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Cherednik’s polynomial representation of the affine Hecke algebra [7] (Chap-ter
4 up to an including (4.3.10))

1 Notes AH talk 1

These are some rough notes that are made when preparing for the talk, they are far
from polished and may contain some errors.

2 Introduction

The main goal of this talk is to introduce the Cherednik’s polynomial representation
of the affine Hecke algebra and go over some results concerning the structure of these
algebras. Affine Hecke algebras and the basic representation are of key importance
for the existence of the Macdonald polynomials. The references of this talk are
mostly [HMCO03] but occasionally we use [HSE1T].

2.1 Structure of the talk

We first recall some notions and fix notation regarding affine root systems and affine
Hecke algebra. Essentially most of the theory relies on Lustig’s relation, we show
the relation andconsider it’s implication to the structure of the affine Hecke algebra.
Having this in place we introduce Cherednik’s basic representation and show some
first properties.

3 Reminder on affine root systems and their affine
Hecke algebras

We recall that affine root systems come in duality. Let V' be a real finite dimensional
vector space and let us fix a triple of pairs

(8,5, (L, L"), (R, R).

Where S and S’ are in duality. We know that S equal S(R) or S(R)" for some finite
root system R. Fix the parameters; ¢ € (0,1) and {7; };e; with with 7, = 7; is s; is
conjugated to s; in W and a field K containing these parameters. We denote by
Ws = Wy x t(QY) the affine Weyl group associated to S and W = Wy x t(L') the
extended affine Weyl group associated to S. The braid group B associated to W is
the group with generators T'(w), w € W relations

T(w)T(w') =T(ww') if H(w)+l(w)=1(ww) ww eW.

We will refer to these relation as the braid relations. We use the notation J =
t(L)/t(QY). The braid group can also be presented in another following two ways.
The first one; it has generators U;,T; with ¢ € I and j € J and relations; U;U;, =
Ujisr, UTU_; = Tiy; with j € J and 7 € I, together with the braid relations.
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Now for the second presentation, let By C B be the subgroup generated by T; with
i € Iy. Then B is presented by generators Y and 9B, subject to the relation

EEYSiAIE — Y)\"

whenever (X, ;) =0 or 1, where

L,
0.

+1 1f<)\/, ozi>
€ =
—1 1f<)\/, Oéi>

Lastly we consider two group algebras, A = K[L] and A’ = K[L']. Let us consider
the group algebra A, it’s elements are denoted by e with X' € L’. The affine Weyl
group acts on A by t(XN)v - et = ¢~ N #e for t(N)v € W, the action is faithful.
Furthermore A and A’ contain multiplication operators, for multiplication operators
with single elements we denote them by X* and Y, A\ € L and X € L/, and of
course we can linearly extend these multiplication operators.

3.1 Hecke algebras.

Definition 3.1 (Hecke algebra). The Hecke algebra $) corresponding to the extended
affine Weyl group W, is the group algebra K[B] quotiented by the ideal generated
by the elements

(T; — m)(T; + 771, iel.
Remark 3.2. A calculation shows that this is equivalent to the relation
T,—-m=T"'~-7"' i€l

We call this relation the Hecke relation.

The first question we want to answer, regarding the structure of the Hecke algebra,
is how it is generated as a vector space.

Lemma 3.1. The elements T'(w), w € W form a K—basis of .

Proof. Let $; be the subspace spanned by the elements T'(w) with w € W. By the
Hecke relations we have T;$ C $; for all i € I, furthermore U,;T(w) = T'(ujw) so
H1H C H1. As 1 € § this shows that $H = $;. Now in a sense the proof of linear
independence relies on the fact that there is a faithfull representation of § on K[%B],
such proves are standard and for the sake of time we skip these proves. They can
by found in [HMCO03| (4.1.4), (4.1.5) & (4.1.6). m

Theorem 3.1. The elements T(w)Y> where N € L' and w € Wy form a K—basis
of .

Proof. Can be found in [HMCO03] (4.2.7) O

As a result we obtain the vector space isomorphism £ = A’ @ Ho
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4 The Lusztig's relation

The first part of mathematics we are going to show it Lusztig’s relation, we can
think of this relation as how the T} and Y*" commute with respect to the action of s;
on A’. It has important implication with respect to our knowledge of the structure
of the Hecke algebra and Cherednik’s basic representation.

Lemma 4.1 (Lusztig relation). For any i € I and X' € L', the following relation
holds;

S; — 1
vl —1
Definition 4.1. We introduce the following notation;

t—t '+ (u—utx

1— 22 ’
Proof. A key observation is that if the relation holds for fixed T; and two elements
Y and Y*, that this relation also holds for T; and Y. So we want to choose
an effective generating set of K[L’]. Let us for simplicity assume that (L', «;) = Z
under this consideration L’ is generated by the elements for which (X, ;) = 0 and
(W', ;) = 1. So it suffices to show the statement for these cases

e Case 1: (N,q;) = 0. Then the right hand side of the equation vanishes,
and the left hand side vanishes because of the defining relations for the braid
group; T,YN = Y*NT, = YNT,.

Y)\’Tvi o Eysi)\/ — (Ti o 7_‘—1) )\/'

)

b(t,u;z) =

bi = b(Ti,Ti;eai), bZ(X) = b(Ti,Ti;Xai).

e Case 2: (N, ;) = 1. From [HMCO03] (3.2.6) it follows that
Ty =Y T = YN(Ty — 7477,
which implies that
YNT, — T,YsY = (r; — 77 )Y,
Because s;A = X' — o, we have
yN-el —y X

1
=)y

i = (Ti - Ti_1>YN7
which shows the claim.

By our discussion this finishes the proof. The only thing that we swept under the
rug is the generation argument. For the sake of completeness let us record this
argument here. Fix ¢ € I and assume that the claim holds for X', ' € L’ then

VXL - Ty =y (YT -y Ty )y
=y (YT = Ty ) v
+ (T -y ) Yoy -
=Y (X)) (YN — vy
— bi(X)(Y“/ _ YS»L}L/)YSZ‘)\’YSZ-;/

= by(X) (YN — ysWmm),




Affine Hecke Algebra: Talk 1

Remark 4.2. Lustig’s relation can be extended to elements of A’ as seen inside ),

FONT = Ti(s:f)(Y) = b7, 75 Y =) (F(Y) = (s:/)(Y)) (1)

One shows this, by considering the equation term wise. Furthermore by induction
one deduces from that

YX ngw Jow € A (2)

v<w

with gy, = WY,

5 The polynomial and Cherednik’s basic
representation

By the decomposition $ = A’ ® $Hy we allow ourselves to induce left 9 modules
to left $ modules. If M is a left ¢ module we define the left $ module

Ind(M) := 9 @5, M = Hy @5, A @x M = A @k M,
where the module action is given by
Ti-(gY)om)=g(Y)®Ti-m=Tg(Y)®m,

by the Lusztig relation it follows that T;g(Y) = (s;f)(Y)T; + (f — sif)b(7i; e,
which means that

Tig(¥) ©m = ((su/) YT+ (f = sif ol >) ®m (3)
— (s:/)(Y) & T + (f = si (i) @ m. (4)

We want to induce a one dimensional representation of )y, the following Lemma
shows the existence.

Lemma 5.1. Let w € W and s;, ...s;, = w be a reduced expression, then 7, =
Tiy - - - Ti, does not depend on reduced expression

Proof. We show this by induction, the case p = 1 is clear. Now is s, ...s;, =

Sj -..8j, then s; ...s; 1 =55 ...5; ...s;,, meaning that
Sjy v Sjp - S5,8, = Sj; -S4, —
Sjp oSy Sjpsipsjp ce Sl = S4q -+ S, —
Sjp4l e SjpSZ'ijp <o Sj41 = Sy,
Hence s;, and s;, are conjugate in W, by induction the result follows. O

Seen as a map ) — K, we note that the Hecke relation is immediate. As a
result, the assignment T} — 7; gives rise to an one-dimensional representation of £
on K that we may induce to $.
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Lemma 5.2. There is a representation 3 of $9 on A’ that acts as

B(T;) = 7is; + b7y, 735 X*aiv)(l — 8),

a

for all i € Iy, where X~% is the multiplication by e=% operator.

Proof. The representation T; — 7; is a representation of $, onto K and
Ind(K)= A'ox K = A'.
Now looking at equation (3 we see that for all i € I
B'(T}) = 7is; 4+ b(r3, 73: X %) (1 — s;).
Which is the action restricted to $g. O

The following representation is due to Cherednik, it makes use of the induction
and duality of W, in an interesting way.

Theorem 5.1 (Cherednik’s basic representation). There erxists a representation (3
of $ on A such that

B(T;) = misi + bi(X)(1 — 57) (5)
B(U;) = uy, (6)

forive I and 5 € J, where X% s the multiplication by e* operator.

Proof. By interchanging R with RY, we do not change Wj. Hence for ¢ # 0 it follows
that equation gives rise to a representation of £, where we identify R with RY
by a; — —a;.

1 alm: e relation U;1;U_; =1;,; 1s preserved tor allt € 1,7 € J.
i) Claim: The relation U;T;U_; ;i dforalliel,jeJ
We have

BU;)B(T;)B(U-5) = uj (1isi + bi(X)(1 — 8i)) u—j
= TivjSity T 5 (0(75€%)) u_j (1 — si4;)
= TitjSitj + uj (b(73;€77)) (1 = si15)

= B(THJ’)'

(ii) Claim: Braid & Hecke relations for Ty hold.
The braid and Hecke relations only involve at most two roots, therefore this
is a claim about the root systems generated by ag and a;, for ¢ € I. If this is
an rank 1 root system there is nothing to prove, if it is a rank 2 root-system
the claim follows from the polynomial representation.

As a result the assignment defined by equations and @ gives rise to a represen-
tation. ]

Before we continue we need a preliminary Lemma.
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Lemma 5.3. Let K be a field and @1, . .., p, distinct automorphisms, then they are
linearly independent as functions K — K.

Proof. Result in Galois theory. m

The next goal is to show that the representation [ is faithful. The following
Lemma shows even more, and in a sense also motivates the definition of the double
affine Hecke algebra.

Lemma 5.4. The operators X" (T (w)) where p € L and w € W are linearly
independent over K

Proof. Let w € W, then we first want to investigate the expression of 5(7'(w)) inside
End(K[L]). Let w = u;s;, ...s;, be a reduced expression for w then §(T(w)) =
u;B(T5,) ... B(T5,). So we may write

BT(w)) = foul(X)v.

v<w

By investigating the highest order therm, we see that

fuwX) = T 7+ JJ0:(X) #0
N—_——

7
~~~ ¢C
eC

Now suppose that there is a linear relation between the operators X*« (T (w)), then
there will be a relation of the form

S 4u(X)B(T(w)) =0,

weW

with g, € A and finitely many nonzero. Substituting our expression for S(7'(w))
gives

Y guX) feu(X)p =0

v,weW, v<w

Since the element v € W are distinct automorphisms of the field K (L) it follows
from Lemma ((5.3) that for each v € W

Zgwfvw = 0.

v<w

Now take v with g, # 0 and maximal with this property in the Bruhat ordering,
then it follows that g, f,, = 0. Meaning that f,, # 0, a contradiction. O

Corollary 5.1. The representation (3 is faithfull.
Proof. Take p = 0 in the previous theorem. O]

Theorem 5.2. The centre of $) is Ay(Y)




References Affine Hecke Algebra: Talk 1

Proof. Recall the decomposition $ = §, @x A’, we note that we only have to check
that any element f € Aj commutes with the T; with i € Iy. By Remark (4.2)) this
follows. Next let f € A’, then by Lustig’s relation

Lf(Y) = (s )(Y)Ti = g(Y),

for some g € A", If f is central, we have

g(Y) = (f(Y) = (s )(Y)T; = 0,

so that s;f = f. In particular f is W} invariant. We remain to argue that any
central element in fact is an element in K (L'). Let

with f,, € K[L'] and let ' € L’ be regular then

Yo YVEMTw) = Y fu()T @)Y

weWy weWy
since z is central. By (2)) T'(w)Y? is of the form
> 9T (v), Gow € A'.
VLW

Substitution this back gives us
S OYVNEY = gow(¥) fu(Y)T(v),
veW)y w>v
by comparing coefficients we obtain
e)\lfv = ngwfwa v e Wp.
w=v

One recognises the right hand side of the equation as matrix vector multiplication
of G = (gww) and (f,). Since G is triangular, and X is regular all the eigenvalues are
distinct and lie on the diagonal of G. Since f is the unique, up to scalar multiple,

eigenvector with eigenvalue e this implies that f, = 0 if v # 1 meaning that
z = f1(Y). By the discussion this finishes the proof. O
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