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Abstract

The Bohrification program is an attempt to interpret Bohr’s mature doctrine of clas-
sical concepts as well as his earlier correspondence principle in the operator-algebraic
formulation of quantum theory pioneered by von Neumann. In particular, this involves
the study of commutative C*-algebras in relationship to noncommutative ones. This
relationship may take the form of either exact Bohrification, in which one studies com-
mutative unital C*-subalgebras of a given noncommutative C*-algebra, or asymptotic
Bohrification, which involves deformations of commutative C*-algebras into noncom-
mutative ones. Implementing the doctrine of classical concepts, exact Bohrification
is an appropriate framework for the Kochen–Specker Theorem and for (intuitionistic)
quantum logic, culminating in the topos-theoretic approach to quantum mechanics
that has been developed since 1998. Asymptotic Bohrification was inspired by the
correspondence principle and forms the right conceptual and mathematical frame-
work for the explanation of the emergence of the classical world from quantum theory
(incorporating the measurement problem and the closely related issue of spontaneous
symmetry breaking). The Born rule may be derived from both exact and asymptotic
Bohrification, which reflects the Janus faces of probability as applying to individual
random events and to relative frequencies, respectively.

We review the history, the goals, and the achievements of this program so far.
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1 Introduction

Despite considerable research (e.g. Joos et al, 2003; Schlosshauer, 2007; Landsman, 2007;
Wallace, 2012), it remains unclear how quantum mechanics—accepted as the fundamental
theory of the physical world—gives rise to classical physics, or at least to the appearance
thereof. The relationship between classical and quantum physics played a fundamental role
in the work of Niels Bohr, who contributed two important ideas (or perhaps ideologies):

• The correspondence principle (Bohr, 1976), which—originally in the context of atomic
radiation—suggested an asymptotic relationship between classical and quantum me-
chanics (see also Mehra & Rechenberg, 1982; Hendry, 1984; Darrigol, 1992);

• The doctrine of classical concepts, which Bohr succinctly summarized as follows:

‘However far the phenomena transcend the scope of classical physical
explanation, the account of all evidence must be expressed in classical
terms. (. . . ) The argument is simply that by the word experiment we refer
to a situation where we can tell others what we have done and what we have
learned and that, therefore, the account of the experimental arrangements
and of the results of the observations must be expressed in unambiguous
language with suitable application of the terminology of classical physics.’
(Bohr, 1949, p. 209).

In brief, the only way to look at the quantum world is through classical glasses.
See also Bohr (1985, 1996), as well as Scheibe (1973), Folse (1985), Camilleri &
Schlosshauer (2015), and Zinkernagel (2016) for further analysis (which we recom-
mend but shall not review, Bohr’s role in this work being that of an inspirator rather
than a subject of exegesis—we will similarly not discuss (anti-)realism etc.).

The tension between these ideas was well captured by Landau & Lifshitz (1977, p. 3):

‘Thus quantum mechanics occupies a very unusual place among physical
theories: it contains classical mechanics as a limiting case, yet at the same
time it requires this limiting case for its own formulation.’

What adds to the difficulties is the need to combine conceptual and mathematical anal-
ysis, but precisely at this point the approach we advocate promises a clean separation
between the two: the necessary conceptual analysis has largely been performed by Bohr,
whilst von Neumann’s theory of operator algebras—as extended to C*-algebras (Gelfand &
Naimark, 1943) and subsequently to noncommutative geometry (Connes, 1994)—provides
the required mathematical tools. What has been lacking so far is a relationship between
the two, and this is what our “Bohrification” program intends to provide. Indeed, we feel
that each author on his own failed to solve the foundational problems of quantum mechan-
ics: Bohr’s conceptual ideas must first be interpreted within the formalism of quantum
mechanics before they can be applied to the physical world (an intermediate step Bohr
himself seems to have considered of little interest, if not wholly superfluous), whereas con-
versely, von Neumann’s brilliant mathematical work needs to be supplemented by sound
conceptual moves before it, too, may be related to actual physics. Von Neumann (1932)
did write down the most general form of the Born rule, which is an important link between
physics and the Hilbert space formalism of quantum mechanics he developed, but this is
not nearly enough; what we propose is that Bohr provided these conceptual moves.
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In this respect, Bohr and von Neumann historically played asymmetric roles: whereas
Bohr hardly attempted to to relate his ideas to the mathematical formalism of quantum
mechanics (not even to Dirac’s), von Neumann (1932) famously did spend a great deal of
attention to conceptual issues in quantum mechanics. Although this work was extremely
influential, and von Neumann’s analysis of hidden variables did set the stage for part of
our Bohrification program (albeit in a contrapositive way), his work on entropy or the
measurement problem has had little influence on the program proposed here. In any case,
von Neumann never advocated the particular use of commutative operator algebras we
now see as the basis of the relationship between his mathematics and the real world—seen
through the classical glasses suggested by Bohr’s doctrine. In any case, although Bohr
and von Neumann tend to be jointly bracketed under the Copenhagen Interpretation—a
notion to be treated with due reservation (Faye, 2002; Howard, 2004; Camilleri, 2007)—a
synthesis of their ideas on quantum mechanics is difficult to find in earlier literature. The
central idea of Bohrification is to interpret Bohr’s doctrine mathematically, as follows:

In so far as their physical relevance is concerned, the noncommutative operator algebras
of quantum-mechanical observables are accessible only through commutative algebras.

On this interpretation, the Bohrification program splits into two parts, distinguished
by the specific relationship between a given noncommutative operator algebra A (whose
self-adjoint elements mathematically represent the observables of some quantum system)
and the commutative algebras that supposedly give access to A. Either way, we assume
that A is a C*-algebra: this is an associative algebra (over C) equipped with an involution
(i.e., a real-linear map A → A∗ such that a∗∗ = a, (ab)∗ = b∗a∗, and (λa)∗ = λa∗ for all
a, b ∈ A and λ ∈ C), as well as a norm in which A is complete (i.e., a Banach space),
such that algebra, involution, and norm are related by the axioms ‖ab‖ ≤ ‖a‖ ‖b‖ and
‖a∗a‖ = ‖a‖2. The two main classes of C*-algebras are:

• The space C0(X) of all continuous functions f : X → C that vanish at infinity (i.e.,
for any ε > 0 the set {x ∈ X | |f(x)| ≥ ε} is compact), where X is some locally
compact Hausdorff space, with pointwise addition and multiplication, involution
f∗(x) = f(x), and a norm ‖f‖∞ = supx∈X{|f(x)|}. It is of fundamental importance
for physics and mathematics that C0(X) is commutative. Conversely, Gelfand &
Naimark (1943) proved that every commutative C*-algebra is isomorphic to C0(X)
for some locally compact Hausdorff space X, which is uniquely determined by A up
to homeomorphism (X is called the Gelfand spectrum of A). Note that C0(X) has
a unit (namely the function 1X that is equal to 1 for any x) iff X is compact.

• Norm-closed subalgebras A of the space B(H) of all bounded operators on some
Hilbert space H for which a∗ ∈ A iff a ∈ A; this includes the case A = B(H).
Here one uses the standard operator norm ‖a‖ = sup{‖aψ‖, ψ ∈ H, ‖ψ‖ = 1}, the
algebraic operations are the natural ones, and the involution is the adjoint (i.e.,
hermitian conjugate). If dim(H) > 1, B(H) is a non-commutative C*-algebra.

An important special case is the C*-algebra B0(H) of all compact operators on
H, which fails to have a unit whenever H is infinite-dimensional (whereas B(H) is
always unital). In their fundamental paper, Gelfand & Naimark (1943) also proved
that every C*-algebra is isomorphic to A ⊂ B(H) for some Hilbert space space X.

These two classes are related as follows: in the commutative case A = C0(X), one may
take H = L2(X,µ) (where the measure µ is supported by all of X), on which C0(X) acts
by multiplication operators, that is, mfψ = fψ, where f ∈ C0(X) and ψ ∈ L2(X,µ).
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C*-algebras were introduced by Gelfand & Naimark (1943), generalizing the rings of
operators studied by von Neumann during the period 1929–1949, partly in collaboration
with Murray (von Neumann, 1929, 1931, 1938, 1940, 1949; Murray & von Neumann, 1936,
1937, 1943). These rings are now aptly called von Neumann algebras, and arise as the
special case where a C*-algebra A ⊂ B(H) satisfies A = A′′, in which for any subset
S ⊂ B(H) we define the commutant of S by S′ = {a ∈ B(H) | ab = ba∀ b ∈ S}, and the
bicommutant of S as S′′ = (S′)′. A state on a C*-algebra A is a linear map ω : A → C
that is positive in that ω(a∗a) ≥ 0 for each a ∈ A, and normalized in that, first noting that
positivity implies boundedness, ‖ω‖ = 1, where ‖ · ‖ is the usual norm on the Banach dual
A∗ (if A has a unit 1A, then the latter condition is equivalent to ω(1A) = 1). The Riesz–
Radon representation theorem in measure theory gives a bijective correspondence between
states ω on A = C0(X) and probability measures µ on X, given by ω(f) =

∫
X dµ f , for any

f ∈ C(X). If A = B(H), then any density operator ρ on H gives a state ω on B(H) by
ω(a) = Tr (ρa), but if H is infinite-dimensional there are interesting other states, too, cf.
§§2,3. See Kadison & Ringrose (1983, 1986) for a first introduction to operator algebras.

The use of C*-algebra and von Neumann algebras in mathematical physics has been
widespread for over half a century now, typically in the context of quantum systems
with infinitely many degrees of freedom (Bratteli & Robinson, 1981; Haag, 1992). More
recently, it has become clear that they also form an effective tool when other limiting
operations play a role, such as ~ → 0, where ~ is Planck’s constant (Rieffel, 1989, 1994;
Landsman, 1998), see also below. Returning to our main topic of Bohrification, both of
these applications of C*-algebras have now found a common conceptual umbrella:

• Asymptotic Bohrification looks at commutative C*-algebras asymptotically included
in A by a deformation procedure involving so-called continuous fields of C*-algebras
(see appendix). As we shall see, this covers the Born rule (in its frequency interpre-
tation), the measurement problem (which we relate to the classical limit of quantum
mechanics), and the closely related issue of spontaneous symmetry breaking. All of
this may be bracketed under the general theme of emergence (Landsman, 2013).

• Exact Bohrification studies commutative C*-algebras contained in A, assembled into
a poset (i.e., partially ordered set) C(A) whose partial ordering is given by set-
theoretic inclusion (for technical reasons we assume that A has a unit 1A and that
each commutative C*-subalgebra C ∈ C(A) of A contains 1A). Applications to
the foundations of quantum mechanics so far include the Born rule (for single ex-
periments), the Kochen–Specker Theorem, and (intuitionistic) quantum logic. The
topos-theoretic approach to quantum mechanics (which incorporates the last two
themes just mentioned) is heavily based on C(A), and also, in a purely mathematical
setting, C(A) turns out to be a useful new tool for the classification of C*-algebras.

The conceptual roots of the exact Bohrification program lie in Bohr’s doctrine of
classical concepts, but the mathematical interpretation of this doctrine as proposed here
starts with von Neumann’s (1932) proof that (in current parlance) non-contextual linear
hidden variables compatible with quantum mechanics do not exist; see Caruana (1995)
for historical context. Von Neumann’s assumption of linearity of the hidden variable on
all operators was criticized by Hermann (1935), whose work was unfortunately ignored,
and subsequently by Bell (1966), whose paper became well known. Both Bell (1966) and
Kochen & Specker (1967) then obtained a similar result to von Neumann’s on the assump-
tion of linearity merely on commuting operators. Furthermore, responding to different
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ideas in von Neumann (1932), the mathematician Mackey (1957) introduced probability
measures µ on the closed subspaces of a Hilbert space, based on an additivity assump-
tion on mutually orthogonal subspaces. These formed the basis of his colleague Gleason’s
(1957) deservedly famous characterization of such measures in terms of density operators.

As we shall explain in §2, commutative C*-subalgebras of B(H) form an appropriate
context for Mackey, Gleason, and Kochen–Specker; this shared background is no accident,
since the Kochen–Specker Theorem is a simple corollary of Gleason’s. Moreover, Kadison
& Singer (1959) studied pure states on maximal commutative C*-subalgebras of B(H),
launching what became known as the Kadison–Singer conjecture, which we also regard
as a founding influence on the (exact) Bohrification program. Two decades later, the
reinterpretation of the Kochen–Specker Theorem in the language of topos theory led Isham
& Butterfield (1998), Hamilton, Isham, & Butterfield (2000), and Döring & Isham (2010)
to a poset similar to C(A) in the setting of von Neumann algebras (though with the opposite
ordering). Finally, C(A) was introduced by Heunen, Landsman & Spitters (2009), again in
the context of topos theory. It soon became clear that even apart from the latter context
C(A) is an interesting object on its own, especially as a tool for analyzing C*-algebras.

Asymptotic Bohrification conceptually originated in Bohr’s correspondence principle,
which originally related the statistical results of quantum theory to the classical theory of
radiation in the limit of large quantum numbers (Bohr, 1976), but was later generalized
to the idea that classical physics should arise from quantum physics in some appropriate
limit (Bokulich, 2008). Mathematically, the correspondence principle eventually gave rise
to the field of semiclassical analysis (Ivrii, 1998; Martinez, 2002), and, more importantly
for the present paper, to a new approach to quantization theory developed in the 1970s
under the name of deformation quantization (Berezin, 1975; Bayen et al, 1978). Here
the noncommutative algebras characteristic of quantum mechanics arise as deformations
of so-called Poisson algebras; the underlying mathematical idea ultimately goes back to
Dirac (1930). In Rieffel’s (1989, 1994) approach to deformation quantization, the algebras
in question are C*-algebras and hence the entire apparatus of operator algebras—and of
the closely related field on noncommutative geometry (Connes, 1994)—becomes available.

This led to a general operator-algebraic approach to (deformation) quantization and
the classical limit of quantum mechanics (Landsman, 1998), the scope of which was sub-
stantially enlarged in Landsman (2007, 2008) so as to deal with both the macroscopic limit
(i.e., N →∞, which also incorporates Bohr’s original limit of large quantum numbers) and
the semiclassical limit (~→ 0) at one go. This, in turn, led to a new approach to the mea-
surement problem (Landsman & Reuvers, 2013) and to spontaneous symmetry breaking
(Landsman, 2013), which we now recognize as instances of asymptotic Bohrification.

The plan of this paper is as follows. We first elaborate on the path alluded to above
from von Neumann (1932) to the poset C(A) and hence to exact Bohrification. Next, the
Born rule provides a nice context for a first acquaintance with the Bohrification program in
its two variants (i.e., exact and asymptotic), as it falls under both headings and hence may
be understood from two rather different points of view. After an intermezzo on conceptual
issues with limits in the context of asymptotic Bohrification, we end with an overview of
our strategy for first (re)formulating and then solving the measurement problem.

This paper mainly concentrates on the Bohrification program in physics. For appli-
cations to mathematics see Döring & Harding (2010), Hamhalter (2011), Hamhalter &
Turilova (2013), Wolters (2013), Döring (2014), Heunen (2014a,b), Lindenhovius, 2016),
as well as the forthcoming review by Landsman & Lindenhovius (2016).
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2 Gleason, Kochen–Specker, and commutative C*-algebras

Let H be a Hilbert space. Von Neumann (1932) introduced the concept of an Erwartung
(i.e., expectation value) as a linear map ω′ : B(H)sa → R that satisfies ω′(a2) ≥ 0 for
each a ∈ B(H)sa = {a ∈ B(H) | a∗ = a}, as well as ω′(1H) = 1. Using the canonical
decomposition a = a′+ ia′′, where now a ∈ B(H) and a′ = 1

2
(a+a∗) and a′′ = − 1

2
i(a−a∗)

are self-adjoint, such a map ω′ may be extended to a linear map ω : B(H) → C by
ω(a) = ω′(a′) + iω′(a′′), which is positive in the equivalent sense that ω(a∗a) ≥ 0 for each
a ∈ B(H), and still satisfies ω(1H) = 1. Thus ω is a state in the modern sense, cf. §1.

Von Neumann’s controversial argument against hidden variables is a simply corollary
of his characterization of states, which we review first. As already mentioned in §1, if H is
finite-dimensional, then any state ω : B(H) → C takes the form ω(a) = Tr (ρa) for some
density operator ρ (i.e., ρ ≥ 0 and Tr (ρ) = 1). In general, density operators define normal
states, which by definition have the following property: for each orthogonal family (ei) of
projections on H (i.e., e∗i = ei and eiej = δijei) one has ω (

∑
i ei) =

∑
i ω(ei); states that

are not normal are called singular, and such states exist even if H is separable, see below.
Now suppose that some non-zero linear map ω′ : B(H)sa → R is dispersion-free, i.e.,

ω′(a2) = ω′(a)2; without loss of generality we may also assume that ω′(1H) = 1. This
implies that ω′ is positive and canonically extends to a state ω : B(H)→ C. If ω′ is also
normal (which is automatic if H is finite-dimensional), then ω(a) = Tr (ρa), as above,
from which (provided dim(H) > 1) it is easy to see that ω cannot be dispersion-free on all
self-adjoint operators a. In the eyes of von Neumann and most of his contemporaries, this
contradiction proved that quantum mechanics did not admit underlying hidden variables
(at least of a kind we now call non-contextual). Belinfante (1973, p. 24, p. 34) recalls that

‘the authority of von Neumann’s overgeneralized claim for nearly two decades
stifled any progress in the search for hidden-variable theories (. . . ) for decades
nobody spoke up against von Neumann’s arguments, and his conclusions were
quoted by some as the gospel’.

However, the philosopher Hermann (1935) already pointed out that von Neumann’s linear-
ity assumption, though valid for quantum-mechanical expectation values, was not justified
for dispersion-free states, if only because addition of non-commuting observables was not
physically defined (a point of which von Neumann (1932) was actually well aware, since
he attempted to justify such additions through the use of ensembles). See also Seevinck
(2012). Unaware of this—Hermann was one of the very few women in academia at the
time and also published in an obscure Neokantian journal—Bell (1966) and Kochen &
Specker (1967) made a similar point and also remedied it, proving what we now call the
Kochen–Specker Theorem (sometimes also named after Bell). It is sad to note that Bell
and some of his followers later left the realm of decent academic discourse (and displayed
the depth of their own misunderstanding) by calling von Neumann’s argument “silly” and
“foolish”. In fact, von Neumann carefully qualifies his result by stating that it follows ‘im
Rahmen unserer Bedingungen’, i.e. ‘given our assumptions’, and should be credited rather
than ridiculed for being the first author to impose useful constraints on hidden variable
theories, anticipating all later literature on the subject; see also Bub (2011).

In order to explain the link of this development to (exact) Bohrification, we now go
back to Gleason (1957), but in addition use later results as reviewed in Maeda (1990) and
Hamhalter (2004). We first collect all relevant notions in to a single definition.
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Definition 2.1 Let H be an arbitrary Hilbert space with projection lattice

P(H) = {e ∈ B(H) | e2 = e∗ = e}. (1)

1. A map P : P(H)→ [0, 1] that satisfies P (1H) = 1 is called:

(a) a finitely additive probability measure if

P

∑
j∈J

ej

 =
∑
j∈J

P (ej) (2)

for any finite collection (ej)j∈J of mutually orthogonal projections on H (i.e.,
ejH ⊥ ekH, or equivalently, ejek = 0, whenever j 6= k); equivalently,

P (e+ f) = P (e) + P (f) whenever ef = 0.

(b) a probability measure if (2) holds for any countable collection (ej)j∈J of mu-
tually orthogonal projections on H;

(c) a completely additive probability measure if (2) holds for arbitrary collections
(ej)j∈J of mutually orthogonal projections on H.

In (b) and (c) the sum
∑

j is defined in the strong operator topology on B(H).

2. A strong quasi-state on B(H) is a map ω : B(H) → C that is positive (that is,
ω(a∗a) ≥ 0 for each a ∈ B(H)) and normalized (i.e. ω(1H) = 1), and otherwise:

(a) satisfies ω(a) = ω(a′) + iω(a′′), where a′ = 1
2
(a+ a∗) and a′′ = − 1

2
i(a− a∗).

(b) is linear on all commutative unital C*-algebras in B(H).

Note that a′ and a′′ are self-adjoint, so that ω is fixed by its values on B(H)sa. Hence
we have ω(za) = zω(a), z ∈ C, and ω(a+ b) = ω(a) + ω(b) whenever ab = ba.

3. A weak quasi-state on B(H) satisfies all properties of a strong one except that lin-
earity is only required on singly generated commutative C*-algebras in B(H), i.e.,
those of the form C∗(a), where a = a∗ ∈ B(H); this is the C*-algebra generated by
a and 1H (which is the norm-closure of the space of all finite polynomials in a).

4. A strong (weak) dispersion-free state on B(H) is a strong (weak) quasi-state that is
pure on each (singly generated) commutative unital C*-algebra in B(H).

It was shown by Aarens (1970) that the map ω 7→ ω|P(H) gives a bijective correspondence
between weak quasi-states ω on B(H) and finitely additive probability measures on P(H).

A probability measure is by definition σ-additive in the usual sense of measure theory;
the other two cases are unusual from that perspective. However, if H is separable, then
J can be at most countable, so that complete additivity is the same as σ-additivity and
hence any probability measure is automatically completely additive. Surprisingly, assum-
ing the Continuum Hypothesis (CH) of set theory, it can be shown that this is even the
case for arbitrary Hilbert spaces (Eilers & Horst, 1975). The fundamental distinction,
then, is between finitely additive probability measures and probability measures (which
by definition are countably additive). As we shall see shortly, this reflects the (often ne-
glected) distinction between arbitrary and normal states on B(H), respectively. Indeed,
we now have the following generalization (and bifurcation) of Gleason’s Theorem:
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Theorem 2.2 Let H be a Hilbert space of dimension greater than 2.

1. Each probability measure P on P(H) is induced by a normal state on B(H) via

P (e) = Tr (ρe), (3)

where ρ is a density operator on H uniquely determined by P . Conversely, each
density operator ρ on H defines a probability measure P on P(H) via (3). Without
CH, this is true also for non-separable H if P is assumed to be completely additive.

2. Each finitely additive probability measure P on P(H) is induced by a unique state ω
on B(H) via

P (e) = ω(e). (4)

Conversely, each state ω on H defines a probability measure P on P(H) via (4).

Corollary 2.3 If dim(H) > 2, then each weak quasi-state on B(H) is linear and hence
is actually a state. In particular, weak and strong quasi-states coincide.

In this language, the Kochen–Specker Theorem takes the following form:

Theorem 2.4 If dim(H) > 2, there are no strong (weak) quasi-states ω : B(H) → C
whose restriction to each (singly generated) commutative C*-subalgebra of B(H) is pure.

For an efficient proof see Döring (2005). In summary, the (trivial) first step is to show that
ω(e) ∈ {0, 1} for any projection e. From this, one shows that ω must be multiplicative
on all of B(H) (Hamhalter, 1993). If ω is normal, Gleason’s Theorem already excludes
this. If not, H must be infinite-dimensional, in which case there is a projection e and
an operator v such that e = vv∗ and 1H − e = v∗v (this is sometimes called the halving
lemma, which is easy to prove). Multiplicativity of ω then implies ω(e) = ω(1H−e), which
contradicts the additivity property ω(e) + ω(1H − e) = ω(1H) = 1 obtained from Aarens
(1970) cited above: indeed, if ω(e) = 0 one finds 0 = 1, whereas ω(e) = 1 implies 2 = 1.

To understand the connection with the original Kochen–Specker Theorem, let some
map ω′ : B(H)sa → R be dispersion-free, i.e., ω′(a2) = ω′(a)2 for each a ∈ B(H)sa, and
quasi-linear, i.e., linear on commuting operators (it was shown by Fine (1974) that these
conditions are equivalent to the ones originally imposed by Kochen & Specker (1967), viz.
ω(a) ∈ σ(a) and ω(f(a)) = f(ω(a)) for each Borel function f : σ(a) → R). Canonically
extending such a map ω′ to a map ω : B(H)→ C by complex linearity (cf. Definition 2.1.2
(a)) and noting that dispersion-freeness implies positivity and hence continuity on each
subalgebra C∗(a), we see that dispersion-freeness and quasi-linearity imply that ω is mul-
tiplicative on C∗(a), and hence pure (conversely, pure states on C∗(a) are dispersion-free).
Finally, although linearity on all commuting self-adjoint operators seems stronger than
linearity on each C∗(a), Theorem 2.2 shows that these conditions are in fact equivalent.

In sum, Gleason’s Theorem and the Kochen–Specker Theorem give results (of a positive
and a negative kind, respectively) on the behaviour of state-like functionals on all of B(H)
given their behaviour on commutative C*-subalgebras thereof. This supports the idea of
exact Bohrification, which suggests that access to B(H) should precisely be gained through
such subalgebras. We now turn to another major influence on this kind of thinking.
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3 The Kadison–Singer conjecture

A state ω on some C*-algebra A is called pure if it has no decomposition ω = tω1+(1−t)ω2,
where t ∈ (0, 1) and ω1 6= ω1 are states on A (note that the set of all states is convex).
The pure states on A = C0(X) are given by the evaluation maps ωx(f) = f(x) and hence
correspond to points x ∈ X. For any Hilbert space H, the normal pure states on B(H)
are the vector states ωψ(b) = 〈ψ, bψ〉, where ψ ∈ H is some unit vector.

Around the same time as Gleason (1957), and similarly inspired by quantum mechanics
through the work of von Neumann (1932) and Mackey (1957), Kadison & Singer (1959)
wrote a visionary paper on pure states on maximal commutative C*-subalgebras of B(H).
Their work arose from the desire to clarify a potential mathematical ambiguity in the
Dirac notation commonly used in quantum mechanics. Namely, if a = (a1, . . . , an) is a
maximal set of commuting self-adjoint operators on some finite-dimensional Hilbert space
H, then H has a basis of joint eigenvectors |λ〉 of a, which physicists typically label by
the corresponding eigenvalues λ = (λ1, . . . , λn). Equivalently, given a single self-adjoint
operator a that is maximal in the sense that its spectrum σ(a) is nondegenerate, the
eigenvectors of a, denoted by |λ〉, λ ∈ σ(a), form a basis of H. The first situation reduces
to the second, since ai = fi(a) for a single a and suitable functions fi : σ(a)→ R.

Algebraically, what happens here is that each λ ∈ σ(a) initially defines a pure (and
hence multiplicative) state ω′λ on C∗(a) by ω′λ(a) = λ and of course ω′λ(1H) = 1, which
enforces ω′λ(f(a)) = f(λ) for any polynomial f (this much is true also if dim(H) = ∞,
in which case the last equation holds for any f ∈ C(σ(a)), see also §5 below). Since λ
defines a unit eigenvector |λ〉 that, given that a is maximal, is unique up to a phase, it also
defines a unique extension ωλ of ω′λ to a pure state on B(H), namely (in Dirac notation)
ωλ(b) = 〈λ|b|λ〉, b ∈ B(H). Indeed, it is this uniqueness property that makes the labeling
|λ〉 unambiguous in the first place. By contrast, if a is not maximal it has an eigenvalue
λ having at least two orthogonal eigenvectors, which clearly define different vector states
on B(H). Similarly for the commutative C*-algebra C∗(a) generated by the ai; the two
examples can be united by noting that—assuming maximality—both C∗(a) and C∗(a)
are unitarily equivalent to the algebra Dn(C) of diagonal matrices on Cn for n = dim(H)
(namely by changing some given basis of H to a basis of eigenvectors of a or a).

The same is true for any maximal commutative C*-algebra A ⊂ B(H), since A = C∗(a)
for some maximal self-adjoint a. We may therefore summarize the discussion so far as
follows: if H is finite-dimensional, then any pure state on any maximal commutative C*-
algebra A ⊂ B(H) has a unique extension to a pure state on B(H), and this is what makes
the Dirac notation |λ〉 unambiguous. This supports the idea of exact Bohrification, since
it shows that a state on the noncommutative algebra B(H) of all observables is already
determined by its value on any maximal commutative C*-subalgebra A ⊂ B(H).

What about infinite-dimensional Hilbert spaces? The first difference with the finite-
dimensional case is that even if H is separable (which is the only case that has been studied
so far, sufficient as it is for most applications), maximal commutative C*-subalgebras A of
B(H)—which are always von Neumann algebras, i.e. A′′ = A—are no longer unique (up
to unitary equivalence). Indeed, A is unitarily equivalent to exactly one of the following:

1. L∞(0, 1) ⊂ B(L2(0, 1));

2. `∞(N) ⊂ B(`2(N));

3. L∞(0, 1)⊕ `∞(κ) ⊂ B(L2(0, 1)⊕ `2(κ)),
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where κ is either {1, . . . , n}, in which case `2(κ) ∼= Cn and `∞(κ) ∼= Dn(C), or κ = N;
the inclusions are given by realizing each commutative algebra by multiplication opera-
tors. This classification was stated without proof in Kadison & Singer (1959); the details
appeared later in Kadison & Ringrose (1986, §9.4), based on von Neumann (1931), who
initiated the study of commutative von Neumann algebras. See also Stevens (2015).

The second difference is that if dim(H) =∞, then B(H) admits singular pure states,
which cannot be represented by some unit vector in H; the difficulty of the state extension
property in question entirely comes from the singular case. We elaborate a little. If H =
L2(0, 1) and a is the position operator, i.e., aψ(x) = xψ(x), having spectrum σ(a) = [0, 1],
then for any λ ∈ σ(a) there exists a (necessarily singular) pure state ω on B(H) such
that ω(a) = λ. More generally, this is true whenever a ∈ B(H)sa and λ ∈ σc(a) (i.e., the
continuous spectrum of a, defined as the complement of the set of eigenvalues in σ(a)).

This apparently gives rigorous meaning to the Dirac notation |λ〉 for improper eigen-
states, though with an important caveat. In the light of the discussion above, one might
rephrase the situation as follows: the position operator a generates a maximal commuta-
tive C*-algebra L∞(0, 1) in B(L2(0, 1)), which admits no normal pure states whatsoever.
However, each λ ∈ σ(a) defines a singular pure state ω′λ on L∞(0, 1), which has at least one
pure extension ωλ to B(L2(0, 1)). But is this extension unique? This question also arises
for `∞(N), although this algebra does admit normal pure states (namely ωk(f) = f(k),
where k ∈ N). However, the “overwhelming majority” of pure states on `∞(N) are singular
(corresponding to elements of the so-called Čech–Stone compactification βN of N).

For separable Hilbert spaces, the pure state extension problem has been solved:

Theorem 3.1 • Any normal pure state on any maximal commutative C*-subalgebra
A ⊂ B(H) has a unique (and hence pure) extension to B(H).

• Any pure state on `∞(N) has a unique extension to B(`2(N)).

• There exist (necessarily singular) pure states on L∞(0, 1) that do not have a unique
extension to B(L2(0, 1)), and similarly for L∞(0, 1)⊕ `∞(κ), for any κ.

We note that uniqueness of the the state extension property in question—or the lack of it—
is preserved under unitary equivalence. The first part of this theorem is even true for non-
separable Hilbert spaces; it may be proved along the lines of the finite-dimensional case. If
one agrees that only normal states (i.e., density operators) can be realized physically—in
that singular states (such as exact eigenstates of position or momentum) are idealizations—
this settles the issue and supports exact Bohrification, as explained above. The singular
case, however, is of much more mathematical interest and might even be physically rele-
vant, depending on the way one thinks about idealizations (see also §6 below).

The second part of the theorem is the path-breaking solution of the Kadison–Singer
conjecture due to Marcus, Spielman, & Srivastava (2014a,b), with important earlier con-
tributions by Weaver (2004); see also Tao (2013) and Stevens (2015) for lucid expositions
of the proof. Though less well known, the third part, due to Kadison & Singer them-
selves, whose arguments were later simplified by Anderson (1979) and Stevens (2015), is
as remarkable than the second; it shows that Dirac’s notation |λ〉 may be ambiguous,
or, equivalently, that maximal commutative C*-subalgebras of B(H) that are unitarily
equivalent to L∞(0, 1) (like the one generated by the position operator or the momentum
operator) do not suffice to characterize pure states. What to make of this is unclear.
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4 The poset C(A), topos theory, and quantum logic

Returning to the story in §2, the next step was to collect all unital commutative C*-
subalgebras of B(H), or indeed of an arbitrary unital C*-algebra A, into a single mathe-
matical object C(A); with some goodwill, one might call C(A) the mathematical home of
complementarity (although the construction applies even when A itself is commutative).
This decisive idea goes back to Isham & Butterfield (1998) for A = B(H) and, more
generally, to Hamilton, Isham, & Butterfield (2000) for arbitrary von Neumann algebras
(and hence these authors consider von Neumann subalgebras instead of C*-subalgebras).

Heunen, Landsman & Spitters (2009) introduced the poset C(A) whose elements are
commutative C*-subalgebras of A that contain the unit 1A, ordered by (set-theoretic)
inclusion (note that Isham et al use the opposite order, which even apart from their von
Neumann algebraic setting gives the theory a totally different flavor as soon as sheaves
are defined). At this stage of the Bohrification program it was perhaps not realized
what a powerful object C(A) already is by itself, even though it has “forgotten” the
commutative subalgebras (which are merely points in C(A)) and just “remembers” their
inclusion relations; this realization only came with papers like Döring & Harding (2010),
Hamhalter (2011), Heunen (2014a), Heunen & Lindenhovius (2015), and Lindenhovius
(2016). Thus we introduced the “tautological map” C 7→ C, where the C on the left-hand
side is an element of C(A) (now seen as a posetal category, in which C and D are connected
by an arrow iff C ⊆ D), whereas the C on the right-hand side is C itself, initially seen
as a set. Seen as a functor A from C(A) to the category Sets of sets (where the arrow
C → D, i.e., C ⊆ D, is mapped to the inclusion map C ↪→ D of the underlying sets),
our tautological map turns out to define a commutative internal C*-algebra in the topos
[C(A),Sets] of all functors from C(A) to Sets. See Mac Lane & Moerdijk (1994) for an
introduction to topos theory and Banaschewski & Mulvey (2006) for the general theory
of commutative C*-algebras and Gelfand duality in toposes: broadly speaking, a topos
provides a universe—alternative to set theory—in which to do mathematics, generally
based on intuitionistic rather than classical logic, see below. It was this transfiguration
of a (generally noncommutative) C*-algebra A into an internal commutative C*-algebra
A, which essentially consists of all (unital) commutative C*-subalgebras of A but may be
treated as a single C*-algebra (in a different topos from Sets), that was initially meant by
the term “Bohrification”, which we now use much more liberally. So far, the main harvest
of this construction has been:

• The definition (Heunen et al, 2009) and explicit computation (Heunen et al, 2012;
Wolters, 2013) of the (internal) Gelfand spectrum Σ(A) of A, playing the role of a
quantum-mechanical phase space (which is lacking in the usual formalism).

• The realization of states on A as probability measures on Σ(A) (Heunen et al, 2009).

• The reformulation of the Kochen–Specker Theorem to the effect that (at least for
C*-algebras like A = B(H) for dim(H) > 2) the phase space Σ(A) has no points
(Isham & Butterfield, 1998; Caspers et al, 2009; Heunen et al, 2009).

• Intuitionistic logic as the logic of quantum mechanics (Caspers et al, 2009; Döring &
Isham, 2010; Döring 2012; Heunen et al, 2012; Hermens, 2009, 2016; Wolters, 2013).

All this requires extensive explanation, especially because these claims are meant in the
sense of internal reasoning in a topos (Mac Lane & Moerdijk, 1994), but let us restrict
ourselves to some brief comments on the last two points (see references for details).
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Even in the topos Sets, which is the home of classical mathematics (using the Zermelo–
Fraenkel axioms), spaces may or may not have points, provided we interpret the notion
of a “space” as a frame, which is a (necessarily distributive) complete lattice F in which
U ∧

∨
S =

∨
{U ∧V, V ∈ S} for arbitrary elements U ∈ F and subsets S ⊂ F . Frames are

motivated by the example F = O(X), i.e., the collection of open sets on some topological
space X, where the supremum is given by set-theoretic union. To see if a given frame F
is of this form, one looks at the points of F , defined as frame maps p : F → {0, 1}, where
the frame {0, 1} ≡ O(point) has order 0 ≤ 1. The set Pt(F ) of points of F is a topological
space, with open sets {p ∈ Pt(F ) | p−1(U) = 1}, where U ∈ F . If F ∼= O(Pt(F )), we say
that F is spatial. Even in set theory, frames are not necessarily spatial (and if they are, the
axiom of choice—which is unavailable in many toposes—is often needed to prove this). All
this can be internalized in topos theory, and the Kochen–Specker Theorem states that the
Gelfand spectrum of Σ(A) of A not merely fails to be spatial: it has no points whatsoever!
Looking at points of phase space in classical physics as truth-makers (of propositions),
this is no surprise: after all, the very point (sic) of the Kochen–Specker Theorem is that
in quantum mechanics not all propositions can have simultaneous (sharp) truth values.

Frames are also closely related to Heyting algebras, defined as distributive lattices H
(with top 1 and bottom 0) equipped with a binary map→: H×H → H (playing the role of
implication in logic) that satisfies the axiom U ≤ (V →W ) iff (U ∧V ) ≤W . In a Heyting
algebra (unlike a Boolean algebra), negation is a derived notion, defined by ¬U = U → ⊥.
Every Boolean algebra is a Heyting algebra, but not vice versa; in fact, a Heyting algebra
is Boolean iff ¬¬U = U for all U , or, equivalently, (¬U) ∨ U = >, which states the law
of the excluded middle (famously denied by the Dutch mathematician L.E.J. Brouwer).
Thus Heyting algebras formalize intuitionistic propositional logic. A Heyting algebra H is
complete when it is complete as a lattice, in which case H is a frame. Conversely, a frame
is a complete Heyting algebra with implication V →W =

∨
{U | U ∧ V ≤W}.

The point, then, is that exact Bohrification implies that quantum logic is given by
a particular Heyting algebra H(A) eventually defined by the given C*-algebra A. Thus
quantum logic turns out to be intuitionistic: it preserves distributivity (i.e., of “and” over
“or”) but denies the law of the excluded middle. The simplest example is A = Mn(C),
which describes an n-level system, for which the relevant Heyting algebra comes down as

H(Mn(C)) = {e : C(A)→ P(A) | e(C) ∈ P(C), e(C) ≤ e(D) if C ⊆ D}, (5)

with pointwise order, i.e., e ≤ f iff e(C) ≤ f(C) for each C ∈ C(Mn(C)). We see that
whereas in the traditional (von Neumann) approach to quantum logic a single projection
e ∈ P(A) defines a proposition, Bohr’s doctrine of classical concepts suggests that a
proposition consists of a family e of projections e(C), one for each classical context C.

Intuitionistic logic goes flatly against Birkhoff & von Neumann (1936), whose quantum
logic has exactly the opposite features in denying distributivity but keeping the law of the
excluded middle. It also seems to go against Bohr, who in 1958 claimed that

‘all departures from common language and ordinary logic are entirely avoided
by reserving the word “phenomenon” solely for reference to unambiguously
communicable information, in the account of which the word “measurement”
is used in its plain meaning of standardized comparison.’ (Bohr, 1996, p. 393)

However, the preceding text makes it clear that Bohr refers to certain multivalued logics
(Gottwald, 2015) rather than to the intuitionistic logic of Brouwer and Heyting, which
might even model everyday reasoning better than classical logic does (Moschovakis, 2015).
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5 The Born rule revisited

In this section we apply exact Bohrification to singly generated commutative C*-algebras
in A = B(H), where H is an arbitrary Hilbert space (see §2), so let a = a∗ ∈ B(H) and
consider the C*-algebra C∗(a) generated by a and 1H . Another commutative C*-algebra
defined by a is C(σ(a)), i.e., the algebra of continuous complex-valued functions on the
spectrum σ(a) of a (which is a compact subset of R), equipped with pointwise addition,
(scalar) multiplication, and complex conjugation (as the involution), and the supremum
norm, cf. §1. One version of the spectral theorem now states that C(σ(a)) and C∗(a) are
isomorphic (as commutative C*-algebras) under a map f 7→ f(a) that is given by (norm-)
continuous extension of the map defined on polynomial functions simply by p 7→ p(a), that
is, if p(x) =

∑
n cnx

n, where x ∈ σ(a) and cn ∈ C, then p(a) =
∑
cna

n. In particular, the
unit function 1σ(a) : x 7→ 1 maps to the unit operator 1σ(a)(a) = 1H , whilst the identity
function idσ(a) : x 7→ x is mapped to idσ(a)(a) = a. See e.g. Pedersen (1989), Thm. 4.4.1.

Now recall the Riesz–Radon representation theorem from §1. Take a unit vector ψ ∈ H
(or, more generally, a state ω on B(H)). Combining this with the spectral theorem above,
we obtain a unique probability measure µψ (or µω) on the spectrum σ(a) of a such that

〈ψ, f(a)ψ〉 =

∫
σ(a)

dµψ f, (6)

for each f ∈ C(σ(a)) (or, more generally, ω(f(a)) =
∫
σ(a) dµω f). This is the Born measure;

for example, if dim(H) <∞, we recover the familiar result

µψ({λ}) = ‖eλψ‖2, (7)

where eλ is the spectral projection onto the eigenspace Hλ ⊂ H for the eigenvalue λ ∈ σ(a);
of course, the right-hand side equals 〈ψ, eλψ〉. If the spectrum is non-degenerate, this
expression becomes |〈υλ, ψ〉|2, where υλ is “the” unit eigenvector of a with eigenvalue λ.

Although the underlying mathematical reasoning is well known (Pedersen, 1989, §4.5),
the thrust of (exact) Bohrification is that the Born rule—which is the main connection
between the mathematical formalism of quantum mechanics and laboratory physics—
comes from a simple look at appropriate commutative subalgebras of B(H). Namely, the
(vector) state b 7→ 〈ψ, bψ〉 on B(H) defined by ψ ∈ H (or indeed any state on B(H)) is
simply restricted to C∗(a) ⊂ B(H), and is subsequently transferred to C(σ(a)) through
the spectral theorem, where it becomes a probability measure (Landsman, 2009). One
might argue that this argument validates Heisenberg’s (1958, pp. 53–54) claim that

‘One may call these uncertainties objective, in that they are simply a conse-
quence of the fact that we describe the experiment in terms of classical physics;
they do not depend in detail on the observer. One may call them subjective,
in that they reflect our incomplete knowledge of the world.’

Nonetheless, by itself such mathematical reasoning is insufficent to derive the Born rule,
but it does show that all one needs to postulate in quantum mechanics in this respect is its
function rather than its form (which, as shown above, is simply given by the formalism).

Asymptotic Bohrification closes also this gap. Following Landsman (2008) we complete
(and—in the light of valid critique by Cassinello & Sánchez-Gómez (1996) and Caves &
Schack (2005)—correct) a program begun by Finkelstein (1965) and Hartle (1968), as
further developed by Farhi, Goldstone, & Gutmann (1989), and Van Wezep (2006).
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Referring to the appendix for notation and background, let I = 1/Ṅ, take some fixed
unital C*-algebra B (for which we will just need the n × n matrices B = Mn(C)), and
define a bundle (A~)~∈I of C*-algebras by taking A1/N = BN (i.e., the N -fold projective

tensor product ⊗NB of B with itself) and A0 = C(S(B)), where S(B) is the state space
of B, seen as a compact convex set in the weak∗-topology. For example, the state space of
B = M2(C) is affinely homeomorphic to the unit ball in R3, whose boundary is the familiar
Bloch sphere of qubits. As we shall see, A0 is going to be the commutative C*-algebra
through which we look at the (typically non-commutative) C*-algebra B. To this effect,
we now turn this family into a continuous bundle of C*-algebras by stipulating what the
continuous sections are (Landsman, 2007, 2008). We first define the usual symmetrization
operator SN : BN → BN by linear (and if necessary continuous) extension of

SN (b1 ⊗ · · · ⊗ bN ) =
1

N !

∑
σ∈SN

bσ(1) ⊗ · · · ⊗ bσ(N), (8)

where SN is the permutation group (i.e. symmetric group) on N elements, and bi ∈ B for
all i = 1, . . . , N . For N ≥M we then define jNM : BM → BM by linear extension of

jNM (aM ) = SN (aM ⊗ 1B ⊗ · · · ⊗ 1B), (9)

where one has N −M copies of the unit 1B ∈ B so as to obtain an element of BN .
For example, the symmetrizer jN1 : B → BN is given by

jN1(b) =
1

N

N∑
k=1

1B ⊗ · · · ⊗ b(k) ⊗ 1B · · · ⊗ 1B, (10)

which is just the “average” of b over all N copies of B. Our main examples of (10) will
be frequency operators, where b = e for some projection e ∈ B (i.e., e2 = e∗ = e). In
particular, if a = a∗ ∈ B = Mn(C) and λ ∈ σ(a), we may take the spectral projection eλ.
Applied to states of the kind υ1 ⊗ · · · ⊗ υn ∈ CN , where each υi is an eigenstate of a, so
that aυi = λiυi for some λi ∈ σ(a), the corresponding operator

fλN = jN1(eλ) (11)

counts the relative frequency of λ in the list (λ1, . . . , λn). We return to the construction
of a continuous bundle of C*-algebras with fibers A0 and A1/N , N ∈ N. As explained in
the appendix, given the fibers we may define the topological structure by specifying the
continuous cross-sections. To this end, we say that a sequence (aN )N∈N, with aN ∈ BN ,
is symmetric when aN = jNM (aM ) for some fixed M and all N ≥ M , and approximately
symmetric if for any ε > 0 there is a symmetric sequence (a′N ) and some N(ε) ∈ N such
that ‖aN − a′N‖ < ε for all N ≥ N(ε) (norm in AN ). Each section a of the bundle
(A~)~∈1/Ṅ is a sequence (a0, aN )N∈N, where a0 ∈ C(S(B)) and aN ∈ BN . The continuous

sections are those for which (aN )N∈N is approximately symmetric and a0 is given by

a0(ω) = lim
N→∞

ωN (aN ). (12)

Here ω ∈ S(B), and ωN ∈ S(BN ) is defined by linear (and continuous) extension of

ωN (b1 ⊗ · · · ⊗ bN ) = ω(b1) · · ·ω(bN ); (13)
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this limit exists by definition of an approximately symmetric sequence. The point of this is
that since the frequency operator (11), seen as a sequence (fλN )N∈N, is evidently symmetric
(and hence a fortiori approximately symmetric), it therefore defines a continuous section
of our bundle (A~)~∈1/Ṅ if we complete it with its limit (12), which is given by

fλ0 (ω) = ω(eλ). (14)

This is the Born probability for the outcome a = λ in the state ω; for example, if B =
Mn(C) and ω(b) = 〈ψ, bψ〉 for some unit vector ψ ∈ Cn, then ω(eλ) = ‖eλψ‖2, cf. (7).

The physical interpretation of this mathematical result is as follows: if the system
is prepared in some state ω, the number fλ0 (ω) is (by construction) equal to the limiting
frequency of either a single experiment on a large number of sites or a long run of individual
experiments on a single site. A classical perspective on either of those a priori quantum-
mechanical situations only arises in the limit N → ∞ (i.e., 1/N → 0), in which the
Born probability arises as an objective property of the experiment(s). Nothing is implied
about single cases; these will be discussed in §7 below, preceded by an intermezzo on the
complications caused by the fact that in reality the limit N = ∞ (or ~ = 0) is never
reached. This is arguably why Bohr insists that merely the results of the observations—as
opposed to the underlying phenomena—must be expressed in classical terms.

Our two derivations of the Born rule reflect the two ways one may look at probabilities
in physics (as opposed to betting, which context is inappropriate here), namely either as
relative frequencies (which corresponds to the point of view offered by asymptotic Bohri-
fication) or as chances for outcomes of individual random events (which is the perspective
given by exact Bohrification); the relationship between these two approaches to probability
is as much in need of clarification as the link between exact and asymptotic Bohrification!

6 Intermezzo: Limits and idealizations

Asymptotic Bohrification always involves some classical theory, described by a commuta-
tive C*-algebra of observables A0 (typically of the form A0 = C0(X) for some phase space
X) and a family of quantum theories indexed by ~ ∈ I ⊂ [0, 1], each of which is described
by some commutative C*-algebra of observables A~. This includes both the case where
~ ∈ (0, 1] and the limit of interest is ~ → 0, and the case where ~ = 1/N , where N ∈ N
and the limit of interest is N →∞. We regard the A0-theory as an idealization that never
occurs in physical reality, but which approximates the family of A~-theories in asymptotic
regimes described by the parameter ~ (or N). Thus we follow Norton (2012, abstract):

[A0 is] ‘another system whose properties provide an inexact description of
the target system’ [i.e., A~].

Mathematically, A0 is a limiting case of the theories A~ as ~ → 0 (or N → ∞), in the
sense explained in the appendix. Examples one may have in mind are:

• A0 is either classical mechanics or thermodynamics (of an infinite system);

• A~ is either quantum mechanics or quantum statistical mechanics (for finite N).

See Landsman (1998) for the classical-quantum link in this language and Landsman (2007)
for thermodynamics as a limiting case of quantum statistical mechanics of finite systems.
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The latter also has another limit, namely quantum statistical mechanics of infinite systems,
described by a different continuous bundle of C*-algebras, which is of no concern here.

Physicists typically call A0 a phenomenological theory and refer to A~ at ~ > 0 as a
fundamental theory ; we sometimes write A>0 for the latter family. In the philosophy of
science, A0 is often referred to as a higher-level theory or a reduced theory, in which case
A>0 is said to be a lower-level theory, or a reducing theory, respectively. It is important to
realize that A0 plays double role: one the one hand, it is an idealization or a limiting case of
the family of A~-theories as ~→ 0, whilst on the other hand it is defined and understood
by itself; indeed, in our examples the A0-theories historically predate the A>0 theories
and were once believed to be real and absolutely correct (if not holy). Furthermore,
in many interesting cases (including the ones above) A0 taken by itself has important
features that are surprising or even seem out of the question in its role as a limiting
theory. For example, classical mechanics and thermodynamics both allow spontaneous
symmetry breaking, which according to conventional wisdom (corrected below) is absent
in any finite quantum system. Moreover, measurements in classical physics have outcomes,
whereas quantum mechanics faces the infamous measurement problem, see §7 below.

The fact that the phenomenological theory does not really exist in nature, as opposed
to the fundamental theory that gives rise to it—or so we assume—poses a severe problem:
Real physical systems are supposed to be described by A>0 rather than by the idealization
A0, yet in nature these systems display the surprising features claimed to be intrinsic to A0

(and denied to A>0). For example, the reality of ferromagnetism shows that spontaneous
symmetry breaking occurs in nature, although finite materials are supposed to be described
by the A>0-theory that allegedly forbids it. Similarly, measurements have outcomes,
although the world is described by the A>0-theory (viz. quantum mechanics) that fails to
predict this. In sum, the A>0-theory fails to describe key features of the real systems that
should fall within its scope, whereas the A0-theory describes these features despite the fact
that, being an idealization, real systems in principle do not fall within its scope.

To resolve this paradox, we introduce two principles that, if adhered to, should guar-
antee the link between theory and reality. Earman’s Principle states that:

‘While idealizations are useful and, perhaps, even essential to progress in
physics, a sound principle of interpretation would seem to be that no effect can
be counted as a genuine physical effect if it disappears when the idealizations
are removed.’ (Earman, 2004, p. 191)

Butterfield’s Principle follows up on this, claiming what should happen instead is that:

‘There is a weaker, yet still vivid, novel and robust behaviour that occurs
before we get to the limit, i.e. for finite N . And it is this weaker behaviour
which is physically real.’ (Butterfield, 2011, p. 1065)

Although these principles should, in our view, be uncontroversial, since the link between
theory and reality stands or falls with them, it is remarkable how often idealizations violate
them. All rigorous theories of spontaneous symmetry breaking in quantum statistical
mechanics strictly apply to infinite systems only (Bratteli & Robinson, 1981; Liu & Emch,
2005), and similarly in quantum field theory (Haag, 1992; Ruetsche, 2011). The same is
true for the ‘Swiss’ approach to the measurement problem based on superselection rules
(Hepp, 1972; Emch & Whitten-Wolfe, 1976), and more recent developments thereof by
Landsman (1991, 1995) and Sewell (2005). For a change, we here side with Bell (1975)!
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7 Rethinking the measurement problem

To the best of our knowledge, apart from some very general comments, e.g., in his Como
Lecture and in his correspondence (Zinkernagel, 2016), the only time Bohr wrote in some
technical detail about the quantum-mechanical measurement process was in his papers
with Rosenfeld on the measurability of the electromagnetic field (Bohr, 1996, pp. 53–166).
However, these comments and papers predate the Cat problem raised by Schrödinger
(1935), and do not seem to address what we now see as the measurement problem of
quantum mechanics. Indeed, one wonders how Bohr would respond to the amazing recent
experiments like Arndt et al (2015), Hornberger et al (2012), Kaltenbaek et al (2015),
Palomaki et al (2013), and Kovachy et al (2015).

Nonetheless, Bohrification provides a clear lead on the measurement problem. Let us
begin with the proper formulation of the problem, on which its solution should evidently be
predicated. To set the stage, Maudlin (1995) distinguishes three measurement problems:

1. The problem of outcomes states that the following assumptions are contradictory:

(a) The wave-function of the system is complete;

(b) The wave-function always evolves linearly (e.g., by the Schrödinger equation);

(c) Measurements have determinate outcomes.

2. The problem of statistics is that 1(a) = 2(a) and 1(b) = 2(b) also contradict:

(c) Measurement situations which are described by identical initial wave-functions
sometimes have different outcomes, and the probability of each possible out-
come is given by the Born rule.

3. The problem of effect requires that any (physical or philosophical) mechanism pro-
ducing measurement outcomes should also update the predictions of quantum me-
chanics for subsequent measurements (typically that these have the same outcome).

Furthermore, Maudlin (1995) also gives a classification of potential solutions:

• Hidden-variable theories abandon 1(a) = 2(a);

• Collapse theories abandon 1(b) = 2(b)

• Multiverse theories abandon 1(c) and reinterpret the word “different” in 2(c).

As quite rightly emphasized by Maudlin, turning superpositions into mixtures does not
even address any of these problems, which is why decoherence (or, for that matter, super-
selection rules), though an interesting prediction of quantum mechanics (Joos et al, 2003;
Schlosshauer, 2007) by itself fails to solve the measurement problem, despite occasional
but persistent claims to the contrary (especially in the literature on experimental physics).

Our own take on the measurement problem is a bit different. First, an apparent
problem famously emphasized by Bell (1990) is that “measurement” is a priori undefined
within quantum mechanics. Hence the first part of the measurement problem is to define
measurement. In our view, this part of the problem was solved by Bohr through his
doctrine of classical concepts, which effectively says that a physical interaction defines a
measurement as soon as the measurement device—though ultimately quantum-mechanical
in an ontological sense—is described or perceived classically. Thus the doctrine of classical
concepts is an epistemological move (Scheibe, 1973; Camilleri & Schlosshauer, 2015).
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Without such an interpretation of measurement (which places it outside quantum me-
chanics), there is no measurement problem in the first place, since there are no outcomes.
To Bohr, his definition of measurement through the doctrine of classical concepts seems
to have been the end of it, but to us, it is just the beginning! Recalling (from §6) that
the A0-theory in which measurement outcomes are defined is a limit of the A>0-theory
responsible for these outcomes, it should be the case that the limits of the underlying
(pure) quantum states of the measurement device as ~ → 0 (or N → ∞, either of which
limit would enforce a classical description) are pure states on A0, since facts in classical
physics correspond to pure (i.e., dispersion-free) states, at least approximately. But this
is not at all what quantum mechanics predicts! In typical Schrödinger Cat situations the
limits in question are mixed states that are not even approximately pure (Landsman &
Reuvers, 2013; Landsman, 2013). But in reality sharp outcomes always occur, and so
we obtain a violation of Butterfield’s Principle: outcomes (mathematically represented by
pure states in A0), are not foreshadowed in A>0 (whose superpositions induce mixtures in
the limit), although at the same time A0 should arise from A>0 as a limit theory.

With Butterfield’s Principle, the link between theory and reality falls. In other words,
it is by no means enough that (in Schrödinger Cat situations) a classical description of the
measurement device turns pure quantum superpositions into mixtures (which is trivially
the case in the limit): all terms but one eventually have to disappear from the state.
According to Butterfield’s Principle this disappearance must (approximately) take place
already in quantum mechanics (if only in the limiting regime); a Deus ex Machina that
suddenly turns classical mixtures into classical pure states (like the ignorance interpreta-
tion of classical probability) but did not previously act on the underlying quantum theory
violates Earman’s Principle, since in reality the classical limit is never reached; cf. §6.

To see the mathematics of asymptotic Bohrification in a simple model of measurement,
consider the continuous bundle of C*-algebras over I = [0, 1] that has fibers

A0 = C0(R2); (15)

A~ = B0(L
2(R)) (~ > 0), (16)

and whose continuous cross-sections are defined as follows. First, we recall the well-known
coherent states that for each (p, q) ∈ R2 and ~ > 0 are given by

φ
(p,q)
~ (x) = (π~)−1/4e−ipq/2~eipx/~e−(x−q)

2/2~. (17)

These states were originally introduced by Schrödinger as models for wave packets localized
in phase space, and they minimize the Heisenberg uncertainty relations. In terms of these,
for each f ∈ C0(R2) and ~ > 0 we define (compact) operators Q~(f) on L2(R) by

Q~(f) =

∫
R2n

dpdq

2π~
f(p, q)|φ(p,q)~ 〉〈φ(p,q)~ |, (18)

where |φ〉〈φ| is the projection onto φ. In the literature, Q~(f) is often called the Berezin
quantization of the classical observable f . Finally, the continuous cross-sections of the
bundle with fibers (15) - (16) are the maps ~ 7→ Q~(f), with Q0(f) = f ; see Landsman
(1998) for details. For our present purposes, the main point is that we may now track
down quantum states to classical states, all the way in the limit ~→ 0. Namely, for each
unit vector ψ ∈ L2(R) the map f 7→ 〈ψ,Q~(f)ψ〉 defines a state on C0(R2), so that by the
Riesz–Radon representation theorem we obtain a probability measure µψ on R2, given by

dµψ(p, q) =
dpdq

2π~
|〈φ(p,q)~ , ψ〉|2. (19)
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The probability density χψ(p, q) = |〈φ(p,q)~ , ψ〉|2 is called the Husumi function of ψ; it gives
a phase space portrait of ψ, which is especially useful in studying the limit ~→ 0.

Let us illustrate this formalism for one-dimensional anharmonic oscillator, i.e.,

H~ = − ~2

2m

d2

dx2
+ 1

4
λ(x2 − a2)2. (20)

where λ > 0, as in the Higgs mechanism. It is well known that the ground state of this
Hamiltonian is unique, despite the fact that the corresponding classical system has two
degenerate ground states, given by the phase space points (p0 = 0, q0 = ±a). In partic-
ular, classically this models displays spontaneous symmetry breaking, whereas quantum-
mechanically it does not, for any value of ~ > 0. This already seems to spell doom for
Earman’s and Butterfields’s Principles (and hence for the link between theory and reality).

A quantitative analysis confirms this threat. The ground state wave-function ψ
(0)
~

is real and positive definite, and has two peaks, above x = ±a, with exponential decay

|ψ(0)
~ (x)| ∼ exp(−1/~) in the classically forbidden region. In the limit ~→ 0 the associated

probability measure µ
(0)
~ converges to the classical mixture 1

2
(δ(p, q − a) + δ(p, q + a)):

Husumi functions of double well ground state for ψ
(0)
~=0.5 (left) and ψ

(0)
~=0.01 (right).

It takes little imagination to see the classical ground states of this systems as pointer states,
the (unique) quantum-mechanical ground state then corresponding to a Schrödinger Cat
state (Landsman & Reuvers, 2013). The limit ~ → 0, which in the real world (where ~
is constant) corresponds to m → ∞ or λ → ∞, or even to N → ∞, as in the closely
related but superior model of Spehner & Haake (2008), fails to predict the empirical fact
that in reality the system (typically a particle) is found at one of the two minima (i.e., the
cat is either dead or alive), and hence Earman’s and Butterfields’s Principles are indeed
violated: the quantum theory ought to have foreshadowed the symmetry breakdown of
the limiting classical theory, but it fails to do so however close it is to the classical limit.

Motivated by examples like this—cf. Landsman (2013) for some others—we are led to
a formulation of the measurement problem that is a bit different from the ones above:

4. Problem of classical outcomes. The following assumptions are contradictory:

(a) Outcomes of measurements on quantum systems are classical;

(b) Classical physics is an appropriate limit of quantum physics.

(c) Quantum states are dynamically unaffected by this limit.
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Compared with Maudlin’s three measurement problems, the most striking difference
with the formulation just given is our mere implicit reference to the linear nature of
(unitary) time-evolution in quantum mechanics, through the word “dynamical” in (c).
Moreover, all reference to the possible completeness of quantum states has also, implicitly,
been bracketed under (c). The reason is that Maudlin’s (and everyone else’s) assumption
1(b), which forms the basis of all discussions of the measurement problem, is actually a
counterfactual of the kind one should avoid in quantum mechanics (van Heugten & Wolters,
2016). What this assumption says is that if ψD were the initial state of Schrödinger’s
Cat, then it would evolve (linearly) according to the Schrödinger equation with given
Hamiltonian h. If the initial state were ψL, then it would evolve according to the same
Hamiltonian h, and if it were (ψD + ψL)/

√
2, then it would evolve according to h, too.

However, a fundamental lesson from the models in Landsman & Reuvers (2013) is
that in typical measurement situations unitary quantum dynamics is extremely unstable
in the classical limit ~ → 0. See Jona-Lasinio, Martinelli, & Scoppola (1981) and Simon
(1985) for the original mathematical arguments to this effect (in our view these two papers
belong to the most important ever written about the foundations of quantum mechanics,
although they were not intended as such), as well as Landsman (2013) for similar results
in the limit N → ∞. This implies that at least in the classical regime of quantum
mechanics the counterfactual linearity assumption underlying the usual discussions of the
measurement problem is meaningless, because very slight modifications to the Hamiltonian
(which are harmless in the quantum regime), whilst keeping the dynamics unitary, suffice
to destabilize the wave-function. For example, as ~→ 0 a tiny asymmetric perturbation to
the double well potential is enough to localize the quantum ground state, and this happens
in accordance with Butterfield’s Principle, as the effect already occurs for small ~ > 0.
Similarly, ground states of spin chains that are of Schrödinger Cat type for small N localize
(in spin configuration space) under tiny asymmetric perturbation of the Hamiltonian as
N →∞, and this already happens for large but finite N (Landsman, 2013).

Thus we envisage the solution to the measurement problem (at least in the above
reformulation) to be as follows: the task being to find a dynamical mechanism that removes
all but one terms of a typical post-measurement superposition of quantum states, the key
conceptual point is that according to Bohr this task only needs to be accomplished near
the classical limit, upon which they key technical point is that asymmetric perturbations
to the Hamiltonian, whilst having a negligible effect in the quantum regime, destabilize
the superposition so as to leave just one term in the classical regime. Thus the dynamical
mechanism is effective where it should, and does not operate where it should not. In
response to Leggett (2002), the eventual collapse of macroscopic Schrödinger Cat states
does not require the demise of quantum theory, as this collapse is guaranteed by the
instability under tiny perturbations of quantum dynamics in the classical regime.

In conclusion, of our formulation no. 4 of the measurement problem we reject assump-
tion (c), effectively proposing a (dynamical) collapse theory of a new kind (both technically
and conceptually). This also explains 2(c) and solves 3. Assumption 1(a) is somewhat
irrelevant, since what is incomplete in practice is not the state but the Hamiltonian (since
its tiny perturbations are typically hidden). As explained above, Assumption 1(b) is a
dangerous counterfactual, so we do not make it, whereas we wholeheartedly endorse 1(c)!

Having said this, many problems remain to be overcome since the first steps were taken
in Landsman & Reuvers (2013) and Landsman (2013); see van Heugten & Wolters (2016).
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Appendix: The mathematics of asymptotic Bohrification

Asymptotic Bohrification is based on the notion of a continuous bundle of C*-algebras.
This concept may sound unnecessarily technical, but it provides the mathematical bridge
between the classical and the quantum and hence deserves to be more widely known.

Let I be a compact space, which for us is always a subset of the unit interval [0, 1]
that contains 0 as an accumulation point, so one may have e.g. I = [0, 1] itself, or I =
(1/N) ∪ {0} ≡ 1/Ṅ, where N = {1, 2, . . .}. In asymptotic Bohrification, I either plays
the role of the value set for Planck’s constant, in which case one is interested in the limit
~ → 0, or it indexes 1/N , where N → ∞ is the number of particles in some system, or
the number of experiments (as in our derivation of the Born rule in §5), or the principal
quantum number in atomic orbit theory (as in Bohr’s original correspondence principle).
Also in the latter case we generically write ~ ∈ I, so that N = 1/~. A continuous bundle of
C∗-algebras over I, then, consists of a C*-algebra A, a collection of C*-algebras (A~)~∈I ,
and surjective homomorphisms ϕ~ : A→ A~ for each ~ ∈ I , such that:

1. The function ~ 7→ ‖ϕ~(a)‖~ is in C(I) for each a ∈ A (in particular at ~ = 0!).

2. Writing ‖ · ‖~ for the norm in A~, the norm of any a ∈ A is given by

‖a‖ = sup
~∈I
‖ϕ~(a)‖~. (21)

3. For any f ∈ C(I) and a ∈ A there is an element fa ∈ A such that for each ~ ∈ I,

ϕ~(fa) = f(~)ϕ~(a). (22)

A continuous (cross-) section of such a bundle is a map ~ 7→ a(~) ∈ A~, ~ ∈ I, for
which there is an a ∈ A such that a(~) = ϕ~(a) for each ~ ∈ I. Thus the C*-algebra A
may be identified with the space of continuous sections of the bundle: if we do so, the
homomorphism ϕ~ is just the evaluation map at ~. The structure of A as a C*-algebra
then corresponds to pointwise operations on sections. The idea is that the family (A~)~∈I
of C*-algebras is glued together by specifying a topology on the disjoint union t~∈[0,1]A~,
seen as a fibre bundle over I. However, this topology is in fact given rather indirectly,
namely via the specification of the space of continuous sections.

Another way to look at continuous bundles of C*-algebras is to start from a non-
degenerate homomorphism ϕ from C(I) to the center Z(M(A)) of the multiplier algebra
M(A) of A; we write fa for ϕ(f)a (in this notation non-degeneracy means that C(I)A is
dense in A, which implies that C(I)A = A). Given ϕ, one may define fiber algebras by

A~ = A/(C0(I; ~) ·A); (23)

C0(I; ~) = {f ∈ C(I) | f(~) = 0}, (24)

and C0(I; ~) · A is an ideal in A, making the quotient A~ a C*-algebra. The projections
ϕ~ : A → A~ are then given by the corresponding quotient maps (sending a ∈ A to its
equivalence class in A~). Since in general the function ~ 7→ ‖ϕ~(a)‖~ is merely upper
semicontinuous, one only obtains a structure equivalent to the one described in the above
definition if one explicitly requires the above function to be in C(I), in which case property
2 follows, too. See e.g. Williams (2007, App. C) for the material in this appendix.
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