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Abstract. Bounds for large-mass behaviour in renormalized perturbation 
expansions at zero temperature, which were previously obtained by Manoukian 
and Caswell-Kennedy in momentum space, are rederived in the parametric 
representation. A very simple unified proof of the BPHZ theorem and the 
decoupling theorem is also given. A new technique for asymptotic analysis, 
based on a generalized Kontorovich-Lebedev integral transform, is introduced. 
This method is applied to find the leading high-temperature behaviour of 
perturbative field theories in the imaginary-time formalism. We prove that 
diagrams containing nonstatic modes, which at high temperature behave like 
particles with a large mass, are suppressed relative to purely static diagrams. 
This rigorously proves a limited form of dimensional reduction at infinite 
temperature. 

1. Introduction 

In the early eighties it has been suggested that at very high temperatures field 
theories in the imaginary-time (Matsubara) formalism would undergo a form of 
dimensional reduction [5, 14, 16]. The presence of a nonzero temperature T can be 
incorporated in quantum field theory by compactifying the Euclidean time axis to a 
circle with radius f l = T  -1 [18], and this obviously motivates the idea of a 
dimensional reduction from d to d -  1 dimensions. 

In perturbation theory in momentum space the temperature enters in the guise 
of a mass m = 2nnT ,  n ~ Z ,  which is present in each (bosonic) propagator [18]. The 
analogy with the decoupling theorem for heavy particles [4, 2, 20, 9] then suggests 
that at high temperatures the nonzero modes (n :t:0) decouple at low momenta, 
leaving an effective three-dimensional theory, consisting of the zero modes only, 
behind. In contradistinction to the ordinary decoupling theorem, it is here supposed 
that an infinite tower of massive particles decouples. 

In order to prove that such a dimensional reduction mechanism indeed applies, 
one ought to state a renormalization scheme in which the nonstatic modes decouple 
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[17] (note that the zero-temperature Appelquist-Carazzone theorem [4] heavily 
depends on the renormalization scheme). A good candidate scheme necessarily 
involves temperature-dependent subtractions, as one can see by computing one- 
loop diagrams in the high-temperature limit [17]. The renormalization scheme 
which turns out to be optimal for dimensional reduction is a finite-temperature 
generalization of the BPHZ-scheme: one performs zero-momentum subtractions at 
the actual temperature T. 

The principal goal of this paper is to derive high-temperature bounds on Green 
functions renormalized by this scheme, which is also useful outside the context of 
dimensional reduction. As we shall see, the derivation of these estimates is rather 
nontrivial, because one has to deal with an infinite number of particles which 
supposedly decouple. This fact prohibits a direct application of standard techniques 
for proving such bounds. Indeed, we have found it necessary to use an involved 
integral transform which thus far has only been used in the study of boundary-value 
problems [10]. 

To acquaint the reader with our methods we start by rederiving well-known 
large-mass estimates in vacuum field theory in Sect. 2. These estimates have been 
obtained previously by heuristic [9] as well as rigorous [20] momentum-space 
techniques, which are very hard to generalize to the thermal case. Instead, we rely on 
the parametric representation [28, 26] throughout this paper. We use, in particular, 
the extremely effective method given by Anikin et al. [3] to incorporate the BPHZ 
subtractions explicitly, without the need for a forest decomposition or a recursive 
structure (also cf. [6]). Their technique heavily depends on the use of zero- 
momentum subtractions (certain additional and superfluous subtractions are 
made, which have to cancel out in the end), but fortunately it is precisely that scheme 
which is optimal for the decoupling theorem. 

To introduce the notation, as well as some technical results that are needed 
anyway, we first prove the BPHZ theorem and the decoupling theorem at one 
stroke, thus simplifying previous proofs of these separate theorems [28, 3, 2]. We 
then (Sect. 3) derive the known large-mass bounds, firstly employing a Mellin 
transform fi la Berg6re-Lam (who employed this technique to obtain large- 
momentum expansions [7]), and secondly, once again, using a generalized 
Kontorovich-Lebedev transform. For technical reasons the former integral 
transform cannot be used to obtain high-temperature expansions, but the latter 
can; it is complicated enough, however, to justify its introduction in a familiar 
context. 

In Sect. 4 we pass to the finite-temperature case, and state our thermal 
renormalization scheme. In the course of proving the convergence of our 
subtraction method we demonstrate a number of technical lemmata which are 
essential for the high-temperature estimates as well. 

The final section states and proves our principal result (Theorem 4) on the high- 
temperature behaviour of Green functions in the renormalization scheme given. 
Since the main technical prerequisites are introduced in the preceding sections, the 
proof of the final theorem is comparatively easy. The extent to which this theorem 
actually leads to dimensional reduction is briefly alluded to, but is discussed 
exhaustively in another publication [17]. 
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2. BPHZ- and Decoupling Theorem United 

As a warmup-exercise we will prove the Euclidean BPHZ theorem as well as the 
Appelquist-Carazzone decoupling theorem [4, 2, 20, 9] at one stroke. For simplicity 
we restrict ourselves to massive scalar theories without derivative coupling. The 
inclusion of spin would mainly present notational complications [28, 2], whereas the 
extension to the case where some of the masses vanish, while the external momenta 
remain off-shell and nonexceptional, presents some technical obstacles 
irrelevant for our purpose. In any case, these can be surmounted using results in 
[30, 20]. 

Initially our proof closely follows the already quite simple proof of the 
Minkowskian BPHZ theorem by Anikin et al. [3]. We then adjust and simplify their 
finale to arrive at a bound on the renormalized Feynman integral which is finite, and 
proportional to a negative power of the heavy mass, thus establishing the 
decoupling theorem. Since all estimates we use are trivial, our proof is technically 
considerably simpler than the demonstration of the Appelquist-Carazzone theorem 
given by Ambjorn [2]• 

Our starting point is the following expression for a generic d-dimensional 
(d even) Euclidean Feynman integral renormalized according to the BPHZ pre- 
scription: 

1 
(1-¢')a '  \~,~,J J I~I (2n),~ k2~+m~ F= ! 6i~(. l=1 

V-C L 
• I-I (2n)aa(d)(~oPv--I-I ev, ff,(~)k,) . (2.1) v=l /=1 

This formula is equivalent to (2•2) below, which is given by [3], and can itself be 
derived from the formalism of Berg~re and Zuber [6]. The integral Fcorresponds to 
a Feynman diagram F containing L lines, V vertices, I loops, and C connected 
components. F contains superficially divergent subdiagrams {Di}i, labeled by an 
index i in an index set A, with degree of divergence ~i = dli - 2  L i. Neither F nor the 
Di are necessarily connected [3], and D O - F. For the incidence matrix e to be well 
defined it is necessary to assume that F contains no tadpole diagrams; this entails no 
loss of generality, for tadpoles vanish in the BPHZ scheme as well as in its 
generalization to finite temperature (cf. Sect• 4). The role of the structure involving 
~i is to implement the subtractions at zero external momentum of the subdiagrarn 
D~, as required by the BPHZ prescription. The ultimate ~cintegration produces the 
finite remainder of the Taylor expansion of D~ around zero momentum according 
to the SchlSmilch formula [23]. Hence r~z(~) = 1-1' ~i, where the product is over all i 

i 
for which kz is an external momentum of D~. If  F has no divergences then the 
~-structure is to be omitted• Finally, Pv is the total external momentum at the 
vertex v. 

Introducing Feynman parameters [28, 26] one finds the parametric representa- 
tion of F: 

F: i {i~a d~i (l_~i)g~, ~/dI'} 7 (t=4 d~le-=im~)e-E(#'P)g(fl)-½d V t,<) o 

(2.2) 
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Here flz = az(nt(~)) 2, where rcl({) = 1-[" ~i, in which the product  is over those i e  A for 
i 

which l e D  i. The l-derivatives are unders tood to act on ~ as well as on ft. In the 
L 

derivation of  (2.2) one encounters  the matr ix d(fl)vw= I-I evlewl/fll, in terms of  
which z = x 

L 

U(f l )=de td ( f l )  I~ f l , = ~  l-I fl, . (2.3) 
I = 1  T l e T  

The sum is over all 1-trees T in F, a 1-tree being a set of  V - C = L - I  lines 
connecting all vertices in F without  including a loop x. Conversely, any set of  L -  I 
lines not  including a loop connects all vertices and must  be a 1-tree. A closed 
expression for E(fl, P)  is known as well [26, 28], but  here we only need the fact that  it 
is analytic, non-negative, homogeneous  of  degree one in the fit, and quadrat ic  in the 
set of  external momenta  P. 

We now pass f rom al to fll as integration variables (with Jacobian 1~ {i-2L*), 
i 

and then decompose the E-integration region into L !  sectors [15], in each of  which 
fli, < fli~ < . . .  < fli~. For  notat ional  simplicity, take the sector (ix,... ,  iL) = (1 . . . . .  L ). 
We introduce the Speer variables [29] 

f l t=fi t ,+l . . . tL ; tt=flZ/flt+l (2.4) 

L 

with Jacobian IOH/&l = 1-I t~ -1. In each sector one has t l e [0, l] for  lq=L, whereas 
l = 1  

tLe [0, oe[. It follows f rom (2.3) that  [28, 29] 

v ( / ~ )  = t[' u(t) ,  (2.5) 

where u(t)  is independent  Oftr, and has the form u(t) = 1 + f ( t ) ,  w i t h f ( t )  analytic• t z 
is the number  o f  loops in the diagram F~ composed o f  the lines 1,. . . ,  1 (in an arbi t rary 
sector this is to be replaced by i l , . . . ,  i~). The integral (2.2) decomposes as a sum of  
integrals F s over a given sector. 

As explained in more  detail in [3] and [2], in the sector defined above, (2.2) can 
be written as 

(E) • ~ i  e - tL~"e)u( t )  -~d Y[ t; -~dI ' .  (2.6) 
/ = 1  

Here E is independent  of  t z, which has been explicitly factorized. The differential 

1 This generalizes the standard definition for a connected graph [26]. The expression given in [3] 
[their Eq. (7)] is not correct for disconnected graphs. Our generalized form will appear in Sect. 4 
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operators ~v act on everything to their right, and are defined by 

1-I dI,- +2 E ot!_l 
s = O  l~Di 

(2.7) 

We define 6~ as the degree of divergence of F t. For a given l there are two 
possibilities: 

1. 6 l < 0; the structure of (2.6) and (2.7) then implies that the integrand of (2.6) 
depends on t z as h -1 - ~ '  times an analytic function (note that 6 t must be even in 
even-dimensional scalar theories; in the general case an extra factor t~/2 could 
occur). 

2. 6~ > 0; then F~ = D i for some i e A, in which case the divergent subdiagram Di is 
called subordinate to the given sector [3]. Then, however, ~ i  assumes the simple 
form 

Gasub= FI s + 2 l + h  • (2.8) 
s = 0  

Each term in (2.8) annihilates the corresponding term tF ~-~s in the Laurent 
expansion of a function f(t~/2).  I f f = f ( t l )  , as in (2.6), then the most singular term 
that survives is t/1 -z, which combines with the t~ -1 already present in (2.6), so that 
the remainder is analytic in h. (If d is odd, or if there is spin, then one could have 
extra square roots, which lead to the replacement of 1 by 21- in the max-function in 
(2.9) below.) If  D o = F  is divergent, then ~ e o = ~  ub by acting on e- tL~t[~dx  
generates a factor ~1 + ~o. More factors of b2 and its derivatives E(") are generated by 
(2.8) for i4= 0, but these extra factors all occur in the combination (t L E~"))me-t~ and 
thence are irrelevant (see below). 

Collecting these remarks, F s is found to have the structure 

where w is analytic in each h, exponentially bounded in tz, and of order 
Q=2max{0, 1 +½60} in P for tL--,0. Using the explicit form of~; [28, 261 and the 
compactness of the h (l 4= L) integration region, we may estimate ~ ( t ,  P) =< c 1 (P), 
with c1 quadratic in P. Also t'~ e -t~x ~ ( ex  m) - 1, so that ( t L E~"))" e -  t~e <= c(2~) ( p ) which 
is of order Q in P. Furthermore, h=<l trivially for 14:L. 

We now transform back to the flrvariables, with Jacobian 

L L 

I~t/O~l= FI ~[i< H [~i -1+1/~ , 
l = 2  l = 1  

as//1 =< fie < . . .  < flL in the sector under study. After this estimate has been made, we 
extend the flrintegration domain fi'om/?l+ ~ to infinity (giving a further bound by 
positivity of the integrand). We then pass from fl~ to e I as integration variables, and 
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L 

use I--[ ~t(() = I--[ (~'. This gives the estimate (6L=6o) 
1 = 1  isA 

go L - 1  

" e - ' L m [  I l-I dcqo~[ - l+l /ge- ' 'm '2  
o l=l 

L-1 
= K c ( e ) m 2 L  -2max{l'-½6oi-2/L H m[ -2/L , (2.10) 

/ = 1  

where K is a finite constant which is trivially calculable from (2.10). 
Let us divide the set of masses {mr} ~ into two disjoint subsets {#~}~ and {M~}z, of 

light and heavy masses, respectively. The latter is supposed to be nonempty. We 
write (symbolically) F =  F(P 2, #2, M2), and scale the heavy masses by 24. Dimen- 
sionality then gives F( P 2, #2, 2M 2) = 2 4ao F( p2 / 2 ' #2/2 , M2). Recalling that c(p2/2) 
=2-Q/2e(p2), it follows from (2.10) and the above that 

Fs(P2, #2, 2M 2) <~f2½~o- max{0,1 + ½6o} + max{l,-½6o}-1 +NIL (2.1 I) 

withfindependent of 2, and N the total number of light masses. Since at least one 
mass is heavy, one has N < L, so that (2.11) leads to the estimate Fs (2) _<__f2 - ~, with 
e = I - N / L > O .  

This bound holds in each sector flh < fli2 <. . .  < filL, as the proof above can be 
trivially modified by permuting the indices l=  1,..., L. Since F = ~  F s, which is a 

s 
sum over L! sectors, we have proved the following decoupling theorem: 

Theorem 1. Let F(P 2, #2, M 2) be a Feynman amplitude renormalized according to the 
BP H Z  subtraction scheme, depending on a set of  external momenta {P}, a set o f  heavy 
masses {M~} (collectively denoted by M) ,  and possibly a set of  light masses {#,}. For 
large 2, F satisfies the bound 

F(p  2, #2, 2M 2) < 2-  ~f(p2, #2, M 2) (2.12) 

for some g > 0 and some finite function f 

This proves the BPHZ theorem, which merely states that F is finite, as well. 

3. Leading Large-Mass Behaviour 

To improve the bound (2.12), we wish to determine the leading term in the 
asymptotic expansion of F in 1/M. Following the paradigm set by Berg~re et al. in 
their study of the large-P behaviour of Feynman amplitudes [7, 8] we take the 
Mellin-transform of F(P 2, #2, 2M 2) with- respect to 2, and deduce the asymptotic 
expansion coefficients from the analytic structure of the transformed function. 

For the Mellin transform to be of any use in this context we need the existence of 
lira F(P 2, #2, 2M2). This limit actually exists if the external momenta are non- 
A--*O 

exceptional and off-shell [30, 20], so we will assume that this condition is satisfied. 
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For/~ ~= 0 the final result may then trivially be continued to any value of the external 
momenta. Thus we define the Mellin transform 

oo 

• (z) = ~ a22=-lF(2) ,  (3.1) 
o 

where the dependence o n  p 2 / A 2 ,  and M 2 is suppressed. By the usual theory [10] and 
the bound (2.12) in combination with the existence of F(0), it follows that ~b(z) is 
analytic at least in the strip 0 < 9lz< g. We then have the inversion formula [10] 

c+io~ dz 
F(2)= y ~ 2-zq~(z) , (3.2) 

c- ioo 

where 0 < c < ~ for some real c. An asymptotic expansion of F in 2-1 can now 
be obtained by shifting the contour to the right, and picking up the poles [11]. 
A pole ~(z),,~cpq(z-p) -q for z+p  then obviously corresponds to a term 
(-- 1)qcvq(( q -  1)!)-12-P(log)],) q-1 in F(2), cf. [7]. 

We write F as a sum over sectors, and study the asymptotic expansion o f F  s(2) in 
the sector fl~ < f12 <- . .  < ~L, the generalization to arbitrary sectors being a trivial 
notational matter. We denote the set of "heavy" lines by H O.e. le  Hifm~ is heavy) 
and the set of"l ight"  lines by S (for "small"). We now scale each heavy mass in (2.9) 
according to mZ~--*2m~ for l eH,  and take the Mellin transform with respect to 4. 
Interchanging the 2- and t-integration order is allowed by absolute convergence, 
and the result is 

CI)s(2 ) -  dtL ~ dt t _ _  tt - - z+max{ l ' -½" '} - I  h( t  z ..... , tL ,Z  ) (3 .3 )  
o o \1=~.  /=A 

with 

h(tx .... 'tL'Z)--o \~=1 dh w(t ,P) oi i ~  ~ (1--~i)~i~/-1 

• F(z) ~ M  2 r't ~ e - y d ~ d ~  (3.4) 

We have defined 2 to be the largest element of H in the given sector (that is,/~z < fix 
for all l e H), while fit is defined by (2.4) and n l(#) is given below (2.2). The structure 
of h is determined by the following 

Lemma 1. The function h defined in (3.4) is: 

1. analytic in z for 9tz>0;  

2. C ~° in each t t>0, and exponentially bounded for tL--*oO ; 
L 

3. ghJen by h= I-I (logh)"~f(t~ ... . .  tL,z) for h-*O, where f is C ~, and the positive 
I=A 

integer n I is smaller than or equal to the total number o f  divergent diagrams containin 9 
the line I. 

Proof. By (2.12), h is analytic for 0<  91z<e. In this region we write F(z)x -z 

= ~ dQeZ-le -Q~, where x is the expression between square brackets in (3.4). We 
o 
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c+im d z  
also write e -x' = c !  ~ ~ x[-*'F(zz) for 0 < c < 1/L, where x I is any suitable quantity 

appearing in (3.4) after the first-mentioned substitution has been made. Using 
L 

I ]  n~- z, = [ I  ~i- Z z,, and estimating 1 - ~i --< 1, the ~-integrations can be done to give 
l = l  ieA t~D~ 

(omitting a few trivial constants) 

o \ , = ,  o ~-,o~ ,=~ f g i  r ( z , )  

1-I ~ z l  
i~A l~Di 

The small-t behaviour of the integrand may be inferred by moving the z~-contours 
consecutively to the left, picking up the residue of the pole at z z = 0. The claims 2 and 
3 then easily follow. The exponential decay in t m follows from the structure of 
w(t,P), cf. Sect. 2. Analyticity in z for 9tz> IlL is immediate from the above 
representation: the zt-integrands have no singularity in the right-hand halfplane, so 
that according to a standard theorem in asymptotic theory [11] the 0-integrand 
decreases faster than any power for 0-+ oo. The analyticity in the strip 0 < fflz < 1/L 
is a consequence of the analyticity of ~s(Z) [cf. (3.3)] in this strip, and follows from 
the existence of the zero-mass limit, as explained before. [] 

This lemma allows us to use the well-known [13] (and quite trivial) theorem 
stating that the function, defined for fflw > 0 by 

oo 

f (w)  = S dttW(l°g t)"g(t) 
0 

for n E N and g (t) e C ~ (R +), has a meromorphic continuation to the entire complex 
plane, with simple poles in w -- - 1, - 2 ,  - 3 .. . .  Proceeding as described below (3.2), 
it thus follows that the first pole of ~s(Z) in (3.3) is encountered in 

z =  min max{1, -½6z}  • 
/~{2  . . . . .  L} 

The minimum is determined among the graphs Fx, Fx + 1 . . . . .  FL which, by definition 
of 2, each contain all heavy lines in F. The order of the pole is equal to the number of 
diagrams for which this minimum is simultaneously being assumed. Given the 
smallest line 1 (in the sense of sectors) for which the minimum is assumed by F l, other 
diagrams Fl,, l' > l, can possibly have the same value of max {1, -½ 6 l} only if one or 
more loops are added to F 1 (otherwise the degree of divergence obviously lowers by 
adding lines). A similar result holds in any sector. We now scale M rather than M 2 
by a factor 2. The remarks below (3.2), combined with the above information, then 
lead to 
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Theorem 2. Let F be as in Theorem 1. The leading term in the asymptotic expansion of  
F(p2, #2 )~2M2 ) in ~ is equal to or smaller than a 2-independent factor times 

- min'vmax{2' -- 6v} (log 2) ~ , 

where the minimum is taken among those subdiagrams y ~ F which contain all heavy 
lines. Here 6 ~ is the superficial degree of  divergence of  y, while I is the number of  loops 
inF.  

For theories in odd dimensions, and/or with spin, or derivative couplings, the 
bound is slightly worsened : 2 is replaced by 1 in the above result. In any case, we 
trivially have 

Corollary 1. Let F be a finite unrenormalized Feynman amplitude, otherwise as in 
Theorem 1. Then the leading term in the sense of  Theorem 2 is 

/~ max~e&/(log 2) I , 

where the maximum is determined among the subdiagrams 7 ~ F containing all heavy 
lines. 

It should be remarked that factors of M should be included in the determination 
of the superficial degree of divergence (i.e. kuk~/M 2 has degree zero). Also, the 
leading terms may cancel out, so that the power of 2 given is an upper bound, as is 
the power of log 2. 

The corollary is equivalent to a theorem of Caswell and Kennedy [9], who state 
that the maximum is to be determined among diagrams which are a union of disjoint 
light-particle irreducible subgraphs [9] which contain all of the heavy-particle lines. 
To see the equivalence with our result, it is sufficient to remark that the degree of 
divergence of the light-particle reducible graphs containing all heavy lines can 
always be increased by deleting light particle lines. 

The more general Theorem 2 is contained in the work of Manoukian [20], who, 
like Caswell and Kennedy, relied on momentum-space considerations. To the best 
of our knowledge, this section contains the first proof of a large-mass bound in the 
parametric formalism. 

For pedagogical reasons we will now rederive Theorem 2 using the Kontoro- 
vich-Lebedev transform rather than the Mellin transform. This is a very useful 
exercise preparing for the high-temperature case in which, as we shall see, the 
latter is of no use. Besides, this derivation is independent of the preliminary 
bound (2.12), equivalent to the decoupling theorem, which is itself a consequence of 
Theorem 2. 

Actually we will use a generalization of the Kontorovich-Lebedev transform 
given by Davies [10]. The transform pair reads 

i~ dv  
F(2)= ~ - -  vI , (k2)~(k,  v) ; (3.5) 

- i v  ~ l  

~ d 2  
~ ( k ,  v)= b f ~ K,(k2)F(2)  . (3.6) 



652 N.P. Landsman 

Here k > 0 is real, and I v and K~ are modified Bessel functions. Using the asymptotic 
forms [19] 

X v 

I~(x)"~2~v! ; K~(x)--~2*-*F(v)x -" (3.7) 

for x-+0, we see that the limit k ~ 0  may be taken in (3.5), (3.6), in which case the 
transform reduces to the Mellin transform with argument - z. According to Davies 
[10], the generalized transform pair is valid at the points of continuity of F(2) if it 
satisfies Dirichlet's conditions, and if F =  C(1) for 2-+0 and o(e ~) for 2-* oo (note 

that K~(x)--~ for x--,oo). 

The function F~(2)=UFs(2) ,  where Fs(2 ) is obtained by scaling the heavy 
2 2 masses rn 1 --,2m z in (2.9), and.e > 0 may be chosen at our convenience, obviously 

satisfies these conditions. In order to have a convenient representation of J ~ ( 2 )  we 
perform a calculation 

=4 c-,~ ~ i  a -  r ( ~ - z ) r  ~ -  r , 

( 3 . 8 )  

with t gtvl = 0 < c < a. Here f ( x )  = x - ' e -  ux. The second equality follows, because 
the second member of (3.8) is precisely the Mellin-type convolution of K~ with f 
[24], with k/a as the free variable. The Mellin-Barnes representation then follows 
simply by multiplying the Mellin transforms of K~ and f This also gives the 
condition on c [241. Using (3.8) with a =  ~ chin 2 together with (3.5), (3.6) then 
yields the representation t~/~ 

(2) F~(,t)=_,~ol 777 ~I~(kX) ~_,~ 777~ t,T) \ ~ )  r 

o o \ , = ,  , = ~  ' ) ' ~ . . . . .  tL, ~ - z )  , ( 3 . 9 )  

with h given by (3.4), and 2 defined prior to (3.3). 
The essence of our method is to take the limit k-+0 in a controlled way. To do so, 

• _ 1  x _ ~  

we interchange the v- and z-integrations (allowed, as IF(x+ty)l,-*e ~,~lyllYl ~ for 
y ~  oo), and move the v-contour to the right, picking up the pole in v = z. We then 
let k--+0, using (3.7); the shifted v-integral then vanishes because 9tt___< .qlz. The net 
result is 

c+ioo d z  

F~(2)= .[ ~ 2 : ~ s ( a - z )  , (3.10) 
c-leo 

cf. (3.2) and (3.3). Using the analyticity properties of ~b s found in Lemma 1 and 
(3.3), we can move the contour to the left, and pass 9tz = 0. We then let ~ 0 ,  after 
which we are back to (3.3), and can complete the proof  of Theorem 2 accordingly. 
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As promised, the bound (2.12) has not been employed: the relevant analyticity 
properties followed from a direct inspection of the integrands. We shall see in Sect. 5 
that the above method can be used in a situation where the Mellin transform cannot 
be used at all. Since on the other hand the Mellin transform is a special case of the 
generalized Kontorovich-Lebedev transform, the latter is a more powerful, yet 
more complicated technique in asymptotic analysis than the former. 

4. Temperature-Dependent BPHZ Renormalization 

The aim of the remainder of this paper is to probe the infinite-temperature limit of a 
renormalizable relativistic thermal field theory. We wilI use the conventional 
imaginary-time (Matsubara) formulation [18], in which the bosonic fields are 
defined on a Euclidean time interval which is a circle with circumference/3 = I /T .  
Fermionic fields are functions on the same compact interval, but rather satisfy anti- 
periodic boundary conditions [18]. In momentum-space perturbation theory one 
must therefore replace the continuous (Euclidean) energy k 4 by a discrete frequency 
co, = 2 nTn (bosons) or 2 rcT(n +21-) (fermions), where n ~ Z must be summed over in 
loops. We will refer to the co, = 0 terms as static modes, all the other modes being 
nonstatic. For large temperatures the nonstatic modes obviously behave like fields 
with a very large mass, suggesting their decoupling in analogy with the Appelquist- 
Carazzone theorem [5]. In the following we restrict ourselves to scalar fields for 
simplicity. 

Consider a diagram F, and define L, V, L and C as in Sect. 2. Since we eventually 
wish to find out whether static diagrams can be approximated by omitting nonstatic 
modes in internal loops, we assume that all external frequencies to F vanish. This is 
just to simplify the expressions; all proofs below easily extend to the general case. 
Let now M be a partial finite-temperature Feynman (-Matsubara) amplitude 
corresponding to F. By "partial" we here mean that a given number o f I  N frequency 
summations are carried out (omitting the zero mode), whereas in the other 
I s=  I - I  N loops only the zero mode is taken into account, the sum over the other 
modes being deleted. The total amplitude is obviously the sum over all possible 
partial amplitudes. Corresponding to a given choice of energy routing in F, there is a 
set of lines S (which may be empty, especially if the external lines are nonstatic) 
whose frequency co, vanishes whatever the choice of the frequencies in the nonstatic 
loops. We now define N to be the diagram F - S ,  i.e. the subdiagram of F obtained 
by deleting the lines in the set S (isolated vertices thus emerging are to be ignored, of 
course). The topology of N is independent of the energy routing chosen in F. 

In principle, the finite temperature theory can be renormalized by subtractions 
at T = 0  [18]. Zero-temperature renormalization prescriptions do not lead to 
decoupling of the nonstatic modes at high temperature, though [1 7] (in the same 
sense that mass-independent renormalization prescriptions at zero temperature, 
like minimal subtraction, do not lead to the decoupling of heavy particles, i.e. 
violate the Appelquist-Carazzone theorem). Instead, we renormalize by means of 
zero-momentum subtractions at temperature T. The superficial degree of diver- 
gence of a diagram Fi containing I s static loops is given by 

~i = 6 , -  I S = ( d  - 1)Ii + I ~ -  2 L i , (4.1) 
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where I~ = I - I  s is the number of nonstatic loops in F/. We denote the subdiagrams of  
F (more preciseIy, of a given partial contribution to F)  for which zl = 0 by DI, i E A. 
These diagrams are renormalized at temperature T by subtracting all terms in their 
Taylor expansion around zero spatial momentum up to order z i. The external 
frequencies in the subtracted terms are put equal to zero (for fermions one still puts 
n -- 0, so that one subtracts at external frequencies co = nT). For  example, the global 
divergence in a bare quadratically divergent self-energy S (co,, p, T) is renormalized 
according to 

ZR(O) , , p ,T )=Z(og , , , p ,T ) -Z (O ,O ,T ) - (p  2 8  ) Z (0, O, T) . 

(It is also possible to subtract at the given value ofo) n rather than its zero value, at the 
expense of introducing n-dependent renormalized parameters. Theorem 4 in Sect. 5 
can be shown to still hold in this more general scheme.) 

As in the vacuum case [cf. (2.1)] we implement these subtractions by repeatedly 
using the Schl6milch formula for the remainder of  a Taylor series. There is a tiny 
nuisance in the present case, because we subtract at a fixed o) n = 0. The formula for 
the remainder of order -c + 1, 

( 1 -T~) f (n ,p )=~ .  ! d ¢ ( 1 - ( ) ~ \ ~ /  / ( ( n , ( p )  , (4.2) 

can still be used, however, if we understand ~-  to act on (p alone. In addition there is 

the seeming problem of assigning a meaning to f ((n) ,  where f (n)  is defined for 
discrete integers only. Fortunately, formula (4.2), if interpreted as we did, effectively 
employs f(~n) in ~ =0  and ( =  1 only. Therefore, one may assign an arbitrary 
meaning to f ( (n )  as long as its values for ( =  0 and ~ = 1 reduce to f (0)  and f(n),  
respectively. In our application,f  (n) will be 6K(n ) = 6,O. We now interpret 3K((n ) as 

1 

6K((n) = S due2'~i"¢'~ • (4.3) 
0 

Thus we are led to the following partial amplitude, generalizing (2.1)" 

M =  T I ~ (1 

• 2 t ° - -  d d - l k l  

(2 re) a-1 2 2 2 kl + col + ml n l = - - o o  l = l  

,) • YI (2~)d-*a(d-*)(~0Pv-- evl~,(()kt)ar ~intff,(¢ , (4.4) 
v = l  1=1  l = 1  

where 6r(m)=,SmO , and col=2rcTn I (note that ffz(~) is defined prior to (2.2)). The 
prime on the summation sign means that the zero mode is to be omitted. Since our 
renormalization scheme is rather hybrid, we cannot even appeal to heuristic results 
in finite temperature renormalization theory [22, 18]. We therefore start with a 
convergence proof  of (4.4). With more effort we could derive a bound A la (2.12) at 
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the same stage, but we refrain from doing so, as we will give a much better bound in 
Theorem 4. In any case, many lemmata below will be essential in the proof of our 
final decoupling theorem as well. 

Repeating, mutatis mutandis, the steps leading from (2.1) to (2.6), recalling that 
the (-derivatives in (4.4) do not act on the Kronecker delta, we now obtain (in the 
sector fll <-... <= ilL, as always) 

0 0 0 \ 1 = 1  l = i  

• f ( t )g( t ,  () . (4.5) 
Here 

f ( t ) =  t[ -1 ~ ,  e-E("mu(t) -~(a-1) l-[ tl-½(d-1)I', (4.6) 
1=1 / = 1  

where ~ i  is given by making the replacements 6i~z i and d ~ d - 1  in (2.7). Also 

g (t, ( ) =  (ll~-[n n,__~' oo e-  ~'(t'0°~) I~Iv ~K (,=~ evlnl~l(()) (4.7) 

with O~l=tl...tg/(nl(()) 2, and n l defined prior to (2.3). The final product is over 
those of the original V -  C vertices [cf. (4.4)] which are attached to the reduced 
diagram N. We firstly have 

Lemma 2. 

f ( t )  = [~=l~I t~(X~+max{l'IS-~})-lld)(t,P), (4.8) 

where Iff and I s are the number of  nonstatic and static loops in F z, respectively. The 
function 4) is exponentially bounded in t L, and analytic in each tt, modulo a possible 
factor o f  t~ for each h, which occurs if I~ is odd. 

(Recall that F~ is the diagram composed of the lines 1 ..... l.) The proof of this 
lemma is entirely analogous to that of Eq. (2.9), so we omit it. [] 

Lemma 2 above is a piece of cake compared to 

Lemma 3. 

where Z is bounded and integrabIe in each variable (I~ is the number of  nonstatic loops 
in Di). 

Proof. To save writing we set T=  i /2n (or absorb T into the el). Recalling (4.3), we 
rewrite (4.7) as 

g = i ( H d u ~ ) ~ [ O ( - ~ u ~ e ~ t ~ t ( ( ) , i ~ J n ) - l l  , (4.10) 

in terms of the Jacobi theta function (also denoted by 0oo or 03) 

0 ( Z ,  72)= ~ ,  e i~nz+2iTt"z  . (4.11) 
n ~ -oo  
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We then use the functional equation [25] 

0 (z ,  "c) = e-'~iz2# 0 (z/'c, - 1 / ' c ) / ~ - -  i'c (4.12) 

and the definitions of hi((), hi((),/~z, and d(/~) [cf. text above (2.3)] to find 

0 = H o 

• ~I [~(iu,,~vt/cqzh, in/%)--~ffTr e '~2( ..... )2/~'] . (4.13) 
IEN 

Here U~ = l--I' ~i, where the product is over all i for which v eDi.  It is understood 

that v and w are summed over if appropriate. Since u v < Uv, by definition of  z~ and 
e~z, we have [u~e~znz-l[ <1 (no sum over l). The expression in square brackets is 
positive, so to obtain an upper bound on g we may replace the last exponential by 
one. We then extend the u-integration ranges to the real axis, and use (2.3) and 
(4.11) to obtain (omitting some factors of n) 

and 
h(ch)= 1 + 2  ~ e - ~ z n z l ~ ' + 2 ~ n l ~ '  . (4.15) 

n = l  

Here U N is defined similar to (2.3); now, however, only lines in Nparticipate (that is, 
the one-trees T must lie within N, whereas the lines l¢ T must be in N as well. 

We will now analyze U N. In the following we use the trivial fact that I~ is both 
the number of  nonstatic loops in I~ ~ F, and the number of  loops in the graph 
Nz=-Ilc~N. By definition of  a l-tree [cf. text below (2.3)], each term l-[/~ 

l(~r 

contains I~ factors of the type/~,  where l ~ N~ ; adding each of the corresponding 
L 

i N lines to the given T would form a loop. Therefore, by (2.4), [ I  tt' factorizes 
l = l  

in U N. Conversely, we can form a 1-tree in N for which the last-mentioned product 
equals 1-I/?l. This tree consists of the lines l e N  for which I[~=I[~_ 1 (I_ 1-0) .  

l e t  

This set obviously contains no loops, and has LN--I  N lines, so it must indeed be a 
1-tree. Therefore, (2.5) generalizes to 

UN(/?) = C=I~I t [~)u( t ) ,  (4.16) 

where u(t) satisfies the same conditions as in (2.5). 
We proceed with the second factor in (4.14). We see immediately from (4.13) that 

it goes to one for e t a 0  (small t), so that it remains to investigate its large-e~ (small ~) 
behaviour. To do so, we use [27, Eq. I. (3.13)] to give a Mellin-Barnes representation 
of the sum [10]. We then insert the Mellin-Barnes integral representation [1, Eq. 
(19.5.13)] for the parabolic cylinder function 2 and perform one of the two contour 

2 Correcting two typographical errors: x ~z and "zeros"--*"poles" in the text below (19.5.13) 
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integrations. This yields 

~ (c~/4)-'12 ~7~°° dz ( z ~ m ) ( ~ )  ~/2 
h (c0 = 1 + m ! ~ ~ (z) F , (4.17) 

m = 0  a - - i ~  

with a > 1. An asymptotic expansion for ~ oo then follows by shifting the contour 
to the left, and picking up the poles [11]. One finds that both the term 1 in (4.17) 

and the term ~ z ~  in (4.14) are cancelled, and it follows that h(e)-]/~-~-=(9(1) 
for e--, oo. 

Combining this with (4.14) and (4.16) we thus have concluded the proof of 
Lemma 3. [] 

Theorem 3. The renormal&ed partial Feynman-Matsubara amplitude defined by 
(4.4) is finite. 
Proof. It is sufficient to prove that the contribution (4.5) from the sector/~1 <--. </~L 
is finite : the other sectors differ by permutations of the index set { 1 ... . .  L}, and the 
proof of the convergence of the analogues of(4,5) in these sectors consists of a trivial 
rewriting of the proof in the present sector. 

L 

By Lemma 3, the (-integrand in (4.5) behaves like 1~ (i -1 H e -~''~ at worst for 
i~A 1 = 1  

(~--*0. The reasoning in the proof of Lemma 1 (Sect. 3) then shows 
that the (-integration introduces logarithmic singularities in each t~ at worst. 
Lemmata 2 and 3 together imply that the rest of each fi-integrand is (9(6 -~) for 
tz~0, so that each tl-integration is finite. The integrability for tL~ oo follows from 
the exponential decay of the tL-integrand. All interchanges of integration and 
summation orders are justified by the positivity of each integrand (apart from the 
innocent factor (1 - ~i) ~ < 1). [] 

5. High-Temperature Behaviour 

In this section we find a sharp bound on the leading term in the (asymptotic) high- 
temperature expansion of the renormalized Feynman-Matsubara integral (4.4). 
The main technical problem is that M(T)= (~ (1) for TwO and (9 (T t- ~) for T-~ ~ ,  
for some (as yet unknown) ? > 0, which means that M does not allow a Mellin- 
transform with respect to T. Fortunately enough, the generalized Kontorovich- 
Lebedev transform (3.5), (3.6) can be used. 

We define M~(2) = UM(2), where M(2) is obtained by scaling co~ ~2co 2 in (4.4), 
i.e. by scaling T 2 ~ 2 T  z while ignoring the prefactor T I in (4.4) (it will be reinserted 
in Theorem 4 below). Using (3.8) we can give a representation of M~(2) [cf. (4.5)] 
similar to (3.9). For simplicity we set T-- 1/2~, and find 

\l=~ dtl l=~ tz-~+~(S~+max{l'IS-~l))-l~mQ 

(5.1) 
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with 

m = r ( u - z )  at, f ( t )  d¢i (1-¢i)~¢, -*-*'~ [ I  e -='m? 
o \ ,=,  o zi! ,=1 

(5.2) 

Here f ( t )  is given in (4.6), and fll by (2.4). In analogy to Sect. 3, 2 is now defined as 
the largest line in Nin  the given sector. We choose ~ = ½ 1 u + g, for some 0 < g < ½. We 
recall from Sect. 3 that c is originally constrained by 0 < c < e, but to justify the 
interchange of summations and integrations used to derive (5.1) and (5.2) we here 
actually need 0 < c < e. Also note that Iff = I u for l >  2. The entire t-dependence of m 
is in the factors e - ' '"~ in (5.2). We have 

Lemma 4. The function m (tz ..... t L, z) defined by (5.2) 

1. is analytic in z for 9tz < ~; 
2. satisfies conditions 2 and 3 of  Lemma 1 (Sect. 3). 

Proof. The frequency summation in (5.2) converges for/?~ 4=0 and Nz < e by the 
theory of the Epstein l-function [12]. To find its leading singilarity for t, ~ 0  we write 

or) 

F ( e - z ) ( . . . ) z - ~ =  ~ d~0,-z-~ e-~(...), and put the c-integration to the left of all the 
o 

others (the integrand is positive and the integral exists afor t ior i ! ) .  Since the 
prefactor of n~ never vanishes, the integrand decays exponentially for Q~ oe. 

• _ ~ I N  Following the p roo fo fLemma  3, we find that the integrand is (9 (Q - ) for ~--,0. In 
view of the choice e = ½ IN+ e, this proves point 1 provided that the other integrals 
are finite. These, however, are completely under control by Lemmata 2 and 3 in 
Sect. 4. Point 2 then follows as in the proof  of Lemma 1. [] 

We next eliminate the v-integration in (5.1) in the manner described prior to 
(3.10). This gives 

) dz dt, 
c-ira ~ 0 0 \ l = 4  

"C=~ t[-e+½(lff+max{l'lS-&})-l) m(t'~ ..... tL'Z)" (5.3) 

An asymptotic expansion for 2--, oo now follows by shifting the contour to the left 
and picking up the poles in complete analogy to the large-mass case (Sect. 3), where 
z is replaced by - z .  Lemma 4 guarantees that we may use the theorem quoted after 
the proof  of  Lemma 1. We see that 2 ~ then factorizes in M~(2), as it should. 

As usual, an expression of  the type (5.3) is valid in any sector. Taking the factor 
T ~ in (4.2) into account, which was not scaled in the definition M~(2), and scaling T 
rather than T 2 by a factor 2, we thus have arrived at the central result of this paper. 

Theorem 4. Let M ( T, P, m) be a partial Feynman-Matsubara amplitude correspond- 
in9 to a diagram F with I loops, in which IN frequency summations are carried out, 
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omittin9 the zero modes. Here T is the temperature, and M ( T,...) denotes the explicit 
T-dependence. Also, P stands for an arbitrary set of  external momenta, and m 
represents a set of  nonvanishin9 masses on which M depends. Let M be renormalized 
by (marginal) zero-momentum subtractions at temperature T, as explained in Sect. 4. 
Then the Ieadin9 term in the asymptotic expansion of M(2T, P, m) for  large 2 is 
bounded by 

C/~ I -  min  v ( I ~  + m a x { l ,  I s -¢]v}) (log 2) I , 

where c is independent of  2. The minimum is determined among all subdiagrams 7 ~ F 
containing all nonstatic lines. I~ and I s are the number of  nonstatic and static loops in 
y, respectively, and c~ ~ is the superficial degree of divergence of 7 as determined by naive 
four-dimensional power counting. 

The above bound is less complicated in the following case. 

Corollary 2. Let M (2T, P, m) be a finite unrenormalized partial Feynman-Matsubara 
amplitude, otherwise as in Theorem 4. Then the Ieadin9 term in its asymptotic 
expansion for large 2 is bounded by 

Cl~ I + maxvO~s) (log 2) I , 

where ~(3) is the superficial degree of divergence of 7 as determined by three- --y 

dimensional power counting. The maximum is determined among the diagrams 7 
described in Theorem 4. 

These results are valid for any spin and in any dimension, and include the case of 
nonzero external frequencies co. [These would show up in the Kronecker delta in 
(4.4) and (4.7), and in (4.10) in the guise of a factor eiU'% not spoiling any proof.] 

Since the purely static diagrams are naively proportional to T I, and the 
nonstatic diagrams by Theorem 4 cause a suppression factor of T -  ~ or more, it may 
appear that a dimensional reduction takes place in the infinite-temperature limit of 
thermal field theory, in the sense that the nonstatic modes decouple, and leave a 
three-dimensional theory behind. As discussed extensively in [17] there is a caveat, 
however: because the renormalization prescription in which Theorem 4 holds is 
temperature-dependent, the renormalized parameters, in particular the masses, are 
T-dependent. It can be shown [17] that dimensional reduction only occurs if 
Lira m (T) /T= O, where the T-dependence of the masses can be evaluated by means 
T---~ c~ 

of the finite-temperature renormalization group [21, 17]. In those cases the results 
of this section constitute a rigorous proof  that such a reduction mechanism indeed 
applies. 
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