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Abstract: The aim of this paper is to relate algebraic quantum mechanics to topos
theory, so as to construct new foundations for quantum logic and quantum spaces. Moti-
vated by Bohr’s idea that the empirical content of quantum physics is accessible only
through classical physics, we show how a noncommutative C*-algebra of observables A
induces a topos T (A) in which the amalgamation of all of its commutative subalgebras
comprises a single commutative C*-algebra A. According to the constructive Gelfand
duality theorem of Banaschewski and Mulvey, the latter has an internal spectrum �(A)
in T (A), which in our approach plays the role of the quantum phase space of the sys-
tem. Thus we associate a locale (which is the topos-theoretical notion of a space and
which intrinsically carries the intuitionistic logical structure of a Heyting algebra) to
a C*-algebra (which is the noncommutative notion of a space). In this setting, states
on A become probability measures (more precisely, valuations) on �, and self-adjoint
elements of A define continuous functions (more precisely, locale maps) from � to
Scott’s interval domain. Noting that open subsets of �(A) correspond to propositions
about the system, the pairing map that assigns a (generalized) truth value to a state and a
proposition assumes an extremely simple categorical form. Formulated in this way, the
quantum theory defined by A is essentially turned into a classical theory, internal to the
topos T (A).

These results were inspired by the topos-theoretic approach to quantum physics pro-
posed by Butterfield and Isham, as recently generalized by Döring and Isham.

� Supported by N. W. O.
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Motto: ‘Ces “nuages probabilistes”, remplaçant les rassurantes particules matéri-
elles d’antan, me rappellent étrangement les élusifs “voisinages ouverts” qui
peuplent les topos, tels des fantômes évanescents, pour entourer des “points”
imaginaires.’ (A. Grothendieck [43])1

1. Introduction

This introduction is intended for both mathematical physicists and topos theorists. We
apologize in advance for stating the obvious for one or the other of these groups at
various points, but we hope that most of it is interesting to both communities.

1.1. The logic of classical physics. In classical mechanics, the logical structure of a
physical system is encoded in its phase space M . Indeed, elementary propositions (also
called ‘yes-no questions’ in physics) correspond to suitable subsets of M (such as all
sets, all measurable sets or all regular open sets), and the logical connectives are given
by the standard set-theoretic operations. This makes the logic of the system ‘spatial’; its
realization as a Boolean algebra (i.e. a distributive lattice with 0 and 1 in which every
element has a complement) confirms the ‘classical’ nature of the situation [76].

Physicists do not usually describe a system in the above way. Instead, they work with
observables a : M → R, like position or energy. (Such functions might be arbitrary, or
else required to be measurable or continuous as appropriate.) From that perspective, the
elementary propositions are of the form a ∈ �, where� ⊆ R is a (arbitrary, measurable,
or regular open) subset of the reals.

Either way, a state of the system may be construed as a catalogue of answers to all
yes-no questions about the systems. We concentrate on pure states ρ ∈ M , which provide
sharp (as opposed to probabilistic) answers. In the first description, a proposition U ⊆ M
is true (equivalently, the answer to the corresponding question is ‘yes’) iff ρ ∈ U . In
the second description, a ∈ � is true for a state ρ iff a(ρ) ∈ �, i.e. iff ρ ∈ a−1(�).
Thus propositions of the second type fall into equivalence classes [a ∈ �] = a−1(�).
As these are subsets of M , this leads us back to the purely spatial picture of the first
description.

This truth assignment has a very simple categorical description. We regard M as an
object in the category Sets of all sets as objects and all functions as arrows, and interpret

ρ as an arrow (in fact, a monomorphism) 1
ρ �� M , where 1 is any singleton. A subset

U ⊆ M may alternatively be described by its characteristic function χU : M → {0, 1};
anticipating the convention in topos theory, we relabel {0, 1} as � and regard this as an

object in Sets. Composition of 1
ρ �� M and M

χa−1(�) ��� then yields an arrow

1
〈ρ,a∈�〉 ��� = 1

ρ �� M
χa−1(�) ���, (1)

i.e. we have defined

〈ρ, a ∈ �〉 = χa−1(�) ◦ ρ. (2)

1 ‘These “probability clouds”, replacing the reassuring material particles of before, remind me strangely of
the elusive “open neighborhoods” that populate the topoi, like evanescent phantoms, to surround the imaginary
“points”.’
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The image of 1 under this map is a point of �, which is precisely the above truth value
of the proposition a ∈ � in the state ρ (provided we identify {0, 1} with {false, true}).

It is important for what follows to reformulate this description in terms of the topol-
ogy O(M) of M (i.e. its collection of opens) instead of M itself. This makes sense if
the subsets U ⊆ M above are open, which in our second description is the case if the
observables a are continuous and the value sets� ⊆ R are open as well. Hence a−1(�)

is an arrow 1
a−1(�) ��O(M) in Sets, but ρ ∈ M is now represented by the ‘state

subobject’ [ρ] ⊆ O(M) given by

[ρ] = {V ∈ O(M) | ρ ∈ V } = {V ∈ O(M) | δρ(V ) = 1}, (3)

where δρ is the Dirac measure on M concentrated at ρ. We describe this object by its
characteristic function χ[ρ] : O(M)→ �. The pairing map then becomes

1
〈a∈�,ρ〉 ��� = 1

a−1(�) ��O(M)
χ[ρ] ���, (4)

or, in other words,

〈a ∈ �,ρ〉 = χ[ρ] ◦ a−1(�). (5)

The reader may verify that 〈a ∈ �,ρ〉 = 〈ρ, a ∈ �〉, so that our second categorical
description of the state-proposition pairing is equivalent to the first. More generally, if
µ is a probability measure on M , we might define a state object [µ] by replacing the
Dirac measure δρ in (3) by µ, i.e.

[µ] = {V ∈ O(M) | µ(V ) = 1}. (6)

In physics, µ plays the role of a mixed state (unless it is a point measure, in which case
it happens to be pure). Like the pure state ρ (or rather its associated probability measure
δρ), the mixed state µ defines a characteristic function χ[µ] : O(M) → �. The latter,
however, turns out not to share the attractive logical properties of χ[ρ] ≡ χδρ (unless µ
is pure); see Subsect. 1.5.

1.2. Spatial quantum logic. The goal of this paper is to generalize this situation to quan-
tum mechanics. In particular, we wish to find a spatial notion of quantum logic. This
objective will be accomplished by:

1. Identifying an appropriate notion of a quantum phase ‘space’ �.
2. Defining suitable ‘subsets’ of� that act as elementary logical propositions of quan-

tum mechanics.
3. Describing observables and states in terms of �.
4. Associating a proposition a ∈ � (and hence a ‘subset’ [a ∈ �]of�) to an observable

a and an open subset � ⊆ R.
5. Finding a pairing map between pure states and ‘subsets’ of � (and hence between

states and propositions of the type a ∈ �).

In the last step, a state assigns a particular truth value to a given proposition; this is sup-
posed to give empirical content to the formalism. The codomain� of the pairing map in
item 5, which may be called the ‘truth object’ of the theory, is by no means obvious and
identifying it is explicitly part of the question. Certainly, 20th century physics shows
that the ‘classical’ choice � = {0, 1} is out of the question.

The formulation of these objectives and the associated program goes back to von
Neumann, who also famously proposed the following extremely elegant solution:
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1. A quantum phase space is a Hilbert space H .
2. Elementary propositions correspond to closed linear subspaces of H .
3. Observables are selfadjoint operators on H and pure states are unit vectors in H .
4. The closed linear subspace [a ∈ �] is the image E(�)H of the spectral projection

E(�) defined by a and � (provided the latter is measurable).
5. The pairing map takes values in [0, 1] and is given by the “Born rule” 〈�, a ∈ �〉 =

(�, E(�)�).
Thus subsets of phase space became closed linear subspaces of Hilbert space, which,

as Birkhoff and von Neumann [10] noticed, form a lattice L(H) under inclusion as partial
order. However, this lattice fails to be Boolean, basically because it is nondistributive.
Nonetheless, Birkhoff and von Neumann interpreted the lattice operations ∧ and ∨ as
‘and’ and ‘or’, as in the classical case, and argued that the departure from the Boolean
structure (and hence from classical logic) meant that one had to deal with a new kind of
logic, which they aptly called quantum logic. This looked highly innovative, but on the
other hand it conservatively preserved the spatial nature of the logic of classical physics,
in that the logical structure of propositions is still associated with the spatial (i.e. Hilbert
space) structure of the theory.

Attractive and revolutionary as this spatial quantum ‘logic’ may appear [54,55,70,
76], it faces severe problems. The main logical drawbacks are:
• Due to its lack of distributivity, quantum ‘logic’ is difficult to interpret as a logical

structure.
• In particular, despite various proposals no satisfactory implication operator has been

found (so that there is no deductive system in quantum logic).
• Quantum ‘logic’ is a propositional language; no satisfactory generalization to pred-

icate logic has been found.
Quantum logic is also problematic from a physical perspective. Since (by various

theorems [14] and wide agreement) quantum probabilities do not admit an ignorance
interpretation, [0, 1]-valued truth values attributed to propositions by pure states via
the Born rule cannot be regarded as sharp (i.e. {0, 1}-valued) truth values muddled by
human ignorance. This implies that, if x = [a ∈ �] represents a quantum-mechanical
proposition, it is wrong to say that either x or its negation holds, but we just do not
know which of these alternatives applies. However, in quantum logic one has the law of
the excluded middle in the form x ∨ x⊥ = 1 for all x . Thus the formalism of quantum
logic does not match the probabilistic structure of quantum theory responsible for its
empirical content.

In fact, the above argument suggests that it is intuitionistic logic rather than quan-
tum logic that is relevant in quantum mechanics (cf. [4]). More generally, as argued in
particular by Butterfield and Isham [17,20], the fact that pure states fail to define truth
assignments in the usual binary sense (i.e. true or false) renders the entire notion of truth
in quantum mechanics obscure and calls for a complete reanalysis thereof [34–38]. As
also probably first recognized by the same authors, such an analysis can fruitfully be
attempted using topos theory, whose internal logic is indeed intuitionistic.

From our perspective, another reason why topos theory offers itself on a silver tray
in our search for a spatial quantum logic lies in the interplay between spatial and logical
structures inherent in topos theory, as exemplified by the opening words of the renowned
textbook by Mac Lane and Moerdijk:

A startling aspect of topos theory is that it unifies two seemingly wholly distinct
mathematical subjects: on the one hand, topology and algebraic geometry and on
the other hand, logic and set theory.
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We refer to [42,50,51,63] for accounts of topos theory; see also [9,57,65] for histor-
ical details. Briefly, a topos is a category in which one can essentially reason as in the
category Sets of all sets (with functions as arrows), except for the fact that the logic is
intuitionistic and the axiom of choice is generally not available. Briefly, the mathematics
underlying topos theory is constructive.

Specifically, a topos is a category with the following ingredients:

1. Terminal object. This is an object called 1 (unique up to isomorphism) such that for
each object A there is a unique arrow A → 1, generalizing the singleton set in the
category Sets.

2. Pullbacks. These generalize the fibered product B×A C = {(b, c) ∈ B×C | f (b) =
g(c)} of B

f �� A and C
g �� A in Sets into a pullback square with appropriate

universality property. Cartesian products are a special case.
3. Exponentials. These generalize the idea that the class B A of functions from a set A

to a set B is itself a set, and hence an object in Sets, equipped with the evaluation
map ev : A × B A → B.

4. Subobject classifier. This generalizes the idea that one may characterize a subset
A ⊆ B by its characteristic function χA : B → {0, 1}. Subsets generalize to
subobjects, i.e. monic (“injective”) arrows A � B, and in a topos there exists

an object � (the subobject classifier) with associated arrow 1 � ��� (“truth”)

such that for any subobject A � B there is a unique arrow B
χA ��� for which

B A
f�� ��1 is a pullback of B

χA ��� and 1 � ��� . Conversely, given any

arrow B
χ ��� there exists a subobject A � B of B (unique up to isomorphism)

whose classifying arrow χB equals χ . The subobject classifier in a topos plays the
role of a “multi-valued truth object”, generalizing the simple situation in Sets, where
� = {0, 1} = {false, true}; see (2) and subsequent text.

We assume that our topoi are cocomplete and have a natural numbers object.

1.3. Generalized notions of space. Our first objective in the list at the beginning of Sub-
sect. 1.2, i.e. the identification of an appropriate notion of a quantum phase ‘space’, will
be met by a combination of two profound notions of generalized space that have been
around for some time.

1. First, let us recall the strategy of noncommutative geometry [25,26]. One starts
with the replacement of a compact topological space X by the associated algebra of
complex-valued continuous functions C(X,C). If X fails to be Hausdorff, this step
loses information, but if it is, one may recover X from the commutative C*-alge-
bra C(X,C) as its Gelfand spectrum. This yields a duality between the category
of compact Hausdorff spaces and the category of unital commutative C*-algebras:
nothing is lost, but nothing is gained either by abstracting spaces as commutative
C*-algebras. The thrust of noncommutative geometry, then, is to allow C*-algebras
to be noncommutative without losing the spatial perspective. That this can be done
is impressive enough, but as the logical situation is obscured by moving from com-
mutative to noncommutative C*-algebras, further ideas are needed (at least if one is
interested in quantum logic).

2. A second approach to generalizing topological spaces would be to replace X by
its topology O(X). This has a natural lattice structure under inclusion, and in fact
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defines a highly structured kind of lattice known as a frame. This is a complete
distributive lattice such that x ∧∨

λ yλ = ∨
λ x ∧ yλ for arbitrary families {yλ} (and

not just for finite ones, in which case the said property follows from the definition
of a distributive lattice). For example, if X is a topological space, then the topology
O(X) of X is a frame with U � V if U ⊆ V . A frame homomorphism preserves
finite meets and arbitrary joins; this leads to the category Frm of frames and frame
homomorphisms.

Abstracting frames O(X) coming from a topological space to general frames is a gen-
uine generalization of the concept of a space, as plenty of frames exist that are not
of the form O(X). A simple example is the frame Oreg(R) of regular open subsets
of R, i.e. of open subsets U with the property ¬¬U = U , where ¬U is the interior of
the complement of U . This may be contrasted with the situation for unital commutative
C*-algebras, which, as just recalled, are all of the form C(X). Moreover, far from obscur-
ing the logical structure of space, the generalization of spaces by frames rather explains
and deepens this structure.

Indeed, a frame is a complete Heyting algebra, with its intrinsic structure of an
intuitionistic propositional logic. Here a Heyting algebra is a distributive lattice L with
a map →: L × L → L satisfying x � (y → z) iff x ∧ y � z, called implication
[42,63,80]. Every Boolean algebra is a Heyting algebra, but not vice versa; in fact, a
Heyting algebra is Boolean iff ¬¬x = x for all x , which is the case iff ¬x ∨ x = �
for all x . Here negation is a derived notion, defined by ¬x = (x →⊥). For example,
Oreg(R) is Boolean, but O(R) is not. In general, the elements of a Heyting algebra form
an intuitionistic propositional logic under the usual logical interpretation of the lattice
operations.

A Heyting algebra is complete when arbitrary joins (i.e. sups) and meets (i.e. infs)
exist. A complete Heyting algebra is essentially the same thing as a frame, for in a frame
one may define y → z = ∨{x | x ∧ y � z}. Conversely, the infinite distributivity law in
a frame is automatically satisfied in a Heyting algebra. The set of subobjects of a given
object in a topos forms a complete Heyting algebra (as long as the topos in question is
defined “internal to Sets”), generalizing the fact that the set of subsets of a given set is a
Boolean algebra. The subobject classifier of such a topos is a complete Heyting algebra
as well; in fact, these two statements are equivalent. (Note, however, frame maps do not
necessarily preserve the implication → defining the Heyting algebra structure, as can
already be seen in examples of the type f −1 : O(Y ) → O(X), where f : X → Y is
continuous [63]. Consequently, negation may not be preserved by frame maps either.)

The category Loc of locales is the opposite category to Frm, i.e. it has the same
objects but all arrows go in the opposite direction. Some topos theorists write X for a
locale and OX or O(X) for the same object seen as a frame [48,63,80]. Apart from
the already unfortunate fact that this notation is applied also when O(X) does not stand
for the opens of a space X but denotes a general frame, it fails to distinguish between
a topological space X and the associated locale (i.e. the frame O(X) seen as a locale).
Nonetheless, this notation often leads to elegant expressions and we will heavily use it.

If X and Y are spaces, a continuous map f : X → Y induces a frame map f −1 :
O(Y ) → O(X) and hence an arrow O(X) → O(Y ) in Loc, simply defined as f −1

read in the opposite direction. We write the latter arrow in Loc simply as f : X → Y .
In general, an arrow in Frm is written as f −1 : O(Y ) → O(X) (whether or not
the frames in question come from topological spaces and if so, whether or not f −1

is indeed the pullback of a continuous function between these spaces), and the corre-
sponding arrow in Loc is denoted by f : X → Y . Similarly, we will write C(X,Y ) for
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HomLoc(X,Y ) = HomFrm(O(Y ),O(X)). In particular, for a locale X , C(X,C) will
denote the set of frame maps O(C)→ O(X).

1.4. Points and opens of locales. An element of a set X (and hence a fortiori also a point
of a topological space X ) may be identified with an arrow ∗ → X , where ∗ is a given
singleton (for simplicity we write ∗ instead of the more usual {∗}). The same goes for
locales X , so that by definition a point of a locale X is a locale map p : ∗ → X , hence
a frame map p−1 : O(X)→ O(∗) ∼= {0, 1} = �; recall that the subobject classifier in
Sets, seen as a topos, is � = {0, 1} and note that ∗ is precisely the locale associated to
�, as our notation � = O(∗) has indicated.

A point of a locale X being defined as a locale map ∗ → X or as the corresponding
frame map O(X) → �, an open of X is defined as a locale map X → S, where S is
the locale defined by the so-called Sierpinski space, i.e. {0, 1} with {1} as the only open
point. The corresponding frame map O(S) → O(X) is determined by its value at 1
(since ∅ �→ ∅ and {0, 1} �→ X ), so that we may simply look at opens in X as arrows
1 → O(X) (where the singleton 1 is seen as the terminal object in Sets). Clearly, if X is
a genuine topological space with associated frame O(X) of opens, then each such map
1 → O(X) corresponds to an open subset of X in the usual sense. Using this concept,
the set Pt(X) of points of a locale X may be topologized in a natural way, by declaring
its opens to be the sets of the form

Pt(U ) = {p ∈ Pt(X) | p−1(U ) = 1}, (7)

where U ∈ O(X) is some open. We say that a locale X is spatial if it is isomorphic (in
the category of locales) to Pt(X) (more precisely, to the locale associated to the frame
O(Pt(X)) in the above topology). Conversely, a topological space X is called sober if
it is homeomorphic to Pt(X) (which, with the notation introduced above, really stands
for the space of points of the locale associated to the frame O(X)). It is useful to know
that X is sober when it is Hausdorff. If X is sober, any frame map ϕ : O(Y )→ O(X) is
induced by a continuous map f : X → Y as ϕ = f −1. This provides additional justifi-
cation for the notation f −1 : O(Y )→ O(X) for a general frame map, and f : X → Y
for the associated locale map. See [63, Sect. IX.3] for a very clear exposition of all this.

For example, referring to Subsect. 1.1, the characteristic function χ[ρ] : O(M)→ �

introduced below (3) is easily checked to define a frame map. Renaming this map as
χ[ρ] ≡ ρ−1, the associated locale map ρ : ∗ → M is therefore a point of the locale M
in the above sense. In this special case, such a point may also be described by an arrow
1 → M , where 1 is the terminal object in Sets and M denotes M as a set rather than as
a locale. This notion of points as elements of sets will be avoided in what follows.

Thus frames and locales are two sides of the same coin: the elements 1 → O(X) of
the Heyting algebra O(X) are the opens of the associated locale X , to be thought of as
propositions, whereas the points of the locale correspond to models of the logical theory
defined by these propositions. See [51,63] and especially [80] for a very clear explanation
of this perspective. More precisely, recall that geometric propositional logic stands for
the following fragment of intuitionistic propositional logic [51,63,80]. A formula ϕ in
propositional geometric logic must be built from atomic propositions using the symbols
� (for “truth”), ∧ (for “and”), and ∨ (for “or”), where ∨ but not ∧ is allowed to carry
an infinite index set. (This may be motivated by the remark that to verify a proposition
∨λ∈� pλ, one only needs to find a single pλ, whereas to verify ∧λ∈� pλ the truth of each
pλ needs to be established, an impossible task in practice when � is infinite.) Sequents
or axioms must take the form ϕ → ψ , where ϕ and ψ are formulae.
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A frame O(X), then, defines a geometric propositional theory whose propositions
correspond to opens in X , combined by logical connectives given by the lattice oper-
ations in O(X) à la Boole. This quite literally holds in the case of classical physics
discussed in Subsect. 1.1, where the opens of the locale M are just the opens U of M as
a topological space in the naive sense, construed as propositions “the system is in a state
located within U”. Conversely, a propositional geometric theory T has an associated
Lindenbaum algebra O([T]), defined as the poset of formulae of T modulo provable
equivalence, ordered by entailment. This poset turns out to be a frame, and the (stan-
dard) models of T (that by definition assign one of the two standard truth values 0 or
1 to the propositions of T in a consistent way) bijectively correspond to frame maps
O([T]) → {0, 1}. Identifying {0, 1} with � = O(∗) as explained above, we see that
a model of the theory T is the same thing as a point ∗ → [T] of the locale [T]. More
generally, one may consider a model of T in a frame O(Y ) (generalizing the standard
models where Y = ∗) to be a locale map Y → [T].

1.5. Locales in topoi. The generalization from topological spaces to frames is an impor-
tant step towards our goal, but it is not enough. Seeking further generality pertinent to
quantum theory, one may proceed in at least two different ways. First, one may gener-
alize locales to quantales [67]. This step leads to recognizable logical structures, but it
does not relate well to the Copenhagen Interpretation of quantum mechanics we favour.

Instead, we pass from frames as special objects in the category of sets (as defined
above) to frames in more general topoi. This is indeed possible, as all of the above con-
cepts can be defined in any topos by using its internal language [63]; see [12] for details.
In particular, in a topos T one may consider the category FrmT of internal frames and
its opposite category LocT of internal locales. The terminal object of the latter is the
locale ∗ whose associated frame O(∗) is the subobject classifier � of T . Opens, points
and models are then defined in exactly the same way as in Sets, as long as one realizes
that the identification of � with {0, 1} and of ∗ with the singleton is peculiar to Sets.

In particular, a point of a locale X in T is a frame map O(X) → �, whereas an
open in X may be defined as an arrow 1 → O(X). The collection Pt(X) of a locale is
still defined as the subobject of �O(X) corresponding to frame maps, its opens being
given by interpreting (7) in the internal language of T , where U ∈ O(X) is interpreted

as an arrow 1
U→ O(X) and p−1(U ) = 1 means that p−1 ◦ U = �, i.e. the truth arrow

� : 1 → � in T .
In any case, it is reassuring that topos theorists simply refer to ‘internal’ locales

as ‘spaces’ [52,53,66]: returning to the opening words from Mac Lane and Moerdijk
quoted earlier, one might say that the unification in question is exemplified by the idea
of an internal locale with its associated Heyting algebra structure.

Our quantum phase spaces�, then, will be examples of locales in topoi. Their opens
1 → O(�) will correspond to the elementary propositions or yes-no questions about
the system, and each physical state on the system will define a map O(�)→ �, where
� is the subobject classifier in the particular topos in which� is defined. It is important
to note that such maps generally fail to be frame maps, i.e. they do not define models in
the above sense. This phenomenon already arises in classical physics if one considers
mixed rather than pure states; indeed, the map χ[µ] : O(M) → � introduced below 6
fails to be a frame map (except when µ happens to be pure).

However, a fundamental difference between classical and quantum physics in this
respect lies in the Kochen–Specker Theorem, which in its topos-theoretic incarnation
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(given in different versions in [20] and in Theorem 6 below) states that (generically)
the quantum phase space � has no points at all, although the quantum system has pure
states (see Subsect. 4.1). Hence whereas pure states in classical physics - as defined in
the usual sense through convexity - are also ‘pure’ in the logical sense, this is no longer
the case in quantum physics.

Nonetheless, pairing states and propositions into an internal truth value, i.e. taking
the subobject classifier to be the codomain of the pairing map, is a central goal of this
work, which we share with (and adopted from) the work of Isham et al. [20,34]. Unlike
real-number valued pairings (which from a logical perspective might be preferable), an
�-valued pairing avoids both the problems with the ignorance interpretation of the Born
probabilities (see Subsect. 1.2) and the bizarre ontology of the so-called Many-Worlds
interpretation of quantum mechanics (cf. [14,17]). A philosophical defence of this goal
may also be found in [18]. However, the final verdict about its validity, or rather its
relevance to physics, can only be given once the Born rule has been derived from our
�-valued pairing, along with an appropriate interpretation of the Born probabilities. This
derivation will be given in future work, in which the results of Sect. 6 of this paper will
be combined with those in [61].

1.6. Basic construction. The two notions of generalized space just described, i.e. non-
commutative C*-algebra s and locales in arbitrary topoi, will be related by one of the
main constructions in this paper, which we summarize in this subsection. This con-
struction associates a certain internal locale to a noncommutative C*-algebra (assumed
unital), and hinges on three ideas:

1. Algebraic quantum theory [39,44,58];
2. Constructive Gelfand duality [5–7,27,29];
3. Bohr’s doctrine of classical concepts [11,60,73].

From the first, we just adopt the methodology of describing a quantum system by a non-
commutative C*-algebra A (defined in the usual topos Sets). This move generalizes the
usual Hilbert space framework of quantum theory and has the advantage of being able to
incorporate superselection rules in infinite systems, as well as other limiting situations
like the transition from quantum to classical mechanics (and back).

As to the second, it turns out that the notion of a C*-algebra makes sense in an arbitrary
topos, so that one may, in particular, internalize commutative C*-algebras. Examples of
such internal commutative C*-algebras arise from compact completely regular locales
([7,48], see also footnotes 2 and 3 below): if X is such a locale in some topos T , and if
C is the locale defined by the complex numbers object in T (as in [7]), then the object
C(X,C) of all locale maps from X to C is a commutative C*-algebra in T under nat-
ural operations. The Gelfand duality theorem of Banaschewski and Mulvey [7] states
that, like in the case of the topos Sets, up to isomorphism these are the only examples
of unital commutative C*-algebras: if A is a unital commutative C*-algebra in a topos
T , there exists a compact completely regular locale � such that A ∼= C(�,C). Here∼= denotes isomorphism in the category T and the arrows implementing this isomor-
phism are C*-algebra maps. Moreover, this isomorphism extends to a categorical duality
between compact completely regular locales and unital commutative C*-algebras in T .
We call the locale� or�(A) the Gelfand spectrum of A. It is defined up to isomorphism
of locales.

Third, Niels Bohr’s “doctrine of classical concepts” states that we can only look at
the quantum world through classical glasses, measurement merely providing a “classical
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snapshot of reality”. The combination of all such snapshots should then provide a com-
plete picture. In Bohr’s own words ([11], p. 209):

However far the phenomena transcend the scope of classical physical explana-
tion, the account of all evidence must be expressed in classical terms. (…) The
argument is simply that by the word experiment we refer to a situation where we
can tell others what we have done and what we have learned and that, therefore,
the account of the experimental arrangements and of the results of the observa-
tions must be expressed in unambiguous language with suitable application of the
terminology of classical physics.

This doctrine has a transparent formulation in algebraic quantum theory, to the effect
that the empirical content of a quantum theory described by a certain noncommutative
C*-algebra A is contained in suitable commutative C*-algebras associated to A. In the
simplest case, which we study in this paper, these are simply the (unital) commutative
C∗-subalgebras of A. (To understand classical behaviour in general, the pertinent com-
mutative C*-algebras have to be extracted from A using limiting procedures like � → 0
or N →∞ [60].)

The following construction weaves these three threads together. Let A be a unital
C*-algebra (in the usual sense, i.e. in Sets) and let C(A) be the collection of its unital
commutative C∗-subalgebras, partially ordered by inclusion. We regard the poset C(A)
as a category, whose objects are the unital C∗-subalgebras C ⊆ A, and whose Hom-sets
HomC(A)(C, D) consist of a single arrow if C ⊆ D and are empty otherwise. The cat-
egory C(A) is a catalogue of all ‘classical snapshots of reality’ one may take of the
quantum system described by A.

Recall that for any category C, the topos SetsC has functors C → Sets as objects and
natural transformations as arrows [63]. Put

T (A) = SetsC(A). (8)

The philosophical idea is that as observers we are confined to the topos T (A), whereas
the physical system itself divinely exists in the ambient topos Sets. According to Bohr
and Heisenberg, the system might seem to behave probabilistically from our limited
classical perspective, but this behaviour is just a consequence of our confinement to
T (A) (cf. Theorem 14 below).

We will underline entities internal to T (A). It turns out that the tautological functor
A : C �→ C , which (with some abuse of notation) maps a unital commutative C∗-subal-
gebra C of A (seen as an object of the category C(A)) into itself (seen as a set), is a unital
commutative C*-algebra in T (A). We call A the Bohrification of A. It has an associated
Gelfand spectrum �(A), which is a locale in T (A). The map A �→ �(A) associates a
‘space’�(A) in the sense of topos theory to a ‘space’ A in the sense of noncommutative
geometry.

In principle, this construction leads to the solution of all five problems listed at the
beginning of Subsect. 1.2:

1. The quantum phase space of the system described by A is the locale � ≡ �(A) in
the topos T (A).

2. The “subsets” of the locale� acting as elementary propositions about A are simply
the ‘opens’ in�, defined as arrows 1 → O(�) in T (A). Thus the quantum logic of
A is given by the Heyting algebra underlying �(A).

3. Observables a ∈ A define locale maps δ(a) : � → IR, where IR is the so-called
interval domain. States ρ on A yield probability measures (more precisely, valua-
tions) µρ on �.
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4. An open interval � ⊆ R defines an arrow 1 � ��O(IR) of T (A) (where 1 is

the terminal object in T (A)), which, composed with the map O(IR) δ(a)
−1

��O(�)
underlying δ(a), yields the desired proposition

1
[a∈�] ��O(�) = 1 � ��O(IR) δ(a)

−1
��O(�).

5. State-proposition pairing is defined exactly as in (4), i.e. by

1
〈a∈�,ρ〉�� � = 1

[a∈�] ��O(�)
χ[ρ] ���, (9)

where� is the subobject classifier of T (A) and χ[ρ] is the characteristic map of the
subobject [ρ] of O(�) consisting of all opens U of � with µρ(U ) = 1 (defined
through the internal language of T (A)).

The construction of δ(a) is inspired by, and partly generalizes, the Daseinisation map
of Döring and Isham ([35,36], cf. also Appendix B).

The subobject classifier � is the functor C(A)→ Sets given by

�(C) = {S ⊆↑C | S is an upper set}, (10)

where for any poset P an upper set in P is a subset U ⊆ P for which x ∈ U and x � y
implies y ∈ U , and one writes ↑ x = {y ∈ P | x � y} for the so-called principal
upper set on x . Note that �(C) is a poset (and even a frame) under inclusion as partial
ordering, with ∅ as bottom element, and ↑ C as top element. (One might think of the
principal upper set ↑C on the “classical snapshot of reality” C as the collection of all
finer versions of the knowledge present in C .) The subobject classifier� is a (covariant)
functor by stipulating that if C ⊆ D, then the induced map �(C)→ �(D) is given by
S �→ S ∩ ↑D.

In this setup, we have taken Sets as the ambient topos. There are several reasons,
however, one might want to consider other ambient topoi. Leaving the matter to future
investigation, let us briefly indicate an important application. An algebraic quantum
field theory (AQFT) [44] may be defined as a functor (O(M),⊆)→ CStar satisfying
certain separability constraints, where M is Minkowski space-time and O(M) is its set
of opens [13]. Analogous to Theorem 5 below, an AQFT may then be shown to be given
by a single C*-algebra in the presheaf topos SetsO(M) (though not a commutative one).

1.7. Internal and external language. We have repeatedly used the word ‘internal’ for a
construction intrinsic to a certain topos T ; for example, A and its Gelfand spectrum �

are internal to T (A), as is the Heyting algebra structure of �. At this point, confusion
may arise, for on the one hand the propositional logic carried by� is intuitionistic, while
on the other hand all constructions (ranging from the initial C*-algebra A to the locale
�(A) as an object in the associated functor topos SetsC(A)) eventually arise from the
topos Sets, whose underlying logic is classical.

To clarify this, we remark that it is a very important aspect of topos theory that
one may, indeed, usually adopt two points of view: an external one and an internal one.
External constructions are carried out using classical mathematics, which (at least for the
topoi used in this paper) takes place in the familiar topos Sets (even if the constructions
in question are concerned with some other topos). Internal constructions, on the other
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Fig. 1. Illustration of universes of discourse

hand, only use concepts intrinsic to the topos one is studying. This idea is formalized by
the internal or Mitchell-Bénabou language associated with each topos [12,51,63]. This
is a logical language that for many instances and purposes allows one to reason within a
given topos as if it were the topos Sets. For example, one may employ the usual logical
and set-theoretic symbols (the latter even if an object X has no or few elements in the
sense of arrows 1 → X ), whose meaning is determined by the so-called Kripke-Joyal
semantics associated with the Mitchell-Bénabou language. We will actually use this
semantics in our theory of state-proposition pairing. However, using the internal lan-
guage one may (in general) neither appeal to the law of excluded middle x ∨ ¬x = �,
nor to the Axiom of Choice (although restricted versions thereof are sometimes valid).
These limitations are a consequence of the fact that the internal language of a topos
happens to be based on intuitionistic predicate logic (see [12,51] for the precise rules).

Thus a topos can be seen as a universe of discourse, to which a mathematician or
observer may wish to confine himself. On the other hand, even the internal language
and associated logic can alternatively be studied externally with classical meta-logic.
The various entities at play in our application of topos theory to quantum physics are
illustrated in Fig. 1. This illustrates, in particular, that our quantum logic is meant to be
the logic of an ‘internal’ observer, with all the restrictions this brings with it (whereas
the quantum ‘logic’ of Birkhoff and von Neumann, to the extent it is a logic at all, rather
pertains to a fictitious entity like Laplace’s demon, to whose intellect ‘nothing would be
uncertain and the future just like the past would be present before its eyes.’)

Let us give three closely related examples of internal versus external descriptions,
each relevant to our logical approach to quantum theory.

First, a fundamental fact of topos theory is that the subobjects SubT (A) of a given
object A in a topos T (with subobject classifier�T ) form a (complete) Heyting algebra.

• Externally, one simply looks at SubT (A) as a set, equipped with the structure of a
Heyting algebra in the category Sets.

• Internally, SubT (A) is described as the exponential�A
T (or power ‘set’ P(A)), which

is a Heyting algebra object in T . See [63, p. 201].

Second, as these Heyting algebras are complete, they are frames. The explicit internal
description of a frame or locale is rather complicated as far as the completeness property
of the underlying lattice is concerned [12]. However, if the topos T = Sh(X) is that of
sheaves on a locale X (which, we recall, consists of those functors F in SetsO(X)

op
that

satisfy a gluing condition stating that F(U ) can be computed from the F(Ui ) under any
open covering U = ∪iUi [63, Ch. II]), a simple external description is available [49,53]
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(also cf. [51, Sect. C1.6]): a locale L in Sh(X) is externally described by a locale map
f : L → X in Sets, with

L = L(X). (11)

Furthermore, if L1 and L2 are locales in Sh(X)with external descriptions fi : Li → X ,
then an internal locale map g : L1 → L2 in Sh(X) is externally given by a locale map
g : L1 → L2 in Sets such that f2 ◦ g = f1.

To see that this situation is relevant to our construction, first recall the Alexandrov
topology on a poset P . Its opens are simply the upper sets, and the special upper sets
of the form U = ↑x form a basis of the Alexandrov topology. Equipping P with the
Alexandrov topology, one has an isomorphism of categories

SetsP ∼= Sh(P). (12)

To understand this, just note that a sheaf F on P is determined by its values on the basis
opens ↑x ; a functor F : P → Sets then corresponds to F by

F(x) = F(↑x). (13)

It is, then, immediate from (8) and (12) that

T (A) ∼= Sh(C(A)), (14)

so that we have the above-mentioned external description of locales to our avail, with
X = C(A).

Explicitly, to describe an internal locale L in Sh(X) externally, i.e. in terms of the
topos Sets, consider the set 
O(L) = HomSh(X)(1,O(L)) of global sections of the
associated frame O(L); this set coincides with O(L)(X) (since a natural transfor-
mation in HomSh(X)(1,O(L)) is determined by its value at X ) and defines a frame
O(L)(X) in Sets under the lattice structure borrowed from O(L). For V ⊆ U , let
LU

V : O(L)(U )→ O(L)(V ) be the arrow part of the functor O(L) : O(X)op → Sets,
with special case LV ≡ LX

V . The completeness of O(L) implies that LV has a left adjoint
L∗

V : O(L)(V ) → O(L)(X), which in turn defines a map f ∗ : O(X) → O(L)(X)
by f ∗ : V �→ L∗

V (�L(V )), where �L(V ) is the top element of the lattice O(L)(V ).
This is a frame map, and if we write O(Y ) = O(L)(X), the corresponding locale map
f : Y → X is the external description of L.

Conversely, a locale L in Sets along with a locale map f : L → X (i.e. a frame map
f ∗ : O(X)→ O(L)) induces a locale L in Sh(X), defined as the sheaf L(U ) = {V ∈
L | V � f ∗(U )}. These constructions are adjoint to each other, yielding an equivalence
of the category Loc(Sh(X)) of locales in Sh(X) and the slice category Loc/X relative
to the category Loc of locales in Sets.

For us, the external description of locales is useful for two reasons:

1. Returning to (9), we are clearly interested in the set


O(�) ∼= HomSetsC(A) (1,O(�))

of opens in �, as it encodes the quantum logic of our C*-algebra A. Let O(�) be
the sheaf on C(A) that corresponds to O(�) by (13), so that 
O(�) ∼= 
O(�),
with 
O(�) = HomSh(C(A))(1,O(�)). Clearly, if a poset P has a bottom element
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⊥ and Z is any object in SetsP , then 
Z ∼= Z(⊥). This applies to P = C(A) with
⊥= C · 1, so that


O(�) ∼= O(�)(C · 1) ∼= O(�)(C(A)) = O(�), (15)

where we have used (11). Hence the external description of the quantum logic of
the C*-algebra A is entirely given in terms of the locale � in Sets.

2. Important internal number systems in T (A) that are defined by geometric proposi-
tional theories T (see Subsect. 1.4) may be computed from (13) and their description
in Sh(C(A)), which in turn is based on their external description in Sets. Specifi-
cally, if [T] is the locale defined by T in Sets, then the locale [T] ≡ [T]Sh(X) giving
the interpretation of T in Sh(X) has external description π1 : X × [T] → X , where
π1 is projection on the first component. It follows that the frame O([T]) in Sh(X)
corresponding to [T] is given by the sheaf U �→ O(U × [T]). Applying this to
the case at hand, we see that the frame O([T]) corresponding to the interpretation
[T] ≡ [T]C(A) of T in T (A) is given by the functor

O([T]) : C �→ O(↑C × [T]). (16)

See Subsects. 2.3 and 5.1 for examples of this procedure.

Our third example applies the second one to points of locales [63], and continues the
discussion in Subsect. 1.4:

• Internally, a point of a locale Y in a general topos T (internal to Sets for simplicity)
is a locale map ∗ → Y , which is the same thing as an internal frame map O(Y )→ �

(where � is the subobject classifier in T ).
• Externally, we look at � as the frame SubT (1) in Sets of subobjects of the ter-

minal object 1 in T . The locale in Sets with frame SubT (1) is called the localic
reflection Loc(T ) of T , i.e. O(Loc(T )) = SubT (1). For example, in T = Sh(X)
one has SubSh(X)(1) ∼= O(X) and hence Loc(Sh(X)) ∼= X . Applying the second
example above, we find that the external description of the locale ∗ in Sh(X) is
just id : X → X , so that points in a locale L in Sh(X) with external description
f : Y → X are given by locale maps ϕ : X → Y that satisfy f ◦ ϕ = id, i.e.
cross-sections of f .

The fourth example continues both the previous one and the discussion of models in
Subsect. 1.4. We initially defined a standard model of a geometric propositional theory T

as a locale map ∗ → [T], and subsequently mentioned more general models Y → [T],
still in Sets. We now consider even more general models of T in a topos T .

• Externally, these are given by locale maps Loc(T ) → [T] in Sets. This is because
the classifying topos of T is Sh([T]), and one has an equivalence between geometric
morphisms T → Sh([T]) (which classify T-models in T , cf. [63, Thm. X.6.1]) and
locale maps Loc(T )→ [T] (see [63, Sect. IX.5]).

• Internally, one may interpret the theory T in T and thus define a locale [T]T inter-
nal to T . The points of this locale, i.e. the locale maps ∗ → [T]T or frame maps
O([T]T )→ �T , describe the models of T in T internally.

One may explicitly verify the equivalence between the internal and the external descrip-
tions for T = Sh(X), for in that case the external description of [T]T is the map
π1 : X × [T] → X . Hence locale maps ϕ : X → X × [T] that satisfy π1 ◦ ϕ = id are
just (unconstrained) locale maps X → [T].
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1.8. Observation and approximation. Our construction of the locale map δ(a) : � →
IR in Sect. 1.6 involves the so-called interval domain IR [74]. To motivate its definition,
consider the approximation of real numbers by nested intervals with endpoints in Q. For
example, the real number π can be described by specifying the sequence

[3, 4], [3.1, 3.2], [3.14, 3.15], [3.141, 3.142], . . .
Each individual interval may be interpreted as finitary information about the real number
under scrutiny, involving the single observation that the real number is contained in the
interval. This description of the reals, which goes back to L.E.J. Brouwer, is formalized
by the notion of the interval domain. Consider the poset IR whose elements are compact
intervals [a, b] in R (including singletons [a, a] = {a}), ordered by reverse inclusion
(for a smaller interval means that we have more information about the real number that
the ever smaller intervals converge to). This poset is a so-called dcpo (directed com-
plete partial order); directed suprema are simply intersections. As such, it carries the
Scott topology [2,74], whose closed sets are lower sets that are closed under suprema of
directed subsets. Here a lower set in a poset P is a subset L ⊆ P such that x ∈ L and
y � x implies y ∈ L; equivalently, ↓ L ⊆ L , where ↓ L = {y ∈ P | ∃ x ∈ L : y � x}.
(Lower sets are sometimes called down sets or downward closed sets.) Consequently,
Scott opens must be upper sets U (defined in the obvious way) with the additional prop-
erty that for every directed set D with

∨
D ∈ U the intersection D ∩ U is nonempty.

In the case of IR, this means that each open interval (p, q) in R (with p = −∞ and
q = +∞ allowed) corresponds to a Scott open {[a, b] | p < a, b < q} in IR, and these
opens form a basis of the Scott topology. The collection OScott(IR) is, of course, a frame,
initially defined in Sets. The basis opens (r, s) may be reinterpreted as a collection of
generators for this frame, which from the point of view of generators and relations differs
from the frame O(R) of Dedekind reals in that the relation (p, q) = (p, q1)∨(p1, q) for
p � p1 � q1 � q holds for the reals, but not for the interval domain (see [51, D4.7.4]
or Subsect. 2.3 below for the other relations for O(R)). The interval domain admits an
internal definition in any topos. Its realization in T (A) will play an important role in
this paper; see Subsect. 5.1.

A related notion of approximation appears when considering an observable a ∈ Asa
of a quantum system described by a C*-algebra A, as seen from inside its associated
topos T (A). Specifically, we should approximate a within each classical snapshot C
of A, where C ∈ C(A) is some commutative subalgebra. The difficulty is, of course,
that a need not lie in C , but neither is there a single element of C that forms the ‘best
approximation’ of a in C . The best one can do is approximate a by a family of elements
of C , as follows.

The self-adjoint part Asa of a C*-algebra A has a natural partial order �, defined by
a � b iff b − a = c∗c for some c ∈ A. (Equivalently, a � b iff b − a = f 2 for some
f ∈ Asa.) This partial order is linear—in the sense that a + c � b + c whenever a � b.
For the C*-algebra A = C(X,C) one just recovers the pointwise order on (real-valued)
functions, since Asa = C(X,R). For A = B(H), the bounded operator on Hilbert space
H , one has a ≥ 0 for a ∈ Asa iff (�, a�) ≥ 0 for all � ∈ H . (Indeed, this is really
a pointwise order as well, if one regards operators a on H as functions â on H by
â(�) = (�, a�). See e.g.[58].) Thus one may approximate a in C by collections of
intervals of the type {[ f, g] | f, g ∈ Csa, f � a � g} (note that this is inhabited, since
f = −‖a‖·1 and g = ‖a‖·1 occur). Since the intervals [ f, g] in Csa fail to form a dcpo,
however, a slight adaptation of this idea is needed, for which we refer to Subsect. 5.1
below.
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1.9. Structure of this article. Section 2 reviews the Gelfand duality theory in a topos
due to Banaschewski and Mulvey. Our original results are as follows:

1. The construction of the ‘quantum phase space’ �(A) from a C*-algebra A in Sets
as the Gelfand spectrum of the Bohrification A of A in the topos T (A) is explained
in Sect. 3. This section also contains our version of the Kochen–Specker Theorem.

2. Section 4 first describes the construction of states on A as probability integrals on
the self-adjoint part of A. These, in turn, are equivalent to probability valuations
on its Gelfand spectrum �(A). On this basis, we eventually show that states define
subobjects of the quantum phase space �(A), as in classical physics (see (3)).

3. The interpretation of observables in A in terms of the Bohrification A is the subject
of Sect. 5. In particular, we give our analogue of the Daseinisation map of Döring
and Isham in Subsect. 5.2 (and more fully in Appendix A.2).

4. The pairing of states and propositions is elucidated in Sect. 6, yielding an element of
the subobject classifier of T (A) that we explicitly compute. This pairing connects
the mathematical constructions to quantum physics and completes Steps 1 to 5 of
our general program mentioned at the beginning of Subsect. 1.2.

Appendix A contains a number of technical results that somewhat distract from the main
development of the paper. Finally, Appendix B discusses related work by Döring and
Isham, which partly inspired the present article.

2. C*-Algebras and Gelfand Duality in a Topos

This section recapitulates a constructive version of Gelfand duality, which is valid in
every topos [5–7]. Recall that the usual version of Gelfand duality characterises unital
commutative C*-algebras as algebras of complex-valued continuous functions on a
compact Hausdorff space. More generally, the category cCStar of unital commutative
C*-algebras and unital ∗-homomorphisms is dual to the category KHausSp of compact
Hausdorff spaces and continuous maps (see [48] for a proof aimed at algebraists and
[59] for a proof in the spirit of C*-algebras). From a topos-theoretic point of view, this
formulation is internal to the topos Sets, since both categories are defined relative to it.

To understand the generalization of Gelfand duality to arbitrary topoi, a slight refor-
mulation of the situation in Sets is appropriate: we replace topological spaces X by the
associated locales, and hence replace KHausSp by the equivalent category KRegLoc
of compact regular locales [48].2 Consequently, the duality cCStar � KHausSp may
be replaced by cCStar � KRegLoc: the contravariant functor cCStar → KRegLoc
is still given by A �→ �(A), where �(A) is the locale defined by the usual Gelfand
spectrum of A (i.e. its pure state space), and in the opposite direction one has the familiar
expression X �→ C(X,C), in which the right-hand side now stands for the locale maps
from X to C.

For technical reasons, in general topoi regular compact locales have to be replaced

by completely regular compact locales,3 but otherwise one has a direct generalization of

2 A locale L is compact if every subset S ⊆ L with
∨

S = � has a finite subset F with
∨

F = �. It is
regular if every element of L is the join of the elements well inside itself, where a is well inside b (denoted
a � b) if there exists c with c ∧ a =⊥ and c ∨ b = �. The (internal) categories KRegLoc and KHausSp in
a topos T are equivalent when the full axiom of choice is available in T [48].

3 See [48 or 7] for the definition of complete regularity. If the axiom of dependent choice (stating that for any
nonempty set X and any relation R ⊆ X×X such that for all x there is an y with (x, y) ∈ R, there is a sequence
(xn) such that (xn , xn+1) ∈ R for each n ∈ N) is valid in a topos, then compact regular locales are automat-
ically completely regular. This is the case in Sets, for example (where, of course, the full axiom of choice
holds), and also in topoi like T (A) consisting of functors whose codomain validates dependent choice [41].
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the above reformulation of Gelfand duality in Sets. The following theorem is predicated
on an internal definition of the category cCStar, which we shall give in Subsect. 2.1.
Here and in what follows, all mathematical symbols are to be interpreted in the internal
language of the topos T at hand.

Theorem 1 (Gelfand duality in a topos) [5–7]. In any topos T , there is a categorical
duality (i.e. contravariant equivalence)

cCStar
� ��

KRegLoc,
C(−,CT )

��

where the categories in question are defined internally to T .

For A ∈ cCStar, the locale�(A) is called the Gelfand spectrum of A. Here the symbol
CT stands for the locale of Dedekind complex numbers in T .

2.1. C*-algebras in a topos. In any topos T (with natural numbers object), the rationals
Q can be interpreted [63, Sect. VI.8], as can the Gaussian integers CQ ={p+qi : p, q ∈
Q}. For example, the interpretation of CQ in a functor topos SetsC (where, in our case,
C is a poset) is the constant functor that assigns the set CQ to every C ∈ C.

A *-algebra in T is a vector space A over CQ that carries an associative bilinear map
· : A × A → A, and is furthermore equipped with a map (−)∗ : A → A satisfying

(a + b)∗ = a∗ + b∗, (z · a)∗ = z · a∗, (a · b)∗ = b∗ · a∗, a∗∗ = a,

for all a, b ∈ A and z ∈ CQ. A is called commutative if a · b = b · a for all a, b ∈ A,
and unital if there is a neutral element 1 for the multiplication.

To define an internal C*-algebra, we define a seminorm on such an algebra; in gen-
eral, a norm may not actually be definable in the internal language of a topos. This is
a relation N ⊆ A × Q

+, which in Sets would have the meaning that (a, q) ∈ N iff
‖a‖ < q. In general, N must satisfy

(0, p) ∈ N ,

∃q∈Q+[(a, q) ∈ N ],
(a, p) ∈ N → (a∗, p) ∈ N ,

(a, q) ∈ N ↔ ∃p<q [(a, p) ∈ N ],
(a, p) ∈ N ∧ (b, q) ∈ N → (a + b, p + q) ∈ N ,

(a, p) ∈ N ∧ (b, q) ∈ N → (a · b, p · q) ∈ N ,

(a, p) ∈ N → (z · a, p · q) ∈ N (|z| < q),

for all a, b ∈ A, p, q ∈ Q
+, and z ∈ CQ. For a unital *-algebra, we also require

(1, p) ∈ N (p > 1).

If the seminorm relation furthermore satisfies

(a∗ · a, q2) ∈ N ↔ (a, q) ∈ N

for all a ∈ A and q ∈ Q
+, then A is said to be a pre-semi-C*-algebra.
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To proceed to a C*-algebra, one requires a = 0 whenever (a, q) ∈ N for all q in Q
+,

making the seminorm into a norm, and subsequently one requires this normed space to
be complete in a suitable sense (see [7] for details). As a consequence of its complete-
ness, a C*-algebra is automatically an algebra over a suitable completion of CQ (and not
just over CQ itself, as baked into the definition). Note that in general topoi one has to
distinguish certain real and complex number objects that coincide in Sets. From Q, one
may construct the locale Rd ≡ R of Dedekind real numbers [63, Sect. VI.8] (see also
Subsect. 2.3 below); we will drop the suffix d for simplicity. The object Pt(C) (which
is the completion of CQ meant above) comprises the points of the complexified locale
C = R + iR; see also [7] for a direct description that avoids R. In Sets, C is the locale
with frame O(C), where (abusing notation) C are the usual complex numbers. In any
topos, the one-dimensional C*-algebra C(∗,C) is nothing but Pt(C) and has Gelfand
spectrum ∗ (i.e. the locale with frame �).

A unital *-homomorphism between C*-algebras A and B is, as usual, a linear map
f : A → B satisfying f (ab) = f (a) f (b), f (a∗) = f (a)∗ and f (1A) = 1B . Unital
C*-algebras with unital *-homomorphisms form a category CStar (internal to T );
commutative unital C*-algebras form a full subcategory cCStar thereof.

2.2. Spectrum. The definition of the category KRegLoc of completely regular compact
locales can be internalized without difficulty. The next step is to explicitly describe the
Gelfand spectrum �(A) ≡ � of a given commutative C*-algebra A. We will do so
following the reformulation in [27,29] of the pioneering work of Banaschewski and
Mulvey [7].

To motivate the description, note that even in Sets the spectrum is now described
(with the usual notational ambiguity explained in Subsect. 1.3) as the locale � defined
by the frame O(�) of open subsets of the usual Gelfand spectrum � of A (defined as
the subset of the dual A∗ consisting of space of nonzero multiplicative functionals on
A in the relative weak∗ topology). The topology on the space � can be described by
giving a sub-base, for which one often takes U(a,ρ0,ε) = {ρ | |ρ(a) − ρ0(a)| < ε} for
a ∈ A, ρ0 ∈ �, ε > 0. However, a much simpler choice of sub-base would be

Da = {ρ ∈ � | ρ(a) > 0}, (17)

where a ∈ Asa. Both the property that the ρ are multiplicative and the fact that the Da
form a sub-base of the Gelfand topology may then be expressed lattice-theoretically by
saying that O(�) is the frame FAsa freely generated by the formal symbols Da , a ∈ Asa,
subject to the relations

D1 = �, (18)

Da ∧ D−a = ⊥, (19)

D−b2 = ⊥, (20)

Da+b � Da ∨ Db, (21)

Dab = (Da ∧ Db) ∨ (D−a ∧ D−b), (22)

supplemented with the ‘regularity rule’

Da �
∨

r∈Q+

Da−r . (23)
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This turns out to be a correct description of the spectrum of A also in an arbitrary topos
T , in which case (18)–(23) have to be interpreted in T , of course.4

2.3. Gelfand transform. Classically, for a commutative unital C*-algebra A the Gelf-

and transform A
∼=→ C(�,C) is given by a �→ â with â(ρ) = ρ(a). In our setting it is

convenient to restrict the Gelfand transform to Asa, yielding an isomorphism

Asa ∼= C(�,R). (24)

In a topos T , the Gelfand transform of an internal commutative unital C*-algebra A in
T associates a locale map

â : � → RT , (25)

to each a ∈ Asa, where� is the spectrum of A and RT is the locale of internal Dedekind
real numbers in T ; see below. Recalling from Subsect. 1.3 that â is by definition a frame
map

â−1 : O(RT )→ O(�), (26)

and using the “λ-conversion rule” Y→Z X

Y×X→Z [63, Sect. I.6], we note that the Gelfand
transform may alternatively be regarded as a map

·̂ : Asa × O(RT )→ O(�). (27)

Thus the use of the symbol a ∈ Asa in the internal language of T may be avoided in
principle. In practice, however, we will often use the notation (25) or (26), and hence
the formal symbols Da . For example, in the description (18)–(23) of the spectrum � in
terms of generators and relations, it is sufficient to define the frame map (26) on basic
opens (−∞, r) and (s,∞) in RT . In the classical case (i.e. in Sets) discussed above, one
has â−1(0,∞) = Da from (17), and this remains true in general if â−1 has the meaning
(26). Using (18)–(21), one then finds

â−1 : (−∞, s) �→ Ds−a; (28)

(r,∞) �→ Da−r . (29)

As â−1 is a frame map, for bounded open intervals (r, s) we therefore obtain5

â−1 : (r, s) �→ Ds−a ∧ Da−r . (30)

We now recall an explicit construction of the Dedekind reals [40,51, D4.7.4 & D4.7.5].
Define the propositional geometric theory TR generated by formal symbols (p, q) ∈
Q × Q with p < q, ordered as (p, q) � (p′, q ′) iff p′ � p and q � q ′, subject to the
following axioms (or relations):

4 See [77] and the Appendix to this paper for the procedure of constructing a frame from generators and
relations. Equivalently, in the spirit of [7] one could rephrase the above definition by saying that� is the locale
[T] corresponding to the propositional geometric theory T (in the sense explained in Subsect. 1.4) determined
by the collection of propositions Da , a ∈ Asa, subject to the axioms (18)–(23), with � replaced by �.

5 Banaschewski and Mulvey [7] work with such intervals (r, s) as basic opens, in terms of which they write
the Gelfand transform as â−1 : (r, s) �→ a ∈ (r, s). Here the role of generators of the locale � is played
by elementary propositions of the logical theory generating � as its Lindenbaum algebra, our generator Da
corresponding to their proposition a ∈ (0,∞). Classically, the proposition a ∈ (r, s) may be identified with
the open a−1(r, s) in the spectrum �; cf. Subsect. 1.1.
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1. (p1, q1) ∧ (p2, q2) = (max{p1, p2},min{q1, q2}) if max{p1, p2} < min{q1, q2},
and (p1, q1) ∧ (p2, q2) = ⊥ otherwise;

2. (p, q) = ∨{(p′, q ′) | p < p′ < q ′ < q};
3. � = ∨{(p, q) | p < q};
4. (p, q) = (p, q1) ∨ (p1, q) if p � p1 � q1 � q.

This theory may be interpreted in any topos T , defining an internal locale (TR)T ≡ RT
with associated frame O(RT ). Points m of RT , i.e. frame maps m−1 : O(RT )→ �T ,
correspond bijectively to Dedekind cuts (L ,U ) of Q (cf. [63, p. 321]) in the following
way: a model m determines a Dedekind cut by

L = {p ∈ Q | m |� (p,∞)}, (31)

U = {q ∈ Q | m |� (−∞, q)}, (32)

where (p,∞) and (−∞, q) are defined in terms of the formal generators of the frame
O(Q) by (p,∞) = ∨{(p, r) | p < r} and (−∞, q) = ∨{(r, q) | r < q}. The notation
m |� (p, q) used here means that m−1(p, q) = �, where � : 1 → �T is the truth ele-
ment of�T and (p, q) is seen as an arrow (p, q) : 1 → Q×Q → O(RT ). Conversely,
a Dedekind cut (L ,U ) uniquely determines a point m that maps a generator I = (p, q)
to m(I ) = � iff I ∩ U �= ∅ and I ∩ L �= ∅. The Dedekind reals Pt(RT ), then, are
defined in any topos T as the subobject of P(QT )× P(QT ) consisting of those (L ,U )
that are points of RT [63].

We mention four examples:

1. In T = Sets, a point m of R ≡ RSets corresponds to a real x described in the usual
calculus way, so that L = {p ∈ Q | p < x} and U = {q ∈ Q | x > q}. Hence Pt(R)
may be identified with R in the usual sense, and R is spatial as a locale; its frame
O(R) is just the usual topology of R [51, D4.7.4]. From this perspective, the first
condition in the definition of TR enforces that L and U are lower and upper sections
of Q, respectively, the second implies that they are open, and the third means that L
and U are both inhabited. The fourth – Dedekind – relation says that L and U ‘kiss’
each other.6

2. If X is a topological space (or, more generally, a locale), the structure of the locale
RSh(X) and its associated sheaf of Dedekind reals Pt(RSh(X)) in the topos Sh(X) of
sheaves on X follows from the argument above (16) in Subsect. 1.7. First, the frame
of Dedekind reals is given by the sheaf

O(R)Sh(X) : U �→ O(U × R), (33)

whereas the Dedekind real numbers object is the sheaf (see also [63])

Pt(R)Sh(X) : U �→ C(U,R). (34)

3. Consequently, using (12) and (13) we infer that in our functor topos T (A) =
SetsC(A), the frame of Dedekind reals is the functor

O(R) : C �→ O((↑C)× R); (35)

6 The collection of L satisfying only the first three relations forms the locale of lower reals, which we
denote by Rl . Locale maps to Rl are, classically, lower-semicontinuous real-valued functions. Analogously,
there is a locale Ru of upper reals. See [51].
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the set on the right-hand side may be identified with the set of monotone functions
from ↑C to O(R).7
Perhaps surprisingly, the associated functor of points Pt(R) may be identified with
the constant functor

Pt(R) : C �→ R; (36)

this follows from (34) and the fact that Alexandrov-continuous functions U → R (or,
indeed, into any Hausdorff space) must be locally constant on any open U ⊆ C(A).8

4. If� is the Gelfand spectrum of a commutative C*-algebra A in T , in the sheaf topos
Sh(�) internal to T we similarly have

Pt(R)Sh(�) : U �→ C(U,R). (37)

Here we identify the open U of� with its associated sublocale {V ∈ � | V � U } of
�. This locale, as well as R, is to be interpreted in the ambient topos T as explained
in the above items.

Example 4 leads to an elegant reformulation of the isomorphism (24) given by the
Gelfand theory: since

C(�,R) = 
(Pt(R)Sh(�)), (38)

where 
 is the global sections functor, one infers from (24) that

Asa ∼= 
(Pt(R)Sh(�)). (39)

In other words, the self-adjoint part of a unital commutative C*-algebra A in a topos is
isomorphic to the global sections of the Dedekind reals in the internal topos of sheaves
on its spectrum (and A itself “is” the complex numbers in the same sense).

3. The Internal C*-Algebra and its Spectrum

In this section we explain the association of a particular commutative C*-algebra A,
which is internal to a certain functor topos T (A), to a (generally) noncommutative
C*-algebra A. As mentioned in the Introduction, this construction is motivated by Bohr’s
doctrine of classical concepts, so that we call A the Bohrification of A.

7 This identification proceeds in two steps. First, for any topological space X one has a bijection O(X) ∼=
C(X, S), where S = {0, 1} carries the Sierpinski topology, see Subsect. 1.4; explicitly, U ∈ O(X) is mapped
to χU , whereas in the opposite direction g ∈ C(X, S) is sent to g−1({1}). Hence O(↑C×R) ∼= C(↑C×R, S)
(with apologies for the double use of C , first for ‘continuous’ and second for C ∈ C(A)). Second, in gen-
eral λ-conversion or ‘currying’ gives a bijection between functions Y × R → S and functions Y → SR;
with Y =↑C equipped with the Alexandrov topology and C(R, S) ∼= O(R), continuity then translates into
monotonicity.

8 We take X = C(A), equipped with the Alexandrov topology, and prove that in this topology any
f ∈ C(U,R) must be locally constant. Suppose C � D in U , take and V ⊆ R open with f (C) ∈ V .
Then tautologically C ∈ f −1(V ) and f −1(V ) is open by continuity of f . But the smallest open set contain-
ing C is ↑C , which contains D, so that f (D) ∈ V . Taking V = ( f (C)−ε,∞) gives f (D) > f (C)−ε for all
ε > 0, whence f (D) � f (C), whereas V = (−∞, f (C) + ε) yields f (D) � f (C). Hence f (C) = f (D).
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3.1. The topos associated to a C*-algebra. We first construct the topos T (A) in which
A resides and draw attention to the functoriality of the map A �→ T (A). We denote the
category of partially ordered sets and monotone functions by Poset.

Proposition 2. There is a functor C : CStar → Poset, defined on objects as

C(A) = {C ⊆ A | C ∈ cCStar},

ordered by inclusion. On a morphism f : A → B of CStar, it acts as C( f ) : C(A) →
C(B) by the direct image C �→ f (C).

As announced in (8) in the Introduction, the collection of functors C(A) → Sets
forms a topos T (A) = SetsC(A). This is the topos associated to A. We recall our con-
vention to underline entities internal to T (A). The subobject classifier � in T (A) has
already been given in (10).

Recall that a geometric morphism f : S → T between topoi is a pair of adjoint
functors, consisting of a direct image part f∗ : S → T and an inverse image part
f ∗ : T → S, of which f ∗ is required to preserve finite limits. Denote the category of
elementary topoi and geometric morphisms by Topos.9

Proposition 3. There is a functor T : CStar → Topos, defined on objects by
T (A) = SetsC(A), the category of functors from C(A) to the ambient topos.

This immediately follows from Theorem VII.2.2 in [63] (p. 359) and Proposition 2.
To close this subsection, note that instead of initially regarding C(A) as a poset as

in the main text, we could have considered it as a category from the start, having the
same objects, but with (equivalence classes of) monomorphisms as arrows (instead of
inclusions). The functor in Proposition 2 would then have the category Cat of categories
as its codomain. This would still have allowed us to define the associated topos, and also
the internal C*-algebra we will define below. From then on, most constructions will be
within the associated topos, and hence go through as well.

3.2. Bohrification. Whereas the previous subsection considered the topos T (A) associ-
ated to a C*-algebra A, this one is devoted to a particular object A in this topos. In fact,
the definition of A is ‘tautological’ in a literal sense.

Definition 4. Let A be a C*-algebra in Sets. The functor A : C(A)→ Sets is given on
objects by

A(C) = C,

and on morphisms D ⊆ C of C(A) as the inclusion A(D) ↪→ A(C).

Note that the functor A : C(A) → Sets factors through CStar or cCstar via the
forgetful embedding of CStar or cCstar in the ambient topos Sets.

9 We will not worry about the fact that Topos, like Poset and CStar, is a large category; when pressed one
can limit these categories to a chosen universe to make them small.
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Theorem 5. A is a commutative C*-algebra in T (A) under the operations inherited
from A. More precisely, A is a vector space over the internal complex numbers Pt(C)
(given simply by the constant functor Pt(C) : C �→ C) by

0 : 1 → A 0C (∗) = 0,

+ : A × A → A a +C b = a + b,

· : Pt(C)× A → A z ·C a = z · a,

and an involutive algebra through

· : A × A → A a ·C b = a · b,

(−)∗ : A → A (a∗)C = a∗.

The norm relation is given by

N : A × Q
+ → � NC (a, q) iff ‖a‖ < q.

Proof. One easily checks that the arrows are natural transformations (and hence mor-
phisms in T (A)) and that this structure satisfies the requirements for A to be a pre-
semi-C*-algebra in T (A). Since each A(C) is a commutative C*-algebra in the ambient
topos, A is commutative as well. (Alternatively, since the definition of a commutative
pre-semi-C*-algebra consists only of geometrically definable objects (e.g. CQ) and geo-
metric formulae (see Appendix A and Sect. 2), it follows from Lemma 21 that A is
a commutative pre-semi-C*-algebra in T (A), because every A(C) is a commutative
C*-algebra in the ambient topos.)

In fact, A is a pre-C*-algebra, i.e. internally the semi-norm is a norm: if for all
q > 0 we have (a, q) ∈ N , then a = 0. To prove this, we need to show that C �
∀a∈Asa

∀q∈Q
+ .(a, q) ∈ N → a = 0, where we are using the internal language of T (A).

In other words:

for all C ′ ⊇ C and a ∈ C ′, if C ′ � ∀q∈Q
+ .(a, q) ∈ N , then C ′ � a = 0,

i.e. for all C ′ ⊇ C and a ∈ C ′, if for all C ′′ ⊇ C ′ and q ∈ Q
+

we have C ′′ � (a, q) ∈ N , then C ′ � a = 0,

i.e. for all C ′ ⊇ C and a ∈ C ′, if ‖a‖ = 0, then a = 0.

But this holds, since every C ′ is a C*-algebra.
Finally, A is in fact a C*-algebra, i.e. internally we have Cauchy completeness. By

the axiom of dependent choice (which holds because T (A) is a functor topos whose
codomain validates dependent choice [41]) it suffices to prove that every regular Cau-
chy sequence (i.e. a sequence (xn) such that ||xn − xm || � 2−n + 2−m for all n,m)
converges. Thus we need to prove

C � ∀n,m .||xn − xm || � 2−n + 2−m → ∃x∈A.∀n .||x − xn|| � 2−n,

i.e. for all C ′ ⊇ C, if C ′ � (∀n,m .‖xn − xm‖ � 2−n + 2−m),

then C ′ � ∃x∈A.∀n .||x − xn|| � 2−n,

i.e. for all C ′ ⊇ C, if C ′ � “x is regular”, then C ′ � ∃x∈A.∀n .‖x − xn‖ � 2−n .

Once again, this holds because every C ′ is a C*-algebra. "#
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The functor A is our internal C*-algebra. By changing the universe of discourse
from the ambient topos Sets to T (A), the (generally) noncommutative C*-algebra A
has become a commutative C*-algebra A. Multiplication of two non-commuting oper-
ators is no longer defined, since they live in different commutative subalgebras.10

3.3. The Kochen–Specker theorem. Combining the material in Sects. 2 and 3 so far, we
obtain a mapping A �→ �(A), which associates a certain internal locale to a (gener-
ally) noncommutative C*-algebra. As argued in the Introduction, �(A) describes the
quantum logic of the physical system whose algebra of observables is A.

An important property of the internal spectrum � is that it may typically be highly
non-spatial from an external point of view. First, recall (see Subsect. 1.4) that a point of
a locale X in a topos T is a frame map O(X)→ �, where � is the subobject classifier
in T .

Theorem 6. Let H be a Hilbert space with dim(H) > 2 and let A be the C*-algebra of
bounded operators on H. Then the locale �(A) has no points.

Proof. We reason internally. A pointρ : ∗ → � of the locale� (see Subsect. 1.5) may be
combined with a ∈ Asa with Gelfand transform â : � → R (see (25)), so as to produce a
point â ◦ρ : ∗ → R of the locale R. This yields a map V ρ : Asa → Pt(R), which can be
shown to be an internal multiplicative functional; see [6,7,27].11 Being an arrow in T (A),
the map V ρ is a natural transformation, with components V ρ(C) : Asa(C)→ Pt(R)(C);
by Definition 4 and 36, this is just V ρ(C) : Csa → R. Hence one has a multiplicative
functional V ρ(C) for each C ∈ C(A) in the usual sense, with the property (which fol-
lows from naturality) that if C ⊆ D, then the restriction of V ρ(D) to Csa coincides with
V ρ(C). But this is precisely a valuation12 on B(H), whose nonexistence was proved by
Kochen and Specker [56]. "#

This is a localic reformulation of the original topos-theoretic version of the Kochen-
Specker theorem due to Butterfield and Isham [20]. As in their work, the proof relies
on the original version, but in being a statement about the nonexistence of models of a
certain theory, our reformulation has a logical thrust that both the original version by
Kochen and Specker and the reformulation by Butterfield and Isham lack.

The theorem certainly holds for more general C*-algebras than just the collection of
all bounded operators on a Hilbert space; see [32 and 47] for results on von Neumann
algebras. For C*-algebras, one has the result that a simple infinite unital C*-algebra
does not admit a dispersion-free quasi-state [45]. Evidently, Theorem 6 holds for such
extensions as well.

One way of looking at such results is to see them as illustrations of the failure of the
Krein-Milman theorem in a constructive context [68]. Indeed, recall that the classical
Krein-Milman theorem states that a compact convex set is the closed convex hull of
its extreme points. The state space of A is still a compact convex set in an appropriate

10 Kochen and Specker refer to such a structure as a partial algebra [56] and stress its relevance for the
foundations of quantum theory; in a partial algebra both addition and multiplication need only be defined for
commuting operators.

11 This map may explicitly be given in the internal language of T (A), by noting that for each a ∈ Asa the
expression ρ̃(a) = (Lρ,a ,Uρ,a) = ({r ∈ Q | ρ |� Da−r }, {s ∈ Q | ρ |� Ds−a}) is a Dedekind cut in T (A).

12 This terminology is to be distinguished from the one used in Subsect. 4.2 below. The naturality property
just mentioned is often called noncontextuality in the philosophy of physics literature.
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localic sense (see Sect. 4), and the pure states on A would be its extreme boundary.
These points, however, fail to exist, as we have just seen.

4. (Quasi-)States as Integrals

This section about states, and the next one about observables, are both concerned with
connections between the two levels we have developed (see Fig. 1):

1. the ambient topos Sets, containing the C*-algebra A;
2. the associated topos T (A), containing the internal commutative C*-algebra A and

its spectrum �.

The main result of this section is Theorem 14, which gives an isomorphism between
quasi-states on A at level 1 and, at level 2, either probability integrals on Asa, or, equiv-
alently, probability valuations on the Gelfand spectrum �. Subsequently, we show that
probability valuations define subobjects of �, as in classical physics.

All this requires some preparation, firstly in the theory of quasi-states on C*-algebras
(Subsect. 4.1) and secondly in abstract constructive integration theory (Subsect. 4.2).

4.1. States and quasi-states. A linear functional ρ : A → C on a C*-algebra A is called
positive when ρ(a∗a) ≥ 0 for all a ∈ A. It is a state when it is positive and satisfies
ρ(1) = 1. A state ρ is pure when ρ = tσ +(1−t)ω for some t ∈ (0, 1) and some states σ
and ω implies ω = σ . Otherwise, it is called mixed. For example, if A ⊆ B(H) for some
Hilbert space H (which we may always assume by the Gelfand–Naimark Theorem), then
each unit vector� ∈ H defines a state ψ on A by ψ(a) = (�, a�). If A = B(H), such
states are pure. (If H is infinite-dimensional, not all pure states arise in this way, though.)
Mixed states ρ on B(H) arise from countable sequences (pi ), 0 � pi � 1,

∑
i pi = 1,

coupled with an orthonormal family of vectors (�i ), through ρ(a) = ∑
i piψi (a). (By

the spectral theorem, one may equivalently say that such states are given by positive
operators ρ̂ on H with unit trace, through ρ(a) = Tr (ρ̂a).) A state ρ : A → C is called
faithful when ρ(a∗a) = 0 implies a = 0. For example, if, in the situation just described,
the�i comprise an orthonormal basis of H and each pi > 0, then the associated state ρ
is faithful. The states of a C*-algebra form a compact convex set, the extremal points of
which are by definition the pure states. States are automatically hermitian, in the sense
that ρ(a∗) = ρ(a), or equivalently, ρ(a) ∈ R for self-adjoint a.

In algebraic quantum physics, mathematical states as defined above are often used
to model the physical states of the quantum system. However, when taking Bohr’s doc-
trine of classical concepts seriously, one should take into account that two observables
can only be added in a physically meaningful way when they are jointly measurable,
i.e. when the corresponding operators commute. Thus one may relax the definition of
a quantum state, which ought to be linear only on commutative parts. This leads to the
notion of a quasi-state [1]:13

13 Axiom VII of Mackey’s foundation of quantum mechanics [64] states that a measure on the projections
of a von Neumann algebra extends to a state on the von Neumann algebra. Mackey stresses that, in contrast to
his other axioms, Axiom VII does not have a physical justification. One can prove that a measure extends to a
quasi-state, so one is led to ask whether every quasi-state is a state. This is not the case when the von Neumann
algebra has a summand of type I2, but it holds for all other von Neumann algebras [15]. For C*-algebras the
question is more difficult. The main result seems to be the following [16]. Consider a C*-algebra with no
quotient isomorphic to M2(C) and let ρ be a quasi-linear functional. Then ρ is linear iff ρ restricted to the
unit ball is uniformly weakly continuous.
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Definition 7. A quasi-linear functional on a C*-algebra A is a map ρ : A → C that
is linear on all commutative subalgebras and satisfies ρ(a + ib) = ρ(a) + iρ(b) for all
self-adjoint a, b ∈ A (possibly non-commuting). It is called positive when ρ(a∗a) ≥ 0
for all a ∈ A. When A is unital, a positive quasi-linear functional is called a quasi-state
when ρ(1) = 1.

This kind of quasi-linearity also determines when some property P of the C*-algebra
A descends to a corresponding property P of the internal C*-algebra A, as the following
lemma shows. To be precise, for P ⊆ A, define a subfunctor of A by P(C) = P ∩ C .
Let us call a property P ⊆ A quasi-linear when a ∈ P and b ∈ P imply µa + iλb ∈ P
for all µ, λ ∈ R and a, b ∈ Asa.

Lemma 8. Let A be a C*-algebra, and let P ⊆ A be a quasi-linear property. Then
P = A if and only if P = A.

Proof. One implication is trivial; for the other, suppose that P = A. For a ∈ A, denote
by C∗(a) the sub-C*-algebra generated by a. When a is self-adjoint, C∗(a) is commu-
tative. So Asa ⊆ P , whence by quasi-linearity of P and the unique decomposition of
elements in a real and imaginary part, we have A ⊆ P . "#

4.2. Algebraic integration theory. The well-known correspondence between states on
commutative C*-algebras A and probability measures on the underlying Gelfand spec-
trum� is an immediate consequence of the Gelfand isomorphism A ∼= C(�,C) and the
Riesz-Markov representation theorem in measure theory. In the present topos-theoretical
setting, it turns out to be more natural to work with integrals and valuations rather than
measures. Recall the a priori difference between these three concepts:

• measures are defined on Borel subsets of some space X ;
• valuations are defined only on the open subsets of X ;
• integrals are positive linear functionals on the (ordered) vector space Cc(X,R).

Classically, if X is locally compact Hausdorff and the measures in question are suitably
regular, there are isomorphisms between these notions. From a constructive point of

view, however, there is a subtle difference between valuations and integrals.14 In any
case, the fundamental role locales play in this paper as the Gelfand spectra of the internal
C*-algebras A makes it quite natural to assign probabilities to opens (rather than Borel
subsets) of the spectrum.

The following string of definitions gives an abstract (and constructive) version of inte-
gration theory based on ordered vector spaces, abstracting from the Riemann,
Lebesgue and Daniell integrals [30,31,75]. Several axiomatizations are possible, of
which the one in terms of so-called f-algebras is the most convenient for our purposes.

14 The integral I ( f ) of a function f ∈ C(X) is a Dedekind real, so that it can be approximated by rationals.
This may not be the case for the valuation µ(U ) of an open U , as the ‘kissing’ property (if r < s then
µ(U ) < s or r < µ(U )) may fail. Accordingly,µ(U ) is only a lower real, and can be thought of as a predicate
r < µ(U ) on the rationals. This predicate is downward closed: if r < µ(U ) and s � r , then s < µ(U ). But
in general, given ε > 0 one cannot approximate µ(U ) up to ε with rationals. Given an integral I , we can
define a corresponding valuation µI (U ) by taking the sup of I ( f ) over all 0 � f � 1 with support in U .
It is remarkable that for any valuation µ one can conversely find a (unique) integral I such that µ = µI . So
despite the fact that one may not be able to compute µ(U ), it is still possible to compute

∫
f dµ as a Dedekind

real, which a priori is only a lower real.
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Definition 9. A Riesz space or vector lattice is a partially ordered vector space (R,�)
over R (i.e. a real vector space R with partial ordering � such that f � g implies
f + h � g + h for all h and f ≥ 0 implies r f ≥ 0 for all r ∈ R

+) that is a distributive
lattice with respect to its partial order [62, Definition 11.1].

An f-algebra is a commutative, unital, real algebra R whose underlying vector space
is a Riesz space in which f, g ≥ 0 implies f g ≥ 0, and f ∧ g = 0 implies h f ∧ g = 0
for all h ≥ 0. Moreover, the multiplicative unit 1 has to be strong in the sense that for
each f ∈ R there exists a natural number n such that −n1 � f � n1 [82, Def. 140.8].

Note that although f-algebras are a priori defined over the real numbers, they can a
fortiori be defined over Q as well.

The self-adjoint part of any commutative C*-algebra A is an example of an f-algebra
by defining a � b in the usual way (i.e. iff ∃c∈A[b − a = c∗c]); one has f ∨ g =
max{ f, g} and f ∧ g = min{ f, g}. Conversely, by the Stone-Yosida representation the-
orem every f-algebra can be densely embedded in a space of real continuous functions
on a compact space.

Definition 10. An integral on an ordered vector space R is a linear functional I : R →
R that is positive, i.e. if f ≥ 0 then also I ( f ) ≥ 0. If R has a strong unit 1 (e.g., the
multiplicative unit in the case of f-algebras), then an integral I satisfying I (1) = 1 is
called a probability integral. An integral is faithful when its kernel is {0}, i.e., when
I ( f ) = 0 and f ≥ 0 imply f = 0.

Except in the degenerate case I (1) = 0, any integral can obviously be normalised
to a probability integral. The prime example of an integral is the Riemann or Lebesgue
integral on the ordered vector space C[0, 1]. More generally, any positive linear func-
tional on a commutative C*-algebra provides an example, states yielding probability
integrals.

We wish to use a certain generalization of the Riesz-Markov theorem that can be
proved constructively [30] and hence can be used within our topos T (A). This requires
a localic reformulation of Definition 9, as well as a similar approach to valuations.

Let R be an f-algebra (in Sets, for the moment). In defining the following frame it is
technically convenient to define R as a vector space over Q. Define Integral(R) as
the distributive lattice freely generated by P f , f ∈ R, subject to the relations

P1 = �,
P f ∧ P− f = ⊥,

P f +g � P f ∨ Pg,

P f = ⊥ (for f � 0).

This lattice generates a frame O(I(R)) by adding the regularity condition

P( f ) =
∨

Q%q>0

P( f − q) (40)

to the relations above, just like (23) in the case of the spectrum. It can be shown
(cf. (17)) that

P f = {ρ : R → R | ρ( f ) > 0}, (41)

where each ρ is understood to be a positive linear functional. Models of this theory, i.e.
points of the associated locale, precisely correspond to probability integrals on R; if I
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is such an integral, the associated model m I is given by m I (P f ) = 1 iff I ( f ) > 0.
Conversely, a model m defines an integral Im by (compare with the proof of Theorem 6)

Im( f ) := ({p | m |� P f −p}, {q | m |� Pq− f }),
where the right-hand side is seen to be a Dedekind real from the relations on P•. All
this may be internalized to any topos, where, of course, there is no a priori guarantee
that points of the locale with frame O(I(R)) exist (and hence that expressions like (41)
make good sense).

The final ingredient of the constructive Riesz-Markov theorem is the definition of a
locale of valuations. These were studied in [46 and 81].

Definition 11. A probability valuation on a locale X is a monotone map µ : O(X)→
[0, 1]l that satisfies the usual additivity and regularity conditions for measures, i.e.
µ(U ) + µ(V ) = µ(U ∧ V ) + µ(U ∨ V ) and µ(

∨
λ Uλ) = ∨

λ µ(Uλ) for any directed
family. (Here, [0, 1]l is the collection of lower reals between 0 and 1.)

Like integrals, probability valuations on X organize themselves in a locale V(X).
The generalized Riesz-Markov Theorem, then, is as follows.

Theorem 12 [30]. Let R be an f-algebra and let � be its spectrum.15 Then the locales
I(R) and V(�) are isomorphic. To obtain an integral from a valuation we define:

Iµ f := (sup(si )

∑
siµ(si < f < si+1), inf(si )

∑
si+1(1 − µ(si > f )− µ( f > si+1)),

where (s < f ) is a notation for D f −s and (s < f < t) denotes D f −s ∧ Dt− f and si
is a partition of [a, b] such that a � f � b. Conversely, to obtain a valuation from an
integral I we define:

µI (Da) := sup
{

I (na+ ∧ 1)|n ∈ N
}
.

Note that both locales in question are compact regular [30]. Logically speaking, the the-
orem follows from the existence of a bi-interpretation between the geometric theories
Integral(R) andValuation(�) (i.e. there are interpretation maps in two directions
which are each other’s inverses) and the equivalence of the category of propositional
geometric theories with interpretations to the category of frames.

4.3. From states on A to subobjects of O(�). We return to our main topic. Since every-
thing in this section so far may be interpreted in the internal language of a topos and the
proof of Theorem 12 is constructive, we have:

Corollary 13. Let A be a C*-algebra with Bohrification A and associated Gelfand
spectrum � in the topos T (A). Then the locale I(A) of probability integrals on Asa is
homeomorphic to the locale V(�) of probability valuations on �.

As announced at the beginning of this section, the next theorem crosses two levels
of Fig. 1.

15 See [27] for the notion of the spectrum of an f-algebra, which is described exactly as in Subsect. 2.2. If
the f-algebra is the self-adjoint part of a commutative C*-algebra, then its spectrum as an f-algebra coincides
with its spectrum as a C*-algebra.
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Theorem 14. There is a bijective correspondence between quasi-states on A and either
probability integrals on Asa, or, equivalently, probability valuations on its Gelfand spec-
trum �.

This theorem may actually be extended to a correspondence between (faithful) pos-
itive quasi-linear functionals on A and (faithful) integrals on A, etc.

Proof. Every positive quasi-linear functional ρ gives a natural transformation Iρ :
Asa → R if we define its components (Iρ)C : Csa → R to be ρ|Csa (i.e. the restriction
of ρ to Csa ⊆ Asa).

Conversely, let I : Asa → R be an integral. Define ρ : Asa → R by

ρ(a) = IC∗(a)(a).

For commuting a, b ∈ Asa,

ρ(a + b) = IC∗(a+b)(a + b)

= IC∗(a,b)(a + b)

= IC∗(a,b)(a) + IC∗(a,b)(b)

= IC∗(a)(a) + IC∗(b)(b)

= ρ(a) + ρ(b),

because I is a natural transformation, C∗(a) ∪ C∗(b) ⊆ C∗(a, b) ⊇ C∗(a + b), and I
is locally linear. Moreover, ρ is positive because I is locally positive (see Lemma 8).
Hence we have defined ρ on Asa and may extend it to A by complex linearity. It is
clear that the two maps I �→ ρ and ρ �→ I are inverses of each other and that if I is a
probability integral, then ρ is a quasi-state, and vice versa. "#

In the Introduction, we have seen that in the classical case a (pure) state ρ defines a
subobject [ρ] of the frame of opens of the classical phase space; see (3). As we shall
now show, this remains true, mutatis mutandis, in the quantum case. The main technical
difficulty is to adapt the condition δρ(V ) = 1 in (3).

Theorem 14 yields a bijective correspondence between quasi-states ρ on A and prob-
ability valuations µρ on �. Fix a state, or quasi-state, ρ on A. The logical formula
µρ(−) = 1 (of the Mitchell-Bénabou language of T (A)) is a predicate on O(�) and
hence defines a subobject [ρ] of O(�) with characteristic arrow χ[ρ] : O(�) → �.
This arrow is just the interpretation of µρ(−) = 1, i.e.

χ[ρ] = �µρ(−) = 1�. (42)

Compare with (3); beyond mimicking the notation, we see that we have been able to
transfer the classical description of states to the quantum situation in every respect.

5. Observables and Propositions

In this section and the next we give the details of Steps 2 to 5 of our five-step pro-
gram for spatial quantum logic, cf. Subsects. 1.2 and 1.6. We start with the locale map
δ(a) : � → IR, then turn to the description of elementary propositions a ∈ � as opens
in the spectrum �, and finally consider the pairing of states and propositions to arrive
at a suitable notion of (multi-valued) truth in quantum theory.
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5.1. Interval domain. For a commutative unital C*-algebra A with Gelfand spectrum
� in Sets, the Gelfand transform of a ∈ Asa is a continuous function â : � → R.
Equivalently, it is a locale map (25). As we have seen in Subsect. 2.3, mutatis mutandis
the description (25) still applies when A is a commutative unital C*-algebra A with
Gelfand spectrum � in a topos T . In particular, one has the Gelfand transform

â : � → R (a ∈ Asa). (43)

Our problem, however, is to express an element a ∈ Asa of a noncommutative
C*-algebra A in Sets in terms of some locale map δ(a) defined on the spectrum �

of the Bohrification A of A in T (A). As we shall see, this problem can be solved if we
introduce some fuzziness, in that δ(a) no longer takes values in the internal Dedekind
reals R in T (A), like â, but in the so-called interval domain IR, internalized in T (A) as
IR. Thus, apart from (43) we are dealing with a second locale map

δ(a) : � → IR (a ∈ Asa). (44)

In honour of Döring and Isham, we refer to δ(a) as the Daseinisation of a (although our
map differs from theirs, cf. Appendix B).

We have already encountered Scott’s interval domain IR in Subsect. 1.8 as the poset
of compact intervals in R, ordered by inverse inclusion. Like the Dedekind real numbers,
the interval domain is easily internalized and hence definable in any topos. In fact, the
construction of the Dedekind real numbers in Subsect. 2.3 only requires a single modi-
fication so as to obtain the interval domain: the corresponding frame O(IR) is defined
by the very same generators (p, q) and relations as O(R), except that the fourth relation
(i.e. (p, q) = (p, q1) ∨ (p1, q) if p � p1 � q1 � q) is dropped. The models of O(IR)
or points of the associated locale IR again correspond to pairs (L ,U ) given by (31)
and (32), but this time such a pair may fail to define a Dedekind cut; axiomatically,
only the ‘kissing’ requirement no longer holds. In any topos T , we denote the locale
defined by the geometric propositional theory given by the first three axioms in the list
following (30) in Subsect. 2.3—interpreted in T —by O(IR)T , with the usual special
case IR ≡ IRT (A). Similarly, the subobject of P(Q) × P(Q) consisting of models of
O(IR)T is denoted by Pt(IR)T , with Pt(IR)T (A) ≡ Pt(IR).

The examples in Subsect. 2.3 now read as follows:

1. In Sets (or, more generally, when classical logic applies in T ), a cut (L ,U ) defines
a compact interval [sup L , inf U ] (where sup and inf are taken in R), so that Pt(IR)
may be identified with the classical Scott interval domain IR. In that case, a gener-
ator (p, q) ∈ O(IR) may be identified with the Scott open in IR that contains all
intervals [a, b] such that p < a � b < q.

2. In a topos Sh(X) of sheaves one has

O(R)Sh(X) : U �→ O(U × IR), (45)

but its points are not as easily described as (34); instead, one has

Pt(IR) : U �→ {( f, g) | f, g : U → R | f � g,

f lower-semicont., g upper-semicont.}. (46)

This follows by carefully adapting the proof of [63, Theorem VI.8.2] for R.
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3. In particular, for T (A) = SetsC(A), one has

O(IR) : C �→ O((↑C)× IR), (47)

which may be identified with the set of monotone functions from ↑C to O(IR).16

The object Pt(IR) will not be used in this paper.17

5.2. Daseinisation. After this preparation, we turn to the Daseinisation (44), or rather
to the corresponding frame map

δ(a)−1 : O(IR)→ O(�). (48)

A complete description of this map, based on the technique of generating (semi)lattices
for frames, may be found in Appendix A.2. Here, we just look at the special case

(1
δ(a)−1(r,s)

��O(�)) = (1
(r,s)−→ O(IR) δ(a)

−1

−→ O(�)), (49)

where the arrow (r, s) : 1 → O(IR) maps into the monotone function with constant
value ↓ (r, s).18 We may even simplify (49) even further by localizing it at C · 1; this,
however, entails no loss of generality, for O(�)(C · 1) is the frame in Sets that (together
with the frame map (88)) provides the external description of the internal locale � in
T (A) (see Subsect. 1.7 and Appendix A.2).

The quantity δ(a)−1(r, s)(C ·1) is a global element U of O(�)(C ·1) as described by
Theorem 29 in Appendix A. Briefly, this theorem states that O(�)(C · 1) may be seen
as the set of all subfunctors U of the functor C �→ LC that satisfy a certain regularity
condition, where LC is the distributive lattice freely generated by the formal symbols Dc,
c ∈ Csa subject to the relations (18)–(22) (simply interpreted in Sets).19 Abbreviating

δ(a)−1(r, s) = δ(a)−1(r, s)(C · 1), (50)

the ensuing element δ(a)−1(r, s) of O(�)(C · 1) turns out to be the functor

δ(a)−1(r, s) : C �→ {D f −r ∧ Ds−g | f, g ∈ Csa, f � a � g}. (51)

This follows from (106) and the definition of δ(a)−1 in Appendix A.2, combined with
the equality

⋃

{p<q|(p,q)⊆(r,s)}
{D f −p ∧ Dq−g | f, g ∈ Csa, f � a � g}

= {D f −r ∧ Ds−g | f, g ∈ Csa, f � a � g}.
16 The argument is the same as for R, see footnote 7.
17 For completeness, we mention that Pt(IR)(C) is the set of all pairs (L ,U ), where L and U are subfunctors

of the constant functor Q, truncated to ↑C ⊂ C(A), such that for all D ⊇ C , (L(D),U (D)) is a pair of the
form (31)–(32).

18 Here (r, s) is seen as an element of the generating semilattice Q ×< Q, whereas ↓ (r, s) is its image in
the frame O(IR) through the canonical map (67); see Appendix A.

19 See Appendix A.1 for a detailed description of the functor C �→ LC .
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An alternative description of δ(a)−1 is as follows. For fixed a ∈ Asa, define functors
La ∈ T (A) and Ua ∈ T (A) by

La(C) = { f ∈ Csa | f � a};
(52)

Ua(C) = {g ∈ Csa | a � g}.

Each of these defines a subobject of Asa. In fact, the pair (La,Ua) is a directed subobject
of Asa×Aop

sa . Now take a generator (r, s) of O(IR), and write (r, s) = (−∞, s)∧(r,∞).
The Gelfand transform (27) defines subobjects ·̂(La, (r,∞)) and ·̂(Ua, (−∞, s)) of
O(�). We then put

δ(a)−1 : (r, s) �→
∨

·̂(La, (r,∞)) ∧ ·̂(Ua, (−∞, s)). (53)

Using (28) and (29), this gives20

δ(a)−1(r, s) =
∨

f ∈La ,g∈Ua

D f −r ∧ Ds−g. (54)

To illustrate what is going on, it is helpful to compute the right-hand side of (51) or (54) in
Sets for A = C = C(�,C). In that case the meaning of Da is given by (17), so that with
ρ( f ) = f (ρ) one finds D f −r = {ρ ∈ � | f (ρ) > r} and Ds−g = {ρ ∈ � | g(ρ) < s}.
One then obtains (with ∧ for ‘and’)

δ(a)−1
A (r, s) =

⋃

f,g∈Csa, f �a�g

{ρ ∈ � | f (ρ) > r ∧ g(ρ) < s}

= {ρ ∈ � | ∃ f �a[ f (ρ) > r ∧ f (ρ) < s] ∧ ∃g≥a[g(ρ) > r ∧ g(ρ) < s]}
= {ρ ∈ � | r < a(ρ) < s}
= a−1(r, s). (55)

To close this subsection, we note the following:

Proposition 15. The map δ : Asa → C(�, IR) is injective, and a � b iff δ(a) � δ(b).

Proof. Suppose that δ(a) = δ(b). Then for all C ∈ C(A), the sets La(C) = { f ∈ Csa |
f � a} and Ua(C) = {g ∈ Csa | a � g} must coincide with Lb(C) and Ub(C), respec-
tively. Imposing these equalities at C = C∗(a) and at C = C∗(b) yields a = b. The
order in Asa is clearly preserved by δ, whereas the converse implication can be shown
by the same method as the first claim of the proposition. "#

20 Using a generic point σ , we may even define

δ(a)(σ ) := (sup σ(La), inf σ(Ua)).

Analoguously, one can view δ(a) as an interpretation of the geometric theory� in the geometric theory of the
intervals, see [30].
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5.3. Propositions. It immediately follows from the existence of the Daseinisation map
(48) (see Subsect. 5.2 and Appendix A.2) that, as in the classical case, elementary prop-
ositions a ∈ � define opens in phase space. For an open in the ‘quantum phase space’
� is simply defined as a global element 1 → O(�) (cf. Subsect. 1.4)), so that given an
observable a ∈ Asa and a Scott open � ∈ O(IR), we may combine the corresponding
arrows δ(a)−1 : O(IR)→ O(�) and � : 1 → O(IR) into

(1
[a∈�] ��O(�)) = (1

� ��O(IR) δ(a)−1
��O(�)). (56)

This generalises (49); in particular, � : 1 → O(IR) is defined at C as the monotone
function ↑C → O(IR) taking constant value �. In other words,

[a ∈ �] = δ(a)−1 ◦�. (57)

6. State-Proposition Pairing

In Subsect. 4.3 we have shown how a state ρ on A gives rise to a subobject [ρ] of O(�)
defined by the predicate µρ(−) = 1, and hence to an arrow O(�)

χ[ρ] ��� related to
the predicate in question by (42).

Also, we have just seen the description (56) of propositions a ∈ � as opens in �.
Hence we can pair a physical state ρ and a physical proposition a ∈ � by composition, to
end up with a ‘truth value’ 〈a ∈ �,ρ〉 in the subobject classifier � of T (A). Explicitly,
one has

(1
〈a∈�,ρ〉 ���) = (1

[a∈�] ��O(�)
χ[ρ] ���), (58)

or

〈a ∈ �,ρ〉 = χ[ρ] ◦ δ(a)−1 ◦�. (59)

In what follows, we need the basic definitions of Kripke-Joyal semantics. If ϕ is some
formula interpreted in a topos T as an arrow �ϕ� : F → �, and α : B → F is any arrow
in T (defining a ‘generalized element’ of F), then the notation B � ϕ(α), or, less pre-

cisely, B � ϕ (for ‘B forces ϕ’) means that the composite arrow B
α→ F

�ϕ�−→ � factors
through � : 1 → �. In a functor topos SetsC, where C is some category, the notation
C � ϕ for some C ∈ C is shorthand for y(C) � ϕ, where y(C) : D �→ HomC(D,C) is
the Yoneda functor. In our case T = T (A), the interpretation �ϕ� is a natural transfor-
mation F → �, given by its components �ϕ�(C) : F(C)→ �(C), where C ∈ C(A). In
that case the forcing condition C � ϕ turns out to be equivalent to �ϕ�(C)(F(C)) = �C ,
where �C is the maximal upper set on C .

Using the Kripke-Joyal semantics of T (A), we now explicitly compute the state-
proposition pairing in case that � = (r, s) is a rational interval. The computation is
straightforward when using generating lattices (see Appendix A). From here on, ρ is a
fixed state on A and we abbreviate µρ by µ. For D ∈ C(A),

(〈a ∈ (r, s), ρ〉)D(∗) (58)= (χ[ρ] ◦ [a ∈ (r, s)])D(∗)
(57),(42)= �µ(δ(a)−1(r, s)) = 1�(D).
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Being a global element 1 → � of the subobject classifier � of T (A), the right-hand
side is an element of the set �(D), and hence an upper set on D. With slight abuse of
notation, we simply call the latter 〈a ∈ (r, s), ρ〉(D). It follows that

〈a ∈ (r, s), ρ〉(D) = {C ∈ C(A) | C ⊇ D,C � µ(δ(a)−1(r, s)) = 1}, (60)

where µ ◦ δ(a)−1(−) = 1 is the obvious predicate on O(IR) defined by µ(−) = 1 on
O(�) and the Daseinisation map (48). Since 〈a ∈ (r, s), ρ〉(D) is the truncation to ↑D
of the corresponding upper set at C · 1, we may use (51) or (54), from which we see that
the forcing condition C � µ(δ(a)−1(r, s)) = 1 is equivalent to

µC

⎛

⎝
∨

f �a�g, f,g∈Csa

D f −r ∧ Ds−g

⎞

⎠ = 1.

HereµC is the valuation defined asµρ , but with ρ restricted to C . Similarly, D f −r refers
to an open in the spectrum of C (cf. Theorem 20, according to which the Da with a ∈ Csa
may be seen as generators of the spectrum of C). Since the measure of the intersection
of two opens equals one if the measures of both opens do, this means (for f, g ∈ Csa)

µC

⎛

⎝

⎛

⎝
∨

f �a

D f −r

⎞

⎠ ∧
(

∨

g≥a

Ds−g

)⎞

⎠ = 1,

which happens if and only if

µC

⎛

⎝
∨

f �a

D f −r

⎞

⎠ = 1 and µC

(
∨

g≥a

Ds−g

)

= 1.

The left conjunct means

∀n∈N ∃ f ∈Csa, f �a [µC (D f −r ) > 1 − 1

n
], (61)

since T (A) is a functor topos and hence the quantifiers above are interpreted locally.
The construction of µρ from ρ (see Sect. 4) implies

µC (Dh) = lim
m→∞ ρ((mh+) ∧ 1),

where the limit is a lower real. In other words, µC (Dh) > q iff there exists m in N such
that ρ((mh+) ∧ 1) > q. So C � µρ(

∨
f �a D f −r ) = 1 means that for each n ∈ N there

exists f ∈ C with f � a and µC (D f −r ) > 1 − 1
n .

Hence at the end of the day the state-proposition pairing 〈a ∈ (r, s), ρ〉 explicitly
yields the upper set at D given by

〈a ∈ (r, s), ρ〉(D)

=
⎧
⎨

⎩
C ∈C(A) | C⊇D, µC

⎛

⎝
∨

f �a, f ∈Csa

D f −r

⎞

⎠ =1 and µC

⎛

⎝
∨

a�g,g∈Csa

Ds−g

⎞

⎠ = 1

⎫
⎬

⎭
.

(62)
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This formula can be put in a slightly more palpable form when A and each C ∈ C(A)
are von Neumann algebras (in the ambient topos Sets). In that case, it can be shown
[47] that the open D f −r in the spectrum gives rise to a projection operator [D f −r ], to
which we can directly apply the state ρ. Moreover, unlike for general C*-algebras, the
supremum P = ∨{[D f −r ] | f � a, f ∈ Csa} exists. One then simply has µC (P) = 1
when ρ(P) = 1. Similarly, the projection Q = ∨{[Ds−g] | a � g, g ∈ Csa} exists and
µC (Q) = 1 when ρ(Q) = 1.

To close, we remark that one might consider a proposition µρ(−) > p, for some
rational number p, instead of the proposition µρ(−) = 1 as in this paper. This would
simplify the computations above slightly. For instance, (61) would become

∃ f ∈Csa, f �a [µC (D f −r ) > p].
This eliminates a universal quantification, but otherwise the computations would con-
tinue mutatis mutandis as before.

A. Generating Lattices for Frames

At various places in this article we refer to a presentation of a frame (or locale) by a gen-
erating lattice with a covering relation. This technique has been developed in the context
of formal topology [71,72], and extends an analogous construction due to Johnstone
[48]. Note that formal topology may be developed in the framework of constructive set
theory [3], and hence may be internalized in topos theory.

Let (L ,�) be a meet semilattice (i.e. a poset in which any pair of elements has a
meet = g.l.b. = infimum; in most of our applications (L ,�) is actually a distributive
lattice).

Definition 16. A covering relation on L is a relation �⊆ L × P(L) - equivalently, a
function L → P(P(L)) - written x � U when (x,U ) ∈�, such that:

1. If x ∈ U then x � U;
2. If x � U and U � V (i.e. y � V for all y ∈ U) then x � V ;
3. If x � U then x ∧ y � U;
4. If x ∈ U and x ∈ V , then x � U ∧ V (where U ∧ V = {x ∧ y | x ∈ U, y ∈ V }).

For example, if (L ,�) = (O(X),⊆) one may take x � U iff x �
∨

U , i.e. iff U
covers x .

Let DL be the poset of all lower sets in L , ordered by inclusion; this is a frame [48,
Sect. 1.2]. The structure � gives rise to a closure operation21 A : DL → DL , given by

AU = {x ∈ L | x � U }, (63)

which has the following properties: ↓U ⊆ AU , U ⊆ AV ⇒ AU ⊆ AV , AU ∩AV ⊆
A(↓U ∩ ↓V ). The frame F(L ,�) generated by such a structure is then defined by

F(L ,�) = {U ∈ DL | AU = U } = {U ∈ P(L) | x � U ⇒ x ∈ U }; (64)

the second equality follows because firstly the property AU = U guarantees that
U ∈ DL , and secondly one has AU = U iff x � U implies x ∈ U . An equiva-
lent description of F(L ,�) is

F(L ,�) ∼= P(L)/ ∼, (65)

21 As a map, A is also defined on P(L). Let χ� : L × P(L) → � be the characteristic function of the
subset �⊆ L ×P(L). Then A = χ̂� is just the ‘curry’ or ‘λ-conversion’ of χ�.
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where U ∼ V iff U � V and V � U . Indeed, the map U �→ [U ] from F(L ,�)
(as defined in (64)) to P(L)/ ∼ is a frame map with inverse [U ] �→ AU ; hence the
idea behind the isomorphism (65) is that the map A picks a unique representative in the
equivalence class [U ], namely AU .

The frame F(L ,�) comes equipped with a canonical map

f : L → F(L ,�); (66)

x �→ A(↓x), (67)

which satisfies f (x) �
∨

f (U ) if x � U . In fact, f is universal with this property,
in that any homomorphism g : L → G of meet semilattices into a frame G such that
g(x) �

∨
g(U ) whenever x � U has a factorisation g = ϕ ◦ f for some unique frame

map ϕ : F(L ,C)→ G. This suggests that the point of the construction is that F(L ,�)
is (isomorphic to) a frame defined by generators and relations, provided the covering
relation is suitably defined in terms of the relations. More precisely [3, Thm. 12]:

Proposition 17. Suppose one has a frame F and a meet semilattice22 L with a map
f : L → F of meet semilattices that generates F in the sense that for each U ∈ F one
has U = ∨{ f (x) | x ∈ L , f (x) ≤ U }. Define a cover relation � on L by

x � U iff f (x) �
∨

f (U ). (68)

Then one has a frame isomorphism F ∼= F(L ,�).
We now turn to maps between frames.

Definition 18. Let (L ,�) and (M,�) be meet semilattices with covering relation as
above, and let f ∗ : L → P(M) be such that:
1. f ∗(L) = M;23

2. f ∗(x) ∧ f ∗(y)� f ∗(x ∧ y);
3. x � U ⇒ f ∗(x)� f ∗(U ) (where f ∗(U ) = ⋃

u∈U f (U )).
Define two such maps f ∗1 , f ∗2 to be equivalent if f ∗1 (x) ∼ f ∗2 (x) (i.e. f ∗1 (x)� f ∗2 (x)

and f ∗2 (x)� f ∗1 (x)) for all x ∈ L. A continuous map f : (M,�) → (L ,�) is an
equivalence class of such maps f ∗ : L → P(M).24

Our main interest in continuous maps lies in the following result.25

Proposition 19. Each continuous map f : (M,�) → (L ,�) is equivalent to a frame
map F( f ) : F(L ,�)→ F(M,�), given by

F( f ) : U �→ A f ∗(U ). (69)

All results in this subsection may be internalized in any topos; for example, a cov-
ering relation on an internal meet semilattice L in a topos T is simply a subobject � of
L ×�L , where � is the subobject classifier in T . The defining properties of a covering
relation are then interpreted in the internal language of T . Proposition 19 holds in this
generality, since its proof is constructive; see especially [3].

22 This even works in case that L is just a set preordered by x � y when f (x) � f (y).
23 If L and M have top elements�L and�M , respectively, then this condition may be replaced by f ∗(�L ) =�M .
24 Instead of taking equivalence classes, one could demand as a fourth condition that f ∗(x) = A f ∗(x) for

all x ∈ L .
25 In fact, one may extend this into an equivalence F between the category of formal topologies and the

category of frames. A formal topology is a generalization of the above triples (L ,�,�), where � is merely
required to be a preorder. In this more general case, the axioms on the cover relation � take a slightly different
form. See [8,69].
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A.1. Localization of the spectrum. We now consider some applications pertinent to the
main body of the paper. First, we return to the Gelfand spectrum in Subsect. 2.2. In its
presentation by means of generators and relations, Eqs. (18)–(22) play a different role
from the regularity rule (23), and we will treat the latter separately. First, for an arbi-
trary unital commutative C*-algebra A in some topos, consider the distributive lattice
L A freely generated by the formal symbols Da , a ∈ Asa (i.e. a is a variable of type
Asa), subject to the relations (18)–(22). As shown in [27,31], L A can be described more
explicitly, as follows.

Let A+ := {a ∈ Asa | a ≥ 0}. Define p � q iff there exists n ∈ N such that p � nq.
Define p ≈ q iff p � q and q � p. The lattice operations on A respect ≈ and hence
A+/ ≈ is a lattice. We then have

L A ∼= A+/ ≈ . (70)

The image of the generatorDa in L A, seen as an element of A+/ ≈, may also be described
explicitly: decomposing a ∈ Asa as a = a+ − a− with a± ∈ A+ in the usual way, under
the isomorphism (70) this image coincides with the equivalence class [a+] in A+/ ≈.
In explicit computations [23,47], one may therefore simply identify L A with A+/ ≈
and Da (seen as an element of L A) with [a+], respectively. Such computations are also
greatly facilitated by the following ‘locality’ theorem.

Theorem 20. For each C ∈ C(A) one has

L A(C) = LC , (71)

where the right-hand side is simply defined in Sets (where it may be computed through
(70)). Furthermore, if C ⊆ D, then the map L A(C)→ L A(D) given by the functoriality
of L A simply maps each generator Dc for c ∈ Csa to the same generator for the spectrum
of D (this is well defined because c ∈ Dsa, and this inclusion preserves the relations
(18)–(22)); we write this as LC ↪→ L D.

A proof of this theorem by explicit computation may be found in [22, Thm. 5.2.3].
Here, we give an alternative proof, which requires some familiarity with geometric logic
[51,63,80].26 It relies on the following lemmas.

Lemma 21. Let T be a geometric theory. For any category C, there is an isomorphism
of categories Mod(T,SetsC) ∼= Mod(T,Sets)C.

Here Mod(T, T ) is the category of T-models in T .27 This lemma may be found
in [51, Cor. D.1.2.14].

Lemma 22. The lattice L A generating the spectrum of an internal commutative
C*-algebra A is preserved under inverse images of geometric morphisms.

26 Further to our remarks in Subsect. 1.4 on geometric propositional logic, we recall that a geometric pred-
icate logic is a theory whose formulae are as described there (where the atomic formulae may now involve
relations and equalities and all the usual structures allowed in first-order logic as well), now also involving
finitely many free variables x = (x1, . . . , xn), and the existential quantifier ∃, with axioms taking the form
∀x : ϕ(x) → ψ(x). Geometric formulae form an important class of logical formulae, because they are pre-
cisely the ones whose truth value is preserved by inverse images of geometric morphisms between topoi. From
their syntactic form alone, it follows that their interpretation in the external language is determined locally.

27 This lemma is, in fact, valid for any topos E replacing Sets; Johnstone’s proof just relies on the fact that
the functor evC : EC → E that evaluates at C ∈ C is (the inverse image part of) a geometric morphism.
The stated generalization follows because the functor (evC )∗ : E → EC given by (evC )∗(S) = SC(−,C)
determines the direct image part [63, Exercise VII.10.1].
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To prove the second lemma, we first use the characterization of the real part Asa
of a commutative C*-algebra A as an f-algebra over the rationals (see Definition 9).
Moreover, the spectrum of a C*-algebra coincides with the spectrum of the f-algebra of
its self-adjoint elements [29]. We claim that the theory of f-algebras is geometric. First,
we observe that an f-algebra is precisely a uniquely divisible lattice ordered ring [27,
p. 151], since unique divisibility turns a ring into a Q-algebra. The definition of a lattice
ordered ring is algebraic: it can be written using equations only. The theory of torsion-
free rings, i.e. (nx = 0 �x x = 0) for all n > 0, is also algebraic. The theory of divisible
rings is obtained by adding infinitely many geometric axioms � �x ∃yny = x , one for
each n > 0, to the algebraic theory of rings. A torsion-free divisible ring is the same as
a uniquely divisible ring: Suppose that ny = x and nz = x , then n(y − z) = 0, and so
y − z = 0. We conclude that the theory of uniquely divisible lattice ordered rings, i.e.
f-algebras, is geometric. In particular, Asa and hence A+ are definable by a geometric
theory. Secondly, the relation≈ in (70) is defined by an existential quantification, so that
the generating lattice A+/ ≈—and hence by (70) also L A—is preserved under inverse
images of geometric morphisms. This proves Lemma 22.

Combining Lemma 22 with Lemma 21, we obtain (71) and hence Theorem 20.
For later we use, we put an important property of L A on record.

Definition 23. A distributive lattice is normal if for all b1, b2 such that b1 ∨ b2 = �
there are c1, c2 such that c1 ∧ c2 = ⊥ and c1 ∨ b1 = � and c2 ∨ b2 = �. A distributive
lattice is called strongly normal if for all a, b there exist x, y such that a � b ∨ x and
b � a ∨ y and x ∧ y = ⊥.
Lemma 24. The lattice L A is strongly normal, and hence normal.

This lemma is due to Coquand [27, Thm. 1.11], but we give a proof.

Proof. First, every strongly normal lattice is normal. To prove this, let b1 ∨ b2 = � and
choose x, y such that b1 � b2 ∨ x , b2 � b1 ∨ y, and x ∧ y = ⊥. Then � � b1 ∨ b2 �
(b2 ∨ x) ∨ b2 = b2 ∨ x . Similarly, � = b1 ∨ y.

Second, to check that L A is strongly normal, it is enough to verify the defining prop-
erty on the generators Da . So we pick a, b in Asa. Then one has Da � Da−b ∨ Db,
Db � Db−a ∨ Da , and Da−b ∧ Db−a = ⊥. "#

We now turn to the relation (23), which is to be imposed on L A. It turns out that 23
is a special case of a relation that can be defined on any distributive lattice L by x � y
iff there exists z such that x ∧ z = ⊥ and y ∨ z = �.28

Lemma 25. For all Da,Db ∈ L A, the following are equivalent:29

1. There exists Dc ∈ L A such that Dc ∨ Da = � and Dc ∧ Db = ⊥;
2. There exists q > 0 such that Db � Da−q .

Proof. 1 ⇒ 2: By [27, Cor 1.7] there exists q > 0 such that Dc−q ∨ Da−q = �. Hence
Dc ∨ Da−q = �, so Db = Db ∧ (Dc ∨ Da−q) = Db ∧ Da−q � Da−q .

2 ⇒ 1: Choose Dc := Dq−a . "#
28 Banaschewski and Mulvey write that x is ‘rather below’ y [7], whereas Johnstone [48] says that x is ‘well

inside’ y. The notation � is usually reserved for the so-called ‘way below’ relation, but this relation coincides
with the ‘well inside’ relation on compact regular locales (see [48, p.303] and Theorem 27), so we feel entitled
to identify them notationally.

29 In what follows, one may take q > 0 either in Q or in R.



Topos for Algebraic Quantum Theory 101

Hence in what follows we write

Db � Da iff ∃q>0 Db � Da−q , (72)

and note with Coquand [27] that in view of the above lemma the relation (23) just states
that the frame O(�) is regular.30 This leads to the following description.

For any distributive lattice L , an ideal I ∈ Idl(L) is called regular if I ⊇ ↓↓x implies
x ∈ I , where

↓↓x = {y ∈ L | y � x}. (73)

Expressed in logical language, I is therefore a regular ideal if

∀y∈L (y � x ⇒ y ∈ I )⇒ x ∈ I, (74)

and hence one has the frame RIdl(L) of regular ideals of L , defined by

RIdl(L) = {U ∈ Idl(L) | (∀y∈L y � x ⇒ y ∈ U )⇒ x ∈ U }; (75)

for the sake of completeness, U ∈ Idl(L) as a predicate on P(L) stands for ⊥ ≡ 0 ∈ U
and

x ∈ U, y � x ⇒ y ∈ U ; (76)

x, y ∈ U ⇒ x ∨ y ∈ U. (77)

Any ideal U ∈ Idl(L) can be turned into a regular ideal AU by means of the closure
operation A : DL → DL defined by [24]

AU = {x ∈ L | ∀y∈L y � x ⇒ y ∈ U }, (78)

and the canonical map f : L → RIdl(L) is given in terms of (78) by (67).
Combining Theorem 27 in [24] (which states that the regular ideals in a normal dis-

tributive lattice form a compact regular frame) with Theorem 1.11 in [27] (which applies
this to the case at hand), we finally obtain:

Theorem 26. The Gelfand spectrum O(�) of a commutative unital C*-algebra A is
isomorphic (as a frame) to the frame of all regular ideals of L A, i.e.

O(�) ∼= {U ∈ Idl(L A) | (∀Db∈L A Db � Da ⇒ Db ∈ U )⇒ Da ∈ U }. (79)

In this realization, the canonical map f : L A → O(�) is given by

f (Da) = {Dc ∈ L A | ∀Db∈L A Db � Dc ⇒ Db � Da}. (80)

By construction, we then have

f (Da) �
∨

{ f (Da−q) | q > 0}. (81)

For later use, also note that (80) implies

f (Da) = � ⇔ Da = �. (82)

30 See [48, III.1.1] for this notion. Recall that by the general theory of Banaschewski and Mulvey [7], the
spectrum has to be a compact regular frame.
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We may now equip L A with the covering relation defined by (68), given (79) and the
ensuing map (80).31 Consequently, by Proposition 17 one has

O(�) ∼= F(L A,�). (83)

This description becomes computable by the following two results.

Theorem 27. In any topos, the covering relation � on L A defined by (68) with (79) and
(80) is given by Da � U iff for all q > 0 there exists a (Kuratowski) finite U0 ⊆ U
such that Da−q �

∨
U0. (If U is directed, this means that there exists Db ∈ U such that

Da−q � Db.)

Proof. The easy part is the “⇐” direction: from (81) and the assumption we have
f (Da) �

∨
f (U ) and hence Da � U by definition of the covering relation.

In the opposite direction, assume Da � U and take some q > 0. From (the proof of)
Lemma 25, Da ∨ Dq−a = �, hence

∨
f (U ) ∨ f (Dq−a) = �. Since O(�) is compact,

there is a finite U0 ⊂ U for which
∨

f (U0) ∨ f (Dq−a) = �, so that by (82) we have
Db ∨ Dq−a = �, with Db = ∨

U0. By (19) we have Da−q ∧ Dq−a = ⊥, and hence

Da−q = Da−q ∧ � = Da−q ∧ (Db ∨ Dq−a) = Da−q ∧ Db � Db =
∨

U0.

"#
Thus we have two alternative expressions for the spectrum:

O(�) ∼= {U ∈ Idl(L A) | ∀q>0 Da−q ∈ U ⇒ Da ∈ U }, (84)
∼= {U ∈ P(L A) | Da � U ⇒ Da ∈ U }. (85)

The first follows from (79), the second from (64) and (83).
To apply this to our functor topos T (A), we apply the Kripke–Joyal semantics for

the internal language of the topos T (A) (see [63, Sect. VI.7], whose notation we will
use, and [12, Sect. 6.6]) to the statement Da � U . This is a formula φ with two free
variables, namely Da of type L A, and U of type P(L A) ≡ �L A . Hence in the forcing
statement C � φ(α) in T (A), we have to insert

α ∈ (L A ×�L A)(C) ∼= LC × Sub(L A|↑C ),

where L A|↑C is the restriction of the functor L A : C(A) → Sets to ↑C ⊂ C(A). Here

we have used (71), as well as the isomorphism [63, Sect. II.8]

�
L A (C) ∼= Sub(L A|↑C ). (86)

Consequently, we have α = (Dc,U ), where Dc ∈ LC for some c ∈ Csa (note the
change of typefont between the formal variable Da and the actual element Dc) and
U : ↑C → Sets is a subfunctor of L A|↑C . In particular, U (D) ⊆ L D is defined whenever
D ⊇ C , and the subfunctor condition on U simply boils down to U (D) ⊆ U (E)
whenever C ⊆ D ⊆ E .

31 Alternatively, writing Da �0 U iff U ⊇ ↓↓Da , the covering relation � is inductively generated by �0, as
explained in [28,79]. The triple (L A,�,�0) is a flat site as defined in [79].
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Corollary 28. In the topos T (A) the cover � of Theorem 27 may be computed locally,
in the sense that for any C ∈ C(A), Dc ∈ LC and U ∈ Sub(L A|↑C ), one has

C � Da � U (Dc,U ) iff Dc �C U (C),

in that for all q > 0 there exists a finite U0 ⊆ U (C) such that Dc−q �
∨

U0.

Proof. For simplicity, assume that
∨

U0 ∈ U , so that we may replace U0 byDb = ∨
U0;

the general case is analogous. We then have to inductively analyze the formula Da � U ,
which, under the stated assumption, in view of Theorem 27 may be taken to mean

∀q>0 ∃Db∈L A (Db ∈ U ∧ Da−q � Db). (87)

We now infer from the rules for Kripke–Joyal semantics in a functor topos that:32

1. C � (Da ∈ U )(Dc,U ) iff for all D ⊇ C one has Dc ∈ U (D); since U (C) ⊆ U (D),
this happens to be the case iff Dc ∈ U (C).

2. C � (Db � Da)(Dc′, Dc) iff Dc′ � Dc in LC .
3. C � (∃Db∈L A Db ∈ U ∧ Da−q � Db)(Dc,U ) iff there is Dc′ ∈ U (C) such that

Dc−q � Dc′ .
4. C � (∀q>0 ∃Db∈L A Db ∈ U ∧ Da−q � Db)(Dc,U ) iff for all D ⊇ C and all q > 0

there is Dd ∈ U (D) such that Dc−q � Dd , where Dc ∈ LC is seen as an element of
L D through the injection LC ↪→ L D of Theorem 20, and U ∈ Sub(L A|↑C ) is seen
as an element of Sub(L A|↑D) by restriction. This, however, is true at all D ⊇ C iff
it is true at C , because U (C) ⊆ U (D) and hence one can take Dd = Dc′ for the
Dc′ ∈ LC that makes the condition true at C . "#

This brings us to our recipe for computing the spectrum in T (A) locally:

Theorem 29. The spectrum O(�) of A in T (A) can be computed as follows:

1. At C ∈ C(A), the set O(�)(C) consists of those subfunctors U ∈ Sub(L A|↑C ) such
that for all D ⊇ C and all Dd ∈ L D one has Dd �D U (D)⇒ Dd ∈ U (D).

2. In particular, at C ·1, the set O(�)(C ·1) consists of those subfunctors U ∈ Sub(L A)

such that for all C ∈ C(A) and all Dc ∈ LC one has Dc �C U (C)⇒ Dc ∈ U (C).
3. The condition that U = {U (C) ⊆ LC }C∈C(A) be a subfunctor of L A comes down to

the requirement that U (C) ⊆ U (D) whenever C ⊆ D.
4. The map O(�)(C) → O(�)(D) given by the functoriality of O(�) whenever

C ⊆ D is given by truncating an element U :↑C → Sets of O(�)(C) to ↑D.
5. The external description of O(�) is the frame map

π∗� : O(C(A))→ O(�)(C · 1), (88)

given on the basic opens ↑D ∈ O(C(A)) by

π∗�(↑D) = χ↑D : E �→ � (E ⊇ D);
E �→ ⊥ (E � D), (89)

where the top and bottom elements �,⊥ at E are given by {L E } and ∅, respectively.

32 The first one follows from [12, Prop. 6.6.10] and a routine computation. The others are obvious from
either [63, Sect. VI.7] or [12, Sect. 6.6].
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Proof. By (85), O(�) is the subobject of �L A defined by the formula φ given by

∀Da∈L A Da � U ⇒ Da ∈ U, (90)

whose interpretation in T (A) is an arrow from�
L A to�. In view of (86), we may iden-

tify an element U ∈ O(�)(C)with a subfunctor of L A|↑C , and by (90) and Kripke–Joyal
semantics in functor topoi (see, in particular, [63, Sect. IV.7]), we have U ∈ O(�)(C) iff
C � φ(U ), with φ given by (90). Unfolding this using the rules for Kripke–Joyal seman-
tics and using Corollary 28 (including part 1 of its proof), we find that U ∈ O(�)(C)
iff

∀D⊇C ∀Dd∈L D ∀E⊇D Dd �E U (E)⇒ Dd ∈ U (E), (91)

where Dd is regarded as an element of L E . This condition, however, is equivalent to the
apparently weaker condition

∀D⊇C ∀Dd∈L D Dd �D U (D)⇒ Dd ∈ U (D); (92)

condition (91) clearly implies (92), but the latter applied at D = E actually implies the
first, since Dd ∈ L D also lies in L E .

Items 2 to 4 are now obvious, and the last follows by the explicit prescription for
the external description of frames recalled in Subsect. 1.7. Note that each O(�)(C) is a
frame in Sets, inheriting the frame structure of the ambient frame Sub(L A|↑C ). "#

An equivalent way to compute the spectrum, which derives from (84) rather than
(85), is as follows: O(�)(C · 1) (and similarly all the other O(�)(C)) consists of those
subfunctors U ∈ Sub(L A) such that for all C ∈ C(A), U (C) is a regular ideal in LC .

To prove this, according to (84) the formula expressing that U ∈ P(L A) be a regular
ideal is

U ∈ Idl(L) ∧ ∀Da∈L A ∀q>0 Da−q ∈ U ⇒ Da ∈ U, (93)

where the condition U ∈ Idl(L) is spelled out in (76) and (77). The locality of this
first condition and of the conjunction in (93) being almost trivial, we concentrate on the
second term, calling it φ as usual. We then find that C · 1 � φ(U ) iff for all C ∈ C(A),
all Dc ∈ U (C), and all D ⊇ C one has: if Dc−q ∈ U (E) for all q > 0 at all E ⊇ D,
then Dc ∈ U (D). Now the antecedent automatically holds at all E ⊇ D iff it holds at
D, and similarly the if …then statement holds at all D ⊇ C if it holds at C .

A.2. Daseinisation map. Our next aim is to construct the Daseinisation map (44), which,
read as a frame map, for fixed a ∈ Asa is

δ(a)−1 : O(IR)→ O(�). (94)

We will use the realization (83) of the spectrum O(�) of A as the frame F(L A,�)
defined in the preceding subsection. The second frame we deal with is that of the inter-
val domain O(IR), cf. Subsect. 5.1. Following [69], we construct the interval domain as
a frame F(Q ×< Q,�) defined by a covering relation. Here the pertinent meet semi-
lattice Q×< Q consists of pairs (p, q) ∈ Q×Q with p < q, ordered by inclusion (i.e.
(p, q) � (p′, q ′) iff p′ � p and q � q ′), with a bottom element ⊥ added. The covering
relation � is defined by ⊥� U for all U and (p, q)� U iff for all rational p′, q ′ with
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p < p′ < q ′ < q there exists (p′′, q ′′) ∈ U with (p′, q ′) � (p′′, q ′′). In Sets one easily
verifies the frame isomorphism

F(Q ×< Q,�) ∼= O(IR), (95)

so that, in particular, we may regard O(IR) as a subset of the power set P(Q ×< Q).

Proposition 30. The functor O(IR) internalizing the interval domain in T (A) is given
by

O(IR) ∼= F(Q ×< Q,�). (96)

Explicitly, we have

O(IR)(C · 1) ∼= {S ∈ Sub(Q ×< Q) | S(C) ∈ O(IR) for all C ∈ C(A)}, (97)

where O(IR) ⊂ P(Q ×< Q) through (95), as just explained. Furthermore, O(IR)(C)
is the truncation of (97) to ↑C (cf. Theorem 29), and the functorial map O(IR)(C)→
O(IR)(D) whenever C ⊆ D is given by truncation. Finally, the external description of
O(IR) is given by the frame map

π∗
IR

: O(C(A))→ O(IR)(C · 1), (98)

where π∗
IR

is given by a formula similar to (89).

Proof. This follows from a computation analogous to but simpler than the proof of
Theorem 29, combined with the remark following (47) and the observation that the con-
dition that S : C(A) → P(Q ×< Q) in the right-hand side of (97) be a subfunctor of
Q ×< Q means that we may identify S with a monotone function from C(A) to O(IR).

"#
We now give the external description

δ(a)−1 : O(IR)(C · 1)→ O(�)(C · 1) (99)

of our Daseinisation map (94). In view of (83) and (96), we will define (99) as a frame
map

δ(a)−1 : F(Q ×< Q,�)(C · 1)→ F(L A,�)(C · 1). (100)

Internalizing Proposition 19 to T (A), we proceed by constructing a continuous map

d(a) : (L A,�)→ (Q ×< Q,�), (101)

for in that case we may put

δ(a)−1 = F(d(a))(C · 1). (102)

By definition, as a map in the functor topos T (A) the continuous map d(a) is a natural
transformation

d(a)∗ : Q ×< Q → P(L A) = �
L A (103)
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with components d(a)∗C : Q ×< Q(C) → �
L A (C). One has Q ×< Q(C) ∼= Q ×< Q,

so by (86) the d(a)∗C are maps

d(a)∗C : Q ×< Q → Sub(L A|↑C ). (104)

By naturality, d(a)∗C is determined by d(a)∗
C·1 : Q ×< Q → Sub(L A) as

d(a)∗C (r, s)(D) = d(a)∗
C·1(r, s)(D), (105)

for all D ⊇ C , so d(a)∗ is determined by d(a)∗
C·1. Using the description of the lattice

L A(C) by Theorem 20, we may now define

d(a)∗
C·1(r, s) : C �→ {D f −r ∧ Ds−g | f, g ∈ Csa, f � a � g}, (106)

which is indeed a subset of L A(C) = LC , as required.

Lemma 31. The map (101) defined by (103), (105) and (106) is continuous (in the sense
of Definition 18, internalized to T (A)).
Proof. First, we claim that d is continuous iff each d(a)C is. Indeed, with regard to the
first condition in Definition 18 this is obvious; for the second cf. [63, Prop. I.8.5], and
for the third this is true because both covering relations are described locally in C (cf.
Corollary 28). By Proposition 19, continuity of d , in turn, would mean that (100) is well
defined as a frame map.

Thus what remains is to verify that each map d(a)C is continuous in the sense of
Definition 18. This is indeed the case; we spare the readers the details.33 "#

We now compute the associated frame map (100). The map (103) induces a map
Sub(Q ×< Q) → Sub(�L A) as the left adjoint of the pullback in the opposite

direction (see, e.g., [63, Exercise I.10]), which by composition with ∪ yields a map
Sub(Q ×< Q) → Sub(L A). The latter restricts to a map F(Q ×< Q,�)(C · 1) →
F(L A,�)(C · 1), which by definition is the map (100) and hence gives the external

description (99) of our Daseinisation map.34 This is a frame map by construction; see
Lemma 31 and Proposition 19. The associated locale map δ(a) : � → IR is our version
of the Döring–Isham Daseinisation map. It is unenlightening to write it down explicitly,
but we give an appealing special case in Subsect. 5.2.

A.3. Localization of integrals. Finally, to compute the interpretation of the locale of
integrals we may proceed analogously to the case of the spectrum. The free distributive
lattice satisfying the relations in Sect. 4.2 may alternatively be defined by an entail-
ment relation [24]. Consequently, it suffices to describe when ∧A � ∨B in the lattice.
As proved in [27,30], this holds if a positive combination of elements in A is below a
positive combination of elements in B - in symbols, if there are ri , s j > 0 and ai in A
and b j in B such that

∑
ri ai �

∑
s j b j . This is an existential quantification over finite

subsets of an f-algebra. The construction of taking the (Kuratowski) finite powerset is
geometric, see e.g. [80]. So existential quantification over it is preserved by geometric
morphisms. Applying this to the internal C*-algebra and applying Lemma 21 we obtain
(cf. Theorem 20):

33 These will appear in the PhD Thesis of the first author.
34 According to (69), this map is just the component of F(d(a)) at C · 1. This component, however, deter-

mines F(d(a)) as a whole, since F(d(a))(C) is just the restriction of F(d(a))(C ·1) to the truncation of each
subfunctor S in (97) to ↑C .
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Proposition 32. The interpretation of the lattice generating the locale of integrals of the
internal C*-algebra is given by the functor assigning to each commutative subalgebra
C the lattice generating the integrals on C. If C ⊆ D, then the inclusion maps genera-
tors of the lattice for C to generators of the lattice for D and preserves relations. The
covering relation for the space of integrals is also interpreted locally.

A similar statement holds for valuations; see [30,81]. Vickers [78] uses a presenta-
tion of locales which is similar to formal topology, but which is tailored for geometric
reasoning.

B. Related Work

The present article was to a considerable extent motivated by the fundamental work of
Butterfield and Isham [20,21] and Döring and Isham [34–38]. We refrain from a full
comparison, but restrict ourselves to what we see as the key points.

As to Butterfield and Isham, our reformulation of the Kochen–Specker Theorem is in
their spirit, but we feel our version is more powerful, especially from a logical perspec-
tive: our statement that a certain locale has no points has a logical interpretation in terms
of (the lack of) models of a certain geometric theory, whereas the original reformulation
[20] merely claims that some presheaf lacks global sections (i.e. points).

Compared with Döring and Isham, our overall programme and philosophy, as
explained in the Introduction, are quite different from theirs: our ambitions are limited
to finding a spatial notion of quantum logic (although we do hope that locales in topoi
might provide a generalized concept of space that will be useful in quantum gravity).
The principal technical differences between the two approaches lie in our use of:
1. covariant functors (instead of contravariant ones);
2. C*-algebras (instead of von Neumann algebras);
3. locales (instead of Stone spaces);
4. internal reasoning and the associated use of Kripke–Joyal semantics;
5. states as internal integrals and the correspondence between integrals and valuations

(i.e. measures defined on open sets).35

This has many technical advantages, which has made it possible to obtain our main
results (see Subsect. 1.9). Conceptually, the two programs in question overlap to the
effect that the Gelfand spectrum O(�) of the Bohrification A of A provides a point-
free realization of Döring and Isham’s notion of a state object in a topos, whereas the
interval domain O(IR) realizes their quantity object, again in the sense of pointfree
topology internalized to a suitable topos.36 These objects are linked by observables,
which define arrows from the state object to the quantity object. Thus for each a ∈ Asa,
our Daseinisation δ(a) : � → IR is an observable in the sense of Döring and Isham.
Restricted to the special case A = B(H), our construction resembles the single example
of such a topos that both Butterfield, Hamilton and Isham [19] and Döring and Isham
[35,36] give, namely that of presheaves over the preorder category of commutative von
Neumann subalgebras of B(H) (ordered by inclusion).

Acknowledgement. The authors are indebted to Andreas Döring, Ieke Moerdijk, Chris Mulvey, Isar Stub-
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35 An analogous external result has meanwhile been found by Döring [33].
36 In fact, our use of pointfree techniques leads to topoi of covariant functors just as inevitably as the more

conventional methods in [19–21,34–37] lead to topoi of presheaves.
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