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This is Section 6 of the paper
The dual quantum group for the quantum group analogue of the normalizer of SU(1,1) in
SL(2,C) by Wolter Groenevelt, Erik Koelink, Johan Kustermans, arXiv:0905.2830

6. Results for special functions of basic hypergeometric type

This section is separately readable from the remainder of the paper. This section is meant
to give a couple of examples of rather complicated identities for special functions of basic
hypergeometric type 1ϕ1 and type 2ϕ1, see [17]. We assume that the reader of this section is
familiar with the notation for basic hypergeometric series [17], but the definition is recalled
in Appendix B. In the first subsection we introduce the notation for special functions, and
we recall some elementary properties. The first subsection introduces notation and special
functions that are used throughout the paper, whereas the following subsections give explicit
highly non-trivial results for these special functions. These identities follow from the quantum
group theoretic interpretation.

6.1. Definition of some special functions. The set of natural numbers (without 0) will
be denoted by N and N0 = N ∪ {0}. We write, as in Section 3, Iq = −qN ∪ qZ. We use the
following functions frequently.

Definition 6.1. (i) χ : − qZ ∪ qZ → Z such that χ(x) = logq(|x|) for all x ∈ −qZ ∪ qZ;
(ii) κ : R → R such that κ(x) = sgn(x)x2 for all x ∈ R;

(iii) ν : − qZ ∪ qZ → R
+ such that ν(t) = q

1

2
(χ(t)−1)(χ(t)−2) for all t ∈ −qZ ∪ qZ;

(iv) s : R0 × R0 → {−1, 1} is defined such that

s(x, y) =

{

−1 if x > 0 and y < 0

1 if x < 0 or y > 0

for all x, y ∈ R0 = R\{0}.
(v) µ : C \ {0} → C \ {0} such that µ(y) = 1

2
(y + y−1) for all y ∈ C \ {0}.

For a, b, z ∈ C, we define

Ψ
(a

b
; q, z

)

=
∞

∑

n=0

(a; q)n (b qn; q)∞
(q ; q)n

(−1)n q
1

2
n(n−1) zn = (b; q)∞ 1ϕ1

(a

b
; q, z

)

. (6.1)

This is an entire function in a, b and z. Here we have used the standard notation for basic
hypergeometric series [17], or see Appendix B.1.

We use the normalization constant cq = (
√

2 q (q2,−q2; q2)∞)−1. Then the following defini-
tion is [30, Def. 3.1], and the notations as in Definition 6.1 are used.

Definition 6.2. If p ∈ Iq, we define the function ap : Iq × Iq → R such that ap is supported
on the set { (x, y) ∈ Iq × Iq | sgn(xy) = sgn(p) } and is given by

ap(x, y) = cq s(x, y) (−1)χ(p) (−sgn(y))χ(x) |y| ν(py/x)
√

(−κ(p),−κ(y); q2)∞
(−κ(x); q2)∞

×Ψ

(−q2/κ(y)

q2κ(x/y)
; q2, q2κ(x/p)

)
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for all (x, y) ∈ Iq × Iq satisfying sgn(xy) = sgn(p).

The functions ap(x, y) for p, x, y ∈ Iq have been introduced in [30, §3], motivated by their
occurrence as Clebsch-Gordan coefficients. Depending on the choices of the sign, these func-
tions can be identified with well-known special functions of basic-hypergeometric type. In
particular, for sgn(x) = sgn(y) the functions ap(x, y) can be identified with the q-Laguerre
polynomials in case sgn(x) = sgn(y) = − and with the associated big q-Bessel functions in
case sgn(x) = sgn(y) = +, see [10]. The q-Laguerre polynomials correspond to an indetermi-
nate moment problem, and the big q-Bessel functions form a complementary orthogonal basis
to the orthogonal polynomials for an explicit solution to the moment problem corresponding
to Ramanujan’s 1ψ1-summation formula, see [10] for details. For sgn(x) = −sgn(y), the func-
tions ap(x, y) can be matched with Al-Salam–Carlitz polynomials and q-Charlier polynomials,
see [27] for their definition.

For completeness we recall the orthogonality properties of these functions, see [30, Prop.
3.2, 3.3]. For θ ∈ −qZ ∪ qZ we define ℓθ = { (x, y) ∈ Iq × Iq | y = θx }.
Proposition 6.3. Consider θ ∈ −qZ∪ qZ. Then the family { ap|ℓθ

| p ∈ Iq such that sgn(p) =
sgn(θ) } is an orthonormal basis for l2(ℓθ). In particular,

∑

x∈Iq so that θx∈Iq

ap(x, θx) ar(x, θx) = δp,r, p, r ∈ Iq.

Proposition 6.4. Consider θ ∈ −qZ∪qZ and define J = qZ ⊂ Iq if θ > 0 and J = −qN ⊂ Iq if
θ < 0. For every (x, y) ∈ ℓθ we define the function e(x,y) : J → R such that e(x,y)(p) = ap(x, y)
for all p ∈ J . Then the family { e(x,y) | (x, y) ∈ ℓθ } forms an orthonormal basis for l2(J). In
particular,

∑

p∈J

ap(x, θx) ap(y, θy) = δx,y, x, y ∈ Iq.

For convenience we state the following symmetry relations for the functions ap(x, y), see
[30, Prop. 3.5]:

ap(x, y) = (−1)χ(yp)sgn(x)χ(x)

∣

∣

∣

∣

y

p

∣

∣

∣

∣

ay(x, p);

ap(x, y) = sgn(p)χ(p)sgn(x)χ(x)sgn(y)χ(y)ap(y, x);

ap(x, y) = (−1)χ(xp)sgn(y)χ(y)

∣

∣

∣

∣

x

p

∣

∣

∣

∣

ax(p, y).

(6.2)

6.2. Summation and transformation formulas for ap(x, y). The functions ap(x, y), which
as noted above are closely related to some well-known orthogonal polynomials of basic hy-
pergeometric type, are used in the definition of the so-called multiplicative unitary W , see
(7.10). In the general theory of locally compact groups, the multiplicative unitary W plays an
important role. In particular, it satisfies the pentagonal equation, a relation that is essential in
proving Propositions 4.10 and 4.15. The result in these propositions lead to operator identities
in suitable Hilbert spaces, and taking matrix coefficients then essentially lead to Theorems
6.5 and 6.8 in this section. The details of the proofs are given in Section 11.1.
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6.2.1. Representing the structure of M̂ . By taking the non-trivial structure constants of Propo-
sition 4.10 and considering matrix coefficients at both sides we obtain the following theorem.

Theorem 6.5. For p1, p2, r1, r2 ∈ Iq, l, n,m ∈ Z, ε, η ∈ {±} and with z ∈ Iq so that sgn(z) = ε
and εηpqlz ∈ Iq and with w ∈ Iq so that sgn(w) = εsgn(r1p1) and εηsgn(r1p1r2p2)pq

l+m+nw ∈
Iq we have

∑

x∈Iq so that sgn(x)=sgn(r1p1)

and |x|sgn(r2p2)pq2l+m+n∈Iq

az(x,w) ax(r1, p1) a|x|sgn(r2p2)pq2l+m+n(r2, p2)

× aεηpqlz(|x|sgn(r2p2)pq
2l+m+n, sgn(r1p1r2p2)εηpq

l+m+nw) = δ| r1
r2
|p,q−2l−m δ| p1

p2
|p,q−2l−2m−n

×
∑

u∈Iq so that sgn(u)=sgn(r1)ε

and εηsgn(r1r2)pql+mu∈Iq

az(r1, u) au(p1, w) aεηpqlz(r2, εηsgn(r1r2)pq
l+mu)

× aεηsgn(r1r2)pql+mu(p2, sgn(r1p1r2p2)εηpq
l+m+nw),

where the series on both sides converge absolutely.

Remark 6.6. (i) The formula of Theorem 6.5 contains many special cases involving q-Laguerre
polynomials, big q-Bessel functions, Al-Salam–Carlitz polynomials and q-Charlier polynomials
as special cases by suitable specializing the signs in the formula. Note moreover that in all
cases the sums are essentially sums over qZ or qN. For each particular choice of the signs the
square roots occurring in Definition 6.2 in Theorem 6.5 will cancel or can be taken together.
It would be of interest to find a direct analytic proof.
(ii) As stated before, the functions ap(x, y) can be interpreted as Clebsch-Gordan coefficients
related to representations of the quantized function algebra, which has no classical counterpart.
For the case of the quantum SU(2) group the corresponding Clebsch-Gordan coefficients
are Wall polynomials, which are special cases of little q-Jacobi polynomials and also can be
interpreted as q-analogues of Laguerre polynomials, see [35]. The classical Clebsch-Gordan
coefficients also satisfy summation formulas involving the product of four Clebsch-Gordan
coefficients, see e.g. [55, Ch. 8.7], but the structure of the summations is quite different.
Relations as in Theorems 6.5 and 6.8, if proved directly, might give a hint of proving directly
that the corresponding q-analogues of the Racah coefficients are zero at the appropriate places,
leading to a direct proof of the coassociativity for M , see the discussion [30, p. 289].

Theorem 6.5 can be used to obtain positivity results for sums where the summands have
four of the functions ap(x, y). The result is contained in Corollary 6.7. We give the case
corresponding to the q-Laguerre polynomials explicitly, and we refer to Askey [2, Lecture
5] for more information on the related positivity results for the Laguerre polynomials. The
q-Laguerre polynomials are defined by,

L(α)
n (x; q) =

(qα+1; q)n

(q; q)n
1ϕ1

(

q−n

qα+1
; q,−q1+αx

)

, (6.3)

in this application we only consider the case α = 0.
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Corollary 6.7. For r1, r2 ∈ Iq, l,m ∈ Z and with z ∈ Iq so that sgn(z) = ε and εη| r2

r1
|q−m−lz ∈

Iq and we have

(−η)l+m(ηsgn(r1))
χ(r1) (ηsgn(r2))

χ(r2) (εη)χ(z)

∑

x∈qZ

x2 ax(r1, r1) ax(z, z) axq−m|
r2
r1
|(r2, r2) axq−m|

r2
r1
|(εη|

r2
r1
|q−m−lz, εη|r2

r1
|q−m−lz) > 0

and for a ∈ Z and n1, n2, n3, n4 ∈ N0 we have

∑

k∈Z

qk

(−qk,−qk+a; q)∞
L(0)

n1
(qk; q)L(0)

n2
(qk; q)L(0)

n3
(qk+a; q)L(0)

n4
(qk+a; q) > 0.

Note that the sum is closely related to one of the orthogonality measures for the q-Laguerre
polynomials, which correspond to an indeterminate moment problem. A similar positivity
result can be obtained for the q-Bessel functions involved.

6.2.2. Representing the comultiplication in M̂ . The explicit expression for ∆̂ in the dual quan-
tum group M̂ as given in Proposition 4.15, or better the expression (7.23) in the proof of
Proposition 4.15, leads to a formula for its matrix elements. The result is the following theo-
rem.

Theorem 6.8. For fixed r ∈ qZ, m1,m2,M, n ∈ Z, p1, p2 ∈ Iq, ε1, ε2, η1, η2, σ ∈ {±} and for
z1, z2, w1, w2 ∈ Iq satisfying

sgn(zi) = εi, (i = 1, 2), ε1η1q
m1rz1 ∈ Iq, ε2η2q

−2m1−m2−n z2|p2|
r|p| ∈ Iq,

sgn(w1) = sgn(p1)ε1, sgn(w2) = σε2, σsgn(p1)ε1η1q
m1+Mr1w1 ∈ Iq,

σsgn(p2)ε2η2q
−2m1−m2−M w2|p2|

r|p| ∈ Iq

and such that az1
(p1, w1) 6= 0 we have

1

w2
2

aep1η1qm1rz1
(σ|p1|rq2m1+M , ε1η1σsgn(p1)w1rq

m1+M) az2
(σ|p1|rq2m1+M , w2)

× a
ε2η2|

p2
p1
| z

2

r
q−2m1−m2−n(p2, ε2η2σ

p2w2

|p1|r
q−2m1−m2−M) =

∑

y,x∈Iq so that sgn(y)=ε2η1 and

sgn(p1p2)qnxw1/z1∈Iq , ε1ε2η1η2q−m1−m2yx/rz1∈Iq

1

y2
az2

(ε1η1q
m1rz1, y) aw2

(sgn(p1)σε1η1q
m1+Mrw1, y)

× a
ε2η2

z2|p2|
r|p1|

q−2m1−m2−n(x, ε1ε2η1η2q
−m1−m2

yx

rz1

) ax(p2, sgn(p1p2)q
nxw

z1

)

× a
σsgn(p2)ε2η2

w2|p2|
r|p1|

q−2m1−m2−M (sgn(p1p2)q
nxw1

z1

, ε1ε2η1η2q
−m1−m2

yx

rz1

)

where the left-hand-side is considered to be zero in case σ|p1|rq2m1+M /∈ Iq. The series con-
verges absolutely.
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Remark 6.9. (i) First note that the largest part of Remark 6.6(i) is also applicable to Theorem
6.8, except for the fact that the summation is more involved. Viewing the summation as a
sum over an area in Iq× Iq ⊂ R

2 (with x on the horizontal axis and y on the vertical axis), we
see that the summation area is a subset of Iq× Iq bounded by a vertical line and a hyperbola.
Depending on the sign choices there are eight possibilities for the location of the vertical line
and the hyperbola.
(ii) Theorem 6.8 follows from the operator identity in Proposition 4.15, but the single term
in the left hand side of Theorem 6.8 corresponds to summation on the left hand side of
Proposition 4.15, whereas the double sum on the right hand side of Theorem 6.8 corresponds
to the single term on the right hand side of Proposition 4.15.
(iii) Since the results in Theorems 6.5 and 6.8 both reflect the pentagonal equation for the
multiplicative unitary, one might expect the resulting identities to be equivalent by using the
orthogonality relations of Propositions 6.3 and 6.4. However, this is not the case as follows
by considering the dependence of both results on the free parameters.

6.3. Formulas involving 2ϕ1-series. In Section 9 we show that with respect to the spectral
decomposition of the Casimir operator Ω the operators Q(p1, p2, n) generating M̂ , see Propo-
sition 4.9, act by multiplication by a 2ϕ1-series up to a sign-change in the argument. Since
we also have another explicit expression for the action of Q(p1, p2, n) by Lemma 7.1, we have
two different explicit expressions for the action of Q(p1, p2, n). This leads to the following
theorem, where the functions Ψ are essentially 1ϕ1-functions as defined in (6.1). Actually, we
have written out two of several options depending on several sign choices.

Theorem 6.10. Let m,n ∈ Z, p1, p2 ∈ qZ and λ ∈ T.

(i) For k ∈ Z,

∞
∑

l=−∞

(−1)l+k+n
(

p2
2q

2n−2k−3
)l

ql2(−q2l−2mp2
2/p

2
1; q

2)∞

× (q2−2m−2n; q2)∞ 2ϕ1

(

q1−np1λ/p2, q
1−np1/p2λ

q2−2m−2n
; q2,−q2−2l

)

×Ψ

( −q2−2l

q2+2k−2l
; q2, q2+2k/p2

1

)

Ψ

(−q2−2l+2mp2
1/p

2
2

q2+2k−2n−2l
; q2, q2+2k−2m−2n/p2

1

)

= p2k
2 q

2n−3kq−k2

(q2,−q2/p2
2; q

2)∞
(p1q

1−nλ/p2, p1q
1−nλ/p2; q

2)n

(p2q1−nλ/p1, p2q1−nλ/p1; q2)n

× (q2−2n; q2)∞ 2ϕ1

(

p2q
1−nλ/p1, p2q

1−n/p1λ

q2−2n
; q2,−q2/p2

2

)

× (q2−2m; q2)∞ 2ϕ1

(

p1q
1+nλ/p2, p1q

1+n/p2λ

q2−2m
; q2,−q2−2k

)

where the sum converges absolutely.
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(ii) Assume q−mp2/p1 ≤ 1 and q−m−np2/p1 ≤ 1, then for k ∈ N0,

∞
∑

l=0

p2l
2 q

2(k−l)q(l−k)(l−k−1)

(q2; q2)l
3ϕ2

(

q−2l, q1+np2λ/p1, q
1+np2/p1λ

q2−2mp2
2/p

2
1, 0

; q2, q2

)

×Ψ

(

q−2l

q2+2k−2l
; q2,−q4+2k/p2

1

)

Ψ

(

q2m−2lp2
1/p

2
2

q2+2k−2n−2l
; q2,−q4+2k−2m−2n/p2

1

)

= q2n(k−m+1)q−n(n−1)p2k−2n
1 (q2mp2

1/p
2
2; q

2)n(q2+2k,−q2/p2
2; q

2)∞

× (q2+2n; q2)∞ 2ϕ1

(

q1−np2λ/p1, q
1−np2/p1λ

q2+2n
; q2,−q2/p2

2

)

× 3ϕ2

(

q−2k, q1−np2λ/p1, q
1−np2/p1λ

q2−2m−2np2
2/p

2
1, 0

; q2, q2

)

where the sum converges absolutely.

Remark 6.11. (i) The 2ϕ1-function inside the sum in Theorem 6.10(i) is essentially the
little q-Jacobi function fl(µ(λ); q2−2m−2n, q1−np1/p2;−q2|q2), see (B.28), and the summations
formula remains valid if µ(λ) is a discrete mass point of the corresponding orthogonality
measure ν, see Appendix B.5. In Theorem 6.10(ii) the 3ϕ2-series is essentially an Al-Salam–
Chihara polynomial, and the same remark applies using the orthogonality measure described
in Appendix B.4. Note that the 3ϕ2-series can be transformed to a 2ϕ1-series by (B.6).
(ii) If we multiply the formula (i) by fl′(µ(λ); q2−2m−2n, q1−np1/p2;−q2|q2) and we use the
orthogonality relations, see Appendix B.5, it follows that the above identity is equivalent to
an integral identity of the form

∫

2ϕ1 2ϕ1 2ϕ1 dν = Ψ Ψ. The integral can be written as an
integral over [−1, 1] plus an infinite sum. The same remark applies for (ii) but this time using
the orthogonality relations, see Appendix B.4, for the Al-Salam–Chihara polynomials.
(iii) Note that we can view the Ψ-functions as q-analogues of the Bessel function, cf. the
discussion in Section 6.1, and since we can do the same for the 2ϕ1-series involved in (i) we
may also consider Theorem 6.10(i) as an identity for q-Bessel functions.

The following result follows from the structure constants formula of Proposition 4.10. Note
that Theorem 6.5 also follows from Proposition 4.10, but now we use again the fact that we
can realize Q(p1, p2, n) as multiplication operators by a 2ϕ1-series up to a sign-change in the
argument.
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Theorem 6.12. Let λ ∈ T, p1, p2, r1, r2 ∈ Iq, n,m ∈ Z, and assume that |p2

p1
| = qm and

| r1

r2
| = qn. Then

sgn(r1)
1

2
(1−sgn(p1))sgn(r2)

1

2
(1−sgn(p2))+nrm

2 p
n
2 |r1r2|ν(r1)ν(r2)ν(p1)ν(p2)

×(q2,−sgn(r1)r
2
1,−sgn(r2)r

2
2,−sgn(r2)q

2/r2
2,−sgn(p2)q

2/p2
2; q

2)∞

× (−sgn(r1p1)q
−m−n−1/λ,−sgn(r1p1)q

3+m+nλ,−sgn(r1r2)λq
3−n/p1p2; q

2)∞
(−sgn(r1r2p1p2)qm+n−1/λ,−sgn(r1r2p1p2)q1−m−nλ,−sgn(r1r2)p1|p2|q−n−1/λ, ; q2)∞

× (−sgn(r1r2)p1p2q
n−1/λ,−λq3−m/r1r2,−r1r2qm−1/λ; q2)∞

(−sgn(r1r2)λq3+n/p1|p2|,−r1|r2|q−m−1/λ,−λqm+3/r1|r2|; q2)∞

×(sgn(p1p2)q
2+2n; q2)∞ 2ϕ1

(

sgn(r1r2)p2q
1+n/p1λ, sgn(r1r2)p2q

1+nλ/p1

sgn(p1p2)q2+2n
; q2,−sgn(p2)

q2

p2
2

)

×(sgn(r1r2)q
2+2m; q2)∞ 2ϕ1

(

r2q
1+m/r1λ, r2q

1+mλ/r1
sgn(r1r2)q2+2m

; q2,−sgn(r2)
q2

r2
2

)

=
∑

(x1,x2)∈A

xm+n
2 |x1|2ν(x1)

2ν(x1p1/r1)ν(x2p2/r2)(sgn(r2p2)q
−2m−2n)χ(x1)

×(−sgn(r1p1)x
2
1,−sgn(r2p2)x

2
1,−sgn(r2p2)q

2/x2
1, sgn(r1r2p1p2)q

2+2m+2n; q2)∞

× 2ϕ1

(

sgn(r1r2p1p2)q
1+m+n/λ, sgn(r1r2p1p2)q

1+m+nλ

sgn(r1r2p1p2)q2+2m+2n
; q2,−sgn(r2p2)

q2

x2
1

)

×Ψ

( −sgn(p1)q
2/p2

1

sgn(r1p1)q2r2
1/p

2
1

; q2, sgn(p1)
q2r2

1

x2
1

)

Ψ

( −sgn(p2)q
2/p2

2

sgn(r2p2)q2r2
2/p

2
2

; q2, sgn(p2)
q2r2

2

x2
1

)

where the sum converges absolutely. Here A ⊂ Iq × Iq is given by

A =
{

(x1, x2) ∈ Iq × Iq | sgn(x1) = sgn(p1r1), sgn(x2) = sgn(p2r2), |x1| = |x2|
}

.

From Theorem 6.12 we obtain another positivity result.

Corollary 6.13. Let p1, p2 ∈ Iq and λ ∈ T, then

0 <
∑

x∈qZ

ν(x)2(−x2; q2)∞ 2ϕ1

(

q/λ, qλ

q2
; q2,− q

2

x2

)

×Ψ

(−sgn(p1)q
2/p2

1

q2
; q2, sgn(p1)

q2p2
1

x2

)

Ψ

(−sgn(p2)q
2/p2

2

q2
; q2, sgn(p2)

q2p2
2

x2

)

.

6.4. Biorthogonality relations for 2ϕ1-functions. We have explicit expressions for the
matrix elements of the principal series corepresentations Wp,x, p ∈ qZ, x = µ(λ) ∈ [−1, 1],
in terms of 2ϕ1-functions. Unitarity of Wp,x leads to orthogonality relations for the matrix
elements. By analytic continuation these orthogonality relations remain valid for other values
of λ.
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Let m ∈ Z and λ ∈ C \ {0}, and define s( · , · ;λ,m) : Iq × Iq → C by

s(p1, p2;λ,m) = p
χ(p1p2)+m
2 ν(p1p2q

m+1)|p1p2| ν(p1)ν(p2)c
2
q

√

(−κ(p1),−κ(p2); q2)∞
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for p1, p2 ∈ Iq. From this expression it is not clear that the function is defined for all values
of p2 ∈ Iq, but an application of Jackson’s transformation formula [17, (III.4)] shows how to
extend to all values of p2 ∈ Iq.
Theorem 6.14. The following biorthogonality relations hold:
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Remark 6.15. The two biorthogonality relations Theorem 6.14 are actually equivalent. Also,
for λ ∈ T the biorthogonality relations are orthogonality relations.


