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Dedicated to Rudolf Haag on the occasion of his eightieth birthday

Abstract: Alternative titles of this paper would have been “Index theory without index”
or “The Baum–Connes conjecture without Baum.”

In 1989, Rieffel introduced an analytic version of deformation quantization based on
the use of continuous fields of C∗-algebras. We review how a wide variety of examples of
such quantizations can be understood on the basis of a single lemma involving amenable
groupoids. These include Weyl–Moyal quantization on manifolds, C∗-algebras of Lie
groups and Lie groupoids, and the E-theoretic version of the Baum–Connes conjecture
for smooth groupoids as described by Connes in his book Noncommutative Geometry.

Concerning the latter, we use a different semidirect product construction from Con-
nes. This enables one to formulate the Baum–Connes conjecture in terms of twisted
Weyl–Moyal quantization. The underlying mechanical system is a noncommutative de-
singularization of a stratified Poisson space, and the Baum–Connes Conjecture actually
suggests a strategy for quantizing such singular spaces.

1. Introduction

As a tribute to Rudolf Haag, this paper is a double provocation. Firstly, it is about quan-
tization, a concept Haag apparently doesn’t like. Indeed, he has always stressed that
(local) quantum physics stands on its own, and should not be thought of as the quantiza-
tion of some classical theory. Secondly, it fits in the ideology of “physical mathematics,”
in attempting to understand a concept in pure mathematics (viz. the Baum–Connes
conjecture), in terms of ideas from physics (namely quantization). Characteristically,
there is not a single theorem in this paper. As the founding editor of Communications
in Mathematical Physics, Haag may well have second thoughts about the seemingly
irrepressible development of his journal into a medium for both “mathematical phys-
ics” and “physical mathematics.” On the positive side, concerning the first point we
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use a formulation of quantization in terms of C∗-algebras, and even manage to relate
the Baum–Connes conjecture to the algebraic theory of superselection rules initiated
by Haag [30]. With regard to the second, we note that this paper only contains valid
mathematics, which everyone can check and understand.

One source of inspiration for this paper is the known relationship between index
theory (in the sense of Atiyah and Singer [5]) and quantum physics. This relationship
was discovered in the context of anomalies in quantum field theory [1, 3], and is closely
related to supersymmetry [2, 28]. See, e.g., [10, 11, 70] for representative mathematical
literature generated by this line of research. On a different note, it turns out that index
theory is closely linked to deformation quantization [26, 27, 50]. It remains unclear (at
least to the author) how the supersymmetric approach to index theory is related to the
one based on deformation theory.

A promising way of looking at the relationship between quantization and index theo-
ry is to involve the K-theory of C∗-algebras [12, 63]. Pragmatically speaking, K-theory
is the (generalized) cohomology theory of algebraic topology that is best adapted to
a generalization to noncommutative C∗-algebras. K-theory is defined by functors Kn,
n ∈ Z, from C∗-algebras to abelian groups, which are stable, homotopy invariant, and
satisfy Bott periodicity Kn+2(A) ∼= Kn(A) (natural in A). One therefore simply writes
the K-theory of A as K∗(A), where ∗ = 0, 1. Bott periodicity leads to a periodic (or
cyclic) 6-term exact sequence associated to a short exact sequence, which underlies most
explicit computations in K-theory.

K-theory for C∗-algebras is a fundamental tool in noncommutative geometry [19],
and also plays a key role in Elliott’s classification program for simple nuclear C∗-algebras
[45, 64]. In mathematical physics, the best-known applications of noncommutative K-
theory have been to the theory of the quantum Hall effect [9] and to the description of
quasi-crystals [33]. So far, the use of K-theory in physical mathematics seems limited
to the commutative case [72].

The bivariant E-theory of Connes and Higson [19, 20] is a generalization of the
K-theory of C∗-algebras, which at the same time provides maps between K-groups. E-
theory is based on specific deformations of C∗-algebras, and is closely related to index
theory [19, 31]. Thus it seems natural to use E-theory in an attempt to further clarify the
relationship between index theory and quantization. However, deformation quantization
contains an ingredient that seems to be missing in E-theory, namely the Poisson bracket.
This determines the “direction” of a deformation, providing information that could be
useful in understanding why certain maps between K-groups defined by E-theory occur
naturally. Indeed, this is a guiding thought behind this paper.

One of the main issues in K-theory in the context of noncommutative geometry is the
so-called Baum–Connes conjecture, which is closely related to index theory [7, 8, 19]
(in this paper, we restrict ourselves to the conjecture “without coefficients”). Here the
problem is to give a geometric description of the K-theory of the reduced C∗-algebra
C∗

r (G) of a locally compact group [24, 52] or groupoid [55] G. This is potentially inter-
esting for physics, since algebras of observables of a large class of quantum mechanical
systems are of the form C∗

r (G) [36], and the K-theory of such algebras is an invariant
of the physical description that deserves to be explored.

For a compact group, K0(C
∗
r (G)) equals the free abelian group on Ĝ (the unitary dual

of G, which in this case is discrete), whereas K1 is trivial. The groupoid analogue of a
compact group is a proper groupoid; a groupoid G with base G(0) and source and range
maps s, r : G → G(0), respectively, is called proper when (r, s) : G → G(0) × G(0)

is a proper map. The K-theory of the reduced C∗-algebra of such a groupoid can in
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principle be described in terms of the K-theory of the compact stability groups Gu
u of

points u ∈ G(0) [55], combined with the (equivariant) topological K-theory of the orbit
space G(0)/G (which is locally compact and Hausdorff). Hence the compact or proper
case is fully understood in principle.

One idea behind the Baum–Connes conjecture is to “tame” a noncompact group or
nonproper groupoid by letting it act properly on some space. Under a proper action,
all stability groups are compact, and the orbit space is locally compact and Hausdorff
[4]. Baum and Connes define a computable topological K-theory K∗

top(G) in terms of
such proper actions, and relate it to the actual K-theory K∗(C∗

r (G)) by a map µ, called
the analytic assembly map. The Baum–Connes conjecture states that µ should be an
isomorphism. This would, then, render K∗(C∗

r (G)) computable as well.
The Baum–Connes conjecture actually enjoys a number of different formulations.

For groups, the standard version is that of [8]. Here K∗
top(G) is defined in terms of the

G-equivariant K-homology of the classifying space EG of G for proper actions. Rough-
ly speaking, elements of K∗

top(G) are equivalence classes of G-invariant operators on
some Hilbert space carrying representations of G as well as of C0(X), where X is some
proper G space. These operators have an index taking values in K∗(C∗(G)), and µ is
essentially this index, composed with the K-theory map πr∗ induced by the canonical
projection πr : C∗(G) → C∗

r (G). Thus the Baum–Connes conjecture states that, in a
suitably injective way, every element of K∗(C∗

r (G)) may be represented as an index.
In this form, the Baum–Connes conjecture has been proved for large classes of dis-

crete or algebraic groups (cf. [67, 69]), as well as for all almost connected locally compact
groups [17]. There exists an analogous formulation for locally compact groupoids with
Haar system, surveyed in [68]. The usual formulation of the Baum–Connes conjecture
for both groups and groupoids is based on Kasparov’s KK-theory (cf. [12]), which is
also the fundamental tool in the extant proofs of special cases of the conjecture.

A different approach to the Baum–Connes conjecture, based on E-theory, was initi-
ated by Connes himself [19, §II.10]. The main purpose of this paper is to make explicit
how Connes’s E-theoretic formulation of the Baum–Connes conjecture is nothing but
the statement that the G-twisted Weyl–Moyal quantization of a certain space preserves
K-theory. This is actually closely related to Connes’s own way of seeing the Baum–
Connes conjecture as a G-equivariant version of Bott periodicity. To accomplish this,
we have to slightly modify Connes’s construction of the analytic assembly map µ in
order to bring it in line with the C∗-algebraic approach to Weyl–Moyal quantization.
Moreover, we prove a fundamental and nontrivial continuity property left to the reader
in [19]. As suggested above, the use of deformation quantization amplifies E-theory by
providing the direction of the deformation defining µ.

When G is a Lie group, the classical mechanical systems underlying the above ap-
proach to the Baum–Connes conjecture are Poisson spaces of the type T ∗(P )/G, where
P is a proper G space, and the G action on T ∗(P ) is the pullback of the one on P . This
action automatically preserves the canonical Poisson bracket (or, equivalently, the sym-
plectic form) on T ∗(P ), which therefore descends to a Poisson structure on T ∗(P )/G.
In case that P is a principal G bundle (i.e., when the G action is free), T ∗(P )/G is a
manifold, whose physical interpretation is well understood in terms of a particle moving
on the configuration space Q = P/G, coupled to an external gauge field [47]. The
algebra of observables of the corresponding quantum system [36] is the C∗-algebra
of the so-called gauge groupoid (P × P)/G of the principal G bundle P [46]. Such a
quantum system has a nontrivial superselection structure, which is fully described by the
irreducible unitary representations of G. Similarly, the underlying classical system has
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“classical superselection sectors,” defined as the symplectic leaves of T ∗(P )/G [47]. In
analogy to the quantum situation, these turn out to correspond to the coadjoint orbits of
G.

However, when the G action on P is not free (and this is the main case of interest
in connection with the Baum–Connes conjecture), the quotient T ∗(P )/G is no longer
a manifold. In fact, the Baum–Connes conjecture for Lie groups à la Connes is formu-
lated in terms of a noncommutative desingularization of T ∗(P )/G, namely the crossed
product C∗-algebra C0(T

∗(P )) � G. The structure of T ∗(P )/G as a singular space
is well known [44]: its naive symplectic leaves are actually stratified symplectic spac-
es [66], which further decompose as unions of symplectic manifolds. This introduces
additional classical superselection sectors, which should be related to the structure of
the desingularization C0(T

∗(P )) � G in some way. In any case, inspired by Connes’s
E-theoretic formulation of the Baum–Connes conjecture, we are led to a concrete pro-
posal to quantize the singular Poisson space T ∗(P )/G by deforming its noncommutative
desingularization.

The plan of this paper is as follows. In Sect. 2 we review the notion of C∗-algebraic
deformation quantization, and state the key technical lemma, on which most subsequent
arguments will be based. In Sect. 3 we discuss a number of examples relevant to the
Baum–Connes conjecture, and in Sect. 4 we turn to the Baum–Connes conjecture itself.
Finally, in Sect. 5 we provide the details of the physical interpretation sketched above.

We hope that this expository paper attracts mathematical physicists to the Baum–
Connes conjecture, and draws the attention of noncommutative geometers to the problem
of quantizing singular symplectic spaces [42].

2. Basic Setting

The C∗-algebraic approach to deformation quantization was initiated in 1989 by Rieffel
[59], who observed that a number of examples of quantization could be described by
continuous fields of C∗-algebras in a natural and attractive way. We refer to [36, 60]
for surveys of the starting period of C∗-algebraic deformation quantization, including
references.

We now review the basic definitions pertinent to C∗-algebraic deformation quanti-
zation. On the classical side, we have

Definition 1. A Poisson algebra is a commutative algebra Ã over C equipped with a Lie
bracket { , }, such that for each f ∈ Ã the map g �→ {f, g} is a derivation of Ã as a
commutative algebra. A Poisson manifold P is a manifold equipped with a Lie brack-
et on Ã = C∞(P ), such that it becomes a Poisson algebra with respect to pointwise
multiplication.

On the quantum side, one needs

Definition 2. A field of C∗-algebras over a compact Hausdorff space X is a triple
(X, {Ax}x∈X, A), where {Ax}x∈X is some family of C∗-algebras indexed by X, and
A is a family of sections (that is, maps a : X → ∐

x∈X Ax for which a(x) ∈ Ax) that is:

1. A C∗-algebra under pointwise operations and the natural norm

‖a‖ = sup
x∈X

‖a(x)‖Ax ;
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2. Closed under multiplication by C(X);
3. Full, in that for each x ∈ X one has {a(x) | a ∈ A} = Ax .

The field is said to be continuous when for each a ∈ A the function x �→ ‖a(x)‖ is in
C(X).

This is equivalent to the corresponding definition of Dixmier [24]; cf. [13, 34]. Such
a field comes with a collection of ∗-homomorphisms πx : A → Ax , defined by πx(a) =
a(x). We will use this with X = I = [0, 1], seen as the set of values of Planck’s constant
�.

Poisson manifolds are related to continuous fields through the concept ofC∗-algebraic
deformation quantization.

Definition 3. A C∗-algebraic deformation quantization of a Poisson manifold P consists
of:

1. A continuous field of C∗-algebras (I, {A�}�∈I , A) in which A0 = C0(P );
2. A Poisson subalgebra Ã0 of C∞(P ) that is densely contained in C0(P );
3. A cross-section Q : Ã0 → A of π0,

such that, in terms of Q� = π� ◦ Q, for all f, g ∈ Ã0 one has

lim
�→0

‖ i

�
[Q�(f ), Q�(g)] − Q�({f, g})‖� = 0. (2.1)

The idea behind (2.1), which may be traced back to Dirac, is that the Poisson brack-
et on P determines the direction in which C0(P ) is deformed into a noncommutative
C∗-algebra. In any case, this definition (with evident modifications when I = [0, 1] is
replaced by a more general index set) seems to cover practically all known examples.

A surprisingly large collection of examples can be constructed from the following
data [40, 54]. We refer to [46, 55] for the theory of groupoids. Recall that a Lie grou-
poid is a groupoid where all spaces and maps are smooth, and s and r are surjective
submersions [46].

Definition 4. A field of groupoids is a triple (G, X, p), with G a groupoid, X a set,
and p : G → X a surjection such that p = p0 ◦ r = p0 ◦ s, where p0 = p � G(0).
If G is a locally compact groupoid and X is a topological space, one requires that p

is continuous and open. When G is a Lie groupoid and X a manifold, p should be a
surjective submersion.

It follows that each Gx = p−1(x) is a subgroupoid of G over G(0) ∩ p−1(x), so that
G = ∐

x∈X Gx as a groupoid. This holds algebraically, topologically, or smoothly, as
appropriate.

In the context of deformation quantization, the following two cases occur: either G
is smooth, or G is étale. In both cases, G and all Gx automatically have a (left or right)
Haar system [36, 40, 54, 55]. More generally, one may simply assume that G is a locally
compact groupoid with Haar system. One may then form the convolution C∗-algebras
C∗(G) and C∗(Gx), or the corresponding reduced C∗-algebras C∗

r (G) and C∗
r (Gx) [19,

55]. Each a ∈ Cc(G) (or C∞
c (G)) defines ax = a � Gx as an element of Cc(Gx) (etc.).

These maps Cc(G) → Cc(Gx) are continuous in the appropriate norms, and extend to
maps πx : C∗(G) → C∗(Gx). Hence one obtains a field of C∗-algebras

(X, {Ax = C∗(Gx)}x∈X, A = C∗(G)),
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where a ∈ C∗(G) defines the section x �→ πx(a). A similar statement applies to the
corresponding reduced C∗-algebras.

The question now arises when this field is continuous. The answer, generalizing
certain results by Rieffel for groups [58], is as follows.

Lemma 1. The field (X, {C∗(Gx)}x∈X, C∗(G)) is continuous at all points where Gx is
amenable [4, 55] (and similarly for the case of reduced C∗-algebras).

This lemma was first mentioned to the author by Skandalis in 1997; see [36, p. 469].
A complete proof, based on results of Skandalis’s student Blanchard [13], appeared in
[54], and was repeated in [40]. In our examples of deformation quantization, where
X = I , two possibilities occur.

In the first situation, all G� are amenable, in which case Lemma 1 immediately proves
continuity of the field in question. See [14] for a description of the noncommutative tori
of Rieffel [59] and of the noncommutative four-spheres of Connes and Landi [21] (and
of many other examples) as deformation quantizations along these lines.

In the second situation, typically only G0 is amenable, and the field is trivial away
from � = 0 (see below). The former property then yields continuity at � = 0 by the
lemma, whereas the latter gives continuity on (0, 1]. In the context of Definition 3, the
reason why G0 is amenable is that A0 must be commutative, which implies that G0 is
a bundle of abelian groups. But such groupoids are always amenable [4]. In both cases,
one obtains a continuous field.

Here a continuous field (I, {A�}�∈I , A) is said to be trivial away from � = 0 when
A� = B for all � ∈ (0, 1], and one has a short exact sequence

0 → CB → A → A0 → 0, (2.2)

in terms of the so-called cone CB = C0((0, 1], B). For later use, we recall that such a
field induces a map K∗(A0) → K∗(B) in the following way [19, 20]. Since the cone CB

is contractible, and therefore has trivial K-theory, the periodic 6-term sequence shows
that

π0∗ : K∗(A) → K∗(A0) (2.3)

is an isomorphism; here π0∗ stands for the image of the ∗-homomorphism π0 : A → A0
under the K-functor. The K-theory map defined by the field is then simply

π1∗ ◦ π−1
0∗ : K∗(A0) → K∗(B). (2.4)

3. Examples

3.1. Particle on a manifold. The simplest physically relevant example of this setting is
provided by Connes’s tangent groupoid GM of a manifold M; see [19, p. 102]. Here

G = GM =
∐

�∈I

G�,

where G0 = T (M) is the tangent bundle of M , seen as a groupoid over M under addition
in each fiber, and G� = M × M for all � ∈ (0, 1] is the pair (or coarse) groupoid on M .
The point is, of course, that G has a smooth structure turning it into a Lie groupoid (see
below).
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The corresponding field of C∗-algebras has fibers

A0 = C∗(T (M)) ∼= C0(T
∗(M)),

A� = C∗(M × M) ∼= B0(L
2(M)) ∀� ∈ (0, 1], (3.1)

where B0(H) is the C∗-algebra of compact operators on H . For later use, it is crucial to
remark that the isomorphism in the first equation is given by a fiberwise Fourier transfor-
mation. The continuity of this field follows from Lemma 1 as explained above (among
many other proofs; cf. [25, 36] and references therein). For the quantization maps Q�

see [36, 37, 53]; these are essentially given by Weyl–Moyal quantization with respect
to a Riemannian structure on M . The relationship between the tangent groupoid and
quantization was independently noted by Connes during his lectures at Les Houches in
1995; see [16].

Combining the trace tr (to implement the isomorphism K0(B0) ∼= Z) with the map
in (2.4), one obtains a map

inda = tr ◦ π1∗ ◦ π−1
0∗ : K0(T ∗(M)) → Z, (3.2)

which is precisely the analytic index of Atiyah and Singer [5]; cf. Lemma II.5.6 in [19].
For M = R

n, one has K0(R2n) ∼= Z, and the analytic index is the isomorphism β of
the Bott periodicity theorem [6]. The fact that the “classical algebra” C0(R

2n) and the
“quantum algebra” B0(L

2(Rn)) have the same K-theory is peculiar to this special case;
for general M this will, of course, fail. The special case M = R

n, however, lies behind
the Baum–Connes conjecture; see below.

3.2. Particle with internal degree of freedom. The above example describes the quan-
tization of a particle moving on M , with phase space T ∗(M). If, on the other hand, a
particle has no kinematic degrees of freedom (in that it does not move on a configura-
tion space), but is only endowed with internal degrees of freedom, described by a Lie
group G, its algebra of observables is the group C∗-algebra C∗(G). As first recognized
in [61] (under certain assumptions, which later turned out to be unnecessary [40, 54]),
this algebra is a deformation quantization in the sense of Definition 3 of the Poisson
manifold g∗, where g is the Lie algebra of G, and its dual vector space g∗ is equipped
with the so-called Lie–Poisson structure (which on linear functions is just given by the
Lie bracket) [36, 47].

The underlying Lie groupoid G has fibers G0 = g and G� = G for � ∈ (0, 1]. Here
g is regarded as an abelian group, so that it is amenable, and Lemma 1 proves continuity
of the associated field of C∗-algebras

A0 = C∗(g) ∼= C0(g
∗),

A� = C∗(G) ∀� ∈ (0, 1]. (3.3)

Here g is treated as an abelian group; once again, the isomorphism in the first equation
is given by the Fourier transformation. The quantization maps Q� are defined in terms
of the usual exponential map from g to G, and Definition 3 turns out to be satisfied.
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3.3. The Connes–Mackey semidirect product deformation. The deformation described
by Connes in [19, p. 141] is similar to the preceding example, with the difference that
only the “noncompact part” of G is deformed. Let G be a connected Lie group with
maximal compact subgroup H . With m = Te(G/H) one has g = h ⊕ m, and H acts
naturally on m. One then has a Lie groupoid G that is a field of groups with fibers
G0 = m � H and G� = G for � ∈ (0, 1]. Since m � H is amenable, Lemma 1 proves
continuity of the associated field of C∗-algebras. Note that, unlike in the previous ex-
amples, A0 = C∗(m � H) is now noncommutative, like A� = C∗(G) (except in trivial
cases).

3.4. Poisson manifolds associated to Lie algebroids. Examples 3.1 and 3.2 are both
special cases of a very general construction [36, 37, 40, 54]. A Lie algebroid E is a (real)
vector bundle over a manifold M , whose space �(E) of smooth sections is equipped
with a Lie bracket satisfying the Leibniz rule

[s1, f s2] = f [s1, s2] + (α ◦ s1)f · s2 (3.4)

for some vector bundle map α : E → T (M). Such a map, called the anchor map of
the Lie algebroid, is unique when it exists. (This definition, which we learnt from Ma-
rius Crainic, is more efficient than the usual one [15, 36, 46].) The simplest example is
E = T (M), where α is the identity map.

A Lie groupoid G has an associated Lie algebroid A(G) over the base space G(0) [15,
36, 46]. The dual vector bundle A∗(G) has a canonical Poisson structure, which gener-
alizes both the usual symplectic structure on T ∗(M) and the Lie–Poisson bracket on g∗
[22, 23]. Generalizing Connes’s tangent groupoid [32, 71] (which emerges as a special
case for G = M × M), there exists a Lie groupoid G = ∐

�∈I G�, where G0 = A(G)

(seen as a Lie groupoid over G(0) under addition in each fiber) and G� = G for � > 0.
With abuse of terminology, this is called the tangent groupoid of G.

As noted in [51], the Lie algebroid of G is the so-called adiabatic Lie algebroid
associated to A(G). In general, the adiabatic Lie algebroid Et associated to some Lie
algebroid E over M is a vector bundle over M × I whose total space is the pullback
pr∗1E of the map pr1 : M × I → M; the Lie bracket is, in obvious notation,

[s1, s2]Et (·, �) = �[s1(�), s2(�)]E. (3.5)

The tangent groupoid of G is then obtained by applying the integration procedure of
[18] to A(G)t ; this provides, in particular, the smooth structure.

By our standard argument, the associated field of C∗-algebras

A0 = C∗(A(G)) ∼= C0(A
∗(G)),

A� = C∗(G) ∀� ∈ (0, 1], (3.6)

is continuous, and provides a deformation quantization of the Poisson manifold A∗(G)

in the sense of Definition 3. As in the previous examples, the isomorphism in the first
equation is given by a fiberwise Fourier transformation. The analogy between the maps
G �→ A∗(G) and G �→ C∗(G) is quite deep; see [38].
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3.5. Gysin maps. Certain constructions of Connes in index theory turn out to be special
cases of Example 3.4. One instance is the “shriek” map p! : K∗(F ∗) → K∗(C∗(V , F ))

on p. 127 of [19], which plays a key role both in the longitudinal index theorem for folia-
tions and in the construction of the analytic assembly map for foliated manifolds. Here V

is a manifold with foliation F ⊂ T (V ), and C∗(V , F ) = C∗(G(V, F )) is the canonical
C∗-algebra of the holonomy groupoid G(V, F ) of the foliation. Now p! is nothing but
the K-theory map (2.4) induced by the continuous field (3.6), where G = G(V, F ). The
analytic index (3.2) corresponds to the special case that V = M is trivially foliated (i.e.,
F = T (M)).

The index groupoid defined in [19, §II.6] is another example of (2.4) with (3.6). Let
L : E → F be a vector bundle map between vector bundles over a common base B. Then
one has a Lie groupoid G = IndL = F �LE over F , whose Lie algebroid is F ×B E. The
latter is a vector bundle over B, and in the formalism of this paper it should be regarded as
a groupoid over F under addition in each fiber. Hence A0 = C∗(F ×BE) ∼= C0(F ×E∗).
The corresponding map (2.4) is basic to Connes’s construction of the Gysin or shriek
map f ! : K∗(X) → K∗(Y ) induced by a smooth K-oriented map f : X → Y between
two manifolds.

4. The Baum–Connes Conjecture

We first recall a generalized semidirect product construction for groupoids, which is
necessary to relate the Baum–Connes conjecture to quantization. We then describe the
analytic assembly map à la Connes. In what follows, G is a Lie groupoid over G(0).

4.1. On semidirect products. Recall [19, 46] that a (right) G space P is a smooth map
P

α→ G(0) along with a map P ×G(0) G → P , where

P ×G(0) G = {(p, γ ) ∈ P × G | α(p) = r(γ )}, (4.1)

written as (p, γ ) �→ pγ , such that (pγ1)γ2 = p(γ1γ2) whenever defined, pα(p) = p

for all p, and α(pγ ) = s(γ ). The action is called proper when α is a surjective submer-
sion and the map P ×G(0) G → P × P , (p, γ ) �→ (p, pγ ) is proper (in that the inverse
images of compact sets are compact).

In Connes’s description of the Baum–Connes conjecture [19], the standard semidi-
rect product construction in groupoid theory is used: if G acts on a space P as above,
one forms a groupoid P � G over P , with total space P ×G(0) G, source and range
maps s(p, γ ) = pγ and r(p, γ ) = p, inverse (p, γ )−1 = (pγ, γ −1), and multipli-
cation (p, γ ) · (pγ, γ ′) = (p, γ γ ′). However, as we shall see shortly, the use of these
semidirect products distorts the relationship between the Baum–Connes conjecture and
deformation quantization. For our purposes, we must work with generalized semidirect
products (see [4] for the locally compact case and [46] (2nd ed.) for the smooth case).

Let a G space H be a Lie groupoid itself, and suppose the base map H
α→ G(0) is a

surjective submersion that satisfies

1. α0 ◦ sH = α0 ◦ rH = α (cf. Definition 4); in other words, H is a field of groupoids
over G(0), and α is a morphism of groupoids if G(0) is seen as a space (where a
groupoid X is a space when X(0) = X and s = r = id).
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2. For each γ ∈ G, the map α−1(r(γ )) → α−1(s(γ )), h �→ hγ , is an isomorphism of
Lie groupoids; note that for each u ∈ G(0), α−1(u) is a Lie groupoid over α−1(u) ∩
H(0). In other words, one has (h1h2)γ = (h1γ )(h2γ ) whenever defined.

Under these conditions, one may define a Lie groupoid H �G, called the generalized
semidirect product of H and G. The total space of H � G is H ×G(0) G as in (4.1), the
base space (H � G)(0)is H(0), the source and range maps are

s(h, γ ) = sH (h)γ,

r(h, γ ) = rH (h), (4.2)

respectively, the inverse is (h, γ )−1 = (h−1γ, γ −1) (note that one automatically has
α(h−1) = α(h), so that this element is well defined), and multiplication is given by
(h1, γ1)(h2γ1, γ2) = (h1h2, γ1γ2), defined whenever the product on the right-hand side
exists (this follows from the automatic G-equivariance of sH and rH ). Familiar special
cases of this construction occur when H is a space and G is a groupoid, so that H � G

is the usual semidirect product groupoid over H discussed above, and when G and H

are both groups, so that H � G is the usual semidirect product of groups.
Now let P be a G space. Connes [19, §II.10] notes that the tangent bundle TG(P ) of P

along α (i.e., ker(α∗), where α∗ : T (P ) → T (G(0)) is the derivative of α) is a G space,
with base map ξp �→ α(p) (where ξp ∈ TG(P )p) and with the obvious push-forward
action. He then regards TG(P ) as a space, and forms the standard semidirect product
groupoid TG(P ) � G over TG(P ); to emphasize this, we write the groupoid in question
as

TG(P ) � G
→→ TG(P ). (4.3)

This groupoid is proper, and therefore its C∗-algebra has computable K-theory. Connes
then defines a geometric cycle for G as a proper G space P along with an element of

K∗(C∗(TG(P ) � G
→→ TG(P ))).

Alternatively [41], one could work with the generalized semidirect product

TG(P ) � G
→→ P, (4.4)

where TG(P ) is seen as a Lie groupoid over P by inheriting the Lie groupoid struc-
ture from T (P ) (see Example 3.1). This groupoid fails to be proper, but the following
property will be sufficient.

Lemma 2. If P is a proper G space, then the groupoid TG(P ) � G
→→ P is amenable.

Proof. Corollary 5.2.31 in [4] states that a (Lie) groupoidH is amenable iff the associated
principal groupoid (that is, the image of the map H → H(0) × H(0), h �→ (r(h), s(h)))
is amenable and all stability groups of H are amenable. As to the first condition, the
principal groupoid of TG(P ) � G is the equivalence relation on P defined by p ∼ q

when q = pγ for some γ ∈ G. This is indeed amenable, because this equivalence rela-
tion is at the same time the principal groupoid of P � G

→→ P , which is proper (hence
amenable) because P is a proper G space. As to the second condition, the stability group
of p ∈ P in TG(P ) � G is TG(P )p � Gp, where Gp is the stability group of p ∈ P

in P � G. The former is abelian, and the latter is compact by the properness of the G
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action, so that TG(P )p � Gp is amenable as the semidirect product of two amenable
groups. ��

Despite the fact that the groupoids (4.3) and (4.4) are not even equivalent (in the
sense of [48]), they have isomorphic C∗-algebras through a Fourier transformation
along the fibers of TG(P ) (seen as a vector bundle over P ), and the use of (4.3) or (4.4)
therefore leads to the same geometric cycles. Hence for the Baum–Connes conjecture
it does not matter which of these two groupoids is used. However, for the interpretation
of the Baum–Connes conjecture in terms of deformation quantization one has to work
with (4.4). To see this, consider the case where G is trivial. The C∗-algebra of (4.3)
is C0(T (P )), which is isomorphic to C0(T

∗(P )) through the choice of a Riemannian
metric on P . On the other hand, the C∗-algebra of (4.4) is isomorphic to C0(T

∗(P ))

through a fiberwise Fourier transform. It should now be clear from Example 3.1 that
(4.4) rather than (4.3) is the correct groupoid to work with, if one is interested in
relating the Baum–Connes conjecture to deformation quantization.

Furthermore, the fibered product P ×G(0) P is a G space under the base map (p, q) �→
α(p) = α(q) and the diagonal action (p, q)γ = (pγ, qγ ). Now P ×G(0) P inherits a
Lie groupoid structure from the pair groupoid P × P over P , becoming a Lie groupoid
over P . Hence one has the semidirect product groupoid

(P ×G(0) P ) � G
→→ P.

The tangent groupoid GP associated to P has a Lie subgroupoid G′
P over I × P

that by definition contains all points (� = 0, ξp) of GP whose ξp lies in TG(P ), and all
points (� > 0, p, q) for which α(p) = α(q). It is clear that G′

P is a field of groupoids
over I , whose fiber at � = 0 is TG(P ), and whose fiber at any � ∈ (0, 1] is P ×G(0) P .
Combining the G actions defined in the preceding two cases, there is an obvious fiber-
wise G action on G′

P with respect to a base map α̃(�, ·) = α�(·), where α� = α1 for
� ∈ (0, 1]. This action is smooth, so that one obtains a generalized semidirect product
groupoid

G′
P � G

→→ I × P.

This groupoid is the main tool in the construction of the analytic assembly map occurring
in Connes’s version of the Baum–Connes conjecture.

4.2. The analytic assembly map. The following lemma provides the continuity condi-
tions tacitly assumed in §II.10.α in [19].

Lemma 3. If P is a proper G space, then C∗(G′
P � G) is the C∗-algebra A of sections

of a continuous field of C∗-algebras over I with fibers

A0 = C∗(TG(P ) � G
→→ P),

A� = C∗((P ×G(0) P ) � G
→→ P) ∀� ∈ (0, 1]. (4.5)

This field is trivial away from � = 0. The same is true if all groupoid C∗-algebras are
replaced by their reduced counterparts.
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Proof. The groupoid G′
P � G inherits the structure of a smooth field of groupoids over

I from the tangent groupoid GP in the obvious way. The claim is then immediate from
Lemmas 1 and 2. ��

When G is trivial, the continuous field of this proposition is, of course, the one
defined by the tangent groupoid of P , which coincides with the field defined by the
Weyl–Moyal deformation quantization of the cotangent bundle T ∗(P ); see Example
3.1. The general case is a G-twisted version of this, which cannot really be interpreted
in terms of an underlying Poisson manifold, because the fiber algebra at � = 0 is no
longer commutative.

Lemma 4. The C∗-algebras C∗((P ×G(0) P ) � G
→→ P) and C∗(G) are (strongly)

Morita equivalent, as are the corresponding reduced C∗-algebras.

Proof. It is easily checked that the map (p, q, γ ) �→ γ from (P ×G(0) P )�G to G is an
equivalence of categories. Since this map is smooth, it follows from Cor. 4.23 in [39] that
(P ×G(0) P ) � G and G are equivalent as Lie groupoids (and hence as locally compact
groupoids with Haar system). The lemma then follows from Thm. 2.8 in [48]. ��

We have now provided the background for understanding Connes’s amazing con-
struction of the analytic assembly map [19, §II.10]

µP : K∗(C∗(TG(P ) � G)) → K∗(C∗
r (G)), (4.6)

where P is a proper G space. By (2.4), the continuous field of Lemma 3 yields a map

π1∗ ◦ π−1
0∗ : K∗(C∗(TG(P ) � G)) → K∗(C∗((P ×G(0) P ) � G)). (4.7)

By Lemma 4 and the fact that the K-theories of Morita equivalent C∗-algebras are iso-
morphic, the right-hand side of (4.7) may be replaced by K∗(C∗(G)). The canonical pro-
jection πr from C∗(G) to C∗

r (G) pushes forward to πr∗ : K∗(C∗(G)) → K∗(C∗
r (G)),

so that Connes is in a position to define

µP = πr∗ ◦ π1∗ ◦ π−1
0∗ . (4.8)

When the classifying space EG for proper G actions is a smooth manifold (which
is true, for example, when G is a connected Lie group [19, §II.10.β], or when G is the
tangent groupoid of a manifold), the topological K-theory K∗

top(G) is defined as

K∗
top(G) = K∗(C∗(TG(EG) � G)). (4.9)

In that case, Connes’s analytic assembly map is

µ = µEG : K∗
top(G) → K∗(C∗

r (G)). (4.10)

In general, K∗
top(G) is defined by putting a certain equivalence relation on the geo-

metric cycles for G, and µ is given by (4.8) applied to each cycle. In any case, the
Baum–Connes conjecture states that µ should be an isomorphism. Connes’s interpre-
tation of this conjecture as a G-equivariant version of Bott periodicity [19, §II.10.ε] is
consistent with the quantization-oriented approach in this paper, since the field (4.5) un-
derlying the Baum–Connes conjecture is a G-twisted version of the field (3.1), which for
M = R

n leads to Bott periodicity. (See [25, 29] for a detailed analysis of the relationship
between Bott periodicity and quantization.)
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Similarly, the usual interpretation of the analytic assembly map as a generalized index
is understandable in the light of the comment below (3.2) and a comparison between
(3.1) and (4.5). In fact, the symbol of a G-invariant elliptic pseudodifferential operator
D on P [43, 51] defines an element [σD] of K∗(C∗(TG(P ) � G)), and the image of
this element under (4.7) is precisely the K∗(C∗(G))-valued index of D. At least when
G is a group, this argument also bridges the gap between the usual formulation of the
Baum–Connes conjecture in KK-theory [8] and its formulation due to Connes discussed
above, for in that case D defines an element of the G-equivariant K-homology KG∗ (P )

of P in terms of which K∗
top(G) is usually defined (A. Valette, private communication).

5. Physical Interpretation

5.1. General comments. When (4.9) holds, the Baum–Connes conjecture claims that the
G-twisted Weyl–Moyal deformation quantization of the phase space T ∗(EG) preserves
K-theory. This conjecture is a far-reaching generalization of the fact that the deformation
quantization of T ∗(Rn) preserves K-theory; as already mentioned, this fact comes down
to Bott periodicity. More generally, Connes’s Thom isomorphism in K-theory [12, 19],
which implies Bott periodicity, can be understood through deformation quantization
[25]. The general question whether deformation quantization preserves K-theory has
been the subject of some research [49, 62, 65] outside the context of the Baum–Connes
conjecture, and there are only a few general results.

We now take a closer look at the continuous field (4.5). Since the C∗-algebra
C∗(TG(P )�G) is noncommutative (unless G is trivial), it has no immediate underlying
Poisson manifold, so that G-twisted quantization cannot itself be seen as quantization.
To analyze the situation, for simplicity we assume that G is a Lie group. In that case,
the continuous field (4.5) may be written in terms of conventional crossed product
C∗-algebras [52] as

A0 = C0(T
∗(P )) � G,

A� = B0(L
2(P )) � G ∀� ∈ (0, 1]. (5.1)

In the first equation the given G action on P is pulled back first to T ∗(P ) and sub-
sequently to C0(T

∗(P )), and in the second the natural unitary representation of G on
L2(P ) defines an associated action on the C∗-algebra B0(L

2(P )) of compact opera-
tors by conjugation. We now first make the assumption that the G action on P is free,
allowing a clean analysis, to drop it afterwards.

5.2. Free actions and superselection theory. When the G action on P is free (so that P

is a principal G space), one has a Morita equivalence

C0(T
∗(P )) � G

M∼ C0(T
∗(P )/G). (5.2)

This is a special case of a well-known result of Rieffel [57]; in connection with what
follows, another useful proof is to note that one has an equivalence of groupoids (in the
sense of [48])

T ∗(P ) � G
→→ T ∗(P ) ∼ T ∗(P )/G

→→ T ∗(P )/G (5.3)
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through the equivalence bibundle T ∗(P ). By [48], this induces a Morita equivalence of
the corresponding groupoid C∗-algebras, yielding (5.2).

Under the freeness assumption one has an analogous Morita equivalence on the
quantum side, namely

B0(L
2(P )) � G

M∼ C∗((P × P)/G). (5.4)

Here
(P × P)/G

→→ P/G

is the so-called gauge groupoid of the principal G bundle P [46]. (When G is compact,
the corresponding groupoid C∗-algebra C∗((P × P)/G) consists of the G-invariant
compact operators on L2(P ).) To prove (5.4), one starts from the equivalence of grou-
poids

(P × P) � G
→→ P × P ∼ (P × P)/G

→→ P/G, (5.5)

through the equivalence bibundle P × P . Compare (5.3). Thus the Morita equivalent
counterpart of the continuous field (5.1) is the field

A′
0 = C0(T

∗(P )/G),

A′
�

= C∗((P × P)/G) ∀� ∈ (0, 1]. (5.6)

This field is continuous as well: in fact, (5.6) is just a special case of (3.6) in Example
3.4, in which (with abuse of notation) the groupoid G is taken to be the gauge groupoid
(P × P)/G. In particular, the continuous field (5.6) is even a C∗-algebraic deformation
quantization of the Poisson manifold T ∗(P )/G in the sense of Definition 3 (as already
mentioned in the Introduction, T ∗(P )/G inherits the canonical Poisson structure on
T ∗(P )).

Poisson manifolds of this type [47] and their quantization [36] have been extensive-
ly analyzed. The underlying classical mechanical system is a particle moving on the
configuration space Q = P/G with an internal degree of freedom coupling to G. The
classical phase space T ∗(P )/G decomposes as a disjoint union of its symplectic leaves,
which may be thought of as the “classical superselection sectors” of the system. Spe-
cifically, if J : T ∗(P ) → g∗ is the momentum map of the G action, the symplectic
leaves of T ∗(P )/G are the connected components of the Marsden–Weinstein quotients
J−1(O)/G, where O ⊂ g∗ is a coadjoint orbit for G. Locally, such a leaf is of the form
T ∗(Q) × O. The first factor is just the usual phase space of a particle moving on Q,
and the second is the classical charge of the particle. The latter typically couples to an
external gauge field [47].

The fact that the quantum algebra of observables C∗((P × P)/G) is related to its
classical counterpart C0(T

∗(P )/G) by a C∗-algebraic deformation is reflected in the
superselection structure of the model. One of Haag’s fundamental insights was that su-
perselection sectors of a quantum system may be identified with inequivalent irreducible
representations of its algebra of observables (in quantum field theory further selection
criteria are needed, though) [30]. By Lemma 4, both sides of (5.4) are Morita equivalent
to C∗(G), so that, in particular, the superselection sectors of C∗((P ×P)/G) bijectively
correspond to the irreducible unitary representations of G. Of course, this reflects the
DHR theory in algebraic quantum field theory [30]. A comparison with the classical
situation then confirms Kirillov’s general principle that coadjoint orbits should be seen
as the classical analogues of irreducible unitary representations [35]; also cf. Example
3.2.
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5.3. General actions and singular quantization. When the G action on P is not free
(and this is the main case of interest in connection with the Baum–Connes conjecture),
the quotient T ∗(P )/G is no longer a manifold. Nonetheless, its structure is well under-
stood [44]. Each naive symplectic leaf of the form J−1(O)/G (or rather a connected
component thereof) of T ∗(P )/G is not a symplectic manifold, but a stratified symplectic
space [66]. In particular, the leaf in question itself decomposes as a disjoint union of
symplectic manifolds, which are glued together in a certain topological way that one
can describe in detail. Compared to the regular situation discussed above, this introduces
new classical superselection sectors.

The problem arises how to quantize such singular symplectic spaces; cf. [42] for
a survey of what little is known. The noncommutative geometry approach to the sit-
uation would be to desingularize T ∗(P )/G by starting from C∗(T ∗(P ) � G) rather
than C0(T

∗(P )/G). Although the former C∗-algebra is noncommutative, it is still a
description of T ∗(P )/G as a classical space. This is reflected by the fact that A0 =
C∗(T ∗(P ) � G) carries a structure analogous to the notion of a Poisson fibered algebra
defined in [56]. In the C∗-algebraic context, it is necessary to involve the multiplier
algebra to make sense of this idea.

The multiplier algebra of A0 contains Z̃ = C∞
b (T ∗(P ))G (where the suffix G denotes

the G-invariant functions) in its center, and also contains the subalgebra Ã0 generated
by Z̃ and C∞

c (T ∗(P )�G). Then Ã0 is a Poisson fibered algebra over Z̃, in that one has
a bracket (f, a) �→ {f, a} from Z̃ × Ã0 to Ã0, which restricts to a Poisson bracket on
Z̃, and is a derivation on Ã0 for fixed f and a derivation on Z̃ for fixed a. This bracket
is simply given by the one on T ∗(P ), ignoring the G-dependence of a.

To quantize the desingularized system, one has to deform C∗(T ∗(P )�G). This is pre-
cisely what happens in Connes’s formulation of the Baum–Connes conjecture described
in Sect. 4. The continuous field (4.5) may be seen as an educated guess to quantize the
singular Poisson manifold T ∗(P )/G by the C∗-algebra B0(L

2(P )) � G; the direction
of the deformation is now determined by the more general notion of a Poisson structure
discussed in the previous paragraph.

This proposal should be tested in concrete examples, such as the Universe with a
Big Bang singularity. A complete analysis of this case will have to wait for Haag’s 90th
birthday Festschrift.
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et Topologie in Toulouse, March 2002, and at the Oberwolfach meeting on Noncommutative Geome-
try, April 2002 at the invitation of A. Connes, J. Cuntz, and M. Rieffel. It is a pleasure to thank many
participants of these meetings for comments and criticism.

References

1. Alvarez, O., Singer, I.M., Zumino, B.: Gravitational anomalies and the families index theorem.
Commun. Math. Phys. 96, 409–417 (1984)
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ques de Quillen. Mém. Soc. Math. France (N.S.) 46, 27–72 (1991)
12. Blackadar, B.: K-theory for Operator Algebras, 2nd ed. Cambridge: Cambridge University Press,

1999
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gue. Astérisque 276, 105–135 (2002)
68. Tu, J.-L.: The Baum–Connes conjecture for groupoids. In: C∗-algebras (Münster, 1999). Berlin,

Springer, 2000, pp. 227–242
69. Valette, A.: Introduction to the Baum–Connes conjecture. Basel: Birkhäuser, 2002
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