

Since we have taken ε > 0 arbitrarily, we have established the result.

Exercise 3.2.21. (i) Prove Theorem 3.2.19(iii) by combining (i) and (ii).

(ii) Prove Theorem 3.2.19(iv) by using

|anbn − LM | ≤ |an| |bn −M |+ |M | |an − L| ≤ C |bn −M |+ |M | |an − L|

for some constant C, since the sequence (an)n∈N is bounded by Proposition 3.2.8.
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Proof of Theorem 3.2.19(v). We first consider the special case that (an)n∈N is the constant
sequence an = 1 for all n. Observe that

| 1
bn

− 1

M
| = 1

|bn||M |
|bn −M |

and we want the fraction 1
|bn||M | on the right hand side to be bounded, at least for sufficiently

large n. For this we use the convergence of the sequence (bn)n∈N, and we take ε = 1
2
|M | > 0

since M ̸= 0, so there exists N1 ∈ N so that for all n ≥ N1 we have

|bn −M | ≤ 1

2
|M | =⇒ −1

2
|M | < bn −M <

1

2
|M | =⇒ M − 1

2
|M | < bn < M +

1

2
|M |

In case M > 0, we find bn >
1
2
M , and in case M < 0 we find bn <

1
2
M , so that in both case

|bn| > 1
2
|M |. So this means that for all n ≥ N1 we have the estimate

| 1
bn

− 1

M
| ≤ 2

|M |2
|bn −M |

Now take an arbitrary ε > 0, and we use the convergence of the sequence (bn)n∈N to find
a N2 ∈ N so that for all n ≥ N2 we have

|bn −M | < 1

2
|M |2ε.

Put N = max(N1, N2) so that both estimates hold for all n ≥ N , and this gives

∀n ≥ N | 1
bn

− 1

M
| ≤ 2

|M |2
|bn −M | < 2

|M |2
1

2
|M |2ε = ε.

Now that we have proved this special case, the general case follows from part (iv).

Exercise 3.2.22. (i) Prove Theorem 3.2.19(vi) by showing that L > M leads to a contra-
diction. Assuming L > M apply the convergence criteria for the sequences (an)n∈N and
(bn)n∈N with ε = 1

3
(L−M) and show that for all N ∈ N there exists n ≥ N with an > bn.

(ii) Discuss whether or not the following refinement of Theorem 3.2.19(vi) is true: assume
that there exists N ∈ N so that for all n ≥ N we have an < bn, then L < M? Give a
proof or a counterexample.

Proof of Theorem 3.2.19(vii). Pick ε > 0, and choose N1 ∈ N so that for all n ≥ N1 we have
|an − L| < ε, or L − ε < an < L + ε, and similarly choose N2 ∈ N so that for all n ≥ N2 we
have |bn − L| < ε, since M = L. Then for all n ≥ N = max(N1, N2) we have

L− ε < an ≤ cn ≤ bn < L+ ε =⇒ |cn − L| < ε.

Exercise 3.2.23. Assume (an)n∈N, (bn)n∈N be convergent sequences with limn→∞ an = L and
limn→∞ bn = M . Let (cn)n∈N be a sequence and assume that there exists N ∈ N so that for
all n ≥ N we have an ≤ cn ≤ bn. Can we conclude that (cn)n∈N is a convergent sequence and
L ≤ limn→∞ cn ≤M? Give a proof or a counterexample.
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3.3 Cauchy sequences, limsup and liminf

Definition 3.3.1. A sequence (an)n∈N is a Cauchy sequence “Cauchyrij” if for any ε > 0
there exists N ∈ N so that for all integers n ≥ N and all integers m ≥ N we have |an−am| < ε,
i.e.

∀ ε > 0 ∃N ∈ N ∀m,n ≥ N |an − am| < ε.

Upon comparing with Definition 3.2.1 we don’t need to know the additional information
on the limit L. Cauchy sequences and convergent sequences will turn out to be equivalent,
see Theorem 3.3.11, and we first prove the easy implication in Proposition 3.3.2.

Note that it is important that the estimates holds for all n and m larger than N . For
instance, the sequence (an)n∈N with an =

√
n satisfies that for any ε > 0 we have |an+1−an| < ε

for n sufficiently large, but it is not a Cauchy sequence. This can be seen from e.g. Exercise
3.3.3.

Proposition 3.3.2. A convergent sequence is a Cauchy sequence.

Proof. Take ε > 0 arbitrarily, and since (an)n∈N is convergent and limn→∞ an = L, we can
find N ∈ N so that for all n ≥ N we have |an − L| < 1

2
ε. Now, we take n ≥ N and m ≥ N

arbitrarily, and we get

|an − am| ≤ |an − L|+ |am − L| < 1

2
ε+

1

2
ε = ε.

So we expect that we can prove properties of Cauchy sequences analogously to correspond-
ing statements for convergent sequences. A first example is in Exercise 3.3.7.

Exercise 3.3.3. Show that a Cauchy sequence is bounded. Hint: mimick the proof of Propo-
sition 3.2.8 by replacing L by a suitable element of the Cauchy sequence (an)n∈N.

In order to prove the converse of Proposition 3.3.2 we introduce the limsup (or limes
superior or limit superior or upper limit) and liminf (or limes inferior or limit inferior or lower
limit).

Definition 3.3.4. For a bounded sequence (an)n∈N, we define the sequence (Ak)k∈N by

Ak = sup
n≥k

an = sup{an | n ≥ k}.

The sequence (Ak)k∈N is a decreasing bounded sequence, and we define the limsup “limsup”

lim sup
n→∞

an = lim
k→∞

Ak = inf
k∈N

Ak.

Similarly, we define the increasing bounded sequence (Bk)k∈N by

Bk = inf
n≥k

an = inf{an | n ≥ k}

and we define the liminf “liminf”

lim inf
n→∞

an = lim
k→∞

Bk = sup
k∈N

Bk.



Chapter 3: Sequences 21

Remark 3.3.5. (i) Note that the sequences (Ak)k∈N and (Bk)k∈N are bounded, since, if
|an| ≤M for all n ∈ N, then |Ak| ≤M for all k ∈ N and |Bk| ≤M for all k ∈ N. To see that
(Bk)k∈N is increasing, note that

inf
n≥k+1

an ≥ inf
n≥k

an

since infn≥k an = min(ak, infn≥k+1 an). By Theorem 3.2.9, the bounded increasing (Bk)k∈N
converges to its supremum.
(ii) Another notation in use for the limsup and liminf is

lim sup
n→∞

an = lim
n→∞

an, lim inf
n→∞

an = lim
n→∞

an,

and note that we can write

lim sup
n→∞

an = inf
k∈N

sup
n≥k

an, lim inf
n→∞

an = sup
k∈N

inf
n≥k

an.

Exercise 3.3.6. Show that (Ak)k∈N of Definition 3.3.4 is a decreasing sequence.

As an example, we take the sequence (an)n∈N with an = (−1)n, so the sequence alternates
between +1 and −1. Then Ak = 1 for all k ∈ N, and Bk = −1 for all k ∈ N, so the sequences
in this example are constant sequences, so we see

lim sup
n→∞

(−1)n = 1, lim inf
n→∞

(−1)n = −1.

This example shows that in general

inf
k∈N

sup
n≥k

an ̸= sup
k∈N

inf
n≥k

an

and that one has to be careful with the order in which one takes suprema and infima! In order
to get acquainted with limsup and liminf, Exercise 3.3.7 is very useful.

Exercise 3.3.7. Assume (an)n∈N is a bounded sequence.

(i) Show that for x > lim supn→∞ an we have

∃N ∈ N ∀n ≥ N an < x

or, for any element to the right of the limsup there are only finitely many elements of
the sequence greater or equal than this element.

(ii) Show that for x < lim supn→∞ an we have

∀N ∈ N ∃n ≥ N an > x

or, at any small distance to the left of the limsup there there infinitely many elements
of the sequence.
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(iii) Formulate and prove the corresponding statements for the liminf.

See also the proof of Proposition 3.3.9, where the properties of Exercise 3.3.6 are used.

Proposition 3.3.8. Let (an)n∈N be a bounded sequence, then

lim inf
n→∞

an ≤ lim sup
n→∞

an

and for a convergent subsequence (anj
)j∈N of (an)n∈N we have

lim inf
n→∞

an ≤ lim
j→∞

anj
≤ lim sup

n→∞
an.

Proof. First, observe that, using the notation as in Definition 3.3.4,

Bk = inf
n≥k

an ≤ sup
n≥k

an = Ak

so that by Theorem 3.2.19(vi) the first statement follows.
Similarly, for the subsequence (anj

)j∈N we get

Bnj
= inf

n≥nj

an ≤ anj
≤ sup

n≥nj

anj
= Anj

.

By Exercise 3.2.5, the corresponding subsequences (Anj
)j∈N and (Bnj

)j∈N are convergent with
the same limits. Applying twice Theorem 3.2.19(vi) we get the result.

The convergence of the sequence can be characterised in terms of the liminf and the limsup
of the sequence.

Proposition 3.3.9. Let (an)n∈N be a bounded sequence. The sequence (an)n∈N is convergent
to the value L if and only if L = lim infn→∞ an = lim supn→∞ an.

Remark 3.3.10. In Proposition 3.3.9 we have assumed that the sequence is bounded in order
to have lim supn→∞ an and lim infn→∞ an to be well-defined. If we allow for the liminf and
limsup to take values in the extended real line, i.e. R extended with +∞ and −∞, cf. Remark
2.2.8, then we can drop the boundedness assumption in Proposition 3.3.9.

Proof. We first assume that the sequence (an)n∈N is convergent with limit L. So for any ε > 0
there exists N ∈ N so that for all n ≥ N we have

|an − L| < ε ⇐⇒ L− ε < an < L+ ε.

So in particular, we see that for any k ≥ N we have

L− ε ≤ Bk = inf
n≥k

an ≤ sup
n≥k

an = Ak ≤ L+ ε,
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using the notation as in Definition 3.3.4. Since we know that the limits of (Ak)k∈N and (Bk)k∈N
exist, we find

L− ε ≤ lim inf
n→∞

an = lim
k→∞

Bk ≤ lim sup
n→∞

an = lim
k→∞

Ak ≤ L+ ε,

and hence

|L− lim sup
n→∞

an| ≤ ε and |L− lim inf
n→∞

an| ≤ ε.

Since ε > 0 is choosen arbitrarily, we see that L = lim infn→∞ an = lim supn→∞ an.
Conversely, we assume that the limsup and liminf are equal (and equal to L). We need to

show that the sequence (an)n∈N is convergent to L, i.e. for ε > 0 arbitrary we need to prove
the existence of N ∈ N so that for all n ≥ N we have |an − L| < ε.

Now, L+ε > lim supn→∞ an and by Exercise 3.3.7(i) we find N1 ∈ N so that for all n ≥ N1

we have an < lim supn→∞ an + ε = L+ ε. Similarly, by Exercise 3.3.7(iii), we find N2 ∈ N so
that for all n ≥ N2 we have L− ε = lim infn→∞ an − ε < an. Put N = max(N1, N2), then we
have for all n ≥ N

L− ε < an < L+ ε =⇒ |an − L| < ε.

We can now formulate the equivalence of convergent sequences, see Definition 3.2.1, and
Cauchy sequences, see Definition 3.3.1. Theorem 3.3.11 is also stated as the completeness of
R, and it is possible to show that it is equivalent to Theorem 2.2.4, but this will not be done
in this course.

Theorem 3.3.11. A sequence is convergent if and only if it is a Cauchy sequence.

Proof. In Proposition 3.3.2 we have shown that a convergent sequence is a Cauchy sequence,
so it suffices to show that a Cauchy sequence is convergent. So let (an)n∈N be a Cauchy
sequence, then it is bounded by Exercise 3.3.3. So lim supn→∞ an and lim infn→∞ an exist. By
Proposition 3.3.9 it suffices to show that they are equal. We will prove that for any ε > 0 we
have

0 ≤ lim sup
n→∞

an − lim inf
n→∞

an ≤ ε. (3.3.1)

Since ε > 0 is arbitrary, (3.3.1) implies lim supn→∞ an = lim infn→∞ an by Corollary 3.2.16(iv).
Recall that the first inequality is from Proposition 3.3.8.

So take ε > 0, then (an)n∈N being a Cauchy sequence, we find N ∈ N so that for all
n,m ≥ N we have |an − am| < 1

2
ε (and we take 1

2
ε to get to ε in (3.3.1)). Fix m = N then we

have for all n ≥ N

aN − 1

2
ε < an < aN +

1

2
ε =⇒

∀k ≥ N aN − 1

2
ε ≤ Bk = inf

n≥k
an ≤ Ak = sup

n≥k
an ≤ aN +

1

2
ε
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and taking the limit k → ∞ gives

aN − 1

2
ε ≤ lim inf

n→∞
an ≤ lim sup

n→∞
an ≤ aN +

1

2
ε

which yields (3.3.1).

Exercise 3.3.12. An alternative proof of the statement that a Cauchy sequence is a conver-
gent sequence in Theorem 3.3.11 is the following.

(i) Use Exercise 3.3.3 and the Bolzano-Weierstrass Theorem 3.2.12 to show that a Cauchy
sequence has a convergent subsequence.

(ii) Show that a Cauchy sequence with a convergent subsequence is a convergent sequence.

3.4 Exercises

Exercise 3.4.1. Show that the following refinement of Proposition 3.1.7 is valid: any sequence
has a strictly decreasing subsequence or a strictly increasing subsequence or a constant sub-
sequence. Hint: modify the second part of the proof.

Exercise 3.4.2. Let r ≥ 0, and consider the sequence (an)n∈N with an = rn.

(i) Show that for 0 ≤ r ≤ 1 the sequence (rn)n∈N is convergent and determine its limit.
Hint: mimick the proof of Proposition 3.2.14.

(ii) Show that for −1 < r ≤ 1 the sequence (rn)n∈N is convergent and determine its limit.

(iii) Show that for |r| > 1 and r = −1 the sequence (rn)n∈N is divergent.

Exercise 3.4.3. Prove that for M > 0 we have limn→∞
n
√
M = 1.

Exercise 3.4.4. Let |r| < 1. Show that the sequence (nrn)n∈N for |r| < 1 is convergent and
limn→∞ nrn = 0. Hint: assume first that 0 < r < 1 and show that the sequence is decreasing
for n sufficiently large, say for n ≥ N . Next set L = infn≥N nr

n ≥ 0, and assume that L > 0.
Then r−1L is not an infimum, and derive a contradiction.

Exercise 3.4.5. (i) Let (an)n∈N and (bn)n∈N be bounded sequences. Show that for any
c, d ∈ R the sequences (can + dbn)n∈N is bounded as well. Show that (anbn)n∈N is
bounded as well.

(ii) Assume that (an)n∈N is a convergent sequence and that (bn)n∈N is a bounded sequence.
Is the sequence (anbn)n∈N bounded? Give a proof or a counterexample.

(iii) Assume that (an)n∈N is a convergent sequence with limn→∞ an = 0, and let (bn)n∈N be
an arbitrary sequence. Is the sequence (anbn)n∈N bounded?
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Exercise 3.4.6. (i) Let (an)n∈N and (bn)n∈N be sequences, and we assume that (an)n∈N is
a convergent sequence and (bn)n∈N is a divergent sequence. What can you say about the
convergence or divergence of the sequence (an+ bn)n∈N? Give a proof of your statement.

(ii) Let (an)n∈N and (bn)n∈N be divergent sequences. What can you say about the convergence
or divergence of the sequence (an + bn)n∈N? Give a proof of your statement.

Exercise 3.4.7. Let (an)n∈N be a bounded sequence. Show that there exists a convergent
subsequence (anj

)j∈N with
lim
j→∞

anj
= lim sup

n→∞
an.

Prove that similarly there also exists a convergent subsequence converging to lim infn→∞ an.
Hint: use Exercise 3.3.7 and Exercise 3.1.9.

Exercise 3.4.8. Prove or disprove the following statements:

(i) Assume (an)
∞
n=0 is a convergent sequence with limn→∞ an = 0 and let (bn)

∞
n=0 be a

bounded sequence. Then (anbn)
∞
n=0 is convergent and limn→∞ anbn = 0.

(ii) Assume (an)
∞
n=0 is a convergent sequence with limn→∞ an = L with L ̸= 0 and let (bn)

∞
n=0

be a bounded sequence. Then (anbn)
∞
n=0 has a convergent subsequence.

(iii) Assume (an)
∞
n=0 is a convergent sequence with limn→∞ an = L with L ̸= 0 and let (bn)

∞
n=0

be a bounded sequence. Then (anbn)
∞
n=0 is convergent and limn→∞ anbn = L.

(iv) Assume (an)
∞
n=0 is a convergent sequence with limn→∞ an = 0 and let (bn)

∞
n=0 be a

sequence. Then (anbn)
∞
n=0 is convergent and limn→∞ anbn = 0.

Exercise 3.4.9. We develop an alternative proof of the Bolzano-Weierstrass Theorem 3.2.12.
So we assume that we have a bounded sequence (an)n∈N, and we assume the sequence is
contained in the bounded interval [b, c].

(i) Assume that (an)n∈N is a finite set, i.e. the image of the function a : N → R is finite.
Show that (an)n∈N has a convergent subsequence, which can be taken to be constant.

(ii) Define d = 1
2
(b + c) to be the middle of the interval [b, c]. Argue that at least one of

the intervals [b, d] or [d, c] contains an infinite number of the elements of the sequence
(an)n∈N, i.e. at least one of {n ∈ N | an ∈ [b, d]} or {n ∈ N | an ∈ [d, c]} is infinite.

(iii) Set b0 = b, c0 = c, and we put b1 = b, c1 = d in case [b, d] contains an infinite number of
the elements of the sequence (an)n∈N, and otherwise we put b1 = d, c1 = c0.

(iv) Iterate the above construction to find intervals [bk, ck] with [bk+1, ck+1] ⊂ [bk, ck] and such
that Ik = {n ∈ N | an ∈ [bk, ck]} is infinite.

(v) Show that the length of [bk, ck] tends to zero. Hint: Exercise 3.4.2. Conclude that
(bk)k∈N, (ck)k∈N are convergent sequences with bk < ck for all k ∈ N and that limk→∞ bk =
limk→∞ ck.
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(vi) Label the infinite sets Ik by an increasing function N → Ik, say (nk
j )j∈N. Show that Exer-

cise 3.1.9 is applicable and show that the diagonal subsequence (a
n
(k)
k
)k∈N is convergent.

Hint: use Theorem 3.2.19(vii).

Exercise 3.4.10. Let (an)n∈N be a bounded sequence, and assume that (anj
)j∈N is a subse-

quence. Show that (anj
)j∈N is bounded and that

lim inf
n→∞

an ≤ lim inf
j→∞

anj
≤ lim sup

j→∞
anj

≤ lim sup
n→∞

an.

Exercise 3.4.11. Suppose that (an)
∞
n=0 and (bn)

∞
n=0 are bounded sequences. Show that

lim inf
n→∞

an + lim inf
n→∞

bn ≤ lim inf
n→∞

(an + bn) ≤ lim inf
n→∞

an + lim sup
n→∞

bn

≤ lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn

Exercise 3.4.12. Suppose that (an)
∞
n=0 and (bn)

∞
n=0 are bounded sequences. Assume that

(an)
∞
n=0 is convergent and limn→∞ an = L and that L > 0. Show that

lim sup
n→∞

anbn = L lim sup
n→∞

bn.

Exercise 3.4.13. Compare this exercise to Exercise 3.3.7. Assume (an)n∈N is a bounded
sequence, and assume that L ∈ R has the following properties:

(i) for all x > L we have
∃N ∈ N ∀n ≥ N an < x

(ii) for all x < L we have
∀N ∈ N ∃n ≥ N an > x

Prove that L = lim supn→∞ an. This means that the properties of Exercise 3.3.7 characterise
limsup. Naturally, a similar characterisation is valid for liminf. State and prove the corre-
sponding result. Hint: by Exercise 3.3.7 we know that lim supn→∞ an satisfies these conditions.
Show that these conditions fix L uniquely.

Exercise 3.4.14. Let (cn)n∈N be a sequence with cn > 0 for all n ∈ N. Assume moreover
that the sequences ( n

√
cn)

∞
n=1 and ( cn+1

cn
)∞n=0 are bounded. We want to prove:

lim inf
n→∞

cn+1

cn
≤ lim inf

n→∞
n
√
cn ≤ lim sup

n→∞
n
√
cn ≤ lim sup

n→∞

cn+1

cn
.

One inequality follows from Proposition 3.3.8.

(i) Prove the first inequality. Hint: Let L = lim infn→∞
cn+1

cn
and show that for any ε > 0

we have L− ε ≤ lim infn→∞ n
√
cn. The result of Exercise 3.4.3 can be handy.
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(ii) Prove the last inequality.

(iii) Let α > 0, show that limn→∞
n
√
nα = 1.

(iv) Extend the statement to the case that the sequences ( n
√
cn)

∞
n=1 and ( cn+1

cn
)∞n=0 are not

necessarily bounded, see Remark 3.2.6.

Exercise 3.4.15. Assume (an)
∞
n=0 is a bounded sequence. Define sN =

N∑
n=0

an.

(i) Show that

lim inf
n→∞

an ≤ lim inf
N→∞

sN
N + 1

≤ lim sup
N→∞

sN
N + 1

≤ lim sup
n→∞

an

Hint: use Exercise 3.4.13.

(ii) Assume moreover that the sequence (an)
∞
n=0 is convergent to its limit L. Show that the

sequence ( sN
N+1

)∞N=0 is convergent with limit L.

(iii) Is the following converse valid? If lim
N→∞

sN
N + 1

= L, then lim
N→∞

aN = L.

Exercise 3.4.16. Using the conventions as in Remark 2.2.8, give a definition of the limsup
and liminf for a general sequence (an)n∈N, so a not necessarily bounded sequence, see also
Remark 3.3.10.

Exercise 3.4.17. We define a complex sequence (zn)n∈N as a function z : N → C. We say
that the complex sequence is convergent if there exists z ∈ C so that

∀ ε > 0 ∃N ∈ N ∀n ≥ N |zn − z| < ε

where we use the modulus of C, see Section 2.1. We denote this by limn→∞ zn = z.

(i) Upon writing zn = an+ ibn in Cartesian coordinates, i.e. an = ℜzn, bn = ℑzn, show that
(zn)n∈N is a convergent complex sequence with limn→∞ zn = z if and only if (an)n∈N and
(bn)n∈N are convergent (real) sequences with limn→∞ an = ℜz and limn→∞ bn = ℑz.

(ii) Let (zn)n∈N and (wn)n∈N be convergent complex sequences with limn→∞ zn = z and
limn→∞wn = w. Prove the following statements:

(a) for α, β ∈ C, the complex sequence (αzn + βwn)n∈N is convergent and limn→∞ αzn +
βwn = αz + βw;

(b) the complex sequence (znwn)n∈N is convergent and limn→∞ znwn = zw;

(c) assuming additionally that wn ̸= 0 for all n ∈ N and w ̸= 0, then the complex
sequence ( zn

wn
)n∈N is convergent and limn→∞

zn
wn

= z
w
;

(d) the complex sequence (zn)n∈N is convergent and limn→∞ zn = z;
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(e) the real sequence (|zn|)n∈N is convergent and limn→∞ |zn| = |z|.

(iii) Formulate and prove a complex analogue of the Bolzano-Weierstrass Theorem 3.2.12.

Exercise 3.4.18. Equipping the d-dimensional real vector space Rd with standard length, i.e.

v =


v1

v2
...
vd

 , ∥v∥ =

√√√√ d∑
i=1

v2
i

we say that a sequence of vectors in Rd is a function N → Rd. The sequence (vn)n∈N converges
to v ∈ Rd if

∀ ε > 0 ∃N ∈ N ∀n ≥ N ∥vn − v∥ < ε.

Show that (vn)n∈N converges to v ∈ Rd if and only if it converges in each coordinate, i.e. for
all i ∈ {1, · · · , d} the real sequence ((vn)i)n∈N converges to vi.

State and prove a similar statement for sequences in the d-dimensional complex vector
space Cd.



Chapter 4

Topology of R

In this chapter an introduction to the topology of the real numbers is given. So we describe
what open and closed sets are, and Proposition 4.1.4 shows that indeed the open sets form a
topology as will be discussed in the course Topology (2nd year). The Heine-Borel Theorem
4.3.3 is an important result as it describes the sequentially compact sets of R.

4.1 Open and closed sets

Definition 4.1.1. For a ∈ R and ε > 0 we define the ε-neighbourhood “ε-omgeving” Nε(a)
of a by

Nε(a) = {x ∈ R | |x− a| < ε} = (a− ε, a+ ε).

For a subset A ⊂ R we say that a ∈ A is an interior point “inwendig punt” if there exists
ε > 0 so that Nε(a) ⊂ A.

So 1
2
is an interior point of A = (0, 1), and also of A = [0, 1] and of A = (0, 1]. However, 1

2

is not an interior point of A = [1
2
, 1] nor of A = { 1

n+1
| n ∈ N}.

Definition 4.1.2. For A ⊂ R we define its interior set “inwendige verzameling” as

A◦ = {a ∈ A | ∃ ε > 0 Nε(a) ⊂ A} = {a ∈ A | a is interior point of A} ⊂ A.

The set A is an open set “open verzameling” if A◦ = A.

Remark 4.1.3. Note that in general A◦ ⊂ A, so that it suffices to prove A ⊂ A◦ to conclude
that A is an open set.

We start by describing some properties of open sets in Proposition 4.1.4.

Proposition 4.1.4. Let A and B be subsets of R.

(i) If A ⊂ B, then A◦ ⊂ B◦.

(ii) A◦ is an open set, i.e. (A◦)◦ = A◦.

29
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(iii) A◦ is the largest open set in A, i.e. if B ⊂ A and B is open, then B ⊂ A◦.

(iv) Let Aα be an open set for all α ∈ I, then
⋃
α∈I

Aα is an open set, i.e. the union of

arbitrarily many open sets is open.

(v) Let A1, A2, · · · , AN be open sets, then
N⋂
i=1

Ai is an open set, i.e. the intersection of

finitely many open sets is open.

(vi) ∅ and R are open sets.

Proof. To prove (i), take a ∈ A◦, so that there exists ε > 0 and Nε(a) ⊂ A ⊂ B. Hence,
a ∈ B◦.

To prove (ii) it suffices to show that A◦ ⊂ (A◦)◦ by Remark 4.1.3. Take a ∈ A◦, and we
need to prove that there is an ε-neighbourhood of a contained in A◦. Since a ∈ A◦, we have
some ε > 0 so that Nε(a) ⊂ A. Observe that any b ∈ N 1

2
ε(a) is also an interior point of A,

since N 1
2
ε(b) ⊂ Nε(a) ⊂ A. In particular, N 1

2
ε(a) ⊂ A◦, and hence a is an interior point of A◦,

or a ∈ (A◦)◦.
To prove (iii), take an open set B ⊂ A, so that by (i) we have B◦ ⊂ A◦, and A◦ is an open

set by (ii). Since B is open, we have B = B◦ ⊂ A◦.
To prove (iv), take a ∈

⋃
α∈I Aα arbitrarily. So there exists α0 ∈ I with a ∈ Aα0 . Since Aα0

is open, there exists ε > 0 with Nε(a) ⊂ Aα0 ⊂
⋃

α∈I Aα, so a ∈ (
⋃

α∈I Aα)
◦. Thus

⋃
α∈I Aα is

open.
To prove (v), take a ∈

⋂N
i=1Ai arbitrarily. So a ∈ Ai for all i ∈ {1, · · · , N}. Since Ai is

open, there exists εi > 0 so that Nεi(a) ⊂ Ai. Now put ε = min1≤i≤N εi > 0, then Nε(a) ⊂ Ai

for all i ∈ {1, · · · , N}. Hence, Nε(a) ⊂
⋂N

i=1Ai and a ⊂ (
⋂N

i=1Ai)
◦ and

⋂N
i=1Ai is an open

set.

Note that Proposition 4.1.4(ii) shows that being an interior point is an ‘open property’,
in the sense that if a is an interior point, then there is a ε-neighbourhood of a consisting of
interior points.

Exercise 4.1.5. (i) Show the last statement, i.e. prove Proposition 4.1.4(vi). Hint: for the
empty set ∅ there is nothing to prove, and for R all points are interior.

(ii) Assume Ai is an open set for all i ∈ N. Can we strenghten Proposition 4.1.4(v) to con-
clude that the intersection

⋂
i∈NAi is an open set? Provide a proof or a counterexample.

Definition 4.1.6. Let A ⊂ R and x ∈ R, then we call x a closure point “afsluitingspunt” of
the set A if

∀ ε > 0 ∃ a ∈ A |x− a| < ε.

We call x a limit point “limietpunt” of the set A if

∀ ε > 0 ∃ a ∈ A 0 < |x− a| < ε.
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So the condition of being a closure point means

∀ ε > 0 Nε(x) ∩ A ̸= ∅

and the condition of a limit point means

∀ ε > 0 Nε(x) \ {x} ∩ A ̸= ∅

Note that a limit point is in particular a closure point. Note that x ∈ A is always a closure
point for A, but not necessarily a limit point of A. Indeed, take A = (0, 1) ∪ {2}, then 2 is
a closure point, but it is not a limit point. A point of A which is a closure point, but not a
limit point, is occasionally called an isolated point “gëısoleerd punt”.

Proposition 4.1.7. Let A ⊂ R and let x ∈ R. The following statements are equivalent:

(i) x is a closure point of A;

(ii) there exists a sequence (an)n∈N with ∀n ∈ N an ∈ A and limn→∞ an = x.

Exercise 4.1.8. We describe the proof of Proposition 4.1.7.

(i) For (ii) implies (i): use Definition 3.2.1.

(ii) For (i) implies (ii): in Definition 4.1.6 choose ε = 1
n+1

for n ∈ N and put

An = {a ∈ A | |x− a| < 1

n+ 1
}.

Show that An ̸= ∅ and construct the convergent sequence.1

Definition 4.1.9. For A ⊂ R we define its closure “afsluiting”

A = {x ∈ R | x is a closure point of A}.

The set A ⊂ R is a closed set “gesloten verzameling” if A = A.

Remark 4.1.10. Note that A ⊂ A is valid for any set, so that it suffices to prove A ⊂ A to
conclude that A is a closed set. Note also that we have for any set

A◦ ⊂ A ⊂ A

and that an open set is defined by the first inclusion being an equality and that a closed set
is defined by the second inclusion being an equality.

Next we establish the analogue of Proposition 4.1.4 for closed sets.

Proposition 4.1.11. Let A and B be subsets of R.
1Here we use the axiom of choice “keuzeaxioma” for a countable number of sets.
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(i) If A ⊂ B, then A ⊂ B.

(ii) A is a closed set, i.e. A = A.

(iii) A is the smallest closed set containing A, i.e. if A ⊂ B and B is closed, then A ⊂ B.

(iv) Let Aα be a closed set for all α ∈ I, then
⋂
α∈I

Aα is a closed set, i.e. the intersection of

arbitrarily many closed sets is closed.

(v) Let A1, A2, · · · , AN be closed sets, then
N⋃
i=1

Ai is a closed set, i.e. the union of finitely

many closed sets is closed.

(vi) ∅ and R are closed sets.

Let us emphasise that in Proposition 4.1.4(iv) and in Proposition 4.1.11(iv) the index set
I can be arbitrary. In particular, I can be an uncountable infinite set.

Exercise 4.1.12. Prove Proposition 4.1.11, cf. the proof of Proposition 4.1.4. Hints for the
proofs of the parts of Proposition 4.1.11 are given below.

(i) Observe that if x is a closure point of A and A ⊂ B, then x is a closure point of B.

(ii) Let b ∈ A and let ε > 0 be arbitrary. Find c ∈ A with |c − b| < 1
2
ε. Since c ∈ A, find

a ∈ A with |a−c| < 1
2
ε. Conclude that b ∈ A. Show that this suffices to finish the proof.

(iii) Compare the proof of Proposition 4.1.4(iii).

(iv) Let b be a closure point of
⋂

α∈I Aα, and pick ε > 0, and let a ∈
⋂

α∈I Aα with |b−a| < ε.
Argue that b is a closure point of Aα for all α ∈ I. Use that Aα is closed, and argue that
b ∈

⋂
α∈I Aα.

(v) Assume b /∈
⋃N

i=1Ai, then for all i we have bi /∈ Ai. So there exists εi > 0 so that
|b − ai| ≥ εi for all ai ∈ Ai. Argue that there exists ε > 0 so that |b − a| ≥ ε for all

a ∈
⋃N

i=1Ai. Conclude that b /∈
⋃N

i=1Ai and finish the proof.

(vi) Use the definition.

Exercise 4.1.13. Show that A = A ∪ {x ∈ R | x limit point of A}.

Lemma 4.1.14. Let A ⊂ R. Then A is an open set if and only if its complement Ac = R \A
is a closed set.
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So we also have that a set is closed if and only its complement is open. Note that by
Proposition 4.1.11(vi) and Proposition 4.1.4(vi) we have ∅ and R as sets which are both open
and closed. Note that there exist sets A which are neither closed nor open. An example is
A = (0, 1], since

A◦ = (0, 1) ⊂ A = (0, 1] ⊂ A = [0, 1]

and neither of the inclusions is an equality.

Proof of Lemma 4.1.14. Observe that

x ∈ (A◦)c ⇐⇒ x /∈ A◦

⇐⇒ ∀ ε > 0 Nε(x) ̸⊂ A

⇐⇒ ∀ ε > 0 Nε(x) ∩ Ac ̸= ∅
⇐⇒ x ∈ Ac

so that the complement of the interior of a set equals the closure of the complement set, i.e.
(A◦)c = Ac. So if A is an open set, then Ac = (A◦)c = Ac and Ac is a closed set. If Ac is a
closed set, then Ac = Ac = (A◦)c and taking complements gives A = A◦, hence A is an open
set.

Exercise 4.1.15. Prove Proposition 4.1.11 from Proposition 4.1.4 using Lemma 4.1.14.

The following characterisation in Lemma 4.1.16 of a point in the closure of a set A is often
useful.

Lemma 4.1.16. Let A ⊂ R be a set. Then x ∈ A if and only if there exists a convergent
sequence (an)n∈N with ∀n ∈ N an ∈ A and limn→∞ an = x.

Exercise 4.1.17. Prove Lemma 4.1.16 using Proposition 4.1.7.

Definition 4.1.18. The boundary “rand” of a set A ⊂ R is ∂A = A \ A◦.

So the boundary of a set is its closure minus its interior, and it means that the boundary
of (0, 1), (0, 1], [0, 1) and [0, 1] are all the same, namely {0, 1}.

Proposition 4.1.19. (i) The boundary ∂A of the set A is a closed set.

(ii) a ∈ ∂A if and only if ∀ ε > 0 we have Nε(a) ∩ A ̸= ∅ and Nε(a) ∩ Ac ̸= ∅.

Proof. Using Lemma 4.1.14 we see that

∂A = A \ A◦ = A ∩ (A◦)c = A ∩ (Ac),

which is a closed since it is the intersection of two closed sets, see Proposition 4.1.11(iv). This
proves (i).

The proof of (ii) is Exercise 4.1.20.
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Exercise 4.1.20. We show part (ii) of Proposition 4.1.19.

(i) Show that a ∈ A implies Nε(a) ∩ A ̸= ∅ for any ε > 0.

(ii) Show that a /∈ A◦ implies Nε(a) ∩ Ac ̸= ∅ for any ε > 0.

(iii) Show that a ∈ ∂A implies that ∀ ε > 0 we have Nε(a) ∩ A ̸= ∅ and Nε(a) ∩ Ac ̸= ∅.

(iv) Prove the converse of this statement, and finish the proof of Proposition 4.1.19(ii).

Exercise 4.1.21. Let A ⊂ R be a set.

(i) Show that (∂A)c = A◦ ∪ (Ac)◦.

(ii) Show that ∂(Ac) = ∂A.

4.2 Relatively open sets and relatively closed sets

In Section 4.1 open and closed sets have been defined with respect to R as the ambient space.
We also need the notion of open and closed sets with respect to a fixed subset X ⊂ R.

Definition 4.2.1. For X ⊂ R a fixed subset, the relative closure with respect to X “relatieve
afsluiting met betrekking tot X” of the subset A ⊂ X is A ∩ X ⊂ X. The set A ⊂ X is
relatively closed with respect to X “relatief gesloten met betrekking tot X” if A = A ∩X.

In case the ambient space X is clear from the context, we leave out the “with respect to
X” from the terminology. As an example, take X = (0, 1), and A = (0, 1

2
]. Note that A is

not closed in R, but that A = A ∩ X and hence A is a closed set relative to X. However,
relatively closed sets can be related to closed sets in R as follows.

Proposition 4.2.2. Let A ⊂ X ⊂ R. The following statements are equivalent:

(i) A is relatively closed with respect to X;

(ii) there exists a closed set F ⊂ R so that A = F ∩X;

(iii) for any sequence (an)n∈N with the properties ∀n ∈ N an ∈ A and limn→∞ an = b ∈ X we
have b ∈ A.

Proof. (i) =⇒ (ii): take F = A, and it follows from Definition 4.2.1.
(ii) =⇒ (i): note that A = F ∩X ⊂ F , so that A ⊂ F = F by Proposition 4.1.11(i). So

A ∩X ⊂ F ∩X = A, and since trivially A ⊂ A ∩X we have A = A ∩X and A is relatively
closed with respect to X.

(i) =⇒ (iii): assume that A is relatively closed, and that we a have a convergent sequence
in A with limit b in X. In order to show that the limit is in A, observe that by Proposition
4.1.7 we have b ∈ A. Hence, b ∈ A ∩X = A.



Chapter 4: Topology of R 35

(iii) =⇒ (i): since A ⊂ X we have A ⊂ A ∩ X, and we have to show the reversed
inclusion. So pick b ∈ A∩X, then by Proposition 4.1.7 we have a sequence (an)n∈N in A with
limn→∞ an = b ∈ X. Hence, by the assumption (iii), we have b ∈ A. So A ∩X ⊂ A, and the
reversed inclusion is established.

Exercise 4.2.3. Let X ⊂ R. Show that the following properties, cf. Proposition 4.1.11, are
valid:

(i) Let Aα be a closed set relative to X for all α ∈ I, then
⋂
α∈I

Aα is a closed set relative to

X.

(ii) Let A1, A2, · · · , AN be closed sets relative to X, then
N⋃
i=1

Ai is a closed set relative to X.

(iii) ∅ and X are closed sets relative to X.

Hint: use Proposition 4.1.11 and Proposition 4.2.2. What can you say about possible analogues
of the other statements of Proposition 4.1.11? You should first think about what the closure
with respect to X is.

Definition 4.2.4. Assume X ⊂ R a fixed subset, and let A ⊂ X. Then a ∈ A is called an
interior point of A relative to X “inwendig punt van A met betrekking tot X” if ∃ ε > 0 so
that Nε(a) ∩X ⊂ A. The set A ⊂ X is relatively open with respect to X “relatief open met
betrekking tot X” if ∀ a ∈ A the point a is an interior point of A relative to X.

Proposition 4.2.5. Let A ⊂ X ⊂ R. The following statements are equivalent:

(i) A is relatively open with respect to X;

(ii) there exists a open set U ⊂ R so that A = U ∩X;

(iii) X \ A is closed relative to X.

Proof. (i) =⇒ (ii): since for each a ∈ A there exists ε = εa > 0 so that Nε(a) ∩ X ⊂ A.
Now put U = ∪a∈ANεa(a), which is open by Proposition 4.1.4(iv). Then A ⊂ U ∩ X, and
conversely U ∩X = ∪a∈A(Nεa(a) ∩X) ⊂ A, since Nεa(a) ∩X ⊂ A by Definition 4.2.4.

(ii) =⇒ (i): take a ∈ A = U ∩ X arbitrarily. Then, since a ∈ U there exists ε > 0 with
Nε(a) ⊂ U as U is an open set. So then Nε(a) ∩ X ⊂ U ∩ X = A. Hence, a is an interior
point of A relative to X. Since a was arbitrary, A is open relative to X.

(ii) =⇒ (iii): since A = U ∩X, we have X \A = U c ∩X and since U c is closed by Lemma
4.1.14 we have X \ A is relatively closed with respect to X by Proposition 4.2.2.

(iii) =⇒ (ii): using Proposition 4.2.2 there exists a closed set F ⊂ R with X \A = F ∩X.
So A = F c ∩X, and F c is open by Lemma 4.1.14.

Exercise 4.2.6. Let X ⊂ R. Show that the following properties, cf. Proposition 4.1.11, are
valid:
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(i) Let Aα be an open set relative to X for all α ∈ I, then
⋃
α∈I

Aα is an open set relative to

X

(ii) Let A1, A2, · · · , AN be open sets relative to X, then
N⋂
i=1

Ai is an open set relative to X.

(iii) ∅ and X are open sets.

Hint: use Proposition 4.2.5 and Proposition 4.2.2. What can you say about possible analogues
of the other statements of Proposition 4.1.4? First you need to define the interior with respect
to X.

4.3 Sequentially compact sets

Definition 4.3.1. The set A ⊂ R is sequentially compact “rijcompact” if for any sequence
(an)n∈N with ∀n ∈ N an ∈ A, there exists a convergent subsequence (anj

)j∈N with its limit
contained in A; limj→∞ anj

∈ A.

Exercise 4.3.2. (i) Show that a sequentially compact set A is a closed set. Hint: use
Lemma 4.1.16.

(ii) Assume that A is a sequentially compact set, and let B ⊂ A be a closed set. Show that
B is a sequentially compact set.

(iii) Assume that A ⊂ B and that A is not sequentially compact. Can we conclude that B
is not sequentially compact?

We see that N is not sequentially compact, since the sequence (an)n∈N with an = n has
no convergent subsequence, see Exercise 3.2.13. Similarly, we see that Z and Q are also not
sequentially compact subsets of R.

The Heine-Borel Theorem 4.3.3 characterises sequentially compact sets.

Theorem 4.3.3 (Heine-Borel). Let A ⊂ R. The set A is sequentially compact if and only if
A is a closed and bounded set.

Proof. We first assume that A is sequentially compact. In Exercise 4.3.2(i) we have observed
that A is a closed set. In order to prove that A is also bounded, we argue by contradiction.
So assume that A is unbounded, then

∀n ∈ N An = {a ∈ A | |a| ≥ n} ≠ ∅.

We consider a sequence (an)n∈N with an ∈ An for all n ∈ N. Since A is sequentially compact,
there exists a convergent subsequence (anj

)j∈N. By Proposition 3.2.8 we see that (anj
)j∈N is

bounded, but anj
∈ Anj

so that |anj
| ≥ nj ≥ j which tends to infinity as j increases, since
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nj = f(j) for a strictly increasing function f : N → N, see Definition 3.1.5. This gives the
required contradiction, and A is bounded.

Conversely, assume that A is a bounded and closed set. We take an arbitrary sequence
(an)n∈N with an ∈ A for all n ∈ N and we have to show that the sequence has a convergent
subsequence (anj

)j∈N with limj→∞ anj
∈ A. Now, since A is bounded, the sequence (an)n∈N

is bounded. Hence, by the Bolzano-Weierstrass Theorem 3.2.12 the sequence (an)n∈N has
convergent subsequence. Since the set A is closed, the limit of the subsequence is in A by
Lemma 4.1.16. So A is sequentially compact.

Exercise 4.3.4. (i) Show that the union of two sequentially compact sets is a sequentially
compact set.

(ii) Show that the intersection of two sequentially compact sets is a sequentially compact
set.

(iii) Is the union of arbitrarily many sequentially compact sets a sequentially compact set?

(iv) Is the intersection of arbitrarily many sequentially compact sets a sequentially compact
set?

4.4 Exercises

Exercise 4.4.1. (i) Let A be a non-empty bounded closed set. Show that supA ∈ A and
inf A ∈ A.

(ii) Let (an)n∈N be a bounded sequence, and define the set A = {an | n ∈ N}. Show that
lim supn→∞ an and lim infn→∞ an are elements of A. Hint: use Exercise 3.3.7.

Exercise 4.4.2. (i) Show that A ∪B = A ∪B.

(ii) Show that A ∩B ⊂ A∩B, and give an example where the inclusion is a strict inclusion.

Exercise 4.4.3. (i) Show that a set consisting of a finite number of elements is closed.

(ii) Is N a closed or open set with respect to Z? Or is it neither open nor closed?

Exercise 4.4.4. Let A ⊂ R be a non-empty set. Assume that x ∈ R and that A is a
sequentially compact set. Show that there exists c ∈ A with |c− x| = inf{|x− a| | a ∈ A}.

Exercise 4.4.5. For A ⊂ R, B ⊂ R define A+B = {a+ b | a ∈ A, b ∈ B}.

(i) Let A, B be open sets. Show that A+B is an open set.

(ii) Let A, B be closed sets. Is A+B a closed set?

(iii) Let A, B be closed sets and assume A is sequentially compact. Show that A + B is a
closed set.
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Exercise 4.4.6. We call a set A ⊂ R pathwise connected “padsgewijs samenhangend” if for
any two elements x and y we have tx + (1 − t)y ∈ A for all t ∈ [0, 1]. Otherwise stated, the
image of the path [0, 1] ∋ t 7→ tx+ (1− t)y is contained in the set A.

Show that an interval is pathwise connected. Conversely, assume that A ⊂ R is pathwise
connected, show that A is an interval.

Exercise 4.4.7. Define the derived set “afgeleide verzameling” of the set A ⊂ R as

A′ = {x ∈ R | x limit point of A}.

(i) Show that x ∈ A′ if and only if there exists a convergent sequence (an)n∈N with ∀n ∈ N
we have an ∈ A \ {x} and limn→∞ an = x.

(ii) Show that A′ ⊂ A and that A′ is a closed set.

(iii) Let A be an open set. Show that A′ = A.

(iv) Show that in general A = A′ ∪ {x ∈ A | x isolated point of A} with a disjoint union.

(v) Show that in general (A′)′ ̸= A′.

Exercise 4.4.8. We say that a set A ⊂ R is a compact set “compacte verzameling” if for any
covering of A by open sets there exists a finite subcover. Or, for any collection {Bα | α ∈ I}
with ∀α ∈ I the set Bα is an open set and

A ⊂
⋃
α∈I

Bα

(which is the covering of A by open sets) there exists N ∈ N and α1 ∈ I, α2 ∈ I, · · · , αN ∈ I
so that

A ⊂
N⋃
i=1

Bαi

(which is the finite subcover).
The notions of sequentially compactness and compactness are equivalent for subsets of

R. The purpose of Exercise 4.4.8 is to prove one of the implications, namely compactness
implies sequentially compactness. So assume A ⊂ R to be compact, and let (an)n∈N be a
sequence in A. We want to show that there exists a convergent subsequence (anj

)j∈N with
limj→∞ anj

= x ∈ A. We proceed as follows.

(i) Assume A ⊂ R to be compact, and let (an)n∈N be a sequence in A. Then ∃x ∈ A so
that for all ε > 0 the set {n ∈ N | an ∈ Nε(x)} is infinite. We prove this in the following
steps:

(a) Arguing by contradiction, we assume

∀x ∈ A ∃ ε = ε(x) > 0 |{n ∈ N | an ∈ Nε(x)}| <∞

Show that
⋃

x∈ANε(x) is a covering of A by open sets.
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(b) Conclude that there exist N ∈ N and x1 ∈ A, · · · , xN ∈ A so that
A ⊂

⋃N
i=1Nε(xi)(xi). Derive the contradiction.

(ii) Using (i), construct a convergent subsequence of (anj
)j∈N, convergent to x, by choosing

ε = 1
j+1

.
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Chapter 5

Real functions

In this chapter we study real valued functions. In particular, we study the properties of
continuous functions. Continuity at a point is rephrased in terms of sequences and continuity
is rephrased in terms of open sets. We study properties of continuous functions, and we
consider also uniform continuous functions. Sequences of functions are considered in the
pointwise and uniform setting.

5.1 Continuous functions

Definition 5.1.1. Let f : A → R be a real valued function with domain A ⊂ R. Let E ⊂ A
and assume x0 ∈ E. Then we say that f converges to L ∈ R at x0 through E “f convergeert
naar L ∈ R in x0 door E” if

∀ ε > 0 ∃ δ > 0 ∀x ∈ E |x− x0| < δ =⇒ |f(x)− L| < ε.

We use the notation
lim
x→x0
x∈E

f(x) = L or lim
x→x0;x∈E

f(x) = L

In case E = A, we leave the dependence on E from the notation. The additional usage
of E in Definition 5.1.1 can be used to define left and right limits, see Exercise 5.5.2. In case
E = {x0}, we trivially have limx→x0;x∈{x0} f(x) = f(x0).

The dependence on E is not that relevant, since the limit of a function only depends on
the local behaviour of the function f . We formulate this in Lemma 5.1.2, and the proof is
sketched in Exercise 5.1.3.

Lemma 5.1.2. For any δ0 > 0 we have

lim
x→x0
x∈E

f(x) = L ⇐⇒ lim
x→x0

x∈E∩(x0−δ0,x0+δ0)

f(x) = L.

Exercise 5.1.3. We indicate how to prove Lemma 5.1.2.

41
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(i) Show that for x0 ∈ E we also have that x0 ∈ E ∩ (x0 − δ0, x0 + δ0)

(ii) Argue that the implication from left to right is trivial.

(iii) Show that for x0 ∈ E ∩ (x0 − δ0, x0 + δ0) we also have that x0 ∈ E.

(iv) Prove the implication from right to left. Hint: replace δ in Definition 5.1.1 by δ′ =
min(δ, δ0).

Proposition 5.1.4. Using the notation of Definition 5.1.1,

lim
x→x0
x∈E

f(x) = L.

if and only if for any sequence (an)n∈N with an ∈ E for all n ∈ N and limn→∞ an = x0 we
have that the sequence (f(an))n∈N is convergent and limn→∞ f(an) = L.

Proof. Assume first that limx→x0;x∈E f(x) = L and that (an)n∈N is a sequence with an ∈ E for
all n ∈ N and limn→∞ an = x0. We need to prove that (f(an))n∈N is a convergent sequence
with limn→∞ f(an) = L. So take ε > 0 arbitrary, then by Definition 5.1.1 there exists a δ > 0
so that for x ∈ E and |x0 − x| < δ we have |f(x) − L| < ε. Since (an)n∈N converges to x0,
there exists N ∈ N so that for all n ≥ N we have |x0−an| < δ. Hence, for this N ∈ N we have
for all n ≥ N that |L− f(an)| < ε. Since ε > 0 was arbitrary, we have limn→∞ f(an) = L.

Conversely, assume that for any sequence (an)n∈N with an ∈ E for all n ∈ N and
limn→∞ an = x0 we have that the sequence (f(an))n∈N is convergent and limn→∞ f(an) = L.
In order to prove that

lim
x→x0
x∈E

f(x) = L.

we argue by contradiction. Taking the negation of Definition 5.1.1 we see

∃ ε0 > 0 ∀ δ > 0 ∃x ∈ E |x0 − x| < δ ∧ |L− f(x)| ≥ ε0.

In order to create a sequence that contradicts our assumption, we take consecutively δ = 1
n+1

for n ∈ N. The corresponding x ∈ E with |x0−x| < 1
n+1

and |L−f(x)| ≥ ε0, we call an. From

the property |x0 − an| < 1
n+1

we see that limn→∞ an = x0. From the |L− f(an)| ≥ ε0, we see
that the sequence (f(an))n∈N cannot converge to L. This is the required contradiction.

Proposition 5.1.4 gives the opportunity to connect limits of functions to limits of sequences,
so that we can apply the machinery of Chapter 3.

Corollary 5.1.5. Let f : A→ R and g : A→ R be real-valued functions with domain A ⊂ R.
Let E ⊂ A and assume x0 ∈ E and that

lim
x→x0
x∈E

f(x) = L, lim
x→x0
x∈E

g(x) =M.

Then the following properties hold:
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(i) the limit L is uniquely determined;

(ii) for real values c, d ∈ R the function cf + dg converges to cL+ dM at x0 through E

lim
x→x0
x∈E

cf(x) + dg(x) = cL+ dM

(iii) the function fg converges to LM at x0 through E

lim
x→x0
x∈E

f(x)g(x) = LM

(iv) assuming that ∀x ∈ E we have g(x) ̸= 0 and moreover that M ̸= 0, then the function f
g

converges to L
M

at x0 through E

lim
x→x0
x∈E

f(x)

g(x)
=

L

M

Exercise 5.1.6. (i) Give a proof of Corollary 5.1.5 using Proposition 5.1.4 and the results
of Chapter 3, in particular Theorem 3.2.19 and Exercise 3.2.18.

(ii) Formulate and prove the statements for limits of functions that correspond to Theorem
3.2.19(vi) and the sandwich principle Theorem 3.2.19(vii).

Exercise 5.1.7. Give another proof of Lemma 5.1.2 using Proposition 5.1.4.

Definition 5.1.8. Let f : A → R be a real-valued function, x0 ∈ A. Then f is continuous at
x0 ∈ A “f is continu in x0 ∈ A” if

lim
x→x0;x∈A

f(x) = f(x0)

and f : A → R is a continuous function “f is een continue functie” if ∀x0 ∈ A the function
f is continuous at x0.

Exercise 5.1.9. Assume that f : A → R is continuous, and that Y ⊂ A. Show that the
restricted function f |Y : Y → A is continuous.

Proposition 5.1.10. Let f : A→ R be a function, and x0 ∈ A. The following statements are
equivalent:

(i) f is continuous at x0;

(ii) for any sequence (an)n∈N with ∀n ∈ N an ∈ A and limn→∞ an = x0 the image sequence
(f(an))n∈N is convergent and limn→∞ f(an) = f(x0).

(iii) ∀ ε > 0 ∃ δ > 0 so that for all a ∈ A with |x0 − a| < δ we have |f(x0)− f(a)| < ε.
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Proof. The equivalence of (i) and (ii) follows from Proposition 5.1.4. The equivalence of (i)
and (iii) follow from Definition 5.1.1 and Definition 5.1.8.

As before, Proposition 5.1.10 enables us to use the machinery of Chapter 3 to obtain results
on continuous functions.

Corollary 5.1.11. Let f : A→ R and g : A→ R be real-valued functions with domain A ⊂ R.
Assume that f and g are continuous in x0 ∈ A. Then the following properties hold:

(i) for real values c, d ∈ R the function cf + dg is continuous in x0;

(ii) the function fg is continuous in x0;

(iii) assuming that ∀x ∈ A we have g(x) ̸= 0, then the function f
g
is continuous in x0;

Exercise 5.1.12. (i) Give a proof of Corollary 5.1.11.

(ii) Assuming the conditions of Corollary 5.1.11. Show that the functions max(f, g) and
min(f, g) are continuous at x0. Here max(f, g) : A → R is the function defined by
max(f, g)(a) = max(f(a), g(a)) for a ∈ A, and similarly for min(f, g).

Exercise 5.1.13. Assume that f : A → R with domain A ⊂ R is continuous at x0 ∈ A, and
assume that g : B → R and that f(A) ⊂ B. Moreover, assume that f is continuous at x0 ∈ A
and that g is continuous in f(x0) ∈ B. Show that the composition g ◦f : A→ R is continuous
in x0. Hint: use Proposition 5.1.10(ii).

The following result of Theorem 5.1.14 is important as it will give the definition of contin-
uous functions in a more general context in the later course on Topology.

Theorem 5.1.14. The function f : A→ R, A ⊂ R, is continuous if and only if for any open
set U ⊂ R its inverse image f−1(U) is an open set relative to A.

Note that f−1(U) is an open set relative to A means that f−1(U) = V ∩A for an open set
V ⊂ R, see Section 4.2, in particular Proposition 4.2.5. Since complements of open sets are
closed sets, and taking inverse image and complements commute, see Section 2.3, the following
corollary follows.

Corollary 5.1.15. The function f : A → R, A ⊂ R, is continuous if and only if for any
closed set U ⊂ R its inverse image f−1(U) is a closed set relative to A.

Proof of Theorem 5.1.14. Assume that f is continuous, and take U ⊂ R an open set. Take
x ∈ f−1(U), or f(x) ∈ U . Since U is open, ∃ ε > 0 with Nε(f(x)) ⊂ U . Using that f is
continuous at x ∈ A we find δ > 0 so that

|x− a| < δ and a ∈ A =⇒ |f(x)− f(a)| < ε

which we can rephrase as

a ∈ Nδ(x) ∩ A =⇒ f(a) ∈ Nε(f(x)) ⊂ U
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which gives Nδ(x) ∩ A ⊂ f−1(U). So f−1(U) is open relative to the domain A.
Conversely, assume that the inverse image of any open set U is open. Take x ∈ A and

ε > 0 arbitrary, and consider the open set U = Nε(f(x)). Then x0 ∈ f−1(U), and since
f−1(U) is open with respect to A, there exists δ > 0 so that Nδ(x)∩A ⊂ f−1(Nε(f(x)). This
means that for a ∈ Nδ(x0) ∩ A, i.e. any a ∈ A with |x − a| < δ, we have f(a) ∈ Nε(f(x)),
i.e. that |f(a) − f(x)| < ε. So f is continuous in x, and since x ∈ A was arbitrary, f is
continuous.

Exercise 5.1.16. It is possible to restricted the open sets U in Theorem 5.1.14 to half inter-
vals.

Show that the equivalence of Theorem 5.1.14 and Corrollary 5.1.15 can be extended to be
equivalent to the following conditions:

(i) for all c ∈ R the sets

Uc = f−1((c,∞)) = {a ∈ A | f(a) > c}, Lc = f−1((−∞, c)) = {a ∈ A | f(a) < c}

are relatively open with respect to A,

(ii) for all c ∈ R the sets

Vc = f−1([c,∞)) = {a ∈ A | f(a) ≥ c}, Mc = f−1((−∞, c]) = {a ∈ A | f(a) ≤ c}

are relatively closed with respect to A.

So, show that f : A → R, A ⊂ R, is continuous if and only if (i) holds and if and only if (ii)
holds.

5.2 Properties of continuous functions

Continuous functions on a bounded closed interval have a series of additional interesting
properties. By the Heine-Borel Theorem 4.3.3 we know that a bounded and closed interval
is a sequentially compact set, and a number of results in this section can be generalised to
continuous functions on sequentially compact sets, see Section 5.5.

Definition 5.2.1. The function f : A→ R, A ⊂ R, is called bounded from above if its range
or image f(A) ⊂ R is bounded from above as in Definition 2.2.1. Similarly, f : A → R,
A ⊂ R, is called bounded from below if its range or image f(A) ⊂ R is bounded from below.
And f : A→ R, A ⊂ R, is called bounded if its range or image f(A) ⊂ R is bounded.

Using Definition 2.2.1 we see that f : A→ R is bounded from above if

∃M ∈ R ∀ a ∈ A f(a) ≤M

and f : A→ R is bounded from below if

∃M ∈ R ∀ a ∈ A f(a) ≥M
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and f : A→ R is bounded if

∃M ∈ R ∀ a ∈ A |f(a)| ≤M.

Lemma 5.2.2. Let f : [a, b] → R, a < b, be a continuous function, then f is bounded.

Remark 5.2.3. It is important to notice that it is essential in Lemma 5.2.2 that the interval
[a, b] is sequentially compact. Please try to find explicit examples of unbounded continuous
functions on domains such as e.g. (0, 1] and on [0,∞).

The proof of Lemma 5.2.2 is very similar to part of the proof of the Heine-Borel Theorem
4.3.3.

Proof of Lemma 5.2.2. Assume f is not bounded, then for all n ∈ N we have

An = {x ∈ [a, b] | |f(x)| > n} ≠ ∅

Now we pick an ∈ An for each n ∈ N, and we obtain a sequence (an)n∈N in the domain
[a, b]. Since [a, b] is a bounded set, the Bolzano-Weierstrass Theorem 3.2.12 gives a convergent
subsequence (anj

)n∈N with limj→∞ anj
= x0 ∈ [a, b], since [a, b] is a closed set.

Because f is continuous, it is continuous at x0. By Proposition 5.1.10 we know that the
image sequence (f(anj

))j∈N is a convergent sequence. In particular, (f(anj
))j∈N is a bounded

sequence by Proposition 3.2.8. But, by construction, we have

∀j ∈ N |f(anj
)| > nj ≥ j

and this shows that the sequence (f(anj
))j∈N is unbounded. This is the required contradiction.

Exercise 5.2.4. Let f : A → R, with domain A ⊂ R a sequentially compact set, be a
continuous function. Show that f is bounded. Hint: mimick the proof of Lemma 5.2.2 using
the Heine-Borel Theorem 4.3.3.

Definition 5.2.5. Let f : A→ R, A ⊂ R, be a function. We say that f attains its maximum
“maximum” in x0 ∈ A if

∀ a ∈ A f(a) ≤ f(x0).

Similarly, f attains its minimum “minimum” in x0 ∈ A if

∀ a ∈ A f(a) ≥ f(x0).

A maximum or minimum as in Definition 5.2.5 is also called a global maximum or a global
minimum.

Proposition 5.2.6. Let f : [a, b] → R, a < b, be a continuous function, then there exists
x0 ∈ [a, b] such that f attains its maximum at x0.
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Proof. Consider the range f([a, b]), then by Lemma 5.2.2 this set is bounded. Since it is also
not empty –it contains f(a) ∈ f([a, b])– the supremum exists by Theorem 2.2.4, so that we
can define m = sup(f([a, b])). We have to prove the existence of x0 ∈ [a, b] with f(x0) = m.

We do this by establishing x0 as a limit of a suitable convergent sequence. In order to
construct the sequence, we consider for any n ∈ N the set

An = {x ∈ [a, b] | m− 1

n+ 1
< f(x) ≤ m}.

Then An ̸= ∅ for all n ∈ N, since if it would be empty the element m− 1
n+1

would be an upper
bound for f(A) smaller than its supremum. Pick an ∈ An for each n ∈ N, and consider the
sequence (an)n∈N. Since [a, b] is a sequentially compact set, by the Heine-Borel Theorem 4.3.3,
this sequence has a convergent subsequence with limit in [a, b], i.e. there exists a subsequence
(anj

)j∈N with limj→∞ anj
= x0 ∈ [a, b]. Then, f being continuous at x0, we have by Proposition

5.1.10 limj→∞ f(anj
) = f(x0) ∈ f(A). By construction we have

∀j ∈ N m− 1

nj + 1
< f(anj

) ≤ m

so that limj→∞m − 1
nj+1

= m and Theorem 3.2.19(vii) show that limj→∞ f(anj
) = m. By

uniqueness of the limit of a sequence, see Exercise 3.2.18, we have f(x0) = m.

Remark 5.2.7. Note that in the proof of Proposition 5.2.6 we have that (f(an))n∈N is a
convergent sequence with limn→∞ f(an) = m. Is it also true that (an)n∈N is a convergent
sequence with limn→∞ an = x0?

Corollary 5.2.8. Let f : [a, b] → R, a < b, be a continuous function, then there exists
x0 ∈ [a, b] such that f attains its minimum at x0.

Exercise 5.2.9. Give a proof of Corollary 5.2.8. For this you can mimick the proof of
Proposition 5.2.6 using the inf(f([a, b])), or you can set up a proof reducing to the statement
of Proposition 5.2.6 by switching to −f .

Exercise 5.2.10. Let f : A→ R be a continuous function, and let A be a sequentially compact
set. Show that f attains its maximum and its minimum.

Theorem 5.2.11 (Intermediate Value Theorem “Tussenwaardestelling”). Let a < b and
assume that f : [a, b] → R is continuous. Assume y ∈ R is between f(a) and f(b), i.e.
y ∈ [f(a), f(b)] or y ∈ [f(b), f(a)], then there exists x0 ∈ [a, b] with f(x0) = y.

Proof. We assume that f(a) ≤ f(b). In case f(a) = f(b), we take x0 = a. So we assume that
f(a) < f(b), and we also assume f(a) < y < f(b), since otherwise we can take x0 = a (in case
f(a) = y) or x0 = b (in case f(b) = y). We now define the set

A = {x ∈ [a, b] | f(x) < y} ⊂ [a, b]
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then A is a bounded set, and A is non-empty, since a ∈ A. We claim that x0 = sup(A) meets
the criteria. This will follow from the following two observations: f(x0) ≤ y and f(x0) ≥ y.
Observe that x0 < b, or see Exercise 5.2.12.

Firstly, we show that f(x0) ≤ y. Observe that for n ∈ N, x0 − 1
n+1

is not an upper bound,
so there exists an ∈ A with

x0 −
1

n+ 1
< an ≤ x0.

In particular, (an)n∈N is a convergent sequence and limn→∞ an = x0 by Theorem 3.2.19(vii).
Since f is continuous, limn→∞ f(an) = f(x0), and since for all n we have an ∈ A it follows
that f(an) < y, so that by Theorem 3.2.19(vi) we have that f(x0) ≤ y.

Secondly, we show that f(x0) ≥ y. Since x0 < b we consider the sequence (x0 +
1
n
)∞n=n0

for
n0 ∈ N so that x0 +

1
n0

≤ b. Then x0 +
1
n
̸∈ A for all n ≥ n0, so that f(x0 +

1
n
) ≥ y. Since

limn→∞ x0 +
1
n
= x0, the continuity of f gives limn→∞ f(x0 +

1
n
) = f(x0), and by Theorem

3.2.19(vi), we find f(x0) ≥ y.

Exercise 5.2.12. In the proof of Theorem 5.2.11 we need to show that x0 = sup(A) < b in
case f(a) < y < f(b). By construction sup(A) ≤ b. We show that sup(A) = b leads to a
contradiction.

(i) Show that there is a sequence (an)n∈N with ∀n ∈ N an ∈ A and limn→∞ an = b.

(ii) Use the continuity of f at b and y < f(b) to obtain a contradiction.

Corollary 5.2.13. Let f : [a, b] → R, a < b, be a continuous function, and let m and l be
the supremum and infimum of the image of f, i.e. m = sup f([a, b]), l = inf f([a, b]). Then
f([a, b]) = [l,m].

Exercise 5.2.14. Combine Proposition 5.2.6, Corollary 5.2.8 and Theorem 5.2.11 to prove
Corollary 5.2.13. Hint: find c, d ∈ [a, b] with f(c) = l and f(d) = m, and restrict f to the
interval [c, d] if c < d and apply Theorem 5.2.11 to f restricted to [c, d].

In the case of Corollary 5.2.13 we cannot generalise to a continuous function f : A → R
on a sequentially compact set A. In this case the important property is the connectedness of
the interval instead of the sequentially compactness of the domain, see Exercise 4.4.6.

5.3 Uniformly continuous functions

Definition 5.3.1. The function f : A → R, A ⊂ R, is called uniformly continuous “uniform
continu” if

∀ ε > 0 ∃ δ > 0 ∀x, a ∈ A |x− a| < δ =⇒ |f(x)− f(a)| < ε.

Comparing Definition 5.1.8 with Definition 5.3.1 we see that a uniform continuous function
is continuous. The term uniformly can be explained as follows: in Definition 5.1.8 the δ > 0
depends on both x ∈ A and on ε > 0, whereas Definition 5.3.1 the δ > 0 only depends on
ε > 0, so this is uniform in x ∈ A.
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Lemma 5.3.2. Assume that f : A → R, A ⊂ R, is a uniformly continuous function. Let
(an)n∈N be a Cauchy sequence in A, then (f(an))n∈N is a Cauchy sequence.

Note that Cauchy sequences in R are convergent sequences by Theorem 3.3.11. Note that
in Lemma 5.3.2 it is not required that the limit of the Cauchy seqeuence in the domain A is
contained in the domain A. The limit is contained in the closure A of the domain.

Proof. We need to prove that

∀ ε > 0 ∃N ∈ N ∀n,m ≥ N |f(an)− f(am)| < ε.

Pick ε > 0 arbitrarily, then, by Definition 5.3.1, ∃ δ > 0 so that for all x, a ∈ A with |x−a| < δ
we have |f(x) − f(a)| < ε. Since (an)n∈N is a Cauchy sequence, there exists N ∈ N so that
for all n,m ≥ N we have |an − am| < δ. So for this N we have for all n,m ≥ N that
|f(an)− f(am)| < ε.

Exercise 5.3.3. Show that f : (0, 1) → R defined by f(x) = 1
x
is not uniformly continuous.

Corollary 5.3.4. Assume that f : A → R, A ⊂ R, is a uniformly continuous function, and
that A is bounded, then f(A) is bounded.

Exercise 5.3.5. Give a proof of Corollary 5.3.4 using Lemma 5.3.2 and the boundedness of
Cauchy sequences, see Exercise 3.3.3. Hint: argue by contradiction as in the proof of Lemma
5.2.2.

The analogue of Proposition 5.1.10 is Proposition 5.3.8. For this characterisation we need
the notion of equivalent sequences.

Definition 5.3.6. The sequences (an)n∈N and (bn)n∈N are equivalent sequences “equivalente
rijen” if the sequence (an − bn)n∈N is convergent and limn→∞ an − bn = 0.

So Definition 5.3.6 means

∀ ε > 0 ∃N ∈ N ∀n ≥ N |an − bn| < ε.

Exercise 5.3.7. (i) Give an example of equivalent sequences (an)n∈N and (bn)n∈N which are
both divergent.

(ii) Show that if (an)n∈N and (bn)n∈N are equivalent sequences, and (an)n∈N is a convergent
sequence with limn→∞ an = L, then (bn)n∈N is a convergent sequence with limn→∞ bn = L.

(iii) Conclude that equivalent sequences (an)n∈N and (bn)n∈N are either both convergent (and
with the same limit) or both divergent.

(iv) Assume that the sequences (an)n∈N and (bn)n∈N are equivalent sequences. Consider
the subsequences (anj

)j∈N and (bnj
)j∈N which are subsequences for the same increasing

function f : N → N, nj = f(j). Show that (anj
)j∈N and (bnj

)j∈N are equivalent series.
Can we adapt this statement to allow for different functions labelling the subsequence?
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Proposition 5.3.8. Let f : A→ R, A ⊂ R, be a function. Then the following are equivalent:

(i) f is uniformly continuous,

(ii) for each pair of equivalent sequences (an)n∈N and (bn)n∈N in A, the sequences (f(an))n∈N
and (f(bn))n∈N are equivalent sequences.

The proof of Proposition 5.3.8 is in certain respects similar to the proof of Proposition
5.1.10. In Exercise 5.3.9 you are asked to fill in the details of the proof of Proposition 5.3.8.

Exercise 5.3.9. We indicate a proof of Proposition 5.3.8.

(i) Show that (i) implies (ii) by writing out the definitions mimicking the proof of Lemma
5.3.2.

(ii) To show that (ii) implies (i) argue by contradiction. Use that f not uniformly continuous
means that

∃ ε0 > 0 ∀ δ > 0 ∃ aδ, bδ ∈ A |aδ − bδ| < δ and |f(aδ)− f(bδ)| ≥ ε0.

As in the proof of Proposition 5.1.10 take δ = 1
n+1

, n ∈ N, and construct sequences
(an)n∈N and (bn)n∈N establishing a contradiction with (ii).

Theorem 5.3.10. Assume that f : [a, b] → R, a < b, is continuous, then f is uniformly
continuous.

Theorem 5.3.10 can be extended to a continuous function f : A → R on a sequentially
compact set. Theorem 5.3.10 has an easier proof using the definition of compactness as in
Exercise 4.4.8, see Exercise 5.5.15. For completeness we give the proof using the Heine-Borel
Theorem 4.3.3 for sequentially compact sets.

Proof. We use a contradiction, so we assume that f is not uniformly continuous. By Propo-
sition 5.3.8 there exists two equivalent sequences (xn)n∈N, (yn)n∈N in the domain [a, b] so that
the images (f(xn))n∈N, (f(yn))n∈N are not equivalent, i.e. the sequence (f(xn) − f(yn))n∈N
does not converge to 0. This means that

∃ ε0 > 0 ∀N ≥ 0 ∃n ≥ N |f(xn)− f(yn)| ≥ ε0.

So we have a subsequence (f(xnj
)− f(ynj

))j∈N with

∀ j ∈ N |f(xnj
)− f(ynj

)| ≥ ε0. (5.3.1)

(Explain how to construct this subsequence.)
Since [a, b] is closed and bounded, it is sequentially compact by the Heine-Borel Theorem

4.3.3, so that we know that the sequence (xnj
)j∈N has a convergent subsequence, which we

denote by (xnjk
)k∈N;

lim
k→∞

xnjk
= L ∈ [a, b].
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But then we also have
lim
k→∞

ynjk
= L ∈ [a, b]

by Exercise 5.3.7(ii) and (iv), since the subsequences (xnjk
)k∈N and (ynjk

)k∈N are equivalent
sequences. By the continuity of f we find that

lim
k→∞

f(xnjk
) = f(L) = lim

k→∞
f(ynjk

)

and thus
lim
k→∞

f(xnjk
)− f(ynjk

) = 0,

which contradicts (5.3.1).

5.4 Convergence of sequences of functions

We now consider sequences of functions defined on a fixed domain A.

Definition 5.4.1. Assume that for each n ∈ N we have a function fn : A → R and that we
have a function f : A → R. Then the sequence (fn)n∈N of functions converges pointwise
“convergeert puntsgewijs” to f if for all x ∈ A the sequence (fn(x))n∈N is convergent and

∀x ∈ A lim
n→∞

fn(x) = f(x).

We say limn→∞ fn = f with pointwise convergence.

Example 5.4.2. Take the function fn : [0, 1] → R defined by fn(x) = xn. Then we see that,
use Exercise 3.4.2,

lim
n→∞

fn(x) =

{
0, 0 ≤ x < 1

1, x = 1

so that, even though all the fn’s are continuous functions, the limit function is not continuous.
So pointwise convergence is too weak to preserve the notion of continuity.

Definition 5.4.3. Assume that for each n ∈ N we have a function fn : A → R and that we
have a function f : A → R. Then the sequence (fn)n∈N of functions converges uniformly
“convergeert uniform” to f if

∀ ε > 0 ∃N ∈ N ∀n ≥ N ∀x ∈ A |fn(x)− f(x)| < ε.

We say limn→∞ fn = f uniformly, or with uniform convergence.
If we reformulate Definition 5.4.1 as in Definition 5.4.3 we get

∀x ∈ A ∀ ε > 0 ∃N ∈ N ∀n ≥ N |fn(x)− f(x)| < ε,

and we see that in Definition 5.4.1 the N will in general depend on both x ∈ A and on ε > 0,
whereas in Definition 5.4.3 the N will only depend on ε > 0 and works for arbitrary x ∈ A.
You should check that the sequence in Example 5.4.2 does not converge uniformly.

The importance of uniform convergence of functions, is that it does preserve continuity in
the limit. This is the content of Theorem 5.4.4.
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Theorem 5.4.4. Assume that limn→∞ fn = f uniformly and that for all n ∈ N the function
fn : A→ R is continuous. Then f : A→ R is continuous.

Note that Theorem 5.4.4 shows that the convergence in Example 5.4.2 is not uniform.

Proof. The proof depends on the inequality

|f(x)− f(y)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(y)| (5.4.1)

which holds for all x, y ∈ A and for all n ∈ N. Now take ε > 0 arbitrarily, then, since the
convergence is uniform, we have N ∈ N so that for all n ≥ N and for all x ∈ A we have

|f(x)− fn(x)| <
1

3
ε.

We take n = N in (5.3.1), so that

|f(x)− f(y)| ≤ |f(x)− fN(x)|+ |fN(x)− fN(y)|+ |fN(y)− f(y)| < 2

3
ε+ |fN(x)− fN(y)|

and next we use the continuity of f at x to find δ > 0 so that

∀ y ∈ A |x− y| < δ =⇒ |fN(x)− fN(y)| <
1

3
ε.

Plugging this in, we see that ∃ δ > 0 so that |x− y| < δ implies |f(x)− f(y)| < ε. Since ε > 0
is arbitrary, we have shown that f is continuous at x ∈ A. Since x ∈ A is arbitrary, the limit
function f : A→ R is continuous.

For sequences, convergence is equivalent to being a Cauchy sequence, see Theorem 3.3.11.
Theorem 5.4.5 is the analogue of this statement for a sequence of functions converging uni-
formly.

Theorem 5.4.5. Let A ⊂ R and for all n ∈ N we have a function fn : A → R. Then the
sequence (fn)n∈N converges uniformly if and only if

∀ ε > 0 ∃N ∈ N ∀m,n ≥ N ∀x ∈ A |fn(x)− fm(x)| < ε.

Exercise 5.4.6. The proof of Theorem 5.4.5 can be modelled on the proof of Theorem 3.3.11.

(i) First assume that limn→∞ fn = f uniformly. Apply Definition 5.4.3 with 1
2
ε and use the

triangle inequality

|fn(x)− fm(x)| ≤ |fn(x)− f(x)|+ |f(x)− fm(x)|

to prove the statement.

(ii) Conversely, assume the condition of Theorem 5.4.5. Conclude that for x ∈ A the se-
quence (fn(x))n∈N is a Cauchy sequence, and, by Theorem 3.3.11, a convergent sequence.
So limn→∞ fn(x) = f(x), and we have pointwise convergence limn→∞ fn = f . It remains
to show that the convergence is uniform. Show that this is true by showing that one can
take the limit m→ ∞ in the condition of Theorem 5.4.5.
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5.5 Exercises

Exercise 5.5.1. Assume that A ⊂ R and that a is a limit point of A. Assume that f : A \
{a} → R satisfies limx→a;x∈A\{a} f(x) = L. Define g : A→ R by g(a) = L and g(x) = f(x) for
all x ∈ A \ {a}. Show that g is continuous in a.

Exercise 5.5.2. Let a < b and let f : (a, b) → R be a function and let c ∈ [a, b]. We define
the left limit as

lim
x↗c

f(x) = lim
x→c;x∈(a,c)

f(x)

and similarly we define the right limit

lim
x↘c

f(x) = lim
x→c;x∈(c,b)

f(x).

Show that for c ∈ (a, b) the limit limx→c;x∈(a,b)\{c} f(x) exists if and only if the left and right
limit exist and are equal. In that case

lim
x→c;x∈(a,b)\{c}

f(x) = lim
x↘c

f(x) = lim
x↗c

f(x).

Exercise 5.5.3. Let a < b and let f : (a, b) → R be a function. We say that f is Lipschitz
continuous “Lipschitzcontinu” if ∃M ∈ R we have |f(x)−f(y)| ≤M |x−y| for ∀x, y ∈ (a, b).

(i) Show that a Lipschitz continuous function is uniformly continuous.

(ii) Show that f : R → R, f(x) = |x| is Lipschitz continuous.

Exercise 5.5.4. For a function f : A → R on a domain A ⊂ R an element x ∈ A is a fixed
point “vast punt” or “dekpunt” if f(x) = x.

(i) Let f : [0, 1] → R be a continuous function with f(0) = 1 and f(1) = 0. Show that f
has a fixed point in (0, 1).

(ii) Let f : [0, 1] → [0, 1] be a continuous function. Show that f has a fixed point.

Exercise 5.5.5. Let f : [0, 1] → R be a continuous function with f(0) = f(1). Show that
there exists x ∈ [0, 1

2
] with f(x) = f(x+ 1

2
).

Exercise 5.5.6. A polynomial “polynoom” or “veelterm” p is a function of the form p(x) =∑N
n=0 anx

n, where we assume aN ̸= 0. Then we say that the polynomial p is of degree “graad”
N . Show that a polynomial is continuous. Hint: e.g. by induction on the degree N using
Corollary 5.1.11.

Exercise 5.5.7. Assume that f : (0,∞) → R and L ∈ R.

(i) Give a definition of lim
x→∞

f(x) = L.
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(ii) Show that if f is an increasing function, then limx→∞ f(x) = L if and only f is bounded,
and in that case L = supx∈[0,∞) f(x). Hint: compare Theorem 3.2.9.

(iii) Assume that limx→∞ f(x) exists, show that limx↘0 f(
1
x
) exists and

lim
x→∞

f(x) = lim
x↘0

f(
1

x
)

using the notation of Exercise 5.5.2.

Exercise 5.5.8. We assume that f : R → R satisfies the addition formula f(x+ y) = f(x) +
f(y) for all x, y ∈ R. Assume that f is continuous and show that there exists c ∈ R with
f(x) = cx.

Exercise 5.5.9. Give an alternative proof for the Intermediate Value Theorem 5.2.11 using
subdivision of the interval [a, b] following the proof of the Bolzano-Weierstrass Theorem 3.2.12
as in Exercise 3.4.9.

Exercise 5.5.10. Assume that fn : A→ R are bounded functions labelled by n ∈ N. Assume
moreover, that limn→∞ fn = f uniformly. Show that f : A→ R is a bounded function.

Exercise 5.5.11. Assume that fn : A → R are uniformly continuous functions labelled by
n ∈ N. Assume moreover, that limn→∞ fn = f uniformly. Show that f : A→ R is a uniformly
continuous function. Hint: analyse the proof of Theorem 5.4.4.

Exercise 5.5.12. Assume that f : A→ R is uniformly continuous.

(i) Assume that x0 ∈ A \A, show that lima→x0,a∈A f(x) exists. Hint: use Lemma 5.3.2 and
Theorem 3.3.11 to prove this, and make sure that the limit is independent of the choice
of the Cauchy sequence.

(ii) Show that there exists a continuous function g : A→ R extending f , i.e. g|A = f .

(iii) Show that the continuous function g : A → R extending f as in (ii) is uniquely deter-
mined.

Exercise 5.5.13. Prove the following generalisation of Lemma 5.2.2, see also Exercise 5.2.4:
let f : A → R be a continuous function with A ⊂ R a compact set. Show that f is bounded.
Hint: use Exercise 4.4.8 for the definition of compact set.

Exercise 5.5.14. Corollary 5.2.13 can be stated more generally as follows. Let A ⊂ R be a
compact set. Let f : A → R be continuous, then f(A) is a compact set. Give a proof of this
statement using the definition of compact set as in Exercise 4.4.8. Hint: use Theorem 5.1.14.

Exercise 5.5.15. Theorem 5.3.10 can be generalised to the following statement. Let A ⊂ R
be a compact set, and let f : A → R be a continuous function. Show that f is a uniformly
continuous function. Hint: use the definition of Exercise 4.4.8, and proceed as in Exercise
5.5.14.
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Exercise 5.5.16. Assume a < b and that f : [a, b] → R is a continuous strictly increasing
function.

(i) Show that f : [a, b] → [f(a), f(b)] is a bijection.

(ii) Show that f−1 : [f(a), f(b)] → [a, b] is a strictly increasing function.

(iii) Show that f−1 : [f(a), f(b)] → [a, b] is a continuous function.

(iv) Show that f : [0,∞) → R, f(x) = xn, n ∈ N, is a continuous strictly increasing function
on each interval [0, R], R > 0. Hint: see Exercise 5.5.6 for continuity and you can prove
that f is strictly increasing by induction on n.

(v) Conclude that for x ≥ 0 the root n
√
x is uniquely defined.

(vi) Show that f : [0,∞) → R, f(x) = n
√
x is a continuous strictly increasing function.

Exercise 5.5.17. Let A ⊂ R, and consider a complex valued function “complexwaardige
functie” f : A→ C. Then f is continuous at x ∈ A if

∀ ε > 0 ∃ δ > 0 |x− y| < δ ∧ y ∈ A =⇒ |f(x)− f(y)| < ε,

where we use the modulus for complex numbers as in Section 2.1. And f : A→ C is continuous
if f is continuous at all points of the domain A.

(i) Show that the complex function f : A → C is continuous if and only if its imaginary
and real parts are continuous functions on A, i.e. ℑf : A → R, ℜf : A → R defined by
ℑf(x) = ℑ(f(x)), ℜf(x) = ℜ(f(x)) are continuous (real valued) functions.

(ii) We say that B ⊂ C is a bounded complex set “begrensde complexe verzameling” if
there exists R ∈ R so that B ⊂ {z ∈ C | |z| ≤ R}. Show the following analogue of
Lemma 5.2.2: let f : A→ C be a continuous function and assume that the domain A is
sequentially compact, then f is bounded, i.e. f(A) ⊂ C is a bounded set.

(iii) Note that we can define a uniformly continuous function f : A → C as in Definition
5.3.1 using the modulus. Prove the analogue of Theorem 5.3.10: assume f : A → C be
a continuous function on a sequentially compact set, then f is uniformly continuous.

(iv) Having a sequence of functions fn : A → C, n ∈ N, on the same domain A ⊂ R, we can
copy the Definition 5.4.3 to the situation of complex valued functions. State and prove
the analogues of Theorem 5.4.4 and Theorem 5.4.5.

(v) Are there theorems in Chapter 5 which have no analogue for complex valued functions?
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Chapter 6

Differentiable functions

In this chapter we discuss the notion of the derivative of a function. Differentiability is related
to having a good linear approximation, and we extend this to higher order differentiability and
Taylor polynomial approximation. There is an intimate connection between derivatives and
extremal values of functions, which is expressed in Rolle’s Theorem 6.2.4 and its important
consequence, the Mean Value Theorem 6.2.5. We discuss the relation between differentiability
and inverse functions in the Inverse Function Theorem 6.3.1.

6.1 Differentiable functions

Definition 6.1.1. Let f : A → R be a function, and assume x0 ∈ A is a limit point of A.
Then f is differentiable at x0 “differentieerbaar in x0” if the limit

lim
x→x0

x∈A\{x0}

f(x)− f(x0)

x− x0

exists. In that case the limit is denoted by f ′(x0), and this is called the derivative of f at x0
“afgeleide van f in x0”.

Remark 6.1.2. (i) Requiring that x0 is a limit point of the domain A of f , means that we
cannot define the derivative of a function in a point of the domain which is not a limit point,
i.e. the derivative is not defined in isolated points of the domain.
(ii) By Corollary 5.1.5(i) the derivative of f at x0 is uniquely defined.
(iii) Differentiability of a function f at a point x0 is a local property, which follows from
the fact that limits of functions only depend on local behaviour, see Lemma 5.1.2. This is
formalised in Exercise 6.1.3

Exercise 6.1.3. Assume that f : A → R is a function, x0 ∈ A is a limit point of A and that
f is differentiable at x0. Let Y ⊂ A and assume that x0 ∈ Y is a limit point of Y . Show
that the restriction f |Y : Y → R is differentiable at x0 and that (f |Y )′(x0) = f ′(x0). Is the
converse of this statement valid?

57



58 Chapter 6: Differentiable functions

We reformulate the differentiablity in terms of approximation by a linear function. This is
known as Newton’s approximation, and corresponds to the first order Taylor approximation,
see Section 6.4.

Proposition 6.1.4 (Newton approximation). Let f : A → R be a function and assume that
x0 ∈ A is a limit point of A. Then the following statements are equivalent:

(i) f is differentiable at x0 with derivative L;

(ii) we have ∀ ε > 0 ∃ δ > 0

|x− x0| < δ ∧ x ∈ A =⇒ |f(x)−
(
f(x0) + L(x− x0)

)
| ≤ ε|x− x0|.

Note that we use ≤ in (ii) instead of < in order to make sure that the estimate is also
valid for x = x0, which is the point excluded in the limit in Definition 6.1.1.

Proof. We just write out the definitions. So (i) is equivalent to

lim
x→x0

x∈A\{x0}

f(x)− f(x0)

x− x0
= L ⇐⇒

∀ ε > 0 ∃ δ > 0 0 < |x− x0| < δ ∧ x ∈ A =⇒
∣∣∣f(x)− f(x0)

x− x0
− L

∣∣∣ < ε

Now we can replace < by ≤ in the last estimate. Multiplying the inequality by (x − x0) we
see that the inequality is equivalent to

|f(x)− f(x0)− L(x− x0)| ≤ ε|x− x0|

for x ∈ A with 0 < |x − x0| < δ. Since it is trivially valid for x = x0, we have obtained the
result.

Exercise 6.1.5. Use Proposition 6.1.4 to show that the functions f : R → R and g : R → R
defined by f(x) = c and g(x) = x are differentiable in x0 ∈ R. Determine f ′(x0) and g

′(x0).

Corollary 6.1.6. Let f : A → R be a function, and x0 ∈ A a limit point of A. Assume that
f is differentiable in x0. Then f is continuous in x0.

Proof. Using the Newton approximation of Proposition 6.1.4 we see that for all ε′ > 0 we can
find δ′ > 0 so that for all x ∈ A with |x− x0| < δ′ we have

|f(x)− f(x0)− L(x− x0)| ≤ ε′|x− x0| ⇐⇒
−ε′|x− x0|+ L(x− x0) ≤ f(x)− f(x0) ≤ ε′|x− x0|+ L(x− x0)

so that |f(x)− f(x0)| ≤ (ε′ + |L|)|x− x0|.
To show that f is continuous at x0, we use Proposition 5.1.10(iii). So pick ε > 0 arbitrary,

then we set ε′ = 1 and we take the corresponding δ′ > 0. We define δ = min(δ′, ε
2(1+|L|)), then

|f(x)− f(x0)| ≤ (1 + |L|)|x− x0| ≤ (1 + |L|)δ ≤ 1

2
ε < ε.
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Exercise 6.1.7. Give a proof of Corollary 6.1.6 using Definition 6.1.1 directly. Hint: show
that

lim
x→x0

x∈A\{x0}

f(x)− f(x0) =
(

lim
x→x0

x∈A\{x0}

f(x)− f(x0)

x− x0

)(
lim
x→x0

x∈A\{x0}

x− x0

)
Exercise 6.1.8. Show that the function f : R → R, f(x) = |x| is continuous at 0, and that f
is not differentiable at 0. Hint: use Exercise 5.1.12 for the first statement.

There exist continuous functions for which in each point of the domain the derivative does
not exist. The first example was constructed by Weierstrass. The standard construction of
such a function requires series, as discussed in Chapter 8, see Exercise 4 in Appendix A for
an explicit construction.

Next we prove the standard rules for differentation in Theorem 6.1.9.

Theorem 6.1.9. Let f : A → R, g : A → R be functions, let x0 ∈ A be a limit point of A,
and assume that f and g are differentiable at x0. Then

(i) af + bg : A→ R for a, b ∈ R is differentiable in x0 and (af + bg)′(x0) = af ′(x0)+ bg
′(x0)

(sum rule);

(ii) fg : A → R is differentiable in x0 and (fg)′(x0) = f ′(x0)g(x0) + f(x0)g
′(x0) (product

rule);

(iii) additionally assume ∀x ∈ A g(x) ̸= 0, then f
g
: A→ R is differentiable in x0 and(f

g

)′
(x0) =

f ′(x0)g(x0)− f(x0)g
′(x0)

g(x0)2

(quotient rule).

The proof of Theorem 6.1.9 is sketched in Exercise 6.1.10.

Exercise 6.1.10. The proof of Theorem 6.1.9 is based on Definition 6.1.1.

(i) Argue first that in order to prove the sum rule, i.e. Theorem 6.1.9(i), it suffices to prove
the case a ∈ R and b = 0 and the case a = b = 1. Show the first case using

(af)(x)− (af)(x0)

x− x0
= a

f(x)− f(x0)

x− x0

and the second case using

(f + g)(x)− (f + g)(x0)

x− x0
=
f(x)− f(x0)

x− x0
+
g(x)− g(x0)

x− x0

using Corollary 5.1.5.
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(ii) To prove the product rule, i.e. Theorem 6.1.9(ii), use

(fg)(x)− (fg)(x0)

x− x0
=
f(x)g(x)− f(x0)g(x0)

x− x0
=
f(x)− f(x0)

x− x0
g(x) + f(x0)

g(x)− g(x0)

x− x0

and use Corollary 5.1.5 and Corollary 6.1.6.

(iii) To prove the quotient rule, i.e. Theorem 6.1.9(iii), first argue that the general case follows
from the case f(x) = 1 and the product rule and Exercise 6.1.5. For the remaining special
case use (

1
g

)
(x)−

(
1
g

)
(x0)

x− x0
=

−1

g(x)g(x0)

g(x)− g(x0)

x− x0

and use Corollary 5.1.5 and Corollary 6.1.6.

The chain rule of Theorem 6.1.11 is a very important result, but is a bit harder to prove
and we rely on a reformulation of the Newton approximation of Proposition 6.1.4.

Theorem 6.1.11. Let f : A→ R be a function, x0 ∈ A a limit point of A and assume that f
is differentiable at x0. Moreover, we assume that f(A) ⊂ B, and that g : B → R is a function
and that y0 = f(x0) ∈ B is a limit point of B and that g is differentiable at y0. Then the
composition g ◦ f : A→ R is differentiable at x0 and

(g ◦ f)′(x0) = g′(f(x0)) f
′(x0).

Before starting the proof of the chain rule of Theorem 6.1.11, we rewrite the Newton
approximation of Proposition 6.1.4 as follows. Defining

u : A \ {x0} → R, u(x) =
f(x)− f(x0)

x− x0
− f ′(x0) or f(x)− f(x0) = (x− x0)(f

′(x0)+ u(x))

we see that Proposition 6.1.4 is equivalent to limx→x0;x∈A\{x0} u(x) = 0. We can extend
u : A→ R by defining u(x0) = 0, so that f(x)−f(x0) = (x−x0)(f ′(x0)+u(x)) remains valid,
and we have limx→x0;x∈A u(x) = 0, i.e. u is continuous at x0.

Proof of Theorem 6.1.11. We define v for g around y0 = f(x0) similarly. So we have

f(x)− f(x0) = (x− x0)(f
′(x0) + u(x)), g(y)− g(y0) = (y − y0)(g

′(y0) + v(y))

and limx→x0;x∈A u(x) = 0, limy→y0;y∈B v(y) = 0, where v : B → R. Now we get

g(f(x))− g(f(x0)) = (f(x)− f(x0))(g
′(y0) + v(f(x)))

= (x− x0)(f
′(x0) + u(x))(g′(y0) + v(f(x))) = (x− x0)(g

′(f(x0)) f
′(x0) + U(x))

with U(x) = u(x)g′(f(x0)) + v(f(x))f ′(x0) + u(x)v(f(x)). Then U(x0) = 0, since u(x0) = 0
and v(f(x0)) = v(y0) = 0.
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It remains to show that U is continuous at x0. By assumption u is continuous at x0 and v
is continuous at y0. Since f is differentiable at x0, f is continuous at x0 by Corollary 6.1.6. By
Exercise 5.1.13, the composition A ∋ x 7→ v(f(x)) ∈ R is continuous at x0. Corollary 5.1.11
shows that U is continuous at x0. By the remark before starting the proof, this is equivalent
to the Newton approximation, so Proposition 6.1.4 shows that g ◦ f is differentiable in x0 and
(g ◦ f)′(x0) = g′(f(x0)) f

′(x0).

The proof of Theorem 6.1.11 obscures the roles of ε and δ in the Newton approximation
of Proposition 6.1.4 a bit. It is an instructive, but tedious, exercise to work out all the details
involving the various ε’s and δ’s.

6.2 Extremal values and the derivative

Recall that in Definition 5.2.5 we have defined the notion of maximum and minimum of
a function. We now refine this to a local maximum and a local minimum of a function.
Sometimes we refer to the maximum and minimum of Definition 5.2.5 as a a global maximum
and a global minimum.

Definition 6.2.1. Let f : A → R be a function, then f has a local maximum in x0 ∈ A “f
heeft een lokaal maximum in x0 ∈ A” if there exists δ > 0 so that

∀x ∈ A ∩ (x0 − δ, x0 + δ) f(x) ≤ f(x0)

and f has a local minimum in x0 “f heeft een lokaal minimum in x0 ∈ A” if there exists δ > 0
so that

∀x ∈ A ∩ (x0 − δ, x0 + δ) f(x) ≥ f(x0).

Note that we can rephrase Definition 6.2.1 as follows: the function f : A → R has a local
maximum at x0 if and only if ∃ δ > 0 so that f |A∩(x0−δ,x0+δ) has a (global) maximum in the
sense of Definition 5.2.5. A similar statement holds for the local minimum.

Proposition 6.2.2. Assume that the function f : A→ R is differentiable at x0 ∈ A, and that
f attains a local maximum or a local minimum at x0. If x0 ∈ A◦, i.e. x0 is an interior point
of the domain, then f ′(x0) = 0.

Proof. We assume that f attains a local maximum. The case of a local minimum can be
proved similarly or we can reduce to this case by considering −f .

Since x0 is an interior point of A, we can assume that there exists δ > 0 so that (x0 −
δ, x0 + δ) ⊂ A, and then we see that numerator of

f(x)− f(x0)

x− x0

is always non-positive, f(x)− f(x0) ≤ 0 for all |x− x0| < δ. Since the limit

lim
x→x0,x∈(x0−δ,x0+δ)\{x0}

f(x)− f(x0)

x− x0
= L
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exists, we can take any sequence (xn)n∈N of elements in (x0 − δ, x0 + δ) \ {x0} converging
to x0 in order to calculate the limit, see Proposition 5.1.4. First take a sequence converging
to x0 for which xn < x0 for all n ∈ N, so that the denominator is negative. It follows that
f(xn)−f(x0)

xn−x0
≥ 0 for all n ∈ N, so that taking the limit shows L ≥ 0 by Theorem 3.2.19(vi).

Similarly, taking a sequence converging to x0 with xn > x0 for all n ∈ N shows similarly that
L ≤ 0. Combining the statements gives L = 0, or f ′(x0) = 0.

Note that the proof makes essential use of the fact that x0 is an interior point of the
domain, and the statement of Proposition 6.2.2 is not valid if we drop this assumption. An
easy example is f : [0, 1] → R, f(x) = x, which has a local maximum at x0 = 1 and the
derivative at 1 is not equal to 0.

Definition 6.2.3. Let f : A → R be a function, then f is called differentiable “differentieer-
baar” if for all x0 ∈ A the function f is differentiable at x0. Then the derivative is defined as
a function f ′ : A→ R.

In general, for a function f : A→ R we can define the derivative as a function f ′ : B → R
where B is the subset of A defined by B = {x0 ∈ A | f differentiable at x0}.

Theorem 6.2.4 (Rolle). Let a < b and g : [a, b] → R be a continuous function. Assume
moreover that g is differentiable on (a, b). If g(a) = g(b), then there exists c ∈ (a, b) with
g′(c) = 0.

Proof. In case g : [a, b] → R is constant, i.e. g(x) = g(a) = g(b) for all x ∈ [a, b], we can take
any c ∈ (a, b), cf. Exercise 6.1.5.

In case g is not constant, it attains a maximum and a minimum by Proposition 5.2.6,
and least one of them is not attained in a or b. So there exists c ∈ (a, b) where g attains a
maximum or a minimum, so that by Proposition 6.2.2 we have g′(c) = 0.

Rolle’s Theorem 6.2.4 has important consequences, the most important one being the
Mean Value Theorem.

Theorem 6.2.5 (Mean Value Theorem “Middelwaardestelling”). Let a < b and assume
f : [a, b] → R is a continuous function, which is differentiable on (a, b). Then there exists
c ∈ (a, b) so that

f(b)− f(a)

b− a
= f ′(c).

Proof. We reduce to Rolle’s Theorem 6.2.4 by considering

g : [a, b] → R, g(x) = f(x)−
(f(b)− f(a)

b− a
(x− a) + f(a)

)
.

Since we modify by a linear function, which is differentiable by Exercise 6.5.1, we see that
g is continuous on [a, b] and differentiable on (a, b) using Theorem 6.1.9. Now g(a) = 0 and
g(b) = 0, so that all conditions of Rolle’s Theorem 6.2.4 are met, and so we find c ∈ (a, b)
with g′(c) = 0. Rewriting in terms of f gives the result.
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The Mean Value Theorem 6.2.5 has a generalisation, which we customarily also call a
theorem. Its importance is not as high as the Mean Value Theorem. The generalisation is
also known as Cauchy’s Mean Value Theorem.

Theorem 6.2.6 (Generalised Mean Value Theorem “Gegeneraliseerde Middelwaardestel-
ling”). Let a < b and assume f : [a, b] → R and g : [a, b] → R are continuous functions,
so that f and g are differentiable on (a, b). Assume g(a) ̸= g(b), and that g′(x) ̸= 0 for all
x ∈ (a, b). Then there exists c ∈ (a, b) so that

f(b)− f(a)

g(b)− g(a)
=
f ′(c)

g′(c)
.

Exercise 6.2.7. Before checking the proof of Theorem 6.2.6, you should check the mistake
in the following ‘proof’. Apply the Mean Value Theorem 6.2.5 to f and to g and conclude

f(b)− f(a)

g(b)− g(a)
=
f(b)− f(a)

b− a

b− a

g(b)− g(a)
=
f ′(c)

g′(c)
.

Proof of Theorem 6.2.6. We reduce to Rolle’s Theorem 6.2.4 by introducing an auxiliary func-
tion h : [a, b] → R defined by

h(x) = (g(x)− g(b))(f(a)− f(b))− (f(x)− f(b))(g(a)− g(b)).

Since h is a linear combination of f and g it is continuous by Corollary 5.1.11 and differentiable
on (a, b) by Theorem 6.1.9. Since h(a) = 0 and h(b) = 0, we find by Rolle’s Theorem 6.2.4 a
c ∈ (a, b) with h′(c) = 0 or

0 = h′(c) = g′(c)(f(a)− f(b))− f ′(c)(g(a)− g(b)).

Since g(a) ̸= g(b) and g′(c) ̸= 0, the result follows.

Note that if we drop the conditions g(a) ̸= g(b) or that g′ is non-zero in Theorem 6.2.6,
we can still conclude the existence of c ∈ (a, b) for which we have

g′(c)(f(a)− f(b)) = f ′(c)(g(a)− g(b)). (6.2.1)

As a corollary we can formulate one of the many versions of l’Hôpital’s rule for limits.

Corollary 6.2.8. Assume that f : (a, b) → R and g : (a, b) → R are continuous and differen-
tiable functions. Let x0 ∈ (a, b) and assume f(x0) = 0 = g(x0) and g

′(x) ̸= 0 for all x ∈ (a, b).
Assume that

lim
x→x0,x∈(a,b)\{x0}

f ′(x)

g′(x)
= L

then

lim
x→x0,x∈(a,b)\{x0}

f(x)

g(x)
= L.
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Proof. First observe that g(x) ̸= 0 for x ∈ (a, b) \ {x0}. Indeed, if g(x) = 0, then g|[x,x0] (in
case x < x0) would satisfy the conditions of Rolle’s Theorem 6.2.4, so that there would exist
c ∈ (x, x0) with g

′(c) = 0, contradicting the assumptions on g.
Then we can apply the Generalised Mean Value Theorem 6.2.6 to get

f(x)

g(x)
=
f(x)− f(x0)

g(x)− g(x0)
=
f ′(c)

g′(c)

for some c strictly between x and x0. Since limx→x0,x∈(a,b)
f ′(x)
g′(x)

= L we know that for any ε > 0

there exists δ > 0 so that |c− x0| < δ and x ∈ (a, b) implies

|f
′(c)

g′(c)
− L| < ε.

So for 0 < |x− x0| < δ and x ∈ (a, b) we have

|f(x)
g(x)

− L| = |f
′(c)

g′(c)
− L| < ε

since |c− x0| < δ as c is between x and x0. This proves limx→x0,x∈(a,b)\{x0}
f(x)
g(x)

= L.

6.3 The inverse function theorem

Theorem 6.3.1 (Inverse Function Theorem “Inversefunctiestelling”). Let f : A→ B, A and
B subsets of R, be a bijection. Let f−1 : B → A be the inverse function. Assume that x0 is a
limit point of A and that f is differentiable at x0 and f ′(x0) ̸= 0. Let y0 = f(x0) and assume
that f−1 is continuous at y0. Then f

−1 is differentiable at y0 and

(f−1)′(y0) =
1

f ′(x0)
.

In case we already know that f−1 is differentiable at y0, then the result follows from the
chain rule, Theorem 6.1.11. Indeed, differentiating the composition f−1 ◦ f at x0 gives

f−1(f(x)) = x =⇒ (f−1)′(f(x0)) f
′(x0) = 1

implying the result.

Proof. Firstly, taking a sequence (xn)
∞
n=1 in A\{x0} converging to x0, it follows by continuity

of f at x0 –Corollary 6.1.6– that limn→∞ f(xn) = f(x0) = y0. Since f(xn) ∈ B for all n, and
by bijectivity f(xn) ̸= f(x0), we see that y0 is a limit point of B.

It remains to show that

lim
y→y0

y∈B\{y0}

f−1(y)− f−1(y0)

y − y0
=

1

f ′(x0)
.
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By Proposition 5.1.4 it suffices to show that for any sequence (yn)
∞
n=1 with yn ∈ B \ {y0} for

all n ≥ 1 and limn→∞ yn = y0 that

lim
n→∞

f−1(yn)− f−1(y0)

yn − y0
=

1

f ′(x0)
.

So we pick any such sequence, and we find xn ∈ A \ {x0} with f(xn) = yn. This gives a
sequence (xn)

∞
n=1 in A \ {x0} by bijectivity. Moreover, since f−1 is continuous at y0 we have

by Proposition 5.1.10

lim
n→∞

xn = lim
n→∞

f−1(yn) = f−1(y0) = x0.

So now we can rewrite

f−1(yn)− f(y0)

yn − y0
=
xn − x0
yn − y0

=
1

yn−y0
xn−x0

=
1

f(xn)−f(x0)
xn−x0

Note that for any n the numerator and denominator of all these fractions are non-zero. Since
the limn→∞

f(xn)−f(x0)
xn−x0

exists and is f ′(x0) ̸= 0, we can apply Theorem 3.2.19(v). This gives

lim
n→∞

f−1(yn)− f(y0)

yn − y0
=

1

limn→∞
f(xn)−f(x0)

xn−x0

=
1

f ′(x0)
.

6.4 Higher order differentiability and Taylor approxi-

mation

We can reformulate the Mean Value Theorem 6.2.5 as

f(x) = f(c) + f ′(t)(x− c),

i.e. we approximate the value of f at x with the constant function f(c) and then we make
an error which is expressed as (x− c) times the derivative at some intermediate point t. We
study this for higher degree polynomials, which we define now.

Definition 6.4.1. Let f : (a, b) → R be a function for which the derivatives f ′, f ′′, f ′′′, until
f (n), for some n ∈ N exist as functions on (a, b). Let c ∈ (a, b), then the Taylor polynomial
of degree n for f at c “Taylorpolynonoom of Taylorveelterm van graad n voor f rond c” is

Tn(x) = Tn(x; f, c) =
n∑

k=0

f (k)(c)

k!
(x− c)k

= f(c) + f ′(c)(x− c) +
1

2
f ′′(c)(x− c)2 +

1

6
f ′′′(c)(x− c)3 + · · ·+ f (n)(c)

n!
(x− c)n
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The case n = 1 for differentiable f gives T1(x; f, c) = f(c)+f ′(c)(x−c) whose graph is the
tangent line to the graph of f in (c, f(c)). Then Proposition 6.1.4 shows how well the linear
Taylor polynomial, i.e. of degree 1, approximates f .

The question to be answered is how well the Taylor polynomial approximates the original
function f .

Theorem 6.4.2 (Taylor approximation “Taylorbenadering”). Assume that f : (a, b) → R has
derivatives up to order n+ 1. Let c ∈ (a, b) and put

f(x) =
n∑

k=0

f (k)(c)

k!
(x− c)k + En(x) = Tn(x; f, c) + En(x; f, c)

then have the following expressions for the remainder En(x) = En(x; f, c). The Cauchy form
of the remainder says that for any p ∈ N, p ≥ 1, there exists t between c and x so that

En(x; f, c) =
f (n+1)(t)

n! p
(x− c)p(x− t)n+1−p.

The case p = n + 1 gives the Lagrange form of the remainder; there exists t between c and x
so that

En(x; f, c) =
f (n+1)(t)

(n+ 1)!
(x− c)n+1

Note that the Lagrange form of the remainder is almost the same as the next term in the
Taylor polynomial except that the n+ 1-th derivative has to be evaluated at an intermediate
point t instead of c. Another form for the remainder in terms of an integral is given in
Corollary 7.4.7.

Corollary 6.4.3. Assume that f : (a, b) → R has derivatives up to order n + 1 and that
f (n+1) : (a, b) → R is bounded by M , then for all x ∈ (a, b)

|f(x)− Tn(x; f, c)| ≤
M

(n+ 1)!
|x− c|n+1.

Remark 6.4.4. Assume that we have two functions defined on some interval (a, b) containing
c ∈ (a, n), then we say that f(x) = O(g(x)) as x→ c if there exists a constant M so that

|f(x)| ≤M |g(x)|, ∀x ∈ (a, b), 0 < |x− c| < δ

for some δ > 0. The O stands for “order”, and the notation was introduced by Landau. It is
customary to drop x, when it is clear from the context, so then one has f = O(g) as x → c.
So we can rephase Corollary 6.4.3 as

f(x) = Tn(x; f, c) +O((x− c)n+1).

Exercise 6.4.5. (i) Assume that f1(x) = O(g1(x)) and f2(x) = O(g2(x)) as x → c. Show
that O(f1f2) = g1g2 as x→ c.
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(ii) Assume that f1(x) = O(g(x)) and f2(x) = O(g(x)) as x→ c. Show that f1+f2 = O(g).
What can you say in case about the order of f1 + f2 in case f1(x) = O(g1(x)) and
f2(x) = O(g2(x)) as x→ c?

(iii) Assume that f and g are functions on an interval (a, b) containing c ∈ (a, b). Assume
that f and g are functions satisfying the conditions of Corollary 6.4.3, and that for k ∈ N
with k < n− 1 we have g(r)(c) = 0 for r ∈ N and 0 ≤ r ≤ k and g(k+1)(c) ̸= 0. Assume
that f (r)(c) = 0 for r ∈ {0, · · · , k}, show that

lim
x→c;x∈(a,b)\{c}

f(x)

g(x)
=
f (k+1)(c)

g(k+1)(c)
.

You should compare this to l’Hôpital’s rule of Corollary 6.2.8.

Example 6.4.6. Consider f(x) = (1− x)α, then we prove by induction on n that

f (n)(x) =
(n−1∏
i=0

(−α + i)
)
(1− x)α−n =⇒ Tn(x; f, 0) =

n∑
k=0

1

k!

(k−1∏
i=0

(−α + i)
)
xk

and for |x| < 1
2
and n > α we have |f (n+1)(x)| ≤

∣∣∏n
i=0(−α + i)

∣∣2n+1−α. So Corollary 6.4.3
gives for |x| < 1

2
and n > α

|(1− x)α −
n∑

k=0

1

k!

(k−1∏
i=0

(−α + i)
)
xk| ≤

∣∣ n∏
i=0

(−α + i)
∣∣2n+1−α

n!
|x|n+1.

Proof of Theorem 6.4.2. Since we take c ∈ (a, b) arbitrary, we can also view the Taylor poly-
nomial (in x) as a function of c;

F : (a, b) → R, F (c) = f(c) +
n∑

k=1

f (k)(c)

k!
(x− c)k

so that F (x) = f(x) and F (c) = Tn(x; f, c) so that for the remainder En(x; f, c) we find

F (x)− F (c) = En(x; f, c).

Since f has derivatives up to order n+1, and the other terms involving c are polynomials, we
see that F is differentiable. Using Exercise 6.5.1 and Theorem 6.1.9 we calculate the derivative
of F by

F ′(c) = f ′(c) +
n∑

k=1

(f (k+1)(c)

k!
(x− c)k − k

f (k)(c)

k!
(x− c)k−1

)
= f ′(c) +

n+1∑
k=2

f (k)(c)

(k − 1)!
(x− c)k−1 −

n∑
k=1

f (k)(c)

(k − 1)!
(x− c)k−1 =

f (n+1)(c)

n!
(x− c)n.
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Now we take a function G : (a, b) → R, which is continuous and differentiable. Then we can
apply the Generalised Mean Value Theorem 6.2.6 in the form of (6.2.1) to find a t between c
and x such that

G′(t)(F (x)− F (c)) = F ′(t)(G(x)−G(c)).

In particular, if we additionally assume that G′(t) ̸= 0 for t between c and x we have an
expression

En(x; f, c) = F (x)− F (c) =
(
G(x)−G(c)

)F ′(t)

G′(t)

for the remainder En(x; f, c) and it remains to choose G carefully. Take G(y) = (x− y)p, for
p ∈ N, p ≥ 1, so that

En(x; f, c) = −(x− c)p
f (n+1)(t)

n!
(x− t)n

1

−p(x− t)p−1
=
f (n+1)(t)

n! p
(x− c)p(x− t)n+1−p.

6.5 Exercises

Exercise 6.5.1. We show that polynomials, see Exercise 5.5.6 are differentiable.

(i) Show that fn(x) = xn, n ∈ N, fn : R → R, is differentiable and f ′
n(x) = nxn−1. Give a

proof using induction on n and Theorem 6.1.9 or give a proof using Newton’s binomial
summation (2.1.3), cf proof of Theorem 8.4.1.

(ii) Let PN be the space of polynomials on R of degree at most N . Show that PN is a
finite-dimensional real vector space.

(iii) Show that taking derivatives gives a linear map d
dx
: PN → PN .

(iv) Show that the linear map d
dx
: PN → PN is nilpotent. (Recall that a linear map T : V → V

on a vector space is nilpotent if there exists k ∈ N so that T k = 0.)

Exercise 6.5.2. Let a < b and f : [a, b] → R be a function. Give a suitable definition of the
left and right derivative of f at a and b. Explain why in Proposition 6.2.2 the requirement
that x0 is an interior point is necessary. Establish an example in which a maximum is obtained
in the endpoint a.

Exercise 6.5.3. Define fn : [−1, 1] → R by fn(x) =
√
x2 + 1

(n+1)2
for n ∈ N.

(i) Show that fn is a differentiable function.

(ii) Show that limn→∞ fn converges uniformly, and determine the limit.

(iii) Show that the uniform limit of differentiable functions is not necessarily a differentiable
function, cf. Theorem 5.4.4 which states that continuity is preserved under uniform
convergence.
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See Theorem 7.5.2 for a partial answer.

Exercise 6.5.4. Let f : A → R be a function on an open set A. Then f is a continuously
differentiable “continu differenteerbare” function if f is differentable and f ′ : A → R is con-
tinuous. The class of continuously differentiable functions is denoted by C1(A). Inductively,
f : A → R is k-times continuously differentiable (k ∈ N, k ≥ 2) if f is differentiable and
f ′ : A → R is k − 1-times continuously differentiable, where a 1-times continuously differen-
tiable function is a continuously differentiable function. The class of k-times continuously
differentiable functions is denoted by Ck(A).

We conventially define C0(A) as the space of continuous functions on A. So f ∈ Ck(A)
indicates how smooth a function is. These kind of spaces can also be defined for more general
sets.

(i) Show that Ck(A) is a real vector space.

(ii) Show that Ck+1(A) ⊂ Ck(A).

(iii) Show that f(x) = |x| defines a function in C0(R) \ C1(R).

(iv) More generally, set f(x) = |x|k+1, k ∈ N. In which space is this function contained?

(v) Show that for each N ∈ N we have PN ⊂ C∞(A) =
⋂

n∈NC
k(A) with PN as in Exercise

6.5.1.

Exercise 6.5.5. Assume that f : (a, b) → R and g : (a, b) → R are functions having derivatives
up to order n. Show Leibniz’s formula

(fg)(n)(x) =
n∑

k=0

(
n

k

)
f (k)(x)g(n−k)(x)

generalising the product formula, see Theorem 6.1.9. Hint: use induction on n.

Exercise 6.5.6. Give a proof of Proposition 6.2.2 using Proposition 6.1.4.

Exercise 6.5.7. Let a < b and f : [a, b] → R be a continuous function which is differentiable
on (a, b). Assume that f ′(c) = 0 for all c ∈ (a, b). Show that f is a constant function.

Exercise 6.5.8. Let f, g, h : [a, b] → R be continuous functions and assume that f, g, h are
differentiable on (a, b). Consider

d(x) = det

f(x) g(x) h(x)
f(a) g(a) h(a)
f(b) g(b) h(b)

 .

Show that there exists c ∈ (a, b) with

f ′(c)
(
g(a)h(b)− h(a)g(b)

)
− g′(c)

(
f(a)h(b)− h(a)f(b)

)
+ h′(c)

(
f(a)g(b)− g(a)f(b)

)
= 0.
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Exercise 6.5.9. Assume that f : [a, b] → R is continuous and that f is differentiable on (a, b).

(i) Assume that f ′(c) > 0 for all c ∈ (a, b). Show that f is a strictly increasing function.

(ii) Assume that f ′(c) ≥ 0 for all c ∈ (a, b). Show that f is an increasing function.

(iii) Assume that f is a strictly increasing function. Can we conclude that f ′(c) > 0 for all
c ∈ (a, b)?

Exercise 6.5.10. Building on Exercise 5.5.16 show that the function f : [0,∞) → R defined
as f(x) = n

√
x is differentiable and calculate its derivative. Hint: use Theorem 6.3.1.

Exercise 6.5.11. We sketch another proof of Theorem 6.4.2 with the Lagrange form of the
remainder using the Mean Value Theorem 6.2.5.

(i) We assume c < x, the other case can be done similarly. Define an auxiliary function

h(x) = f(x)− Tn(x; f, c)− C
(x− c)n+1

(n+ 1)!

for a constant C to be determined later. Show that h has derivatives up to order n+ 1.
Show that h(c) = 0, h′(c) = 0, · · · , h(n)(c) = 0.

(ii) Pick C so that h(x) = 0. Show that there exists t1 ∈ (c, x) with h′(t1) = 0. Hint: Mean
Value Theorem 6.2.5.

(iii) Show that for r ∈ {1, · · · , n} there exists tr+1 ∈ (c, tr) with h(r+1)(tr+1) = 0 . Hint:
Mean Value Theorem 6.2.5 on h(r) and induction on r.

(iv) Show that t = tn+1 gives the Lagrange form of the remainder of Theorem 6.4.2.

Exercise 6.5.12. Let f : I → R, I an open interval, a ∈ I. Assume that f is differentiable
and that f ′ : I → R is differentiable at a. Show that

lim
h→0

f(a+ h) + f(a− h)− 2f(a)

h2
= f ′′(a)

Hint: Show first limh→0
f ′(a+h)−f ′(a−h)

h
= 2f ′′(a) and use l’Hôpital’s rule, see Corollary 6.2.8.

Exercise 6.5.13. Assume we have functions f, g : R → R. We say f = O(g) as x → ∞
if there exists M > 0 and x0 ∈ R so that for x ≥ x0 we have |f(x)| ≤ M |g(x)|. And we
say f = o(g) as x → ∞ if for all ε > 0 there exists x0 ∈ R so that for x ≥ x0 we have
|f(x)| ≤ ε|g(x)|.

(i) Show that if f = o(g) as x→ ∞, then f = O(g) as x→ ∞.

(ii) Give an example that the converse of (i) is not true.



Chapter 7

The Riemann integral

In this chapter we define integration in the sense of the Riemann integral. The idea is to
define the integral of a piecewise constant function on a bounded interval first. We define what
Riemann integrability is in terms of the integral of piecewise constant functions. We show
that continuous functions are Riemann integrable. The Fundamental Theorem of Calculus is
proved, and we discuss various consequences such as some of the classical integration rules. We
show that the uniform limit of Riemann integrable functions is again Riemann integrable, and
that limit and integral can be interchanged in this case. As an application we prove a result
on the interplay between differentiation and uniform convergene of a sequence of functions.

7.1 Piecewise constant functions

Definition 7.1.1. The length “lengte” |I| of a bounded interval I is defined as b−a whenever
b ≥ a and I = (a, b), I = [a, b), I = (a, b] or I = [a, b].

So the length of an interval is not influenced by whether the endpoints are contained in the
interval or not. Note that for a non-empty bounded interval we have |I| = supx∈I x− infx∈I x.
We follow the convention that |I| = 0 if b < a, i.e. |∅| = 0.

Definition 7.1.2. Let I ⊂ R be a bounded interval. A partition “partitie” is a finite collection
P of intervals J ⊂ I so that

∀x ∈ I ∃! J ∈ P x ∈ J.

Partitions of intervals behave well with respect to the length.

Proposition 7.1.3. Let I ⊂ R be a bounded interval, and let P be a partition of I. Then

|I| =
∑
J∈P

|J |

71
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Exercise 7.1.4. We sketch a proof of Proposition 7.1.3. We introduce notation for a non-
empty bounded interval J , namely bJ = infx∈J x is left endpoint of J and eJ = supx∈J x is the
right endpoint. Since |∅| = 0 by convention, we reformulate Proposition 7.1.3 as

|I| =
∑
J∈P

|J | =
∑

J∈P;J ̸=∅

|J | =
∑

J∈P;J ̸=∅

(eJ − bJ).

Now prove that
∑

J∈P;J ̸=∅(eJ − bJ) = eI − bI by induction on the number of elements of the
partition P.

(i) Prove the statement in case that P has 1 element.

(ii) Prove the induction step in case bI ∈ I (or eI ∈ I).

(iii) Prove the induction step in case bI /∈ I (or eI /∈ I).

We can order the endpoints and beginpoints of the intervals contained in P in an increasing
sequence x0 ≤ x1 ≤ x2 ≤ · · · ≤ xN so that x0 = bI , xN = eI , and for all I ∈ P, I ̸= ∅, there
exists i ∈ {1, · · · , N} with bI = xi−1, eI = xi and for any i ∈ {0, 1, · · · , N} there exists I ∈ P

so that xi = eI or xi = bI .

Definition 7.1.5. Let I ⊂ R be a bounded interval, and let P and Q be partitions of I. The
partition Q is finer “fijner” than the partition P, or equivalently the partition P is coarser
“grover” than the partition Q, if

∀ J ∈ Q ∃K ∈ P J ⊂ K.

Note that P being a partition implies that the K ∈ P with J ⊂ K is uniquely determined
for non-empty J ∈ Q.

Proposition 7.1.6. Let I be a bounded interval with partitions P and Q, then

P#Q = {K ∩ J | K ∈ P, J ∈ Q}

is a partition of I which is finer than P and finer than Q.

The partition P#Q is the common refinement “gemeenschappelijke verfijning” of the
partitions P and Q.

Proof. Note that for two intervals the intersection is again an interval, where we consider the
empty set as an interval as well. Moreover, P#Q has a finite number of elements. Take x ∈ I,
then there exists a unique interval K ∈ P and a unique interval J ∈ Q with x ∈ K and x ∈ J .
So K ∩ J is the unique interval in P#Q containing x.

Since K ∩J ⊂ K and K ∩J ⊂ J , we have that P#Q is a refinement of both P and Q.
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Definition 7.1.7. Let I ⊂ R be a bounded interval. The function f : I → R is a piecewise
constant “stukgewijs constante” function if there exists a partition P of I and a function
c : P → R so that for all x ∈ J we have f(x) = cJ . We put

PC(I) = {f : I → R | f piecewise constant}.

Note that this is well-defined, since each x ∈ I is contained in exactly one J ∈ P. This
means that f |J(x) = cJ for all x ∈ J . Furthermore, a piecewise constant function can have
various partitions for which it is constant, e.g. any finer partition will also do. The range of
a piecewise constant function is a finite set; f(I) = {cJ | J ∈ P, J ̸= ∅}. In particular, any
f ∈ PC(I) is bounded.

Exercise 7.1.8. Assume that f ∈ PC(I) and assume that f : I → R is piecewise constant
with respect to the partition P of I. Let Q be a partition of I which is finer than P. Show
that f is piecewise constant with respect to the partition Q. Hint: show that for a non-empty
interval J ∈ P there exists a partition QJ of J of intervals contained in Q and Q =

⋃
J∈P QJ

as a disjoint union. Now define d : Q → R as dK = cJ if K ∈ QJ .

Exercise 7.1.9. Show that PC(I), for I ⊂ R a bounded interval, is a vector space, which
is closed under multiplication. Hint: take the common refinement of the partition P for
f ∈ PC(I) and the partition Q for g ∈ PC(I) to have a partition for f + g and fg.

Definition 7.1.10. Let I ⊂ R be a bounded interval, and f : I → R a piecewise constant
function for the partition P, then we define the integral of f over I “de integraal van f over
het interval I” by

pc

∫
I;[P]

f(x) dx =
∑
J∈P

cJ |J |

using the notation as in Definition 7.1.7.

A first step is to show that the definition of the integral of a piecewise continuous function
is independent of the choice of partition.

Lemma 7.1.11. Let I ⊂ R be a bounded interval, and f : I → R a piecewise constant function
for the partition P and for the partition Q, then

pc

∫
I;[P]

f(x) dx = pc

∫
I;[Q]

f(x) dx

Lemma 7.1.11 shows that we can remove the dependence P from the notation, and we put

pc

∫
I

f(x) dx = pc

∫
I;[P]

f(x) dx

for any partition P for which f is piecewise constant.
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Proof of Lemma 7.1.11. We first assume that the partition Q a refinement is of the partition
P. Using Exercise 7.1.8 we have for every J ∈ P a partition QJ of J , and we have the disjoint
union Q =

⋃
J∈P QJ . Then for K ∈ QJ we have dK = cJ .

Now

pc

∫
I;[Q]

f(x) dx =
∑
K∈Q

dK |K| =
∑
J∈P

∑
K∈QJ

dK |K| =
∑
J∈P

cJ
∑
K∈QJ

|K| =

∑
J∈P

cJ |J | = pc

∫
I;[P]

f(x) dx

using Proposition 7.1.3. And this proves the statement in case Q is a refinement of P.
In the case of general partitions P and Q, we use this result and the common refinement

of Proposition 7.1.6 to have

pc

∫
I;[Q]

f(x) dx = pc

∫
I;[P#Q]

f(x) dx = pc

∫
I;[P]

f(x) dx.

Theorem 7.1.12. Let I ⊂ R be a bounded interval, and let f : I → R and g : I → R be
piecewise constant functions.

(i) For a, b ∈ R we have a f + b g ∈ PC(I) and

pc

∫
I

a f(x) + b g(x) dx = a pc

∫
I

f(x) dx+ b pc

∫
I

g(x) dx.

(ii) If f ≥ g, i.e. ∀x ∈ I we have f(x) ≥ g(x), then

pc

∫
I

f(x) dx ≥ pc

∫
I

g(x) dx.

(iii) In case f(x) = c for all x ∈ I, i.e. f is piecewise constant with respect to P = {I}, then

pc

∫
I

f(x) dx = c|I|.

(iv) Assume that {J,K} is a partition of I, then f |J and f |K are piecewise constant functions
on J and K and

pc

∫
I

f(x) dx = pc

∫
J

f |J(x) dx+ pc

∫
K

f |K(x) dx.

(v) Assume that I ⊂ J , with J a bounded interval. Extend f : I → R to

F : J → R, F (x) =

{
f(x), x ∈ I,

0 x ∈ J \ I

then F ∈ PC(J) and

pc

∫
I

f(x) dx = pc

∫
J

F (x) dx.
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Exercise 7.1.13. Give a proof of Theorem 7.1.12. Hint: use Exercise 7.1.9. Take refinements
of the partitions of f and g in case (i) and (ii), and take a refinement of the partition for f
and {J,K} for (iv), and find a suitable refinement for that partition of F in case (v). Then
use Lemma 7.1.11.

7.2 The Riemann integral

Definition 7.2.1. Let A ⊂ R and let f : A → R and g : A → R be functions on the same
domain A. Then we say that f majorises “majoreert” g, notation f ≥ g, if ∀x ∈ A we have
f(x) ≥ g(x). Equivalently, g minorises “minoreert” f and we write g ≤ f .

In general it is not true that any two functions can be compared, e.g. for f : [0, 1] → R
and g : [0, 1] → R defined by f(x) = x and g(x) = 1 − x, we have neither f ≥ g nor f ≤ g.
This is a partial ordening.

Definition 7.2.2. Let I ⊂ R be a bounded interval, and f : I → R a bounded function. We
define the upper Riemann integral “Riemannbovenintegraal”∫

I

f(x) dx = inf{pc
∫
I

g(x) dx | g ∈ PC(I), g ≥ f}

We define the lower Riemann integral “Riemannonderintegraal”∫
I

f(x) dx = sup{pc
∫
I

g(x) dx | g ∈ PC(I), g ≤ f}

Remark 7.2.3. We check that infimum and supremum in Definition 7.2.2 are indeed well-
defined. Since, we assume that f is bounded, we have M > 0 so that ∀x ∈ I we have
|f(x)| ≤ M . It means that the constant function g(x) = M , respectively h(x) = −M ,
majorises, respectively minorises, f , i.e. f ≤ g, respectively f ≥ h. In particular, both sets
are not empty, the first containing M |I| and the second containing −M |I|. By the same
observation and Theorem 7.1.12(ii), we see that −M |I| is a lower bound for the first set and
M |I| is an upper bound for the second set in Definition 7.2.2. So the lower and upper Riemann
integral are well-defined, and the key to this is the boundedness of f .

Lemma 7.2.4. Let I ⊂ R be a bounded interval, and let f : I → R be a bounded function,
i.e. ∃M > 0 ∀x ∈ I |f(x)| ≤M . Then

−M |I| ≤
∫

I

f(x) dx ≤
∫

I

f(x) dx ≤M |I|.

Proof. The first and last inequality have been observed in Remark 7.2.3. To prove the re-
maining inequality we choose arbitrary h, g ∈ PC(I) with h ≤ f ≤ g. By Theorem 7.1.12(ii)
we have that

pc

∫
I

h(x) dx ≤ pc

∫
I

g(x) dx.
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Since this inequality holds for all h ∈ PC(I), we can take the supremum over all such h ∈
PC(I) with h ≤ f . This then gives∫

I

f(x) dx ≤ pc

∫
I

g(x) dx.

Since this holds for all g ∈ PC(I) with f ≤ g, we can take the infimum over all such g and
retain the inequality. This gives the required inequality.

With all these preparations we can finally say when a function is Riemann integrable, and
define its Riemann integral.

Definition 7.2.5. Let I ⊂ R be a bounded interval, and f : I → R is a bounded function.
The function f is Riemann integrable “Riemannintegreerbaar” if∫

I

f(x) dx =

∫
I

f(x) dx.

In that case we define the Riemann integral of f over I “Riemannintegraal van f over het
interval I” as ∫

I

f(x) dx =

∫
I

f(x) dx =

∫
I

f(x) dx.

A classical example is the function f : [0, 1] → R defined as follows

f(x) =

{
1, x ∈ Q,
0, otherwise.

This is a bounded function, which is not Riemann integrable. You should check that in this
case

∫
I
f(x) dx = 0 and

∫
I
f(x) dx = 1, see Exercise 7.6.2.

We use the notation
∫
I
f(x) dx to stick to the notation of calculus, but the x in the notation

is a dummy variable, and we could as well have used s, t, y, u, etc. We will do so occasionally
in order to avoid confusion.

Before discussing larger classes of integrable functions, we should at least check that for
piecewise constant functions we get the same result.

Lemma 7.2.6. Let I ⊂ R be a bounded interval, and f ∈ PC(I). Then f is a Riemann
integrable function and ∫

I

f(x) dx = pc

∫
I

f(x) dx.

Proof. We have already observed that any f ∈ PC(I) is bounded. Since f ∈ PC(I) and f ≤ f
trivially, we find

pc

∫
I

f(x) dx ≤ sup{pc
∫
I

g(x) dx | g ∈ PC(I), g ≤ f} =

∫
I

f(x) dx

pc

∫
I

f(x) dx ≥ inf{pc
∫
I

g(x) dx | g ∈ PC(I), g ≥ f} =

∫
I

f(x) dx
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which gives ∫
I

f(x) dx ≤ pc

∫
I

f(x) dx ≤
∫

I

f(x) dx ≤
∫

I

f(x) dx,

where the last inequality follows from Lemma 7.2.4. Since this means that all inequalities
have to be equalities, we find that∫

I

f(x) dx =

∫
I

f(x) dx = pc

∫
I

f(x) dx

which means that f is Riemann integrable and that its Riemann integral equals the integral
for piecewise constant functions.

7.3 Riemann integrable functions

We have defined what a Riemann integrable function is in Definition 7.2.5 and we have seen
that a piecewise constant function is Riemann integrable and the notion of both integrals
coincide. So we can ask how Theorem 7.1.12 generalises to Riemann integrable functions. We
list such properties in Theorem 7.3.1.

Theorem 7.3.1. Let I ⊂ R be a bounded interval, and let f : I → R and g : I → R be bounded
functions, which are Riemann integrable functions.

(i) For a, b ∈ R, the function a f + b g : I → R is Riemann integrable and∫
I

a f(x) + b g(x) dx = a

∫
I

f(x) dx+ b

∫
I

g(x) dx.

(ii) If f ≥ g, then ∫
I

f(x) dx ≥
∫
I

g(x) dx.

(iii) Assume that {J,K} is a partition of I, then f |J and f |K are Riemann integrable func-
tions on J and K and ∫

I

f(x) dx =

∫
J

f |J(x) dx+
∫
K

f |K(x) dx.

(iv) Assume that I ⊂ J , with J a bounded interval. Extend f : I → R to

F : J → R, F (x) =

{
f(x), x ∈ I,

0 x ∈ J \ I

then F is Riemann integrable on J and∫
I

f(x) dx =

∫
J

F (x) dx.
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(v) The functions max(f, g) and min(f, g) (pointwise defined) are Riemann integrable. In
particular, |f | is Riemann integrable.

Corollary 7.3.2. Assume I ⊂ R to be a finite interval, and that f : I → R is a Riemann
integrable function. Then ∣∣ ∫

I

f(x) dx
∣∣ ≤ ∫

I

|f(x)| dx.

Proof. By Theorem 7.3.1(v) we know that |f | : I → R and −|f | : I → R are Riemann inte-
grable. Since −|f | ≤ f ≤ |f |, we find by Theorem 7.3.1(i)

−
∫
I

|f(x)| dx ≤
∫
I

f(x) dx ≤
∫
I

|f(x)| dx

which is the required estimate.

There is quite a bit to prove for Theorem 7.3.1. We prove parts of it directly, and other
parts are relegated to the exercises.

Proof of Theorem 7.3.1(i). We split this into two cases; the case a ∈ R and b = 0, and the
case a = b = 1, since these imply the result.

In the case b = 0, we have to distinguish between the cases a > 0, a = 0 and a < 0. In
case a = 0 we are back to a constant, hence piecewise constant, function and Lemma 7.2.6
gives the result. We leave the (easier) case as Exercise 7.3.3, and we assume a < 0. We will
prove that for all η > 0 we have

0 ≤
∫

I

a f(x) dx−
∫

I

a f(x) dx < η, (7.3.1)

which proves that lower Riemann integral of af and the upper Riemann integral of af are
equal, and so af : I → R is Riemann integrable.

Pick ε > 0, and then there exist fu, fl ∈ PC(I) with fl ≤ f ≤ fu so that

pc

∫
I

fu(x) dx− ε <

∫
I

f(x) dx =

∫
I

f(x) dx =

∫
I

f(x) dx < pc

∫
I

fl(x) dx+ ε

using the definition of lower and upper Riemann integral as supremum and infimum in Defi-
nition 7.2.2 and the fact that f is Riemann integrable, so that the lower and upper Riemann
integral are equal, see Definition 7.2.5. Observe that afu, afl ∈ PC(I) and afu ≤ af ≤ afl
since a < 0, so that∫

I

a f(x) dx ≤ pc

∫
I

a fl(x) dx = a pc

∫
I

fl(x) dx < a

∫
I

f(x) dx− aε,∫
I

a f(x) dx ≥ pc

∫
I

a fu(x) dx = a pc

∫
I

fu(x) dx > a

∫
I

f(x) dx+ aε.
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Note that we use Theorem 7.1.12(i). Subtracting gives (7.3.1) for η = −2aε. Since a < 0 and
ε can be taken arbitrarily positive it follows that af : I → R is a Riemann integrable function.
Moreover, the estimates also yield that

∫
I
a f(x) dx = a

∫
I
f(x) dx.

Next we consider the case a = b = 1, i.e. we show that the sum of two Riemann integrable
functions is Riemann integrable, and the integral of the sum is the sum of the integrals. Take
fu, gu ∈ PC(I) so that f ≤ fu, g ≤ gu, then f + g ≤ fu + gu and∫

I

f(x) + g(x) dx ≤ pc

∫
I

fu(x) + gu(x) dx = pc

∫
I

fu(x) dx+ pc

∫
I

gu(x) dx

using Theorem 7.1.12. Taking the infimum over all gu ∈ PC(I) majorising g, we get∫
I

f(x) + g(x) dx ≤ pc

∫
I

fu(x) dx+

∫
I

g(x) dx

and next taking the infimum over all fu ∈ PC(I) majorising f we get∫
I

f(x) + g(x) dx ≤
∫

I

f(x) dx+

∫
I

g(x) dx.

Analogously, we get ∫
I

f(x) + g(x) dx ≥
∫

I

f(x) dx+

∫
I

g(x) dx

and the combination gives∫
I

f(x) dx+

∫
I

g(x) dx =

∫
I

f(x) dx+

∫
I

g(x) dx ≤
∫

I

f(x) + g(x) dx

≤
∫

I

f(x) + g(x) dx ≤
∫

I

f(x) dx+

∫
I

g(x) dx =

∫
I

f(x) dx+

∫
I

g(x) dx

using the Riemann integrability of f and g for the first and last equality and Lemma 7.2.4 in
the middle inequality. So the inequalities are equalities, proving that f+g : I → R is Riemann
integrable, and that the Riemann integral of f + g is the sum of the Riemann integrals of f
and g.

Exercise 7.3.3. Prove the case a > 0, b = 0 of Theorem 7.3.1(i). Note that it would suffice
to treat the case a = −1 in the proof given above.

Exercise 7.3.4. (i) Prove Theorem 7.3.1(ii). Reduce to the case g = 0 by replacing f by
f − g and using Theorem 7.3.1(i).

(ii) Prove Theorem 7.3.1(iii). Hint: show that∫
J

f |J(x) dx+
∫

K

f |K(x) dx ≤
∫

I

f(x) dx

and a similar expression for the lower Riemann integral.
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(iii) Prove Theorem 7.3.1(iv). Hint: show that∫
J

F (x) dx ≤
∫

I

f(x) dx

and a similar expression for the lower Riemann integral.

Proof of Theorem 7.3.1(v). Pick ε > 0 arbitrarily. Choose fu, gu, fl, gl ∈ PC(I) satisfy fl ≤
f ≤ fu, gl ≤ g ≤ gu with

pc

∫
I

fu(x) dx− ε <

∫
I

f(x) dx < pc

∫
I

fl(x) dx+ ε,

pc

∫
I

gu(x) dx− ε <

∫
I

g(x) dx < pc

∫
I

gl(x) dx+ ε.

(7.3.2)

Then max(fl, gl) ≤ max(f, g) ≤ max(fu, gu) and max(fl, gl),max(fu, gu) ∈ PC(I) (Why?),
and we find

0 ≤
∫

I

max(f, g)(x) dx−
∫

I

max(f, g)(x) dx ≤ pc

∫
I

max(fu, gu)(x)−max(fl, gl)(x) dx.

Define the nonnegative function h = fu− fl+ gu− gl ∈ PC(I), then we have pc
∫
I
h(x) dx < 4ε

by (7.3.2) and

fu = fl + (fu − fl) ≤ fl + h, gu = gl + (gu − gl) ≤ gl + h,

=⇒ max(fu, gu) ≤ max(fl + h, gl + h) = max(fl, gl) + h.

This shows

0 ≤
∫

I

max(f, g)(x) dx−
∫

I

max(f, g)(x) dx ≤ pc

∫
I

h(x) dx < 4ε

and so the upper and lower Riemann integral are equal, and max(f, g) is Riemann integrable.
The proof for min(f, g) is analogous.

Exercise 7.3.5. Prove Theorem 7.3.1(v) for min(f, g) by either redoing the above proof
for the minimum or by relating min(f, g) to a suitable maximum and using earlier parts of
Theorem 7.3.1.

A slightly more complicated proof is required to show that the product of Riemann inte-
grable functions is Riemann integrable.

Theorem 7.3.6. Let I ⊂ R be a bounded interval, and let f : I → R and g : I → R be bounded
functions. Assume that f and g are Riemann integrable, then the product fg : I → R is a
Riemann integrable function.
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Proof. First of all, note that fg is a bounded function. We reduce to the case that we can
assume both f and g to be non-negative functions.

In order to see this, we write f = f+− f− with f+ = max(f, 0), f− = −min(f, 0), so that
f+ and f− are non-negative functions. Since f is integrable, we know from Theorem 7.3.1(v)
and (ii) that both f+ and f− are Riemann integrable. Doing the same for g we see that we
can write the product of f and g as a combination of four products of non-negative functions;

fg = f+g+ − f−g+ − f+g− + f−g−.

So proving the statement for non-negative functions, shows that each term on the right hand
side is Riemann integrable, and, using Theorem 7.3.1 again, shows that fg is Riemann inte-
grable.

So we assume f ≥ 0 and g ≥ 0. Since the functions are bounded, we find that there exist
constants Mf ≥ 0 and Mg ≥ 0 so that

∀x ∈ I 0 ≤ f(x) ≤Mf and 0 ≤ g(x) ≤Mg.

We will show that
∫

I
f(x)g(x) dx−

∫
I
f(x)g(x) dx is smaller than any positive number. Since

it is non-negative by Lemma 7.2.4, we see that this implies
∫

I
f(x)g(x) dx =

∫
I
f(x)g(x) dx,

proving that the product is Riemann integrable.
To prove the statement, we pick ε > 0 arbitrary. Since the lower Riemann integral of f is

a supremum, we see that we have a fl ∈ PC(I) with fl ≤ f and∫
I

f(x) dx− ε < pc

∫
I

fl(x) dx.

Since f ≥ 0 we can assume that fl ≥ 0 as well. Similarly, since the upper Riemann integral
of f is an infimum, we see that we have a fu ∈ PC(I) with fu ≥ f and∫

I

f(x) dx+ ε > pc

∫
I

fu(x) dx.

Since f is Riemann integrable, the lower Riemann integral equals the upper Riemann integral,
so that we find

pc

∫
I

fu(x) dx− ε <

∫
I

f(x) dx < pc

∫
I

fl(x) dx+ ε =⇒ 0 ≤ pc

∫
I

fu(x)− fl(x) dx < 2ε

We find similarly functions gl, gu ∈ PC(I) with the analogous properties for g.
Having these four piecewise constant functions at hand, we have

0 ≤ fg ≤ fugu, 0 ≤ flgl ≤ fg

and here we use the positivity of f and g. Since fugu and flgl are elements of PC(I) we find∫
I

f(x)g(x) dx ≤ pc

∫
I

fu(x)gu(x) dx,

∫
I

f(x)g(x) dx ≥ pc

∫
I

fl(x)gl(x) dx,
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so that

0 ≤
∫

I

f(x)g(x) dx−
∫

I

f(x)g(x) dx ≤ pc

∫
I

fu(x)gu(x)− fl(x)gl(x) dx.

Estimating the integrand

0 ≤ fu(x)gu(x)− fl(x)gl(x) = (fu(x)− fl(x))gu(x) + fl(x)(gu(x)− gl(x))

≤Mg(fu(x)− fl(x)) +Mf (gu(x)− gl(x))

we get

0 ≤
∫

I

f(x)g(x) dx−
∫

I

f(x)g(x) dx

≤Mgpc

∫
I

fu(x)− fl(x) dx+Mfpc

∫
I

gu(x)− gl(x) dx ≤ 2ε(Mf +Mg).

Since ε > 0 is arbitrary, so that
∫

I
f(x)g(x) dx −

∫
I
f(x)g(x) dx is smaller than any positive

number, as claimed.

We have seen that piecewise constant functions are Riemann integrable, and Theorem 7.3.1
and Theorem 7.3.6 show how to create Riemann integrable functions from other functions.
There exist several sufficient conditions for Riemann integrability, and we discuss a few of this
results. Some statements and proofs are relegated to the exercises.

Theorem 7.3.7. Let I ⊂ R be a bounded interval, and assume that f : I → R is uniformly
continuous. Then f is a Riemann integrable function.

Corollary 7.3.8. Let a < b and let f : [a, b] → R be a continuous function, then f is a
Riemann integrable function.

Proof. By Theorem 5.3.10 it follows that f is uniformly continuous, so that the corollary
follows from Theorem 7.3.7.

Proof of Theorem 7.3.7. First recall that f(I) is bounded by Corollary 5.3.4, since I is a
bounded set.

The strategy of the proof is similar to the proof of Theorem 7.3.6, and we will show that∫
I
f(x) dx−

∫
I
f(x) dx is smaller than any positive number. So we pick ε > 0 arbitrary. Since

f is uniformly continuous, there exists δ > 0 so that |x − y| < δ implies |f(x) − f(y)| < ε.
Since I is a bounded interval, there exists a < b with I = [a, b], I = (a, b], I = [a, b), or
I = (a, b), i.e. a = infx∈I x and b = supx∈I x. Take N ∈ N so that b−a

N
< δ, and we define the

intervals

Ji = (a+
b− a

N
(i− 1), a+

b− a

N
i]
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for i ∈ {1, · · · , N}. We take J1 to be open, respectively closed, at the left endpoint a if I is
open, respectively closed, at the left endpoint. Similarly, we take JN to be open, respectively
closed, at the right endpoint b if I is open, respectively closed, at the right endpoint. Then we
have described a partition P = {J1, · · · , JN}. With this partition we associate two functions
fu, fl ∈ PC(I) by

∀x ∈ Ji fu(x) = sup
y∈Ji

f(y) and fl(x) = inf
y∈Ji

f(y).

By construction fl ≤ f ≤ fu and so∫
I

f(x) dx ≤ pc

∫
I

fu(x) dx =
N∑
i=1

|Ji| sup
y∈Ji

f(y),

∫
I

f(x) dx ≥ pc

∫
I

fl(x) dx =
N∑
i=1

|Ji| inf
y∈Ji

f(y)

implying that

0 ≤
∫

I

f(x) dx−
∫

I

f(x) dx ≤
N∑
i=1

b− a

N

(
sup
y∈Ji

f(y)− inf
y∈Ji

f(y)
)
.

Since for all x, y ∈ Ji we know that |x− y| < δ implies |f(x)− f(y)| < ε, we have

f(y)− ε < f(x) < f(y) + ε =⇒ sup
x∈Ji

f(x) ≤ f(y) + ε =⇒ sup
x∈Ji

f(x) ≤ inf
y∈Ji

f(y) + ε.

Plugging this in the previous estimate, and we find

0 ≤
∫

I

f(x) dx−
∫

I

f(x) dx ≤
N∑
i=1

b− a

N
ε = ε(b− a)

proving the required estimate.

Remark 7.3.9. Note that in general we cannot replace the supremum and infimum over Ji in
the proof of Theorem 7.3.7 by maximum and minimum even though the function is uniformly
continuous since the interval Ji is not closed in general.

7.4 The fundamental theorem of calculus

The fundamental theorem of calculus relates integrals, i.e. areas under a graph, to derivatives,
i.e. direction of a tangential line to a graph. Naturally, the graphs are not the same. We
discuss the fundamental theorem of calculus in two parts.
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Theorem 7.4.1 (Fundamental Theorem of Calculus “Hoofdstelling van de Integraalrekening”,
Part I). Let a < b and assume that f : [a, b] → R is a Riemann integrable function. Define

F : [a, b] → R, F (x) =

∫
[a,x]

f(s) ds

then we have

(i) F is uniformly continuous;

(ii) if f is continuous at x0 ∈ [a, b], then F is differentiable at x0 and F ′(x0) = f(x0).

Proof. First note that f restricted to a subinterval [a, x] of [a, b] is Riemann integrable by
Theorem 7.3.1(iii), so that F is well-defined. Let x, y ∈ [a, b] with y ≥ x, then

F (y)− F (x) =

∫
[a,y]

f(s) ds−
∫
[a,x]

f(s) ds =

∫
(x,y]

f(s) ds

using Theorem 7.3.1(iii). Since f is assumed to be Riemann integrable, it is a bounded
function, say |f(x)| ≤M . Then by Lemma 7.2.4 we have

−M |(x, y]| ≤ F (y)− F (x) ≤M |(x, y]| =⇒ |F (y)− F (x)| ≤M |x− y|.

The same inequality holds for y ≤ x by interchanging the roles of x and y. It follows that F
is Lipschitz continuous, see Exercise 5.5.3, and thus uniformly continuous, which proves part
(i).

For (ii) we employ the characterisation of differentiability using Newton’s approximation
of Proposition 6.1.4. So we need to prove that ∀ ε > 0 ∃ δ > 0 so that

|x− x0| < δ =⇒ |F (x)− (F (x0) + f(x0)(x− x0))| ≤ ε|x− x0|.

So take ε > 0 arbitrary. Then by Proposition 5.1.10 we have δ > 0 so that |x−x0| < δ implies
|f(x)− f(x0)| < ε and thus

f(x0)− ε < f(x) < f(x0) + ε.

First assume x > x0 and |x− x0| < δ, then we find

F (x)− F (x0) =

∫
(x0,x]

f(s) ds =⇒

(x− x0)
(
f(x0)− ε

)
≤ F (x)− F (x0) ≤ (x− x0)

(
f(x0) + ε

)
=⇒

−ε(x− x0) ≤ F (x)− F (x0)− f(x0)(x− x0) ≤ ε(x− x0) =⇒
|F (x)− (F (x0) + f(x0)(x− x0))| ≤ ε|x− x0|.

The case x < x0 and |x− x0| < δ is treated analogously and gives the same result.
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The first part of the Fundamental Theorem of Calculus, Theorem 7.4.1, suggests that we
can evaluate the integral by finding F , since

∫
[a,b]

f(x) dx = F (b) in the notation of Theorem
7.4.1.

Definition 7.4.2. Let I ⊂ R be bounded interval, and assume that f : I → R is a function.
Then f has an antiderivative or primitive “primitieve” function if there exists F : I → R,
which is a differentiable function and for all x ∈ I we have F ′(x) = f(x).

By Exercise 6.5.7 we see that if f has an antiderivative (or primitive) function F , then F
is uniquely determined up to a constant. Indeed, if f would have two different antiderivative
functions F and G, then (F −G)′ = F ′−G′ = f−f = 0, and Exercise 6.5.7 shows that F −G
is a constant, since the domain is an interval.

Lemma 7.4.3. Let a < b and assume that f : [a, b] → R is continuous. Then f has an
antiderivative function.

Proof. By Corollary 7.3.8 we know that f is Riemann integrable. By Theorem 7.4.1 we see
that F (x) =

∫
[a,x]

f(s) ds is an antiderivative function for f .

Theorem 7.4.4 (Fundamental Theorem of Calculus “Hoofdstelling van de Integraalrekening”,
Part II). Let a < b and f : [a, b] → R is a Riemann integrable function and assume that
F : [a, b] → R is an antiderivative function for f . Then∫

[a,b]

f(x) dx = F (b)− F (a) = F
∣∣b
a

Proof. The proof follows by showing that for each g, h ∈ PC([a, b]) with g ≤ f ≤ h we have

pc

∫
[a,b]

g(x) dx ≤ F (b)− F (a) ≤ pc

∫
[a,b]

h(x) dx (7.4.1)

so that by taking the supremum over the left hand side over all g ∈ PC([a, b]), and next taking
the infimum over the right hand side over all h ∈ PC([a, b]) we obtain∫

[a,b]

f(x) dx ≤ F (b)− F (a) ≤
∫

[a,b]

f(x) dx,

which proves the result since the left hand side and the right hand side are equal to
∫
[a,b]

f(x) dx,

since f is a Riemann integrable function.

In order to prove (7.4.1) we take g, h ∈ PC([a, b]) with respect to the same partition P,
which we can assume by Proposition 7.1.6. Furthermore, we assume that all intervals J ∈ P

are non-empty sets, i.e. ∀ J ∈ P we have J ̸= ∅. Take J ∈ P, then J is of the form (bJ , eJ),
(bJ , eJ ], [bJ , eJ), or [bJ , eJ ] and we define F [J ] = F (eJ)−F (bJ). We assume bJ < eJ . Since F
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is differentiable on [a, b], we can apply the Mean Value Theorem 6.2.5 to obtain the existence
of a point tJ ∈ (bJ , eJ) with

F (eJ)− F (bJ)

eJ − bJ
= F ′(tJ) = f(tJ) =⇒ |J | inf

x∈J
f(x) ≤ f(tJ)|J | = F [J ] ≤ |J | sup

x∈J
f(x)

and in this form it also holds in case J consists of one point, eJ = bJ . Since g ≤ f ≤ h we
have g(y) ≤ infx∈J f(x) for all y ∈ J since g is constant on J and similarly supx∈J f(x) ≤ h(y)
for all y ∈ J . So summing over all J ∈ P gives

pc

∫
[a,b]

g(x) dx ≤
∑
J∈P

|J | inf
x∈J

f(x) ≤
∑
J∈P

F [J ] ≤
∑
J∈P

|J | sup
x∈J

f(x) ≤ pc

∫
[a,b]

h(x) dx.

Since
∑

J∈P F [J ] = F (b)−F (a), compare with Proposition 7.1.3, we have obtained (7.4.1).

As a first application of the Fundamental Theorem of Calculus we obtain the substitution
rule.

Corollary 7.4.5 (Substitution “substitutieregel”). Assume g : [a, b] → R is an increasing
function, which is differentiable and such that g′ : [a, b] → R is a Riemann integrable func-
tion. Assume that [g(a), g(b)] is a finite interval and that f : [g(a), g(b)] → R is a continuous
function. Then ∫

[g(a),g(b)]

f(s) ds =

∫
[a,b]

f(g(x)) g′(x) dx.

The conditions on f and g in the substitution rule of Corollary 7.4.5 can be considerably
relaxed, but this would take a much longer proof. You should check the appropriate analogue
for a decreasing function g.

Proof. Let F be any antiderivative function for f , see Lemma 7.4.3. Then F is a differentiable
function, by Theorem 7.4.1. By the chain rule of Theorem 6.1.11 we have that F ◦g : [a, b] → R
is a differentiable function, and (F◦g)′(x) = F ′(g(x)) g′(x) = f(g(x)) g′(x). Since f◦g : [a, b] →
R is continuous, it is a Riemann integrable function. By Theorem 7.3.6 it follows that [a, b] ∋
x 7→ f(g(x)) g′(x) is a Riemann integrable function with antiderivative F ◦ g. By Theorem
7.4.4 we have

F (g(b))− F (g(a)) =

∫
[a,b]

f(g(x)) g′(x) dx.

On the other hand, since F is an antiderivative function for f , we also have by Theorem 7.4.4
that

F (g(b))− F (g(a)) =

∫
[g(a),g(b)]

f(s) ds.

Comparing the expressions proves the substitution rule.

As a second application of the Fundamental Theorem of Calculus we obtain the for inte-
gration by parts.
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Corollary 7.4.6 (Integration by parts “partieel integreren”). Assume F : [a, b] → R and
G : [a, b] → R be differentiable functions. Moreover, assume that the derivatives F ′ : [a, b] → R
and G′ : [a, b] → R are Riemann integrable functions. Then the functions F ′G : [a, b] → R and
FG′ : [a, b] → R are Riemann integrable functions and∫

[a,b]

F (x)G′(x) dx = F (b)G(b)− F (a)G(a)−
∫
[a,b]

F ′(x)G(x) dx.

Proof. Since F and G are differentiable, the functions F and G are continuous by Corollary
6.1.6, and hence by Corollary 7.3.8, the functions F and G are Riemann integrable. By
Theorem 7.3.6, we have that F ′G and FG′ are Riemann integrable. By Theorem 7.3.1 we
have that F ′G+ FG′ = (FG)′ is Riemann integrable, and by Theorem 7.4.4 we get

FG
∣∣b
a
=

∫
[a,b]

(FG)′(x) dx =

∫
[a,b]

F ′(x)G(x) dx+

∫
[a,b]

F (x)G′(x) dx.

So integration by parts and the substitution rule can be viewed as the integrated versions
of the product rule Theorem 6.1.9 and the chain rule Theorem 6.1.11 using the fundamental
theorem of calculus Theorem 7.4.4.

Integration by parts can be used to obtain an expression for the remainder in the Taylor
polynomial in terms of an integral, and this should be compared to Theorem 6.4.2.

Corollary 7.4.7. Assume that f : (a, b) → R has derivatives up to order n + 1, and that
f (n+1) : (a, b) → R is continuous. Let c ∈ (a, b) and put

f(x) =
n∑

k=0

f (k)(c)

k!
(x− c)k + En(x) = Tn(x; f, c) + En(x; f, c)

then we have for b > x ≥ c

En(x; f, c) =
1

n!

∫
[c,x]

(x− s)n f (n+1)(s) ds.

Proof. The proof follows by induction on n and integration by parts. We assume that b >
x ≥ c, and we leave the case a < x ≤ c as Exercise 7.4.8. The case n = 0 is

f(x)− f(c) =

∫
[c,x]

f ′(s) ds

which follows from Theorem 7.4.4, since f ′ is continuous on [c, x] and thus Riemann integrable
by Lemma 7.4.3.

In order to do the inductive step we assume that all derivatives up to order n + 2 exist
and that f (n+2) is continuous. Subtracting

f(x) =
n∑

k=0

f (k)(c)

k!
(x− c)k + En(x)

f(x) =
n+1∑
k=0

f (k)(c)

k!
(x− c)k + En+1(x)
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gives

0 = En(x)−
f (n+1)(c)

(n+ 1)!
(x− c)n+1 − En+1(x).

Using the induction hypothesis and the elementary integral
∫
[c,x]

(x − s)n ds = 1
n+1

(x − c)n+1

gives

En+1(x) = En(x)−
f (n+1)(c)

(n+ 1)!
(x− c)n+1

=
1

n!

∫
[c,x]

(x− s)n f (n+1)(s) ds− f (n+1)(c)

n!

∫
[c,x]

(x− s)n ds

=
1

n!

∫
[c,x]

(x− s)n
(
f (n+1)(s)− f (n+1)(c)

)
ds

Now apply the integration by parts of Corollary 7.4.6 with F (s) = f (n+1)(s) − f (n+1)(c),
G′(s) = (x− s)n and note that the boundary terms vanish. This gives the result.

Exercise 7.4.8. Formulate and show the statement of Corollary 7.4.7 for the case x ≤ c.

7.5 Limit of functions and the Riemann integral

From Chapter 1 we have seen that we cannot interchange limit and integration in general, but
Theorem 7.5.1 states that this can be done in case the convergence is uniform, see Definition
5.4.3.

Theorem 7.5.1. Let I ⊂ R be a finite interval. Assume that ∀n ∈ N the function fn : I → R
is Riemann integrable function, and assume that limn→∞ fn = f in the uniform convergence
to a function f : I → R. Then f is a Riemann integrable function and∫

I

f(x) dx = lim
n→∞

∫
I

fn(x) dx.

Note that, since the fn’s are Riemann integrable, they are bounded functions. Since
uniform convergence of bounded functions gives a bounded function, see Exercise 5.5.10, the
function f is bounded. We prove this (and do Exercise 5.5.10) in the proof of Theorem 7.5.1.

Proof. So pick ε > 0 arbitrary. Since the convergence is uniform, we know that there exists
N ∈ N so that for all n ≥ N and for all x ∈ I we have |fn(x) − f(x)| < ε. In particular, we
see that for all n ≥ N

∀x ∈ I fn(x)− ε ≤ f(x) ≤ fn(x) + ε.

Taking ε = 1, and using that the corresponding fN is bounded, say by M , i.e. |f(x)| ≤M for
all x ∈ I, we have |f(x)| ≤ M + 1 for all x ∈ I. So the upper and lower integral for f exist.
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We will show that they differ by an arbitrarily small positive number, and hence are equal.
This implies the Riemann integrability of the limit function f .

We use Exercise 7.6.7, to get for all n ≥ N∫
I

fn(x)− ε dx =

∫
I

fn(x)− ε dx ≤
∫

I

f(x) dx ≤
∫

I

f(x) dx

≤
∫

I

fn(x) + ε dx =

∫
I

fn(x) + ε dx

where the first and last equality follow from the fact that fn is Riemann integrable, and, of
course, that the constant function ±ε is Riemann integrable as well.

It follows that

0 ≤
∫

I

f(x) dx−
∫

I

f(x) dx ≤ 2ε |I|.

Since ε > 0 is arbitrary and I is finite, this shows that f is Riemann integrable. Moreover,
plugging this back it into the inequality, we see that for all n ≥ N we have∣∣∣ ∫

I

f(x) dx−
∫
I

fn(x) dx
∣∣∣ ≤ ε |I|

showing that
∫
I
f(x) dx = limn→∞

∫
I
fn(x) dx.

Recall that in Chapter 6 we have not discussed the relation between uniform convergence
of a sequence of functions and differentiability. In general, this is a bit more complicated, but
using Theorem 7.5.1 and the Fundamental Theorem of Calculus Theorems 7.4.1, 7.4.4 we can
prove the following result.

Proposition 7.5.2. For all n ∈ N, the function fn : [a, b] → R is assumed to be differentiable
with continuous derivative f ′

n : [a, b] → R. Assume that (f ′
n)n∈N converges uniformly to g. If

there exists x0 ∈ [a, b] for which the series (fn(x0))n∈N converges, say limn→∞ fn(x0) = L,
then the sequence (fn)n∈N converges uniformly to a function f : [a, b] → R. Moreover, f is a
differentiable function with derivative f ′ = g.

Proof. Assume for convenience that x > x0, then we can use the Fundamental Theorem of
Calculus, see Theorems 7.4.1, 7.4.4, to write

lim
n→∞

fn(x) = lim
n→∞

fn(x0) +

∫
[x0,x]

f ′
n(s) ds = L+

∫
[x0,x]

g(s) ds

using Theorem 7.5.1. So we have established that the sequence (fn)n∈N converges pointwise
to f(x) = L+

∫
[x0,x]

g(s) ds, which is a differentiable function with derivative g, again by the

Fundamental Theorem of Calculus.
It remains to show that the convergence is uniform. For this note that

|f(x)−fn(x)| ≤ |L−fn(x0)|+
∫
[x0,x]

|f ′
n(s)−g(s)| ds ≤ |L−fn(x0)|+ |b−a| sup

s∈[a,b]
|f ′

n(s)−g(s)|



90 Chapter 7: The Riemann integral

and note that the right hand side is independent of x ∈ [a, b]. Pick ε > 0, then there exists
N1 ∈ N so that for all n ≥ N1 we have |L− fn(x0)| < 1

2
ε since limn→∞ fn(x0) = L. Similarly,

there exists N2 ∈ N so that for all n ≥ N2 we have

∀x ∈ [a, b] |f ′
n(s)− g(s)| < 1

2|b− a|
ε.

So taking N = max(N1, N2) we have that for all n ≥ N that

∀x ∈ [a, b] |f(x)− fn(x)| ≤ |L− fn(x0)|+ |b− a| sup
s∈[a,b]

|f ′
n(s)− g(s)| < ε.

7.6 Exercises

Exercise 7.6.1. Let I ⊂ R be a bounded interval, and let f : I → R be a bounded function.
Let P be a partition of I and define the upper Riemann sum

U(f,P) =
∑

J∈P;J ̸=∅

(
sup
x∈J

f(x)
)
|J |

and the lower Riemann sum

L(f,P) =
∑

J∈P;J ̸=∅

(
inf
x∈J

f(x)
)
|J |.

(i) Explain why we need to exclude the empty set in the sums on the right hand side.

(ii) Assume that g ∈ PC(I) majorises f , and that g is piecewise constant with respect to
the partition P. Show that pc

∫
I
g(x) dx ≥ U(f,P). State and prove a similar statement

for a h ∈ PC(I) minorising f .

(iii) Show that the upper, respectively lower, Riemann integral are equal to the infimum,
respectively supremum, of the upper, respectively lower, Riemann sum over all partitions
of I; ∫

I

f(x) dx = inf
P
U(f,P),

∫
I

f(x) dx = sup
P

L(f,P).

The sums U(f,P), L(f,P) are also named Darboux sums.

Exercise 7.6.2. Define the function χ : R → R by χ(x) = 1 if x ∈ Q and χ(x) = 0 if
x ∈ R \Q. This means that χ is the indicator function of Q. Show that χ is not a Riemann
integrable function on the bounded interval [0, a]. This example is due to Dirichlet. Hint: use
Corollary 3.2.16(ii) and Exercise 7.6.1.
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Exercise 7.6.3. Define a function f : [0, 1] → R by

f(x) =


1

2n+2
, x ∈ ( 1

2n+3
, 1
2n+2

],
−1

2n+1
, x ∈ ( 1

2n+2
, 1
2n+1

],

0, x = 0.

for n ∈ N. Is f ∈ PC([0, 1])? If not, is f Riemann integrable on [0, 1]?

Exercise 7.6.4. Consider the functions fn : [0, 1] → R defined by fn(x) = (nx + 1)−1. Show
that the sequence of functions (fn)n∈N converges pointwise, but not uniformly. Show that in
this case

lim
n→∞

∫
[0,1]

fn(x) dx =

∫
[0,1]

lim
n→∞

fn(x) dx.

Exercise 7.6.5. Assume that we have proved the case f = g of Theorem 7.3.6, i.e. that for
f : I → R a Riemann integrable we have that f 2 : I → R is a Riemann integrable function.
Prove Theorem 7.3.6 in generality. Hint: write fg in terms of squares of functions.

Exercise 7.6.6. Let a < b and assume f : [a, b] → R is a continuous function. Show that
there exists c ∈ (a, b) with ∫

[a,b]

f(x) dx = (b− a)f(c).

Hint: use Theorem 6.2.5.

Exercise 7.6.7. Let I ⊂ R be a finite interval, and let f : I → R and g : I → R.

(i) Show that ∫
I

f(x) + g(x) dx ≥
∫

I

f(x) dx+

∫
I

g(x) dx.

Hint: see the proof of Theorem 7.3.1(i).

(ii) Can we conclude that∫
I

f(x) + g(x) dx =

∫
I

f(x) dx+

∫
I

g(x) dx?

If not, can you formulate additional conditions on f and g making the equalities valid?

(iii) Show that, using −f : I → R defined by (−f)(x) = −f(x),∫
I

(−f)(x) dx = −
∫

I

f(x) dx.
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Exercise 7.6.8. Let a < b. Show that a monotonous function f : [a, b] → R is Riemann
integrable. Here a function f : A→ R, A ⊂ R, is a monotonous function “monotone functie”
if f is either an increasing function on A or a decreasing function on A. Hint: take an
equidistant partition of [a, b], i.e. |P | = N and for all J ∈ P we have |J | = b−a

N
. Show that in

case of an increasing function

0 ≤
∫
f(x) dx−

∫
f(x) dx ≤ b− a

N

(
f(b)− f(a)

)
.

This can be done directly or using Exercise 7.6.1.

Exercise 7.6.9. Note that f(x) = 1
x
gives a continuous function f : (0,∞) → R, so that by

Corollary 7.3.8 f is integrable on intervals of the form [1, x], x > 1 and [x, 1], x > 0. We
define, see Lemma 7.4.3, its primitive as

ln : (0,∞) → R, ln(x) =

∫
[1,x]

1

t
dt (x ≥ 1), ln(x) = −

∫
[x,1]

1

t
dt (0 < x < 1).

Note that the calculus convention
∫
[a,b]

f(x) dx = −
∫
[b,a]

f(x) dx for a > b would come in

handy.

(i) Show that ln(xy) = ln(x) + ln(y) for x > 1, y > 1. Hint: use Theorem 7.3.1(iii) to split
[1, xy] in [1, x] and (x, xy] and use Corollary 7.4.5.

(ii) Adapt Corollary 7.4.5 to show that ln(xy) = ln(x) + ln(y) for x > 0, y > 0.

(iii) Show that ln(xr) = r ln(x). Hint: first show this for r ∈ N, next r ∈ Z and r ∈ Q. Then
use continuity of the function x 7→ ax for a > 0 (which you may assume).

(iv) Show that ln is a differentiable function, which is a strictly increasing function. Show
that limx→∞ ln(x) = ∞ in the folllowing sense

∀M ∈ R ∃K ∈ (0,∞) ∀x ≥ K ln(x) > M.

Similarly, show that limx↘0 ln(x) = −∞, i.e.

∀M ∈ R ∃ δ > 0 ∀x ∈ (0, δ) ln(x) < M.

(v) Show that limx↘0 x ln(x) = 0. Hint: show that f(x) = x ln(x), f : (0, a) → R is negative,
differentiable, decreasing (use Exercise 6.5.9) for a > 0 sufficiently small. Taking any
sequence (xn)n∈N in (0, a) converging to 0, show that limn→∞ f(xn) = 0 using Exercise
3.4.4.

(vi) Show that for any α > 0 we have limx→∞
ln(x)
xα = 0 and limx↘0 x

α ln(x) = 0.
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(vii) Argue that ln : (0,∞) → R is a bijection. Let exp: R → (0,∞) be its inverse. Show
that exp is a differentiable function, and show that the derivative of exp equals exp and
that exp(0) = 1. Hint: use Theorem 6.3.1.

(viii) Show that exp(x+ y) = exp(x) exp(y) for all x, y ∈ R.

(ix) Put e = exp(1), i.e. e ∈ (0,∞), is the unique number satisfying
∫
[1,e]

1
t
dt = 1. Show

that exp(x) = ex. Hint: first show this for x ∈ N, next x ∈ Z and x ∈ Q. Then
use continuity of the function x 7→ ax for a > 0 (which you may assume). We have
e = 2.718281828459045 · · · , and in Exercise 8.7.9 you can show that e /∈ Q.

(x) Let α > 0. Show that limx→∞
exp(x)
xα = ∞ and limx→∞ xα exp(−x) = 0.

Exercise 7.6.10. Let f : [a,∞) → R a function so that f |[0,R] → R is a Riemann integrable
function for each R ≥ a. Then the improper integral “oneigenlijke integraal”

∫
[a,∞)

f(x) dx

exists if

lim
R→∞

∫
[a,R]

f(x) dx

exists, so we assume the limit to be finite. Recall that this means that there exists L ∈ R, the
limit value, so that

∀ ε > 0 ∃M ≥ a ∀R ≥M |L−
∫
[a,R]

f(x) dx| < ε.

Then
∫
[a,∞)

f(x) dx = limR→∞
∫
[a,R]

f(x) dx and we say the improper integral is convergent.

Otherwise the improper integral is divergent.

(i) Assume that f : [a,∞) → R and g : [a,∞) → R satisfy 0 ≤ f ≤ g. Assume moreover
that f and g are Riemann integrable functions on the bounded interval [a,R] for all
R > a.

(a) Assume that the improper integral
∫
[a,∞)

g(x) dx is convergent. Show that the im-

proper integral
∫
[a,∞)

f(x) dx is convergent.

(b) Assume that the improper integral
∫
[a,∞)

f(x) dx is divergent. Show that the im-

proper integral
∫
[a,∞)

g(x) dx is divergent.

(ii) Let α > 0. Show that
∫
[1,∞)

1
xα dx is convergent if and only if α > 1.

Exercise 7.6.11. Let I ⊂ R be a bounded interval, and f : I → R. Then f is called piecewise
continuous “stuksgewijs continu” if there exists a partition P of I so that for all J ∈ P

the function f |J : J → R is continuous. Show that if f : I → R is piecewise continuous and
bounded, then f is a Riemann integrable function on I. Hint: use Theorem 7.3.1.

Exercise 7.6.12. In this exercise we show that not all differentiable functions have Riemann
integrable derivatives.
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(i) Show that F (x) = x2 sin(x−3) for x ̸= 0 and F (0) = 0 defines a differentiable function
F : [−1, 1] → R.

(ii) Show that F ′ is not Riemann integrable on [−1, 1].

Exercise 7.6.13. Let f : (a, b] → R be a function so that f |[a+ε,b] : [a+ε, b] → R is a Riemann
integrable function for each b−a > ε > 0. Then the improper integral “oneigenlijke integraal”∫
(a,b]

f(x) dx exists if

lim
ε↘0

∫
[a+ε,b]

f(x) dx

exists. Then
∫
(a,b]

f(x) dx = limε↘0

∫
[a+ε,b]

f(x) dx and we say the improper integral is conver-

gent. Otherwise the improper integral is divergent.

(i) State and prove the analogue of Exercise 7.6.10(i) for this improper integral.

(ii) Let α > 0. Show that the improper integral
∫
(0,1]

1
xα dx is convergent if and only if

0 < α < 1. Note that the integrand 1
xα is unbounded on (0, 1], and so we cannot discuss

its Riemann integrability.

(iii) Let us consider the case α = 1. The function f(x) = 1
x
is well defined on the domain

[−1, 0) ∪ (0, 1]. Show that for all ε with 1 > ε > 0∫
[−1,−ε]

1

x
dx+

∫
[ε,1]

1

x
dx = 0

even though the limit ε↘ 0 of each term separately is not finite.

(iv) Prove that for a function f : [−1, 1] → R which is continuously differentiable the limit

lim
ε↘0

∫
[−1,−ε]∪[ε,1]

f(x)

x
dx

exists. This is known as a principal value integral “hoofdwaarde-integraal”.

Exercise 7.6.14. (i) Show that the improper integral
∫
[1,∞)

e−ttx−1 dt is absolutely conver-

gent for x > 0.

(ii) Show that the function t 7→ e−ttx−1 is Riemann integrable on [0, 1) for x ≥ 1. And show
that for 0 < x < 1 the improper integral

∫
(0,1)

e−ttx−1 dt is convergent.

(iii) Conclude that the improper integral
∫
(0,∞)

e−ttx−1 dt exists for all x > 0, and we define

the function Γ: (0,∞) → R by

Γ(x) =

∫
(0,∞)

e−ttx−1 dt

which was introduced by Euler in 1729.
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(iv) Show that Γ(x+ 1) = xΓ(x). Hint: use Corollary 7.4.6 on a bounded interval and take
suitable limits to incorporate the improper integrals.

(v) Calculate Γ(1) = 1. Hint: use Theorem 7.4.4 and Exercise 7.6.9.

(vi) Show that Γ(n+ 1) = n! for all n ∈ N.

Exercise 7.6.15. Let I ⊂ R be a bounded interval, and assume f : I → C is a complex
valued function as in Exercise 5.5.17. We define the complex valued function f : I → C to be
Riemann integrable if both real valued functions ℜf : I → R and ℑf : I → R are Riemann
integrable, and in that case we define∫

I

f(x) dx =

∫
I

(ℜf)(x) dx+ i

∫
I

(ℑf)(x) dx.

Discuss and prove the analogues of Theorem 7.3.1 and Corollary 7.3.2, and the Fundamental
Theorem of Calculus, Theorems 7.4.1, 7.4.4. Can you also obtain an analogue of Corollary
7.3.2?
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Chapter 8

Series

In this chapter we deal with infinite summations, known as series. After introducing conver-
gent series, we discuss several criteria for convergent series, mainly for absolutely convergent
series. Then we consider series of functions, especially power series, and we study their
convergence properties. For power series we show how such series can be integrated and
differentiated. We also discuss conditions which allow to interchange summation in iterated
series. Finally, we discuss power series in the complex setting.

8.1 Convergent series

We know how to sum a finite number of terms, and then we can use all the rules for elementary
arithmetic. But how do we give meaning to infinite sums? See Chapter 1 for an indication
that care is needed. Such an infinite sum is called a series “reeks”.

Definition 8.1.1. Let (an)n∈N be a sequence of real numbers. Define the partial sum “partiële
som” SN =

∑N
n=0 an for N ∈ N. If the sequence (sN)

∞
N=0 is a convergent sequence, then we

say that the series “reeks”
∑∞

n=0 an is convergent “convergent” and the result is

∞∑
n=0

an = lim
N→∞

SN .

If the sequence (sN)
∞
N=0 is not convergent, we say that the series

∑∞
n=0 an is divergent “diver-

gent”.

Note that we label the series starting from 0, and this is not essential as one can see by
shifting or relabelling the sequence to be summed. So we can also say that the sequence∑∞

k=m ak is convergent if the sequence (SN)
∞
N=m of partial sums SN =

∑N
k=m ak is convergent.

Exercise 8.1.2. Show that convergence only depends on the tail of the sequence. Or, given
the sequence (an)n∈N, the series

∑∞
n=0 an is convergent if and only if there exists m ∈ N such

that the series
∑∞

n=m an is convergent. How are the outcomes of
∑∞

n=0 an and
∑∞

n=m an related
assuming they are convergent series?

97
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Example 8.1.3. We know the geometric sum

N∑
n=0

rn =


1− rN+1

1− r
, r ̸= 1.

N + 1, r = 1.

(If you don’t know this sum, then you should prove it by induction on N or by proving the
identity you get by multiplying both sides by 1−r and do the case r = 1 separately.) Observe
that the case r = 1 can also be obtained by a limit r → 1 using Corollary 6.2.8. Use Exercise
3.4.2 to conclude that the series

∑∞
n=0 r

n is convergent if and only if |r| < 1 and in that case

∞∑
n=0

rn =
1

1− r
, |r| < 1.

This is a very important example, and it is called the geometric series “meetkundige reeks”.
It is used in various results in this chapter.

Since we have defined convergent series in terms of convergent sequences, we can transpose
the statements of Theorem 3.2.19 to the case of series.

Theorem 8.1.4. Let
∑∞

n=0 an and
∑∞

n=0 bn be convergent series with
∑∞

n=0 an = L and∑∞
n=0 bn =M .

(i) For any c ∈ R the series
∑∞

n=0 can is convergent and
∑∞

n=0 can = cL.

(ii) The series
∑∞

n=0(an + bn) is convergent and
∑∞

n=0(an + bn) = L+M .

(iii) For c, d ∈ R the series
∑∞

n=0(can + dbn) is convergent and
∑∞

n=0(can + dbn) = cL+ dM .

(iv) Assume that for all n ∈ N we have an ≤ bn, then L ≤M , or
∑∞

n=0 an ≤
∑∞

n=0 bn.

Exercise 8.1.5. Give a proof of Theorem 8.1.4 using Definition 8.1.1 and Theorem 3.2.19.

As an exercise we discuss the situation of a telescoping series “telescopende reeks”. This
is a series of the form

∞∑
n=0

(an − an+1) = (a0 − a1) + (a1 − a2) + (a2 − a3) + · · ·

where terms in the n-the summand of the series cancel with terms from the n+1-th summand.

Proposition 8.1.6 (Telescoping series). Let (an)
∞
n=0 be a sequence.

The series
∑∞

n=0(an − an+1) is convergent if and only if the sequence (an)
∞
n=0 is convergent.

In that case we have
∞∑
n=0

(an − an+1) = a0 − lim
n→∞

an.
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Proof. We have to consider the partial sum

SN =
N∑

n=0

(an − an+1) =
N∑

n=0

an −
N+1∑
n=1

an = a0 − aN+1

by Definition 8.1.1. So we see that the limit of the partial sums exist if and only if limN→∞ aN+1

exists. Since this is equivalent with limn→∞ an exists, we have proved the first statement.
In this case we have

∞∑
n=0

(an − an+1) = lim
N→∞

(a0 − aN+1) = a0 − lim
n→∞

an.

See Exercise 8.7.1 for some explicit examples of telescoping series.
The following result leads to a criterium for divergence of a series. It is a simple, but

important result.

Theorem 8.1.7. Assume that the series
∑∞

n=0 an is convergent, then limn→∞ an = 0.

Corollary 8.1.8. If (an)n∈N is a sequence for which limn→∞ an does not exist or for which
limn→∞ an = L exists, but L ̸= 0, then the series

∑∞
n=0 an is divergent.

At a later stage we will see many examples of divergent series
∑∞

n=0 an for which an → 0,
the most prominent being the harmonic series, see Example 8.2.5. So the converse of Theorem
8.1.7 is false!

Proof of Theorem 8.1.7. Let SN =
∑N

n=0 an be the partial sum, then we know that (SN)
∞
N=0

is convergent, say limN→∞ SN = L. Then also limN→∞ SN+1 = L and we have

aN+1 = SN+1−SN =⇒ lim
N→∞

aN+1 = lim
N→∞

SN+1−SN = lim
N→∞

SN+1− lim
N→∞

SN = L−L = 0,

using Theorem 3.2.19.

In the following convergence criterium we use Theorem 3.3.11.

Theorem 8.1.9. The series
∑∞

n=0 an is convergent if and only if

∀ ε > 0 ∃N ∈ N ∀n > m ≥ N :
∣∣∣ n∑
j=m+1

aj

∣∣∣ < ε.

Proof. By definition
∑∞

n=0 an is convergent if and only if the sequence (SN)
∞
N=0 of partial sums

is convergent. By Theorem 3.3.11 this is equivalent to (SN)
∞
N=0 being a Cauchy sequence,

which by Definition 3.3.1 means

∀ ε > 0 ∃N ∈ N ∀n,m ≥ N : |Sn − Sm| < ε.

We can assume that n > m without loss of generality, and we observe that

Sn − Sm =
n∑

j=0

aj −
m∑
j=0

aj =
n∑

j=m+1

aj

proving the result.
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Definition 8.1.10. The series
∑∞

n=0 an is absolutely convergent “absoluut convergent” if the
series

∑∞
n=0 |an| is a convergent series.

Example 8.1.11. The geometric series of Example 8.1.3 is absolutely convergent for |r| < 1.

The notion of absolute convergence is stronger than the notion of convergence.

Proposition 8.1.12. If the series
∑∞

n=0 an is absolutely convergent, then the series
∑∞

n=0 an
is convergent. Moreover, in that case

∣∣∣ ∞∑
n=0

an

∣∣∣ ≤ ∞∑
n=0

|an|.

Proof. Note that for finite sums we have

∣∣∣ m∑
i=n

ai

∣∣∣ ≤ m∑
i=n

|ai|, (8.1.1)

which follows from the triangle inequality (2.1.1) and induction on the number of terms in
the sum. Since the series

∑∞
n=0 |an| converges, we can reformulate by Theorem 8.1.9 that

∀ ε > 0 ∃N ∈ N ∀n > m ≥ N :
∣∣∣ n∑
j=m+1

aj

∣∣∣ ≤ n∑
j=m+1

|aj| < ε.

using (8.1.1). By Theorem 8.1.9 it follows that
∑∞

n=0 an is convergent.

With SN =
∑N

n=0 an and TN =
∑N

n=0 |an|, we have |SN | ≤ TN for all N ∈ N. Taking the
limit and using that the absolute value is a continuous function and Proposition 5.1.10 we see
that ∣∣∣ ∞∑

n=0

an

∣∣∣ = | lim
N→∞

SN | = lim
N→∞

|SN | ≤ lim
N→∞

TN =
∞∑
n=0

|an|.

Definition 8.1.13. The series
∑∞

n=0 an is called relatively convergent “relatief convergent”
or “voorwaardelijk convergent” if

∑∞
n=0 an is convergent and

∑∞
n=0 |an| is divergent.

From this discussion it is clear that we have to pay attention to series with positive terms.
We first reformulate Theorem 3.2.9.

Theorem 8.1.14. Let (an)n∈N satisfy ∀n ∈ N an ≥ 0, and let (SN)N∈N be sequence of partial
sums; SN =

∑N
n=0 an. Then

∑∞
n=0 an is convergent if and only if the sequence (SN)N∈N is

bounded. In that case
∞∑
n=0

an = sup
N∈N

SN .
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Proof. First observe that if
∑∞

n=0 an is convergent, the sequence (SN)N∈N is convergent, and
hence, by Proposition 3.2.8, bounded. Conversely, note that

SN+1 =
N+1∑
n=0

an = SN + aN+1 ≥ SN

since aN+1 ≥ 0. So (SN)N∈N is an increasing sequence, and it is bounded by assumption. So,
by Theorem 3.2.9, (SN)N∈N is convergent, meaning that

∑∞
n=0 an is convergent.

In case this condition is satisfied, Theorem 3.2.9 also implies the value of the series as a
limit of the sequence of partial sums.

Theorem 8.1.14 allows to find a characterisation of relatively convergent series. This char-
acterisation can be used to show that we can attach any value to a relatively convergent
sequence by changing the order of summation, see Exercise 8.7.6 for the details in a specific
example.

Proposition 8.1.15. Let (an)n∈N be a sequence, and put for all n ∈ N a+n = max(an, 0),
a−n = −min(an, 0), so that an = a+n − a−n , |an| = a+n + a−n and (a+n )n∈N and (a−n )n∈N are non-
negative sequences. If

∑∞
n=0 an is relatively convergent, then both

∑∞
n=0 a

+
n and

∑∞
n=0 a

−
n are

divergent.

Remark 8.1.16. Note that a convergent series
∑∞

n=0 an for which at least one of the series∑∞
n=0 a

+
n or

∑∞
n=0 a

−
n diverges, cannot be absolutely convergent since |an| ≥ a+n and |an| ≥ a−n .

Proof of Proposition 8.1.15. Let SN =
∑N

n=0 an, S
+
N =

∑N
n=0 a

+
n , S

−
N =

∑N
n=0 a

−
n , be the cor-

responding partial sums. Then (S+
N)N∈N and (S−

N)N∈N are increasing sequences, so that by
Theorem 8.1.14 the boundedness of (S+

N)N∈N, respectively (S−
N)N∈N, determines the conver-

gence
∑∞

n=0 a
+
n , respectively

∑∞
n=0 a

−
n .

We prove Proposition 8.1.15 by excluding all the other possibilities. First, assume that
(S+

N)N∈N and (S−
N)N∈N are bounded. Since |an| = a+n + a−n , it follows by Theorem 3.2.19

that
∑∞

n=0 |an| is convergent as sum of two convergent series. This contradicts that the series∑∞
n=0 an is not absolutely convergent.
Next we assume that one sequence of partial sums is bounded, and that the other one is

unbounded. We assume that (S+
N)N∈N is bounded and that (S−

N)N∈N is unbounded. The other
case proceeds similarly. This means that

∑∞
n=0 a

+
n is convergent and

∑∞
n=0 a

−
n is divergent.

Then we write a−n = a+n − an, and since the last two terms correspond to a convergent series,
we have that

∑∞
n=0 a

−
n is convergent by Theorem 8.1.4, contradicting the divergence.

So the only possibility remaining is that
∑∞

n=0 a
+
n and

∑∞
n=0 a

−
n both diverge, and the

sequences of the partial sums diverge to ∞.

We have indicated that relatively convergent series behave badly under rearrangement
of the series, see Exercise 8.7.6. The absolutely convergent series do not suffer from this
drawback.
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Theorem 8.1.17. Assume that
∑∞

n=0 an is an absolutely convergent series. Let τ : N → N be
a bijection, then

∑∞
n=0 aτ(n) is absolutely convergent and

∞∑
n=0

an =
∞∑
n=0

aτ(n).

Proof. We first prove the statement under the additional assumption that ∀n ∈ N we have
an ≥ 0. Let SN =

∑N
n=0 an, then, by Theorem 8.1.14, there exists M ∈ R so that ∀N ∈ N we

have SN ≤M . We take M = supN∈N SN . Now, using that an ≥ 0 for all n,

K∑
k=0

aτ(k) ≤
N∑

n=0

an ≤M, N = max
k∈{0,··· ,K}

τ(k).

It follows that the sequence of partial sums for
∑∞

n=0 aτ(n) is bounded by M , so that by
Theorem 8.1.14

∑∞
n=0 aτ(n) is convergent. Moreover, taking the limitK → ∞ in this inequality

and using Theorem 8.1.14 again, we have

∞∑
k=0

aτ(k) ≤M = sup
N∈N

SN =
∞∑
n=0

an.

Now apply this to the series
∑∞

n=0 bn with bn = aτ(n) and replace τ by τ−1, to see that∑∞
k=0 aτ(k) =

∑∞
n=0 an.

In the general case we write, cf. Proposition 8.1.15, an = a+n − a−n , with a±n ≥ 0 and
|an| = a+n + a−n . It follows that

N∑
n=0

a+n ≤
N∑

n=0

|an|

and this is bounded independent of N , since
∑∞

n=0 an is absolutely convergent. So we conclude
that

∑∞
n=0 a

+
n , and similarly

∑∞
n=0 a

−
n , is convergent. Since aτ(n) = a+τ(n) − a−τ(n), we have by

the proof for the case of a series with positive terms that

∞∑
n=0

a+τ(n) =
∞∑
n=0

a+n ,
∞∑
n=0

a−τ(n) =
∞∑
n=0

a−n .

Now use Theorem 8.1.4 to see that

∞∑
n=0

aτ(n) =
∞∑
n=0

a+τ(n) −
∞∑
n=0

a−τ(n),

∞∑
n=0

an =
∞∑
n=0

a+n −
∞∑
n=0

a−n ,

and this finishes the proof in the general case.
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8.2 Convergence criteria for series

In this section we discuss some more general convergence criteria. Note that we have already
described several convergence criteria in Proposition 8.1.6, Theorem 8.1.9, Theorem 8.1.14
and a divergence criterium in Corollary 8.1.8. Most of the criteria deal with series of positive
terms, and hence deal with criteria for absolute convergence. The exception to this is the first
criterion.

Theorem 8.2.1 (Alternating series or Leibniz criterion “alternerende reekscriterium”). Let
(an)n∈N be a decreasing sequence of non-negative terms, i.e. an ≥ 0 and an+1 ≤ an for all
n ∈ N. Then the alternating series

∑∞
n=0(−1)nan is convergent if and only if limn→∞ an = 0.

Proof. If
∑∞

n=0(−1)nan is convergent, then, by Theorem 8.1.7, we have limn→∞(−1)nan = 0.
Using Exercise 3.2.3 we also have limn→∞ an = 0.

Conversely, let SN =
∑N

n=0(−1)nan be the partial sum. Then we have

S2N+2 = S2N + a2N+2 − a2N+1︸ ︷︷ ︸
≤0

≤ S2N S2N+1 = S2N−1 + a2N − a2N+1︸ ︷︷ ︸
≥0

≥ S2N−1

so we find that the subsequence (S2N)N∈N is decreasing and the subsequence (S2N+1)N∈N is
increasing. Moreover, we can compare the subsequences, since for any N we have

S1 ≤ S3 ≤ · · · ≤ S2N+1 = S2N − a2N+1 ≤ S2N ≤ S2N−2 ≤ · · · ≤ S2 ≤ S0.

So (S2N)N∈N is a decreasing sequence, which is bounded from below, so that by Theorem 3.2.9
the sequence is convergent. Similarly, (S2N+1)N∈N is an increasing sequence, which is bounded
from above and hence convergent. So the limits exist and

lim
N→∞

S2N = L, lim
N→∞

S2N+1 =M,

and it remains to prove that limN→∞ SN exists if and only if L =M if and only if limn→∞ an =
0. This is referred to Exercise 8.2.2.

Exercise 8.2.2. We finish the proof of Theorem 8.2.1.

(i) Assume that subsequences of even and odd parts of (an)
∞
n=0 are convergent; i.e.

limn→∞ a2n = L and limn→∞ a2n+1 =M . Prove that (an)
∞
n=0 is convergent if and only if

L =M .

(ii) In the context of the proof of Theorem 8.2.1 show that with
limN→∞ S2N = L, limN→∞ S2N+1 =M we have L =M if and only if limn→∞ an = 0.

All the other convergence criteria are focused on series with positive terms, so essentially
for establishing absolute converence.

Theorem 8.2.3 (Majorising criteron). Let (a)n∈N, (b)n∈N be sequences satisfying ∀n ∈ N
0 ≤ an ≤ bn. Then we have the following statements:
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(i) if
∑∞

n=0 bn is a convergent series, then
∑∞

n=0 an is a convergent series;

(ii) if
∑∞

n=0 an is a divergent series, then
∑∞

n=0 bn is a divergent series.

We say the series
∑∞

n=0 bn majorises “majoriseert” the series
∑∞

n=0 bn, or equivalently that∑∞
n=0 an minorises “minoriseert” the series

∑∞
n=0 an. A related, but more refined convergence

criterion is in Exercise 8.7.5.

Proof. Let SN =
∑N

n=0 an, TN =
∑N

n=0 bn be the partial sums for the series. Then (SN)
∞
N=0

and (TN)
∞
N=0 are increasing sequences, see proof of Theorem 8.1.14. Then for all N ∈ N we

have SN ≤ TN . In particular, if
∑∞

n=0 bn is a convergent series, then (TN)
∞
N=0 is a bounded

sequence by Theorem 8.1.14, so that (SN)
∞
N=0 is a bounded sequence. Again by Theorem

8.1.14 this means that
∑∞

n=0 an is a convergent series.
Similarly, in case

∑∞
n=0 an is a divergent series, the sequence (SN)

∞
N=0 is an unbounded

sequence by Theorem 8.1.14. Hence, (TN)
∞
N=0 is an unbounded sequence, and, again by

Theorem 8.1.14,
∑∞

n=0 bn is a divergent series.

Theorem 8.2.4 (Cauchy). Assume that (an)n∈N is a decreasing non-negative sequence. Then∑∞
n=0 an is a convergent series if and only if

∑∞
k=0 2

ka2k is a convergent series.

Example 8.2.5. An important application of Cauchy’s Theorem 8.2.4 is that we can consider
the sequence

∞∑
n=0

1

(n+ 1)α
=

∞∑
m=1

1

mα
.

We see that this series is convergent if and only if

∞∑
k=0

2k

(2k + 1)α

is a convergent series. For α > 1, we see that we can majorise this series by
∑∞

k=0
2k

(2k)α
=∑∞

k=0(2
1−α)k, which is a convergent geometric series, see Example 8.1.3. If 0 < α ≤ 1, we see

that limk→∞
2k

(2k+1)α
̸= 0, so that by Corollary 8.1.8 the series is divergent. In conclusion we

have for α > 0 that
∞∑

m=1

1

mα

is a convergent series if and only if α > 1. The case α = 1 is known as the harmonic series
“harmonische reeks”, and in particular the harmonic series

∑∞
m=1

1
m

is a divergent series.

Exercise 8.2.6. We indicate a proof of Theorem 8.2.4. Denote by SN =
∑N

n=0 an and

TK =
∑K

k=0 2
ka2k the corresponding partial sums.

(i) Show that for k ∈ N and k ≥ 1 we have

2k−1a2k−1 ≥ a2k−1+1 + a2k−1+2 + · · ·+ a2k ≥ 2k−1a2k

using that (an)n∈N is a decreasing sequence.
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(ii) Sum the inequalities over k ∈ {1, · · · , K} to get

TK−1 ≥ S2K − (a0 + a1) ≥
1

2
(TK − a1)

(iii) Using that (an)n∈N is a nonnegative sequence, derive from the inequalities from (ii) that
(SN)

∞
N=0 is a bounded sequence if and only if (TK)

∞
K=0 is bounded.

(iv) Finish the proof of Theorem 8.2.4.

The following criteria are based on comparison with the geometric series, see Example
8.1.3 and Example 8.1.11.

Theorem 8.2.7 (Cauchy). Consider the series
∑∞

n=0 an, and let

α = lim sup
n→∞

n
√
|an| ∈ [0,∞]

where we put α = ∞ if the sequence diverges to infinity, see Remark 3.2.6. Then we have the
following statements:

(i) if α < 1, then
∑∞

n=0 an is an absolutely convergent series;

(ii) if α > 1, then
∑∞

n=0 an is a divergent series.

The criterion of Theorem 8.2.7 is also known as the root criterion “wortelkenmerk”.

Proof. Assume 1 < α < ∞, then we pick ε > 0 so that α − ε > 1. Then there exists N ∈ N
so that for all K ≥ N we have

sup
n≥K

n
√

|an| > α− ε =⇒ ∀N ∈ N ∃ k ≥ N |ak| > (α− ε)k.

Since α− ε > 1, we see that limn→∞ an is not equal to 0, so that by Corollary 8.1.8 the series
is divergent. The case α = +∞ is in Exercise 8.2.8. This proves the second statement.

Next we assume 0 ≤ α < 1, recall that from Definition 3.3.4

α = lim
N→∞

sup
n≥N

n
√

|an| = inf
N∈N

sup
n≥N

n
√
|an|.

Choose ε > 0 so that α + ε < 1, then there exists N ∈ N so that for all K ≥ N we have
supn≥K

n
√
|an| < α+ ε. This implies that for all n ≥ N we have

n
√
|an| ≤ α + ε =⇒ |an| ≤ (α + ε)n

so that we can majorise the series
∑∞

n=N |an| by the the tail of the geometric series
∑∞

n=N(α+
ε)n. Since 0 < α + ε < 1, this series is absolutely convergent, and so by Theorem 8.2.3 the
series

∑∞
n=N |an| is convergent. By Exercise 8.1.2, we see that the tail of the series determines

the convergence properties, so
∑∞

n=0 |an| is convergent.
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Exercise 8.2.8. Give a proof of the case α = +∞ of Theorem 8.2.7. Mimick the case of
1 < α <∞ by showing that limn→∞ an is not equal to 0 using Remark 3.2.6.

Theorem 8.2.9 (d’Alembert). Consider the series
∑∞

n=0 an, and assume that for all n ∈ N
we have an ̸= 0. Then we have the following statements:

(i) if lim supn→∞
|an+1|
|an| < 1, then

∑∞
n=0 an is an absolutely convergent series;

(ii) if lim infn→∞
|an+1|
|an| > 1, then

∑∞
n=0 an is a divergent series.

This criterion is also known as the quotient criterion “quotiëntenkenmerk”. Theorem 8.2.9
follows directly from Theorem 8.2.7 and Exercise 3.4.14. See Exercise 8.2.11.

Remark 8.2.10. Note that for the series
∑∞

m=1
1

mα we have

lim
m→∞

(m+ 1)α

mα
= 1, lim

m→∞

1
m
√
mα

= 1

for all α > 0 and by Example 8.2.5 we see that for 0 < α ≤ 1 the series is divergent and for
α > 1 the series is absolutely convergent. So we conclude that in case lim supn→∞

n
√

|an| = 1

in Theorem 8.2.7 and that in case limn→∞
|an+1|
|an| = 1 in Theorem 8.2.9 we cannot come to a

conclusion on the convergence properties of the involved series
∑∞

n=0 an.

Exercise 8.2.11. Here we indicate a direct proof of Theorem 8.2.9 by comparing the series
with the geometric series as in the proof of Theorem 8.2.7.

(i) Assume L = lim supn→∞
|an+1|
|an| < 1, show that there exists 0 < r < 1 and N ∈ N so that

for all n ≥ N we have |an+1|
|an| ≤ r. Hint: choose ε > 0 so that r = L + ε < 1, and use

Definition 3.3.4.

(ii) Continuing (i), show that
∑∞

n=N an is absolutely convergent by comparing it to the
geometric series, see Example 8.1.3, Example 8.1.11. Hint: show that |aN+k| ≤ |aN |rk
for k ∈ N.

(iii) Continuing (i) and (ii), show that
∑∞

n=0 an is absolutely convergent. Hint: use Exercise
8.1.2.

(iv) Assume lim infn→∞
|an+1|
|an| > 1. Show that limn→∞ an is not zero. Hint: compare the

proof of Theorem 8.2.7(i).

8.3 Power series

In this section we consider series where each of the term is a particular kind of function, namely
a power function (i.e. of the form xn). It is related to extending the Taylor polynomials as in
Section 6.4 to a series. We start more generally with a series of functions.
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Definition 8.3.1. Assume A ⊂ R and that for all n ∈ N we have a function fn : A→ R, then
we say that the series

∑∞
n=0 fn converges pointwise “reeks

∑∞
n=0 fn convergeert puntsgewijs” if

the sequence (SN)
∞
N=0 of functions defined by SN : A→ R with SN(x) =

∑N
n=0 fn(x) converges

pointwise to a function f : A → R, and then
∑∞

n=0 fn = f pointwise. Similarly, the series∑∞
n=0 fn converges uniformly “reeks

∑∞
n=0 fn convergeert uniform” if the sequence (SN)

∞
N=0 of

functions converges uniformly to a function f : A→ R, and then
∑∞

n=0 fn = f uniformly.

Theorem 8.3.2 gives a criterion for uniform convergence, which is known as the Weierstrass
M-test.

Theorem 8.3.2 (Weierstrass). Let A ⊂ R and for all n ∈ N we have a function fn : A→ R.
Assume that there exists a sequence (Mn)n∈N with

∀n ∈ N ∀x ∈ A |fn(x)| ≤Mn.

If the series
∑∞

n=0Mn converges, then
∑∞

n=0 fn converges uniformly.

Proof. Let SN(x) =
∑N

n=0 fn(x) be the partial sum, and assume
∑∞

n=0Mn converges. For
ε > 0 there exists K ≥ 0 so that for all N > M ≥ K we have

|SN(x)− SM(x)| ≤
N∑

n=M+1

|fn(x)| ≤
N∑

n=M+1

Mn < ε

using Theorem 8.1.9. Now Theorem 5.4.5 shows that the convergence is uniform.

In general, the convergence properties of series of functions depend on the structure of the
functions fn. We consider the special case that the fn’s are powers of x.

Definition 8.3.3. A power series “machtreeks” is a series of the form

∞∑
n=0

an(x− c)n

for a sequence (an)
∞
n=0, which are the coefficients of the power series “coëfficiënten van de

machtreeks”, and c ∈ R is the centre “centrum” or “middelpunt” of the power series. Finally,
x ∈ R is considered to be a variable.

A power series is a rather formal object, since we do not know what the convergence
properties are of the series. But it is clear that it converges for x = c, since then all terms
except the n = 0 term (recall that 00 = 1) vanish. Note that the centre is not that important,
since we can always shift the centre to 0 by putting y = x− c. The region of convergence of
a power series is particularly nice, and this is the content of the next result.

Theorem 8.3.4. For the power series
∑∞

n=0 an(x− c)n we have one of the following options:

(i) the power series converges for all x ∈ R;
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(ii) the power series converges only for x = c;

(iii) there exists R ∈ (0,∞) so that for all x ∈ (c − R, c + R) the power series is absolutely
convergent and for all x ∈ (−∞, c−R) ∪ (c+R,∞) the power series is divergent.

Then R = 1
α
with α = lim supn→∞

n
√

|an| with the convention that α = 0 corresponds to (i)
and α = ∞ corresponds to (ii). Moreover, the power series converges uniformly on [c− R +
ε, c+R− ε] for any ε > 0.

Definition 8.3.5. For a power series
∑∞

n=0 an(x − c)n we define the radius of convergence
“convergentiestraal” R ∈ [0,∞) as in Theorem 8.3.4(ii) and we set the radius of convergence
R = ∞ in case of Theorem 8.3.4(i). The radius of convergence is in [0,∞] = [0,∞) ∪ {∞}.

Since the fn’s are continuous functions, we see that f : (c − R, c + R) → R, f(x) =∑∞
n=0 an(x− c)n is a continuous function by Theorem 5.4.4.
Lemma 8.3.6 indicates why there is an interval of convergence as in Theorem 8.3.4, again

by comparing to the geometric series.

Lemma 8.3.6. Assume the power series
∑∞

n=0 anx
n converges absolutely for x ∈ R with

|x| = r, then it also converges absolutely for all x with |x| < r.

Proof. The assumption shows that
∑∞

n=0 |an|rn is a convergent series with positive summands.
Pick x ∈ R with |x| = s < r, then we write

|anxn| = |an|sn = |an|rn
(s
r

)n
.

Since
∑∞

n=0 |an|rn is a convergent series, we have that (|an|rn)∞n=0 is bounded, since it is a
convergent sequence by Theorem 8.1.7 and using Proposition 3.2.8. So ∃M with |an|rn ≤M
for all n ∈ N. Put bn = Mtn, t = s

r
∈ [0, 1), then 0 ≤ |anxn| ≤ bn and

∑∞
n=0 bn is convergent,

being a multiple of the geometric series of Example 8.1.3. So Theorem 8.2.3 shows that∑∞
n=0 |anxn| is convergent.

For the proof of Theorem 8.3.4 we don’t need Lemma 8.3.6.

Proof of Theorem 8.3.4. Without loss of generality we can take the centre c = 0. Then

lim sup
n→∞

n
√

|anxn| = |x| lim sup
n→∞

n
√
|an| = |x|α.

By Theorem 8.2.7 we see that |x|α < 1 implies that the power series
∑∞

n=0 anx
n is absolutely

convergent, and that |x|α > 1 implies that the power series
∑∞

n=0 anx
n is divergent.

Pick ε > 0 and ε < R, then for all |x− c| ≤ R− ε we have

|an(x− c)n| ≤ |an||R− ε|n,
∞∑
n=0

|an||R− ε|n <∞

so that by the Weierstrass M -test Theorem 8.3.2 with fn(x) = an(x− c)n, Mn = |an||R− ε|n
the uniform convergence follows.
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Exercise 8.3.7. Show that we can also characterise the radius of convergence in the following
two ways

R = sup{r ≥ 0 | (|an|rn)∞n=0 is a bounded sequence}

R = sup{r ≥ 0 |
∞∑
n=0

|an|rn is a convergent series}

with the appropriate adaptation in case R = ∞.

Example 8.3.8. Writing the geometric series as

∞∑
n=0

xn =
1

1− x
, |x| < 1

we see that R = 1. The series
∑∞

n=0
xn

n!
has radius of convergence R = ∞, and we see from

Exercise 8.7.8 that this is the exponential function exp(x) = ex, see Exercise 7.6.9. An example
of a power series with radius of convergence R = 0 is

∑∞
n=0 n

nxn.

8.4 Functions represented by power series

We assume that we have a power series
∑∞

n=0 an(x− c)n with radius of convergence R. Then

f : (c−R, c+R) → R, f(x) =
∞∑
n=0

an(x− c)n (8.4.1)

defines a continuous function by Theorem 8.3.4 and Theorem 5.4.4.

Theorem 8.4.1. For any ε > 0 the function f of (8.4.1) is Riemann integrable on the interval
[c − R + ε, c + R − ε] and its antiderivative function F normalised by F (c) = 0 has a power
series expansion

F (x) =
∞∑
n=0

an
n+ 1

(x− c)n+1 =
∞∑
n=1

an−1

n
(x− c)n

with the same radius of convergence. The function f of (8.4.1) is differentiable and its deriva-
tive f ′ has a power series expansion

f ′(x) =
∞∑
n=1

n an (x− c)n−1 =
∞∑
n=0

(n+ 1)an+1(x− c)n

with the same radius of convergence.

Iterating the last statement we get that functions defined by power series have derivatives
of all order, and by evaluating at c we obtain the relation between f and the coefficients an.
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Corollary 8.4.2. The function f of (8.4.1) has derivatives of all order, and

∀n ∈ N an =
f (n)(c)

n!
.

In particular, if f(x) =
∑∞

n=0 an(x− c)n and f(x) =
∑∞

n=0 bn(x− c)n are power series for the
function f on (c−R, c+R) for some R > 0, then bn = cn for all n ∈ N.

Corollary 8.4.2 motivates that a power series for the function f is also called the Taylor
series.

Proof of Theorem 8.4.1. First observe that

lim sup
n→∞

n

√
|an−1

n
| = lim

n→∞
n

√
1

n
lim sup
n→∞

n
√
|an−1| = lim sup

n→∞

n
√

|an|

by Exercise 3.4.14 and Theorem 3.2.19. By Theorem 8.3.4 we see that the radius of convergence
for the power series for F is equal to R.

Note that for any ε > 0 the function f : [c − R + ε, c + R − ε] → R is continuous,
and thus Riemann integrable by Corollary 7.3.8. With SN(x) =

∑N
n=0 an(x − c)n we have

limN→∞ SN = f uniformly by Theorem 8.3.4. By Theorem 7.5.1 we have

F (x) =

∫
[c,x]

f(y) dy = lim
N→∞

∫
[c,x]

SN(y) dy = lim
N→∞

N∑
n=0

an
n+ 1

(x− c)n+1

which gives the result.
Considering the derivative, we first check that the radius of convergence is the same;

lim sup
n→∞

n
√

|(n+ 1)an+1| = lim
n→∞

n
√
n+ 1 lim sup

n→∞

n
√
|an+1| = lim sup

n→∞

n
√

|an|

by Exercise 3.4.14 and Theorem 3.2.19. By Theorem 8.3.4 we see that the radius of convergence
for the power series for f ′ is equal to R.

We now assume that c = 0. We give a direct proof for the derivative. Using Newton’s
binomial formula (2.1.3) we obtain for h ̸= 0

(
(x+ h)n − xn

)
= hnxn−1 +

n∑
k=2

(
n

k

)
hkxn−k =⇒

|(x+ h)n − xn − hnxn−1| ≤ |h|2

δ2

n∑
k=2

(
n

k

)
δk|x|n−k ≤ |h|2

δ2
(δ + |x|)n

assuming that |h| < δ. Now assume that |x| < R and δ > 0 so that |x| + δ < R, then the
series

∞∑
n=0

anx
n,

∞∑
n=0

an(x+ h)n, g(x) =
∞∑
n=1

n anx
n−1
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are absolutely convergent power series for |h| < δ. Then we have∣∣∣f(x+ h)− f(x)

h
− g(x)

∣∣∣ = ∣∣∣ ∞∑
n=2

an

((x+ h)n − xn

h
− nxn−1

)∣∣∣ ≤ |h|
δ2

∞∑
n=2

|an|(δ + |x|)n.

Since the series in the right hand side is convergent and independent of h, we find that

lim
h→0

f(x+ h)− f(x)

h
= g(x) =

∞∑
n=1

n anx
n−1

proving the required result.

Exercise 8.4.3. The proof of the statement of Theorem 8.4.1 for the derivative of a power
series has been proved directly using Definition 6.1.1 of the derivative. Show that this state-
ment can also be derived from Proposition 7.5.2. Hint: let fn correspond to the partial sum
of the power series.

Remark 8.4.4. Theorem 8.4.1 shows that the class of functions f : (c−R, c+R) → R, R > 0,
having a representation as a power series is quite limited. In particular, such a function has to
be C∞, see Exercise 6.5.4. However, this is not sufficient. There exist functions in C∞, which
are non-zero in any interval (−r, r) but for which the power series centered at 0 is identically
equal to 0, see Exercise 8.7.14.

Example 8.4.5. Recalling the geometric series

∞∑
n=0

xn =
1

1− x
, |x| < R = 1

we can use Theorem 8.4.1 to obtain more explicit series. Integrating, and changing x to −x
gives

ln(1 + x) =
∞∑
n=0

(−1)n

n+ 1
xn+1, |x| < 1.

By induction on k ∈ N, or repeatedly applying Theorem 8.4.1, we obtain

(1− x)−k =
∞∑
n=0

k(k + 1) · · · (k + n− 1)

n!
xn, |x| < 1. (8.4.2)

Note that this result can also be obtained using convolution products, see Exercise 8.7.10.

The result of Example 8.4.5 can be generalised to more general values of the parameter.

Theorem 8.4.6 (Binomial sum “Binomiaalreeks”). Assume α ∈ R then we have

(1− x)α =
∞∑
n=0

(−α)(−α + 1) · · · (−α + n− 1)

n!
xn, |x| < 1.
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A proof of Theorem 8.4.6 for |x| < 1
2
is discussed in Exercise 8.7.15. Note that Theorem

8.4.6 contains the cases of Newton’s binomial formula (2.1.3) as a special case for α ∈ N.
Example 8.4.5 is contained for α ∈ Z<0. The standard proof of Theorem 8.4.6 is by showing
that both functions satisfy the same first order differential equation and initial condition, so
that the result follows from existence and uniqueness of initial value problems, but this is
outside the scope of the course.

Now that we have obtained the power series expansion, or Taylor series expansion, of
a number of functions we can consider what happens at the endpoints of the interval of
convergence. First of all, we note that we can have all kinds of convergence, i.e. absolute
convergence, relative convergence and divergence, at the endpoints. Take the power series∑∞

n=0
xn

(n+1)α
, α > 0, then its radius of convergence R = 1. For α > 1 the convergence at both

endpoints is absolute. For 0 < α ≤ 1 the series diverges for x = 1 and converges relatively for
x = −1. So in general we cannot say much about the behaviour and value at the endpoints,
but in special cases Abel’s Theorem 8.4.7 can be used.

Theorem 8.4.7 (Abel). Assume that the power series
∑∞

n=0 an(x − c)n has radius of con-
vergence R. Let f : (c − R, c + R) → R be defined by f(x) =

∑∞
n=0 an(x − c)n. Assume that∑∞

n=0 anR
n converges, then

lim
x→c+R;x∈(c−R,c+R)

f(x) =
∞∑
n=0

anR
n.

So Abel’s Theorem 8.4.7 states that if a power series converges in an endpoint, then the
corresponding function f extends continuously to this endpoint. Naturally, there is a similar
statement for the other endpoint, which one can obtain by replacing an by (−1)nan. Note that
we do not require that

∑∞
n=0 anR

n converges absolutely, it also works for relative convergence.

Proof. By scaling and translating the variable x we can reduce to the case c = 0 andR = 1. Let
SN =

∑N
n=0 an be the partial sum of the convergent series, and then we have limN→∞ SN = S.

We need to show that limx→1;x∈(−1,1) f(x) = S.
In order to do this we rewrite the expression for f , cf. Exercise 8.7.12. Let

N∑
n=0

anx
n =

N∑
n=0

(Sn − Sn−1)x
n =

N∑
n=0

Snx
n −

N−1∑
n=0

Snx
n+1 = (1− x)

N−1∑
n=0

Snx
n + SNx

N

where we set S−1 = 0. Since (SN)N∈N is a convergent sequence, it is bounded by Proposition
3.2.8. Using Exercise 3.4.2, we see that limN→∞ SNx

N = 0 for |x| < 1. Since the limit of the
right hand side exists, we see by Theorem 3.2.19 that the limit of

∑N−1
n=0 Snx

n exists, and we
find

f(x) =
∞∑
n=0

anx
n = (1− x)

∞∑
n=0

Snx
n, |x| < 1.

In order to see that limx→1;x∈(−1,1) f(x) = S we need to show that for all ε > 0 there exists
δ > 0 so that for all x ∈ (1 − δ, 1) we have |f(x) − S| < ε. So we pick ε > 0 arbitrary, and
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since limN→∞ SN = S we find N ∈ N so that for all n ≥ N we have |Sn − S| < 1
2
ε. Write

f(x)− S = (1− x)
∞∑
n=0

(Sn − S)xn = (1− x)
N−1∑
n=0

(Sn − S)xn + (1− x)
∞∑

n=N

(Sn − S)xn

using (1− x)
∑∞

n=0 x
n = 1. This leads to

|f(x)− S| ≤ (1− x)
N−1∑
n=0

|Sn − S|xn + (1− x)
1

2
ε

∞∑
n=N

xn = (1− x)
N−1∑
n=0

|Sn − S|xn + xN
1

2
ε

where we assume x ∈ (0, 1). Estimating xN < 1 and
∑N−1

n=0 |Sn − S|xn ≤
∑N−1

n=0 |Sn − S| =M
we find

|f(x)− S| ≤ (1− x)M +
1

2
ε < ε

for (1− x)M < 1
2
ε or take δ = min( 1

2M
ε, 1).

Example 8.4.8. The classical example of Abel’s Theorem 8.4.7 is that the alternating har-
monic series equals

∞∑
n=0

(−1)n

n+ 1
= ln(2).

Apply Theorem 8.4.7 to Example 8.4.5 using Theorem 8.2.1.

8.5 Iterated series

Given a function a : N× N → R, we can consider the series∑
(m,n)∈N×N

am,n,
∞∑

m=0

( ∞∑
n=0

am,n

)
,

∞∑
n=0

( ∞∑
m=0

am,n

)
and ask whether these are equal. In Chapter 1 we have seen that we can not take for granted
that these series are equal. Although we have defined series, and so we have a meaning for
the last two expressions, we don’t have a meaningful definition for the first expression. Recall
from Inleiding Wiskunde [4] that a countable infinite set X is a set for which a bijection
ϕ : N → X exists.

Definition 8.5.1. Let X be a countable infinite set and let a : X → R be a function. The
series

∑
x∈X a(x) is called an absolute convergent series on X “absoluut convergente reeks op

X” if there exists a bijection ϕ : N → X so that the series

∞∑
n=0

a(ϕ(n))

is absolutely convergent in the sense of Definition 8.1.10.
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Note that if there are two bijections ϕ : N → X, ψ : N → X, then τ = ψ−1 ◦ ϕ : N → N
is a bijection. By Theorem 8.1.17, we see that

∑∞
n=0 a(ϕ(n)) and

∑∞
n=0 a(ψ(n)) are both

absolutely convergent. So for an absolutely convergent series on X we can define its value∑
x∈X

a(x) =
∞∑
n=0

a(ϕ(n)), (8.5.1)

which is independent of the choice of bijection according to Theorem 8.1.17. Note that drop-
ping the requirement of absolute convergence in favour of convergence gives the problem that
the outcome depends on the choice of bijection ϕ : X → N, cf. Exercise 8.7.6.

Now we can take X = N × N, and then the absolute convergence of
∑

(m,n)∈N×N am,n is
defined.

Theorem 8.5.2 (Fubini). Let a : N× N → R be a function so that the series∑
(m,n)∈N×N

am,n

converges absolutely. Then for all n ∈ N the series
∑∞

m=0 am,n converges absolutely, and for
all m ∈ N the series

∑∞
n=0 am,n converges absolutely. Moreover,

∑
(m,n)∈N×N

am,n =
∞∑

m=0

( ∞∑
n=0

am,n

)
=

∞∑
n=0

( ∞∑
m=0

am,n

)
.

Note that the example of Chapter 1 is not an absolutely convergent series on N× N.
The proof is reminiscent of the proof of Theorem 8.1.17.

Proof. We take up the proof in case am,n ≥ 0 for all (m,n) ∈ N × N. We put L =∑
(m,n)∈N×N am,n. Since am,n ≥ 0 we see that for any finite subset Y ⊂ N× N we have∑

(m,n)∈Y⊂N×N

am,n ≤ L,

since under a bijection ϕ : N → N× N we have that ϕ−1(Y ) will correspond to a finite set of
N. Then for K = max(ϕ−1(Y )) we have

∑
(m,n)∈Y⊂N×N

am,n ≤
K∑

n=0

aϕ(n) = SK ≤ L = sup
K∈N

SK ,

since am,n ≥ 0.
Now take n ∈ N arbitrarily and put Y = {0, 1, · · · ,M} × {n}, then we have that

M∑
m=0

am,n ≤ L.
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Since this holds for allM ∈ N, the partial sums are bounded and by Theorem 8.1.14
∑∞

m=0 am,n

is convergent. Similarly, for all m ∈ N the series
∑∞

n=0 am,n converges absolutely.
Next we take Y = {0, 1, · · · ,M} × {0, 1, · · · , N}, so that

∑
(m,n)∈Y⊂N×N

am,n =
M∑

m=0

( N∑
n=0

am,n

)
≤ L.

Since this holds for all N we can take the supremum over N ∈ N, which by Theorem 8.1.14
gives, with bm =

∑∞
n=0 am,n,

M∑
m=0

bm =
M∑

m=0

( ∞∑
n=0

am,n

)
≤ L.

Since this is valid for all M ∈ N, again Theorem 8.1.14 gives that
∑∞

m=0 bm converges abso-
lutely. So we conclude that

∞∑
m=0

( ∞∑
n=0

am,n

)
≤ L.

Similarly,
∑∞

n=0

(∑∞
m=0 am,n

)
converges absolutely and

∞∑
n=0

( ∞∑
m=0

am,n

)
≤ L.

Now, replacing in the above am,n by |am,n| we have established the absolute convergence of all
series involved. It remains to prove the equality of the series involved.

We return to the case am,n ≥ 0 for all (m,n) ∈ N×N. It suffices to prove that for all ε > 0
we have

∞∑
m=0

( ∞∑
n=0

am,n

)
≥ L− ε.

For ε > 0, L − ε is not an upper bound for the increasing sequence (SK)K∈N, so that there
exists P ∈ N so that for all p ≥ P we have

L− ε < Sp =
∑

ϕ({0,··· ,p})⊂N×N

am,n ≤ L

Take p = P and use that ϕ({0, · · · , p}) ⊂ N × N is a finite subset, hence there exist M ∈ N
and N ∈ N so that ϕ({0, · · · , p}) ⊂ {0, · · · ,M} × {0, · · · , N}, and so

L− ε < Sp =
∑

ϕ({0,··· ,p})⊂N×N

am,n ≤
M∑

m=0

( N∑
n=0

am,n

)
≤ L
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since am,n ≥ 0. Taking the supremum over N and next the supremum over M gives the

required estimate. Since ε > 0 is arbitrary, we obtain
∑∞

m=0

(∑∞
n=0 am,n

)
= L. Similarly, we

obtain
∑∞

n=0

(∑∞
m=0 am,n

)
= L. This proves Fubini’s Theorem 8.5.2 in case of nonnegative

summands. The general case follows from this, and this is in Exercise 8.5.3.

Exercise 8.5.3. In order to prove the general case of Theorem 8.5.2 from the special case of
nonnegative summands, we proceed as in Theorem 8.1.17. Put am,n = a+m,n − a−m,n, and finish
the proof of Theorem 8.5.2 as in the proof of Theorem 8.1.17.

Lemma 8.5.4. Let X be a countable infinite set and let a : X → R be a function. The series∑
x∈X a(x) is an absolute convergent series on X if and only if

sup{
∑
x∈Y

|a(x)| | Y ⊂ X, |Y | <∞} <∞.

Exercise 8.5.5. Prove Lemma 8.5.4. Hint: consider the proof of Theorem 8.5.2.

Example 8.5.6. Note that in case am,n = cmbn we have the trivial case that the double
series is absolutely convergent if and only if the series

∑∞
m=0 cm and

∑∞
n=0 bn are absolutely

convergent, and then ∑
(m,n)∈N×N

am,n =
( ∞∑
m=0

cm

)( ∞∑
n=0

bn

)

8.6 Complex power series

In Exercise 3.4.17 we have introduced complex sequences and convergent complex sequences.
So we can immediately copy Definition 8.1.1 to the complex setting.

Definition 8.6.1. Let (an)n∈N be a sequence of complex numbers. Define the partial sum
“partiële som” SN =

∑N
n=0 an for N ∈ N. If the sequence (sN)

∞
N=0 is a convergent com-

plex sequence, then we say that the complex series “complexe reeks”
∑∞

n=0 an is convergent
“convergent” and the result is

∞∑
n=0

an = lim
N→∞

SN .

If the sequence (sN)
∞
N=0 is not convergent, we say that the series

∑∞
n=0 an is divergent “diver-

gent”.

Now the definition of an absolutely convergent series for complex series is exactly the same
as the Definition 8.1.10.

Exercise 8.6.2. Check the results of Section 8.1 and Section 8.2 and determine which results
go through for complex series. Note that in particular the convergence criteria for complex
series are the same, and proofs are the same.
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This then gives the option to define complex power series.

Definition 8.6.3. A complex power series “complexe machtreeks” is a complex series of the
form

∞∑
n=0

an(z − c)n

for a complex sequence (an)
∞
n=0, which are the coefficients of the power series “coëfficiënten

van de complexe machtreeks”, and c ∈ C is the centre “centrum” or “middelpunt” of the
complex power series. Finally, z ∈ C is considered to be a complex variable.

Then we can prove the same result on the radius of the convergence.

Theorem 8.6.4. For the complex power series
∑∞

n=0 an(z − c)n we have one of the following
options:

(i) the power series converges for all z ∈ C;

(ii) the power series converges only for z = c;

(iii) there exists R ∈ [0,∞) so that for all z ∈ C with |z − c| < R the complex power series
is absolutely convergent and for all z ∈ C with |z − c| > R the complex power series is
divergent.

Then R = 1
α
with α = lim supn→∞

n
√

|an| with the convention that α = 0 corresponds to (i)
and α = ∞ corresponds to (ii).

Note that {z ∈ C | |z − c| < R} is an open disc of radius R centered at c in the complex
plane C. This explains why R is called the radius of convergence.

Exercise 8.6.5. Give a proof of Theorem 8.6.4 along the lines of the proof of Theorem 8.3.4.

Exercise 8.6.6. Prove the complex analogue of the geometric series:
∑∞

n=0 z
n = 1

1−z
for

complex z with |z| < 1.

In Exercise 8.7.8 we derive an explicit power series for the exponential function exp: R →
(0,∞) introduced in Exercise 7.6.9. We can then extend this to a complex power series to
define the complex exponential function by

exp: C → C, exp(z) =
∞∑
n=0

zn

n!

which converges for all z ∈ C, i.e. the radius of convergence is R = ∞.

Proposition 8.6.7. For all z, w ∈ C we have exp(z + w) = exp(z) exp(w). Moreover, for
t ∈ R, we have Euler’s formula

exp(it) = cos(t) + i sin(t).
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Proof. Note that we can interchange summations for absolutely convergent complex series, so

exp(z + w) =
∞∑
n=0

(z + w)n

n!
=

∞∑
n=0

1

n!

n∑
k=0

(
n

k

)
zkwn−k =

∞∑
k=0

∞∑
n=k

1

n!

n!

k! (n− k)!
zkwn−k

=
∞∑
k=0

1

k!
zk

∞∑
n=k

1

(n− k)!
wn−k =

∞∑
k=0

1

k!
zk

∞∑
p=0

1

p!
wp = exp(z) exp(w)

using the complex analogue of Newton’s binomial sum (2.1.3) and putting n = k + p.
Restricting z = it to the imaginary axis, and splitting the terms in the real and imaginary

part gives

exp(it) =
∞∑
n=0

in
tn

n!
=

∞∑
k=0

(−1)k
t2k

(2k)!
+ i

∞∑
k=0

(−1)k
t2k+1

(2k + 1)!

using the absolute convergence. The result of Exercise 8.7.13 then gives the result.

8.7 Exercises

Exercise 8.7.1. Consider the following series. Analyse the convergence properties and eval-
uate the series when convergent.

(i)
∞∑
n=1

1

n(n+ 1)

(ii)
∞∑
n=1

1

n2 − 1
4

(iii)
∞∑
n=1

1

n(n+ k)
, k ∈ N, k ≥ 2.

Is the iterated series
∑∞

k=2

∑∞
n=1

1
n(n+k)

convergent? Hint: telescoping series as in Proposition
8.1.6.

Exercise 8.7.2. Show that for α > 0 the series

∞∑
n=0

(−1)n

(n+ 1)α

is convergent. For which α > 0 is the series absolutely convergent, relatively convergent,
divergent? What happens with the convergence properties (i.e. absolute convergence, relative
convergence or divergence) in case α = 0 or α < 0?
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Exercise 8.7.3. Let (an)
∞
n=0 be a decreasing sequence of nonnegative numbers. Assume

limn→∞ an = 0. By Theorem 8.2.1 the series
∑∞

n=0(−1)nan is convergent.

Let SN =
∑N

n=0(−1)nan be the partial sum, and let L =
∑∞

n=0(−1)nan. Show the error
estimate

|L− SN | ≤ aN .

Exercise 8.7.4. We define the sequence (an)
∞
n=1 as follows:

a2k−1 =
1

k
, a2k =

∫
[k,k+1]

1

t
dt = ln(k + 1)− ln(k) (8.7.1)

(i) Show that (an)
∞
n=1 is a nonnegative decreasing sequence and that limn→∞ an = 0.

(ii) Conclude that the series
∑∞

n=1(−1)n−1an is convergent, and put

γ =
∞∑
n=1

(−1)n−1an

(iii) Show that

S2N−1 =
2N−1∑
n=1

(−1)n−1an =
N∑
k=1

1

k
−
∫
[1,N ]

1

t
dt

and conclude that

lim
N→∞

N∑
k=1

1

k
− ln(N) = γ.

Estimate |γ −
∑N

k=1
1
k
+ ln(N)|.

The constant γ = 0.5772156649 · · · is known as Euler’s constant or as the Euler-Mascheroni
constant. (It is still open what kind of number γ is: irrational, algebraic, transcendental.)

Exercise 8.7.5. Theorem 8.2.3 can be refined. Let (an)
∞
n=0, (bn)

∞
n=0 be sequences of nonneg-

ative numbers and assume that bn > 0 for all n ∈ N. Assume limn→∞
an
bn

= L, and we allow
the case L = ∞.

(i) Assume 0 < L <∞. Show the following statement:

the series
∞∑
n=0

an is convergent if and only if the series
∞∑
n=0

bn is convergent.

(ii) Derive a statement in case L = 0, and prove the statement.

(iii) Derive a statement in case L = ∞, i.e. the sequence (an
bn
)∞n=0 diverges to ∞. Prove your

statement.
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(iv) Use the result to discuss the convergence properties of:

∞∑
n=1

n2 + 3
√
n+ 5

n3 + 6n 3
√
5n+ 3 + 9

,

∞∑
n=1

n− 4
√
n+ π

6n2
√
n+ 6n

√
9n+ π2 + 137

.

Exercise 8.7.6. Consider the series
∑∞

n=1
(−1)n−1

n
, which is the alternating harmonic series.

This is a relatively convergent series using Theorem 8.2.1 and Example 8.2.5. By Example
8.4.8 the value is ln(2). We show that it can converge to any value L by reordering the terms.
For convenience we take L > 1, but this is not essential.

(i) First take positive terms such

1 +
1

3
+ · · ·+ 1

2k1 − 1
< L ≤ 1 +

1

3
+ · · ·+ 1

2k1 + 1
.

Explain why this can be done. Define τ(n) = 2n− 1 for n ∈ {1, · · · , k1}.

(ii) Next take negative terms so that

k1∑
n=0

1

2n+ 1
− 1

2
− 1

4
− 1

2k2
< L ≤

k1∑
n=0

1

2n+ 1
− 1

2
− 1

4
− 1

2k2 − 2
.

Explain why this can be done. Define τ(k1 + n) = 2n for n ∈ {1, · · · , k2}.

(iii) Now add positive terms to overshoot L, and then add negative terms until you undershoot
L. Construct τ , and show that τ : N \ {0} → N \ {0} is a bijection, and that

∞∑
n=1

(−1)τ(n)−1

τ(n)
is convergent with value L.

Note that the proof can be adapted to any value L, and that it can be adapted to any relatively
convergent series using Proposition 8.1.15.

Exercise 8.7.7. (i) Show that

1

1 + x2
=

∞∑
n=0

(−1)nx2n,

and determine the radius of convergence. Hint: use the geometric series.

(ii) Integrate the result to find a power series expansion for arctan(x) around 0.

(iii) Show that

1

4
π =

∞∑
n=0

(−1)n

2n+ 1
.

Is this series absolutely or relatively convergent?
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Exercise 8.7.8. Consider the exponential function as defined in Exercise 7.6.9.

(i) Let TN(x) be the Taylor polynomial for exp at the centre 0. Show that

TN(x) =
N∑

n=0

xn

n!
.

(ii) Show that for all x ∈ [−r, r], r > 0, the estimate

| exp(x)− TN(x)| ≤ exp(r)
rN+1

(N + 1)!

holds. Hint: Corollary 6.4.3.

(iii) Show that the sequence (TN)
∞
N=0 converges uniformly to exp(x) on the interval [−r, r].

Conclude that

∀x ∈ R exp(x) =
∞∑
n=0

xn

n!
.

Exercise 8.7.9. Now e = exp(1) =
∑∞

n=0
1
n!
.

(i) Show that 2 ≤ e ≤ 3.

(ii) Assume that e ∈ Q, and write e = s/t with s, t ∈ Z. Show that

t!e =
t∑

n=0

t!

n!
+

∞∑
n=t+1

t!

n!
, S1 =

t∑
n=0

t!

n!
, S2 =

∞∑
n=t+1

t!

n!
.

And prove that S1 ∈ N and 0 ≤ S2 ≤ 1. (Hint: show that (t+ k)! ≥ 2kt! for k ∈ N and
t ≥ 1.)

(iii) Assume e ∈ Q, improve the previous estimate slightly to obtain to obtain a contradiction.
Conclude that e ̸∈ Q, i.e. e is irrational.

Exercise 8.7.10. Given two power series
∑∞

n=0 anx
n and

∑∞
n=0 bnx

n centered at 0, we define
the product by collecting the powers of x in the product;

( ∞∑
m=0

amx
m
)( ∞∑

n=0

bnx
n
)
=

∞∑
p=0

cpx
p, cp =

∑
m+n=p

ambn

which is the convolution product “convolutieproduct” of the power series.
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(i) Assume that for all n ∈ N, an ≥ 0 and bn ≥ 0. Assume that
∑∞

n=0 an and
∑∞

n=0 bn are
convergent. Show that

∑∞
p=0 cp is convergent and that

( ∞∑
m=0

am

)( ∞∑
n=0

bn

)
=

∞∑
p=0

cp, cp =
∑

m+n=p

ambn =

p∑
n=0

ap−nbn

Hint: prove an estimate of the form

(⌊K/2⌋∑
n=0

an

)(⌊K/2⌋∑
n=0

bn

)
≤

K∑
p=0

cp ≤
( K∑
n=0

an

)( K∑
n=0

bn

)
where ⌊K/2⌋ is the largest integer smaller than or equal to K/2.

(ii) Let Ra, respectively Rb, be the radius of convergence of the power series
∑∞

n=0 anx
n,

respectively
∑∞

n=0 bnx
n. Show that the radius of convergence R of the power series∑∞

p=0 cpx
p satisfies R ≥ min(Ra, Rb), and for |x| < min(Ra, Rb) we have

( ∞∑
m=0

amx
m
)( ∞∑

n=0

bnx
n
)
=

∞∑
p=0

cpx
p

(iii) Prove (8.4.2) with induction on k using the geometric series and taking convolution
products.

(iv) Show that for k, l ∈ N we have

(k + l)(k + l + 1) · · · (k + l + p− 1)

p!
=

p∑
n=0

k(k + 1) · · · (k + n− 1)

n!

l(l + 1) · · · (l + p− n− 1)

(p− n)!

by taking the convolution products of two series of the form (8.4.2).

(v) Generalise this to the situation where k and l can be arbitrary real numbers α and β.
This identity is known as the Chu-Vandermonde sum. Hint: use Theorem 8.4.6 and
convolutions.

Exercise 8.7.11. Assume that we have a function f : [1,∞) → R so that f is a nonnegative
decreasing function, which is Riemann integrable on [1, R] for any R ≥ 1. Show that the series∑∞

n=1 f(n) is convergent if and only if the improper integral
∫
[1,∞)

f(x) dx is convergent (as in

Exercise 7.6.10). Hint: show that

N∑
n=2

f(n) ≤
∫
[1,N ]

f(x) dx ≤
N−1∑
n=1

f(n)
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and use Exercise 5.5.7(ii). Use this to give another proof of, see Example 8.2.5,

∞∑
n=1

1

nα
is convergent ⇐⇒ α > 1.

Exercise 8.7.12. Let (an)n∈N, (bn)n∈N be sequences, and put SN =
∑N

n=0 an.

(i) Show that for r, s ∈ N, r ≤ s, we have

s∑
n=r

anbn = Ssbs − Sr−1br +
s−1∑
n=r

Sn(bn − bn+1)

where empty sums are set to 0. This is summation by parts “partiële sommatie”, and
compare this with Corollary 7.4.6. Hint: an = Sn − Sn−1.

(ii) Assume that (SN)
∞
N=0 is a bounded sequence, and that (bn)n∈N is a decreasing sequence

of nonnegative numbers satisfying limn→∞ bn = 0. Show that
∑∞

n=0 anbn is convergent.
Hint: use Theorem 8.1.9 and (i).

(iii) Show that the non-trival implication of the alternating series test of Theorem 8.2.1
follows from (ii).

Exercise 8.7.13. Determine the derivatives of the sine and cosine functions sin and cos, and
show that the sequence of Taylor polynomials centered at 0 converge to sin and cos. Prove
that

cos(x) =
∞∑
k=0

(−1)k
x2k

(2k)!
, sin(x) =

∞∑
k=0

(−1)k
x2k+1

(2k + 1)!

and that the radius of convergence is ∞ for both series.

Exercise 8.7.14. Define the function f : R → R

f(x) =

{
0, x ≤ 0,

exp(− 1
x
), x > 0.

(i) Show inductively that f has derivatives of any order and that f (k)(0) = 0. Hint: use
Exercise 7.6.9.

(ii) Conclude that the power series expansion for f around 0 is identically equal to 0. And
conclude that for all r > 0 the power series expansion does not converge to f on (−r, r).

Exercise 8.7.15. Use Example 6.4.6 to show that Theorem 8.4.6 is valid for |x| < 1
2
, i.e. the

series of Taylor polynomials converge uniformly to (1− x)α on an interval [−1
2
+ ε, 1

2
+ ε].

Exercise 8.7.16. (i) Put a : N×N → N defined by am,n = 1
m2−n2 for m ̸= n and am,m = 0.

Is the series
∑

(m,n)∈N×N am,n absolutely convergent?

(ii) Put b : N×N → N defined by bm,n = 1
m2+n2 for (m,n) ̸= (0, 0) and b0,0 = 0. Is the series∑

(m,n)∈N×N bm,n absolutely convergent?
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Appendix A

Additional exercises

A.1 We prove
√
2 /∈ Q. Consider the equation p2−2q2 = ±1 (allowing both signs on the right

hand side).

(i) Show that p1 = 1, q1 = 1 satisfy the equation. Define pn, qn for n ∈ N, n ≥ 1 by

(p1 −
√
2q1)

n = pn −
√
2qn, (p1 +

√
2q1)

n = pn +
√
2qn,

(a) Show that pn, qn ∈ Z. (Hint: Newton’s binomial formula.)

(b) Show that p2n − 2q2n = (−1)n, so that pn, qn satisfy the equation.

(ii) Prove that the sequence (pn+
√
2qn)

∞
n=1 is unbounded. Conclude that (pn−

√
2qn)

∞
n=1

converges to 0, but that all terms are different from 0, pn−
√
2qn ̸= 0 ∀n ∈ N. (Hint:

use p2n − 2q2n = (−1)n.)

(iii) Prove that
√
2 /∈ Q. (Hint: argue by contradiction. Put

√
2 = a

b
, a, b ∈ Z, and show

that the sequence (bpn − aqn)
∞
n=1 is contained in Z. But it converges to 0, and alle

elements are different from 0.)

A.2 Let f : A → R be a function with domain A ⊂ R. We assume A has no isolated points,
and additionally that f is a bounded function,

(i) Assume a ∈ A and define m : (0,∞) → R by

m(δ) = sup
x∈N∗

δ (a)∩A
f(x), N∗

δ (a) = {x ∈ R | 0 < |x− a| < δ}

Show that lim
δ→0,δ>0

m(δ) existst. Then we can define

lim sup
x→a,x∈A

f(x) = lim
δ→0,δ>0

m(δ)

(ii) Prove that (a) and (b) are equivalent:

(a) L = lim supx→a,x∈A f(x)

127
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(b) the following two properties hold:

• there exists a sequence (an)n∈N with an ∈ A for all n ∈ N and limn→∞ an = a
and limn→∞ f(an) = L

• for all r > L there exists δ > 0 so that f(x) < r for all x ∈ N∗
δ (a) ∩ A

(iii) Assume A is a closed interval. Show that the statements (a) and (b) are equivalent:

(a) for all a ∈ A we have lim supx→a,x∈A f(x) ≤ f(a).

(b) for all r ∈ R the set {x ∈ A | f(x) < r} is open (relatively with respect to A)

(iv) A function f : A→ R satisfying the conditions in (iii) is called an upper semicontin-
uous function. Define an appropriate notion of a lower semicontinuous function and
show that f : A→ R is a continuous function if and only if the function f : A→ R
is both lower and upper semicontinuous. Hint: use Theorem 5.1.14.

A.3 The purpose of this exercise is to show that a continuous function f : [a, b] → R can be
approximated by polynomials on [a, b] using uniform convergence, i.e. we show that there
exists a sequence (pn)n∈N of polynomials with limn→∞ pn = f uniformly. This is known
as the Weierstrass Theorem (and it is generalisation is known as the Stone-Weierstrass
Theorem). We follow a proof due to Bernstein.

(i) Show that we can restrict without loss of generalisation to the interval [0, 1]. Hint:
consider the function g : [0, 1] → R defined by g(x) = f(a + x(b − a)) and observe
this preserves polynomials.

(ii) Show that it suffices to prove

∀ ε > 0 ∃ p ∀x ∈ [0, 1] |f(x)− p(x)| < ε

where p : [0, 1] → R is a polynomial.

(iii) For a continuous function f : [0, 1] → R we define the Bernstein polynomial on [0, 1]

Bn(x; f) =
n∑

i=0

(
n

i

)
xi(1− x)n−i f(

i

n
).

Show the following properties

(a) if f(x) ≥ g(x) for all x ∈ [0, 1], then Bn(x; f) ≥ Bn(x; g)

(b) Bn(x;−f) = −Bn(x; f) and Bn(x; f + g) = Bn(x; f) +Bn(x; g) for continuous
functions f and g.

(iv) We calculate the Bernstein polynomial for some simple functions. Show that

(a) for constant function f(x) = C, we have Bn(x; f) = C;

(b) assume f(x) = x, then Bn(x; f) = x;

(c) assume f(x) = x2, then Bn(x; f) = x2 + x−x2

n
.
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Hint: use Newton’s binomium for (a), and use this also for (b) and (c) upon rewriting
binomial coefficients.

(v) Let f : [0, 1] → R be a fixed continuous function. Pick ε > 0 arbitrary. Show that
there exists a constant α > 0 so that for all x, y ∈ [0, 1] we have

|f(x)− f(y)| < 1

2
ε+ α(x− y)2.

Hint: use Theorem 5.3.10 to conclude that f is uniformly continuous, so that there
exists δ > 0 so that for all x, y ∈ [0, 1] with |x− y| < δ we have |f(x)− f(y)| < 1

2
ε.

For |x− y| ≥ δ use that f is bounded, say by M and that we can take α = 2M
δ2
.

(vi) Put F (x) = 1
2
ε+ α(x− y)2, so that by (iii), (iv) we have

B(x, F ) =
1

2
ε+ αy2 − 2αyx+ αx2 + α

x− x2

n
.

Show that

|Bn(x; f)− f(y)| ≤ 1

2
ε+ αy2 − 2αyx+ αx2 +

α

4n

Hint: conclude from (v) that −B(x, F ) < B(x, f)− f(y) < B(x, F ).

(vii) Take x = y in (vi) to show that for all y ∈ [0, 1]

|Bn(x; f)− f(x)| ≤ 1

2
ε+

α

4n

and conclude that there exists a polynomial p so that |p(x) − f(x)| < ε for all
y ∈ [0, 1].

A.4 As we have seen, f : [−1, 1] → R, f(x) = |x|, is a continuous function which is not
diffentiable at x = 0. In this exercise we construct a continuous function, which is not
differentiable at any point of its domain. The first example of such a function was studied
by Weierstrass in 1872.

(i) We extend the absolute value as a function f : [−1, 1] → R, f(x) = |x| to a function
f : R → R by requiring f(x + 2) = f(x). Sketch the graph of f , and show that for
x, y ∈ R we have |f(x)− f(y)| ≤ |x− y|, i.e. f is Lipschitz continuous, see Exercise
5.5.3.

(ii) Define

g(x) =
∞∑
n=0

(
3

4

)n

f(4nx).

Show that the series converges uniformly in x, and conclude that g is a continuous
function. Hint: use the Weierstrass M -test of Theorem 8.3.2 and that 0 ≤ f(x) ≤ 1
for all x ∈ R.
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(iii) Take x ∈ R arbitrarily. We want to show that there exists a sequence (δm)m∈N with
limm→∞ δm = 0 and ∣∣∣∣g(x+ δm)− g(x)

δm

∣∣∣∣ ≥ 1

2
(3m + 1)

(a) Put δm = 1
2
4−m if (4mx, 4m(x+ 1

2
4−m)) contains no integer, and put δm = −1

2
4−m

if (4m(x− 1
2
4−m), 4mx) contains no integer. Explain why this can be done.

(b) Put

γn =
f(4n(x+ δm))− f(4nx)

δm
.

Show that γn = 0 for m > n and that |γn| ≤ 4n for 0 ≤ n ≤ m.

(c) Conclude that

g(x+ δm)− g(x)

δm
=

m∑
n=0

(
3

4

)n

γn

and give the required inequality by∣∣∣∣∣
m∑

n=0

(
3

4

)n
∣∣∣∣∣ ≥ 3m −

m−1∑
n=0

3n

and sum this using the geometric sum.

(iv) Use (iii) to prove that g is not diffentiable at x.

A.5 In Exercise 4.4.8 compactness of a subset of R is defined as every open cover has a finite
subcover. In Exercise 4.4.8 it is shown that compactness implies sequentially compact.
The purpose of this exercise is to prove the converse under an additional condition, show-
ing that in R the notions of compactness and sequentially compactness are equivalent.

So we assume A ⊂ R to be a sequentially compact set, and we assume that A ⊂
⋃

i∈NBi,
with Bi an open set for all i ∈ N. So we assume that A has a countable cover by open
sets.

(i) Assume that there exists no finite subcover of this countable cover. Construct a
sequence (an)n∈N as follows: a0 ∈ A, ak ∈ A \ (B0 ∪ · · ·Bk−1) for k ≥ 1. Show that
this is a well-defined sequence in A.

(ii) Let x ∈ A be the limit of a convergent subsequence of (an)n∈N. Show that x ∈
A \

⋃N
i=0Bi for all N ∈ N. Hint: use that A \

⋃N
i=0Bi is a closed set (in the relative

topology of A).

(iii) Show that x ∈ A \
⋃∞

i=0Bi, and arrive at a contradiction with
⋃

i∈NBi covering A.

(iv) Assuming Lindelöf’s theorem, stating that in R any open cover of A has a countable
subcover, show that a sequentially compact set A is a compact set.
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A.6 Claim A non-empty open set in R is a countable union of disjoint open intervals.
The purpose of this exercise is to prove this claim. Note that by Proposition 4.1.4(iv)
such a countable union of disjoint open intervals is indeed an open set in R.

(i) Let ∅ ≠ A ⊂ R be an open set. Define the collection D of intervals

D = {I = (a, b) ⊂ A | I ⊂ (c, d) ⊂ A ⇒ a = c en b = d}

and show that ∪I∈DI ⊂ A.

(ii) Show that A ⊂ ∪I∈DI.

(iii) Show that I, J ∈ D with I ̸= J implies I ∩ J = ∅.
(iv) Show that the collection D is countable. (Hint: establish an injection D → Q.)

(v) Prove the claim.

A.7 Claim Assume that fn : A→ R for all n ∈ N and that limn→∞ fn = f uniformly. Assume
that x0 is a limit point of A and that for all n ∈ N we have

lim
x→x0;x∈A

fn(x) = Ln

Then the sequence (Ln)n∈N converges and

lim
x→x0;x∈A

f(x) = lim
n→∞

Ln.

The purpose of this exercise is to prove this statement, which says that in this case limits
can be interchanged:

lim
x→x0;x∈A

lim
n→∞

fn(x) = lim
n→∞

lim
x→x0;x∈A

fn(x).

(i) Pick ε > 0 and determine N ∈ N so that for all m,n ≥ N we have |fn(x)−fm(x)| <
ε. Show that for such m,n ≥ N we have |Ln − Lm| ≤ ε.

(ii) Conclude that (Ln)n∈N is a Cauchy sequence, and that L = limn→∞ Ln is defined.

(iii) Write
|f(x)− L| ≤ |f(x)− fn(x)|+ |fn(x)− Ln|+ |Ln − L|

and show that for any ε > 0 there exists a δ > 0 so that |x − x0| < δ and x ∈ A.
Hint: compare with the proof of Theorem 5.4.4.

A.8 Assume (ak)k∈N is a sequence with ak ̸= −1 ∀ k ∈ N. Define the sequence (pn)n∈N by

pn =
n∏

k=0

(1 + ak) = (1 + a0)(1 + a1) · · · (1 + an).

We think of (pn)n∈N as the sequence of partial products in analogy with the sequence
of partial sum for a series. Then we say that the infinite product

∏∞
k=0(1 + ak) is

convergent if the squence (pn)n∈N is convergent and limn→∞ pn = p ̸= 0. In case p = 0 or
if the sequence (pn)n∈N is divergent, we call the infinite product

∏∞
k=0(1+ ak) divergent.
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(i) Assume that the infinite product
∏∞

k=0(1 + ak) is convergent. Show limk→∞ ak = 0.

(ii) Assume now that ak > −1 ∀ k ∈ N. Prove that
∏∞

k=0(1 + ak) is convergent if and
only if

∑∞
k=0 ln(1 + ak) is convergent.

(iii) Assume now that ak ≥ 0 ∀ k ∈ N. Prove that
∏∞

k=0(1 + ak) is convergent if and
only if

∑∞
k=0 ak is convergent. (Hint: use 1 + x ≤ exp(x).)

A.9 In Section 5.4 we have seen that uniform convergence of a sequence of functions implies
pointwise convergence. Under suitable additional conditions an instance of pointwise
convergence implies uniform convergence. This particular instance is known as Dini’s
Theorem.

Assume that for all n ∈ N the function fn : A → R is continuous, and we assume that
sequence (fn)n∈N converges pointwise to a function f : A→ R; limn→∞ fn(x) = f(x). We
assume that f : A→ R is continuous. Assume moreover that for each x ∈ A the sequence
(fn(x))n∈N is an increasing sequence and that A is compact as in Exercise 4.4.8.

(i) Pick ε > 0 arbitrarily, and let

An = {x ∈ A | f(x)− ε < fn(x)}, n ∈ N.

Show that An is open (in the relative topology with respect A) and that An+1 ⊂ An

for all n ∈ N.
(ii) Show that A ⊂

⋃
n∈NAn and use Exercise 4.4.8 to conclude that ∃N ∈ N with

A ⊂ AN .

(iii) Show that the convergence limn→∞ fn = f is uniform.

A.10 In Proposition 7.5.2 a statement about the interaction of uniform convergence of deriva-
tives has been given. In this exercise we prove a similar statement under weaker condi-
tions. We prove the following statement:

Claim For all n ∈ N, the function fn : [a, b] → R is assumed to be differentiable with
derivative f ′

n : [a, b] → R. Assume that (f ′
n)n∈N converges uniformly to g. If there exists

x0 ∈ [a, b] for which the series (fn(x0))n∈N converges, say limn→∞ fn(x0) = L, then the
sequence (fn)n∈N converges uniformly to a function f : [a, b] → R. Moreover, f is a
differentiable function with derivative f ′ = g.

Note that the difference with Proposition 7.5.2 is that we do not assume the derivative
f ′
n to be Riemann integrable.

(i) Show that (fn)n∈N converges uniformly to a function f : [a, b] → R. Proceed as
follows.

(a) Pick ε > 0 arbitrarily, and determine N ∈ N so that for all n,m ≥ N we have

|f ′
n(t)− f ′

m(t)| <
ε

2(b− a)
.
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Show that for all x, t ∈ [a, b] we have for all n,m ≥ N

|fn(x)− fm(x)− fn(t) + fm(t)| <
1

2
ε.

Hint: use the Mean Value Theorem 6.2.5.

(b) Use (a) with t = x0 and limn→∞ fn(x0) = L to find

∀n,m ≥ N ∀x ∈ [a, b] |fn(x)− fm(x)| < ε.

(c) Use Theorem 5.4.5 to conclude that the sequence (fn)n∈N converges uniformly
to a function f : [a, b] → R.

(ii) Fix x0 ∈ [a, b] and consider the corresponding differential quotients:

ϕn(x) =
fn(x)− fn(x0)

x− x0
, ϕ(x) =

f(x)− f(x0)

x− x0

defined for x ̸= x0. Then from (i) we have limn→∞ ϕn = ϕ uniformly for x ∈ A\{x0}.
Use Exercise A.7 to show

lim
x→x0;x∈A

ϕ(x) = lim
n→∞

f ′
n(x0)

and finish the proof of the claim.

A.11 Let ϕ : [0,∞) → [0,∞) be a continuous, strictly increasing function with ϕ(0) = 0.

(i) Show that ϕ has an inverse function ψ : [0,∞) → [0,∞), which is continuous and
strictly increasing.

(ii) Conclude that ϕ and ψ are Riemann integrable functions on bounded intervals and
show that Young’s inequality

ab ≤
∫
[0,a]

ϕ(x) dx+

∫
[0,b]

ψ(x) dx

holds for a, b ≥ 0. Show that equality holds if and only if b = ϕ(a). Hint: interpret
the inequality in geometric terms.

(iii) Conclude that for p, q ∈ (1,∞) with 1
p
+ 1

q
= 1 we have

ab ≤ ap

p
+
bq

q
, a, b ≥ 0.

A.12 Fix a bounded interval I ⊂ R, and let f, g : I → R be bounded functions, which are
Riemann integrable. Let p, q ∈ (1,∞) with 1

p
+ 1

q
= 1 and assume that |f |p : I → R and

|g|q : I → R are Riemann integrable, where |f |p(x) = |f(x)|p and similarly for |g|q.
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(i) Assume that
∫
I
|f |p(x) dx = 1 and that

∫
I
|g|q(x) dx = 1, show that∫

I

|f(x)g(x)| dx ≤ 1

Hint: use Young’s inequality from Exercise A.11(iii).

(ii) Show Hölder’s inequality∫
I

|f(x)g(x)| dx ≤
(∫

I

|f |p(x) dx
) 1

p
(∫

I

|g|q(x) dx
) 1

q

Hint: first do the special case
∫
I
|f |p(x) dx = 0 or

∫
I
|g|q(x) dx = 0, and in case∫

I
|f |p(x) dx > 0 and

∫
I
|g|q(x) dx > 0 normalise f and g to reduce to the case (i).

(iii) Show the Cauchy-Schwarz inequality for integrals;∫
I

|f(x)g(x)| dx ≤

√∫
I

|f |2(x) dx

√∫
I

|g|2(x) dx

assuming that all integrals exist as Riemann integrals.

A.13 Fix a bounded interval I ⊂ R, and let f, g : I → R be bounded functions, which are
Riemann integrable. Let p ∈ [1,∞) and assume that |f |p : I → R, |g|p : I → R and
|f + g|p : I → R are Riemann integrable for all p ≥ 1.

(i) Show that ∫
I

|f(x) + g(x)| dx ≤
∫
I

|f(x)| dx ≤ +

∫
I

|g(x)| dx.

(ii) Let p > 1. Show that∫
I

|f(x) + g(x)|p dx ≤
∫
I

|f(x) + g(x)|p−1 |f(x)|dx+
∫
I

|f(x) + g(x)|p−1 |g(x)|dx.

and ∫
I

|f(x) + g(x)|p−1 |g(x)|dx ≤
(∫

I

|f(x) + g(x)|p dx
) p−1

p
(∫

I

|g(x)|p dx
) 1

p

.

Hint: use Hölder’s inequality of Exercise A.12(ii).

(iii) Use the previous estimate to show that

∫
I

|f(x) + g(x)|p dx ≤
(∫

I

|f(x) + g(x)|p dx
) p−1

p

×
((∫

I

|f |p(x) dx
) 1

p

+

(∫
I

|g|p(x) dx
) 1

p)
.
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(iv) Prove Minkowski’s inequality(∫
I

|f(x) + g(x)|p dx
) 1

p

≤
(∫

I

|f |p(x) dx
) 1

p

+

(∫
I

|g|p(x) dx
) 1

p

.

A.14 Assume we have real or complex sequences (ak)k∈N, (bk)k∈N.

(i) Let p, q ∈ (1,∞) with 1
p
+ 1

q
= 1. Show that

∞∑
k=0

|akbk| ≤

(
∞∑
k=0

|ak|p
) 1

p
(

∞∑
k=0

|bk|q
) 1

q

which is Hölder’s inequality for series. (Hint: mimick the proof of Exercise A.12.)
Explain that the result is valid in the real line extended with ∞.

(ii) Show that
∞∑
k=0

|akbk| ≤
(
sup
k∈N

|ak|
) ∞∑

k=0

|bk|,

which we view as corresponding to the case q = 1, p = ∞ of (i). Explain that the
result is valid in the real line extended with ∞.

(iii) Show that for p ≥ 1 we have(
∞∑
k=0

|ak + bk|p
) 1

p

≤

(
∞∑
k=0

|ak|p
) 1

p

+

(
∞∑
k=0

|bk|p
) 1

p

,

which is Minkowski’s inequality for series. (Hint: mimick the proof of Exercise
A.13.) Explain that the result is valid in the real line extended with ∞.

A.15 Assume (an)n∈N is a sequence with an > 0 for all n ∈ N.

(i) Assume the limit L in

L = lim
n→∞

n
(
1− an+1

an

)
exists. Show that limn→∞

an+1

an
= 1.

(ii) Assume additionally L > 1. Show that there exists N ∈ N so that 0 ≤ (n− 1)an −
nan+1 for all n ≥ N . (Hint: pick ε > 0 so that L− ε > 1 and the corresponding N ,
and argue that (L− ε− 1)an < (n− 1)an − nan+1 for n ≥ N .)

(iii) We assume L > 1. Show that the series
∑∞

n=0(n−1)an−nan+1 is convergent. (Hint:
Show that limn→∞ nan+1 exists.)

(iv) We assume L > 1. Show that the series
∑∞

n=0 an is convergent.

(v) Use the result in this exercise to show that
∑∞

n=1
1
nα is convergent for α > 1. (Hint:

also use the Mean Value Theorem.)
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Appendix B

Hints for selected exercises

B.1 Chapter 2

2.2.5 Suppose that L and M are the values. Note that there are three cases: L =M , L < M ,
M < L, and show that the last two lead to a contradiction.

2.2.6 Consider −A = {x ∈ R | −x ∈ A} and apply Theorem 2.2.4. Argue that sup(−A) =
− inf(A).

2.3.2 Use the definitions.

B.2 Chapter 3

3.1.6 true, true, true, false, true, false.

3.1.9 Label the subsequence

n
(0)
0 < n

(0)
1 < n

(0)
2 < n

(0)
3 < n

(0)
4 < n

(0)
5 < n

(0)
6 < n

(0)
7 < n

(0)
8 < n

(0)
9 < · · ·

n
(1)
0 < n

(1)
1 < n

(1)
2 < n

(1)
3 < n

(1)
4 < n

(1)
5 < n

(1)
6 < n

(1)
7 < n

(1)
8 < n

(1)
9 < · · ·

n
(2)
0 < n

(2)
1 < n

(2)
2 < n

(2)
3 < n

(2)
4 < n

(2)
5 < n

(2)
6 < n

(2)
7 < n

(2)
8 < n

(2)
9 < · · ·

n
(3)
0 < n

(3)
1 < n

(3)
2 < n

(3)
3 < n

(3)
4 < n

(3)
5 < n

(3)
6 < n

(3)
7 < n

(3)
8 < n

(3)
9 < · · ·

n
(4)
0 < n

(4)
1 < n

(4)
2 < n

(4)
3 < n

(4)
4 < n

(4)
5 < n

(4)
6 < n

(4)
7 < n

(4)
8 < n

(4)
9 < · · ·

n
(5)
0 < n

(5)
1 < n

(5)
2 < n

(5)
3 < n

(5)
4 < n

(5)
5 < n

(5)
6 < n

(5)
7 < n

(5)
8 < n

(5)
9 < · · ·

n
(6)
0 < n

(6)
1 < n

(6)
2 < n

(6)
3 < n

(6)
4 < n

(6)
5 < n

(6)
6 < n

(6)
7 < n

(6)
8 < n

(6)
9 < · · ·

...

an show that n
(k+1)
k+1 > n

(k)
k for all k ∈ N.
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3.2.7 ∀M ∈ R ∃N ∈ N ∀n ≥ N an < M .

3.2.22 (ii) false.

3.2.23 (cn)
∞
n=0 is not necessarily convergent, but if it is convergent then its limit is contained

in [L,M ].

3.3.7 For (i) and (ii), write out the definition and use the properties of sup and inf. For (iii)
For x < lim infn→∞ an we have

∃N ∈ N ∀n ≥ N an > x

or, to the left of the liminf there are only finitely many elements of the sequence. For
x > lim infn→∞ an we have

∀N ∈ N ∃n ≥ N an < x

or, at any small distance to the right of the liminf there there infinitely many elements
of the sequence.

3.4.2 The case r = 1 and r = −1 should be done separately. Follow the lines of the proof of
Proposition 3.2.14 for the case 0 < r < 1 and show that inf{rn | n ∈ N} = 0. For |r| < 1
use the sandwich principle of Theorem 3.2.19(vii). For |r| > 1 show that the sequence
is unbounded.

3.4.3 Note that this is more of a calculus exercise. First consider 0 < M < and show that
( n
√
M)∞n=1 is an increasing subsequence bounded above by 1. Next show that its supre-

mum is at least 1 using Exercise 3.4.2. Use Theorem 3.2.19 to reduce the case M > 1
to the case 0 < M < 1.

An alternative proof goes as follows: take M > 1 and put xn = n
√
M − 1, then xn > 0

and, using the binomial formula (2.1.3),

1 + nxn ≤
n∑

k=0

(
n

k

)
xkn = (1 + xn)

n =M =⇒ 0 < xn <
M − 1

n

and use Theorem 3.2.19(vii) and Proposition 3.2.14. The case 0 < M < 1 follows from
the case M > 1 using Theorem 3.2.19.

3.4.6 (i) divergent, (ii) no conclusion, can be convergent (taken b = −an for all n) or divergent
(take bn = an).

3.4.8 true, true, false, false.
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3.4.11 For the case
lim inf
n→∞

an + lim sup
n→∞

bn ≤ lim sup
n→∞

an + bn.

Let L = lim infn→∞ an = supk infn≥k an, so for arbitrary ε > 0 there exists K ∈ N with
for all k ≥ K we have L− ε < infn≥k an ≤ L. Hence, for all n ≥ K we have L− ε < an,
cf. Exercise 3.3.7. Conclude that for all n ≥ K we have an+ bn > bn+L− ε, and taking
suprema over n ≥ k for k ≥ K gives supn≥k(an + bn) ≥ L − ε + supn≥k bn. Taking the
infimum over k ≥ K gives infk≥K supn≥k(an + bn) ≥ L− ε+ infk≥K supn≥k bn, and since
we deal with decreasing sequences, this is sufficient to conclude

lim sup
n→∞

an + bn ≥ lim inf
n→∞

an + lim sup
n→∞

bn − ε.

Since ε > 0 arbitrary, we get the required inequality using Corollary 3.2.16(iv).

3.4.14 (i) First show that L = 0 is trivial. Next assume L > 0, and take ε > 0 arbitrarily
assuming L − ε > 0. L − ε is not an upper bound for the increasing subsequence
infj≥n

cj+1

cj
, so ∃N ∈ N with

L− ε < inf
j≥N

cj+1

cj
≤ L

In particular, ∀ j ≥ N we have cj+1 > (L − ε)cj, and thus cN+j > (L − ε)jcN for all
j ∈ N (by induction). Then for n ≥ N we have cn ≥ A(L− ε)n with A = cN(L− ε)−N .
So n

√
cn ≥ (L− ε) n

√
A for n ≥ N . By Exercise 3.4.3 we get lim infn→∞ n

√
cn ≥ (L− ε).

B.3 Chapter 4

4.1.5 (ii) Take Ai = (− 1
i+1
, 1), then

⋂
i∈NAi = [0, 1) (prove this). This is not an open set.

4.1.21 Use ∂A = A ∩ (A◦)c and the de Morgan rules, see Section 2.1.

4.4.4 Observe that c+ 1
n
is not a lower bound. Pick an ∈ A with L ≤ |c− an| < L+ 1

n
, where

L = infa∈A |c− a|. Consider the sequence (an)
∞
n=1.

4.4.5 (ii) No, take e.g. A = {n ∈ N | n ≥ 1} and B = {−n + 1
n
| n ∈ N, n ≥ 2}. Then

0 ̸∈ A + B, but since the sequence ( 1
n
)∞n=2 is contained in A + B, we have 0 ∈ A+B.

For (iii) pick a sequence (an + bn)n∈N converging to x ∈ A+B and pick a convergent
subsequence of (anj

)j∈N. Show that (bnj
)j∈N is convergent, and that it converges in

B. Finish the proof by showing that x = a + b using the limits of the convergent
subsequences.

4.4.7 For (i) consider Lemma 4.1.16. For (ii) the inclusion is trivial, and use (i) for the
other statement. For (iii) A ⊂ A′ by definition of an open set, and for x ∈ ∂A it
follows from Proposition 4.1.19. For (iv) write out the definitions, and for (v) consider
A = { 1

n
| n ∈ N, n ≥ 1}.
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B.4 Chapter 5

5.1.6 (ii) Let f : A → R and g : A → R be real-valued functions with domain A ⊂ R. Let
E ⊂ A and assume x0 ∈ E and that

lim
x→x0
x∈E

f(x) = L, lim
x→x0
x∈E

g(x) =M.

(vi) assume that there exists a neighbourhood Nδ(x0) so that for all x ∈ A∩Nδ(x0) we
have that f(x) ≤ g(x), then L ≤M ;

(vii) assume that there exists a function h : A→ R so that for all x ∈ A one has f(x) ≤
h(x) ≤ g(x) and L =M . Then limx→x0

x∈E
h(x) exists and limx→x0

x∈E
h(x) = L =M .

5.1.12 (i). Use Theorem 3.2.19 and Proposition 5.1.10.

(ii) By Proposition 5.1.10 it suffices to show the following addition to Theorem 3.2.19: if
(an)n∈N and (bn)n∈N are convergent sequences with limn→∞ an = L and limn→∞ bn =M ,
then the sequences (max(an, bn))n∈N and (min(an, bn))n∈N are convergent with
limn→∞ max(an, bn) = max(L,M) and limn→∞min(an, bn) = min(L,M). To prove the
first statement, choose ε > 0, then there exists Na ∈ N so that for all n ≥ Na we have
|an−L| < ε or L− ε < an < L+ ε. Similarly, there exists Nb ∈ N so that for all n ≥ Nb

we have |bn −M | < ε or M − ε < bn < M + ε. Thus, for all n ≥ N = max(Na, Nb) we
have

max(L,M)−ε = max(L−ε,M−ε) < max(an, bn) < max(L+ε.M+ε) = max(L,M)+ε

or |max(an, bn) − max(L,M)| < ε for all n ≥ N . So the limit for the maximum is
proved, and for the minimum it is the same proof.

5.1.16 For any c ∈ R we have that

Uc = f−1((c,∞)) = {a ∈ A | f(a) > c}, Lc = f−1((−∞, c)) = {a ∈ A | f(a) < c}

are open relative to the domain A. Now take x ∈ A arbitrarily, and we show that f is
continuous in x ∈ A. Take ε > 0, then the set

Uf(x)−ε ∩ Lf(x)+ε = {a ∈ A | f(x)− ε < f(a) < f(x) + ε}

is relatively open and contains x. So ∃ δ > 0 with Nδ(x) ∩ A ⊂ Uf(x)−ε ∩ Lf(x)+ε, and
this precisely means

|x− a| < δ and a ∈ A =⇒ |f(x)− f(a)| < ε.

Since ε > 0 is arbitrary, the function f is continuous at x. And since x ∈ A is arbitrary,
f : A→ R is continuous.
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5.2.10 First observe that f(A) ̸= ∅ and f(A) is bounded, by Exercise 5.2.4. Putm = sup(f(A))
and take a sequence in f(A) converging to m. Take a corresponding sequence in A under
f and use that A is sequentially compact to find a convergent subsequence. Show that
f attains the maximum in the limit of the convergent subsequence.

5.3.3 Take an = 1
n
, n ≥ 1.

5.2.14 Take an open cover of f(A), by taking inverse images there is an open cover of A using
Theorem 5.1.14. Now use the definition, and take images.

5.4.6 (ii) Fix x ∈ A, so (fn(x))n∈N is a Cauchy sequence, and so convergent by Theorem 3.3.11.
The limit is defined as f(x) = limn→∞ fn(x), and f : A → R is a the limit function. So
this gives pointwise convergence limn→∞ fn = f .

Observe that |fn(x) − fm(x)| < ε is the same as fn(x) − ε < fm(x) < fn(x) + ε. Since
limm→∞ fm(x) = f(x) exists, Theorem 3.2.19 gives fn(x) − ε ≤ f(x) ≤ fn(x) + ε, i.e.
|f(x) − fn(x)| ≤ ε. Or, by taking the limit m → ∞ in the condition of Theorem 5.4.5
gives

∀ ε > 0 ∃N ∈ N ∀n ≥ N ∀x ∈ A |f(x)− fn(x)| ≤ ε

which gives uniform convergence.

5.5.3 (i) Take δ = ε
M

if M > 0, the case M = 0 being trivial.
(ii) Use the reverse triangle inequality (2.1.2).

5.5.4 In both cases show that g(x) = f(x) − x is a continuous function with g(0)g(1) ≤ 0.
Apply Theorem 5.2.11 to g.

5.5.5 Consider g : [0, 1
2
] → R defined by g(x) = f(x + 1

2
) − f(x) and consider g(0) and g(1

2
).

Use Theorem 5.2.11 for g.

5.5.7 (i) Assume that f : (0,∞) → R and L ∈ R then a definition of lim
x→∞

f(x) = L is

∀ ε > 0 ∃M ∈ R ∀x ≥M |L− f(x)| < ε.

5.5.8 Take c = f(1), first prove the statement for x ∈ N, next for x ∈ Z and for x ∈ Q. Then
use continuity to get it for x ∈ R.

5.5.9 Assume for convenience that f(a) < y < f(b). Put a0 = a, b0 = b, and let d = 1
2
(a+ b).

If f(d) = y we are done, otherwise put a1 = d, b1 = b in case f(d) < y or a1 = a,
b1 = d in case f(d) > y. Then we have f(a1) < y < f(b1). Construct two sequences
(an)n∈N, (bn)n∈N inductively with f(an) ≤ y ≤ f(bn). Show that the sequences (an)n∈N,
(bn)n∈N are convergent using Theorem 3.2.9 and its consequences, and that limn→∞ an =
limn→∞ bn = c. Use the continuity of f to establish f(c) = y.
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5.5.14 Let f(A) ⊂
⋃

α∈I Bα be an arbitrary open cover. Then A ⊂
⋃

α∈I f
−1(Bα), and by

Theorem 5.1.14 the sets f−1(Bα) are open for all α ∈ I. By definition of compactness
of A, there exists a finite subcover A ⊂

⋃N
i=1 f

−1(Bαi
), and then f(A) ⊂

⋃N
i=1Bαi

is a
finite subcover of the open cover.

B.5 Chapter 6

6.2.7 Note that the ‘c’ in Theorem 6.2.5 depends on f , so the c in the numerator depends on
f and the one in the denominator depends on g. They will in general not be the same.

6.5.6 Proposition 6.1.4 gives that for all ε > 0 there exists δ > 0 so that |x− x0| < δ implies
(after rewriting)

−ε|x− x0|+ f ′(x0)(x− x0) ≤ f(x)− f(x0) ≤ ε|x− x0|+ f ′(x0)(x− x0).

Since f has a maximum in x0, the middle term is nonpositive. If f ′(x0) > 0 then we
take ε = 1

2
f ′(x0) and we see that the left hand is strictly positive for x > x0, which gives

a contradiction. Similarly, f ′(x0) < 0 leads to a contradiction, so f ′(x0) = 0.

6.5.7 Use the Mean Value Theorem 6.2.5.

6.5.8 Use Rolle’s Theorem 6.2.4.

6.5.9 Use the Mean Value Theorem 6.2.5. (iii): no.

B.6 Chapter 7

7.6.1 Let g ∈ PC(I) with partition P and g ≥ f . Pick J ∈ P, J ̸= ∅, so for x ∈ J we have
cJ = g(x) ≥ f(x), so that cJ ≥ supx∈J f(x). Conclude that cJ |J | ≥ (supx∈J f(x)) |J |
implying

pc

∫
I

g(x) dx ≥
∑

J∈P;J ̸=∅

(
sup
x∈J

f(x)
)
|J | = U(f,P).

Conclude for g ∈ PC(I) with g ≥ f that

inf{U(f,P) : P partition of I} ≤ pc

∫
I

g(x) dx.

Take the infimum over g ∈ PC(I), g ≥ f , gives

inf{U(f,P) : P partition of I} ≤
∫

I

f(x) dx.
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For the reverse inequality, realise U(,P) = pc
∫
I
g(x) dx for g ∈ PC(I), g ≥ f . Choose

ε > 0 arbitray, find partition P0 so that

inf{U(f,P) : P partition of I} ≥ U(f,P0)− ε = pc

∫
I

g(x) dx− ε ≥
∫

I

f(x) dx − ε.

Conclude

inf{U(f,P) : P partition of I} ≥
∫

I

f(x) dx.

So inf{U(f,P) : P partition of I} =
∫

I
f(x) dx. Prove the other statement analogously.

7.6.2 Show that for each bounded interval with non-empty interior J we have supx∈J χ(x) = 1
and infx∈J χ(x) = 0.

7.6.3 No, yes.

7.6.7 (ii) No, take f = χ, g = −χ as in Exercise 7.6.2.

7.6.8 Assume f to be increasing. Choose P an equidistant partition, i.e. Ji = (a + b−a
N

(i −
1), a+ b−a

N
i] for i ∈ {1, · · · , N} (and where we adapt J1 to be closed at the left endpoint

a). Then pick g ∈ PC(I) with g ≥ f defined by g|Ji = f(a + b−a
N
i) and pick h ∈ PC(I)

with h ≤ f defined by h|Ji = f(a + b−a
N

(i − 1)). Note that we use f increasing to see
that h ≤ f ≤ g. Then

0 ≤
∫

[a,b]

f(x) dx−
∫

[a,b]

f(x) dx ≤ pc

∫
[a,b]

g(x) dx− pc

∫
[a,b]

h(x) dx

=
N∑
i=1

b− a

N

(
f(a+

b− a

N
i)− f(a+

b− a

N
(i− 1))

)
=
b− a

N
(f(b)− f(a)).

So by choosing N big, we can make this as small as an arbitrarily choosen ε. So∫
[a,b]

f(x) dx =
∫

[a,b]
f(x) dx and f is Riemann integrable.

7.6.10 (i) Observe that the functions F : [a,∞) → R, F (R) =
∫
[a,R]

f(x) dx and G : [a,∞) → R
G(R) =

∫
[a,R]

g(x) dx are increasing and 0 ≤ F ≤ G. Since increasing functions F ,

respectively G, have limits R → ∞ if and only if F , respectively G, is bounded, see
Exercise 5.5.7, the results of (i) follow.

7.6.13 (iv) Write ∫
[−1,−ε]∪[ε,1]

f(x)

x
dx =

∫
[ε,1]

f(x)− f(−x)
x

dx.

using the substitution rule of Corollary 7.4.5 for a decreasing function. Now check that
u : [0, 1] → R defined by

u(x) =

{
f(x)−f(−x)

x
, x > 0

2f ′(0) x = 0
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is a continuous function. Only a check for x = 0 is required, and this can be obtained
using l’Hôpital’s rule of Corollary 6.2.8. So we find that the limit is

∫
[0,1]

u(x) dx. (Show

this using the definition and the fact that u is bounded on [0, 1] by Lemma 5.2.2.

B.7 Chapter 8

8.4.3 In Proposition 7.5.2, let fn correspond to the partial sum of the power series and take
x0 = c. Use that the radius of convergence is unaltered and Theorem 8.3.4.

8.7.1 All series are absolutely convergent, majorise by a series of the form
∑∞

k=1
1
n2 (or use

Exercise 8.7.5). Use

1

n(n+ 1)
=

1

n
− 1

n+ 1
,

1

n2 − 1
4

=
1

(n− 1
2
)(n+ 1

2
)
=

1

n+ 1
2

− 1

n− 1
2

For the last observe that we need to extend the idea of telescoping series

1

n(n+ k)
=

1

k

( 1
n
− 1

n+ k

)
so that the cancelling of terms occurs between the n-th and (n+ k)-th term. Adapt the
proof Proposition 8.1.6 accordingly. The iterated series is not convergent (after summing
over n), the remaining series over k has terms larger than 1

k
so that the harmonic series

and Theorem 8.2.3 show divergence.

8.7.2 Absolutely convergent if and only if α > 1. Relatively convergent for all α > 0. For
α ≤ 0 all divergent, by Corollary 8.1.8.

8.7.4 (i) an ≥ 0 is clear, and also that limk→∞ a2k−1 = 0 and

lim
k→∞

a2k = lim
k→∞

ln((1 +
1

k
) = 0

using Exercise 7.6.9. Now use Exercise 8.2.2. To see it is a decreasing sequence observe
that

1

k
≥
∫
[k,k+1]

1

t
dt ≥ 1

k + 1

since f(t) = 1
t
is decreasing.

(ii) Apply Theorem 8.2.1.

(iii) Apply Exercise 7.6.9 and Exercise 8.7.3.

8.7.5 (i) Observe that for ε > 0 there exists N ∈ N so that for all n ≥ N

(L− ε)bn < an < (L+ ε)bn.

Choose ε > 0 wisely, and proceed as in the proof of Theorem 8.2.3.

(ii) Assume limn→∞
an
bn

= 0, then we have
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– if
∑∞

n=0 bn convergent, then
∑∞

n=0 an convergent;

– if
∑∞

n=0 an divergent, then
∑∞

n=0 bn divergent.

The proof follows from 0 ≤ an < εbn for n sufficiently large.

(iii) Assume limn→∞
an
bn

= ∞, then we have

– if
∑∞

n=0 an convergent, then
∑∞

n=0 bn convergent;

– if
∑∞

n=0 bn divergent, then
∑∞

n=0 an divergent.

The proof follows from an > Mbn ≥ 0 for n sufficiently large for M > 0.

(iv) divergent, absolutely convergent.

8.7.12 The result of Exercise 8.7.12 is known as Dirichlet’s test. (i)

s∑
n=r

anbn =
s∑

n=r

(Sn − Sn−1)bn =
s∑

n=r

Snbn −
s−1∑

n=r−1

Snbn+1

=
s−1∑
n=r

Sn(bn − bn+1) + Ssbs − Sr−1br

(ii) Use |Sn| ≤M , and that bn ≥ bn+1 ≥ 0 to find

∣∣∣ s∑
n=r

anbn

∣∣∣ ≤M(bs + br) +M
s−1∑
n=r

(bn − bn+1) = 2M(bs + br)

Since limn→∞ bn = 0 we can estimate the sum, and now use Theorem 8.1.9.

(iii) Take an = (−1)n, so that |Sn| ≤ 1.

8.7.13 Observe
d2n

dx2n
sin(x) = (−1)n sin(x),

d2n+1

dx2n+1
sin(x) = (−1)n cos(x)

are bounded, so by Corollary 6.4.3 the Taylor polynomials converge uniformly to sin(x).
Similarly for cos(x).

8.7.14 (i) Only at 0 we need to consider the continuity of the derivatives. Use the result of
Exercise 7.6.9 to see that

lim
x↘0

p(
1

x
) exp(−1/x) = lim

y→∞
p(y) exp(−y) = 0

for any polynomial.

8.7.16 no, yes.
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absolute convergent series on X, 113
absolutely convergent series, 100
alternating harmonic series, 113
alternating series criterion, 103
antiderivative function, 85
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Bolzano-Weierstrass Theorem, 15
boundary, 33
bounded, 8

from above, 7
from below, 8

bounded complex set, 55
bounded from above, 7
bounded from below, 8
bounded function, 45
bounded set, 8

Cauchy form of the remainder, 66
Cauchy sequence, 20
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center of complex power series, 117
center of power series, 107
chain rule, 60
closed set, 31
closure, 31
closure point, 30
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codomain, 9
coefficients of a complex power series, 117
coefficients of a power series, 107
compact set, 36, 38
complement, 32
completeness

supremum, 8
completeness of R, 8
complex exponential function, 117
complex valued function, 55

connected set, 38
constant sequence, 11
continuous at x0, 43
continuous function, 43
continuously differentiable function, 69
convergence

pointwise, 51
uniform, 51

convergent improper integral, 93
convergent infinite product, 131
convergent series, 97, 116
convolution product, 121
covering by open sets, 38

decreasing function, 10
decreasing sequence, 11
degree of polynomial, 53
derivative

chain rule, 60
of a function at a point, 57
product rule, 59
quotient rule, 59
sum rule, 59

derivative of f at a point, 57
derived set, 38
diagonal subsequence, 13
differentiable at a point, 57
differentiable function, 62
Dini’s Theorem, 132
divergent improper integral, 93
divergent infinite product, 131
divergent sequence, 14
divergent series, 97, 116
domain, 9

ε-neighbourhood, 29
equivalent sequences, 49
Euler’s formula, 117

finer partition, 72
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finite subcover, 38
fixed point, 53
function

k-times continuously differentiable, 69
antiderivative, 85
bijective, 9
bounded, 45
bounded from above, 45
bounded from below, 45
codomain, 9
complex valued, 55
continuous, 43
continuous at x0, 43
continuously differentiable, 69
decreasing, 10
derivative, 62
derivative at a point, 57
differentiable, 62
differentiable at a point, 57
domain, 9
fixed point, 53
global maximum, 46
global minimum, 46
image, 9
increasing, 10
injective, 9
inverse image, 9
limit, 41
Lipschitz continuous, 53
local maximum, 61
local minimum, 61
majorising, 75
maximum, 46
minimum, 46
minorising, 75
monotonous, 91
Newton approximation, 58
piecewise continuous, 93
pointwise convergence, 51
polynomial, 53
primitive, 85
range, 9

restriction, 10
Riemann integrable, 76
strictly decreasing, 10
strictly increasing, 10
surjective, 9
uniform convergence, 51
uniformly continuous, 48
upper semicontinuous, 128

Fundamental Theorem of Calculus, 84, 85

Generalised Mean Value Theorem, 63
geometric series, 98
global maximum, 46
global minimum, 46

Hölder’s inequality, 134
harmonic series, 104
Heine-Borel Theorem, 36

image, 9
improper integral, 93
increasing function, 10
increasing sequence, 11
indicator function, 90
infinite product, 131
injective, 9
integral

integration by parts, 87
lower Riemann, 75
principal value, 94
substitution, 86
upper Riemann, 75

integral form of the remainder, 87
integration by parts, 87
interior point, 29
interior set, 29
Intermediate Value Theorem, 47
interval, 6

length, 71
partition, 71

Inverse Function Theorem, 64
inverse image, 9
isolated point, 31
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k-times continuously differentiable, 69

l’Hôpital, 63
Lagrange form of the remainder, 66
left limit, 53
length of interval, 71
liminf, 20
limit of a function, 41
limit point, 30
limsup, 20
Lindelöf’s Theorem, 130
Lipschitz continuous, 53
local maximum, 61
local minimum, 61
lower Riemann integral, 75
lower Riemann sum, 90

majorisation, 75
majorisation criterion, 104
maximum, 46
Mean Value Theorem, 62
minimum, 46
Minkowski’s inequality, 135
minorisation, 75
minorisation criterion, 104
monotonous function, 91
monotonous sequence, 11

neighbourhood, 29
Newton approximation, 58

open set, 29

partial sum, 97, 116
partition, 71

coarser, 72
common refinement, 72
finer, 72

piecewise constant function, 73
piecewise continuous function, 93
pointwise convergence, 51
pointwise convergence of series of functions,

107
polynomial, 53

power series, 107, 117
primitive function, 85
principal value integral, 94
product rule, 59

quotient criterion, 106
quotient rule, 59

radius of convergence, 108
range, 9
relative closure, 34
relative interior point, 35
relatively closed, 34
relatively convergent series, 100
relatively open, 35
restricted function, 10
Riemann integrable complex function, 94
Riemann integrable function, 76
Riemann integral, 76
right limit, 53
root criterion, 105

sequence, 11
Cauchy, 20
constant, 11
decreasing, 11
equivalent, 49
increasing, 11
liminf, 20
limsup, 20
monotonous, 11
strictly decreasing, 11
strictly increasing, 11
subsequence, 12

sequentially compact set, 36
series, 97

absolute convergent series on X, 113
absolutely convergent, 100
alternating series criterion, 103
Cauchy criterion, 105
convergent, 97, 116
d’Alembert criterion, 106
dinvergent, 97, 116
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geometric series, 98
majorisation criterion, 104
minorisation criterion, 104
partial sum, 97, 116
power series, 107, 117
quotient criterion, 106
relatively convergent, 100
root criterion, 105
telescoping series, 98

set
boundary, 33
bounded, 8
bounded complex, 55
bounded from above, 7
bounded from below, 8
closed, 31
closure, 31
compact, 36, 38
complement, 32
derived, 38
interior, 29
interior point, 29
isolated point, 31
open, 29
pathwise connected, 38
relative closure, 34
relative interior point, 35
relatively closed, 34
relatively open, 35
sequentially compact, 36
unbounded, 8

strictly decreasing function, 10
strictly decreasing sequence, 11
strictly increasing function, 10
strictly increasing sequence, 11
subsequence, 12
sum rule, 59
summation by parts, 123
supremum, 8
surjective, 9

Taylor approximation

Cauchy form of the remainder, 66
integral form of the remainder, 87
Lagrange form of the remainder, 66

Taylor polynomial, 65
Taylor series, 110
telescoping series, 98
Theorem

Bolzano-Weierstrass, 15
completeness of R, 8
continuity on compact interval implies

uniform continuity, 50
Dini, 132
Fundamental Theorem of Calculus, 84,

85
Generalised Mean Value, 63
Heine-Borel, 36
Intermediate Value, 47
Inverse Function, 64
Lindelöf, 130
Mean Value, 62
Weierstrass, 128

unbounded, 8
unbounded set, 8
uniform convergence, 51
uniform convergence of series of functions,

107
uniformly continuous function, 48
upper Riemann integral, 75
upper Riemann sum, 90
upper semicontinuous function, 128

Weierstrass M -test, 107
Weierstrass Theorem, 128

Young’s inequality, 133
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Notation index

A ∩B, 6
A ∪B, 6
A \B, 6
A◦, 29
Ac, 6
A, 31
∂A, 33
(an)n∈N, 11
(anj

)∞j=0, 12

C1(A), 69
Ck(A), 69
C, 5

F
∣∣b
a
, 85

f ≥ g, 75
g ≤ f , 75∫
I
f(x) dx, 75∫

I
f(x) dx, 75

inf, 8

limn→∞ an, 13
limx→x0;x∈E f(x) = L, 41
lim infn→∞ an, 20
lim supn→∞ an, 20

N, 5
Nε(a), 29∏∞

k=0(1 + ak), 131

Q, 5

R, 5∑∞
n=0 an, 97, 116

sup, 8

Tn(x), 65
Tn(x; f, c), 65

Z, 5
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