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Abstract: A strict quantization of a Poisson manifoldP on a subsetI ⊆ R containing
0 as an accumulation point is defined as a continuous field ofC∗-algebras{Ah̄}h̄∈I ,
with A0 = C0(P ), a dense subalgebrãA0 of C0(P ) on which the Poisson bracket
is defined, and a set of continuous cross-sections{Q(f )}

f∈Ã0
for which Q0(f ) =

f . Here Qh̄(f
∗) = Qh̄(f )

∗ for all h̄ ∈ I , whereas forh̄ → 0 one requires that
i[Qh̄(f ),Qh̄(g)]/h̄→ Qh̄({f, g}) in norm.

For any Lie groupoidG, the vector bundleG∗ dual to the associated Lie algebroidG
is canonically a Poisson manifold. LetA0 = C0(G

∗), and forh̄ 6= 0 let Ah̄ = C∗(G)
be theC∗-algebra ofG. The family ofC∗-algebras{Ah̄}h̄∈[0,1] forms a continuous field,
and we construct a dense subalgebraÃ0 ⊂ C0(G

∗) and an associated family{QW
h̄ (f )}

of continuous cross-sections of this field, generalizing Weyl quantization, which define
a strict quantization ofG∗.

Many known strict quantizations are a special case of this procedure. OnP = T ∗Rn
the mapsQW

h̄ (f ) reduce to standard Weyl quantization; forP = T ∗Q, whereQ is
a Riemannian manifold, one recovers Connes’ tangent groupoid as well as a recent
generalization ofWeyl’s prescription.WhenG is the gauge groupoid of a principal bundle
one is led to the Weyl quantization of a particle moving in an external Yang–Mills field.
In case thatG is a Lie group (with Lie algebrag) one recovers Rieffel’s quantization
of the Lie–Poisson structure ong∗. A transformation groupC∗-algebra defined by a
smooth action of a Lie group on a manifoldQ turns out to be the quantization of the
Poisson manifoldg∗ ×Q defined by this action.

1. Introduction

The notion of quantization to be used in this paper is motivated by the desire to link the
geometric theory of classical mechanics and reduction [18,32] with theC∗-algebraic
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formulation of quantum mechanics and induction [15], and also with non-commutative
geometry [2]. Starting with Rieffel’s fundamental paper [27], variousC∗-algebraic def-
initions of quantization have been proposed [29,12,30,15,31]. Definition 2 below is
closely related to these proposals, and is particularly useful in the context of the class of
examples studied in this paper.

These examples come from the theory of Lie groupoids and their Lie algebroids
(cf. Sect. 2). The idea that theC∗-algebra of a Lie groupoid is connected to the Poisson
manifold defined by the associated Lie algebroid by (strict) quantization was conjectured
in [12], and proved in special cases in [13,15]. The results of [28,29,23] also supported
the claim. In this paper we prove the conjecture up to Dirac’s condition (3); this is the
content of Theorems 1 and 2. Following up on our work, Dirac’s condition has finally
been proved by Ramazan [25]. This leads to the Corollary at the end of Sect. 5, which
is the main result of the paper.

Further to the examples considered in Sect. 6, it would be interesting to apply the point
of view in this paper to the holonomy groupoid of a foliation [2], and to the Lie groupoid
defined by a manifold with boundary [23,19]. Moreover, the approach to index theory
via the tangent groupoid [2] and its recent generalization to arbitrary Lie groupoids
[20] may now be seen from the perspective of “strict” quantization theory. This may be
helpful also in understanding the connection between various other approaches to index
theory which use (formal deformation) quantization [8,7].

The central notion inC∗-algebraic quantization theory is that of a continuous field
of C∗-algebras [5]. For our purposes the following reformulation is useful [10].

Definition 1. A continuous field ofC∗-algebras(C, {Ax, ϕx}x∈X) over a locally com-
pact Hausdorff spaceX consists of aC∗-algebra C, a collection ofC∗-algebras
{Ax}x∈X, and a set{ϕx : C → Ax}x∈X of surjective∗-homomorphisms, such that
for all A ∈ C,

1. the functionx → ‖ϕx(A)‖ is inC0(X);
2. one has‖A‖ = supx∈X ‖ϕx(A)‖;
3. there is an elementfA ∈ C for anyf ∈ C0(X) for whichϕx(fA) = f (x)ϕx(A)

for all x ∈ X.

The continuous cross-sections of the field in the sense of [5] consist of those elements
{Ax}x∈X of

∏
x∈X Ax for which there is a (necessarily unique)A ∈ C such thatAx =

ϕx(A) for all x ∈ X.
We refer to [18,32] for the theory of Poisson manifolds and Poisson algebras; the

latter is the classical analogue of the self-adjoint part of aC∗-algebra [15].

Definition 2. Let I ⊆ R contain0 as an accumulation point. A strict quantization of a
Poisson manifoldP on I consists of

1. a continuous field ofC∗-algebras(C, {Ah̄, ϕh̄}h̄∈I ), with A0 = C0(P );
2. a dense subspacẽA0 ⊂ C0(P ) on which the Poisson bracket is defined, and which is

closed under pointwise multiplication and taking Poisson brackets (in other words,
Ã0 is a Poisson algebra);

3. a linear mapQ : Ã0 → C which (withQh̄(f ) ≡ ϕh̄(Q(f ))) for all f ∈ Ã0 and
h̄ ∈ I satisfies

Q0(f ) = f, (1)

Qh̄(f
∗) = Qh̄(f )

∗, (2)
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and for allf, g ∈ Ã0 satisfies Dirac’s condition

lim
h̄→0
‖ i
h̄
[Qh̄(f ),Qh̄(g)] −Qh̄({f, g})‖ = 0. (3)

Elements ofI are interpreted as possible values of Planck’s constanth̄, andAh̄ is the
quantum algebra of observables of the theory at the given value ofh̄ 6= 0. For real-valued
f , the operatorQh̄(f ) is the quantum observable associated to the classical observable
f . This interpretation is possible because of condition (2) in Definition 2. In view of the
comment after Definition 1, for fixedf ∈ Ã0 each family{Qh̄(f )}h̄∈I is a continuous
cross-section of the continuous field in question. In view of (1) this implies, in particular,
that

lim
h̄→0
‖Qh̄(f )Qh̄(g)−Qh̄(fg)‖ = 0. (4)

This shows that strict quantization yields asymptotic morphisms in the sense ofE-theory
[2]; cf. [22]. See [15] for an extensive discussion of quantization theory from the above
perspective, including an interpretation of the conditions (3) and (4).

2. Lie Groupoids and Lie Algebroids

Throughout this section, the reader is encouraged to occasionally skip to Sect. 6 to have
a look at some examples of the objects defined.

We refer to [26,17,3,2,15,1] for the basic definitions on groupoids; here we merely
establish our notation. Briefly, a groupoid is a category whose space of arrowsG is a set
(hence the space of objectsQ is a set as well), and whose arrows are all invertible. The
source and target projections are calledτs : G→ Q andτt : G→ Q, respectively.

The subset ofG×G on which the groupoid multiplication (i.e., the composition of
arrows) is defined is calledG2; hence(γ1, γ2) ∈ G2 iff τs(γ1) = τt (γ2). The inversion
γ → γ−1 defines the unit spaceG0 = {γ γ−1|γ ∈ G}, which is related to the base
spaceQ by the “object inclusion map”ι : Q ↪→ G; this is a bijection betweenQ and
ι(Q) = G0. The notationG ←⇒ Q for a groupoid to some extent captures the situation.

A Lie groupoid is a groupoidG ←⇒ Q, whereG andQ are manifolds (perhaps
with boundary), the mapsτs andτt are surjective submersions, and multiplication and
inclusion are smooth [17,3,2,15,1]. Following [15], we now sharpen Def. I.2.2 in [26].

Definition 3. A left Haar system on a Lie groupoidG ←⇒ Q is a family {µtq}q∈Q of

positive measures, where the measureµtq is defined onτ−1
t (q), such that

1. the family is invariant under left-translation inG;
2. eachµtq is locally Lebesgue (i.e., it is equivalent to the Lebesgue measure in every

co-ordinate chart; note that each fiberτ−1
t (q) is a manifold);

3. for eachf ∈ C∞c (G) the mapq 7→ ∫
τ−1
t (q)

dµtq(γ )f(γ ) fromQ to C is smooth.

Here left-invariance means invariance under all mapsLγ , defined by

Lγ (γ
′) := γ γ ′ (5)

whenever(γ, γ ′) ∈ G2. Note thatLγ mapsτ−1
t (τs(γ ))diffeomorphically toτ−1

t (τt (γ )).
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A Lie groupoidG ←⇒ Qhas an associated Lie algebroid [17,3,15,1], which we denote

by G
→→TQ

Q . This is a vector bundle overQ, which apart from the bundle projection
τ :G→ Q is equipped with a vector bundle mapτa :G→ TQ (called the anchor), as
well as with a Lie bracket[ , ]G on the space0(G) of smooth sections ofG, satisfying
certain compatibility conditions.

For our purposes, the essential point in the construction ofG
→→TQ

Q from G ←⇒ Q

lies in the fact that the vector bundleG overQ is the normal bundleNιQ defined by
the embeddingι : Q ↪→ G; accordingly, the projectionτ : NιQ→ Q is given byτs or
τt (these projections coincide onG0). The tangent bundle ofG at the unit space has a
decomposition

Tι(q)G = Tι(q)G0⊕ T tι(q)G, (6)

whereT tG = ker(T τt ) is a sub-bundle ofTG. Note thatT tγG = Tγ τ−1
t (τt (γ )). Hence

G
→→TQ

Q is isomorphic as a vector bundle to the restrictionG′ of T tG to G0. Under this
isomorphism the fiberGq aboveq is mapped to the vector spaceT tι(q)G = Tι(q)τ−1

t (q).
The following pleasant result was pointed out by Ramazan [25].

Proposition 1. Every Lie groupoid possesses a left Haar system.

Proof. A given strictly positive smooth densityρ on the vector bundleG can be
(uniquely) extended to a left-invariant densityρ̃ on the vector bundleT tG, which in
turn yields a left Haar system byµtq(f ) =

∫
τ−1
t (q)

ρ̃f . ut

One may canonically associate aC∗-algebraC∗(G) to a Lie groupoidG ←⇒ Q

[2], and equally canonically associate a Poisson algebraC∞(G∗) to its Lie algebroid

G
→→TQ

Q [4,3] (hereG∗ is the dual vector bundle ofG, with projection denoted byτ ∗).
From the point of view of quantization theory, these constructions go hand in hand [12,
13,15].

Although a left Haar system is not intrinsic, and an intrinsic definition ofC∗(G)may
be given [2,15,25], it vastly simplifies the presentation of our results if we define thisC∗-
algebra relative to a particular choice of a left Haar system{µtq}q∈Q. For f,g ∈ C∞c (G)
the product∗ in C∗(G) is then given by the convolution [26]

f ∗ g(γ ) :=
∫
τ−1
t (τs (γ ))

dµtτs(γ )(γ1) f(γ γ1)g(γ
−1
1 ); (7)

the involution is defined by

f∗(γ ) := f(γ−1). (8)

The groupoidC∗-algebraC∗(G) is the completion ofC∞c (G) in a suitableC∗-norm [2,
26,15].

On the classical side, the Poisson algebraC∞(G∗) associated to a Lie algebroidG
[4,3,15] is most simply defined by listing special cases which uniquely determine the
Poisson bracket. These are

{f, g} = 0; (9)

{s̃, f } = −(τa ◦ s)f ; (10)

{s̃1, s̃2} = − ˜[s1, s2]G. (11)
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Heref, g ∈ C∞(Q) (regarded as functions onG∗ in the obvious way), and̃s ∈ C∞(G∗)
is defined by a sections of G throughs̃(θ) = θ(s(τ ∗(θ))), etc. See [3] for an intrinsic
definition.

3. A Generalized Exponential Map

Throughout the remainder of the paper,G
→→TQ

Q will be the Lie algebroid of a Lie
groupoidG ←⇒ Q. In order to state and prove our main results we need to construct an
exponential map ExpW :G→ G, which generalizes the map Exp from a Lie algebra to
an associated Lie group. The construction of such a map was outlined by Pradines [24],
but in order to eventually satisfy the self-adjointness condition (2) on our quantization
map we need a different construction [15]. As in [24], our exponential map depends on
the choice of a connection on the vector bundleG. As before, the reader is referred to
Sect. 6 for examples of the constructions below.

Lemma 1. The vector bundlesT tG andτ ∗s G (overG) are isomorphic.

Proof. The pull-back bundleτ ∗s G is a vector bundle overG with projection onto the
second variable. The isomorphism is proved via the vector bundle isomorphismG 'G′;
see Sect. 2. Recalling (5), one checks thatT Lγ−1 : T tγG→ T t

γ−1γ
G is the desired bundle

isomorphism betweenT tG andτ ∗s G′. ut
Let us now assume thatG has a covariant derivative (or, equivalently, a connection),

with associated horizontal lift̀G. By Lemma 1 one then obtains a connection onT tG
(seen as a vector bundle overG, whose projection is borrowed fromTG) through pull-
back. Going through the definitions, one finds that the associated horizontal lift` of a
tangent vectorX = γ̇ := dγ (t)/dtt=0 in TγG to Y ∈ T tγG is

`Y (γ̇ ) = d

dt
[Lγ(t)∗`GT L

γ−1Y
(τs(γ (t)))]t=0, (12)

which is an element ofTY (T tG) (here`G(. . . ) lifts a curve).
Since the bundleT tG→ G has a connection, one can define geodesic flowX→ X(t)

on T tG in precisely the same way as on a tangent bundle with affine connection. That
is, the flowX(t) is the solution of

Ẋ(t) = `X(t)(X(t)), (13)

with initial conditionX(0) = X.

Definition 4. Let the Lie algebroidG
→→TQ

Q of a Lie groupoidG ←⇒ Q be equipped with
a connection. Relative to the latter, the left exponential mapExpL : G→ G is defined
by

ExpL(X) := γX′(1) = τT tG→G(X
′(1)), (14)

whenever the geodesic flowX′(t) on T tG (defined by the connection onT tG pulled
back from the one onG) is defined att = 1. HereX′ ∈ G′ = T tG � G0 is the image
ofX under the isomorphismG′ 'G.

Our goal, however, is to define a “symmetrized” version of ExpL.
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Lemma 2. For all X ∈G for whichExpL(X) is defined one has

τt (ExpL(X)) = τ(X). (15)

Hereτ is the bundle projection of the Lie algebroid.

Proof. We writeX for X′ in (14). One hasτt (γX(0)) = τ(X) and

d

dt
τt (γX(t)) = T (τt ◦ τT tG→G)`X(t)(X(t)) = T τtX(t) = 0,

since`X(Y ) coversY , andX(t) ∈ T tG = ker(T τt ) ∩ TG. ut
We combine this with the obviousτ( 1

2X) = τ(− 1
2X) to infer that

τt (ExpL( 1
2X)) = τt (ExpL(− 1

2X)) = τs(ExpL(− 1
2X)
−1).

Thus the (groupoid) multiplication in (16) below is well-defined.

Definition 5. The Weyl exponential mapExpW :G→ G is defined by

ExpW(X) := ExpL(− 1
2X)
−1ExpL( 1

2X). (16)

The following result is closely related to the tubular neighbourhood theorem.

Proposition 2. The mapsExpL andExpW are diffeomorphisms from a neighbourhood
N ι of Q ⊂ G (as the zero section) to a neighbourhoodNι of ι(Q) in G, such that
ExpL(q) = ExpW(q) = ι(q) for all q ∈ Q.

Proof. The property ExpL(q) = ι(q) is immediate from Definition 4. The push-forward
of ExpL at q is TExpL : TqG → Tι(q)G. Now recall the decomposition (6). ForX
tangent toQ ⊂G one immediately sees thatTExpL(X) = T ι(X). ForX tangent to the
fiber τ−1(q), which we identify withT tι(q)G, one hasTExpL(X) = X′, as follows by
the standard argument used to prove that expq in the theory of affine geodesics is a local
diffeomorphism: for a curveX(s) = sX in T tι(q)G one has ExpL(X(s)) = γX′(s)(1) =
γX′(s), so thatd/ds[ExpL(X(s))]s=0 = X′.

SinceTExpL is a bijection atq, the inverse function theorem implies that ExpL is
a local diffeomorphism. Since it mapsQ pointwise toι(Q), the local diffeomorphisms
can be patched together to yield a diffeomorphism of the neighbourhoods stated in
Proposition 2; we omit the details of this last step, since it is identical to the proof of the
tubular neighbourhood theorem.

As for ExpW , forX ∈ TqQ ⊂ TqG we haveTExpW(X) = T ι(X). Also,

d

ds
[ExpL(− 1

2sX)
−1ExpL( 1

2sX)]s=0 = − 1
2T I (X

′)+ 1
2X
′,

whereT I is the push-forward of the inversionI in G. The right-hand side lies in
ker(T τs + T τt ) ⊂ TG, and every element in this kernel is of the stated form. Sim-
ilarly to (6), one may prove the decomposition

Tι(q)G = Tι(q)G0⊕ ker(T τs + T τt )(ι(q)). (17)

It follows thatTExpW is a bijection atq, and the second part of the theorem is derived
as for ExpL. ut
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4. The Normal Groupoid and Continuous Fields ofC∗-Algebras

We now come to the first part of the proof of the conjecture thatC∗(G) is related to the
Poisson manifoldG∗ by a strict quantization.

Theorem 1. LetG be a Lie groupoid, with associated Lie algebroidG. TakeI = [0,1]
and putA0 = C0(G

∗), whereG∗ is the dual vector bundle ofG, andAh̄ = C∗(G) for
h̄ ∈ I\{0}.

There exists aC∗-algebraC and a family of surjective∗-homomorphisms{ϕh̄ : C→
Ah̄}h̄∈I such that(C, {Ah̄, ϕh̄}h̄∈I ) is a continuous field ofC∗-algebras.

The proof uses the normal groupoid of Hilsum and Skandalis [9] (also cf. [33,15]),
re-interpreted in terms of the Lie algebroid. We recall the definition; our construction of
the smooth structure is different from the one in [9]. The essence is to regard the vector
bundleG as a Lie groupoid under addition in each fiber, and glue it toG so as to obtain
a new Lie groupoid containing bothG andG.

Definition 6. LetG ←⇒ Q be a Lie groupoid with associated Lie algebroidG
→→TQ

Q . The
normal groupoidGN is a Lie groupoid with base[0,1] ×Q, defined by the following
structures:

• As a set,GN = G ∪ {(0,1] × G}. We write elements ofGN as pairs(h̄, u), where
u ∈G for h̄ = 0 andu ∈ G for h̄ 6= 0. ThusG is identified with{0} ×G.
• As a groupoid,GN = {0×G} ∪ {(0,1] ×G}. HereG is regarded as a Lie groupoid

overQ, with τs = τt = τ and addition in the fibers as the groupoid multiplication.
The groupoid operations in(0,1] ×G are those inG.
• The smooth structure onGN , making it a manifold with boundary, is as follows.

To start, the open subsetO1 := (0,1] × G ⊂ GN inherits the product manifold
structure. LetQ ⊂ N ι ⊂ G and ι(Q) ⊂ Nι ⊂ G, as in Theorem 2. LetO be the
open subset of[0,1] ×G (equipped with the product manifold structure; this is a
manifold with boundary, since[0,1] is), defined asO := {(h̄, X) | h̄X ∈ N ι}. Note
that {0} ×G ⊂ O. The mapρ : O→ GN is defined by

ρ(0, X) := (0, X);
ρ(h̄, X) := (h̄,ExpW(h̄X)). (18)

SinceExpW : N ι → Nι is a diffeomorphism (cf. Proposition 2) we see thatρ is a
bijection fromO to O2 := {0×G} ∪ {(0,1] ×Nι}. This defines the smooth structure
onO2 in terms of the smooth structure onO. SinceO1 andO2 coverGN , this specifies
the smooth structure onGN .

The fact thatGN is a Lie groupoid eventually follows from the corresponding property
of G. The given chart is defined in terms of the Weyl exponential, which depends on the
choice of a connection inG. However, one may verify that any (smooth) connection, or,
indeed, any (Q-preserving) diffeomorphisms betweenN ι andNι leads to an equivalent
smooth structure onGN . For example, we could have used ExpL instead of ExpW . Also,
the smoothness of ExpW makes the above manifold structure onGN well defined, in
that open subsets ofO1 ∩O2 are assigned the same smooth structure.

SinceGN is a Lie groupoid, we can form theC∗-algebraC∗(GN), which plays the
role ofC in Theorem 1. To proceed, we need a result due to Lee [16].
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Lemma 3. Let C be aC∗-algebra, and letψ : Prim(C) → X be a continuous and
open map from the primitive spectrumPrim(C) (equipped with the Jacobson topology
[5]) to a locally compact Hausdorff spaceX. DefineIx := ∩ψ−1(x); i.e.,A ∈ Ix iff
πI(A) = 0 for all I ∈ ψ−1(x) (hereπI(C) is the irreducible representation whose
kernel isI). Note thatIx is a (closed two-sided) ideal inC.
TakingAx = C/Ix andϕx : C→ Ax to be the canonical projection,(C, {Ax, ϕx}x∈X)
is a continuous field ofC∗-algebras.

For the proof cf. [6]. We apply this lemma withC = C∗(GN) andX = I = [0,1].
In order to verify the assumption in the lemma, we first note thatI0 ' C0((0,1]) ⊗
C∗(G), as follows from a glance at the topology ofGN . Hence Prim(I0) = (0,1] ×
Prim(C∗(G)), with the product topology. Furthermore, one hasC∗(GN)/I0 ' C∗(G) '
C0(G

∗); the second isomorphism is established by the fiberwise Fourier transform (20)
below (also cf. [9,2]). Hence Prim(C∗(GN)/I0) 'G∗. Using this in Prop. 3.2.1 in [5],
with A = C∗r (GN) andI the idealI0 generated by thosef ∈ C∞c (GN) which vanish
at h̄ = 0, yields the decomposition

Prim(C∗(GN)) 'G∗ ∪ {(0,1] × Prim(C∗(G))}, (19)

in which G∗ is closed. This does not provide the full topology on Prim(C∗(GN)), but
it is sufficient to know thatG∗ is not open. If it were,(0,1] × Prim(C∗(G)) would be
closed in Prim(C∗(GN)), and this possibility can safely be excluded by looking at the
topology ofGN and the definition of the Jacobson topology.

Using (19), we can define a mapψ : Prim(C∗(GN)) → [0,1] by ψ(I) = 0 for
all I ∈ G∗ andψ(h̄,I) = h̄ for h̄ 6= 0 andI ∈ Prim(C∗(G)). It is clear from the
preceding considerations thatψ is continuous and open. Using this in Lemma 3, one
sees thatIh̄ is the ideal inC∗(GN) generated by thosef ∈ C∞c (GP )which vanish at̄h.
HenceA0 ' C0(G

∗), as above, andAh̄ ' C∗(G) for h̄ 6= 0. Theorem 1 then follows
from Lemma 3.

As pointed out to the author by G. Skandalis (private communication, June 1997),
similar considerations lead to the following generalization of Theorem 1.

Let G̃ be a Lie groupoid with basẽQ, and letp be a continuous and open map from
Q̃ to some Hausdorff spaceX, which isG̃-invariant in the sense thatp ◦ τs = p ◦ τt .
DefineG̃x := (p ◦ τs)−1(x) (this is a sub-groupoid of̃G because of thẽG-invariance of
p), andAx := C∗(G̃x). Then the collection({Ax}x∈X,C∗(G̃)) is a continuous field of
C∗-algebras at those pointsx whereC∗(G̃x) = C∗r (G̃x). Heref ∈ C∗(G̃) is understood
to define a section of the field{Ax}x∈X by f (x) = f � G̃x .

We apply this to our situation by taking̃G = GN andX = I , henceQ̃ = I ×Q, and
p is just projection onto the first variable. Continuity away fromh̄ = 0 follows from the
triviality of the field for h̄ 6= 0 (whether or notC∗r (G) = C∗(G)). Continuity ath̄ = 0
follows by noticing thatC∗r (G) = C∗(G), both sides being equal toC0(G

∗). In other
words, from this point of view it is the amenability ofG, regarded as a Lie groupoid,
that lies behind Theorem 1.

5. Weyl Quantization on the Dual of a Lie Algebroid

LetG
→→TQ

Q be a Lie algebroid, with bundle projectionτ . We start by defining a fiberwise
Fourier transformf̀ ∈ C∞(G) of suitablef ∈ C∞(G∗). This transform depends on
the choice of a family{µLq }q∈Q of Lebesgue measures, whereµLq is defined on the fiber
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τ−1(q). We will discuss the normalization of eachµLq in the proof of Theorem 2; for
the moment we merely assume that theq-dependence is smooth in the obvious (weak)
sense. For a functioǹf onG which isL1 on each fiber we put

f (θ) :=
∫
τ−1(q)

dµLq (X) e
−iθ(X)f̀ (X), (20)

whereX ∈ τ−1(q). EachµLq determines a Lebesgue measureµL∗q on the fiberτ−1
G∗→Q(q)

of G∗ by fixing the normalization in requiring that the inverse to (20) is given by

f̀ (X) =
∫
τ−1
G∗→Q(q)

dµL∗q (θ) eiθ(X)f (θ). (21)

Having constructed a Fourier transform, we define the classC∞PW(G
∗) as consisting of

those smooth functions onG∗whose Fourier transform is inC∞c (G); this generalizes the
class of Paley-Wiener functions onT ∗Rn ' Cn. We pick a functionκ ∈ C∞(G,R)with
support inN ι (cf. Proposition 2), equaling unity in some smaller tubular neighbourhood
of Q, as well as satisfyingκ(−X) = κ(X) for all X ∈G.

Definition 7. Let G be a Lie groupoid with Lie algebroidG. For h̄ 6= 0, the Weyl
quantization off ∈ C∞PW(G

∗) is the elementQW
h̄ (f ) ∈ C∞c (G), regarded as a dense

subalgebra ofC∗(G), defined byQW
h̄ (f )(γ ) := 0 whenγ /∈ Nι, and by

QW
h̄ (f )(ExpW(X)) := h̄−nκ(X)f̀ (X/h̄). (22)

Here the Weyl exponentialExpW : G→ G is defined in (16), and the cutoff functionκ
is as specified above.

This definition is possible by virtue of Proposition 2. By our choice ofC∞PW(G
∗), the

operatorQW
h̄ (f ) is independent ofκ for small enough̄h (depending onf ).

Theorem 2. Let G be a Lie groupoid with Lie algebroidG
→→TQ

Q , and takeÃ0 =
C∞PW(G

∗). For eachf ∈ Ã0 operator QW
h̄ (f ) of Definition 7 satisfiesQW

h̄ (f )
∗ =

QW
h̄ (f

∗), and the family{QW
h̄ (f )}h̄∈[0,1], with QW

0 (f ) = f , is a continuous cross-
section of the continuous field ofC∗-algebras of Theorem 1.

Proof. Writing the Poisson bracket and the pointwise product in terms of the Fourier
transform, one quickly establishes thatÃ0 is indeed a Poisson algebra.

It is immediate from (8) and (16) that for real-valuedf ∈ Ã0 the operatorQW
h̄ (f )

is self-adjoint inC∗(G); this implies the first claim.
To prove the second claim, we pick a left Haar system{µtq}q∈Q on G ←⇒ Q; see

Proposition 1. The vector bundleG, regarded as a Lie groupoid under addition in
each fiber (cf. Definition 6), has a left Haar system in any case, consisting of the fam-
ily {µLq }q∈Q of Lebesgue measures on each fiber already used in the construction of
the Fourier transform. Since we have a Lie groupoid, the Radon-Nikodym derivative
Jq(X) := dµtq(ExpW(X))/dµLq (X) is well defined and strictly positive onN ι (since
both measures are locally Lebesgue on spaces with the same dimension). We now fix
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the normalization of theµLq by requiring that limX→0 Jq(X) = 1 for all q. This leads
to a left Haar system forGN , given by

µt(0,q) := µLq ;
µt(h̄,q) := h̄−nµtq, (23)

wheren is the dimension of the typical fiber ofG. The factorh̄−n is necessary in order
to satisfy condition 3 in Definition 3 at̄h = 0, as is easily verified using the manifold
structure onGN .

Thus the∗-algebraic structure onC∞c (GN) defined by (7) and (8) with Definition 6
and (23) becomes

f ∗ g(0, X) =
∫
τ−1◦τ(X)

dµLτ(X)(Y ) f(0, X − Y )g(0, Y ); (24)

f ∗ g(h̄, γ ) = h̄−n
∫
τ−1
t (τs (γ ))

dµtτs(γ )(γ1) f(h̄, γ γ1)g(h̄, γ
−1
1 ); (25)

f∗(0, X) = f(0,−X); (26)

f∗(h̄, γ ) = f(h̄, γ−1). (27)

One sees that, for givenf ∈ C∞PW(G
∗), the functionQ(f ) on GN defined by

Q(f )(0, X) = f̀ (X), Q(f )(h̄,ExpW(X)) = κ(X)f̀ (X/h̄), andQ(f )(h̄, γ ) = 0 for
γ /∈ Nι, is smooth onGN ; cf. Definition 6. In other words,Q(f ) is an element of
C∗(GN).

Recall thatIh̄ is the ideal inC∗(GN) generated by those functions inC∞c (GN)

which vanish at̄h. The canonical mapf→ [f]h̄ fromC∗(GN) toC∗r (GN)/Ih̄ is given,
for h̄ 6= 0, by [f]h̄(·) = f(h̄, ·). However, in view of the factor̄h−n in (25), this map is
only a∗-homomorphism fromC∗(GN) toC∗(G) if we add a factor̄h−n to the definition
(7) of convolution onG. Since forh̄ 6= 0 we would like to identifyC∗(GN)/Ih̄ with
C∗(G), in which convolution is defined in the usual,h̄-independent way, we should
therefore define the mapsϕh̄ of Theorem 1 by

ϕ0(f) : θ 7→ f́(0, θ);
ϕh̄(f) : γ 7→ h̄−nf(h̄, γ ) (h̄ 6= 0). (28)

Hereϕ0 : C∗(GN) → C0(G
∗), and f́(0, θ) andf(0, X) are related asf (θ) andf̀ (X)

are in (20). For̄h 6= 0 one of course hasϕh̄ : C∗(GN) → C∗(G). These expressions
are initially defined forf ∈ C∞c (GN); sinceϕh̄ is contractive, they are subsequently
extended to generalf ∈ C∗(GN) by continuity.

This explains the factor̄h−n in (22); the theorem then follows from the paragraph
after (27). ut

The important calculations of Ramazan [25] show that

lim
h̄→0
‖ i
h̄
[QW

h̄ (f ),QW
h̄ (g)] −QW

h̄ ({f, g})‖ = 0 (29)

for all f, g ∈ Ã0; this is Dirac’s condition (he in addition proves this to hold in formal
deformation quantization).
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Corollary 1. LetG be a Lie groupoid, with associated

• Lie algebroidG
→→TQ

Q ;
• Poisson manifoldG∗ (the dual bundle toG, with Poisson structure (9)–(11));
• normal groupoidGN (cf. Definition 6).

In the context of Definition 2, the ingredients listed below yield a strict quantization of
the Poisson manifoldP =G∗:

1. The continuous field ofC∗-algebras given byC = C∗(GN), A0 = C0(G
∗), Ah̄ =

C∗(G) for h̄ ∈ I\{0}, andϕh̄ as defined in (28); cf. Theorem 1.

2. The dense subspacẽA0 = C∞PW(G
∗) of fiberwise Paley–Wiener functions onG∗ (as

defined below (21)).
3. The mapQ : C∞PW(G

∗)→ C∗(GN) is defined by puttingQh̄ = QW
h̄ (as specified in

Definition 7); this determinesQ by Theorem 2 and the remark after Definition 1.

6. Examples

In this section we illustrate the concepts introduced above, and show that a number of
known strict quantizations are special cases of Corollary 1. Details of these examples will
be omitted; see [17,3,15,1] for matters related to the Lie groupoids and Lie algebroids
involved, and cf. [2,26,15,25] for theC∗-algebras that appear. The quantization maps
are discussed in detail in [15].

It turns out that a number of examples are more naturally described by changing
some signs, as follows. We denoteG∗, seen as a Poisson manifold through (9)–(11), by
G∗−. Alternatively, we may insert plus signs on the right-hand sides of (10) and (11),
defining the Poisson manifoldG∗+. The normal groupoidGN may be equipped with a
different manifold structure by replacing ExpW(h̄X) in (18) by ExpW(−h̄X); the original
Definition 6 yields a manifoldG+N , and the modified one definesG−N . (The original
smooth structure is equivalent to the modified one by the diffeomorphism(0, X) 7→
(0,−X) and(h̄, γ ) 7→ (h̄, γ ).) In (22) we may replacèf (X/h̄) by f̀ (−X/h̄), defining
a quantization mapQW

h̄ (·)−, differing from the original oneQW
h̄ (·)+ = QW

h̄ (·).
Theorems 1 and 2, Eq. (29), as well as Corollary 1 remain valid if all signs are

simultaneously changed in this way.

Example 1 (Weyl quantization on a manifold).The pair groupoidQ × Q ←⇒ Q on a
setQ is defined by the operationsτs(q1, q2) := q2, τt (q1, q2) := q1, ι(q) := (q, q),
(q1, q2) · (q2, q3) := (q1, q3), and(q1, q2)

−1 := (q2, q1). This is a Lie groupoid when
Q is a manifold. Any measureν onQ which is locally Lebesgue defines a left Haar
system. One hasC∗(Q ×Q) ' B0(L

2(Q)), theC∗-algebra of all compact operators
onL2(Q, ν).

The associated Lie algebroid is the tangent bundleTQ, with the usual bundle pro-
jection and Lie bracket, and the anchor is the identity. The Poisson bracket onT ∗Q is
the canonical one.
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To define ExpW one chooses an affine connection∇ on TQ, with associated expo-
nential map exp: TQ→ Q. Then

ExpL(X) = (τ (X),expτ(X)(X)); (30)

ExpW(X) = (expτ(X)(− 1
2X),expτ(X)(

1
2X)), (31)

whereX ∈ TQ andτ := τTQ→Q.
On Q = Rn with flat metric and corresponding flat Riemannian connection this

simplifies to ExpW(v, q) = (q − 1
2v, q + 1

2v), where we have used canonical co-
ordinates onTRn. The operatorQW

h̄ (f )− onL2(Rn) defined by (22), where one may
takeκ = 1, with (21), is then given by

QW
h̄ (f )−9(x) =

∫
T ∗Rn

dnpdny

(2πh̄)n
eip(x−y)/h̄f (p, 1

2(x + y))9(y). (32)

This is Weyl’s original prescription. The associated continuous field ofC∗-algebras is
A0 = C0(T

∗Rn) andAh̄ = B0(L
2(Rn)) for h̄ 6= 0. The fact that this quantization

map is strict, and in particular satisfies (3), was proved by Rieffel [29]; also cf. [15].
ReplacingI = [0,1], as we have used so far in connection with Definition 2, byI = R,
theC∗-algebraC in Definition 1 isC∗(Hn), the group algebra of the simply connected
Heisenberg group onRn [6]. This is indeed theC∗-algebra of the tangent groupoid of
Rn (see below).

WhenQ is an arbitrary manifold, the normal groupoid(Q × Q)N is the tangent
groupoid ofQ [2]. If one takes the affine connection onTQ to be the Levi-Civita
connection given by a Riemannian metric onQ, one recovers the extension of Weyl’s
prescription considered in [12,15]. One now hasA0 = C0(T

∗Q)andAh̄ =B0(L
2(Q))

for h̄ 6= 0, andQW
h̄ duly satisfies (3); see [12,15], where references to alternative

generalizations of Weyl’s quantization prescriptions may be found.

Example 2 (Rieffel’s quantization of the Lie–Poisson structure on a dual Lie algebra).
A Lie group is a Lie groupoid withQ = e. A left-invariant Haar measure onG provides
a left Haar system; the ensuing convolution algebraC∗(G) is the usual group algebra.
The Lie algebroid is the Lie algebra. The Poisson structure ong∗± is the well-known
Lie–Poisson structure [18,15].

No connection is needed to define the exponential map, and one has

ExpL(X) = ExpW(X) = Exp(X), (33)

whereX ∈ g and Exp: g→ G is the usual exponential map. WhenG is exponential (in
that Exp is a diffeomorphism), one may omitκ in (22). Taking the+ sign, the function
QW
h̄ (f )+ ∈ C∗(G) is then given by

QW
h̄ (f )+ : Exp(X)→

∫
g∗

dnθ

(2πh̄)n
ei〈θ,X〉/h̄f (θ). (34)

This is Rieffel’s prescription [28], who proved strictness of the quantization for nilpotent
groups. WhenG is compact one needs the cut-off functionκ, obtaining another quan-
tization already known to be strict before the present paper and [25] appeared; see [14]
or [15].
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Example 3 (Weyl quantization on a gauge groupoid).The gauge groupoidP×H P ←⇒ Q

of a smooth principal bundleP over a baseQ with structure groupH is defined by the
projectionsτs([x, y]H ) = τ(y) andτt ([x, y]H ) = τ(x), and the inclusionι(τ (x)) =
[x, x]H . Accordingly, the multiplication[x, y]H · [x′, y′]H is defined wheny andx′ lie
in the same fiber ofP, in which case[x′, y′]H = [y, z]H for somez = y′h, h ∈ H .
Then[x, y]H · [y, z]H = [x, z]H . Finally, the inverse is[x, y]−1

H = [y, x]H . See [17].
An H -invariant measureµ on P which is locally Lebesgue produces a left Haar

system. In general, each measurable sections : Q → P determines an isomorphism
C∗(P ×H P) ' B0(L

2(Q))⊗ C∗(H); this is a special case of Thm. 3.1 in [21] (also
cf. [15], Thm. 3.7.1). WhenH is compact one hasC∗(P×H P) 'B0(L

2(P))H , where
L2(P) is defined with respect to someH -invariant locally Lebesgue measure onP.

The associated Lie algebroid(TP)/H
→→TQ

Q is defined by the obvious projections
(both inherited from the projectionτ : P→ Q), the Lie bracket on0((TP)/H)obtained
by identifying this space with0(TP)H , and borrowing the commutator from0(TP);
cf. [17]. The Poisson structure on((TP)/H)∗ = (T ∗P)/H is given by the restriction
of the canonical Poisson bracket onC∞(T ∗P) to C∞(T ∗P)H , under the isomorphism
C∞((T ∗P)/H) ' C∞(T ∗P)H .

One chooses anH -invariant affine connection onTP, with exponential map exp:
TP→ P. This induces a connection on(TP)/H , in terms of which

ExpL([X]H ) = [τ(X),expτ(X)(X)]H ; (35)

ExpW([X]H ) = [expτ(X)(− 1
2X),expτ(X)(

1
2X)]H , (36)

whereτ = τTP→P, and[X]H ∈ (TP)/H is the equivalence class ofX ∈ TP under the
H -action onTP.

In the Riemannian case, for compactH the corresponding mapQW
h̄ (·)− is simply

the restriction ofQW
h̄ (·)− : C∞PW(T

∗P) → B0(L
2(P)) as defined in Example 1 to

C∞PW(T
∗P)H . SinceQW

h̄ is invariant under isometries [15], the image ofC∞PW(T
∗P)H is

contained inB0(L
2(P))H . The ensuing quantization of(T ∗P)/H was already known to

be strict; see [12,15]. Physically, this example describes the quantization of a nonabelian
charged particle moving in a gravitational as well as a Yang–Mills field.

Example 4 (Transformation groupC∗-algebras).Let a Lie groupG act smoothly on a
setQ. The transformation groupoidG×Q ←⇒ Q is defined by the operationsτs(x, q) =
x−1q andτt (x, q) = q, so that the product(x, q) · (y, q ′) is defined whenq ′ = x−1q.
Then(x, q) · (y, x−1q) = (xy, q). The inclusion isι(q) = (e, q), and for the inverse
one has(x, q)−1 = (x−1, x−1q).

Each left-invariant Haar measuredx onG leads to a left Haar system. The corre-
sponding groupoidC∗-algebra is the usual transformation groupC∗-algebraC∗(G,Q),
cf. [26].

The Lie algebroidg ×Q →→TQ
Q is a trivial bundle overQ, with anchorτa(X, q) =

−ξX(q) (the fundamental vector field onQ defined byX ∈ g). Identifying sections of
g×Q with g-valued functionsX(·) onQ, the Lie bracket on0(g×Q) is

[X, Y ]g×Q(q) = [X(q), Y (q)]g + ξYX(q)− ξXY (q). (37)

The associated Poisson bracket coincides with the semi-direct product bracket defined
in [11].
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The trivial connection ong×Q→ Q yields

ExpL(X, q) = (Exp(X), q); (38)

ExpW(X, q) = (Exp(X),Exp( 1
2X)q). (39)

The cutoffκ in (22) is independent ofq, and coincides with the function appearing in
Example 2. For small enough̄h a functionf ∈ C∞PW(g

∗ ×Q) is then quantized by

QW
h̄ (f )± : (Exp(X), q)→

∫
g∗

dnθ

(2πh̄)n
ei〈θ,X〉/h̄f (±θ,Exp(− 1

2X)q). (40)

WhenG = Rn andQ has aG-invariant measure, the mapf → QW
h̄ (f )± is equivalent

to the deformation quantization considered by Rieffel [27], who already proved that it
is strict (also cf. [15]).

Note added in proof.All results remain true when the groupoidC∗-algebras are replaced
by reduced ones. This is clear both from the proof of Lemma 3 and from the argument
at the end of Sect. 4 (which should be attributed to E. Blanchard).
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