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Abstract: A strict quantization of a Poisson manifoRlon a subset C R containing
0 as an accumulation point is defined as a continuous field*edlgebras{A; }ncr,
with 2lg = Co(P), a dense subalgebﬁo of Co(P) on which the Poisson bracket
is defined, and a set of continuous cross-sect'{@(sf)}fe% for which Qo(f) =
f. Here Qx(f*) = Qn(f)* for all » e I, whereas fo: — 0 one requires that
i[Qn(f), Qn(e)/h — Qn({f, g}) in norm.

For any Lie groupoids, the vector bundl€* dual to the associated Lie algebraid
is canonically a Poisson manifold. L2y = Co(&*), and fori # 0 let(; = C*(G)
be theC*-algebra ofG. The family of C*-algebrag®(; }<[0,1; forms a continuous field,
and we construct a dense subalgeilbac Co(®*) and an associated fami{Q}l’V(f)}
of continuous cross-sections of this field, generalizing Weyl quantization, which define
a strict quantization o§*.

Many known strict quantizations are a special case of this procedur®. O *R”
the mapsQ}f’(f) reduce to standard Weyl quantization; fBr= T7*Q, whereQ is
a Riemannian manifold, one recovers Connes’ tangent groupoid as well as a recent
generalization of Weyl's prescription. Wh&is the gauge groupoid of a principal bundle
one is led to the Weyl quantization of a particle moving in an external Yang—Mills field.
In case thats is a Lie group (with Lie algebrg) one recovers Rieffel’s quantization
of the Lie—Poisson structure gyi. A transformation groupC*-algebra defined by a
smooth action of a Lie group on a manifof@l turns out to be the quantization of the
Poisson manifoldgy* x Q defined by this action.

1. Introduction

The notion of quantization to be used in this paper is motivated by the desire to link the
geometric theory of classical mechanics and reduction [18,32] witlCthalgebraic
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formulation of quantum mechanics and induction [15], and also with non-commutative
geometry [2]. Starting with Rieffel's fundamental paper [27], vari6Usalgebraic def-
initions of quantization have been proposed [29,12,30,15,31]. Definition 2 below is
closely related to these proposals, and is particularly useful in the context of the class of
examples studied in this paper.

These examples come from the theory of Lie groupoids and their Lie algebroids
(cf. Sect. 2). The idea that th&*-algebra of a Lie groupoid is connected to the Poisson
manifold defined by the associated Lie algebroid by (strict) quantization was conjectured
in [12], and proved in special cases in [13,15]. The results of [28,29,23] also supported
the claim. In this paper we prove the conjecture up to Dirac’s condition (3); this is the
content of Theorems 1 and 2. Following up on our work, Dirac’s condition has finally
been proved by Ramazan [25]. This leads to the Corollary at the end of Sect. 5, which
is the main result of the paper.

Further to the examples considered in Sect. 6, it would be interesting to apply the point
of view in this paper to the holonomy groupoid of a foliation [2], and to the Lie groupoid
defined by a manifold with boundary [23,19]. Moreover, the approach to index theory
via the tangent groupoid [2] and its recent generalization to arbitrary Lie groupoids
[20] may now be seen from the perspective of “strict” quantization theory. This may be
helpful also in understanding the connection between various other approaches to index
theory which use (formal deformation) quantization [8, 7].

The central notion irC*-algebraic quantization theory is that of a continuous field
of C*-algebras [5]. For our purposes the following reformulation is useful [10].

Definition 1. A continuous field o *-algebras(€&, {21, ¢ }recx) Over a locally com-

pact Hausdorff spaceX consists of aC*-algebra €, a collection of C*-algebras

{A}xex, and a set{p, : € — A, }ex Of surjective*-homomorphisms, such that

forall A € €,

1. the functionx — ||¢,(A)] isin Co(X);

2. one has|Al| = sup.cx [l (A);

3. there is an elemenfA € € for any f € Co(X) for whichg, (fA) = f(x)py(A)
forall x € X.

The continuous cross-sections of the field in the sense of [5] consist of those elements
{Ax}xex Of [, cx 2A: for which there is a (necessarily uniqué)e € such thatd, =
o (A) forallx € X.

We refer to [18,32] for the theory of Poisson manifolds and Poisson algebras; the
latter is the classical analogue of the self-adjoint part 6f aalgebra [15].

Definition 2. Let/ C R contain0 as an accumulation point. A strict quantization of a

Poisson manifold® on I consists of

1. a continuous field of *-algebras(€, {215, ¢r}ner), With2Ag = Co(P);

2. adense subspa@o C Co(P) onwhich the Poisson bracket is defined, and which is
closed under pointwise multiplication and taking Poisson brackets (in other words,
Ao is a Poisson algebra);

3. alinear mapQ : 2o — € which (With Qs (f) = ¢r(Q(f))) for all f € A and
h € I satisfies

Qo(f) = . 1)
Qn(f") = (N, 2
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and for all f, g € 2o satisfies Dirac’s condition

lim 11Q4(£). Qu(&)] = Qu(( . ghll = 0. 3)

Elements off are interpreted as possible values of Planck’s constaamd®(; is the
guantum algebra of observables of the theory at the given valuezod. For real-valued
f, the operatoQy, (f) is the quantum observable associated to the classical observable
f. This interpretation is possible because of condition (2) in Definition 2. In view of the
comment after Definition 1, for fixed € Ao each family{Qx (f)}ner is a continuous
cross-section of the continuous field in question. In view of (1) this implies, in particular,
that

;!,iLno 19 (f)Qn(8) — Ln(fI = 0. 4)

This shows that strict quantization yields asymptotic morphisms in the sefisthebry
[2]; cf. [22]. See [15] for an extensive discussion of quantization theory from the above
perspective, including an interpretation of the conditions (3) and (4).

2. Lie Groupoids and Lie Algebroids

Throughout this section, the reader is encouraged to occasionally skip to Sect. 6 to have
a look at some examples of the objects defined.

We refer to [26,17,3,2,15,1] for the basic definitions on groupoids; here we merely
establish our notation. Briefly, a groupoid is a category whose space of d&r@sset
(hence the space of objedtsis a set as well), and whose arrows are all invertible. The
source and target projections are calted G — Q andz; : G — Q, respectively.

The subset oG x G on which the groupoid multiplication (i.e., the composition of
arrows) is defined is calle@;; hence(ys, y2) € G2 iff t;(31) = 1:(y2). The inversion
y — y 1 defines the unit spac®y = {yy 1|y € G}, which is related to the base
spaceQ by the “object inclusion mapl': Q < G; this is a bijection betwee and
1(Q) = Go. The notatiorG = Q for a groupoid to some extent captures the situation.

A Lie groupoid is a groupoids = Q, whereG and Q are manifolds (perhaps
with boundary), the maps andz, are surjective submersions, and multiplication and
inclusion are smooth [17,3,2,15,1]. Following [15], we now sharpen Def. .2.2 in [26].

Definition 3. A left Haar system on a Lie groupoi@ = Q is a family{uf]}qu of
positive measures, where the measluge's defined or’r,‘l(q), such that

1. the family is invariant under left-translation iG;
2. eachM; is locally Lebesgue (i.e., it is equivalent to the Lebesgue measure in every

co-ordinate chart; note that each fibef 1(¢) is a manifold);
3. for eachf € C°(G) the mapg — f_[—l(q) dpg ()f(y) from Q to C is smooth.

Here left-invariance means invariance under all mapsdefined by
L,y =yy' (5)

whenevery, ') € G,. Note thatl,, mapsr, *(z,(y)) diffeomorphically tor, 1 (z; ().
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A Lie groupoidG = Q has an associated Lie algebroid [17,3, 15, 1], which we denote

by & 2’8, This is a vector bundle ovaP, which apart from the bundle projection
7 : & — Qs equipped with a vector bundle map: & — T Q (called the anchor), as
well as with a Lie brackelt, ] on the spac& (&) of smooth sections ab, satisfying
certain compatibility conditions.

For our purposes, the essential point in the constructio® ok 'S fromG S 0
lies in the fact that the vector bundé over Q is the normal bundi&v‘ Q defined by
the embedding: Q — G; accordingly, the projection : N*Q — Q is given byz, or
7, (these projections coincide dbg). The tangent bundle @& at the unit space has a
decomposition

TG = Tu)Go & T}, G. 6)

whereT!G = ker(Tt;) is a sub-bundle o' G. Note thatTJﬁG = Tyr,_l(r,(y)). Hence

& 3TQQ is isomorphic as a vector bundle to the restrictidhof 7' G to Gg. Under this
isomorphism the fibe®, abovey is mapped to the vector spafgq)G = Tl(q)rt‘l(q).
The following pleasant result was pointed out by Ramazan [25].

Proposition 1. Every Lie groupoid possesses a left Haar system.

Proof. A given strictly positive smooth density on the vector bundl& can be
(uniquely) extended to a left-invariant densjiyon the vector bundl€’G, which in
turn yields a left Haar system byq(f) = frt—l(q) of. O

One may canonically associateC&-algebraC*(G) to a Lie groupoidG = Q

[2], and equally canonically associate a Poisson algéifa&™*) to its Lie algebroid
—>TQ

& — o [4,3] (here®* is the dual vector bundle &b, with projection denoted by*).
From the point of view of quantization theory, these constructions go hand in hand [12,
13,15].

Although a left Haar system is not intrinsic, and an intrinsic definitio@6§G) may
be given[2,15,25], it vastly simplifies the presentation of our results if we defin€this
algebra relative to a particular choice of a left Haar sys{tﬂgjqeg. Forf,g € C°(G)
the products in C*(G) is then given by the convolution [26]

feg0) = [ IR AL et (7)
T Ty

the involution is defined by

() :==f(y~1). (8)

The groupoidC*-algebraC*(G) is the completion o€2°(G) in a suitableC*-norm [2,
26,15].

On the classical side, the Poisson algebfa(®*) associated to a Lie algebrod
[4,3,15] is most simply defined by listing special cases which uniquely determine the
Poisson bracket. These are

{f.g}=0; 9
(s, fl=—(tao8)f; (10)

—_~—

{51, 52} = —I[s51, s2]e- (12)
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Heref, g € C*(Q) (regarded as functions @ * in the obvious way), anfle C*°(&*)
is defined by a sectionof & throughs(9) = 6(s(t*(0))), etc. See [3] for an intrinsic
definition.

3. A Generalized Exponential Map

Throughout the remainder of the pape, =8 will be the Lie algebroid of a Lie
groupoidG = Q. In order to state and prove our main results we need to construct an
exponential map EXp) : & — G, which generalizes the map Exp from a Lie algebra to

an associated Lie group. The construction of such a map was outlined by Pradines [24],
but in order to eventually satisfy the self-adjointness condition (2) on our quantization
map we need a different construction [15]. As in [24], our exponential map depends on
the choice of a connection on the vector bunéileAs before, the reader is referred to
Sect. 6 for examples of the constructions below.

Lemma 1. The vector bundle$’G and & (overG) are isomorphic.

Proof. The pull-back bundle;*® is a vector bundle ove® with projection onto the
second variable. The isomorphism is proved via the vector bundle isomorghisn®’;
see Sect. 2. Recalling (5), one checks that, -1 : T;G — T;,lyG is the desired bundle

isomorphism betweefi’G and¢;®’. O

Let us now assume that has a covariant derivative (or, equivalently, a connection),
with associated horizontal lit®. By Lemma 1 one then obtains a connectionféG
(seen as a vector bundle ov@r whose projection is borrowed frofG) through pull-
back. Going through the definitions, one finds that the associated horizontabfiti
tangent vectoX =y :=dy(t)/dti—0inT,GtoY € T,G is

d
by (y) = d—t[LW)*E%‘Lflym(y(r)))],:o, (12)

which is an element ofy (T*G) (here¢®(...) lifts a curve).

Sincethe bundl&’G — G hasaconnection, one candefine geodesicKow X (¢)
onT'G in precisely the same way as on a tangent bundle with affine connection. That
is, the flowX (¢) is the solution of

X(1) = Lx(X (1)), (13)
with initial condition X (0) = X.

Definition 4. Letthe Lie algebroids 2’8 ofalLie groupoidG = Q be equipped with
a connection. Relative to the latter, the left exponential lBap” : & — G is defined

by
Exph(X) := yx' (1) = tri6-6(X' (1), (14)

whenever the geodesic fla/(r) on T'G (defined by the connection &G pulled
back from the one o) is defined at = 1. Here X' € &' = T'G | Gg is the image
of X under the isomorphisé’ ~ &.

Our goal, however, is to define a “symmetrized” version of Exp
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Lemma 2. For all X € & for whichExp® (X) is defined one has
7 (Exph (X)) = 7(X). (15)

Herez is the bundle projection of the Lie algebroid.

Proof. We write X for X’ in (14). One has;(yx(0)) = t(X) and

d
2,1 rx@) =T otric—e)lxn(X(1) =TuX () = 0,

sincelx (Y) coversY, andX () € T'G = ker(Tt,) N TG. O
We combine this with the obvious(}X) = r(—3X) to infer that

% (Exp"(3X)) = 1 (Exp" (—3X)) = 7, (Exp"(—1X) 7).
Thus the (groupoid) multiplication in (16) below is well-defined.

Definition 5. The Weyl exponential maxp" : & — G is defined by
Exp” (X) := Exp* (—1X)tExpt (1 X). (16)
The following result is closely related to the tubular neighbourhood theorem.

Proposition 2. The map£xp" andExp" are diffeomorphisms from a neighbourhood
Nt of Q0 c & (as the zero section) to a neighbourhadél of ((Q) in G, such that

Exph(q) = ExpY (q) = u(g) forall g € Q.

Proof. The property Exp(g) = t(g) isimmediate from Definition 4. The push-forward
of Exp* atg is TExp" : T,& — T,,)G. Now recall the decomposition (6). Faf
tangent toQ C ¢ one immediately sees thAExp" (X) = T1(X). ForX tangent to the
fiber t—1(¢), which we identify withTL’(q)G, one hasTExp! (X) = X/, as follows by
the standard argument used to prove thaf enphe theory of affine geodesics is a local
diffeomorphism: for a curv& (s) = sX in Tl’(q)G one has Exp(X (s)) = Yx'(s (D) =
yx'(s), so thatd /ds[Exp" (X (s))]s—0 = X'.

SinceTExp" is a bijection alg, the inverse function theorem implies that Exis
a local diffeomorphism. Since it mags pointwise to.(Q), the local diffeomorphisms
can be patched together to yield a diffeomorphism of the neighbourhoods stated in
Proposition 2; we omit the details of this last step, since it is identical to the proof of the
tubular neighbourhood theorem.

As for Exp, for X € 7,0 C T,® we haveT Exp" (X) = Tu(X). Also,

d
T IEXP! (=35 ) THEXPE (35 X)]im0 = —3T1 (X)) + X/,

where T'I is the push-forward of the inversiohin G. The right-hand side lies in
ker(Tty + Tt,) C TG, and every element in this kernel is of the stated form. Sim-
ilarly to (6), one may prove the decomposition

T.)G = T,(y)Go @ ker(Tt; + T 1) (1(q)). (17)

It follows that TExp" is a bijection a7, and the second part of the theorem is derived
as for Exg. O
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4. The Normal Groupoid and Continuous Fields ofC*-Algebras

We now come to the first part of the proof of the conjecture &iaG) is related to the
Poisson manifold5* by a strict quantization.

Theorem 1. LetG be a Lie groupoid, with associated Lie algebrafid Takel = [0, 1]
and putp = Co(&*), where®* is the dual vector bundle &b, and(;, = C*(G) for
i e 1\{0}.

There exists &*-algebra€ and a family of surjectivé-homomorphismgp;, : € —
U tner sSuch that(€, {Ay, onlner) is a continuous field of *-algebras.

The proof uses the normal groupoid of Hilsum and Skandalis [9] (also cf. [33,15]),
re-interpreted in terms of the Lie algebroid. We recall the definition; our construction of
the smooth structure is different from the one in [9]. The essence is to regard the vector
bundle® as a Lie groupoid under addition in each fiber, and glue@ & as to obtain
a new Lie groupoid containing botd and &.

Definition 6. LetG = Q be a Lie groupoid with associated Lie algebrdt’diiTQQ. The
normal groupoidGy is a Lie groupoid with basg0, 1] x Q, defined by the following
structures:

e AsasetGy = & U {(0, 1] x G}. We write elements &by as pairs(#, u), where
u e &forh =0andu € G for i # 0. Thus® is identified with{0} x &.

e AsagroupoidGy = {0 x &} U {(0, 1] x G}. Here® is regarded as a Lie groupoid
over Q, with ty, = tr, = 7 and addition in the fibers as the groupoid multiplication.
The groupoid operations ifD, 1] x G are those inG.

e The smooth structure o6 ,, making it a manifold with boundary, is as follows.
To start, the open subs€; := (0,1] x G C Gy inherits the product manifold
structure. LetQ c N* ¢ & and«(Q) C N, C G, as in Theorem 2. LeD be the
open subset di0, 1] x & (equipped with the product manifold structure; this is a
manifold with boundary, sincg, 1] is), defined a®) := {(#, X) | A X € N'}. Note
that{0} x & c O. The mapp : © — Gy is defined by

p(0, X) := (0, X);
p(h, X) == (h, Exp" (1X)). (18)

SinceExp” : Nt — N, is a diffeomorphism (cf. Proposition 2) we see thas a
bijection from®O to O, := {0 x &} U {(0, 1] x N,}. This defines the smooth structure
on; interms of the smooth structure 6h Since®1 andO, coverGy, this specifies
the smooth structure 0By .

The factthaGy is a Lie groupoid eventually follows from the corresponding property
of G. The given chart is defined in terms of the Weyl exponential, which depends on the
choice of a connection i&. However, one may verify that any (smooth) connection, or,
indeed, any @-preserving) diffeomorphisms betwegfi and N, leads to an equivalent
smooth structure 06 y . For example, we could have used Expstead of Ex¥ . Also,
the smoothness of E¥pmakes the above manifold structure Gy well defined, in
that open subsets @1 N 02 are assigned the same smooth structure.

SinceGy is a Lie groupoid, we can form thé*-algebraC*(Gy), which plays the
role of € in Theorem 1. To proceed, we need a result due to Lee [16].
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Lemma 3. Let € be aC*-algebra, and lety : Prim(¢€) — X be a continuous and
open map from the primitive spectrupnim(€) (equipped with the Jacobson topology
[5]) to a locally compact Hausdorff spack. DefineJ, := Ny ~1(x); i.e., A € J, iff
m3(A) = 0for all 3 € v~1(x) (herem5(€) is the irreducible representation whose
kernel isJ). Note thatJ, is a (closed two-sided) ideal i@.

Taking®!, = €/J, andg, : € — A, to be the canonical projectiol¢, {21, ¢x}rex)

is a continuous field of *-algebras.

For the proof cf. [6]. We apply this lemma with = C*(Gy) andX = I = [0, 1].
In order to verify the assumption in the lemma, we first note fhat~ Co((0, 1]) ®
C*(G), as follows from a glance at the topology @fy. Hence PriniJg) = (0, 1] x
Prim(C*(G)), with the product topology. Furthermore, one 8&$Gy)/Jo ~ C* (&) >~
Co(®™); the second isomorphism is established by the fiberwise Fourier transform (20)
below (also cf. [9,2]). Hence Prie@™*(Gy)/Jo) >~ &*. Using this in Prop. 3.2.1in [5],
with A = C}(Gy) and! the idealJg generated by thosg € C2°(Gy) which vanish
ath = 0, yields the decomposition

Prim(C*(Gy)) ~ &* U {(0, 1] x Prim(C*(G))}, (19)

in which &* is closed. This does not provide the full topology on RAH(Gy)), but

it is sufficient to know that* is not open. If it were(0, 1] x Prim(C*(G)) would be
closed in PrindC*(Gy)), and this possibility can safely be excluded by looking at the
topology ofGy and the definition of the Jacobson topology.

Using (19), we can define a map : Prim(C*(Gy)) — [0, 1] by ¥(J) = O for
alJ e &*andy(i,J) = h for i # 0 andJ € Prim(C*(G)). It is clear from the
preceding considerations thatis continuous and open. Using this in Lemma 3, one
sees thal, is the ideal inC*(Gy) generated by thosg € C°(G p) which vanish ati.
HenceRlpy ~ Co(®*), as above, andl;, ~ C*(G) for i # 0. Theorem 1 then follows
from Lemma 3.

As pointed out to the author by G. Skandalis (private communication, June 1997),
similar considerations lead to the following generalization of Theorem 1.

Let G be a Lie groupoid with bas@, and letp be a continuous and open map from
0 to some Hausdorff space, which isG-invariant in the sense thato 7, = p o 7.
DefineG, := (p o 7,) ~1(x) (this is a sub-groupoid d& because of th&-invariance of
p), and2l* := C*(G,). Then the collectiof{1* } ¢ x, C*(G)) is a continuous field of
C*-algebras at those pointavhereC*(G,) = C}(Gy). Heref € C*(G) is understood
to define a section of the fiel®*},cx by f(x) = f | G;.

We apply this to our situation by takir§ = Gy andX = I, henceQ = I x Q, and
p is just projection onto the first variable. Continuity away frore= 0 follows from the
triviality of the field for z # 0 (whether or noC; (G) = C*(G)). Continuity atz = 0
follows by noticing thaiC(®) = C*(®), both sides being equal € (&™*). In other
words, from this point of view it is the amenability @b, regarded as a Lie groupoid,
that lies behind Theorem 1.

5. Weyl Quantization on the Dual of a Lie Algebroid

Let& =0 bealie algebroid, with bundle projectienWe start by defining a fiberwise

Fourier transformf € C®(®) of suitablef € C*°(&*). This transform depends on
the choice of a famil){ué}qEQ of Lebesgue measures, whew? is defined on the fiber
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7 1(g). We will discuss the normalization of eagt in the proof of Theorem 2; for
the moment we merely assume that ghdependence is smooth in the obvious (weak)

sense. For a functiofi on & which is L1 on each fiber we put
fO) = / duf (X)e N f ), (20)
(g

whereX € t71(g). Eacm{; determines aLebesgue meas,wg‘é onthe fiberrqu 0 (@)
of &* by fixing the normalization in requiring that the inverse to (20) is given by

foo= [ duredre. (21)

oo o@

Having constructed a Fourier transform, we define the dd§$6%*) as consisting of
those smooth functions a* whose Fourier transformis fi2° (&); this generalizes the
class of Paley-Wiener functions @fR” ~ C". We pick afunctionr € C*°(&, R) with
support inV* (cf. Proposition 2), equaling unity in some smaller tubular neighbourhood
of 0, as well as satisfying(—X) = «(X) forall X € &.

Definition 7. Let G be a Lie groupoid with Lie algebroids. For i # 0, the Weyl
quantization off € CS(®*) is the eIemenQ,Y}’(f) € C°(G), regarded as a dense

subalgebra of”*(G), defined byQ}l’V(f)(y) :=0wheny ¢ N,, and by

O (HEXPY (X)) := h ™"k (X) f (X/h). (22)

Here the Weyl exponenti&ixp” : & — G is defined in (16), and the cutoff functien
is as specified above.

This definition is possible by virtue of Proposition 2. By our choic€gf(&*), the
operatorQ;l”(f) is independent of for small enougti (depending ory).

Theorem 2. Let G be a Lie groupoid with Lie algebroids 3’8, and takey =
C(&*). For each f € 2o operator Q)Y (f) of Definition 7 satisfie®) (f)* =
QY (%), and the family{Q)" (f)}nefo,11, With Qf (f) = f, is a continuous cross-
section of the continuous field 6f--algebras of Theorem 1.

Proof. Writing the Poisson bracket and the pointwise product in terms of the Fourier
transform, one quickly establishes t#4 is indeed a Poisson algebra.

It is immediate from (8) and (16) that for real-valugde 2, the operatoQ,gV(f)
is self-adjoint inC*(G); this implies the first claim.

To prove the second claim, we pick a left Haar sysl{&tgl}qeg onG = Q; see
Proposition 1. The vector bundé&, regarded as a Lie groupoid under addition in
each fiber (cf. Definition 6), has a left Haar system in any case, consisting of the fam-
ily {uj}qEQ of Lebesgue measures on each fiber already used in the construction of
the Fourier transform. Since we have a Lie groupoid, the Radon-Nikodym derivative
Jg(X) = duj](ExpW(X))/dug(X) is well defined and strictly positive aV* (since
both measures are locally Lebesgue on spaces with the same dimension). We now fix
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the normalization of thecg by requiring that limy_.o J,(X) = 1 for all g. This leads
to a left Haar system faB v, given by

t . L.
K, = Hq>
1 B t
Mg = h nM‘r (23)

wheren is the dimension of the typical fiber @ . The factorz =" is necessary in order
to satisfy condition 3 in Definition 3 @ = 0, as is easily verified using the manifold
structure orGy.

Thus the*-algebraic structure 062°(Gy) defined by (7) and (8) with Definition 6
and (23) becomes

fxg(0, X) = /71 " dut ) (Y) (0, X — ¥)g(0, Y); (24)

| IR A ALCR 2 (Rt (25)
T (Y

(0, X) = (0, —X); (26)

*(h,y) =f(h, y=1). (27)

One sees that, for givelf € C2 (&™), the functionQ(f) on Gy defined by
AN, X) = f(X), Q) (1, Exp” (X)) = k(X) f(X/h), and Q(f)(h, y) = O for
y ¢ N,, is smooth onGy; cf. Definition 6. In other wordsQ(f) is an element of
C*(Gn).

Recall thatJ; is the ideal inC*(Gy) generated by those functions G£°(Gy)
which vanish ati. The canonical map— [f] from C*(Gy) to C;(Gn)/Jp is given,
for i £ 0, by [f]5(-) = f(#, -). However, in view of the factok =" in (25), this map is
only a*-homomorphism fronC* (G y) to C*(G) if we add a factofi =" to the definition
(7) of convolution onG. Since foriz # 0 we would like to identifyC*(Gy)/J5 with
C*(G), in which convolution is defined in the usué&kindependent way, we should
therefore define the mapgsg of Theorem 1 by

wo(f) : 6 — f(O, 0);
on(f) 1y = 17", y) (7 #0). (28)

Heregg : C*(Gy) — Co(&*), andf(o, 0) andf(0, X) are related ag (9) andf(X)
are in (20). Fori £ 0 one of course hag, : C*(Gy) — C*(G). These expressions
are initially defined forf € C2°(Gy); sincegy, is contractive, they are subsequently
extended to generéle C*(Gy) by continuity.

This explains the factot ™ in (22); the theorem then follows from the paragraph
after (27). o

The important calculations of Ramazan [25] show that
lim 1210} (). QF (91 = Q (1.} =0 (29)

for all f, g € 2o; this is Dirac’s condition (he in addition proves this to hold in formal
deformation quantization).
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Corollary 1. LetG be a Lie groupoid, with associated

e Lie algebroid® =
e Poisson manifolds* (the dual bundle ta, with Poisson structure (9)—(11));
e normal groupoidGy (cf. Definition 6).

In the context of Definition 2, the ingredients listed below yield a strict quantization of
the Poisson manifol® = &*:

1. The continuous field af*-algebras given by = C*(Gy), o = Co(&*), A =
C*(G) for h € I1\{0}, andgy as defined in (28); cf. Theorem 1.

2. The dense subspa@ = Co (&™) of fiberwise Paley—Wiener functions & (as
defined below (21)).

3. The mapQ : C3(&*) — C*(Gy) is defined by puttin@, = Q}f’ (as specified in
Definition 7); this determineg by Theorem 2 and the remark after Definition 1.

6. Examples

In this section we illustrate the concepts introduced above, and show that a number of
known strict quantizations are special cases of Corollary 1. Details of these examples will
be omitted; see [17,3,15,1] for matters related to the Lie groupoids and Lie algebroids
involved, and cf. [2,26,15,25] for th€*-algebras that appear. The quantization maps
are discussed in detail in [15].

It turns out that a number of examples are more naturally described by changing
some signs, as follows. We dena#e', seen as a Poisson manifold through (9)—(11), by
&* . Alternatively, we may insert plus signs on the right-hand sides of (10) and (11),
defining the Poisson manifolé* . The normal groupoi@y may be equipped with a
different manifold structure by replacing EXjg% X) in (18) by Exp” (—A X); the original
Definition 6 yields a manifoIcG;, and the modified one definés,;. (The original
smooth structure is equivalent to the modified one by the diffeomorptisik) —

(0, —X) and(n, y) — (7, y).) In (22) we may replaceg (X /%) by f(—X/h), defining
a quantization ma@,” (-)_, differing from the original one&)” () = Q) (-).

Theorems 1 and 2, Eq. (29), as well as Corollary 1 remain valid if all signs are

simultaneously changed in this way.

Example 1 (Weyl quantization on a manifol@jhe pair groupoid) x Q = Q on a
setQ is defined by the operations(q1, ¢2) := g2, ©:(q1, 92) := q1, L(q) = (¢, ),
(g1, 92) - (g2, g3) := (q1.¢3), and(q1, g2) ! := (g2, q1). This is a Lie groupoid when
Q is a manifold. Any measure on Q which is locally Lebesgue defines a left Haar
system. One ha§*(0 x Q) ~ Bo(L2(Q)), the C*-algebra of all compact operators
onL2(Q, v).

The associated Lie algebroid is the tangent buftd® with the usual bundle pro-
jection and Lie bracket, and the anchor is the identity. The Poisson brack&t@ris
the canonical one.
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To define Exf’ one chooses an affine connectiéron 7'Q, with associated expo-
nentialmapexp TQ — Q. Then

Exp" (X) = (x(X), exp,x)(X)); (30)
Exp” (X) = (exp, x)(—3X), exp, x,(3X)). (31)

whereX e TQ andt := 179 ¢.

On Q = R”" with flat metric and corresponding flat Riemannian connection this
simplifies to Exp' (v, q) = (¢ — 3v,q + 3v), where we have used canonical co-
ordinates o' R". The operatoQ;l”(f)_ on L2(R") defined by (22), where one may
takex = 1, with (21), is then given by

d"pdy
QY (f)_W(x) = /T*R” ﬁ ePEI (L (x + y)W(). (32)

This is Weyl's original prescription. The associated continuous field@*aalgebras is

Ag = Co(T*R™) and A, = VWo(L2(R™)) for i # 0. The fact that this quantization
map is strict, and in particular satisfies (3), was proved by Rieffel [29]; also cf. [15].
Replacingl = [0, 1], as we have used so far in connection with Definition 2] by R,

the C*-algebra€ in Definition 1 isC*(H,), the group algebra of the simply connected
Heisenberg group oR” [6]. This is indeed the"*-algebra of the tangent groupoid of
R" (see below).

When Q is an arbitrary manifold, the normal groupoi@ x Q)y is the tangent
groupoid of Q [2]. If one takes the affine connection dhQ to be the Levi-Civita
connection given by a Riemannian metric @none recovers the extension of Weyl's
prescription considered in [12,15]. One now Bas= Co(T* Q) and; = Bo(L2(0))
for n # 0, and Q}f’ duly satisfies (3); see [12,15], where references to alternative
generalizations of Weyl's quantization prescriptions may be found.

Example 2 (Rieffel's quantization of the Lie—Poisson structure on a dual Lie algebra).
A Lie group is a Lie groupoid withQ = e. A left-invariant Haar measure ai provides
a left Haar system; the ensuing convolution algel3taG) is the usual group algebra.
The Lie algebroid is the Lie algebra. The Poisson structurg®tis the well-known
Lie—Poisson structure [18,15].

No connection is needed to define the exponential map, and one has

Exp"(X) = Exp" (X) = Exp(X), (33)

whereX € gand Exp: g — G is the usual exponential map. Whéris exponential (in
that Exp is a diffeomorphism), one may omitn (22). Taking thet+ sign, the function
9V (f)+ € C*(G) is then given by

d"o

Gy <O 59

QY (f)+ : EXp(X) — /
g

This is Rieffel's prescription [28], who proved strictness of the quantization for nilpotent
groups. WherG is compact one needs the cut-off functionobtaining another quan-
tization already known to be strict before the present paper and [25] appeared; see [14]
or [15].
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Example 3 (Weyl quantization on a gauge groupditie gauge groupoid x z P = Q
of a smooth principal bundIE over a bas& with structure groupH is defined by the
projectionst, ([x, ylg) = t(y) andt([x, ylg) = t(x), and the inclusion(z (x)) =
[x, x]1g. Accordingly, the multiplicatiorix, y1g - [x’, y'1g is defined whery andx’ lie
in the same fiber oP, in which cas€x’, y'1g = [y, z]lg for somez = y'h, h € H.
Thenlx, ylu - [y, zlu = [x, zlu. Finally, the inverse igx, y1;t = [y, x]u. See [17].

An H-invariant measurg. on P which is locally Lebesgue produces a left Haar
system. In general, each measurable section) — P determines an isomorphism
C*(P xu P) ~ Bo(L2(Q)) ® C*(H); this is a special case of Thm. 3.1 in [21] (also
cf. [15], Thm. 3.7.1). Whet# is compact one ha* (P x i P) ~ Bo(L2(P))", where
L?(P) is defined with respect to son#é-invariant locally Lebesgue measure Bn

The associated Lie algebro{@P)/H 2’8 is defined by the obvious projections
(both inherited from the projection: P — Q), the Lie bracket o' ((TP)/H) obtained
by identifying this space witt (7P), and borrowing the commutator froi(7 P);
cf. [17]. The Poisson structure anTP)/H)* = (T*P)/H is given by the restriction
of the canonical Poisson bracket 68°(T*P) to C*°(T*P)#, under the isomorphism
C®(T*P)/H) ~ C®(T*P)H.

One chooses aH -invariant affine connection ofiP, with exponential map exp
TP — P. This induces a connection gi'P)/H, in terms of which

Exp”([X1#) = [t(X), exp,x)(X)]1n: (35)
Exp” ([X1x) = [eXP, (x)(— 3X). eXp, x, 3 X)]14, (36)

wherer = t7p_.p, and[ Xy € (TP)/H is the equivalence class &f € TP under the
H-action onTP.
In the Riemannian case, for compaétthe corresponding maQ}f’(-)_ is simply

the restriction on,gV(-), D CAT*P) — Bo(L2(P)) as defined in Example 1 to
C(T*P)H. SinceQ)! is invariant under isometries [15], the image@sf (T*P) is
contained iB3o(L2(P))". The ensuing quantization 6f*P)/ H was already known to

be strict; see [12,15]. Physically, this example describes the quantization of a nonabelian
charged particle moving in a gravitational as well as a Yang—Mills field.

Example 4 (Transformation group*-algebras).Let a Lie groupG act smoothly on a
setQ. The transformation groupoid x 0 = Q is defined by the operationg(x, ¢) =
x~Yq andr,(x, ¢) = ¢, so that the produdtx, ¢) - (y, ¢’) is defined whery’ = x~1q.
Then(x, ¢) - (v,x1g) = (xy, ¢). The inclusion is(g) = (e, ¢), and for the inverse
one hagx, ¢)~t = (x 1, x1g).

Each left-invariant Haar measu#la on G leads to a left Haar system. The corre-
sponding groupoid'*-algebra is the usual transformation gratip-algebraC*(G, Q),
cf. [26].

The Lie algebroidg x QO 28 is a trivial bundle overQ, with anchore, (X, g) =
—£&x(¢) (the fundamental vector field of defined byX € g). Identifying sections of
g x Q with g-valued functionsX (-) on Q, the Lie bracket o’ (g x Q) is

(X, Ylgx0(q) = [X(q). Y(q)]g + v X (q) — ExY (q). (37)

The associated Poisson bracket coincides with the semi-direct product bracket defined
in [11].
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The trivial connection og x Q — Q yields

Exp" (X, ) = (EXp(X), q); (38)
Exp" (X, ¢) = (Exp(X), EXP(3X)q). (39)
The cutoffx in (22) is independent af, and coincides with the function appearing in
Example 2. For small enougha functionf € C3.(g* x Q) is then quantized by
d"e

——— XN £ (g Exp(—1X)q). 40
@y € J (&0, Exp(—3X)q) (40)

OV ()« : (Exp(X), q) — /
g9

WhenG = R" andQ has aG-invariant measure, the magp— Q}.I’V(f)i is equivalent
to the deformation quantization considered by Rieffel [27], who already proved that it
is strict (also cf. [15]).

Note added in proof All results remain true when the groupdid-algebras are replaced
by reduced ones. This is clear both from the proof of Lemma 3 and from the argument
at the end of Sect. 4 (which should be attributed to E. Blanchard).
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