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Affine Hecke Algebra: Talk 1

Cherednik’s polynomial representation of the affine Hecke algebra [7] (Chap-ter
4 up to an including (4.3.10))

1 Notes AH talk 1

These are some rough notes that are made when preparing for the talk, they are far
from polished and may contain some errors.

2 Introduction

The main goal of this talk is to introduce the Cherednik’s polynomial representation
of the affine Hecke algebra and go over some results concerning the structure of these
algebras. Affine Hecke algebras and the basic representation are of key importance
for the existence of the Macdonald polynomials. The references of this talk are
mostly [HMC03] but occasionally we use [HSE17].

2.1 Structure of the talk

We first recall some notions and fix notation regarding affine root systems and affine
Hecke algebra. Essentially most of the theory relies on Lustig’s relation, we show
the relation andconsider it’s implication to the structure of the affine Hecke algebra.
Having this in place we introduce Cherednik’s basic representation and show some
first properties.

3 Reminder on affine root systems and their affine
Hecke algebras

We recall that affine root systems come in duality. Let V be a real finite dimensional
vector space and let us fix a triple of pairs

(S, S ′), (L,L′), (R,R′).

Where S and S ′ are in duality. We know that S equal S(R) or S(R)∨ for some finite
root system R. Fix the parameters; q ∈ (0, 1) and {τi}i∈I with with τi = τj is si is
conjugated to sj in W and a field K containing these parameters. We denote by
WS = W0 ⋉ t(Q∨) the affine Weyl group associated to S and W = W0 ⋊ t(L′) the
extended affine Weyl group associated to S. The braid group B associated to W is
the group with generators T (w), w ∈ W relations

T (w)T (w′) = T (ww′) if l(w) + l(w′) = l(ww′) w,w′ ∈ W.

We will refer to these relation as the braid relations. We use the notation J ∼=
t(L′)/t(Q∨). The braid group can also be presented in another following two ways.
The first one; it has generators Uj, Ti with i ∈ I and j ∈ J and relations; UjUk =
Uj+k, UjTiU−j = Ti+j with j ∈ J and i ∈ I, together with the braid relations.
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Affine Hecke Algebra: Talk 1 3.1 Hecke algebras.

Now for the second presentation, let B0 ⊂ B be the subgroup generated by Ti with
i ∈ I0. Then B is presented by generators Y λ and B0 subject to the relation

T ϵ
i Y

siλ
′
Ti = Y λ′

,

whenever ⟨λ′, αi⟩ = 0 or 1, where

ϵ =

{
+1 if⟨λ′, αi⟩ = 1,

−1 if⟨λ′, αi⟩ = 0.

Lastly we consider two group algebras, A = K[L] and A′ = K[L′]. Let us consider
the group algebra A, it’s elements are denoted by eλ

′
with λ′ ∈ L′. The affine Weyl

group acts on A by t(λ′)v · eµ = q−⟨λ′,µ⟩evµ for t(λ′)v ∈ W , the action is faithful.
Furthermore A and A′ contain multiplication operators, for multiplication operators
with single elements we denote them by Xλ and Y λ′

, λ ∈ L and λ′ ∈ L′, and of
course we can linearly extend these multiplication operators.

3.1 Hecke algebras.

Definition 3.1 (Hecke algebra). The Hecke algebra H corresponding to the extended
affine Weyl group W , is the group algebra K[B] quotiented by the ideal generated
by the elements

(Ti − τi)(Ti + τ−1
i ), i ∈ I.

Remark 3.2. A calculation shows that this is equivalent to the relation

Ti − τi = T−1
i − τ−1

i , i ∈ I.

We call this relation the Hecke relation.

The first question we want to answer, regarding the structure of the Hecke algebra,
is how it is generated as a vector space.

Lemma 3.1. The elements T (w), w ∈ W form a K−basis of H.

Proof. Let H1 be the subspace spanned by the elements T (w) with w ∈ W . By the
Hecke relations we have TiH ⊂ H1 for all i ∈ I, furthermore UjT (w) = T (ujw) so
H1H ⊂ H1. As 1 ∈ H this shows that H = H1. Now in a sense the proof of linear
independence relies on the fact that there is a faithfull representation of H on K[B],
such proves are standard and for the sake of time we skip these proves. They can
by found in [HMC03] (4.1.4), (4.1.5) & (4.1.6).

Theorem 3.1. The elements T (w)Y λ′
where λ′ ∈ L′ and w ∈ W0 form a K−basis

of H.

Proof. Can be found in [HMC03] (4.2.7)

As a result we obtain the vector space isomorphism H ∼= A′ ⊗K H0
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4 The Lusztig’s relation

The first part of mathematics we are going to show it Lusztig’s relation, we can
think of this relation as how the Ti and Y λ′

commute with respect to the action of si
on A′. It has important implication with respect to our knowledge of the structure
of the Hecke algebra and Cherednik’s basic representation.

Lemma 4.1 (Lusztig relation). For any i ∈ I and λ′ ∈ L′, the following relation
holds;

Y λ′
Ti − TiY

siλ
′
= (τi − τ−1

i )
si − 1

Y −α∨
i − 1

Y λ′.

Definition 4.1. We introduce the following notation;

b(t, u;x) =
t− t−1 + (u− u−1)x

1− x2
, bi = b(τi, τi; e

ai), bi(X) = b(τi, τi;X
ai).

Proof. A key observation is that if the relation holds for fixed Ti and two elements
Y λ′

and Y µ′
, that this relation also holds for Ti and Y λ′+µ′

. So we want to choose
an effective generating set of K[L′]. Let us for simplicity assume that ⟨L′, αi⟩ = Z
under this consideration L′ is generated by the elements for which ⟨λ′, αi⟩ = 0 and
⟨µ′, αi⟩ = 1. So it suffices to show the statement for these cases

• Case 1: ⟨λ′, αi⟩ = 0. Then the right hand side of the equation vanishes,
and the left hand side vanishes because of the defining relations for the braid
group; TiY

λ′
= Y siλ

′
Ti = Y λ′

Ti.

• Case 2: ⟨λ′, αi⟩ = 1. From [HMC03] (3.2.6) it follows that

TiY
siλ

′
= Y λ′

T−1
i = Y λ′

(Ti − τi + τ−1
i ),

which implies that

Y λ′
Ti − TiY

siλ
′
= (τi − τ−1

i )Y λ′
.

Because siλ = λ′ − α∨
i , we have

(τi − τ−1
i )

Y λ′−α∨
i − Y λ′

Y −α∨
i − 1

= (τi − τ−1
i )Y λ′,

which shows the claim.

By our discussion this finishes the proof. The only thing that we swept under the
rug is the generation argument. For the sake of completeness let us record this
argument here. Fix i ∈ I0 and assume that the claim holds for λ′, µ′ ∈ L′ then

Y λ′−µ′
Ti − TiY

λ′−µ′
= Y µ′

(
Y λ′

TiY
siµ

′ − Y µ′
TiY

siλ
′
)
Y −siµ

′

= Y −µ′
(
Y λ′

Ti − TiY
siλ

′
)
Y siµ

′

+
(
TiY

siµ
′ − Y µ′

Ti

)
Y siλ

′
Y −siµ

′

= Y −µ′
bi(X)(Y λ′ − Y siλ

′
)Y siµ

′

− bi(X)(Y µ′ − Y siµ
′
)Y siλ

′
Y siµ

′

= bi(X)(Y λ′−µ′ − Y si(λ
′−µ′)).
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Remark 4.2. Lustig’s relation can be extended to elements of A′ as seen inside H,

f(Y )Ti − Ti(sif)(Y ) = b(τi, τ
′
i ;Y

−α∨
i )(f(Y )− (sif)(Y )) (1)

One shows this, by considering the equation term wise. Furthermore by induction
one deduces from (1) that

T (w)Y λ′
=

∑
v⩽w

gvw(Y )T (v), gvw ∈ A′ (2)

with gww = wY λ.

5 The polynomial and Cherednik’s basic
representation

By the decomposition H ∼= A′ ⊗K H0 we allow ourselves to induce left H0 modules
to left H modules. If M is a left H0 module we define the left H module

Ind(M) := H⊗H0 M
∼= H0 ⊗H0 A

′ ⊗K M ∼= A′ ⊗K M,

where the module action is given by

Ti · (g(Y )⊗m) = g(Y )⊗ Ti ·m = Tig(Y )⊗m,

by the Lusztig relation it follows that Tig(Y ) = (sif)(Y )Ti + (f − sif)b(τi; e
−α∨

i ),
which means that

Tig(Y )⊗m =
(
(sif)(Y )Ti + (f − sif)b(τi; e

−α∨
i )
)
⊗m (3)

= (sif)(Y )⊗ Tim+ (f − sif)b(τi; e
−α∨

i )⊗m. (4)

We want to induce a one dimensional representation of H0, the following Lemma
shows the existence.

Lemma 5.1. Let w ∈ W and si1 . . . sip = w be a reduced expression, then τw :=
τi1 . . . τip does not depend on reduced expression

Proof. We show this by induction, the case p = 1 is clear. Now is si1 . . . sip =
sj1 . . . sjp then si1 . . . sip−1 = sj1 . . . ŝjr . . . sjp , meaning that

sj1 . . . ŝjr . . . sjpsip = sj1 . . . sjp =⇒
sj1 . . . ŝjr . . . sjpsipsjp . . . sjr+1 = sj1 . . . sjr =⇒

sjr+1 . . . sjpsipsjp . . . sjr+1 = sjr

Hence sip and sjr are conjugate in W , by induction the result follows.

Seen as a map H0 → K, we note that the Hecke relation is immediate. As a
result, the assignment Ti 7→ τi gives rise to an one-dimensional representation of H0

on K that we may induce to H.

5



Affine Hecke Algebra: Talk 1

Lemma 5.2. There is a representation β′ of H0 on A′ that acts as

β′(Ti) = τisi + b(τi, τi;X
−α∨

i )(1− si),

for all i ∈ I0, where X−a∨i is the multiplication by e−a∨i operator.

Proof. The representation Ti 7→ τi is a representation of H0 onto K and

Ind(K) ∼= A′ ⊗K K ∼= A′.

Now looking at equation (3) we see that for all i ∈ I0

β′(Ti) = τisi + b(τi, τi;X
−α∨

i )(1− si).

Which is the action restricted to H0.

The following representation is due to Cherednik, it makes use of the induction
and duality of W0 in an interesting way.

Theorem 5.1 (Cherednik’s basic representation). There exists a representation β
of H on A such that

β(Ti) = τisi + bi(X)(1− si) (5)

β(Uj) = uj, (6)

for i ∈ I and j ∈ J , where Xai is the multiplication by eai operator.

Proof. By interchanging R with R∨, we do not change W0. Hence for i ̸= 0 it follows
that equation (5) gives rise to a representation of H0, where we identify R with R∨

by αi 7→ −α∨
i .

(i) Claim: The relation UjTiU−j = Ti+j is preserved for all i ∈ I, j ∈ J .
We have

β(Uj)β(Ti)β(U−j) = uj (τisi + bi(X)(1− si))u−j

= τi+jsi+j + uj (b(τi; e
ai))u−j(1− si+j)

= τi+jsi+j + uj (b(τi; e
ai+j)) (1− si+j)

= β(Ti+j).

(ii) Claim: Braid & Hecke relations for T0 hold.
The braid and Hecke relations only involve at most two roots, therefore this
is a claim about the root systems generated by a0 and ai, for i ∈ I. If this is
an rank 1 root system there is nothing to prove, if it is a rank 2 root-system
the claim follows from the polynomial representation.

As a result the assignment defined by equations (5) and (6) gives rise to a represen-
tation.

Before we continue we need a preliminary Lemma.
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Lemma 5.3. Let K be a field and φ1, . . . , φn distinct automorphisms, then they are
linearly independent as functions K → K.

Proof. Result in Galois theory.

The next goal is to show that the representation β is faithful. The following
Lemma shows even more, and in a sense also motivates the definition of the double
affine Hecke algebra.

Lemma 5.4. The operators Xµβ(T (w)) where µ ∈ L and w ∈ W are linearly
independent over K

Proof. Let w ∈ W , then we first want to investigate the expression of β(T (w)) inside
End(K[L]). Let w = ujsi1 . . . sip be a reduced expression for w then β(T (w)) =
ujβ(Ti1) . . . β(Tip). So we may write

β(T (w)) =
∑
v⩽w

fvw(X)v.

By investigating the highest order therm, we see that

fww(X) =
∏
i︸︷︷︸

∈C

τi +
∏

bi(X)︸ ︷︷ ︸
/∈C

̸= 0

Now suppose that there is a linear relation between the operators Xµwβ(T (w)), then
there will be a relation of the form∑

w∈W

gw(X)β(T (w)) = 0,

with gw ∈ A and finitely many nonzero. Substituting our expression for β(T (w))
gives ∑

v,w∈W, v⩽w

gw(X)fvw(X)v = 0

Since the element v ∈ W are distinct automorphisms of the field K(L) it follows
from Lemma (5.3) that for each v ∈ W∑

v⩽w

gwfvw = 0.

Now take v with gv ̸= 0 and maximal with this property in the Bruhat ordering,
then it follows that gvfvv = 0. Meaning that fvv ̸= 0, a contradiction.

Corollary 5.1. The representation β is faithfull.

Proof. Take µ = 0 in the previous theorem.

Theorem 5.2. The centre of H is A′
0(Y )
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Proof. Recall the decomposition H ∼= H0 ⊗K A′, we note that we only have to check
that any element f ∈ A′

0 commutes with the Ti with i ∈ I0. By Remark (4.2) this
follows. Next let f ∈ A′, then by Lustig’s relation

Tif(Y )− (sif)(Y )Ti = g(Y ),

for some g ∈ A′. If f is central, we have

g(Y ) = (f(Y )− (sif)(Y )Ti = 0,

so that sif = f . In particular f is W0 invariant. We remain to argue that any
central element in fact is an element in K(L′). Let

z =
∑
w∈W0

fw(Y )T (w),

with fw ∈ K[L′] and let λ′ ∈ L′ be regular then∑
w∈W0

Y λ′
fw(Y )T (v) =

∑
w∈W0

fw(Y )T (v)Y λ′

since z is central. By (2) T (w)Y λ is of the form∑
v⩽w

gvw(Y )T (v), gvw ∈ A′.

Substitution this back gives us∑
v∈W0

Y λ′
fv(Y )T (v) =

∑
w⩾v

gvw(Y )fw(Y )T (v),

by comparing coefficients we obtain

eλ
′
fv =

∑
w⩾v

gvwfw, v ∈ W0.

One recognises the right hand side of the equation as matrix vector multiplication
of G = (gvw) and (fv). Since G is triangular, and λ′ is regular all the eigenvalues are
distinct and lie on the diagonal of G. Since f is the unique, up to scalar multiple,
eigenvector with eigenvalue eλ

′
this implies that fv = 0 if v ̸= 1 meaning that

z = f1(Y ). By the discussion this finishes the proof.
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