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1 Introduction

In this report we will try to give a short review of the approach by Noncom-
mutative Geometry to the gauge theories of particle physics and the Standard
Model. The main subjects of interest will be the theory of spectral triples and
the so called inner fluctuations of the metric.

We will first introduce the basic concepts and formulation of the predominant
theory of matter and its fundamental interactions, known as the “Standard
Model” of particle physics. This model is based on quantum field theory and
consists of a set of fields that propagate in spacetime and interact with each other
according to the action principle and Feynman rules for a specific Lagrangian.
This action satisfies a number of symmetries, some of which will be referred
to as gauge symmetries and will generate the fields that carry the fundamental
interactions.

After a short introduction to the basic notions of noncommutative geometry,
a few instructive examples of spectral triples and simple noncommutative con-
structions will be demonstrated. Several ideas and notions of Riemannian ge-
ometry are inevitably distorted when expressed in operator algebraic terms,
so careful steps should be taken, following the guidelines of basic literature
like [4, 8, 7] at the same time.

Then the idea of gauge transformations and gauge invariance can be passed to
the context of spectral triples, where the Dirac operator plays a central role.
The generalization to noncommutative geometries will allow for a new class of
inner fluctuations of the geometry to emerge. This was the missing ingredient
that can now give the gauge fields of the Standard Model as inner fluctuations
of the noncommutative “metric”. The final link that gives the full kinematics
and dynamics of the several fields is the spectral action, given in [2] for both
fermionic and bosonic sectors. The gravitational aspect will unfortunately not
be studied here.

2 The Standard Model

Even before Maupertius’ work on the principle of least action, mathematical
formulations of physical theories have been nothing but action principles. The
Lagrangian and Hamiltonian formulation of Newtonian mechanics, has evolved
into that of classical field theory which in turn played a crucial role in the formu-
lation of quantum field theory. Again the behavior of quantum fields is ruled by
an action principle, which slightly differs from its classical version by allowing
“quantum fluctuations” of the fields. However, the role of symmetries remained
central throughout the evolution of physics, becoming even more predominant
in 20th century theoretical physics.

A quantum field theory is described by a number of fields living on some space
and a specific Lagrangian, a simple expression involving the fields and their
derivatives. The corresponding action is a functional on the space of field con-
figurations, usually expressed by an integration of the Lagrangian over the un-
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derlying space. If the fields live on a flat background spacetime (i.e. the un-
derlying space is Minkowski), the corresponding Lagrangian needs to remain
invariant under Lorentz transformations, as dictated by the equivalence princi-
ple of special relativity. In a more generic background of General Relativity, if
the underlying space is an arbitrary (pseudo-)Riemannian manifold, the theory
needs to be invariant under diffeomorphisms, hence each field needs to trans-
form in a certain way under general coordinate transformations. These kind of
symmetries that are related to the background metric are called the external
spacetime symmetries of the theory.

The first example of an Abelian gauge theory is that of QED. One starts from the
Dirac equation in Minkowski spacetime, provided by the free massive fermion
Lagrangian

L0 = ψ̄(x)(iγµ∂µ−m)ψ(x) , (1)

with ψ̄ = ψ∗γ0, noting that this theory has a built in symmetry under phase
shifts of the form

ψ(x)→ ψ′(x) = eiαψ(x). (2)

These kind of transformations form the group of 1-dimensional unitaries U(1),
the unit circle in C. Note that the phase shifting parameter α does not vary
from point to point 1, but is a constant in spacetime and therefore, the above
symmetry will be referred to as a global U(1) symmetry.

One can then try to upgrade this natural global symmetry to a local one, by
considering an arbitrary spacetime dependence of the phase parameter α = α(x)
and requiring the action to remain invariant under the new transformation

ψ(x)→ ψ′(x) = eiα(x)ψ(x). (3)

It is readily seen that the second term is just fine, since the two prefactors
cancel each other on each point. However the derivative in the first term, after
applying the Leibnitz rule, gives a nontrivial transformation with the extra term
iψ̄(x)γµ(∂µα(x))ψ(x).

We can still save local invariance by introducing a new vector gauge field Aµ
which will interact with the Dirac field by the minimal coupling term eψ̄γµAµψ,
and will thus take part in a gauge covariant derivative, which reads

Dµψ = (∂µ − ieAµ)ψ (4)

and transforms ideally, as

Dµψ → D′µψ
′(x) = eiα(x)Dµψ(x) , (5)

if the gauge field Aµ transforms in the following way,

A′µ(x) = Aµ(x) + 1
e
∂µα(x). (6)

This is exactly the behavior of a field that lives in the adjoint representation.
1or more appropriately, from event to event
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To make the picture complete, we still need to add the gauge invariant La-
grangian of the vector gauge field. This is simply given by the curvature term

LA = −1
4FµνF

µν , (7)

with Fµν = ∂µAν−∂νAν the field’s curvature tensor. It is straightforward to see
that this expression will be invariant under local gauge transformations. Note
here that gauge invariance imposes a massless gauge field, since a term of the
form MAµAµ will not be gauge invariant.

In the path integral formalism, this minimal coupling term is an interaction term
that corresponds to the 3-vertex of the photon (Aµ) and the charged fermion
line (ψ̄, ψ), with the electric charge e as its coupling constant. This simple
gauge theory successfully described the full theory of electromagnetism and thus
motivated the further investigation of gauge theories in particle physics. The
related global and local symmetries are characterized as internal symmetries of
the theory.

The notion of such symmetries was extended by Yang an Mills (1954) to the
more general non Abelian setting, where initially the local internal symmetry
group was considered to be SU(n). In the years that followed, a huge amount
of phenomenological results, brought by high energy experiments, led to the
formulation of the Standard Model of particle physics. The QED gauge group
U(1) is a simple one parameter Lie group and similar constructions can be
performed for general non-abelian groups such as the Lie groups SU(2) and
SU(3) with 3 and 8 generators respectively. These will be the three relevant Lie
groups for the Standard Model. A combination of U(1) and SU(2) 2 gives the
electroweak interactions, the generators of which describe the massless vector
field of the photon and the three massive vector bosons of the weak interaction
W+,W− and Z0. The interactions between the gauge bosons and fermionic
fields are given by Yukawa couplings, whereas for non-Abelian theories such as
SU(2), one also gets self-interaction terms between the gauge fields.

An indispensable ingredient of the SM is the Higgs mechanism, that assigns
masses to the initially massless fields, by spontaneous symmetry breaking. This
type of symmetry breaking involves one or more bosonic fields, whose vector
potential obtains a particular form, so that its vacuum state (around which
perturbation theory is taken) gives a nonzero expectation value. A typical
Higgs-like potential has the form

V (H) = −µ2|H|2 + λ|H|4 , (8)

which for a range of values in the parameters µ, λ is readily seen to have a family
of nontrivial minima. 3 After choosing such a vacuum state (gauge fixing) and
rewriting the Lagrangian around it, mass terms appear for all fields that interact
with the Higgs bosons.

The last SU(3) non-Abelian gauge symmetry corresponds to the strong nuclear
force and is non-trivially represented only on quarks, that have the associated

2by a mixing angle θW
3In fact the parameters may vary dynamically, for example with temperature, in an effective

theory and give a phase transition, under which the symmetry is broken.
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charge, by a color index (r,g,b). The generating non-Abelian gauge fields that
carry the strong interaction are called gluons and, apart from being coupled to
the fermions, they also self interact by three and four valent vertices, as dictated
by the general Yang-Mils theory.

To sum up, the particle artillery of the standard model consists of

• 6 massive charged quarks divided into 3 generations (flavors), namely the
couples (u,d) , (c,s) , (t,b) , plus their anti-particles;

• 6 leptons also divided into 3 generations, namely (e, νe) , (µ, νµ) , (e, νe)
(also along with their anti-particles);

• gauge bosons for the three interactions, namely the 4 bosons γ andW±, Z0

for the broken electro-weak and the 8 gluons for the strong interaction;

• a Higgs boson remaining from the scalar Higgs field after breaking electro-
weak symmetry.

There is a grading operator for fermionic fields splitting the particles to left and
right handed ones. Right handed neutrinos are absent and all remaining right
handed fermions are in the 1-dimensional representation of the weak interaction,
while all left handed fermions transform as doublets. This means that there is
a rearrangement in isospin doublets and singlets,(

u
d

)
L

,

(
c
s

)
L

,

(
t
b

)
L

,
uR
dR
,

cR
sR
,

tR
bR
, (9)

and similarly for the leptons,(
νe
e

)
L

,

(
νµ
µ

)
L

,

(
ντ
τ

)
L

, eR, µR, τR. (10)

The full Standard Model Lagrangian is given, along with extensive information,
in chapter 9 of [7]. For a more than detailed study on gauge theories and the
Standard Model, there is a huge amount of literature that one can consult,
including [11, 10, 1].

3 Noncommutative Geometry

The basic idea behind noncommutative geometry is a reformulation and gen-
eralization of the notion of geometry in terms of operator algebras on Hilbert
spaces.

The topological properties of a “geometrical space” X can be captured by the
algebra of continuous functions A = C(X) whose spectrum Ω(A) will be iso-
morphic to the original space X. This is a well known result for compact
Hausdorff topological spaces, due to Gel’fand, which was further developed to
the functorial relation between the categories UCC and CH, of unital commuta-
tive C∗-algebras and compact Hausdorff spaces respectively. As a consequence,
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one can trade any CH space for an algebra that characterizes it without los-
ing any information on its structure since one can fully reconstruct the original
space. This characterization leads to a natural generalization to a wider class of
noncommutative spaces, if one drops the requirement of commutativity of the
C∗-algebra that characterizes the space.

It would be nice to extend the above results in a way that incorporates the
geometrical structure of a space, in the context of Riemannian geometry. The
notion of a geometric space, as formulated in the Riemannian theory, consists
of a manifold M equipped with an additional structure that measures distances
between points inM , namely the metric g. Having taken care of the topological
aspect of the space, which we can encode in the algebra of continuous functions
over M, we now seek the additional structure that will hold the geometric data
of (M, g). It turns out that this task is not as minimal as its predecessor, and
led to the definition of a spectral triple by Connes in the mid ’90s [3].

It is a fact that any C∗-algebra can be represented as a subspace of B(H) the
bounded linear operators on some Hilbert space H. The new ingredient that
will hold Riemannian geometric data (such as the dimension of the space, the
metric, a notion of integration, differentiation and smooth structure), will be
a self adjoint operator D on that Hilbert space which will be refered to as the
Dirac operator. This operator will have to satisfy several properties that will
be axiomatically incorporated in its definition and will comprise the base of the
differential calculus on the spectral triple.

3.1 Spectral Triples

Again, in view of the general strategy of algebraic reformulation of everything,
we translate the data in terms of operator algebras acting on Hilbert spaces and
then justify the less intuitive ingredients with a reconstruction theorem [3, 5].
The dictionaries of quantized calculus that appear as tables in Connes’ books,
between geometrical objects on classical spaces and algebraic ones, should come
in handy.

Definition. Our initial datum and main framework from now on will be a
spectral triple

(A,H, D)

consisting of:

• an associative *-algebra A, represented faithfully on

• a (separable) Hilbert space H and

• a self-adjoint, usually unbounded operator D acting on H, with compact
resolvent, i.e.

(D − zI)−1 ∈ K(H) , ∀z ∈ C\Sp(D)

and which “almost commutes” with all a ∈ A, i.e.

[D, a] ∈ B(H) , ∀a ∈ A.
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In particular we assume that 0 /∈ Sp(D) and thus D−1 exists, with D−1 ∈ B(H).

For the sake of aesthetics, we will take up the bad habit of not writing explicitly
the represented algebra elements as π(a) but rather as a. Only when the context
causes ambiguity, will π be used. In any case, when writing a commutator with
an operator on H like [D, a], no confusion should be raised.

The first remarkable fact is that, in the special case of a Riemannian (spin)
manifold M , the geodesic distance on M can be recovered even after having
traded the metric for the operator D. More generally, all differential geometric
notions can be translated to fit in the operator algebraic framework.

3.2 Axiomatic definition of commutative geometry

Before studying the interesting aspects of noncommutative spaces, one needs to
keep in mind what this construction should reduce to, when one requires the
algebra to be commutative. This will be done in the context of spectral triples
and will be dictated by the “canonical commutative example” of a compact
oriented Riemannian spin manifold.

The ingredients of a spectral triple (A,H, D) that will define a commutative
geometry of dimension n, satisfy the requirements in the spectral triple definition
and also have the following properties. They are the conditions for a (unital)
spectral triple to qualify as a geometric space.

• Finite summability

• Commutativity property

• Smoothness property (as in smooth manifold)

• Orientability property (existence of a volume form)

• Existence of a Real structure

• Poincare’ duality

• Finiteness

Finite Summability This part has to do with the dimensionality of our space
and is a property of the Dirac operator. It states that there exists an integer
p called the degree of summability, such that D−1 as a compact operator lies
in the ideal D−1 ∈ Lp+(H). We then say that the spectral triple (A,H, D)
is p-summable. This is closely related to the so-called Dixmier trace, and is
equivalent to saying that the operator |D|−p lies in another ideal of compact
operators, the Dixmier ideal. Dimensionality is now captured by the set of poles
of zeta-functions of the form ζa : z 7→ Trω(a|D|−z), which define the dimension
spectrum of the triple [3].
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Commutativity This will be a reformulation of the algebraic property satis-
fied by the infinitesimal,

[[f, ds−1], g] = 0 ∀f, g ∈ C∞(M) (11)

and is simply translated to

[[D, a], b] = 0 ∀a, b ∈ A. (12)

Smoothness One needs to define some sort of smooth structure on the new
notion of space. This will be done by noting that D and |D| are in principle
unbounded operators of differential order one. Define the derivation,

δ(a) = [|D|, a] , ∀a ∈ A (13)

Differentiable functions are now elements of the algebra whose representations
are operators that lie in the domain of δ,

Dom(δ) = {a ∈ B(H) : aDom(D) ⊂ Dom(D)}. (14)

In order for the algebra A to be one of smooth functions on the space, we require
both A and [D,A] to fall in the domain of any integer power of δ.

Orientability Among Riemann geometries we want to consider orientable
ones. This property is translated in the operator language as the existence of
a special operator on H, which we call the chirality operator γ, that defines a
Z2-grading on the Hilbert space. This operator should come from a “highest
order differential form”, a Hochschild cycle of order n.

Spectral triples with a nontrivial chirality are also often refered to as even spec-
tral triples, since for odd dimensional manifolds such a cycle can only be repre-
sented trivially to the identity operator. When one deals with an even spectral
triple, one usually incorporates the chirality γ into the notation as an additional
entry and writes (A,H, D, γ).

Real structure The reality condition is about the existence of another special
operator on H called the real structure J . It is an antilinear isometry J(λψ) =
λ̄Jψ , J ∗ J = 1 with J2 = ±1 satisfying JaJ−1 = a∗ , for all a ∈ A. Usually,
when the above sign is minus, it is called a quaternionic structure, however the
term real has been established for spectral triples that carry any type of J . This
operator will define the charge conjugation of spinor fields in particle physics.

During the study of Clifford algebras and spinor representations, we saw that the
existence and type of real structure is completely determined by the dimension
n of the manifold. All related properties exhibit a periodicity with respect
to n and in fact they only depend on n(mod8). For an even real spectral
triple, dimension also determines (anti-)commutation relations between J and
the other two important operators, D and γ. If we write all three relations

J2 = ε (15)
JD = ε′DJ (16)
Jγ = ε′′γJ , (17)
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parametrized by three signs, ε, ε′, ε′′, we can sum up all possibilities in Connes’
sign table.

n 0 1 2 3 4 5 6 7
ε 1 1 -1 -1 -1 -1 1 1
ε′ 1 -1 1 1 1 -1 1 1
ε′′ 1 -1 1 -1

Table 1: The values of ε, ε′, ε′′ depending on dimension n (mod 8).

Poincaré duality This is not the most intuitive property, as it requires a
considerable amount of knowledge on K-theory and index theory, in order to
be fully understood, but still it deserves to be stated here. It says that the
intersection form,

K∗(A)×K∗(A) → Z
(e, f) 7→ 〈IndD,m∗(e⊗ f)〉 , (18)

is invertible.
However hi-tech this statement may seem, it can actually be checked explicitly
in some simple spaces, (e.g. finite cases studied below, see [14]).

Finiteness The domain of the differential operator D describes the differen-
tiable states ofH. In general we defineHk = Dom(|D|k), k ∈ N (which can be
also extended to real numbers by functional calculus) and the smooth subspace

H∞ =
⋂
k≥0

Dom(|D|k). (19)

The present axiom states that this space is required to be a finitely generated
projective A-module. In a few words, this allows for the defining algebra A to be
not strictly a C∗-algebra, but a pre-C∗-algebra, the norm closure of which will
be the C∗-algebra A of continuous functions on some space, namely its spectrum
X = Ω(A). In particular, A is the dense subalgebra of smooth functions C∞(X),
and this density also implies that X could be taken as the spectrum of A in the
first place.

3.3 Axiomatic definition of noncommutative geometry

The definition of a noncommutative geometry follows the same lines and in
fact, only a few of the axioms defining commutative geometries need to be
modified. It is obvious that the modifications will actually be relaxations of the
conditions, since we need to keep commutative geometries as a special subset of
noncommutative ones.

In particular, the reality axiom changes as follows. We define

b0 := Jb∗J−1 , b ∈ A , (20)
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thus making b0 an element of the conjugate or opposite algebra Ā. Apart from
the above sign consistency, the reality axiom imposes the following conditions
on the algebra:

• commutation rule

[a, b0] = 0 , ∀a, b ∈ A , (21)

• order one condition,

[[D, a], b0] = 0 , ∀a, b ∈ A. (22)

The last property states that the Dirac operator is seen as an order one differen-
tial operator acting on the algebra of smooth functions. This correctly modifies
the commutativity condition.

Now with the help of J one can assign an A-bimodule structure on H as follows.
Using (20), the representation of Ā on H will naturally give the right A-module
structure on the Hilbert space:

ψb = b0ψ ∀ b ∈ A, ψ ∈ H. (23)

This action is compatible with the left one, by making use of the commutation
rule (21). Thus for any a, b ∈ A, one can define the bimodule structure,

aψb = Jb∗J−1aψ ∀ψ ∈ H. (24)

In the (even case of) orientability axiom the Hochschild cycle is now an element
c ∈ Zn(A,A ⊗ Ā) such that π(c) = γ is a projection that commutes with A
and anticommutes with D. There are in fact a couple of more, rather subtle
adjustments for the axioms of noncommutative geometry (c.f. [5]), that will not
be discussed here.

3.4 The canonical commutative example

As soon as the definition of a spectral triple is given, it is instructive to demon-
strate the so called “canonical commutative example” of spectral triples, which
makes the transition much smoother and clear. The whole construction will be
based on the set of compact spin manifolds, a refinement of the set of orientable
Riemannian manifolds. Let M be such a manifold. The defining algebra in this
commutative case will be none other than the pre-C∗-algebra of smooth complex
functions C∞(M), whose involution will be defined by complex conjugation (
ψ∗(x) = ¯ψ(x) ). For the definition of the Dirac operator we run back to the
lecture notes.

First recall that as extra structure for an n-dimensional spin manifold M , we
have a principal Spin(n)-bundle, which we denote Spin(M), and an explicit
isomorphism of the vector bundles:

TM ∼= Spin(M)×Spin(n) Rn , (25)
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where the right hand side is the associated vector bundle over M with Spin(n)
as its Lie group.

We also recall that the Clifford algebra Cln can be represented irreducibly on
a complex vector space Sn ∼= C2k , k =

⌊
n
2
⌋
. We can now construct the spin

bundle to be the associated vector bundle,

Sn = Spin(M)×Spin(n) Sn , (26)

whose sections Γ(M,Sn) we will call spinors. To be more precise, the space of
spinors, which we would prefer to be a Hilbert space, will consist of only the
square integrable sections, i.e. H = L2(M,Sn). This will be taken to be the
Hilbert space of our spectral triple, and one can already see the connection with
particle physics.

Indeed, in a 4-dimensional spacetime we have n = 4 (or k = 2), hence Cl4
will be represented in 2k = 4 dimensions and locally the spinor bundle will be
isomorphic to U × S4 = U × C4. The fact that in a 4-dimensional spacetime
the spinor representation is also 4-dimensional is of course coincidental. This
reduces to the usual notion of Dirac fermions on a flat piece of 4-dimensional
spacetime and in what follows we will also see the physical meaning of the group
action on the spinors.

In this paradigm, we can represent the basis of the Clifford algebra on spinors
by the well known chiral γ-matrices which read:

γ0 =
(

0 −12
−12 0

)
, γj = −i

(
0 σj
−σj 0

)
, j = 1, 2, 3 , (27)

where σj denote the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (28)

Hence the Dirac operator in local flat coordinates will be the usual Dirac oper-
ator of particle physics i 6∂ = iγµ∂µ.

Now the chirality element γ of the Clifford algebra will be represented by γ5 =
(−1)2γ0γ1γ2γ3 and in this choice of hermitian matrices will read 4

γ = γ5 =
(

12 0
0 −12

)
, (29)

while the real structure will be the familiar charge conjugation, represented by
the anti-unitary

J = γ0γ2 ◦ cc =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 ◦ cc. (30)

4There are different notations for the indexing of the γ matrices, such as γa, a = 1, 2, 3, 4
with the chirality element written either as γ0 or γ5. To avoid confusion we stick with γ5

(and not say γ4). Moreover, there are different choices for the realization of these matrices.
The present one is one of the most common, the chiral or Weyl basis; the next most popular,
for different purposes are the Dirac and Majorana basis.
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But now we need to see how to calculate things on a general curved manifold,
and this information will be provided by the connection on the spinor bundle,
namely the spin connection ∇S . As promised, the differential structure will be
held in the last ingredient of the spectral triple, the Dirac operator and indeed
this is where the spin connection comes into play. Recall that the usual Dirac
operator on our spin manifold is defined as a linear first order partial differential
operator D : Γ(Sn → Γ(Sn) by means of the spin connection,

6D := −ic ◦ flip ◦# ◦ ∇S , (31)

as explained in Landsman’s lecture notes and Varilly’s notes, along with the
more physicist-friendly local expressions.

Note here that we assume M to be a compact manifold, hence all sections of
any vector bundle over M are compactly supported. In particular, the space of
square integrable sections above is exactly H0, one of the Sobolev spaces, which
have the attractive property of being Banach and thus Hilbert under the inner
product defined fiberwise by the regular complex one, i.e. for ψ ∈ L2(M,Sn).

The canonical commutative paradigm is now clear and, as promised, we will
now justify all the above abstractness by the following reconstruction theorem
by Connes [5].

Theorem. Let A = C∞(M), where M is a smooth compact manifold of di-
mension n. a) Let π be a unitary representation of A, ds satisfying the axioms
of 3.2. Then there exists a unique Riemannian metric g on M such that the
geodesic distance between any two points p, q ∈M is given by

d(p, q) = sup {|a(p)− a(q)| : a ∈ A, ‖[D, a]‖ ≤ 1} . (32)

b) The metric g = g(π) only depends upon the unitary equivalence class of π
and the fibers of the map : π 7→ g(π) from unitary equivalence classes to metrics
form a finite collection of affine spaces Aσ parametrized by the Spin structures
σ on M .
c) The action functional 6

∫
dsn−2 is a positive quadratic form on each Aσ with

a unique minimum πσ.
d) πσ is the representation of (A, ds) in L2(M,Sσ) given by multiplication op-
erators and the Dirac operator of the Levi Civita Spin connection ∇S.
e) The value of 6

∫
dsn−2 on πσ is given by the Einstein Hilbert action,

−cn
∫
R
√
|g|dnx, (33)

where cn is a constant depending only on the dimension n coming from Weyl’s
formula,

cn = (n− 2)
12 (4π)n/2Γ

(n
2 + 1

)−1
2b

n
2 c (34)

We will concentrate on the first point. In Riemannian geometry, distance be-
tween points on a manifold was measured by integrating infinitesimals or line
elements

√
gµνdxµdxν along geodesic curves. These curves were actually defined

by the property of being the ones that extremize the length, among curves with
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fixed endpoints. Points are no more, in the noncommutative setting, hence the
notion of Riemannian distance needs to be reformulated in a point-free manner.
We start from the original expression for distance between two points p, q ∈M
on a Riemannian manifold M ,

d(p, q) = inf
γ

{
Lγ(p, q)

∫ γ(1)=q

γ(0)=p

√
gµν

dxµ

ds

dxν

ds
ds

}
(35)

and will try to translate it to the language of spectral triples.

What we do know is that the algebra of smooth complex functions on M is
A. Now take all such functions on M and see how much they can (smoothly)
vary from point p to point q. Obviously, in order for this to be relevant to
their distance we need to restrict to the functions that vary in a “controlled”
manner with respect to infinitesimal displacements ds, i.e. the ones that satisfy
‖ dfds‖ = ‖∇f‖ ≤ 1. Taking the supremum of these differences |f(p) − f(q)| is
like adjusting a coordinate along which the smallest length is achieved. The
condition ‖∇f‖ ≤ 1 translates to ‖[ 6D, f ]‖ ≤ 1 and it also gives that |f(p) −
f(q)| ≤ d(p, q). But we also know that there is a such a function for which
this value is actually acquired, namely the distance of any point from p, with
gradient 1. Hence we can rewrite

d(p, q) = sup |a(p)− a(q) : a ∈ A, ‖[D, a]‖ ≤ 1. (36)

This expression still involves the points, but only through the evaluation of
elements of A. But this can be reconstructed by Gel’fand’s theorem, by the
characters of the algebra, without any reference to points.

This concludes the reformulation of the notion of Riemannian distance, which
in this form continues to make sense for any spectral geometry.

3.5 Elementary geometries

The exploration continues with a some constructions and examples of non-
canonical geometries.

3.5.1 Direct sum

In order to widen our collection of noncommutative spaces to a nontrivial set
in a minimalistic way, it is useful to demonstrate a simple way of composing a
finite number of spectral triples to form a new one. Given the spectral triples 5

(Ak,Hk,Dk), k = 1 . . . N , this can be done by taking the direct sum over
each component,

A = ⊕kAk, H = ⊕kHk, D = ⊕kDk. (37)

The way dimension is defined, not by a natural number but through the di-
mension spectrum, is appropriate in this context, since no information is lost
concerning the different dimensions of the original pieces.

5which for generality are not given a real structure or chirality, but this would also work
in an obvious way
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The simplest example would be a 0-dimensional space with two points, taken as
a direct sum over two spaces with one point each, say xL and xR (standing for
left and right point) 6. The algebra of functions over each space would simply
be the set of values that complex functions can take, Ai ∼= C. The algebra on the
space of two points will be exactly the direct sum of the algebras A = CL⊕CR,
so in a sense direct sums represent the union of disjoint (disconnected) spaces.
So any function in A looks like f = (fL, fR). It can be represented on a 2-
dimensional Hilbert space H = C2 by the diagonal matrix representation

π(f) =
(
fL 0
0 fR

)
,

and the Dirac operator will be the self adjoint

D =
(

0 m
m̄ 0

)
, m ∈ C.

One is free to get rid of diagonal entries in the Dirac matrix since they will be
washed out anyway when taking the commutator with any f ∈ A. As already
mentioned, distance as formulated above, continues to make sense and reads

d(xL, xR) = sup {|fL − fR| : ‖[D, f ]‖ ≤ 1} . (38)

Notice how D enters (and actually defines) the measuring of distance between
two points that were initially foreign to each other! This gives

[D, f ] =
(

0 m(fR − fL)
m̄(fL − fR) 0

)
(39)

⇒ ‖[D, f ]‖ = |m| |fL − fR| ≤ 1

⇒ d(xL, xR) = sup

{
1
|m|

}
= 1/|m|. (40)

After a closer look, one can say that the choice of notation for the entry m was
far from random, since, in terms of dimensionality, d(xL, xR) defines a length
scale in our space, and thus its inverse m should define some sort of a mass
scale.

A nice modification of this example involves the construction of a real chiral
0-dimensional space with two points. The same algebra now will be represented
on the larger H = C4, by

π(f) =


fL 0 0 0
0 fR 0 0
0 0 f̄L 0
0 0 0 f̄R

 , D =


0 m 0 0
m̄ 0 0 0
0 0 0 m̄
0 0 m 0

 , m ∈ C. (41)

The real structure and chiral operator can now be defined as:

J =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 ◦ cc , γ =


−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 . (42)

6The term 0-dimensional is attributed to finite spaces, in that the spectral algebra is finite
dimensional, often denoted by Af .
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Again one can check that this defines a real chiral spectral triple and the distance
between the two points/pure-states is 1/|m|.

One can further play around with these finite spaces to e.g. fit the general
properties of the Standard Model and then use it as an “internal finite space”
as will become clear in what follows.

3.5.2 Tensor Product of spectral triples

Another useful composition of two spectral triples can be done by more or less
tensoring everything. Let (A1,H1, D1)(J1, γ1) and (A2,H2, D2)(J2, γ2) be two
(real, even) spectral triples that satisfy the axioms of noncommutative spaces.
Then we define the tensor product as the spectral triple (A,H, D) with compo-
nents:

A = A1 ⊗A2,

H = H1 ⊗H2,

D = D1 ⊗ 12 + γ1 ⊗D2 (43)
∼= D1 ⊗ γ2 + 11 ⊗D2,

J = J1 ⊗ J2,

γ = γ1 ⊗ γ2. (44)

All the above tensor products are with respect to the field Cof complex numbers.
The representation of the algebra A and the action of the operators D,J, γ on
the Hilbert space H is defined in the obvious way. Note also that if the factor
spectral triples are even, then it can be checked that the resulting product is
also an even spectral triple.

This provides a nice playground for the construction of noncommutative spaces,
since one can now use elementary examples such as the trivial space of a single
point to build larger and richer geometries.

3.6 The "almost commutative" geometry

And now it will all come together with the crucial move, that is to combine
commutative geometries, coming from classical spin manifolds, with minimal
noncommutative geometries. An almost commutative geometry is defined
to be a geometry that can be expressed as the spectral triple product of a
commutative geometry with a finite 0-dimensional noncommutative geometry.
The small finite space could be commutative or not but the most interesting
constructions come from noncommutative ones, and of course this will be the
case for any Standard Model related attempt.

We write the two factor spaces as

• (C∞(M),L2(S), 6D,J, γ) the spectral triple associated to a (real, even)
spin manifold M and

• (Af ,Hf , Df , Jf , γf ) a 0-dimensional noncommutative geometry where f
stands for finite.
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Then the resulting algebra and Hilbert space will be of the form

A = C∞(M)⊗Af = C∞(M,Af ) (45)
H = L2(M,S)⊗Hf = L2(M,S ⊗Hf ). (46)

If we consider the example of a two point space discussed above, we can see the
resulting almost commutative geometry as a spacetime foliated in two parts at
a constant distance 1/|m|, that communicate with each other via particles of
mass |m|.

That this space describes a spinor field of a particle of mass |m| and its antipar-
ticle, can be observed if one looks at the Dirac operator of the triple. For M a
patch of 4-dimensional flat Minkowski spacetime, by (43), this yields

D = 6∂ ⊗ 14 + γ5 ⊗Df (47)

and, when applied on a spinor ψ ∈ H, gives the massive Dirac equation in 4
dimensions (the second term giving the mass term).

Let us have a quick look at the simplest noncommutative example we can think
of. The internal space will be given by the algebra of k-dimensional matrices
Mk(C) and the inner Hilbert space will be simply defined as Ck. Now the re-
sulting total algebra of an almost commutative space is A = C∞(M,Mk(C)).
As we shall see below this algebra has the smooth sections of unitary matrices
C∞(M,U(k)) as its group of inner automorphisms and actually corresponds to
a Yang-Mills theory. This sounds very promising and has indeed been proved
fruitful, eventually leading to the construction of the NCG version of the Stan-
dard Model.

3.7 NCG Standard Model for beginners: fermionic sector

The noncommutative geometry corresponding to the Standard Model of particle
physics is constructed in such a way, after a bit of tweaking with the inner finite
dimensional spaces. However nontrivial the input may seem, it turns out to be
much more elegant and less arbitrary than the numerous free parameters of the
existing model.

In order to find the correct space, we keep in mind that the Hilbert spaceH needs
to hold the Standard Model fermions. The spinorial nature of these particles
is guaranteed by the commutative part of the space, since the commutative
Hilbert space is that of spinors living on the manifold. Moreover, the finite
space will be responsible for the internal structure, providing the different sorts
and generations of fermions.

First we take care of handedness, so we need the left and right handed blocks
to be independent components of H, distinguished by chirality. After doubling
the space by attaching the antiparticles, or charge conjugate states, H can be
written as

H = HL ⊕HR ⊕HcL ⊕HcR. (48)

The dimensionality of the several components will be determined by the corre-
sponding dimensions of the gauge group representations. In particular the small
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gauge group for the Standard Model is

SU(2)× U(1)× SU(3), (49)

and three generations of fermions are considered (N = 3). So for example, left
handed Standard Model quarks will be given by basis vectors of certain weak
isospin flavor and color, in C2 ⊗ CN ⊗ C3 ∼= C6N , e.g. uLr = (1, 0) ⊗ (1, 0, 0) ⊗
(1, 0, 0) and sLb = (0, 1) ⊗ (0, 1, 0) ⊗ (0, 0, 1). The same structure is repeated
for the leptons except that they are in the trivial representation under strong
SU(3).

The charge conjugate fields will be obviously represented in the same way, but
recall that the right handed quarks are singlets under weak isospin (i.e. trans-
form under trivial representation of SU(2)) and also right handed neutrinos are
missing. Thus we will have for particles

HL = (C⊗ C⊗ C)⊕ (C2 ⊗ CN ⊗ C) (50)
HR = (C⊗ CN ⊗ C3)⊕ (C⊗ CN ⊗ C3)⊕ (C⊗ CN ⊗ C), (51)

and similarly for the antiparticles HcL and HcR. The internal Hilbert space has
dimension (6N + 2N) + (3N + 3N +N) + (6N + 2N) + (3N + 3N +N) = 30N ,
hence H ∼= C90.

The finite algebra represented on Hf is

Af = C⊕H⊕M3(C) (52)

and was chosen in [6, 5] so that it has the small gauge group (49) as subgroup
of its group of unitaries U(Af ) and gives the correct rules for the gauge fields,
according to what will be discussed in section 4.

For the moment, let us describe the representation onHf of an arbitrary element
a = (λ, q,m) ∈ Af . The action ρ(a) will be block diagonal so that it does
not mix the terms in (48) and (50)-(51), so we split ρ into the 8-dimensional
representations ρL, ρcL and the 7-dimensional ρR, ρcR7. The left ρL(a) will be
realized on blocks of dimension 6N + 2N , by the quaternionic component q of
a, and the right ρR(a) on blocks of dimension 3N + 3N + 2N by its complex
component λ. In particular,

ρL(a) =
(
q ⊗ 1N ⊗ 13 0

0 q ⊗ 1N

)
, (53)

ρR(a) =

λ⊗ 1N ⊗ 13 0 0
0 λ̄⊗ 1N ⊗ 13 0
0 0 λ̄⊗ 1N ⊗ 1

 . (54)

Here the 2-dimensional realization of quaternions as matrices of the form q ↔(
α β

−β̄ ᾱ

)
, with α, β ∈ C was used.

For the action on the antiparticles, λ and m will be relevant, for the leptons
and quarks respectively. The matrix component m will act on the color 3-
dimensional space in the obvious way and we write al̄ = λl̄ and aq̄ = mq̄,

7Flavor is not mixed either so the second factor will always be trivially 1N
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or

ρcL(a) =
(

12 ⊗ 1N ⊗m 0
0 12 ⊗ 1N ⊗ λ̄

)
, (55)

ρcR(a) =

1⊗ 1N ⊗m 0 0
0 1⊗ 1N ⊗m 0
0 0 1⊗ 1N ⊗ λ̄

 . (56)

It is the inner space Dirac operator that will fluctuate and give the gauge de-
grees of freedom, the bosonic fields and through the Higgs mechanism, will
assign masses to the particles, so this operator is deeply related to various phe-
nomenological input. Its explicit form is shown in,

Df =
(
Y 0
0 Ȳ

)
, (57)

where Y = Yq⊗13⊕Yf is the 15-dimensional Yukawa coupling matrix, given by

Yq =


0 0 Mu 0
0 0 0 Md

M̄u 0 0 0
0 M̄d 0 0

 , Yf =

 0 0 Me

0 0 0
M̄e 0 0

 . (58)

Obviously, the chirality operator will just give the Z2-grading of left and right
handed particles and thus will have the form

γf =


−18 0 0 0

0 17 0 0
0 0 −18 0
0 0 0 17

 . (59)

Finally, charge conjugation will be given by the antilinear real structure Jf that
interchanges the upper 15-dimensional block with the lower one, particles with
antiparticles,

Jf =
(

0 115
115 0

)
◦ cc. (60)

It is readily checked that this finite geometry satisfies the relations by table 1
for n = 0.

It is not easy for one to see at once the motivation behind this particular defi-
nitions, but it is enough to mention here that this model can be gradually built
up from simpler ones. Of course the construction is also carefully driven by the
consistency with the axioms for a noncommutative geometry. These conditions
are highly non-trivial and can be readily checked to be satisfied by the above
model (c.f. [14]).

We repeat for emphasis the key ingredient that one should never underestimate;
it is the existence of the Standard Model group as a subgroup of U(A) = U(1)⊗
SU(2)⊗ U(3). This is crucial for the derivation of the Standard Model bosons
as gauge fields coming from the inner fluctuation of the Dirac operator D.

The full reconstruction of the Standard Model Lagrangian will be feasible after
defining the spectral action [2].
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4 Gauge symmetries and inner fluctuations

In the framework of a gauge theory on a generally non-flat manifold M we saw
that the corresponding Lagrangian (or more accurately, the action functional),
will satisfy a number of symmetries, which will form the symmetry group G
of the theory. Of course from a GR point of view, the several fields need to
transform in such a way that the theory is generally covariant, i.e. the group of
diffeomorphisms Diff(M), apart from being a symmetry subgroup of G, will
also act on the gauge group of the matter Lagrangian GSM , since a change of
coordinates induced by a diffeomorphism will transform the frame.

This action turns the group of local gauge transformations into a normal sub-
group of G and thus we can write G as a semi-direct8 product of the two:

G = GSM oDiff(M). (62)

In other words, we have the short exact sequence of groups

1→ GSM → G → Diff(M)→ 1 (63)

We now come to the very important notion of algebra automorphisms and some
of their properties. Let A be an involutive unital algebra, and define the set
of algebra endomorphisms End(A) as the algebra *-homomorphisms from A to
itself. Then the automorphisms of A are the bijective endomorphisms and are
denoted by AutA. 9 The set Aut(A) forms a group, called the group of algebra
automorphisms, with group operation defined by composition of automorphisms
(which gives again an automorphism). The existence of an inverse element is
guaranteed by bijectivity of the elements, the identity element is just 1Aut(A) :
a 7→ a∀a ∈ A and associativity is clear.

Also note that if π : A 7→ B(H) is a faithful representation of the algebra on
a Hilbert space H, any automorphism α induces a new representation πu by
pullback:

πu(a) := π ◦ α. (64)

In the commutative case, where A = C∞(M) is just an algebra of smooth
functions on a manifold M , the algebra automorphisms correspond exactly to
the group of diffeomorphisms Diff(M). This comes from a known result for
unital C∗-algebras (M is compact), and from the observation that Ω(A) = Ω(A),
with A = Ā. For the full proof look at chapter 1 of [8]. It is clear that
a diffeomorphism induces an automorphism by pullback but the above result
states that every automorphism is of this sort. As we shall see, this is not
entirely true for noncommutative spaces.

8Recall that a semi-direct product of two groups G and H, given an action ρ of G on H,
is defined as the direct product of the two, equipped with the multiplication law

(g, h)(g′, h′) = (gg′, hρ(g)h′) (61)

9Note that as endomorphisms, they are required to respect the involution and of course
α(1A) = 1A
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Denote by U the group of unitary elements of A:

U = {u ∈ A|uu∗ = u∗u = 1A} . (65)

Each of these elements can define an automorphism αu on A via conjugation,
since for u ∈ U we have

αu(a) = uau−1 (66)
αuv(a) = uvav−1u−1 = uαv(a)u−1 (67)

αu(ab) = uabu−1 = uau−1ubu−1 = αu(a)αu(b) (68)

∀a, b ∈ A and also, by unitarity (only),

α−1
u = αu−1 = αu∗ (69)

αu(a) = uau−1 = uau∗ , hence (70)
αu(a∗) = ua∗u∗ = (uau∗)∗ = αu(a)∗. (71)

These automorphisms form a normal subgroup of Aut(A) denoted by Inn(A)
and are called the inner automorphisms of A. The fact that Inn(A) / Aut(A)
is easily checked, take u ∈ U , α ∈ Aut(A), then

α ◦ αu ◦ α−1(a) = α(uα(a)u∗) = α(u)aα(u∗) = α(u)aα(u)∗, (72)

where we used that α is an algebra *-homomorphism. But this is again an
automorphism of the form vav∗ with v = α(u) ∈ U because α(u)α(u)∗ =
α(uu∗) = α(1A) = 1A = α(u)∗α(u).

The next step of course will be to take the quotient group

Out(A) = Aut(A)/Inn(A) (73)

which corresponds to the classes of “outer automorphisms”. Then we can write
the above groups in a short exact sequence

1A → Inn(A)→ Aut(A)→ Out(A)→ 1A (74)

For commutative unitary elements, that lie in the center of the algebra Z(A),
we have that uau∗ = uu∗a = a and these elements will be mapped by u 7→ αu
to the identity inner automorphism, so only classes of unitary-modulo-central
elements will be relevant.

The crucial point to see is that this subgroup of inner automorphisms is absent
in the commutative case, precisely because of the commutativity of the algebra.
As in the canonical example, A is an algebra of smooth functions over some
space A = C∞(M) 10. In this case, the group of inner automorphisms will
be trivial, since αu = 1Aut(C∞(M)) and consequently we will have Aut(A) =
Out(A) = Diff(M). The last equality also identifies the outer automorphisms
of the algebra with the group of diffeomorphisms on M = Ω(A).

This is exactly where the new ingredient of noncommutative geometry comes in:
the existence of nontrivial automorphisms of the form uau−1. With respect to

10this is always true, due to a reconstruction theorem by Connes
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the discussion of section 2, the role of the group of local gauge transformations
will now be played by Inn(A) and the big symmetry group G of the action
will correspond to the group of automorphisms thus inheriting the structure of
the semi-direct product above. These will become more clear in the following
sections.

4.1 Equivalences

In this section we will try to define the analogue of gauge degrees of freedom in
the spectral triple formalism. This will in fact involve certain kinds of equiv-
alences between spectral triples, resulting to an ambiguity in the definition of
the Dirac operator. Since the metric and all geometric properties are derived
from this part of the triple, this ambiguity will be associated to what we will
rightfully call the inner fluctuations of the metric in noncommutative geometry.

But first a few definitions need to be reminded, in view of the desired foliation
of metrics (and thus spectral triples) into equivalence classes.

Unitary Equivalence The first related notion to be reminded is that of uni-
tary equivalence between representations of algebras on Hilbert spaces. One can
then extend this notion to an equivalence between spectral triples, which one
defines as follows:
Definition. Two (possibly real, even) spectral triples (Ai,Hi, Di, Ji, γi), i = 1, 2
with explicit representations πi : Ai → B(Hi) are said to be unitarily equivalent
if

• their Hilbert spaces are isomorphic, H1 ∼= H2, and there exists a unitary
operator U : H1 → H2 , UU∗ = U∗U = 1, such that

• U ◦ π1 ◦ U∗ = π2 ,

• UD1D
∗ = D2 , and (if applicable)

• UJ1U
∗ = J2 ,

• Uγ1U
∗ = γ2 ,

i.e. all components of the two spectral triples are unitarily intertwined by U .

Morita Equivalence There is another equivalence relation between algebras
called Morita equivalence that is almost as strong as isomorphism of algebras
but not quite. Here “almost” accounts for the fact that the two relations are
equivalent when restricted to commutative algebras yet they differ when con-
sidering the general noncommutative case. Morita equivalence will prove to be
very useful in spectral geometry since two algebras that are Morita equivalent
may not be isomorphic but do look the same in the level of representations,
which allows for a new important classification of algebras to emerge. For the
details of the definition, one can refer to [12] or the lecture notes of Landsman,
where Morita equivalence, as well as the related notions of Hilbert modules,
Hilbert bimodules and Clifford modules are neatly defined.
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4.2 Fluctuations of the geometry

In the spectral triple formulation of geometry the relevant “gauge” would,
roughly speaking, have to come from automorphisms of the algebra, so on a
first approach we are looking for a sort of equivalent spectral triples that have
the same algebra component. However the equality of the algebras is not in
principle necessary in order to talk about equivalence between noncommuta-
tive spaces; it should be relaxed to a weaker equivalence relation between the
algebras, one that does not affect the geometrical entity of the triple, i.e. the
representation, Dirac operator and extra structure of the defining axioms (up
to unitary equivalence).

We already have such an equivalence on algebras, namely the Morita equivalence
described above, and this will be our starting point. It remains to be proven
that one can construct all the necessary components that define a new noncom-
mutative space. Furthermore, since an algebra A is always equivalent to itself,
we can describe the family of equivalent spectral triples when we set B = A,
being particularly interested in such an equality coming from inner automor-
phisms. So let (A,H, D) be a spectral triple where an explicit representation
π : A → End(H) is understood.

To this end, the following course of action will be taken:

• Demonstrate the construction of a new spectral triple (B,H′, D′) associ-
ated to the initial one by a Morita equivalence of their spectral algebras
A = EndA(E).

• Reconsider and modify this result in the case of a real spectral triple
with possible chirality (extra structure).

• Reduce the above to the simplest case where B = A. See how the new
Dirac operator D would look like.

• Again consider a real structure and modify accordingly.

• Finally, consider the explicit occasion where the above is induced by an
inner automorphism αu ∈ Inn(A). To which unitary intertwiner U does
this correspond to? What is the gauge degree of freedom?

So start by letting an algebra B be Morita equivalent to A, which is known
to have the form of the space of A-endomorphisms of some finitely generated
projective module E over A:

B = EndA(E), (75)

where E being f.g.p. means that, as a right module over A, we can write it in
the form E = pAN for some N ∈ N and some idempotent p ∈ MN (A) [12]. In
fact, an important feature of these modules is that they are Hilbert modules over
A, i.e. they come with an A-valued Hermitian structure, a sesquilinear form
〈·, ·〉A : E × E → A with all the related properties 11 . This will be the algebra

11These are positive definiteness and non-degeneracy of 〈, 〉, and :
〈η, ζ〉∗ = 〈ζ, η〉 , (76)
〈η, ζ〉 a = 〈η, ζa〉 . (77)
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component of the new spectral triple and as required it is unital and involutive,
so now we need to determine the new Hilbert space H′ on which it will act. For
this we observe that there is a natural action of the algebra B on the space

H′ = E ⊗A H (78)

defined as follows. Take an element 12 η ⊗ ψ ∈ E ⊗A H and an algebra element
β ∈ B. Then define

β(η ⊗ ψ) = β(η)⊗ ψ (79)
and this will be well defined with respect to the A-linearity, since β is also
A-linear. Hence for a ∈ A one gets

β(ηa⊗ ψ) = β(ηa)⊗ ψ = β(η)a⊗ ψ = β(η)⊗ aψ = β(η ⊗ aψ).

The product space H′ will need to be equipped with a complete inner product,
with respect to which, the above action of the algebra is a *-representation.
This comes via the known inner product 〈ψ,ψ′〉H on the original Hilbert space
and the Hermitian structure on E :

〈η ⊗ ψ, η′ ⊗ ψ′〉H′ := 〈ψ, 〈η, η′〉A ψ
′〉H . (80)

One checks that this is again well defined, positive definite, complete and
sesquilinear. Indeed the inner product respects the involution on EndA(E)
which is defined by the transposition < β∗η, η′ >A=< η, βη′ >A, ∀η, η′ ∈ E ,
since

〈β∗(η ⊗ ψ), η′ ⊗ ψ′〉H′ = 〈β∗(η)⊗ ψ, η′ ⊗ ψ′〉H′
= 〈ψ, 〈β∗(η), η′〉A ψ

′〉H (81)
= 〈ψ, 〈η, β(η′)〉A ψ

′〉H
= 〈η ⊗ ψ, β(η′ ⊗ ψ′)〉H′ ∀η, η′ ∈ E , ψ, ψ′ ∈ H.

Moreover, linearity is obvious in the second argument as well as anti-linearity in
the first, by the respective properties of the inner product on H, or even going
through the Hermitian structure first.

The next step is of course the Dirac operator D′ acting on H′ using the known
Dirac operator on H. The obvious choice D′ = 1⊗D ∈ B(H′) i.e. D′(η ⊗ ψ) =
η ⊗Dψ, does not work for A-linearity, since

D′(ηa⊗ ψ) = ηa⊗Dψ = η ⊗ aDψ 6= η ⊗Daψ = D′(η ⊗ aψ)

for an arbitrary a ∈ A that may not commute with D. We will need to introduce
the notion of a connection on E to counteract with this problem. For a more
holistic discussion on universal connections check section (7.2) in [9] and of
course [4].

For now we only need to define a connection as a linear map ∇ : E → E ⊗A Ω1
D

satisfying the Leibnitz rule, 13

∇(ηa) = (∇η)a+ η ⊗ [D, a] ∀η ∈ E , a ∈ A. (82)
Moreover it is required that the sesquilinear map defines a complete norm w.r.t. the C∗-
algebra closure Ā = A.

12In the calculations we will always suppress the tensoring index for simplicity
13any such connection uniquely defines a universal connection on the universal graded al-

gebra Ω•A which raises the order by one
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Here some explanation is needed. The set

Ω1
D =

∑
j

aj [D, bj ] : aj , bj ∈ A


has the structure of an A-bimodule, hence the action of a from the right in
the first term. The commutator [D, a], often denoted by da or even δ(a), is an
element of this bimodule, so the second term defines an element in the target
space E ⊗A Ω1

D. Notice the presence of D in the definition, which indicates
how the Dirac operator defines the differential forms on a spectral triple. It is
worth to mention that a connection on E as defined above, uniquely determines
a universal connection and that such a connection always exists, c.f. [9] chapters
(6) and (7). Moreover, ∇ is required to be a Hermitian connection in order to
guarantee compatibility with the Hermitian structure on E , and therefore needs
to satisfy

(∇η, ζ)− (η,∇ζ) = d(η, ζ). (83)

Now D′ can be defined by combining the naive expression with a term that
involves the connection:

D′(η ⊗ ψ) = η ⊗Dψ + (∇η)ψ (84)

The second term involves an action of ∇η ∈ E ⊗A Ω1
D on ψ ∈ H which is

understood by treating Ω1
D as a subspace of A and acting by the restriction of

the representation, i.e. if η ∈ E , ω ∈ Ω1
D, then (η ⊗ ω)ψ = η ⊗ (ωψ) ∈ H′. One

can now use (82) and check that

D′(ηa⊗ ψ) = ηa⊗Dψ +∇(ηa)ψ = η ⊗ aDψ + (∇η)aψ + (η ⊗ [D, a])ψ
= η ⊗Daψ + (∇η)aψ = D′(η ⊗ aψ) (85)

which is exactly what we needed for the Dirac operator to be well defined.
Moreover D′ as in (84) is self adjoint, by self adjointness of D and the Hermitian
property (83) and Leibnitz rule (82) of the connection, and can be checked to
also satisfy all the remaining required axioms.

Thus we can now write (B,H′, D′) = (B, E ⊗A H, 1E ⊗D +∇⊗ 1H).

The situation is slightly different when the triple is equipped with a real struc-
ture J . In this case we saw in 24 that J induces an A-bimodule structure on H
by ψb = b0ψ. This needs to be recovered in a new real structure J ′ and for this,
the new Hilbert space H′ needs to be modified to the more symmetric form

H′ = E ⊗A H⊗A Ē , (86)

where Ē = {η̄ : η ∈ E} is the conjugate module of E with the left A-module
structure

A× Ē → Ē , aη̄ = ¯ηa∗, a ∈ A, η̄ ∈ Ē . (87)

Let η, ζ ∈ E , ψ ∈ H. We define the action of B = EndA(E) on H′ by simply

b(η ⊗ ψ ⊗ ζ) = (bη)⊗ ψ ⊗ ζ̄ , ∀b ∈ B. (88)
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Then H′ has again a natural inner product, defined in a similar manner to (80),
now including the natural Hermitian structure of Ē and reads〈

η ⊗ ζ̄, η′ ⊗ ψ′ ⊗ ζ̄ ′
〉
H′ :=

〈
ψ, 〈η, η′〉A ψ

′ 〈ζ̄ ′, ζ̄〉A〉H . (89)

Before getting to the expression of D′, the new real structure will be given by
simply 1⊗ J ⊗ 1, i.e.

J ′(η ⊗ ψ ⊗ ζ̄) = ζ ⊗ Jη ⊗ η̄ (90)

Clearly we will need to define a new Hermitian connection on the conjugate,
left A-module, Ē , of the form

∇̄ : E → Ω1
D(A)⊗A Ē , (91)

that also satisfies the Leibnitz rule (but from the left),

∇̄(aη̄) = a∇̄η̄ + [D, a]⊗A η̄ ∀a ∈ A. (92)

Nothing really prevents us from making use of the unbarred connection in order
to define the barred one, by just flipping the objects involved, since Ω1

D(A) is
an A-bimodule. So we write

∇̄η̄ := flip(∇η) η̄ ∈ Ē , (93)

where the map flip : E ⊗A Ω1
D(A → Ω1

D(A)⊗A Ē flips the order of the factors
in an anti-linear way, like

flip(η ⊗ ω) = ω∗ ⊗ η̄, (94)

for η ∈ E and ω ∈ Ω1
D(A).

Then again compatibility with A-linearity, suggests that the Dirac operator D′
should have the form

D′(η ⊗ ψ ⊗ ζ̄) = (∇η)ψ ⊗ ζ̄ + η ⊗Dψ ⊗ ζ̄ + η ⊗ ψ(∇̄ζ̄), (95)

as before. One can check that the same ε′ for the reality condition (16) is
recovered in the primed spectral triple, as well as all defining axioms.

Finally, in the case of a chiral operator γ in the original space, one can construct
such an operator γ′ = 1⊗ γ ⊗ 1 on the new space:

γ′(η ⊗ ψ ⊗ ζ̄) = η ⊗ γψ ⊗ ζ̄. (96)

4.3 Inner fluctuations

We will now have a closer look to the transformations induced by a Morita
self-equivalence, when the spectral algebra is isomorphic to the original. This
amounts to setting E = A and observing that B = EndA(A) ∼= A
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Concerning the Hilbert space H it will clearly remain the same (up to isomor-
phism), since in (78) we have H′ = A ⊗A H ∼= H , which is given by the
isomorphism

φ : A⊗A H → H (97)
1A ⊗A ψ 7→ ψ ,

which obviously respects the tensor product structure and is invertible and
indeed an isomorphism.

Let’s see now what we can say about the fluctuations of the spectral geometry
by deriving the possible Dirac operators in this case. We have the freedom of
choosing a Hermitian connection on A but now we only need to define D′ on
the elements 1⊗ ψ ∈ H′ since it can then be extended by A-linearity. But

D′(1⊗ ψ) = 1⊗Dψ +∇(1)ψ , (98)

and thus, the new Dirac operator will be uniquely determined by the value of
∇(1) ∈ Ω1

D. We can recall the isomorphism (97) and rewrite D′ : H → H by

D′ = D +∇(1) (99)

It is now clear that a Morita self-equivalence will induce a metric fluctuation of
the form

D 7→ D +A (100)

where A is an element of the bimodule Ω1
D =

{∑
j aj [D, bj ] : aj , bj ∈ A

}
that

had better be self adjoint, should we want to recognize D′ as a Dirac operator.
We will call any such one-form A = A∗ ∈ Ω1

D a gauge potential or gauge field.

Things are slightly different when one considers a real spectral triple with a real
structure J and a chirality operator γ. According to the derivation in (86) we
obtain the Hilbert space

H′ = A⊗H⊗A ∼= H

by recalling the A-bimodule (or equivalently the A⊗Ā-module) structure of H
induced by J . The Dirac operator will be of the form (95) and in particular,

D′ψ = D′(1⊗ ψ ⊗ 1̄) = ∇(1)ψ +Dψ + ψ∇̄(1̄) (101)
= Dψ +Aψ + ε′ψA∗ = Dψ +Aψ + ε′JAJ−1ψ ⇒ (102)

D′ = D +A+ ε′JAJ−1, (103)

which gives the metric fluctuation in this case.

It is now interesting to continue the discussion concerning the group of unitaries
U in (65). Recall that any algebra automorphism α of A will induce a new
representation πα = π ◦ α and we will consider in particular the case when α is
an inner automorphism of the form u · u∗ , i.e. α ∈ Inn(A). This will give the
gauge or inner deformations of a noncommutative geometry, commonly referred
to as the inner fluctuations of the metric.
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Viewing H as an A-bimodule one defines the action of U on H by the “adjoint
representation” Ad : U → B(H) given by:

Ad(u)ψ = uψu∗ = uJuJ−1ψ ,∀u ∈ U , ψ ∈ H. (104)

Note that the ∗ on the right is important in order for Ad to be a homomorphism,

uvψ(uv)∗ = uvψv∗u∗ = Ad(u)Ad(v)ψ. (105)

From (104) we can see that an inner automorphism αu ∈ AutA corresponds to
a unitary equivalence by the element

U = uJuJ−1. (106)

First of all, it is clear that

Uu ∗ xuU∗ = x⇒ Ad(U) = Ad(u). (107)

Now we have to consider what change this automorphism will bring to the Dirac
operator D and call it the related inner fluctuation of the metric. The unitary
equivalence suggests that Du = UDU−1 14 and also for the rest Ju = UJU−1,
γu = UγU−1. The last two are rather trivial if one uses the defining properties
of J and γ:

Ju = uJuJ−1Ju∗Ju∗J−1 = εJuJ−1J−1u∗ = ε

ε
J = J , (108)

γu = uJuJ−1γJu∗J−1u∗ = ε′′uJuγu∗J−1u∗ = ε2γ = γ, (109)

where we used the (anti-)commutation relations in table 1, the order one prop-
erty (22) and commutativity of γ with u ∈ A.

For the Dirac operator the unitary equivalence yields

Du = UDU∗ = uJuJ−1DJu∗J−1u∗ = ε′uJuDu∗J−1u∗

= ε′uJu[D,u∗]J−1u∗ + ε′uJuu∗DJ−1u∗

= ε′J(u[D,u∗])J−1 + ε′2uDu∗ =
= D + u[D,u∗] + ε′J(u[D,u∗])J−1 = D +A+ ε′JAJ−1, (110)

where we put A = u[D,u∗] ∈ Ω1
D, which we can identify by (101) as the

corresponding gauge potential for the inner automorphism of u, and we used
[u, JAJ−1] = 0, A ∈ Ω1

D ⊂ A. A is clearly self-adjoint, by self-adjointness of
u,D and A = uDu∗ −D.

One can easily repeat the above calculations, starting from a generic Dirac
operator of the form (101) and see how the gauge field A transforms under the
action of an inner automorphism. This will give the transformed Au, usually
denoted by γu(A):

γu(A) = u[D,u∗] + uAu∗. (111)

Note here that the above fluctuations are trivial in the case of a commutative
Riemannian geometry therefore returning the initial Dirac operator. In the gen-
eral noncommutative setting, these special fluctuations will give a classification

14here note that U−1 = Ju∗J−1u∗ = u∗Ju∗J−1
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of the space of metrics under the action of the nontrivial normal subgroup of
inner automorphisms.

Moreover it is almost trivial to check that inner fluctuations of a fluctuated
metric also give inner fluctuations. In the first stage where the metric is fluctu-
ated by the self-adjoint gauge A ∈ Ω1

D(A) as in (100), a second fluctuation by
another gauge field B ∈ Ω1

D′(A) will result to a total fluctuation by A = A+B.
It remains to be shown that A′, or equivalently B, is in fact a gauge field in
Ω1
D(A), which is obvious by writing any a[D′, b] as

a[D +A, b] = a[D, b] + a[A, b] ∈ Ω1
D(A) (112)

using the A-bimodule structure of Ω1
D(A) in the second term.

Similarly, in the second stage where a real structure is assumed, we have the
additive metric fluctuation (101), with a subsequent fluctuation B ∈ Ω1

D′(A)
giving a total fluctuation

D′′ = D + (A+B) + ε′J(A+B)J−1.

Again we need to verify that Ω1
D′ ⊂ Ω1

D , by checking a typical basis element
a[D′, b] which reads

a[D +A± JAJ−1, b] = a[D, b] + a[A, b]± a[JAJ−1, b], (113)

the only new entry being the last term, which actually vanishes by the order
one condition (22).

4.4 NCG Standard Model for beginners: bosonic sector

Now that the principles of metric fluctuations are discussed, it is time to see in
practice what are the gauge fields of the spectral version of the Standard Model.
Recall that in section 3.7 the related almost commutative spectral triple was
defined, with the algebra A having the form (45), where the finite algebra was
defined in (52). As mentioned above, in the commutative part of the algebra
that corresponds to the spin manifold M , the group of inner automorphisms is
trivial, therefore it is only interesting to examine the inner automorphisms of
the finite algebra Af .

The only nontrivial automorphism of the first component C is complex conju-
gation, which is not connected to the identity and will therefore be irrelevant
in the physical theory. For the quaternions we have that, in their realization
as 2x2 matrices, their unitary elements u ∈ U(H) will be unitary matrices of
the special quaternionic form. The unitarity property automatically gives that
u ∈ SU(2), since

uu∗ = det(u)12 ⇒ det(u) = 1 , (114)

and in fact the group of unitaries is SU(2). The central unitary elements are of
course ±12 and therefore we quotient by this abelian group U(H) ∩ Z(H) = Z2
to obtain the elements that contribute to the inner automorphisms, namely
SU(2)/Z2. Finally, the unitaries of the last component,M3(C) consist of course
the group U(3).
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In a more general note, any algebra of a finite spectral triple will be made
up of components of the three types, Mn(R),Mn(C) and Mn(H), with unitary
groups O(n), U(n) and USp(n) respectively (the last being the group of unitary
symplectic 2nx2n matrices). Their groups of central unitaries are Z2 ∼= ±1n ,
U(1) ∼= U(1) ⊗ 1n and Z2 ∼= ±12n. Here it happens that for the algebra H,
USp(1) = SU(2).

It follows that for the total Standard Model finite algebra one gets

U(Af ) = U(1)× SU(2)× U(3) , (115)

with the central unitaries

U(Af ) ∩ Z(Af ) = Z2 × U(1)× U(1). (116)

Observe how the U(1) group will not contribute to the inner automorphisms,
because of commutativity. One may suspect that this is exactly the reason why
Kaluza-Klein theory was partially successful, but only for unifying gravity with
electromagnetism. Now we find the group Inn(Af ) of inner automorphisms by
taking the quotient with (116),

Inn(Af ) = (SU(2)× SU(3)) / (Z2 × Z3) , (117)

and observe how the initial U(3) was reduced by using the property U(n)/U(1) =
SU(n)/Zn.

The elements will now be lifted to act on the Hilbert space by the construction
of the lifted automorphisms discussed in the appendix. If one wants to include
abelian fields such as the E/M or Higgs fields, one needs to centrally extend the
spin lift, following the calculations in [14]. One can now take the inner auto-
morphisms in their explicit form for the Standard Model algebra and fluctuate
the Dirac operator as described in section 4.3.

Of course all these constructions would be incomplete, without the existence of
an analogue of the action principle for noncommutative spaces. Such a formu-
lation exists, and was studied by Connes and Chamseddine in 1997 [2] as an
attempt to produce the dynamics and all interactions of the Standard Model
including the Higgs mechanism. The (fermionic) spectral action principle is
encoded in the functional

Sf [ψ;A] := 〈ψ,DAψ〉 , (118)

where DA is the Dirac operator fluctuated by the gauge field A.

This approach turned out to also predict relations between gauge coupling con-
stants just like in some GUT models. A quite remarkable aspect is that the
spectral action provides not only a gravitational plus matter action but also a
Higgs mechanism “for free” and all particle masses fall naturally into place. Of
course the predictions are yet to be verified or rejected by forthcoming exper-
iments. Due to shortness of spacetime, further details on this subject will not
be studied in this essay.
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5 Conclusions - Outlook

Despite its celebrated outstanding performance in experimental accuracy and
predictive power, the Standard Model has left many questions unanswered.
Moreover, the arbitrariness by which the several fields and parameters of the
model are introduced cries out for a more justified approach. One would say
that the secret desire of particle physicists is to come up with a purely geometri-
cal theory, in which all interactions arise from internal degrees of freedom of the
underlying geometry. In this sense, the current approach by noncommutative
geometry is extremely promising and, compared to other similar attempts, it
also has the advantage of being physically relevant.

Furthermore, the variety of fronts that noncommutative geometry has opened
in different fields of mathematics and physics, inspires confidence that as a
mathematical construction, it is pointing towards the right direction.

This short essay could only capture a limited amount of remarkable things,
among the many that have been coming out of the rich world of noncommutative
geometry. The notion of symmetry in theoretical physics is studied in this
new framework, obtaining a whole new perspective, as noncommutative spaces
provide the ground for a purely geometric interpretation of all fundamental
interactions. The idea of an action functional describing the dynamics of the
geometry and matter fields is also passed to noncommutative spaces through
the spectral action.

It is not clear whether the current theory could evolve into a fundamental one,
even after a few modifications. There are already enhanced versions of NCG
Standard Model including neutrino mixing and other more sophisticated adjust-
ments. It would be extremely interesting though, to see how this approach can
become even more fundamental, whether there exist underlying rules that nar-
row down the choices of input. But on the other end, a more intuitive version
of the numerous axioms and properties, for the common mortals, would also
be nice. Even only to avoid justified criticism of the type “Come on, Connes,
you’re making it up as you go along, aren’t you!”.
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Appendix

Spin group and lifted automorphisms In gauge theories we deal with a
principal bundle P for some structure group G, while the quotient space P/G
is the spacetime manifold M . In this context we want to identify the several
diffeomorphism groups and actions. A generic diffeomorphism in Diff(P ) will
not in principle respect the object’s bundle structure 15, a property which ought
to be satisfied for an element in the group of automorphisms of P .

Let φ ∈ Diff(P ). If the points p, q ∈ P are related via a group element
g ∈ G by q = pg, i.e. they lie on the same fiber, then their images under an
automorphism need to be related by the same element, φ(q) = φ(p)g, so that
fibers are mapped isomorphically to fibers. This implies the commutativity of
the two maps φ and Rg and thus we define the automorphisms of P to be

Aut(P ) = {φ ∈ Diff(P ) : φ ◦Rg = Rg ◦ φ, ∀g ∈ G}. (119)

It is worth noting that here, we consider diffeomorphisms that are “close to the
identity”. This means that 1) the diffeomorphism is isotopic to the identity (it
is connected to the identity through a family of isomorphisms Ht) and 2) the
related isotopy is compactly supported, i.e. ∃K ⊂ M , cpt, such that Ht(x) =
x, ∀t ∈ [0, 1], x ∈M\K.

Then we also have the so called vertical gauge transformations which correspond
to the gauge group Gau consisting of the automorphisms that leave the base
points intact, in other words,

Gau(P ) = {φ ∈ Aut(P ) : π ◦ φ = π}. (120)

In the case of a trivial bundle of the form M × G, or if we only consider a
trivializable patch, a global section can be chosen and (only then) the above
gauge group will be isomorphic to the space of smooth maps C∞(M,G), i.e.
the space of sections of the trivialized bundle.

We are particularly interested in spin manifolds, that carry a principal Spin(n)-
bundle structure. This can be seen as the spin variation of the vielbein (vierbein
or tetrad for n = 4) formalism of Cartan, where the Lie group was SO(n) and
one associates to an observer at a specific point x ∈M an oriented orthonormal
frame (or tetrad), {ea(x)} on the tangent bundle. The corresponding gauge
group in the trivial bundle case C∞(M,SO(4)), known as the Lorentz gauge
group, rotates the tetrad field to another oriented orthonormal frame.

Here we will sketch the explicit form of the action of the group of diffeomor-
phisms on the gauge group and then lift it to the spin gauge group. One can
consider for simplicity a local trivializable patch and "fix the gauge" by using
the Riemannian metric g on M . Starting with a coordinate system xµ, one has
the basis vector fields ∂

∂xµ and the metric components gµν = g( ∂
∂xµ ,

∂
∂xν ). These

transform in the usual covariant way. Fixing the gauge amounts to making a
choice of the tetrad fields, now by choosing their components in the coordinate

15In the language of category theory, the object is a G-torsor and automorphisms of P need
to be torsor isomorphisms.
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vector basis. This is done in a unique way by means of the metric components
in that basis, defining

(e−1)aµ(x) = (g−1/2(x))µa , µ, a = 0, 1, 2, 3 (121)

as the only "symmetric" set of components for the four orthonormal vector fields

ea = (e−1)aµ
∂

∂xµ
. (122)

A general transformation of coordinates φ ∈ Diff(M) , φ : x 7→ x̃ (close to
the identity) will induce a transformation on the tetrad, by keeping the defining
gauge fixing relation (121) unchanged, and plugging in the new transformed
components of the metric w.r.t. the new basis vectors. The resulting Lorentz
transformation of the four vector fields (c.f. [14]) is given by

Λ(φ)(x)ab = (g1/2)ãµ̃J µ̃µ(g−1/2)µb(x), (123)

where we denote by J the Jacobian of the transformation φ, J µ̃µ = ∂x̃µ̃

∂xµ . The
map

Λ : φ 7→ (φ,Λ(φ)) ∈ Diff(M) n C∞(M,SO(4)) = Aut(C∞(M)) nGau(P )

composed point-wise with the group homomorphism

S : SO(4)→ Spin(4)

is a double valued 16 group homomorphism L = S ◦ Λ , that lifts the auto-
morphisms of the commutative algebra to the spin group automorphisms. The
explicit lift S is given by exponentiation of the algebra isomorphism

s : so(4) → spin(4)

ω 7→ 1
4ωabγ

ab, (124)

where ω is an anti-symmetric 4x4 matrix and γab := [γa, γb]. Now we also have
an action of diffeomorphisms on spinor fields by lifting them to the spin group.

This idea will be generalized in Connes’ noncommutative geometry, where still
a definition of some group of lifted automorphisms that act on the Hilbert space
of spinors is needed. So recall that in the commutative case discussed above,
we have DiffM = AutC∞(M), and as it turns out, the group that needs
to be lifted in order to act on the Hilbert space of the triple will indeed be
Aut(A). The receptacle to which the automorphisms will be lifted is defined
by Connes to be AutH(A) the unitary operators on H that preserve reality J
(charge conjugation) and chirality γ and can be projected to (and therefore may
come from) an automorphism by the map

p : AutH(A) → Aut(A)
U 7→ π−1 ◦Ad(U) ◦ π, (125)

16remember that Spin(n) gives a double cover of SO(n)
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which for a given lifted automorphism U maps any a ∈ A to p(U)(a) =
π−1(Uπ(a)U−1). These properties define the set that will contain the lifted
automorphisms as

AutH(A) = {U ∈ End(H) : UU∗ = U∗U = 1 , UJ = JU, (126)
Uγ = γU , Ad(U) ∈ Aut(π(A))} ,

the last condition making sure that such a projection can be defined. Keep in
mind that the Hilbert space of interest is the space of spinor fields on M .

It is a non-trivial task to construct the (possibly multivalued) lifting map(s)
L : Aut(A)→ AutH(A) such that p ◦ L = IdAut(A) , and note that even in the
above commutative example things are only treated locally. Some details can
be found in [14] and [7].
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