THE FELLOWSHIP OFGEOMETRY AND QUANTUM THEORY

GENOOTSCHAP VOORMEETKUNDE EN KWANTUMTHEORIE

Summary

As a striking example of the cross-fertilization betweerthmeanatics and other fields, quantum theory has recently
emerged as a unifying theme in the modern development of gggmideas from quantum mechanics, quan-
tum field theory, and string theory have transformed algelaad symplectic geometry, and even inspired the
creation of a new branch of mathematics (viz. noncommugai@ometry). At the same time, progress in funda-
mental physics increasingly hinges on deep mathematieakid he primary aim of this proposal is to make The
Netherlands a major player in this development.

Our group, based at the UniversitiesAxinsterdam, Nijmegen, andUtrecht (the latter acting as the cluster
center or *hub’), plans to achieve this through the creatiomlong-term educational infrastructure, combined with
a new large-scale research program in mathematics. Thefomitt nurture a generation of students who are, so
to speak, bilingual in relevant areas of both pure mathematd fundamental physics. This involves

1. Dual Bachelor degree programs in mathematics and phiasiezars);
2. Master programs in mathematical physics (2 years);
3. Specialized Master Classes on key cluster themes (1, year)
4. A PhD program in geometry and quantum theory (4 years).
Our research plans revolve around areas such as:
e Poisson geometry, quantization, and noncommutative geggme
¢ Integrable systems, Frobenius manifolds, and the gearretriglands program;
e Moduli spaces, mirror symmetry, and topological strings.

The scale and intensity of this proposal seem unprecedenfzutch mathematics, yet a number of local circum-
stances appear to make our initiative timely and feasiblgedd, part of the envisaged infrastructure already exists
at the participating universities, much of the requireestific expertise is already scattered over the proposed
cluster members, and most of us have a track record of mareagemd collaboration.

The tenured faculty participating in the cluster includes full professors and thirteen other researchers. In
addition, an active group of younger postdocs and PhD stadilt be involved in the cluster activities. Some of
the most talented Dutch geometers working abroad will beoiayped as Fellows of the cluster. The cluster will
work in close contact with a Board of Advisors, which inclsdene Nobel Laureate and two Fields Medalists.
Of the ten professors, three are members of the Royal Acaddrdgiences (KNAW), and one has recently
been appointed as the first Royal Academy Professor in matiiesn Of the younger professors, three have
received prestigious PIONIER grants from NWO, and one icgient of the Spinoza Prize (the highest scientific
distinction in The Netherlands). In addition, the work ofremof the still younger tenured participants has already
been recognized by the KNAW and NWO through fellowships andrds. Thus the continuity of our program
seems guaranteed.



1 Research Plan

1.1 Introduction

The more | have learned about physics, the more convincedthanphysics provides, in a sense, the deepest applications
mathematics. The mathematical problems that have beeadsalv techniques that have arisen out of physics in the pasgg,
been the lifeblood of mathematics. .. The really deep goestare still in the physical sciences. For the health of emattics
at its research level, | think it is very important to maintat link as much as possible. (Michael Atiyah)

This year, the second Abel Prize has been awarded jointhytij@A and Singer “for their discovery and proof of
the index theorem, bringing together topology, geometry amalysis, and their outstanding role in building new
bridges between mathematics and theoretical physics.% @itation, concerning arguably the most prestigious
prize in mathematics, as well as the award of Fields Medaksdo Connes, Witten, and Kontsevich, confirms
the remarkable fact that it is the frontiers pfire mathematics anfundamentabphysics that happen to be in
close contact at the moment. This is, of course, not a newgshenon, though it is significant that the three
previous episodes where this happened marked some of tiesigoficant revolutions in the history of science.
Indeed, modern mathematics and physics were born togetktes iL 7th century through the work of Newton, who
created both the calculus and classical mechanics in itginedationship to each other. Subsequently, Einstein’s
general theory of relativity (which replaced Newton'’s cepts of space, time, and gravity) was formulated on the
mathematical basis of Riemannian geometry, in turn insgiieyl and Cartan to reshape the latter from a local
to a global theory; cf. [23]. Third, through the work of Hitbend von Neumann, qguantum mechanics was an
important source of the transition from classical analysiss modern (abstract) form (see, e.g., [39]).

It appears, then, that we are currently witnessing anotkar episode, in which the autonomous development
of geometry as a branch of pure mathematics (dating baclast te Euclid) is enriched by a remarkable flow of
ideas from fundamental physics, notably quantum theoiig. gtimarily in this sense that we intend to realize the
stated aim of NWO (the Dutch Research Council) and OOW (e, .combined Dutch inter-academic research
schools in mathematics) to support research in the intetf@tween mathematics and theoretical physics in The
Netherlands. Furthermore, an important secondary effiettteocluster will undoubtedly be the enhancement of
the opposite flow as well. The present proposal focuses oimteplay betweemeometryincluding algebraic,
symplectic, and noncommutative geometry, gndntum theoryincorporating quantum field theory, string theory,
and quantization. While at first sight geometry seems a vastdaverse field, even when restricted to the three
areas mentioned, our cluster achieves its coherenceydrgeh the recent insight that these areas are related in
remarkable new ways, often initially suggested by quantbgsigs.

As will become clear throughout this proposal, at preseatrtational situation seems quite favourable to
participate in this development. We possess consideraplerience on all aspects of the present initiative, but -
and this is the-aison d’etrefor the present cluster - our joint expertise has on the wheén kept separate so far.
Thus our basic goal is to join forces in order to create arasifucture in which the interplay between geometry
and quantum theory can be exploited to maximal effect, pilgnxom a mathematical perspective.

1.2 Research area

For the benefit of the reader, we first sketch the historicekfeound to our research area, restricting ourselves to
those aspects that are immediately relevant to our own plessribed in Section 1.4.

1.2.1 From quantum mechanics to noncommutative geometry

Quantum mechanics was born in 1925 with the work of Heisanlvdro discovered the noncommutative structure
of its algebra of observables. The complementary work ofr@&tihger from 1926, on the other hand, rather
started from the classical geometric structure of confifumespace. Within a year, their work was unified by
Von Neumann, who introduced the abstract concept of a Hiltparce, in which Schrddinger’s wave functions are
vectors, and Heisenberg’s observables are linear opseraidre somewhat primitive notion of quantization that
had been used by Heisenberg was rapidly put on a more maticahiabting by Dirac.

Weyl immediately recognized the notion of a Hilbert spacéhasappropriate setting for a theory of infinite-
dimensional group representations, an area that has ocedtito interact with quantum theory ever since. For
example, in the 1960s Kostant and Souriau related symplgetimetry to quantum mechanics and representation
theory in a theory callegeometric quantizatigrn which Kirillov’s ‘orbit method’ is combined with the inghts of
Dirac and Weyl. In 1964 Dirac once again provided importdesss for this field through his work on constrained
guantization, which inspired mathematical tools such amer@um maps and Marsden—Weinstein reduction in



symplectic geometry. Dirac’s combined influence culmidatethe Guillemin—Sternberg conjecture, which states
that geometric quantization commutes with symplectic céida (cf. [19] for a recent overview).

A generalization of symplectic geometry, Poisson geometag defined in 1976 by Kirillov and Lichnerowicz.
Almost by definition, Poisson geometry provides the mathamalssetting for classical mechanics in Hamiltonian
form, and accordingly for the classical theory of integeabystems. Weinstein introduced many fundamental
ideas to this subject, most notably the relationship betv@Esson manifolds and Lie groupoids (that is, objects
that encode not only global symmetries, as Lie groups doalsatlocal ones, and have associated ‘infinitesimal
objects’ known as Lie algebroids; cf. [37]). In addition,i#mn manifolds form the starting point of the notion of
deformation quantization.

In the mid-thirties, von Neumann created the theory of aperdgebras on Hilbert spaces, which extends the
scope of his earlier mathematical formulation of quantuncmamics. A decisive technical contribution to oper-
ator algebras was also made from a purely mathematical @etigp by Gelfand and Naimark in 1943 with their
introduction ofC*-algebras. Almost simultaneously, Hodge considerablyaded the field of geometric analysis
(initiated earlier by Weyl) with his introduction of topaja@al and analytic methods in algebraic geometry. This
field culminated in the index theorems of Atiyah and Singethim 1960s, in which topological K-theory (a con-
struction in algebraic topology due to Atiyah and Hirzelbruwho in turn were inspired by ideas of Grothendieck
in algebraic geometry), also played an important role.

Around 1980, Connes incorporated operator algebras, geiocraealysis, topological K-theory, Riemannian
geometry, as well as a new construction in homological algealled cyclic cohnomology, in his formidable edifice
of noncommutative geometry [6]. For one thing, this has tedast generalizations of index theory, for example
to noncompact and especially singular spaces. Connes hoegrplicitly acknowledged the role of quantum
mechanics in the conceptual motivation for his theory; aadeafter its incarnation this origin also resurfaced at
a technical level, with Rieffel's recognition that an artalyersion of deformation quantization could be defined
within the technical framework of noncommutative geom@ddj. This move, then, at last also brought Poisson
geometry into this framework. In recent years, noncomnugaeometry has made connections with such diverse
areas as quantum groups, modular forms (in algebraic gegin@bd even number theory.

1.2.2 The impact of quantum field theory

In the preceding, the quantum theory involved was nonkésdic. The conceptual revolution in algebraic geom-
etry that emerged from 1990 onwards had its roots in twoivedtt versions of quantum theory, viguantum
field theoryandstring theory Quantum field theory, combining quantum theory wafiecialrelativity, was first
constructed in 1927, but was only completed as a physicakyha 1948 with the successful incorporation of
renormalization and Feynman diagrams. Mathematicallgngum field theory largely remains mysterious, de-
spite attempts to found the theory on the basis of Schwatesry of distributions (Wightman), von Neumann’s
operator algebras (Haag [21]), or on rigorous versions ghRFan’s path integrals (Glimm & Jaffe). Indeed, this
mystery is part of its current fascination among matheraat

At the classical level, it was noted in the 1970s by Yang ameist that Yang—Mills theory, the field theory
underlying the Standard Model of elementary particle ptg/¢for which 't Hooft and Veltman got the Nobel
prize in 1999), has a striking geometric nature. Moreoveruad 1975 't Hooft (and independently Polyakov)
discovered fascinating solutions to its equations, knowmagnetic monopoles and instantons. These themes
were picked up in 1977 by Atiyah and others at Oxford, who whegeby led to important new techniques for
dealing with integrable systems [25]. The so-called Hitckystems (i.e., integrable systems constructed from
moduli spaces of principal bundles over Riemann surfages aase in point. In 1982, Atiyah and Bott initiated a
new approach to closely related moduli spaces, linkingehedoth Yang—Mills theory and symplectic geometry
in a beautiful way. One of the highlight of this developmergsaundoubtedly the new classification of four-
manifolds by Atiyah’s student Donaldson, which was dingbthsed on Yang—Mills theory and instantons (Fields
Medal 1986).

So far, the only case where an appropriate mathematicaiytieavailable in relativistic quantum field theory
is in one space and one time dimension. The most promineotaspase of thisconformal field theorywas ef-
fectively launched in 1984 by Belavin et al; cf. [9]. Confahfield theory gave a boost to a number of remarkably
diverse areas of mathematics, which it to some extent iatedr These include infinite-dimensional Lie groups
and Lie algebras (notably loop groups and the diffeomomhgsoup of the circle, with the affine Kac—Moody
algebras and the Virasoro algebra as their Lie algebraggrable systems and integrable hierarchies, algebraic
topology, and even the theory of sporadic finite simple gspBworcherds was awarded a Fields Medal in 1998 for
establishing this link and the associated creation of tee@ated mathematical theory of vertex algebras.



1.2.3 String theory and mirror symmetry

For most of the subsequent developments, it is practicallyossible to separate conformal field theory from
topological quantum field theory and string theory, espdiathe hands of Witten and Kontsevich, the theoretical
physicist and the mathematician who (with Connes) doméhtite geometry & quantum theory interface in the
1990s.

String theorystarted as a niche in high-energy physics in the early 19i@sbegan to attract worldwide
attention with the work of Green and Schwarz in 1984 on angmahcellation (cf. [9]), and its subsequent
endorsement by Witten. It is an ambitious program that pat&s that the smallest degrees of freedom in nature
are not particles or fields but strings, and which has alrsadgeeded in combining quantum theory vgtneral
relativity (this had turned out to be an impossible task iamfum field theory). Though it is not clear whether its
central physical prediction, supersymmetry, will be expentally verified, the relevance of string theory to pure
mathematics is beyond any doubt. Since in string theory folalsi are studied through loops instead of points, it
immediately suggests a natural generalization of idean friassical geometry. More subtly, as a quantum theory
it not only has Planck’s constahtas a deformation parameter, but in addition contains thegsprarameter/’;
cf. [9]. Itis basically this two-parameter structure thiaslbehind the ability of string theory to relate seemingly
diverse phenomena and theories in mathematics.

Perhaps the most unexpected such relation is what is knowirels symmetryoriginally discovered in 1991
in the setting of conformal field theory. Namely, the allegepliivalence of two seemingly different physical
models turned out to imply a technique for solving problemenumerative geometry in which mathematicians
had made no progress for over a century. Specifically, a diffenumerative problem on one manifold could
be transformed to an easy problem about period integralhgpergeometric functions on another, the so-called
mirror partner. This is a special case of the phenomendnality, which plays a fundamental role in string theory.
In the setting of so-calletbpological stringsmirror symmetry exchanges the A-model (whose degreegetibm
are Gromov-Witten invariants) and the B-model (which carvieered as a quantization of the moduli space of
complex structures).

Mirror symmetry poses a new conceptual framework for certdassical parts of algebraic geometry that
consequently have returned to the forefront of researd as toric varieties, Calabi—Yau varieties (especially of
complex dimension 3, as first indicated by the needs of sthirgry compactification), K3-surfaces, and abelian
varieties; see [26] for a recent survey. Mirror symmetry lisgppnew and deep relations between algebraic and
symplectic geometry, especially at the level of moduli gzadn its most abstract and powerful formulation due to
Kontsevich [30], mirror symmetry is an equivalence of certategories defined by the two partnéfsandY” of
the mirror pair. One, the so-called Fukaya category, isttoated in terms of the Lagrangian submanifoldsxof
(defined through a choice of a Kahler form), and the otheefindd by the coherent sheavesYrfassociated to
its complex structure) [30]. At the other side of the intedafurther impetus from physics has come from the role
of so-called D-branes in string theory, which are distisped submanifolds defining appropriate moduli spaces
that lie at the basis of higher forms of mirror symmetry.

Topological quantum field theowyas invented by Witten in 1988 in an attempt to find a concégtxyaanation
from physics for various phenomena in geometry [46]. In digien four, it contained Donaldson’s theory as a
special case, planting the seeds for the remarkable refatiom of the latter by Seiberg and Witten in 1994. In
dimension three, it not only explained Jones’s new knotriave (which Jones, incidentally, discovered from the
perspective of operator algebras, earning him a Fields Med&90) in the said way, but in addition led to a whole
new series of so-called ‘quantum invariants’ or ‘Wittenamants’ of three-manifolds. Efforts to make Witten’s
invariants mathematically rigorous branched into two dimns. One defined topological quantum field theories
through the geometric quantization of suitable moduli sgasuch as the moduli space of flat connections on a
Riemann surface introduced by Atiyah and Bott [1]). The otimed so-called braided tensor categories as the
appropriate mathematical framework [2, 21].

Topological quantum field theory has had a comparable imgraotathematics in its two-dimensional version,
in the context of quantum gravity amdmodels (whose basic variables are maps from a complex muoa given
manifold). These methods caused a watershed in Poissonegigpalgebraic geometry, and integrable systems,
both independently, and in the recognition of how thesesaaeainterrelated. As to the first (anti-chronologically),
Kontsevich used ideas from topologicalmodels in his remarkable proof in 1997 that any Poisson fokhi
admits a formal deformation quantization [27]. In its cetrEormulation [29], this fundamental result (for which
an analytic analogue remains to be found) is closely tiegptrads and other aspects of modern homotopy theory.



1.2.4 Towards Frobenius manifolds and the geometric Langlads program

In the context of algebraic geometry, a paper by Witten inQ188 the coupling of two-dimensional topological
gravity to ‘matter,’ in the form ofo-models (and its subsequent mathematical reformulaticheastension by
Witten himself [47], Kontsevich and Manin [28], and otheaéopng with independent work of Gromov in the
setting of symplectic geometry and topology) led to the twiions of Gromov—Witten invariants and quantum
cohomology, introducing an entirely new tool in the studyradduli spaces. The essential structure defining the
guantum cohomology of a given variety is intersection tlggora moduli space of suitable (i.e., stable) maps
from curves into the variety. One important applicatiorhigttthe answers to certain questions in the enumerative
geometry of a variety can be read off from the multiplicattahle of its quantum cohomology ring, so that the
subject describes one half of a mirror symmetry pair.

In the same physical setting, Witten was led to an influemitajecture (later proved by Kontsevich) on the
structure of the cohomology ring (more precisely, of thecaled tautological ring) of the moduli space of curves
of given genus and number of marked points. Witten’s conjecstates that the generating function of all top
intersections of certain fundamental geometrically deficlasses in this ring (the-classes) satisfies a particular
differential equation, which allows a recursive compuatdf the intersection numbers. Subsequently, still moti-
vated by two-dimensional gravity and string theory, Digkgf, E. Verlinde and H. Verlinde showed that Witten’s
conjecture has the form of an integrable hierarchy of pladifferential equations, now known as the WDVV-
equations. Witten’s original generating function is thematvin integrable theories jargon is called théunction
of this hierarchy, which in the simplest case is the one aatatto the KdV-equation. More recently, generaliza-
tions of the WDVV-equations have emerged in the context di&g—Witten theory.

Thus the WDVV-equations establish a deep link between niegakes of algebraic geometry and integrable
systems of the kind that originally were meant to describenpimena in fluid mechanics such as shallow water
waves! The original physical description of this link thghuquantum field theory in dimension two, while still
providing essential intuition, has now been supersedetidynathematical concept offaobenius manifolddue
to Dubrovin [12] (with important later contributions by Mian Kontsevich, Givental, and others, see [36]). Such
manifolds are locally described by the WDVV equations. la tiriginal physics setting, a particular class of
Frobenius manifolds came equipped with additional stmectitimately defined by a quantum cohomology ring.
In this context, Manin and others have proposed that Froisemianifolds provide a natural framework for the
concept of mirror symmetry. In addition, there turns out éoabsecond class of Frobenius manifolds, having its
origins in Saito’s theory of unfolding isolated singulag of hypersurfaces [42]. The main examples of this theory
come from constructions involving Lie-theoretic data,[8#]. This relates Frobenius manifolds and integrable
systems to singularity theory, which generally studiesdbpendence of certain objects on parameters; see [43]
for a recent survey. A third class of Frobenius manifoldsaifial interest to our cluster, comes from deformation
theory, specifically from so-called differential Gerstabbr—Batalin—Vilkovisky algebras. Note that the latteo tw
authors discovered this structure in their work on the gaatibn of constrained systems.

More recently, a different perspective has emerged, whiomfses to link many of the ideas described above,
notably those on integrable systems, conformal field thenisror symmetry, and geometric quantization. This
is thegeometric Langlands programvhich adds representation theory to these areas as a bakid6]. The
original Langlands program in number theory [4], datingnfrthe 1960s, revolves around a profound correspon-
dence between automorphic representations and Galoissegations. Although a precise formulation of the
general correspondence is not known, in a variety of naatreaxamples and special cases its predictions have
been established in great detail. Some of the most excitiegkthroughs in modern mathematics fall under this
umbrella, including Wiles’s key result that implied Ferfedtast Theorem. Also, the Fields Medals awarded in
1990 to Drinfeld and in 2002 to L. Lafforgue recognized warkhis area.

In the original setting, one starts with either a number figkel, a finite extension o), or a function field
(that s, the field of rational functions on a smooth projeetiurveC defined over a finite fiel#l;). The geometric
Langlands program provides a reformulation of the Langdaswrespondence in the second case, wherelfjow
is replaced by the complex numbéts Thus the program is placed in the context of classical algelgeometry,
where it constructively interferes with the ideas from ghygliscussed so far in bringing both new tools and a
unified perspective on the disciplines just mentioned.fHiigto say that on the one hand the expected interrelations
are based on convincing and nontrivial examples, while enatiher a general and satisfactory explanation or
understanding is still missing.



1.3 Expertise in The Netherlands

Dutch mathematicians and mathematical physicists haeaadyr played a significant role in the developments
described above, and the expertise of the cluster membé#rsiarea makes them well prepared to join forces in
order to assume a leading role in the future.

As pointed out above, the discovery of magnetic monopolestenton solutions by cluster advisor 't Hooft
was instrumental in the establishment of the modern linlvbeh geometry and field theory (in the physics sense!)
by Atiyah, Witten, and others from 1977 onwards. In 1988,60ft’s student and cluster advisor E. Verlinde wrote
the paper on conformal field theory that probably had thelsitaggest impact on pure mathematics, proposing
both the algebra and the famous formula named after him. iglenerally, the theoretical physicists Dijkgraaf, H.
Verlinde, and E. Verlinde emerged as central players indawensional quantum field theory and string theory
in the 1990s. Beyond this role, there is no question thatddgkf in particular has been a pivotal figure in the
communication between physicists and mathematiciansingik this area.

The work of Duistermaat has played an important role in distsibhg the current link between symplectic
geometry, quantum theory, analysis, and representategryhfirstly in the seventies with Hormander and with
Guillemin, secondly in the eighties with his student Heckirend thirdly with his work on index theory and the
Dirac operator in the ninetiel3}. (Citations{.. .} refer to the list of Key publications in 2.6 below.)

Dutch algebraic geometers have made important contribsitio the study of moduli spaces; cf. [11, 14].
Looijenga developed an invariant theory for generalizest gystems with applications to moduli spaces [34],
proved the surjectivity of the period map for Kahler K3 sunds, proved the Zucker conjecture, and contributed to
the compactification theory of moduli spaces, as well as ttviedntegration. Current research on the tautological
ring on the moduli spaces1, of curves is largely driven by Faber’s conjectures (see 8B345]), whereas van
der Geer determined the tautological ring of the moduli spdg of abelian varieties and found the formulas
for the cycle classes of the Ekedahl-Oort stratificatiorj.[Further contributions to this analysis were made by
Moonen. Other themes where progress was made by Dutch gesriretiude the Schottky problem (van Geemen,
van der Geer), Torelli theorems (Oort, Steenbrink, Petensyl the study of Shimura varieties (van der Geer,
Oort, Moonen). Cornelissen contributed to the study of Manthfcurves in positive characteristic, in particular to
equivariant deformation theory. Finally, cluster Fellow Dong is widely regarded as one of the world’s leading
algebraic geometers.

The so-called ‘Dutch school of singularity theory,” led bgdijenga, Siersma and Steenbrink, emerged in
the 1980s as a potent force in this field, contributing to tefoxnation theory of weakly normal (non-isolated)
singularities), to discriminant spaces, and to the studshefives of vanishing cycles. For example, Steenbrink’s
results on Calabi—Yau threefolds with isolated hypersgfingularities [38] are well known.

Crainic recently solved some of the most important openlprob in Lie groupoids and Poisson geometry (cf.
{12} and [7]). Landsman, originally a theoretical physicisoyed in 1998 that noncommutative spaces defined by
Lie groupoids arise from the quantization of the underlirggalgebroids. His work on axiomatic quantum theory
has been used by researchers in areas ranging from quardumity go the philosophy of physics [31]. Moerdijk
is best known for his work on topos theory and on groupoid€.988, he solved a conjecture of Haefliger on the
cohomology of the classifying spaces of foliation groupgoi&ecently, his work with Berger on the existence of
Quillen homotopy model structures on categories of opefatisattracted considerable attention. Jointly, Crainic,
Landsman, and Moerdijk have made the intersection betwe@sdh geometry, noncommutative geometry, Lie
groupoids, quantization, and deformation theory a Dut@tisity.

Apart from his renowned work with Duistermaat on localipatin symplectic geometry, Heckman proved
guantum integrability of the Calogero-Moser system in thietext of general root systems, found the eigenfunc-
tions of these systems (with Looijenga), and studied thé¢ sgstem generalizations of the quantum integrable
system describing the boson gas on the real line with deftatiion interaction (with Opdamj7}. Last year,
Opdam found an explicit Plancherel formula for general laréiiecke algebras, and also constructed a high-
est weight category for rational Cherednik algebfas. Stokman made well-known contributions to quantum
integrable systems and (with Koelink) to noncompact quarguoups.

1.4 Proposed research

We now describe our concrete research plans. It should ke tato account that these plans incorporate ideas by
23 people, to be carried out by a sizeable additional grolhaf students and postdocs as well. Hence, rather than
describing specific research problems in great detail, we peeferred to isolate a number of areas and emphasize



their interrelations. For the sake of concreteness, howegeain topics have been marked in italics, for instance
as the subject of PhD theses.

1.4.1 Poisson geometry, quantization, and noncommutatigeometry

As we have seen in the general overview, noncommutative gaggiis closely related to Poisson geometry through
the notion of quantization. One of our ambitions is to relad@commutative geometry to algebraic geometry as
well, in the following fashion. One of the original goals admcommutative geometry was to provide new tools
for the study of singular spaces, such as the K-theory anlitay@homology of an appropriate noncommutative
algebra associated to a quotient space. Connes himse#fssially applied his toolkit to foliated spaces, Penrose
tilings, and certain other examples [6]. However, the agion of noncommutative geometry to some other
important classes of singular spaces, namely those thattteditionally been studied using algebraic geometry, is
still in its infancy. Here we are thinking, for example, obifolds, certain types of moduli spaces, and symplectic
quotients (cf. [32]). Remarkably, it therefore seems thathsspaces may alternatively be studied using either
the tools of commutative algebra (in the setting of Grothecidstyle algebraic geometry), or of noncommutative
algebra (in the context of noncommutative geomeffyie comparison of these methods (in the context of suitable
examples like the ones listed) is bound to lead to new irsight[5]. This would combine the joint expertise of
at least half of the cluster members.

Another pertinent interdisciplinary topic is tfienctoriality of quantizationin the sense recently proposed in
{9}. The most immediate concrete consequence of this funtitpnainciple is an extension of the Guillemin—
Sternberg conjecture in geometric quantization (whichtiearem now for compact Lie groups acting on compact
symplectic manifolds, cf. [19]) to the noncompact case.vii@this, or else limiting the scope of the conjecture
through the discovery of counterexamples, would combia@ipertise of Duistermaat, Heckman, Landsman, Van
den Ban, and others, as it links symplectic and honcommvetggometry with index theory and representation
theory. In the singular case, also stratification techrédu@m algebraic geometry will enter. Furthermore, functo-
riality of quantization needs to be concretely developedugh examples involving Lie groupoids and algebroids.
This includes the establishment of a general index theooginié groupoids, generalizing the ordinary and family
index theorems of Atiyah and Singer, the index theorem foicompact groups of Connes and Moscovici, as well
as the index theorem for foliated spaces of Connes and Sksindanother necessary ingredient would the
K-theory and representation theory of Lie groupqigdich will be taken up from the perspective of a generalized
orbit correspondence (identifying the coadjoint orbitthia dual of a Lie algebra with its symplectic leaves, which
notion immediately generalizes to Lie algebroids).

Parallel to this, we intend to studieformations of Lie groupoids that are Hopf algebrgiddating the subject
to dynamical quantum groups and Yang-Baxter equationsadtf) the precise relationship between the quantum
analogues of semisimple noncompact Lie groups and the ptsoé noncommutative geometry remains to be
clarified; here one might think of relating the Haar weighthe Dixmier trace, and the Duflo—-Moore operators
to the corresponding modular operators. In this effort,dbbined expertise of Van den Ban, Crainic, Koelink,
Opdam, Stokman, and Moerdijk will be relied upon.

Modern deformation theory heavily relies on the conceptrobperad (originally invented in topology in the
1970s by Boardman-\Vogt, May, Stasheff, and others), cf. [2%ddition, operads relate to various other research
topics in this cluster, notably to moduli spaces (cf. [18]) 3®d configuration spaces (in the sense of algebraic
geometry). In the context of mirror symmetry for Calabi—Yaanifolds (cf. Section 1.2.3), the Fukaya category
is a so-calledA . -category, which means that its composition structure isleled on some operad and needs
‘higher compositions of morphisms’ to compensate for a lac&traightforward associativity. Operad structures
also occur in various (topological or conformal) quanturidfiteeories. Apart from developing their unifying role,
we aim to address several important open problems, thgquestion to what extent the topological Boardman-
Vogt resolution can be applied to non-topological operalse leading figures in this research will be Moerdijk.

Another notion that is central to the research topics mesticso far is that of a gerbe. Gerbes were originally
introduced in the 1960s by the Grothendieck school in algieleometry (in particular, by Giraud) in the context
of non-abelian cohomology. In the 1990s, gerbes resurfimogelometric quantization as well as in mirror symme-
try, where they enter in the description of the mirror pariofea Calabi—Yau 3-fold in terms of the moduli space
of Lagrangian submanifolds equipped with gerbes (cf. [24])addition, a gerbe over a manifold enables one to
‘twist’ the K-theory of this manifold. First introduced irligeebraic topology by Donovan and Karoubi in 1970
(and subsequently shown by Rosenberg to be a special cdsealfjebraic K-theory), twisted K-theory made a
striking reappearance in 1998 in string theory [48]. Subset]y, Freed, Hopkins and Teleman observed that the
Verlinde algebra of the Wess—Zumino—Witten model of comialfield theory (or, mathematically, the appropriate



representation category of the underlying loop gréup) coincides with the suitably twisted K-theory 6t

Our plan to understand the representation theory and thee&ry of Lie groupoids by combining techniques
from equivariant algebraic topology and frarti-algebra theory (cf. [44]), is partly motivated by exampdeming
from this development. Indeed, the gerbes occurring ircibwigext can be described as extensions of Lie groupoids,
and the K-theory of such a central extension is closelyedl&n the twisted (by the gerbe) K-theory.

In a more categorical direction, we will attempt to relate tiew approach to quantum probability and second
guantization recently initiated by Guta and Maassen [2Gh&general setting described in this section. Since
their work is based on Joyal's combinatorial theory of stledaspecies of structure, which touches on a number
of the themes discussed so far, this seems a realistic goal.

Interesting problems remain, of course, even at the putagsical level. We will focus on a generalization of
the notion of a Poisson structure, called a Dirac structomigifating in Dirac’s work on constrained systems). It
was recently shown by Bursztyn and Crainic that Dirac stmeg are closely related to the group valued momentum
maps of Alekseev et al, but in this relationship much remtorize understood (such as the precise relationship to
Manin pairs and quasi-Poisson Lie groups). In addition aitiag link between this generalized Poisson geometry
and mirror symmetryvas recently uncovered by Hitchin, who showed that comp&siens of Dirac structures
naturally appear in the theory of mirror symmetry and Cat&bu manifolds. This poses, of course, an attractive
area of research in our cluster (Crainic, Dijkgraaf, Van@eer, Looijenga, Stienstra).

1.4.2 Integrable systems, Frobenius manifolds, and the gewtric Langlands program

Integrable systems and representation theory (or Lie yeoe closely related to each other, as well as to algebraic
geometry and quantization. Thus the area is ideally suitedhfe proposed cluster. The main researchers will
be Cushman, Duistermaat, Heckman, Helminck, Koelink, VarLdur, Opdam, and Stokman, relying on the
knowledge of mirror symmetry, moduli spaces, conformabfiggleory, and quantization of practically all other
cluster members.

As we have seen, some of the pertinent relationships aréi@bdly the notion of a Frobenius manifold, others
by the geometric Langlands program. The starting pointefometric Langlands correspondence is the moduli
spaceBung of principal G-bundles over a smooth projective cue In the context of the Langlands program,
one associates a grolig’ (the Langlands dual group) to a given complex semisimplelaiic groug. We intend
to study the recent conjecture of Hausel and Thaddeus [22{lib moduli spacd3uns andBun:  (with certain
additional data) are in an appropriate sense relative mpractners (in the sense of Strominger—Yau—Zaslow, cf.
[26]). This is related to the conjectured existence of a garteourier—Mukai transform underlying the geometric
Langlands duality (see [16]). We plan ilovestigate whether there is a geometric Langlands coordpnce for
the moduli spacBunc s of G-bundles with parabolic structure at a finite liStof marked points of’, and local
systems with ramifications at the elements§ ¢this has been done in positive characteristic by Drinfetd¥L(2),
and by Heinloth forGL(3)). This raises further questions about the “categorificétaf the full lIwahori Hecke
algebra, and is also related to the work of Varchenko and dave on the Bethe Ansatz, a subject well familiar
to the researchers listed above.

The link between the geometric Langlands program and Hitslmtegrable systems (cf. [16, 25]) beautifully
fits in the cluster theme, and will be examined in detail. Thanpof departure is a remarkable result of Hitchin,
which says that the symplectic spaEeBung is a completely integrable system (assuming the cGhbas genus
g > 2;for g = 2andG = SL(2) the Hitchin system is related to the classical Neumann systerelationship
we plan to investigate for other low genus and small ranksjasa a monumental unpublished paper, Beilinson
and Drinfeld [3] have recently proved a special case of thengric Langlands correspondence through the
guantization of the Hitchin system, involving infinite-démsional Kac—Moody algebras, as well as}tHiealgebras
first encountered in conformal field theory.

This breakthrough poses all sorts of questions, and sugjgasbus generalizations. For example relation-
ship between Beilinson and Drinfeld’s notion of quantizatand deformation or geometric quantization ought to
be establishedAs another example, deformation quantization suggeatotie should be able tiagonalize the
pertinentx-algebra by means of a suitable spectral decompositioan analytic setting, the semiclassical (WKB)
approximation could be applied (here as well as in othegiatiele models). The geometric quantization of the
Hitchin system, on the other hand, has at least two inteigsspects. Firstly, the appropriate Guillemin—-Sternberg
conjecture should be proved; the classical reduction phaeeleads to the well-known integrable systems named
after Schlesinger. Secondly, the situation is analogotisgd@uantization of the Atiyah—Bott moduli space of flat
connections over a curve [1], and leads to similar links witinformal field theory (as established in detail by
Laszlo). A number of important open problems remain herestmotablythe unitarity of the representation of



the mapping class group 6f, defined by either the geometric quantization procedurkeunderlying conformal
field theory. This is closely related to the construction mi@propriate braided tensor category describing, from
the conformal field theory perspective, the charge seatocttre of the model [21], or, from the loop group point
of view, the pertinent representation category.

Quantization also provides a link with quantum (elliptidl@yero—Moser—Sutherland integrable models and
the special functions related to these; in particular, tygehgeometric function for root systems belongs to this
family. There are many research issues related to theggratie systems and their root system generalizations,
see for instance [40]. Similarly, cyclotomic Hecke algebaaise, with many open questions remaining{&f.

The role of W-algebras in the construction of Beilinson and Drinfelddgavia the classical Drinfeld-Sokolov
Hamiltonian reduction procedure, to a direct link betwestthin systems and integrable hierarchies of partial
differential equations. For example, the casés = SL,, give rise to the so-called generalized KdV hierar-
chy. The quantization procedure of Beilinson and Drinfeld theggests a quantization of this hierarcfand its
generalizations), which we plan to study in detail, agagoah connection with the issue whether quantization
commutes with reduction.

Integrable hierarchies will also be studied in connectidtth Wrobenius manifolds, where we wish to relate
four existing developments [36]: firstly, Barannikov’s ebruction of Frobenius manifolds inspired by mirror
symmetry, secondly, their construction from the KP hiengy¢hirdly, their origin in Saito’s theory of isomon-
odromic transformations, and finally, the constructionaifriost Frobenius manifolds’ from generalized WDVV
equations. The first three of these topics involve a geometnstruction using admissible planes within an
infinite-dimensional Grassmannian, and we propose to vimsd constructions on an equal footing. The third
approach turns out to be closely related to the geometriglaas program.

In this context, our main research questions are as follawkich of the various Frobenius manifolds con-
structed from integrable hierarchies have a similar dpsorni like the ones of Barannikov, i.e., as a family of
planes in the Grassmannian satisfying some additionakie&t? To what extent can geometrical Darboux trans-
formations be found that relate Frobenius manifolds to edlolr? Another research issue involtle solutions
of the generalized WDVV equations in the coordinate freingetdf the perturbative Seiberg-Witten prepotentials
Finally, we intend to use deformations of connections indbestruction of Frobenius manifolds.

To close this section, we announce a quite novel plan toerdet geometric Langlands program to noncom-
mutative geometry. This will be done through the so-calleiBaum—Connes conjecture (1982) in the latter field
(cf. [6], Ch. II). This conjecture describes the K-theoryaofreduced) groug'*-algebrak(C(G)) in terms of
a 'topological’ K-theory groud{toop(G). (The underlying toolkit is heavily used in the study of thie¢toriality
principle for quantization described in the precedingisectand, indeed, the conjecture itself may be formulated
in terms of deformation quantization [6{8}.) The Baum—Connes conjecture was proved for a large class of
groups in 1999 by V. Lafforgue. This class includes all reathecgroups over a p-adic field, which implies that
all discrete series representations of such groups carabiza@ as the index of an equivariant Fredholm operator
defined on the Bruhat-Tits building ¢f.

Building on the expertise of Van den Ban, Heckman, Landsi®g@aam, and Stokman, our plantisexamine
the relation ofKSOP(G) to the structure of the Langlands dual group teéreductive and p-adicA related problem
is the study of so-called index functions, partly in coni@tivith important open questions about the structure
of the category of tempered representations. For exangpletrue that discrete series representation& afre
projective (and thus injective by duality) in the categofyempered representations? Transposing these matters
to the representation theory of the affine Hecke algebralE@]s to interesting formulas for index functions and
to the following conjecture: the K-theory of the reduggéti-algebra completion of an affine Hecke algelifas
independent of the deformable parameters defihing

1.4.3 Moduli, mirrors, and topological strings

As mentioned in the general overview, algebraic geometsydiaatly benefited from the input of physics, and
our research themes reflect this. Our guiding idea is thatdmmections revealed by this input are merely the
tip of an iceberg. Cluster members involved in what followsd be Cornelissen, Dijkgraaf, Van der Geer, Van
der Kallen, Looijenga, Moonen, Steenbrink, and Stienstrawing on the expertise of other cluster members in
relevant areas.

As a case in point, mirror symmetry will be an important theameur cluster. Although this subject initially
dealt with complex manifolds, a number of ingredients ar# defined in a purely algebraic setting, like counting
of curves and variation of filtrations on the Rham cohomoldyys therefore tempting to ask to what extent the
notion of mirror symmetry is meaningful in a purely algeloraietting. A related question is, of course, what



consequences mirror symmetry might have in positive claratic. For example, is there such a notion for
varieties defined over finite fields and if so, what does it ifplThese questions are certainly difficult, but on
the other hand, since explicit computations are possible trey leave ample room for experimentation. For
example, moduli of Calabi-Yau varieties, both in charasterzero and in positive characteristic, lend themselves
for this purpose. In particular, we would like to explore mgabserved phenomena in positive characteristic, like
non-liftability. For elliptic curves and K3-surfaces tees a beautiful theory of moduli in positive characteristic
due to Serre, Tate and Dwork, which can easily be extendedkab&-Yau 3-folds in positive characteristic. It
then shows remarkable analogies with what physicists haeovkered about the space of complex moduli of
Calabi-Yau 3-folds near the large complex structure lisuich as p-adic integrality properties of the mirror map.
In any case, any insight into these matters might contriblge to a better understanding of mirror symmetry in
characteristic zero, and might also have profound apjicatto arithmetic geometry, for example for questions
on rational points on varieties defined over number fields.

As a second focus for study we propose the cohomology (an#@ings) of moduli spaces of stable maps.
The cohomology of moduli spaces of abelian varieties, argbipty also those of curves, can be described in
terms of automorphic forms. For example, in recent work dfdfand Van der Geer moduli of curves over finite
fields were used to obtain information on vector valued Sieg®ular forms of genus 2. A geometric study of
the moduli spaces both in characteristic zero as well as sitipe characteristic could give concrete information
on automorphic forms in higher genu&n interesting question is whether the cohomologgfgffor g > 4 can
be described in terms of Siegel modular forms, or whethegraglitomorphic forms are neede@oncretely, we
propose to work on the tautological rings of moduli of stafleps; on stratifications on moduli spaces of stable
maps, both in characteristic zero and positive charatiteand their implications for the cohomology (in positive
characteristic these stratifications are connected withlesyphenomena in the de Rham cohomology, a largely
unexplored territory). Furthermore, we want to study thiearnology of local systems on these moduli spaces and
their relations with Siegel modular forms. For exampleenticing question is what the zeta functioméf over
a finite field should be.

Thirdly, a most interesting recent development has beemtireased interest in non-archimedean aspects of
algebraic/arithmetical geometry in connection with namenutative geometry, involving Connes, Manin, Mar-
colli, and others. This includes, for example, a reinteigdien of the correspondence between Mumford curves
and the graph of their uniformizing group in the Bruhat-Tit® as a holography correspondence in the sense of 't
Hooft and Siisskind, the association of spectral triplededimied in noncommutative geometry to such Mumford
curves, and the treatment of (enlarged) boundaries oficissodular curves as non-commutative space in the
sense of Connes. Our cluster members seem well preparedetotieis game, as all expertise is at hand. Con-
cretely, we would like tantroduce and understand better orbifold versions of theegmphy correspondence for
Mumford ‘orbifold curves, and explore their physical méagn We wish to generalize holography and spectral
aspects of the theory to rigid analytic uniformization tgher dimensions, where the theory of buildings will start
to play an increasingly important role, and to the case oitipescharacteristic. Building on work of Faber, Van
der Geer, and Zagier, we are interestedtirdying zeta functions of curves over finite fields usinguiaodorms

Finally, led by Dijkgraaf, we will study topological strisg of which a comprehensive theory now seems
close. For a large class of Calabi—Yau manifolds (basidatjuding all toric cases), exact solutions of the B-
model have been found in the form of matrix models. This givé&ect relation with integrable hierarchies such
as the KP and Toda hierarchy. The corresponding A-modeldegrhysically interpreted as quantum crystals,
and mathematically there are promising relations with seaad eight-dimensional manifolds with exceptional
holonomy groupss, and Spin(7). Particularly interesting is thudy of D-branes in the A-model and B-model,
leading to special Lagrangian and holomorphic calibratsmespectivelyMoreover, Kontsevich’ derived category
interpretation of mirror symmetry yields a powerful refariation of certain aspects of the geometric Langlands
program in terms of quantum field theory, relatighundles and-modules for the Langlands dual moduli space.
This link is, of course, an ideal cluster theme.

The study of the mathematics of topological strings alsoitmpertant implications for physics. It has been
shown that these models compute the vacuum structure afusfour-dimensional supersymmetric gauge theo-
ries. This gives a promising framework to settle longstagdipen problems in the dynamics of gauge theories,
perhaps even quark confinement. Recently, topologicalgstrhave been used to calculate the entropy of black
holes in supergravity and string theory. This has profommglications for our understanding of quantum gravity.
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2 Quality of the research team

2.1 General

The team consists of ten full professors and eleven othearekers based at one of the three cluster locations,
plus two associated researchers from other institutiohgy Bre supplemented by a number of PhD students and
Postdocs. This group of researchers has been formed withstitrare: we wanted our senior participants not only
to be prominent researchers and scientific leaders, butssenadighed their ability and inclination to interact and
collaborate. All of the 23 researchers involved have calfabed with others in the group in the past, and their
present research falls naturally within the scope of thetelu They are all strongly committed to this enterprise,
and keen to develop new lines of interaction.

As indications of excellence and viablity, we mention thiahe ten professors, three are members of the Royal
Academy (KNAW), one has recently been appointed the firselRAgademy Professor in mathematics, three have
received prestigeous PIONIER grants from NWO, and one isipient of the Spinoza Prize (the highest scientific
distinction in this country). The last four are all relatiggoung, in their fourties, so continuity is guaranteed. In
addition, there is a wealth of talent among the younger @ir thirties) tenured Faculty. In particular, Cornelissen
Crainic, Moonen and Stokman already have an excellentriatemal reputation, as confirmed by their KNAW-
Fellowships and VIDI-grants.

The team will collaborate actively with a group of Fellowstbé& cluster, and will work in close contact with
its Board of Advisors (see also Section 3 about the clustecttre).

2.2 Composition of the research team
Senior Researchers:

Utrecht:

Prof Dr J.J. Duistermaat (geometric analysis)
Prof Dr E.J.N. Looijenga (geometry)

Prof Dr I. Moerdijk (topology)

Prof Dr D. Siersma (singularity theory)

Amsterdam:

Prof Dr R.H. Dijkgraaf (mathematical physics)
Prof Dr G. van der Geer (algebraic geometry)
Prof Dr E.M. Opdam (representation theory)

Nijmegen:
Prof Dr G.J Heckman (Lie Theory)

Prof Dr N.P. Landsman (mathematical physics)
Prof Dr J.H.M. Steenbrink (algebraic geometry)

Other Tenured Faculty:
Utrecht:

Dr E. van den Ban (UHD, Lie groups)

Dr G. Cornelissen (UD, algebraic geometry)

Dr M. Crainic (UD, KNAW-Fellow, Poisson and nhoncommutaty@&ometry)
Dr R. Cushman (UHD, symplectic geometry, integrable sysjem

Dr J. van de Leur (UD, Lie groups)

Dr W. van der Kallen (UHD, algebraic groups)

Dr J. Stienstra (UD, algebraic geometry)
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Amsterdam:

Dr B. Moonen (UD, algebraic geometry)
Dr J. Stokman (UD, KNAW-Fellow, quantum groups)

Nijmegen:

Dr F. Clauwens (UHD, algebraic topology)
Dr J. Maassen (UHD, mathematical physics)

Associated Researchers:

Dr G.F. Helminck (UD, Lie groups)
Dr H.T. Koelink (UD, Quantum Groups)

These are two additional members of the research team wihladrlired positions at the Technical Universities
of Twente and Delft, respectively.

Nontenured members of the research team:

There are at present 5 postdocs and 10 PhD students at Aarste2doostdocs and 5 PhD students at Nijmegen,
and 6 postdocs and 6 PhD students at Utrecht whose reseblisakithin the themes of the cluster.

2.3 Advisors and Fellows

Board of Advisors:

Prof Dr G 't Hooft (Theoretical physics, Utrecht)

Prof Dr V. Kac (MIT, USA)

Prof Dr M. Kontsevich (IHES, France)

Prof Dr A.N. Schellekens (Theoretical physics, Nijmegerd &lIKHEF)
Prof Dr E. Verlinde (Theoretical physics, Amsterdam)

Prof Dr A. Weinstein (UC Berkeley, USA)

Prof Dr E. Witten (Princeton, USA)

Fellows:

Prof Dr C.F. Faber (KTH Stockholm, Sweden, algebraic geoyhet
Prof Dr A.J. de Jong (MIT, USA, algebraic geometry)

Prof Dr L.N.M. van Geemen (Milan, Italy, algebraic geométry

Prof Dr R. Sjamaar (Cornell University, USA, symplectic gesiry)

Prof Dr D. van Straten (University of Mainz, Germany, siragity theory)

2.4 Curricula Vitae of Senior Researchers
2.4.1 Robbert Dijkgraaf

Robbert Dijkgraaf (1960) holds the chair of Mathematicay$tbs at the University of Amsterdam since 1992
(and is since 1998 Faculty Professor in the Faculty of Seigerde studied theoretical physics and mathematics in
Utrecht, where he obtained his PhD cum laude under supemadiGerard 't Hooft in 1989. Subsequently he held
a postdoctoral position at Princeton University and wasg{term member at the Institute for Advanced Study.
He has been a visiting professor in Berkeley, MIT, IAS, amotiters. Dijkgraaf research group works in string
theory, quantum gravity, and the interface of mathematickarticle physics. He manages the FOM programs
“Mathematical Physics” and “String Theory and Quantum @Gyav

Dijkgraaf gave an invited lecture at the ICM in Berlin (1998)d was a plenary lecturer at the International
Congress of Mathematical Physics (London, 2000) and thefg&am Congress of Mathematics (Barcelona, 2000).
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Dijkgraaf is a member of the Royal Netherlands Academy ok/Aad Sciences (KNAW) and the Koninklijke
Hollandse Maatschappij van Wetenschappen. He was thaéeatgd the 2001 Physica Prize of the Dutch Physical
Society. In 2003 he was awarded the Spinoza Prize, the higbiesitific award in the Netherlands.

Dijkgraaf is editor of Nuclear Physics B, Journal of Diffatel Geometry, Journal of Geometry and Physics,
Advances in Theoretical and Mathematical Physics, Intewnal Mathematical Research Notices, Journal of
Mathematical Physics, Reviews of Mathematical Physicseér Mathematical Library, Academische Boeken-
gids, and was an editor of Communications in Mathematicgklel from 1992 to 2002. Dijkgraaf was a director
of the spring school at the ICTP Trieste (1992-1996) and bagesd on various international scientific commit-
tees among other for the Isaac Newton Institute for MathemlaSciences in Cambridge, Max-Planck-Institut
fur Mathematik in Bonn, Erwin Schroedinger Institut furahematische Physik in Vienna, and the International
Review of UK Mathematics.

2.4.2 Hans Duistermaat

J.J. (Hans) Duistermaat (1942) studied mathematics atchitténiversity from 1959-65 and obtained his PhD
degree there in 1968. After a postdoctoral year 1969-70 imdL{Sweden), where he learned Fourier integral
operators from Hormander, he went in 1971-74 to Nijmegdren& he became full professor in 1972. In 1974 he
returned to Utrecht on the chair of professor Freudenthagéreshe has stayed until now.

He became member of the KNAW (Royal Dutch Academy of Arts angri®es) in 1982, and Academy
Professor in 2004, which means that he is supposed to dorchse@hout being distracted by administrative
duties until his retirement.

He has been ‘promotor’ of 17 PhD students, of which 10 as thia thasis advior. Several of these were NWO
projects, and one was research paid by Shell.

Duistermaat'’s current interests include classical meicsasymplectic differential geometry, high-frequency
asymptotics of solutions of linear partial differentialuagjions, the differential geometric theory of arbitrarily
nonlinear partial differential equations, and stochadiiicperturbed dynamical systems. Apart from 43 articles
in refereed international journals, he has written 7 booksyhich probably the introduction to Fourier integral
operators is the most well known. His best known researcindbgbly his article with Guillemin on spectra of
elliptic operators and periodic bicharacteristics, htichr with Heckman on the Duistermaat-Heckman formula,
and his article with Grinbaum on the bispectral problem.

At the moment his main editing task is being co-ordinatingozdf Indagationes Mathematicae, the mathe-
matics journal of the KNAW.

2.4.3 Gerard van der Geer

Gerard van der Geer (1950) studied mathematics at the Witiveaf Leiden. He received his PhD from that
university in 1977. Subsequently he worked at the Sondstfamgsbereich at Bonn University and then got a
position at the University of Amsterdam, where he has be#pfafessor in Algebra since 1987. He spent long
visits at research institutes like MSRI at Berkeley and thexNPlanck-Institut at Bonn, and foreign universities
like Harvard, the University of Tokyo and Kyoto University.

Van der Geer has been managing editor of Compositio Matheanfir more than ten years and is editor
of Geometriae Dedicata and of the EMS Monograph series. Heeimber of the scientific committees of the
Max-Planck-Institut fuer Mathematik in Bonn and the Reshadnstitute in Oberwolfach. He has successfully
supervised seven PhD theses (including those of C. Fab&s drarkas) and is currently supervising another three.
He was one of the initiators of the big NWO projects “Moduliich“Algebraic curves and Riemann surfaces”. He
started the well-known series of Texel conferences.

Van der Geer has worked on Hilbert modular surfaces, on whékrote the well-known volume “Hilbert
Modular Surfaces” in the Ergebnisse series of Springer,henSchottky problem, where he contributed with
van Geemen a conjectural solution, on moduli of curves amdiabvarieties, and on curves over finite fields.
His current research deals with cohomology of local systemsioduli spaces and with moduli of Calabi-Yau
varieties. He has published over 50 research papers ireegfgournals.

2.4.4 Gert Heckman

Gert Heckman (1953) studied mathematics at the Universitemen, where he obtained his PhD in 1980. After
a period of 2 years as postdoc at MIT, he returned to Leiderssistant professor until 1988, with a half year
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interruption as visiting associate professor at UniverBaris 7. From 1989 until now he has been at the University
of Nijmegen, from 1999 on as professor of pure mathematieshas trained 3 PhD students.

Heckman’ s research interests include symplectic geonagtlygeometric quantization, algebraic geometric
analysis (hypergeometric functions, differential Galthisory), and representation theory of reductive groups.
About his joint work with Eric Opdam he was invited to give i@es at Seminair Bourbaki (1997) in Paris, and
Current Developments in Mathematics (1996) at Harvard.

2.4.5 Klaas Landsman

N.P. (Klaas) Landsman (1963) studied theoretical physicsraathematics at the University of Amsterdam, and
got his PhD degree cum laude from the same institution in 1988 worked at the University of Cambridge
from 1989-1997, initially as a Research Assistant in thiécabphysics and subsequently as a 5-year Advanced
Research Fellow in mathematics. He interrupted his stayattidge for a year in 1993-94 to work in Hamburg.
He returned to Amsterdam in 1997 as a KNAW Fellow, and was g full professor of mathematical physics
in 2002. From September 2004 he will be a professor of araétshe University of Nijmegen.

His research Awards include an SERC Advanced FellowshipJexander von Humboldt Fellowship a KNAW
Fellowship, and an NWO Pioneer Grant of 1 ME. Over the lastywars he held four additional project grants
from NWO and/or FOM. He has been a Board Member of the Dutcloéiation for Mathematical Physics since
2000, and has been running a Master's Degree Program in Matieal Physics at Amsterdam since 2001. He
supervised four PhD students at Cambridge and Amsterdadvisaurrently training three more.

Landsman’s active research interests include noncomiveiggometry, geometric and deformation quantiza-
tion, index theory, Lie groupoids and algebroids, partciylin connection with each other. He is the author of
the acclaimed monograph Mathematical Topics Between iC&Esmnd Quantum Mechanics (Springer, New York,
1998), and is the author of more than 50 refereed papers. tihelédl a series of conferences on the quantization
of singular Poisson spaces at Oberwolfach and elsewherns.aezditor of the International Journal of Geometric
Methods in Physics, and an Honorary Member of the Britishi&@gdor the Philosophy of Science.

2.4.6 Eduard Looijenga

Eduard Looijenga (1948) obtained his Masters’s degree itnemaatics at the University of Amsterdam in 1971.
From 1971 till 1973 he stayed as a junior fellow at the Insties Haute&tudes Scientifiques and in 1974 he took
his doctoral degree at the University of Amsterdam. Aftddhmy a postdoc position at the University of Liverpool
(1974-75), he was appointed Professor at the Universityijpiégien (1975). From 1987 till 1990 he was at the
University of Amsterdam and in 1991 he took his current posiat the University of Utrecht. He held visiting
positions at Yale (1980), U. of North Carolina at Chapel i®85), Columbia U. (1987), U. of Michigan at Ann
Arbor (1990), U. of Utah (1991).

His research started in singularity theory, but migratedfarelli problems (often related to rational surfaces
and K3 surfaces) to locally symmetric varieties, then to pirag class groups and moduli spaces of curves, while
his recent work is concerned with automorphic forms witrega@long Heegner divisors and (jointly with Heckman
and Couwenberg) generalizations of Lauricella functions.

Looijenga was an invited speaker at the ICM in 1978 and at @ ih 1992. He was on the selection panel for
Algebraic Geometry of the ICM in 1994, the Prize CommitteéhefECM in 2000 and the Scientific Committee of
the ECM in 2004. Since 1995 he is an ordinary member of the Rdgtherlands Academy of Arts and Sciences
(KNAW). He is currently editor of Comp. Math., Michigan Math. and the J. of the Eur. Math. Soc..

2.4.7 leke Moerdijk

Izak (Ieke) Moerdijk (1958) studied mathematics, phildsppnd general linguistics at the University of Amster-
dam. He received his PhD in Mathematics from the same itistitin 1985, with the distinction Cum Laude.
Subsequently he worked at the University of Chicago andeathitiversity of Cambridge, before joining the Math-
ematics Department of the University of Utrecht in 1988, wehlee has been a Professor of Topology since 1996.
Moerdijk was awarded a Huygens Fellowship from NWO in 1988 arPIONIER grant, again from NWO, in
1995. Moerdijk held visiting positions in Cambridge (St d&hCollege), Montreal (McGill University), Sydney
(University) and Aarhus, among others. He was an invitedlspeat the ECM 2000.

At Utrecht, Moerdijk has successfully supervised nine Phses, and is supervising another three at present.
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Moerdijk’s current research interests include algebrait differential topology (operads, Lie groupoids, ...),
and applications of topological structures in matheméligsic. He is the coauthor of several well-known books,
including “Sheaves in Logic and Geometry” with S. Mac Lanpr{Bger-Verlag, 1992, 1994), and “Introduction
to Foliations and Lie Groupoids” with J. Mrcun (Cambridge, @B03). He has published over 60 research papers
in refereed journals. Together with C. Berger, he recenthyioded a solution to the problem of the existence of
homotopy model structures for operads and their algebras.

Moerdijk is editor of The Annals of Pure and Applied Logic,Tdfe Journal of Pure and Applied Algebra, and
of Theory and Applications of Categories, and is a membér@ftdvisory Board of North-Holland Mathematical
Library.

2.4.8 Eric Opdam

Eric M. Opdam (1960) studied mathematics at the Univerditysdiden. He received his PhD in Mathematics in
1988, also at the University of Leiden. He worked at the Ursitg of Utrecht and at the Massachusetts Institute of
Technology before accepting a permanent position at thedusity of Leiden in 1989. He stayed in Leiden until
1999 when he was appointed as professor in Mathematics blrtiversity of Amsterdam.

Opdam has held positions as a visiting professor at sevetakmns in Ann Arbor (MI, USA), Paris, Marseille
and Kyoto. He was invited speaker at the European mathemhatiogress in 2000. In 2000 he was awarded a
prestigious Pionier grant from NWO. He has successfullyesviped 2 PhD students, and he is currently training
three more. In 2001 he was honorary promotor when lan Maddaves granted an honorary doctorate degree at
the University of Amsterdam.

Opdam’s research interests include representation thielergroups and algebraic groups, Hecke algebras, in-
tegrable systems, special functions, and operator algebrdis work he has paid special attention to applications
of techniques across traditional borders. This has led tiweacontacts with researchers in various disciplines,
ranging from algebraic combinatorics to Langlands phibdgo

2.4.9 Dirk Siersma

Dirk Siersma (1943) studied mathematics and meteorolodgheatUniversity of Amsterdam. After a teaching
position at a secondary school he returned to this uniyeraihere he received a PhD in 1974. His supervisor was
Nicolaas H. Kuiper. He became associate professor in Utied®76 and full professor in 1980.

Siersma’s active research interest is singularity thendyapplications. His principal work includes classifica-
tion of singularities, geometry and topology of non-isethsingularities, behaviour of singularities at infinitydan
more recently the study of the conflict set of the distancetion. He was one of the founding members of the
Dutch Singularity School. He has approximately 30 referesdarch papers and supervised 11 PhD students.

Siersma has many East-European contacts: he has beennadordif three consecutive INTAS programs
with the former Soviet union and two NWO-programs with Rasd¥loreover he has been main organizor of the
Singularity Semester at the Newton Institute in Cambrideg! (2000) and (co)organizor of many international
scientific meetings in his field, e.g. in the framework of th&@&ean Singularity Network. Recently he was
invited guest at IHES (2 months), Banach Center (1 month}a@d)niversity of Lille (1 month).

Siersma was the first scientific director of the Mathemafmdearch Institute (MRI) in The Netherlands and
the initiator of its scheme of international Master Classes

2.4.10 Joseph Steenbrink

Joseph Steenbrink (1947) studied mathematics at the Witivef Nijmegen, where he got his degree in 1969. He
received his PhD at the University of Amsterdam in 1974, wHeans Oort was his supervisor. Subsequently he
spent a year at the IHES at Bures sur Yvette, invited by P@etigne. He was supported by an NWO stipend. He
became assistant professor at the University of Amsterdahiudl professor at Leiden University in 1978. Since
1988 he has the chair in geometry at the University of Nijnmedite supervised nine PhD students, several of whom
(Van Straten, Stevens, de Jong) now are full professor. His nesearch interest is algebraic geometry, where he
has developed tools in mixed Hodge theory and applied tleesmgularity theory. He was one of the leaders of
the successful NWO-projects in Singularity Theory and irietic Algebraic Geometry. He was invited speaker
at many international events, notably at the ICM 1990 in Kyodtle has been Managing Editor of Compositio
Mathematica from 1982 till 1993, and is a member of the Adwi®nards of North-Holland Mathematical Library
and Epsilon Uitgaven. He was dean of the Faculty of Mathersatnd Informatics during six years, and scientific
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director of the Mathematical Research Institute. His aurresearch interests are: geometry of moduli spaces and
of certain special threefolds. He published 50 researcknsdp refereed journals.

2.5 Expertise in project management

Our ability to manage a collaboration of the type foresear tend, indeed, to make it an overall success, may be
illustrated by previous large projects the applicants Hestén the research area in question. These include:

e Singularities(Looijenga, Siersma and Steenbrink; 1981-1985)

e Riemann surfaces and algebraic curn{Bsjkgraaf, Faber, Van der Geer, Looijenga and Oort; 19938&)
e Moduli (Van der Geer, Oort, Peters; 1994-1999)

e Lie theory and special functiorfsleckman, Helminck, Koornwinder, Opdam; 1994-1999)

e The geometry of logiMoerdijk; 1995-2001)

e Operads in geometry and physi¢ooijenga and Moerdijk; 1998-1999)

e Mathematical physic&roer, Dijkgraaf, Landsman and Van Enter; 1999-2006)

e Symmetry and symmetry breaking in mathematics and mathoadnatiysicOpdam; 2000—2005)

e Quantization, noncommutative geometry and symnfetgdsman; 2002—2007)

e String theory and quantum gravi(ijkgraaf; 2002—2009)

as well as dozens of smaller ones. In addition, over the lasadke one-year national seminars on topics such
as automorphic forms, geometry and quantization, Hodgeryhéie groupoids, moduli [15], modular curves,
motivic integration, mathematical structures in field thhgemoncommutative geometry, and tensor categories, as
well as the yearly Lie group conference at Enschede (Hekjinave paved the way for the proposed cluster.

2.6 Key Publications

Amsterdam:
{1} R. Dijkgraaf and C. Vafa, Matrix Models, Topological Strsygand Supersymmetric Gauge Theories, Nucl.
Phys. B644, 3-20 (2002).

{2} G.vander Geer and T. Katsura, On a stratification of the mod#3 surfaces, J. Eur. Math. Soc. 2, 259-290
(2000).

{3} N. Guay, V. Ginzburg, E.M. Opdam, R. Rouquier, On the catgg@dfor rational Cherednik algebras, Invent.
Math. 154, 617-651 (2003).

{4} B. Moonen, Serre-Tate theory for moduli spaces of PEL typ®./Sci. Ec. Norm. Sup. 37, 223-269 (2004).

{5} J.V. Stokman, Difference Fourier transforms for nonredum®t systems, Sel. Math., New. ser. 9, 409-494
(2003).
Nijmegen:

{6} G. Heckman and E. Looijenga, The Moduli Space of Rationaptd! Surfaces, Adv. Studies in Pure Math.
36, 185-248 (2002).

{7} G.J. Heckman and E.M. Opdam, Yang’s system of particles astkélalgebras, Ann. Math. 145, 139-173
(1997).

{8} N.P. Landsman, Deformation quantization and the Baum-€smonjecture, Commun. Math. Phys. 237,
87-103 (2003).

{9} N.P. Landsman, Functorial quantization and the Guiller8iernberg conjecture, arXiv:math-ph/0307059, 15
p (2003).
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{10} C.A.M. Peters and J.H.M. Steenbrink, Degeneration of they.spectral sequence for certain geometric
guotients, Moscow Math. J. 3 (2003).

Utrecht:

{11} C. Berger and |. Moerdijk, Axiomatic homotopy theory of opgs, Comm. Math. Helv. 78, 805-831 (2003).
{12} M. Crainic and R. Fernandez, Integrability of Lie brackétsn. of Math. (2) 157, 575-620 (2003).

{13} J.J. Duistermaat, The Heat Kernel Lefschetz Fixed Pointiata for the Spire Dirac Operator (Birkhauser,
Boston, 1996).

{14} E. Looijenga, Compactifications defined by arrangementsDuke Math. J. 118, 151-187 (2003) and Duke
Math. J. 119, 527-588 (2003).

{15} D. Siersma and M. Tibar, Deformations of polynomials, baamydsingularities and monodromy, Moscow
Math. J. 3, 661-679 (2003).
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3 Cluster structure

3.1 Location

The cluster will have one main location (the ‘hub’) at the Wsity of Utrecht, and two other nodes, at the
Universities of Amsterdam and Nijmegen.

3.2 Management and organisation
3.2.1 Leadership

The cluster will be directed by an Executive Committee (E®@)sisting of three members (one from each location),
together with a Managing Director (MD). The MD is not formadl member of the EC. The Managing Director:

1. plans and calls the meetings of the EC and chairs thesénggeetThe EC takes decisions about issues
brought up by one of its members or by the MD. The MD does nog¢ lvating right in this context.

2. maintains the contacts with NWO, and is the first repregiet of the cluster where it concerns external
contacts. He may replace himself on any particular occasjammember of the EC.

3. writes a yearly report (assisted by the EC), which inciualénancial report as well as a budget plan for the
coming year. The report will be made available to NWO and éoBbard of Advisors.

4. controls the budget on a daily basis, and is responsiblésfbeing spent according to the plan.

5. calls a yearly meeting of the EC with all 23 cluster papigeits, at which this report and plans for the coming
year are presented. At this meeting, the MD asks for agreewitnpossible deviations from earlier plans
proposed by the EC.

3.2.2 Office

The Cluster will have an administrative office, staffed bya@iministrative assistant at Utrecht.

3.2.3 Financial organisation

The funds will be spent along two distinct lines: the sakf@ long term appointments (postdocs, PhD students,
etc.) will be payed by NWO directly to one of the three cluststitutions. The budget for central activities will
be managed at the admistrative office, under the respasitifithe MD. (For more details, see Section 4 below.)

3.3 Scientific Activities of the Cluster
3.3.1 Teaching

The cluster will organize a one-year Master Class on a ydm$ys. Moreover, its members will participate in
joint mathematics-physics programs, such as the Mastgramts in Mathematical Physics at Amsterdam and
Nijmegen, as well as the Bachelor TWIN program at Utrecht.riore details, see Section 9 below.

3.3.2 Weekly Research Seminars

Within the cluster several weekly or biweekly seminars Wélorganized, where advanced literature on and recent
developments in one of the subjects within the scope of @t will be presented. The themes of these Research
Seminars will to a large extent agree with those of the MaSlass (see Section 9) of the preceding year, so as to
make these seminars accessible to young researchersuglititioese seminars are expected to attract a significant
number of participants to the cluster, they are not necidgsdatended by all, and several subgroups may meet

simultaneously in different seminars. Distinct weekly ggsmns may also be organized in alternating weeks.
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3.3.3 Monthly Cluster Colloquia (MCC)

Once a month the cluster will organize a day on which sevenaley lectures of a more general kind than the
research seminars will be presented. The aim of these étitmito bring all cluster members together, and present
some of the new developments in the areas in which the vasiglogroups are working. Many of the lectures by
visitors from abroad will take place in the context of the MCie lectures at the MCC are more independent
from each other than those at the research seminars. Therateioquium will contribute to the coherence of the
cluster as a whole and to the interaction between the vasobdisciplines. (Meetings discussing organisational
aspects of the cluster will take place on the same day as thé.Mhe MCC is also a natural occasion to invite
one of our Advisors to deliver a lecture. The MCC will be folled by a reception, as well as, in case of a guest
speaker, a dinner.

3.3.4 International Workshops and Conferences

See Section 9.

With this set-up, smaller research groups within the clusti# meet on a weekly basis, while the cluster as a
whole will meet at least once a month. In this way, the clustembers will not only become familiar with the
latest results in their field of research, but the seminahsalgio facilitate and stimulate existing and new joint
research between participants of the cluster. Many of thetet members have proved in the past that this type of
collaboration can be productive and successful; see 1x8abo
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4 Viability

At the “hub-location” Utrecht, 4 chairs and 7 other permarmaembers of the department are involved in the
present cluster. Itis a general long term policy of the dgpant to maintain a group of researchers of roughly this
size working in the various fields involved in the clusterisTpolicy is supported by earlier commitments already
made, to NWO in relation to Moerdijk’'s PIONIER grant, and teetKNAW in relation to the appointment of
Duistermaat to a Royal Academy Chair. More specificallygiation to the latter appointment the department has
committed itself to the investment in younger personnelavbiuistermaat is holding the chair, while succession
of Duistermaat is also guaranteed. This succession will itl@mthe research area of the cluster. At the more
junior level, the department has made long term commitmwitksrespect to the VIDI grant of Cornelissen and
the KNAW Fellowship of Crainic.

The Faculty of Mathematics and Computer Science at Utrdtdittzes great importance to research and teach-
ing in the fields of the cluster. The TWIN program (dual matiysics Bachelor’s degree) is an important part of
the curriculum at Utrecht, and will be even more so in the nemtext of the “Federation of Science Faculties”
which stimulates programs on the border lines of two or maseiplines. The Master's Degree in Mathematics
has recently been named one of Utrecht's “Prestige Mast&jrams by the Board of the University, and as a
consequence the Board has provided extra research resdardbe department to complement the high level
teaching.

If the cluster Geometry and Quantum Theory is granted, ib iset expected that the Faculty will make even
more investments in the direction of the cluster topics;aet,fthis would be a natural continuation of existing
policies. For example, the Faculty intends to install onenar Personal Chairs (“bijzondere leerstoelen”) in fields
falling within the cluster, while one or two new appointm&td be made in the near future will also be allocated
to the area of the cluster. In particular, the Faculty plansréate a tenure position for a young mathematician in
an area related to mathematical physics.

At the University of Amsterdam, the relationship betweertheenatics and theoretical physics plays a domi-
nantrole in the Science Faculty. Dijkgraaf holds a Faculigi€ and is the personification of the intimate relations
between the departments of mathematics and of theoretigalgs. Apart from the other cluster members Opdam
and Van der Geer and cluster advisor E. Verlinde, professbtiseoretical physics such as Bais and De Boer,
and mathematics professor Koornwinder have always hadagstnterest in the interaction between geometry
and quantum theory. The University has started a Masteogram in Mathematical Physics in 2001, which is
currently under redevelopment in order to secure an optmahection to the cluster themes.

The Mathematics Department has made long-term commitmeerttee cluster area of research, related to
the PIONIER grant of Opdam and the KNAW Fellowships of Moo Stokman. In relation to the cluster,
the Faculty will also create a new Chair in Geometry and Quarntheory, initially partly financed through the
cluster. Both the research and the teaching activities efpointee will entirely take place in the area of the
cluster. Furthermore, an UHD due to retire in 2007 will athghe succeeded in 2004 or 2005 by a mathematician
or mathematical physicist working in the area of the cluster

At Nijmegen, the vacant Chair in Analysis (previously heyd& van Rooij) will be occupied from 1 September
2004 by cluster member N.P. Landsman. In this context, theai@ng three years of the PIONIER grant of
Landsman will be transfered from the UvA to the KUN, incluglithe substantial matching obligation to the host
university. Landsman will retire in 25 years. Cluster memstideckman and Steenbrink will retire in 15 and 8
years, respectively. The chairs of Heckman and Landsmastaretural. The succession of Steenbrink is not
excluded, depending in part on the success of the presestécknd the influx of students.

The KUN is currently developing a Master Program in mathérahphysics. All this guarantees both the
commitment of the KUN to the research area of the cluster, elkag its continuity. Moreover, the vacant UD
position in analysis is expected to be filled by a researahgebmetry and quantum theory as well, whereas the
vacant UD position in geometry and algebra might be occulgiedise. Finally, the Dean of the Science Faculty
has expressed his willingness to continue the 0.2 fte chaBaometry and Quantum Theory mentioned above
after the cluster has ended (subject to performance ankhbiiy of funds).

For formal statements on these plans, we refer to the letféine Deans and/or Rectors of the three universities
involved, to be sent under separate cover.
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5 Added value for Dutch mathematics

The proposed cluster will incorporate direct investmentgaople (like PhD students, postdocs, and visitors), as
well as effects on the long-term policies of the three Ursitas involved. Taken together, these will primarily
help to

e Nurture a new generation of researchers who are fully equifpp participate in the spectacular develop-
ments in the interface of mathematics and physics descitib®dction 1.2 above;

e Maintain the high level of certain areas of mathematics ttatitionally have been strong in The Nether-
lands, like algebraic geometry;

e Protect and expand areas that currently lack critical ma3$e Netherlands, notably algebraic topology,
differential geometry, and noncommutative geometry.

These goals are to some extent inseparable, but our mairtiamisithe first: to breed a generation of young
researchers not hampered by the differences between tgaedges spoken by physicists and mathematicians.
We wish to educate students who are truly ‘bilingual’ in gedry and quantum theory, and hence capable of
crossing the bridges between these two disciplines with Effort. If successful, the long-term rewards for Dutch
mathematics will be great.

On the research side, in large parts of mathematics histmwsthat it is precisely through exchanges of this
type that significant progress is to be expected (cf. Se@joiConversely, without the proposed investments the
Dutch mathematical community would be in serious dangeredrfigpleft out of some of the most beautiful and
important developments currently taking place at the fesrtf mathematical science.

From an educational perspective, the cluster presentptanal opportunities, both for PhD students and
postdocs, and for our current permanent staff. It will eagbkem to acquire or strengthen a broad and flexible
view of mathematics, and to gain a deep understanding ofntieerélations between the various subdisciplines
involved in the cluster. In our experience, such a broacwuishakes for the best lecturers and researchers in
mathematics.

Provided our enterprise is amply supported, we are quitéidemt that we will accomplish this goal through
the following long-term educational infrastructure:

1. Dual Bachelor degree programs in mathematics and phiasiezars);
2. Master programs in mathematical physics (2 years);

3. Specialized Master Classes on key cluster themes (1, year)

4. A PhD program in geometry and quantum theory (4 years).

Hence one of the principal benefits of our cluster to Dutchhmietatics would be the firm establishment and
maintainance of this system. We refer to Section 9 for furgfagticulars.

Algebraic topology and differential geometry are two of toenerstones of modern mathematics. Thus they
are not only of central importance to our cluster themesalaat to many areas of mathematics and adjacent areas
(like physics and theoretical computer science) practlpedcientists outside our cluster. Yet, at the moment
differential geometry is not even represented by a chaiuircountry, whereas also algebraic topology is currently
underrepresented in The Netherlands. Thus the supporese fields through the proposed cluster will also have
important secondary benefits to Dutch mathematics as a whole

Noncommutative geometry (also cf. Section 1.4.1), on theerohand, is a much younger field, originally
starting as a small niche. However, its depth and relevanpesctically all areas of mathematics (and beyond) is
now beginning to be appreciated, especially by studentatl alvanced mathematics courses offered in Holland,
those in noncommutative geometry are among the best atdityfgical classes sporting an audience of about
thirty). Also researchwise, The Netherlands ought to stejtsuactivities in this area.

Some other areas relevant to Dutch mathematics that womldshlcertainly benefit from a national stronghold
in geometry and quantum theory include noncommutativedoahtum’) probability theory and arithmetic alge-
braic geometry. The former is a new field of research, in whiakter member Maassen is a renowned expert. The
strengthening of his links with geometric aspects of quemntiieory will also help other Dutch mathematicians
and mathematical physicists working in this new area. Ttterlés an area with a strong Dutch presence, which
would be strengthened and enhanced by research in thieic(atour research plans on zeta-functions, etc.).
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6 Added value for other scientific disciplines

Our theme of Geometry and Quantum theory is obviously amdigeiplinary one, connecting mathematics and
theoretical physics. Although our research proposal gellgrfocused on the benefits of this connection to mathe-
matics, there is no question that physics (and hence yowsigists in particular) will profit from the teaching and
research activities of the cluster as well. Indeed, in ttet panumber of our specific cluster themes have already
led to remarkable advances in the fundamental understgiofliidature.

For example, through its application to so-called anormsdlieat is, the possibility that conservation laws in
classical physics may no longer hold in quantum theory)Atieah—Singer index theorem has decisively clarified
such phenomena as baryogenesis in the early Universe asdléntion of viable string theories through anomaly
cancellation. As another case in point, the application@faommutative geometry to the Standard Model of
elementary particle physics has brought a new perspedtitieet specific choice of the fundamental symmetry
group of Nature. At the moment, in The Netherlands profesdimathematical expertise in the pertinent areas
seems strictly limited to cluster members. We intend to nthieexpertise available to as wide an audience as
possible, both at a technical and at a popular level (alsBagftion 9 below).

Looking ahead, one may realistically expect the mathemlatisults produced by this cluster to apply to string
theory and quantum cosmology. The former will presumablyetiie from our progress in algebraic geometry
(see Section 1.4.3), whereas the latter (an area in whigbitdéts obvious importance a certain stagnation may
currently be observed) will probably receive a boost frow techniques in the quantization of singular systems
we intend to develop in the cluster (cf. Section 1.4.1). dlgirit goes without saying that the physics side of
integrable systems, with their numerous applications fngairodynamics to space travel, will benefit; see Section
1.4.2. In fact, some areas of physics appear to be litevalying for input from mathematics. But on the whole,
it should be clear that the finest future applications of getyrto physics will be completely unexpected.

On the technological (or R& D) side of physics, two emergingaa of considerable future importance to
Society immediately come to mind as suitable research doeadudents trained in the cluster. Although nan-
otechnology (one of NWQO's current central themes) is atgmekargely an experimental science, its theoretical
foundations are built on quantum theory and its interfadh wliassical physics. For example, expertise in quan-
tization theory as developed in our cluster is clearly raf#\to transport phenomena at the nanoscale. But also,
those educated in our cluster will be well prepared to dortgzal work in this area. The second is quantum com-
putation and quantum information (where cluster memberdgaa is an expert), which by definition is a merger
of quantum theory and the science and technology of infaama€Compared to the first, this field has so far been
of a much more theoretical nature, rendering the relevahoaraluster area self-evident.

While the potential spin-off of our cluster research to pbyga geometrical science ever since Descartes)
is hardly surprising, we also expect other fields of sciefe¢ tise some kind of geometry to benefit, such as
(‘classical’) computer science (especially geometric gisdor programming, and visualisation or imaging) and
medicine. The point here is that research in this clustesmpasses many seemingly different aspects of geometry,
one of its central aims being to transfer established knigderom one kind of geometry to another, less well
understood one. Thus any science that uses some kind of ¢rgamight profit from a better understanding of
geometry as achieved in this cluster.

Yet there are even more indirect and unexpected applicatibgeometry to science and technology. A re-
markable example is coding theory, an area that at presévegton results in abstract algebraic geometry of the
kind studied in our cluster, and which therefore may be etqueto benefit from it (e.g., through cluster member
Van der Geer, a well-known expert and textbook author indinég). Perhaps an even more surprising example
comes from the oil industry, where, in a collaboration witfestists from Shell, cluster member Duistermaat has
recently developed new seismographic techniques on ttie bhgeometric insights, which turned out to be of
immediate practical relevance.

Finally, even outside the context of academic or industdakarch, those trained in the cluster will be broad-
minded thinkers prepared to work in any area of GovernmemisGltancy, Finance, or Industry where flexible and
cross-disciplinary thought is required. Thus we are confitieat our graduates and PhD students will be sought
after in those areas.
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7 Knowledge transfer

7.1 Extra-academic

As far as the transfer of knowledge is concerned, the mosrgéaxpected outcome of the project will be greater
accessibility and popularity of geometry and quantum th@om he Netherlands. The achievement of this aim will
be much facilitated by the fact that both subjects have imate@ppeal and fascination to lay people and experts
alike. Thus we feel a special responsibility towards thebfm of increasing the dramatically declined number
of university students in mathematics (and to a lesser extsn in physics) in The Netherlands. We intend to
step up already existing activities by some cluster membengributing to this goal, such as masterclasses and
other activities for teachers (including performancesat'National Mathematics Days’), popular talks (even to
children of primary school age, or at unexpected venuesntikeeums), interviews, columns, book reviews and
letters to the editor in the Press, a (forthcoming) popudaree book on quantum theory, etc.

7.2 Academic

We have already mentioned our basic educational infrastreién Section 7, on which we now expand. It goes
without saying that most of these efforts hinge on the fugdifithe proposed cluster, for at present means do not
nearly suffice to maintain schemes of this kind.

7.2.1 Dual Bachelor degree programs in mathematics and phics

At the moment, Utrecht offers the so-called TWIN prograntiis trespect, which is quite popular among students,
and has produced some of the best and most enthusiastic Bti&nts in The Netherlands. In a more informal
manner, the University of Amsterdam features a similar pgog which tends to attract the best students in their
year (though fewer in number than at Utrecht). Recent apm@nts at Nijmegen make it realistic to start a similar
scheme there as well. See also Section 6.

7.2.2 Master programs in mathematical physics

As already mentioned (cf. Section 6), the University of Aendam has started a Master program in Mathematical
Physics in 2001. The University of Nijmegen will do so in triademic year 2004-5. (At the moment, Utrecht is
considering its options in this respect.) Despite the itae element of competition for students between the three
cluster locations, these Master programs are intendedmplemnent each other. Since each of them is entirely
controlled by members of the proposed cluster, we will be ablfine-tune the programs, guarantee credits for
courses taken at other universities than the home one, arelgeaerally stimulate exchanges so as to achieve the
goals spelled out in Section 7. For example, a joint studemtisar of pertinent master’s students of all cluster
locations would contribute towards this aim.

7.2.3 Specialized Master Classes on key cluster themes

The cluster plans to organize a yearly ‘Master Class’ (MG)hwhe same format as the Master Classes that have
been organized for over a decade now by the MathematicalaRdsénstitute MRI, often in collaboration with
the Stieltjes Institute. (These are so-called Researchd@elin Mathematics, through which the various Dutch
universities collaborate, mainly in the education of Phiidents.) In particular, all three cluster locations have
extensive experience with this format.

An MC of the type in question is a one-year program for stuslerito are at the end of their Master’'s Degree
and have not yet started on a PhD project. The aim of the MC tisato a small group of students in a specific
subdiscipline, and prepare them for PhD research in tha. darkrough the cluster funds we will make a number
of student grants available, to attract the most excellentesnts from abroad. The MC lectures will also be open
to students in mathematics and theoretical physics whoampleting their Master’'s Degree at one of the cluster
locations. The most talented students from the MC will beuided as PhD students in the cluster. The theme of
the MC will differ from year to year.

The following one-year programs for the MC have been plar{ti@d preliminary list is subject to possible
change):

24



MC1: Quantum Groups and Conformal Field Theory
MC2: Calabi-Yau Geometry and String Theory

MC3: Poisson geometry, Lie groupoids, and Quantization
MC4: To be determined

7.2.4 PhD program in geometry and quantum theory

We intend to create 6 PhD positions during the cluster pgigbdSection 4.2), to which others will probably be
added from other sources. Although international recreithwill always be an option, our experience shows that
an infrastructure of the kind described so far will sufficeattract excellent students to this PhD program. Our
PhD students will benefit from the coherence of the clustgeimeral, as well as from all of the specific activities
to be listed now.

7.2.5 Spring Schools

This year, 6 of the 23 cluster participants were involvechim MRI Spring School and Workshop &e Groups

in Analysis, Geometry and Physjeghich drew more than 50 applications from abroad (and warethy sizeably
overbooked). The cluster intends to participate with simihtensity in future MRI Spring Schools. Furthermore,
next year Van der Geer and Moonen will organize a Spring Saodbelian Varieties.

7.2.6 Research Seminars

The Master Class will be followed by a research seminar atdluie same theme in the following year, see 3.3.2.

7.2.7 Workshops

The cluster plans to organize a yearly International Wooksfof 3-5 days), preferably in one of the standard
conference centers in The Netherlands. At such a workshtgrniational experts will be invited to deliver lectures,
and it will be a natural occasion to meet the Advisors andokalof the cluster. The (main) theme of such a
workshop will be the subject of the MC of the preceding yeatthis way, there will be a two-year track that will
bring young researchers to the front of research in a pdaticlomain: a Master Class in one year, followed by
Research Seminars in the next, culminating in an Internatid/orkshop.

The long-standing yearly Lie group conference at Enscheatld® increasingly devoted to cluster themes;
already this year, integrable hierarchies and the geoeetnglands program will play a prominent role.

7.2.8 International Conference

Towards the end of the four year cluster period, the cludmspto organize a major international conference,
having more participants and a wider scientific scope thary#arly workshops. At this conference, we expect
to show that through the cluster activities, The Nethertamas reached the forefront of international research in
geometry and quantum theory.

7.2.9 Student Prizes

The cluster will install a prize of 1000 euro for the best Maistthesis in a field related to Geometry and Quantum
Theory. We aim at the master’s level and not at the PhD lewd, licause this will attract young students to the
field, stimulating them to do high-level work and preparihgrh for PhD work in geometry and quantum theory
(within the cluster or elsewhere).

7.3 Website

The cluster will maintain a professional and attractive sitehat which all conceivable information on the cluster
and its activities will be posted. In addition, the websitél wontain further information on and links to various
individual cluster themes.
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