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Preface v

Preface
This book grew out of lecture notes for my master’s courses on general relativity (GR) and
on singularities and black holes taught at Radboud University (Nijmegen). These notes were
originally intended for our students with a double bachelor degree in mathematics and physics,
but in its final form the book is intended for all students of GR of any age and orientation who have
a background including at least first courses in special and general relativity, differential geometry,
and topology.1 The recent textbook Elements of General Relativity by Chruściel (2019) would
make students singularly well prepared for this one, but almost any introduction to GR, combined
with the typical mathematical background in manifolds etc. that is usually included in such
introductions, will do. This book, then, is a second, mathematically oriented course in general
relativity, with extensive references and occasional excursions in the history and philosophy of
gravity, including a relatively lengthy historical introduction. As such, it omits standard physics
material like the classical tests etc. Furthermore, the material is developed in such a way that
through the last two chapters the reader may acquire a taste of the modern mathematical study of
black holes initiated by Penrose, Hawking, and others, so that successful readers might be able
to begin reading research papers in this direction, especially in mathematical physics and in the
philosophy of physics. This focus comes with an introduction to what is called causal theory,
but alas, it also implies that in order to keep the book medium-sized I had to omit applications
like cosmology and gravitational waves. In any case I hope the book appeals to mathematicians,
physicists, and philosophers–perhaps even historians–of physics alike.

My own experience is that a really deep field such as GR (or quantum theory) can only be
learned by reading a large number of books saying the right things in different ways, as well
as by talking to good people working in the field. As a reader, my first encounter with GR was
Einstein’s own exposition Relativity: The Special and General Theory (Einstein, 1921), which is
still in print. In the summer of 1981, having just graduated from highschool, this was followed
by two books that were a little more difficult, namely Space - Time - Matter by Weyl (1922) and
The Mathematical Theory of Relativity by Eddington (1923), both of which are not only highly
mathematical but also profoundly philosophical in spirit. Weyl makes this point himself:

At the same time it was my wish to present this great subject as an illustration of the
intermingling of philosophical, mathematical, and physical thought, a study which is dear
to my heart. This could only be done by building up the theory systematically from the
foundations and by restricting attention throughout to the principles. But I have not been
able to satisfy these self-imposed requirements: the mathematician predominates at the
expense of the philosopher.2 (Weyl, 1918, Preface)

Indeed, Weyl, Eddington and Einstein were natural philosophers in the spirit of the scientific
revolution, whose mix of physics, mathematics, and philosophy was the key to its success. Hence
it seems hardly a coincidence that Einstein was Newton’s successor, for if any scientific theory
has ever represented the Philosophiae Naturalis Principia Mathematica, it must be GR.

1 Logically speaking, the GR material is even developed from scratch, and indeed the first course in this direction
that I taught was optimistically offered also to mathematics students without any physics background. But experience
shows that the material makes little sense without some prior exposure to both special and general relativity.

2‘Zugleich wollte ich an diesem Großem Thema ein Beispiel geben für die gegenseitige Durchdringung
philosophischen, mathematischen und physikalischen Denkens, die mir sehr am Herzen liegt; dies konnte nur durch
einen völlig in sich geschlossenen Aufbau von Grund auf gelingen, der sich durchaus auf das Prinzipielle beschränkt.
Aber ich habe meinen eigenen Forderungen in dieser Hinsicht nicht voll Genüge tun können: der Mathematiker
behielt auf Kosten des Philosophen das Übergewicht.’ Translation: Henry L. Brose (Weyl, 1922).
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So even though at the time I understood almost nothing of the technical content of their
books, Einstein, Weyl, and Eddington left an indelible mark in the way they approached natural
science through mathematics and philosophy. Still during that same long summer vacation
between highschool and university in 1981, which I regard as one of the high points of my life, I
also bought Gravitation by Misner, Thorne & Wheeler (1973). For a while I considered this the
greatest book written on any topic whatsoever,3 and when Misner, well in his eighties at the time,
not only came to a talk I gave in one of Bub’s New Directions in the Foundations of Physics
conferences in Washington DC but even asked a question, after he had answered positively to
my counter-question if he was Charles Misner I was petrified and unable to say anything.4

My next book was The Large Scale Structure of Space-Time by Hawking & Ellis (1973), and
so on, until General Relativity and the Einstein Equations by Choquet-Bruhat (2009) and most
recently The Geometry of Black Holes by Chruściel (2020). These are all masterpieces written
by founders of the field; like most students and authors in mathematical GR I am also indebted to
Penrose (1972), O’Neill (1983) and Wald (1984). Furthermore, Earman (1995) set the stage in
the philosophy of physics. Other influences on this text include Weinberg (1972), Kriele (1999),
Poisson (2004), Schoen (2009), Gourgoulhon (2012), Malament (2012), and Minguzzi (2019).

This brings me to the question why an author who so far wrote little on GR is entitled to write
a book about the subject–even if it has been an almost lifelong passion. In the first of the Jeeves
and Wooster episodes (about an indolent English aristocrat and his butler), Lady Glossop asks:

Do you work, Mr Wooster?

upon which Wooster (i.e. the aristocrat), taken aback by her question, mumbles:

Well, I’ve known a few people who work.

I’ve known a few people who work, too (in GR, that is). The greatest of these, in my view, is
Roger Penrose, to whom this book is dedicated in honour of his pivotal role in the creation of
mathematical relativity and the modern theory of singularities and black holes,5 combined with a
singular lack of pomp and circumstance, for a scientist of his calibre. In her recent autobiography,
Yvonne Choquet-Bruhat, who has known Penrose for over 50 years, puts it well:

In spite of his successes, he remains a man without pretension, open and friendly. He came
to listen, a few years ago, to a talk I gave at a seminar in Oxford. Afterwards we had lunch
with a few colleagues and the conversation turned to the publication of his complete works.
Penrose said: ‘My problem is to know if I must correct my mistakes before publication.’ It
is a great quality to recognize a mistake, even small. Few human beings, scientists or not,
are ready to do it. (Choquet-Bruhat, 2018, chapter 10)

Perhaps the key to his success, which on the one hand seems typical for most great scientists and
artists but on the other hand seems paradoxical as a path to influence and eminence, is this:

3Kaiser (2012) gives an interesting perspective on Gravitation and its history, which confirms its uniqueness.
4Nonetheless, I now see a basic drawback of Gravitation: with its xxvi + 1279 pages, it leaves no room for the

reader (except in doing the exercices, which I all duly did in the next few years), who is overwhelmed and cornered.
5A scientific biography of Penrose remains to be written (in 2019 Dennis Lemkuhl conducted a series of

interviews with Penrose). For now, see e.g. Thorne (1994), Frauendiener (2000), Friedrich (2011), and Ellis (2014).
Both the written AIP interview by Lightman (1989) and the videotaped interview by Turing’s biographer and
Penrose’s former student Hodges (2014) are great and intimate portraits of Penrose.
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It was important for me always, if I wanted to work on a problem, to think I had a different
angle on it from other people. Because I wasn’t good at following where everybody else
went. I wasn’t the kind of person who could pick up the prevalent arguments and knowledge
of the time. Other people were good at that. They could suck it all out and put it together and
make advances. I was the kind of person who’d have some kind of quirky way of looking at
something on my own, which I would hide away and work at. So it meant that I had to have
some way of looking at a problem that was my own.6

Here one should emphasize the word ‘looking’: Penrose is primarily a visual thinker. This is
exemplified most famously by his invention of the diagrams named after him, but it goes back
a long way, including for example the “impossible figures” he created with his father, and his
interaction with the Dutch artist Maurits Cornelis Escher (1898–1972).7 Penrose usually drew
his own figures in a professional, yet playful and characteristic way, and each of them not only
makes some scientific point but is also a pleasure to look at. A few are reproduced in this book.

I first heard Penrose speak in Cambridge in 1989 about his recent book The Emperor’s New
Mind: Concerning Computers, Minds and The Laws of Physics, later superseded by Shadows
of the Mind: A Search for the Missing Science of Consciousness (1994). I got to know him
personally during a Seven Pines Symposium in Minnesota in 2005, where the organizers had
the luminous idea that famous and ordinary participants share an apartment. I am not sure to
which one of us this arrangement was initially more shocking, but we got along well, and he
very kindly came to the opening conference of our institute IMAPP at Nijmegen (2005) as a
speaker (forming part of a stellar line-up including physicist Gerard ’t Hooft, mathematician Don
Zagier, and theologian Hans Küng),8 where he explained the key ideas of his later book Cycles
of Time (2010). Having him all for myself for 1.5 hours, I then drove him to the famous Amstel
Hotel in Amsterdam, the most expensive hotel in the country, since I felt that if that is the place
where Bob Dylan and the like stay, certainly also Roger belonged there.9 He later returned to the
Netherlands for a mathematical physics conference and usually came to my talks when I was
visiting Oxford and joined for lunch or dinner whenever possible. The last time I saw him, on
July 2, 2022, when he was 90, we talked for two hours and then he insisted on going for a walk!

Dominating the public image, Stephen Hawking was unquestionably another key figure in
mathematical relativity.10 I observed Hawking on an almost daily basis between 1989–1997,
when I was a postdoc at DAMTP in Cambridge, but I wasn’t in his group and never talked to him
directly. I did mingle with his circle though, and inhaled a certain culture from this. Although in
the wake of his Brief History of Time (1988) Stephen had by then become a scientific superstar,
it is only after his death in 2018 that I really came to appreciate his genius and his life.11

Hence this book has been heavily influenced by Hawking and Penrose, and of course includes
their singularity (i.e. incompleteness) theorems, but without being blind to other developments,
notably the initial-value or PDE approach to GR, which, as will be explained in detail especially
in connection with cosmic censorship, sometimes leads to a different perspective on space-time.

6Quoted from the AIP interview by Lightman (1989).
7See Wright (2014) for the history of Penrose diagrams; Wright (2013) explains the link with Escher. Penrose

admired Escher at least since 1954, when, as a student participant to the International Conference of Mathematicians
in Amsterdam, he saw an Escher exhibition. In 1962 Penrose visited Escher at his home in Baarn. See Penrose
(2005), chapter 2, and the TV documentary Penrose (2015). See also §1.9 and footnote 520.

8At the conference dinner we gave each speaker an expensive Japanese wooden puzzle, which we asked them to
solve as quickly as possible. Penrose won easily (which, in good spirits, greatly annoyed ’t Hooft and Zagier).

9Our financial staff did not appreciate this and I paid for his room, with a river view doubling the prize, myself.
10See §1.9 for some brief historical comments on the development of mathematical GR.
11See Hawking (1999) for an unusually honest account of this life; the second (2007) edition is milder.
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A complete coverage of the causal theory is both impossible in a work of this size and
undesirable for students looking for a first encounter, but fortunately it is also unnecessary in
view of the recent encyclopedic (Open Access) treatment by Minguzzi (2019), which always
lies open on my desk. Similarly, a complete description of the PDE approach to GR would
require not only a very different author (or rather a team of authors), but also much more space
including preliminary material. So we are fortunate to have Ringström (2009) for those who
want more than the very first introduction given here, as well as Klainerman & Nicolò (2003) and
Christodoulou (2008). I have tried to do justice to the modern spirit of mathematical relativity,
which is characterized by a mix of the causal and the PDE theories and culminates in the cosmic
censorship and final state conjectures. The aim of this book is not at all to describe the latest
news about such matters, but merely to explain what the discussions are about, and give students
and more senior readers not specializing in this area and entry point to the research literature.
Likewise for the no-hair or uniqueness theorems for black holes and black hole thermodynamics,
with which the book ends. Thus the book stops not only where (mathematical or philosophical)
research papers on classical GR begin, but also where quantum aspects of gravity begin.

Finally, as may be expected more from a work in the humanities than in mathematical physics
(between which the history and philosophy of physics resides), there are almost 700 footnotes,
placed where the name “footnote” suggests they belong. They contain credits (e.g. for some of
the arguments and derivations I give) and other pointers to the literature, as well as additional
information that refines or qualifies the mathematics just discussed, and/or adds conceptual or
historical information I found interesting. They may be skipped in principle by those who just
want to hear the melody, but they seem to me to be essential for enjoying the full sound.

For a more detailed summary of this book the prospective reader is encouraged to take a look
at the synopsis and the table of contents, which in this order immediately follow this preface.

I received very kind help and feedback from a number of students and colleagues, of whom
I would like to mention Ibai Asensio Pol, Jeremy Butterfield, Erik Curiel, Jeroen van Dongen,
Juliusz Doboszewski, John Earman, Jan Głowacki, Evert-Jan Hekkelman, Leo Garcia Heveling,
Michel Janssen, Dennis Lemkuhl, Martin Lesourd, Sera Markoff, Ettore Minguzzi, John Norton,
Bryan Roberts, Quinten Rutgers, and Jan Sbierski. Most chapters were also reviewed during the
2020–2021 Cambridge–LSE Philosophy of Physics Bootcamp, which was of great help.

The final edit of this book was done during July 2021 at a lovely cottage by the river IJssel,
which we could use thanks to the generous hospitality of our friends Arend and Esther van der
Sluis. This last round also benefited from the online conference Singularity theorems, causality,
and all that: A tribute to Roger Penrose, held in June 2021 (organized by Piotr Chruściel, Greg
Galloway, Michael Kunzinger, Ettore Minguzzi, and Roland Steinbauer) where I could pick up
the latest news and was also given the unexpected honour to speak. My greatest debt, however,
is to Edith de Jong, who contributed so much more than the beautiful cover art and various
drawings to this book, including the one of Penrose on the dedication page of this book.12

In the second printing (finalized in July, 2022) various mistakes have been corrected, largely
thanks to my students, especially Sepehr Hassannejad and Teije Kuiper. Further research
(Landsman, 2022ab) and a two-hour meeting with Roger Penrose on July 2 also prompted me to
expand the material about the Hole Argument, Penrose’s 1965 theorem, and Cosmic Censorship
(with thanks to José Senovilla for criticism and help). This changed the preambles to Chapters 6
and 10, as well as §§1.5, 6.1, 7.5, 7.6, 10.4, 10.5. I also added new sections 5.11 & 7.8.

12This drawing is based on a photograph of Penrose in Gravitation (Misner, Thorne, and Wheeler, 1973, p. 936).
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Synopsis
Here is a brief summary of the chapters, which may also help potential readers as well as
instructors. My own experience is that chapters 2, 3, 4, 5, and 7 may form the basis of a
one-semester (master’s) course entitled Mathematical structure of general relativity.13 This may
be followed by another one-semester course called Singularities and black holes,14 based on
chapters 6, §§8.1–8.4, 9, and a selection of topics from chapter 10. For advanced students with
sufficient background in both GR and mathematics, the latter could also stand alone.15

Since this book is also, perhaps even largely, intended for self-study and pleasure, it contains
no exercises. However, instructors (and even students with enough self-discipline) can easily
assign almost any derivation as an exercise (for themselves). Many difficult results are just
mentioned without proof (always with a reference), and these could serve as advanced problems.

1. Historical introduction. Based on recently completed research by historians of science,
the reader is introduced to Einstein’s “bumpy road” to his theory of general relativity.
Although GR may well be the most sublime of all scientific theories, created by a man
who is widely–perhaps exaggeratedly–seen as one of the supreme geniuses humanity has
brought about, at least the story of its discovery is “human, all too human”. I also include
a little mathematical history, involving Riemann and others, as well as a brief picture of
mathematical GR until about 1970. I close with some musings on general covariance.

2. General differential geometry. This is a turbo introduction to manifolds and tensors,
intended for readers who have already seen some basic treatment of this material. Even
within some modern, coordinate-free approach to differential geometry, both abstract and
computational aspects of GR also require the use of old-fashioned coordinates and indices.

3. Metric differential geometry. Here the pace slows down. In this brief chapter, which is
mainly a warm-up for the next two chapters, metrics, geodesics, connections, and the
Levi-Civita (i.e. metric) connection are introduced. This material is totally standard, but I
have done my best to give some perspective on geodesics in Lorentzian manifolds.

4. Curvature. This chapter may have an unusual emphasis on sectional curvature, constant
curvature, and the nineteenth century origins of the abstract modern theory in submanifolds
of Euclidean space. In my experience, this background is especially helpful in understand-
ing the Gauss–Weingarten and Gauss-Codazzi equations, which in turn are essential for the
derivation of the constraint equations of GR. In the same spirit, the last section discusses the
classical “fundamental theorem for hypersurfaces”, which gives necessary and sufficient
conditions for the existence and (geometric) uniqueness of embeddings of curved surfaces
in flat space. Though much simpler, this theorem resembles the corresponding result for
the Einstein equations in §7.6, notably regarding the role of constraints.

5. Geodesics and causal structure. This chapter introduces the topological techniques
developed by Penrose and others in the 1960s, which raise mathematical GR above the
level of theoretical physics. The ensuing causal theory is crucial for all aspects of GR,

13Chapter 2 should perhaps not be discussed in detail (which might repel students); it alone has a summary (§2.7).
14Nonetheless, putting chapter 6 before chapter 7 in this book is a logical choice, since the singularity theorems

do not rely on the Einstein equations. The second half of chapter 8 contains advanced and partly speculative “retro”
material that I simply find interesting–especially the unresolved problem of time–and could not resist including.

15Natário (2021), which I saw much too late to use it, provides a one-semester course in all of mathematical GR.
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especially the modern study of black holes in which this books culminates. One of
the central ideas in causal theory is global hyperbolicity, which is studied from several
perspectives (of the which the existence of a Cauchy surface stands out). Anti de Sitter
space (AdS) and Malament’s theorem on the primacy of cuasal structure close the chapter.

6. The singularity theorems of Hawking and Penrose. Penrose’s singularity theorem from
1965–which should more aptly be called an incompleteness theorem–remains the most
powerful illustration of the techniques of the previous chapter. But for pedagogical reasons
I start with Hawking’s singularity theorem (idem dito), which postdated Penrose’s but is
easier since it does not involve the often counterintuitive “lightlike” (or “null”) reasoning
that is typical of Penrose’s theorem (and indeed of almost all of his work in GR). The
opening pages of the chapter also provide some insight into the struggle of finding an
appropriate definition of space-time singularities, from Einstein to Penrose and Hawking.

7. The Einstein equations. In standard fashion, the Einstein (field) equations are derived from
an action principle, with extra attention however for boundary terms. This also involves a
brief treatment of matter sources (i.e. the energy-momentum tensor). The main goal of the
chapter is to introduce the specific PDE analysis of the Einstein equations introduced by
Choquet-Bruhat in the 1950s, which she completed in a joint paper with Geroch from 1969.
This analysis provides and solves a geometric initial-value formulation for the Einstein
equations, which is far from obvious and circumvents all kinds of conceptual and technical
questions involving equations posed on a space-time that does not (yet) exist.

8. The 3+1 split of space-time. For both technical and conceptual reasons–we do not experi-
ence space-time but space and time–it is often helpful to take a “non-relativistic” view on
the Einstein equations. This involves an arbitrary foliation of space-time into spacelike
hypersurfaces, controlled by the lapse and shift functions of the physics literature (i.e. the
ADM formalism). Thus the Einstein equations are cleanly split into propagation equations
and constraint equations, and one has an easy transition to a Hamiltonian formalism. The
last section concerns the deceptive “problem of time”, which is more or less debunked.

9. Black holes I: Exact solutions. The theory of black holes is an interplay between abstract
arguments, like Penrose’s singularity theorem and associated techniques, and concrete
examples. This chapter is devoted to the latter. After a warm-up on de Sitter space (which is
not singular but has some kind of horizon), which may be skipped, we study the three main
cases of interest: Schwarzschild (including the Kruskal extension), Reissner–Nordström,
and Kerr. Especially the latter is a source of endless fascination, which can only be sparked.

10. Black holes II: General theory. Penrose remains a central figure in the model-independent
study of black holes, e.g. through his four closely related concepts of conformal completion,
null infinity, (absolute) event horizon (which leads to a mathematical definition of a black
hole), and the diagram named after him; by means of cosmic censorship, and via the
Penrose inequality. Furthermore, he unearthed the structure of various black hole horizons
(namely event horizons, Cauchy horizons, and Killing horizons, in introducing all of which
also Hawking played a major part) as null hypersurfaces ruled by lightlike geodesics. The
last two sections on uniqueness or “no hair” theorems and on thermodynamics of black
holes are introductory; alas, they merely scratch the surface of these miraculous topics.

Finally, Appendix A on Lie groups, Lie algebras, and constant curvature mainly supports §4.4,
whereas Appendix B on Formal PDE theory gives some background for especially §7.6.
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1 Historical introduction

On 25 November 1915, Einstein submitted a paper containing the above equations, which
(in an appropriate mathematical context) state his general theory of relativity (GR). Einstein
thereby replaced Newton’s theory of universal gravity from 1687, and in 1919 he became famous
overnight when the historical expedition led by Eddington confirmed Einstein’s prediction–
against Newton–of the gravitational deflection of starlight passing near the Sun. Einstein also
computed the correct perihelion shift of Mercury, which had been known since 1859 as an
anomaly in Newtonian gravity. Still within his conceptual reach were, for example, the properties
of the binary pulsar PSR B1913+16, discovered in 1974 by Hulse and Taylor, as well as the
gravitational waves detected by the LIGO experiment in 2015, almost a century after Einstein had
predicted their existence. Beyond what Einstein himself foresaw or could bear, GR also turned out
to describe the expansion of the cosmos and hence–unless quantum theory intervenes–its origin
in a big bang (Einstein initially denied the former and never accepted the latter implication).16

Last but not least, GR suggests the possibility of black holes (another “singular” phenomenon
allowed by his theory that Einstein stubbornly kept disavowing), and, in the hands of Penrose,
gives compelling conditions for their existence. The fact that these conditions are met in the
universe is now beyond any (astrophysical) doubt, as reconfirmed by the spectacular image of
the supermassive black hole M87* revealed in 2019 by the Event Horizon Telescope (EHT).

Hilbert, the greatest mathematician of his time, expressed his admiration for GR as follows:

Constructing the theory of general relativity is, in my opinion, one of the greatest achieve-
ments in scientific history. The edifice that Pythagoras started and Newton continued has
been completed by Einstein.17 (Hilbert, 1920)

16 With hindsight the occurrence of a big bang is implicit in the specific solution to Einstein’s equations that
describes an expanding homogeneous and isotropic universe, found independently by Friedman in 1922 and
Lemaître in 1927. The latter also matched this with contemporary observations of redshifts of galaxies (often but not
quite rightly attributed to Hubble), and is the originator of the physical idea of a hot early state of the universe, which
he proposed in the early 1930s. See e.g. Kragh (2007) and Nussbaumer & Bieri (2009). In 1965 the 2.7K Cosmic
Microwave Background was discovered (by coincidence) by Penzias and Wilson. The CMB was interpreted almost
at once as a relic of the big bang by Dicke and Peebles and others, which matched and revived earlier calculations by
Gamow and others of the abundances of hydrogen and helium in stars. Within this Zeitgeist Hawking’s singularity
theorem from 1966, which we will discuss in detail, gives the final mathematical underpinning of the big bang.

17‘Die Aufstellung der allgemeinen Relativitätstheorie ist m.E. eine der größten Leistungen in der Geschichte
der Wissenschaften. Den von Pythagoras begonnenen, von Newton ausgestalteten, Bau hat Einstein zum Abschluß
gebracht.’ Quoted in Corry (1999, p. 522) from unpublished lecture notes from Hilbert’s 1920 course Mechanik und
neue Gravitationstheorie. As we shall see in §1.7, the relationship between Einstein and Hilbert had ups and downs.
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Hilbert knew what he was talking about; we will return to his role in the history of GR (see §1.7),
and more generally to the profound interaction between physics and mathematics in this theory.
In 1918 Hilbert’s pupil Weyl, a contemporary of Einstein’s and later colleague of his at the
Institute for Advanced Study in Princeton, wrote the first textbook about GR, called Raum - Zeit -
Materie (Space - Time - Matter). Its preface starts in the following, even more lyrical way:

Einstein’s Theory of Relativity has advanced our ideas of the structure of the cosmos a step
further. It is as if a wall which separated us from Truth has collapsed. Wider expanses and
greater depths are now exposed to the searching eye of knowledge, regions of which we had
not even a presentiment. It has brought us much nearer to grasping the plan that underlies
all physical happening.18 (Weyl, 1918, Vorwort)

Perhaps Einstein himself was not entirely neutral about his work, but he was as lyrical:

The theory has unsurpassed beauty (. . . ) My boldest dreams have been fulfilled (. . . ) That I
was given to experience this (. . . ) The highest satisfaction of my life.19

It is all the more remarkable that Einstein found his theory under pretty miserable circumstances.
First, Germany was in a war which he was one of the very few people (on either side) to oppose.
This isolated him even among his colleagues, who in any case hardly understood his scientific
quest. Second, he was separated from first wife (Mileva) and their two sons (Hans Albert and
Eduard).20 Einstein’s ability to not only continue his work under such conditions but even
produce one of the greatest scientific theories of all times was later explained as follows:

His true passion lay in the understanding of the riddle of the immeasurable world, which
stood outside and above the bickering and wriggling of personal interests, feelings, and
urges of people. Seeking such understanding comforted him from the moment he had seen
through the hypocrisy of the common ideals of decency. The contemplation of this external
reality lured him like a liberation from an earthly prison.21 (Fokker, 1955)

Einstein’s construction of GR was the culmination of an epic quest for the structure of space
and time, which had started with his special theory of relativity from 1905. Unlike his earlier
relativity theory, Einstein’s road to GR is extremely well documented.22 The summary that now
follows suggests that the key to Einstein’ success was not some superhuman genius à la Newton
but his ability to recognize inconsistencies (including his own mistakes) and take it from there.

18‘Mit der Einsteinschen Relativitätstheorie hat das menschliche Denken über den Kosmos eine neue Stufe
erklommen. Es ist, als wäre plötzlich eine Wand zusammengebrochen, die uns von der Wahrheit trennte: nun liegen
Weiten und Tiefen vor unserm Erkenntnisblick entriegelt da, deren Möglichkeit wir vorher nicht einmal ahnten. Der
Erfassung der Vernunft, welche dem physischen Weltgeschehen innewohnt, sind wir einen gewaltigen Schritt näher
gekommen. ’ Translation: Henry L. Brose, from the fourth edition from 1922 (see also §1.8).

19‘Die Theorie ist von unvergleichbarer Schönheit (. . . ) Ich war einige Tagen fassungslos von Erregung (. . . )
Die kühnsten Träume sind nun in Erfüllung gegangen (. . . ) Dass ich das habe erleben dürfen (. . . ) Die höchste
Befriedigung meines Lebens’. These quotations can be found in the original German in Fölsing (1993), chapter 4.

20On the other hand, whilst officially still married to Mileva he had started a relationship with Elsa Einstein, who
also lived in Berlin (Einstein was in fact her maiden name; she was both a first and second cousin to Albert Einstein).
They got married in 1919 after Einstein’s divorce from Mileva and stayed together until Elsa’s death in 1936.

21Dutch original: ‘Zijn ware hartstocht lag in het doorgronden van het raadsel der onmetelijke wereld, die buiten
en boven het geharrewar en het gewriemel van persoonlijke belangen, gevoelens, en driften der mensen stond. Dat
nadenken troostte hem toen hij de schijnheiligheid van de gangbare fatsoenlijke idealen had doorzien. Als een
bevrijding uit een aardse gevangenis lokte hem de beschouwing van die buitenpersoonlijke werkelijkheid.’

22The main sources for the history of GR are Einstein (1996ab) and Renn (2007), the massive scholarship in
which is based largely on the work of Michel Janssen, John Norton, Jürgen Renn, Tilman Sauer, and John Stachel.
See also van Dongen (2010, 2017), Janssen (2014), and Janssen & Renn (2020). Standard biographies are Fölsing
(1993) and Isaacson (2017). The only scientific biography of Einstein (Pais, 1982) is now largely outdated.
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1.1 From physical principles to a mathematical framework
In an illuminating informal lecture he gave on 14 December 1922 to students at Kyoto University,
Einstein recalled his first steps towards what ultimately became general relativity:

The first thought leading to the general theory of relativity occurred to me two years later,
in 1907, and it did in a memorable setting. I was already dissatisfied with the fact that the
relativity of motion is restricted to motion with constant relative velocity and does not apply
to arbitrary motion. I had always wondered privately whether this restriction could somehow
be removed. In 1907, while trying, at the request of Mr. Stark, to summarize the results of
the special theory of relativity for the Jahrbuch der Radioaktivität und Elektronik of which
he was the editor, I realized that, while all other laws of nature could be discussed in terms
of the special theory of relativity, the theory could not be applied to the law of universal
gravitation. I felt a strong desire to somehow find out the reason behind this. But this goal
was not easy to reach. What seemed to me most unsatisfactory about the special theory of
relativity was that, although the theory beautifully gave the relationship between inertia and
energy, the relationship between inertia and weight, i.e., the energy of the gravitational field,
was left completely unclear. I felt that the explanation could probably not be found at all
in the special theory of relativity. I was sitting in a chair in the Patent Office in Bern when
all of a sudden I was struck by a thought: “If a person falls freely, he will certainly not feel
his own weight.” I was startled. This simple thought made a really deep impression on me.
My excitement motivated me to develop a new theory of gravitation. My next thought was:
“When a person falls, he is accelerating. His observations are nothing but observations in
an accelerated system.” Thus, I decided to generalize the theory of relativity from systems
moving with constant velocity to accelerated systems. I expected that this generalization
would also allow me to solve the problem of gravitation. This is because the fact that a
falling person does not feel his own weight can be interpreted as due to a new additional
gravitational field compensating the gravitational field of the Earth, in other words, because
an accelerated system gives a new gravitational field.23

This recollection makes, and somewhat conflates or refers to, at least three different points:

1. Einstein was haunted by the idea that the “principle of relativity”–which in his special
theory (as well as in Newtonian mechanics) only applies to motion with constant velocity–
should be extended to arbitrary motion, in that the laws of physics should be the same in
any frame of reference.24 Since the special principle of relativity makes uniform motion
relative, Einstein called his extended version the “general principle of relativity”, which he
considered so important that he would later even name his entire theory after it.

23The English translation of the original notes in Japanese taken by Einstein’s tour guide Yun Ishiwara comes
from Einstein (2013), pp. 637–638. Another translation may be found in Physics Today, August 1932, p. 45.

24 If true, this would make all kinds of motion in (otherwise) empty space indistinguishable, and hence both
inertial and accelerated motion would effectively be undefined (as opposed to the situation in both Newtonian
mechanics and, indeed, GR). As a way out, Mach proposed that motion is exclusively defined with respect to all
(other) matter in the universe, even if this only consists of distant stars. Following Einstein himself, this is often
called Mach’s principle, although Barbour (1989, Introduction), claims that Einstein misunderstood Mach’s idea by
conflating its application to Newton’s first law (for which it was apparently intended) and his second (for which it
was not). In any case, Einstein was initially guided by this principle, which until 1918 he did not clearly distinguish
from both the equivalence principle and the principle of general covariance. Although Mach’s principle fails in GR,
as Einstein gradually came to recognize after 1920 (for example, non-flat vacuum solutions to the Einstein equations
violate it), it nonetheless helped Einstein significantly in his search for the field equations (Janssen, 2014).
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2. Newton’s theory of gravity, based on action at a distance, was not only physically absurd
(as Newton had already noted himself), but also stood in an uneasy relationship (to say
the least) with special relativity, which postulates the velocity of light as the largest signal
velocity (‘the theory could not be applied to the law of universal gravitation’).

3. Finally, the mysterious equality of gravitational and inertial mass (which in Newtonian
physics is a curious coincidence) led Einstein to introduce the following two-sided coin:

(a) Freely falling observers, who according to someone at rest are accelerating, feel no
gravity: they may even consider themselves at rest as if there were no gravity.

(b) Accelerating observers in a situation without gravity may equally well consider
themsleves at rest in a specific gravitational field (pulling in the opposite direction).

Point 1 is controversial and warrants further discussion; see §1.10. Point 2 is resolved by GR; for
example, test particles respond to the local structure of space-time by moving on geodesics.25

Part 3(a) was Einstein’s flash of insight that elsewhere he called ‘the happiest thought of my
life’.26 Part 3(b) is Einstein’s equivalence principle,27 which he seems to have arrived at through
3(a). Although at first sight 3(a) and 3(b) appear to be related by interchanging the perspectives
of the two observers involved (and indeed are often conflated), in fact they are quite different:

3(a) The modern way of phrasing this would be that in the frame of reference of an observer
moving along a geodesic (i.e. a freely falling observer), on the geodesic the metric is
the Minkowski metric and even its first derivatives vanish, so that also the Christoffel
symbols vanish and hence the geometry of space-time as well as the motion of freely
falling particles accompanying our observer are approximately flat.28 Nonetheless, the
gravitational field is not completely “transformed away” for the freely falling observer:
the Riemann curvature tensor (which involves second derivatives of the metric) is nonzero
even on the geodesic, and tidal forces (which are described by the Riemann tensor) are
still there (cf. §5.1). Einstein understood this well before GR was established and hence
3(a) was not his equivalence principle; confusingly to many,29 it was a heuristic towards it.

3(b) Version (b), which in turn became a crucial heuristic for Einstein in finding GR, is dif-
ferent from merely changing perspective in version (a). That would mean that instead
of identifying with the freely falling observer, one identifies with Einstein sitting in his
office, watching the man fall. Einstein then feels a pull downward by a gravitational force,
which is what according to version (a) the freely falling man does not feel. However,
Einstein’s equivalence principle takes place in Minkowski space-time,30 and states that a
system undergoing constant acceleration may, as far as all laws of nature are concerned,
equivalently considers itself at rest in a homogeneous gravitational field. Think of pushing
the gas pedal in a car (preferably with blinded windows); the backward pull the driver
feels from the acceleration is indistinguishable from a horizontal gravitational pull.

25See Proposition 7.2 and footnote 347. One must concede that the idea is clearer than its mathematical execution.
26‘Da kam mir der glücklichste Gedanke meines Lebens.’ See Einstein (2002a), Doc. 31, page 265.
27Two leading scholarly papers on Einstein’s equivalence principle are Norton (1985) and Lemkuhl (2019).
28See the end of §5.2 for the mathematical underpinning of this claim through Fermi normal coordinates.
29 Perhaps starting with Pauli (1921, §51), who states that ‘For the general case, [the equivalence principle] can

be formulated in the following way: For every infinitely small world region (. . . ) there always exists a coordinate
system (. . . ) in which gravitation has no influence either on the motion of particles or any other physical processes.’

30In 1907 Einstein had not yet internalized this concept and thought in terms of 3d “relative space”, but in later
formulations he talks about ‘space-time regions’ in ‘the limiting case of special relativity.’ See Norton (1985), §2.
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We would now say that version (a) is about real gravitational fields, whereas version (b) is about
fictitious gravitational fields, whose properties are studied from their claimed equivalence with
the effects of accelerated motion in Minkowski space-time, as if they were real. But apparently
Einstein, whose views were often different from our modern ones, thought of them as real!31

This can be made more precise by using comoving coordinates (with the accelerated observer),
in which Christoffel symbols appear, of the same kind that locally describe “real” gravity (see also
§1.10). Accordingly, Einstein’s strategy, effective from 1912 onwards, was to infer properties of
real gravity from known properties of accelerated motion, reinterpreted as the effects of fictitious
gravity (as we see it, or as real gravity as Einstein saw it) as felt by an observer believing
to be at rest (instead of accelerating). Its most important application, dating from 1912, is
Einstein’s crucial insight that gravity requires curved space-time, and hence should be based on
differential geometry. This was the mathematical key to GR. With hindsight, the argument is
quite straightforward: in the usual coordinates (t,x,y,z) the Minkowski line element is

ds2 = −c2dt2 + dx2 + dy2 + dz2, (1.1)

but in arbitrary coordinates (seen by Einstein as describing an arbitrary reference frame) it is

ds2 = gµν(x)dxµdxν , (1.2)

where x≡ (xµ)≡ (x0,x1,x2,x3), and the gµν(x) are certain functions (jointly forming a Lorentzian
metric at each point of space-time, as we would now say). According to version (b) of the equiv-
alence principle, then, an observer who is accelerating with respect to the coordinates (t,x,y,z)
may use comoving coordinates (xµ) in which he is entitled to feel at rest in a gravitational
field. At the same time, his line element is (1.2) rather than (1.1), and so he attributes the
effects of this field to the functions gµν . Einstein’s leap of faith–one of the most successful in
the history of science–was to generalize this argument from gravitational fields “caused” by
acceleration–whatever their ontological status–to all gravitational fields, and hence claim that
gravity is described by a metric tensor (or, as he later proposed, by its Christoffel symbols).

In actual fact, this insight came to Einstein in two steps, the first related to curved time
and the second to curved space. First, in a constantly and linearly accelerated reference frame
(t ′,x′,y′,z′), which his equivalence principle was always about, the line element (1.2) becomes

ds2 = −c2(x′,y′,z′)(dt ′)2 +(dx′)2 +(dy′)2 +(dz′)2, (1.3)

so by version (b) of the equivalence principle gravity changes the metric in the time-like
direction.32 Second, consider a child moving on a merry-go-round, with a parent waiting outside.
According to the latter, the child is accelerated inward, but according to the equivalence principle
version (b) the child (who has studied general relativity) may claim to be at rest in a gravitational
field that is radially outward directed and gives the centrifugal pull the child feels when it holds
tight to the wooden horse. Now return to the parent, who knows special relativity (which without
gravity is enough), and hence knows that moving objects contract in the direction of motion.
This affects the length of measuring rods tangent to the circumference of the disc, but not those
perpendicular to it (i.e. lying in the radial direction). Consequently, to the parent the ratio
circumference/radius exceeds 2π . By the equivalence principle this is also true for the prodigy,
who thereby concludes that gravity requires non-Euclidean geometry, at least spatially.33

31See Norton (1985) and Lemkuhl (2019). Accordingly, as part of his unholy alliance with Mach’s principle (see
footnote 24). Einstein attempted to find a material source of this induced gravitational field “at infinity”.

32This leads to the prediction of gravitational deflection of light, which was the most famous early test of GR.
33 See Stachel (1980). Einstein’s argument is more complicated than it sounds, since the description of uniformly

rotating solid discs in special relativity is tricky. However, it was just a heuristic and should be seen as such.
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1.2 Riemannian geometry

Fortunately, as a student at the ETH Zürich, where he studied from 1896–1900 to become a
mathematics teacher (Fachlehrer in mathematischer Richtung), Einstein had taken courses in
differential geometry (Infinitesimalgeometrie) and geometric invariant theory (Geometrische
Theorie der Invarianten) from a good mathematician called Carl Friedrich Geiser (1843–1934).34

Though elementary, these courses were exactly what Einstein needed in 1912 to orient himself
towards the right mathematical framework for GR (as he later acknowledged): apart from
connections to the theory of functions, the differential geometry course for example discussed
topics like coordinate systems, surfaces, line elements, (Gaussian) curvature, and geodesics.

Einstein’s second stroke of luck was that in August 1912 he had moved from Prague to Zürich
to become a professor at the ETH, where he renewed his friendship with his former ETH classmate
Marcel Grossmann (1878–1936), who had been a professor of mathematics at the ETH since
1907. Grossmann was an expert in non-Euclidean geometry and introduced Einstein to the latest
developments in this area.35 Non-Euclidean geometry had started secretly with Carl Friedrich
Gauss (1777–1855), one of the greatest mathematicians of all time, who however during his
lifetime only published his technical work on lines and surfaces embedded in Euclidean space R3

that launched the field of differential geometry (Gauss, 1828).36 This published work includes
the description of curvature and the Theorema Egregium (i.e. ‘remarkable theorem’), which
states that what we now call the Gaussian curvature of a surface, though initially defined via its
embedding in R3 (i.e. extrinsically), is in fact independent of the embedding and hence is an
intrinsic property. See eq. (4.75) in §4.3. Thus a surface has both intrinsic and extrinsic curvature,
a fact which–jumping ahead of Einstein–in one dimension higher (namely a three-dimensional
space embedded in a four-dimensional space-time) will play a central role in the initial-value
problem of GR (as well as in its closely related Hamiltonian formulation). See chapter 8.

The work of Gauss was taken a decisive step further by his brilliant–perhaps even greater–
student Bernhard Riemann (1826–1866). In his extraordinarily visionary Habilitation lecture on
June 10, 1854, Riemann simply left out the ambient Euclidean space and also worked in arbitrary
dimension.37 This lecture starts in the following provocative way:38

34Einstein in fact rarely went to lectures and prepared himself for exams using notes taken by Grossmann.
35See Sauer (2014) for a survey of Grossmann’s interaction with Einstein and his contributions to GR.
36A very good introduction to this work is Volume 2 of Spivak (1999), chapter 3, which includes a translation.
37Also here Volume 2 of Spivak (1999), chapter 4, is an excellent introduction. Riemann’s lecture from 1854 was

given for a non-mathematical audience including philosophers (but also the aging Gauss) and so it contains almost
no equations. What we now call the Riemann tensor was first given in an initially unpublished prize essay on heat
conduction, known among historians as the Commentatio, which first appeared in Riemann (1876), pp. 370–383. In
this essay, Riemann models heat flow using a three-dimensional metric, whose local flatness (which turned out to be
physically interesting) he relates to the vanishing of the curvature tensor, cf. Theorem 4.1 in the present book. See
Farwell & Knee (1990) and Darrigol (2014). The transition from Gauss to Riemann is described in detail by Reich
(1973), and is embedded in the general history of ninetheenth century geometry by Gray (2007).

38 ‘Bekanntlich setzt die Geometrie sowohl den Begriff des Raumes, als die ersten Grundbegriffe für die
Constructionen in Raume als etwas Gegebenes voraus. Sie giebt von ihnen nur Nominaldefinitionen, während die
wesentlichen Bestimmungen in Form von Axiomen auftreten. Das Verhältniss dieser Voraussetzungen bleibt dabei
in Dunkeln; man sieht weder ein, ob und in wie weit ihre Verbindung nothwendig, noch a priori, ob sie möglich ist.
Diese Dunkelheit wurde auch von Euklid bis auf Legendre, um den berühmtesten neueren Bearbeiter der Geometrie
zu nennen, weder von den Mathematikern, noch von den Philosophen, welche sich damit beschäftigten, gehoben.
Es hatte dies seinen Grund wohl darin, dass der allgemeine Begriff mehrfach ausgedehnter Grössen, unter welchem
die Raumgrössen enthalten sind, ganz unbearbeitet blieb. Ich habe mir daher zunächst die Aufgabe gestellt, den
Begriff einer mehrfach ausgedehnten Grösse aus allgemeinen Grössenbegriffen zu construiren. Es wird daraus
hervorgehen, dass eine mehrfach ausgedehnte Grösse verschiedener Massverhältnisse fähig ist und der Raum also
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It is known that geometry assumes, as things given, both the notion of space and the first
principles of constructions in space. She gives definitions of them which are merely nominal,
while the true determinations appear in the form of axioms. The relation of these assumptions
remains consequently in darkness; we neither perceive whether and how far their connection
is necessary, nor a priori, whether it is possible.

From Euclid to Legendre (to name the most famous of modern reforming geometers) this
darkness was cleared up neither by mathematicians nor by such philosophers as concerned
themselves with it. The reason of this is doubtless that the general notion of multiple
extended magnitudes (in which space-magnitudes are included) remained entirely unworked.
I have in the first place, therefore, set myself the task of constructing the notion of a multiply
extended magnitude out of general notions of magnitude. It will follow from this that a
multiply extended magnitude is capable of different measure-relations, and consequently
that space is only a particular case of a triply extended magnitude. (Riemann, 1854)

As Gray (2007, p. 193) put it, ‘Euclid’s postulates are completely subverted: no longer can
they be regarded as unproblematically true assumptions about physical space.’ Even in two
dimensions, the (hyperbolic) non-Euclidean geometries discovered two decades earlier by Bolyai
and Lobachevskii were far from the only possibilities (although, as Riemann mentioned, they do
have special symmetry properties).39 Riemann’s main ideas, hardly formalized by him however,
were firstly that of a manifold (described by him as an ‘n-fach ausgedehnte Grösse’, and later
even as a ‘Mannigfaltigkeit’),40 and secondly that of a metric (defined on a manifold), which he
made responsible for derived notions like distance, angles, geodesics, and curvature, and as such
identified as the basis of geometry. Applied to space-time rather than space,41 this turned out to
be exactly what was needed for GR. This gives the second great and remarkable example of a
piece of mathematics that was initially developed for purely intrinsic (i.e. mathematical) reasons
but later turned out to provide the right language for some profound new physical theory.42

nur einen besonderen Fall einer dreifach ausgedehnten Grösse bildet.’ Translation by W.K. Clifford.
39Riemann did not name Bolyai and Lobachevskii and probably did not know their work. Yet one of the few

formulas in his lecture gives the metric of hyperbolic space as an example of a space with constant curvature.
40 The historical development of the concept of a manifold is described by Scholz (1980, 1999). The word

‘Mannigfaltigkeit’ had been used by Gauss in lectures, but always in the context of subspaces of (what we now call)
Rn, and it really seems to have been Riemann who conceived the general notion, including hints towards global
structure described by overlapping charts (one may even argue that his habilitation lecture foreshadowed both set
theory and topology; for example, he explicitly left room for discrete as opposed to continuous structures, and in his
earlier PhD thesis from 1851 Riemann had even talked about infinite-dimensional spaces of functions). However, as
Scholz notes (p. 30), ‘The reception and assimilation of Riemann’s concept of a manifold to the mathematics of
the 19th century was slow and inhibited by severe conceptual problems’. As we shall see, Ricci (and Levi-Civita)
even turned the clock back by omitting any reference to global structure and basing their tensor calculus entirely
on the use of coordinates without a specified domain (which was often implicitly taken to be Rn). Nonetheless,
in a development in which topology, geometry, and function theory can hardly be separated, through the work of
Beltrami, Helmholtz, Klein, Möbius, Jordan, Schäfli, Betti, Poincaré, Brouwer, Hausdorff and others, the modern
notion of a manifold finally arose. In dimension two, Hilbert (1902b) sketched the modern definition in terms of
open neighbourhoods, charts, and coordinate changes (where he also had to define the fundamental notions of
topology, a subject that at the time had by no means been brought into final form). This was subsequently formalized
by Weyl (1913) in dimension two, and then by Veblen & Whitehead (1932) and Whitney (1936) in general.

41Even this twist we owe to a mathematician, namely Minkowski, cf. Corry (2004).
42The first great example is the application of the conic sections of the ancient Greeks (first described in the fourth

century B.C. in the context of problems in Euclidean geometry) to motion in a gravitational field, starting with
Galilei’s parabolic motion of projectiles on earth and culminating in Newton’s derivation of Kepler’s laws describing
the elliptic motion of planets in Principia–one of the highlights in the history of science, on a par with the discovery
of GR. The second great example, then, is GR. The third is functional analysis, which developed out of abstract
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1.3 Absolute differential calculus and general covariance

To this remarkable success story one should add the computational device that made Riemannian
geometry workable for Einstein, namely the “absolute differential calculus” developed by
Gregorio Ricci-Curbastro (1853–1925), also simply called Ricci.43 This calculus was written
down in final form in 1901 in a joint paper by Ricci and his student Tulio Levi-Civita (1873–
1941), who also became interested in GR (including a personal friendship with Einstein).44

Of historical interest only now, this paper is very instructive as a portrait of the mathematical
world which Einstein inhabited in the 1910s. The absolute differential calculus (or tensor
calculus) uses formal real variables x1,x2, . . .xn, but any kind of geometric perspective is absent:
the calculus is a completely formal mix of algebra and analysis. Even the abstract framework of
(multi)linear algebra is lacking (multilinear maps are written in terms of their components relative
to a basis), so that everything is written down in terms of indices and tensors are defined (as they
still are in some modern physics books) by their behaviour under coordinate transformations.
The main achievement of the absolute differential calculus is the introduction of the covariant
derivative on arbitrary tensors, along with all the rules for working with it.45 This gives the
Riemann tensor, the Ricci tensor, the Ricci scalar, and many other similar constructions, studied
from the point of view of invariant theory (as opposed to geometry).

The next stage in Einstein’s path to GR only makes sense if we understand Einstein’s
conflation of general covariance with a relativity principle.46 It is crucial to realize that for
us, coordinate systems are arbitrary, physically dead labelings of points in space-time. But for
Einstein, coordinates were alive as physical frames of reference, in the sense that the system
(x0,~x) really describes the world line (x0(t),~x(t)) = (t,~x) of an observer who is spatially at rest
at~x, but moves in time t, including the stipulation that events at (t,~x) and (t,~y) are simultaneous,

nineteenth century analysis and turned out to be exactly the right mathematical language for quantum mechanics
(e.g. Landsman, 2019). This phenomenon is still not well understood. Hilbert and his circle, who played a key role
in both the second and the third example (i.e. GR and quantum theory), invoked what they called a “pre-established
harmony between physical nature and mathematical mind” (Corry, 2004), but this seems a sledge-hammer argument
that explains nothing. Note that the issue is not what Wigner (1960) famously called the ‘unreasonable effectiveness
of mathematics in the natural sciences’, or, in other words, the ‘appropriateness of the language of mathematics
for the formulation of the laws of physics’, which, he added lyrically but misleadingly, ‘we neither understand
nor deserve’. Without in any way lessening our admiration for Newton’s genius, we perfectly well understand the
applicability of the calculus to classical mechanics, since Newton purposely developed those in close interaction
with each other. Our point is that the conic sections were already there, waiting for him. The miracle, if there is one,
is the applicability of mathematical concepts that were invented purely for their own sake to physical theories like
GR and quantum mechanics, which postdate these inventions with no apparent link or common cause.

43See Reich (1994) for the relevant mathematical history in depth and Goodstein (2018) for (light) biography.
44Levi-Civita later wrote a textbook on the absolute differential calculus including its application to GR (Levi-

Civita, 1926; Italian original from 1923), in which he uses the concept of parallel transport he had invented himself
in the wake of GR. This makes the 1923 book slightly more geometric than the 1901 paper, but most of the
comments in the main text about the 1901 paper also apply to Levi-Civita’s book. Almost simultaneously, the Dutch
mathematician Jan Arnoldus Schouten (1883–1971) published his book Schouten (1924), dedicated to Ricci, which
is similar, to Levi-Civita’s book except that it only mentions Einstein in a footnote as someone who applied the
theory of linear connections to physics (‘Physikalische Anwendungen gaben Weyl, Eddington, und Einstein’), and
leaves it at that as far as GR is concerned. Schouten founded a Dutch school in tensor calculus that involved e.g.
Dirk-Jan Struik (1894–2000), who later became a well-known (Marxist) historian of mathematics, and Max Euwe
(1901–1981), who was originally a mathematics high-school teacher but is better known from his career in chess, in
which he was world champion from 1935–1937. He later became one of the first Dutch computer scientists.

45The Lie derivative is still absent from the tensor calculus; it was introduced in 1931 by the Polish mathematician
Władysław Ślebodziński (1884–1972), who survived Auschwitz and two other concentration camps.

46Relevant literature, none of which we literally follow, includes Norton (1989, 1993) and Janssen (2012, 2014).
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at least for the observer moving along the given world line.47 In order to even talk about,
for example, the speed of light, the coordinate t must then be given the physical meaning of
time, and the coordinate difference |~x−~y| the physical meaning of distance. For Einstein, then,
inertial frames are described by distinguished coordinate systems, and coordinate transformations
correspond to changes in frames of reference, which may or may not preserve inertial frames. In
special relativity inertial frames correspond to geodesics,48 and hence to do justice to the two
ingredients of the principle of special relativity (i.e. relativity of uniform motion and constancy of
the speed of light) it seems natural to define symmetries as transformations (i.e. diffeomorphisms)
of space-time that map geodesics into geodesics and preserve the speed of light. This precisely
gives the Poincaré transformations (which are Lorentz transformations combined with constant
translations in space-time), which in turn coincide with the isometries of the Minkowski metric.49

Einstein’s reasoning then seems to have been as follows. The special principle of relativity
states that the laws of physics (including constancy of the speed of light but excluding gravity)
are the same in each inertial frame (and in no others). Hence the special principle of relativity
is equivalent to the invariance of the laws of physics under certain special coordinate trans-
formations, namely Poincaré transformations. Therefore, the general principle of relativity
(which Einstein was after because he liked Mach’s principle and in special relativity disliked the
presence of special coordinate systems–which he identified with inertial reference frames) should
consist of the invariance of the laws of physics under general coordinate transformations.50

By a stroke of fortune Ricci’s absolute differential calculus gave Einstein partial differential
equations for physics that were invariant under general coordinate transformations; this was
even what Ricci meant by “absolute”. And this, in Einstein’s view, made all physical frames
of reference equivalent and gave him the mathematical machinery for his “general principle of
relativity”. The equivalence principle then implied that general relativity is only possible in the
presence of gravity, indeed is a theory of gravity, which is then automatically generally covariant.

The requirement of general covariance was one of the keys for Einstein in finding his field
equations during the years 1913–1915, though not without a distraction in the form of the Hole
Argument, as we shall see shortly. Later in his life Einstein increasingly came to believe that
mathematics (and in particular the idea of general covariance) had been the key to his success,
which (not even mentioning his own physical insights) already in 1915 he had described as a
‘real triumph of the general method of the differential calculus developed by Gauss, Riemann,
Christoffel, Ricci, and Levi-Civita.’ His most blatant statement in this direction is probably that:

47Hence a reference frame should perhaps be taken to be a congruence of geodesics, rather than a single one.
48It was Einstein who reintroduced the geometric concept of a geodesic in this context–a crucial move towards

the current reconciliation of the tensor calculus with differential geometry–but formulated in terms of coordinates.
49The diffeomorphisms of R4 that merely preserve the geodesics of the Minkowski metric just have to preserve

straight lines and hence correspond to affine maps, i.e., linear transformation plus translation. This is also true in
Euclidean space, where affine transformations preserve straight lines but only isometries also preserve distances.
In the Euclidean case the linear part of an isometry must be a rotation or a reflection, whereas in the Minkowski
case it must be a Lorentz transformation (which notion by definition includes spatial and temporal reflections). See
also Kobayashi & Nomizu (1963), chapter VI, for the notion of affine transformations of manifolds with an affine
connection, such as the Levi-Civita connection, and, in that case, their relationship to isometries.

50We return to this issue in §1.10. For now, we just mention that Einstein’s argument is widely regarded as
suspicious and that the correct generalization of his reasoning about special relativity would be to say that symmetries
of a specific space-time (including a metric) are isometries (which in particular map geodesics to geodesics), whereas
the symmetries of GR as a theory are diffeomorphisms (or, for that matter, general coordinate transformations).
Since any kind of relativity of motion should refer to some specific space-time, it would be a category mistake
to infer it from invariance properties of the theory as a whole. If anything, motion is relative only with respect to
(non-trivial) isometries of a fixed space-time (if these exist), which preserve geodesics and Lorentzian distances.
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The gravitational equations could only be found by a purely formal principle (general
covariance), that is, by trusting in the largest imaginable logical simplicity of the natural
laws.51 (Einstein to De Broglie, 1954)

In his Herbert Spencer Lecture in Oxford, 1933, he mused:

Newton (. . . ) still believed that the basic concepts and laws of his system could be derived
from experience (. . . ). It was the general Theory of Relativity which showed in a convincing
way the incorrectness of this view. For this theory revealed that it was possible for us, using
basic principles very far removed from those of Newton, to do justice to the entire range of
the data of experience in a manner even more complete and satisfactory than was possible
with Newton’s principles. But quite apart from the question of comparative merits, the
fictitious character of the principles is made quite obvious by the fact that it is possible to
exhibit two essentially different bases, each of which in its consequences leads to a large
measure of agreement with experience. This indicates that any attempt logically to derive
the basic concepts and laws of mechanics from the ultimate data of experience is doomed
to failure. If then it is the case that the axiomatic basis of theoretical physics cannot be an
inference from experience, but must be free invention, have we any right to hope that we
shall find the correct way? Still more–does this correct approach exist at all, save in our
imagination? Have we any right to hope that experience will guide us aright, when there are
theories (like classical mechanics) which agree with experience to a very great extent, even
without comprehending the subject in its depths? To this I answer with complete assurance,
that in my opinion there is the correct path and, moreover, that it is in our power to find
it. Our experience up to date justifies us in feeling sure that in Nature is actualized the
ideal of mathematical simplicity. It is my conviction that pure mathematical construction
enables us to discover the concepts and the laws connecting them which give us the key to
the understanding of the phenomena of Nature. Experience can of course guide us in our
choice of serviceable mathematical concepts; it cannot possibly be the source from which
they are derived; experience of course remains the sole criterion of the serviceability of a
mathematical construction for physics, but the truly creative principle resides in mathematics.
In a certain sense, therefore, I hold it to be true that pure thought is competent to comprehend
the real, as the ancients dreamed. (Einstein, 1934, pp. 166–167)

Similarly, Hilbert, to whose role in the development of GR we will return in §1.7, saw Einstein’s
theory as the final demise of the idea that physical theories should be based on experience:

In Einstein’s theory we now have a conistent field theory before us; the second stage
in the development of physics has thereby been reached. What happens is not merely
switching off the senses, as is the case with mechanics, but rather the complete elimination
of anthropomorphism. The conceptual structures have completely emancipated themselves
from the usual sense impressions, and it is precisely by getting rid of these that objectivity
in the understanding of the laws of nature as well as the unity and clarity of the theoretical
system are achieved. In this regard, I would like to regard the general principle of relativity
as the highest triumph of the mind over the world of appearances.52 (Hilbert, 1919/1920)

51‘Die Gravitationsgleichungen waren nur auffindbar auf Grund eines rein formalen Prinzips (allgemeine
Kovarianz), d.h. auf Grund des Vertrauens auf die denkbar grösste logische Einfachheit der Naturgesetze.’ Quoted
in van Dongen (2010), pp. 2–3, whose book is a major analysis of the issue at hand. See also van Dongen (2017).

52‘In dieser Einsteinschen Theorie haben wir nun eine konsequente Feldtheorie vor uns; die zweite Stufe in der
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1.4 Towards the gravitational field equations: Entwurf Theorie
However, historical reconstruction has shown that the truth may have been quite different.
Considerable evidence shows that Einstein did find his equations by the mathematical requirement
of general covariance, but combined with various physical requirements he always had in mind,53

notably the necessity of the correct Newtonian limit as well as of energy-momentum conservation.
Specifically, after he had realized that Newton’s gravitational force (or rather its scalar

potential ϕ) should be replaced by the 10 components of the metric tensor gµν , and through
Grossmann had familiarized himself with the necessary mathematics, from the autumn of 1912
onwards Einstein actively tried to involve the metric gµν in generalizing Poisson’s equation

∆ϕ = −4πGρ , (1.4)

where G is Newton’s gravitational constant and ρ is the matter density. He aimed at the structure

Qµν = κTµν , (1.5)

where Tµν is the energy-momentum tensor that had already been introduced in special relativity
by von Laue and had been generalized to curved space-time by Kottler, κ is some constant
(which later became κ = 8πG), and Qµν is some tensor to be constructed from the metric using
the absolute differential calculus.54 It took Einstein three years to get to the correct expression

Qµν = Rµν − 1
2gµνR, (1.6)

during which he ‘dedicated himself to the problem of gravitation with superhuman effort’.55

In retrospect he was almost there right from the start, since after Grossmann had pointed
out the Riemann tensor to him in the autumn of 1912 Einstein at once tried the associated Ricci
tensor Qµν = Rµν , but this turned out to give the wrong Newtonian limit–or so he thought; in
fact, the problem did not lie in the omission of the − 1

2gµνR term, but with the coordinates he
used, as well as with a misconception that would trouble Einstein for years to come, namely that
in the Newtonian limit (and in suitable coordinates) the metric should take the diagonal form
(1.3), where the variable speed of light c(x′,y′,z′) takes care of “everything”. In other words,
time is curved but space remains Euclidean. As the Schwarzschild solution shows, this is wrong,

In his search for the gravitational field equations Einstein was led by a powerful formal
analogy with electrodynamics (whose four-dimensional formulation due to Minkowski he had
initially been slow to endorse), whose (“specially” covariant) field equations take the form

∂ρFµρ = kJµ , (1.7)

Entwicklung der Physik ist damit erreicht. Nicht bloß eine Ausschaltung der Sinne, wie bei der Mechanistik, findet
hier statt, sondern eine gänzliche Beseitigung des Anthropomorphismus. Die Begriffsbildungen haben sich ganz und
gar von dem anschaulig Geläufigen emanzipiert; und gerade dadurch, daß man sich von der Anschauung losmacht,
wird die Objektivität in der Auffassung der Naturgesetze sowie die Einheit und Übersichtlichkeit des theoretischen
Systems erreicht. In dieser Hinsicht möchte ich das allgemeine Relativitätsprinzip als den höchsten Triumph des
Geistes über die Erscheinungswelt ansehen.’ (Hilbert, 1992, p. 51).

53See Janssen (2014). Ironically, Einstein started his Herbert Spencer Lecture with the following warning: ‘If
you wish to learn from the theoretical physicist anything about the methods which he uses, I would give you the
following piece of advice: Don’t listen to his words, examine his achievements.’ See also van Dongen (2010).

54The reconstruction of Einstein’s ideas during 1912–1913 is largely based on the Zürich Notebook, which
Einstein used from August 1912 to May 1913. A transcription may be found in Einstein (1996a) and a fascimile
with transcription and commentary is in Renn (2007), Volume 1, pp. 313–487. The original is kept in Jerusalem.

55 ‘geradezu übermenschlichen Anstrengungen, mit denen ich mich dem Gravitationsproblem gewidmet habe’,
as he wrote on May 28, 1913, to his friend Paul Ehrenfest, quote taken from Fölsing (1993, p. 357).
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where F is the electromagnetic field strength tensor, J = (J0,~J) is the electric (charge density,
current), and k is a constant. This suggested to Einstein that (1.5) should also be thought of as

∂ρHρ

µν = κ(Tµν + tµν), (1.8)

where the object Hρ

µν , constructed from the metric, represents the gravitational field, and tµν is the
energy-momentum tensor of the gravitational field itself (whereas Tµν is the energy-momentum
tensor of the matter in the universe). From the point of view of (1.5), an obvious first guess for
the left-hand side, which Einstein indeed wrote down, is (up to a constant factor)

Qµν = gρσ
∂ 2gµν

∂xρ∂xσ
, (1.9)

where (gρσ ) is the inverse matrix to (gρσ ) as usual, but in the context of (1.8) he started from

Hρ

µν = − 1
2gρσ

∂µgσν , (1.10)

which he later described as a ‘fateful prejudice’. It was only in November 1915 that he realised
that the choice

Hρ

µν = −Γρ

µν , (1.11)

where Γρ

µν are the Christoffel symbols he knew well from the absolute differential calculus, i.e.,

Γρ

µν = 1
2gρσ (∂νgσ µ + ∂µgσν −∂σ gµν), (1.12)

gave him the best of both worlds (though not yet quite the correct field equations, see below).
One reason for (1.10) may have been that if he adapted the Lagrangian of electrodynamics, i.e.

L = − 1
4FµνFµν = − 1

4η
µρ

η
νσ FµνFρσ , (1.13)

to the gravitational case by postulating

L = −gνσ Hρ

µνHµ

ρσ , (1.14)

then the choice (1.10) led to what historians call the Entwurf Theorie (Einstein & Grossmann,
1913). Although the field equations of this theory (whose tedious explicit form we omit),
derived from (1.14) by the variational calculus, are not generally covariant (like the Lagrangian
itself), Einstein nonetheless felt they were correct, since they gave both the Newtonian limit and
energy-momentum conservation, albeit only in certain preferred coordinate systems. He wrote:

The labor is finally ready, after endless trouble and vexing doubts.56

This brought Einstein in a very interesting psychological situation: since he believed his
theory was ready despite the egregious shortcoming of not being generally covariant (and hence,
as he thought, not satisfying the “general principle of relativity”, and hence, via his virtual
identification of all these things, violating the equivalence principle), he started looking for
arguments against general covariance (and, by implication, almost all his other holy principles)!57

56 ‘Die Arbeit ist nach unendlicher Mühe und quälenden Zweifeln nun endlich fertig geworden.’ Quote from an
undated letter to Ernst Mach, probably written during the summer of 1913, taken from Fölsing (1993).

57See Janssen (2014) and Norton (2018) for fascinating reflections on this remarkable aspect of Einstein’s mind.
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1.5 The Hole Argument

One such argument has been of lasting value, namely the Hole Argument (Lochbetrachtung).58

Einstein presented the argument in terms of local coordinate transformations, but for a modern
reader it may be easier to understand his reasoning using a global perspective, replacing coordi-
nate transformations by diffeomorphisms.59 The key to the argument is the covariance property
(4.27) of the Riemann tensor, which implies a similar property for the Einstein tensor,60 namely

ψ
∗(Ein(g)) = Ein(ψ∗g). (1.15)

Similarly, for any healthy energy-momentum tensor T (g,F) constructed from the metric g and
the matter fields F that matter we should have

ψ
∗(T (g,F)) = T (ψ∗g,ψ∗F). (1.16)

Consequently, if g satisfies the Einstein equations Ein(g) = 8π T (g,F), then ψ∗g satisfies these
equations for the transformed matter fields ψ∗F . Now consider an open connected region H in
space-time where F = 0 and hence T (g,F) = 0, possibly surrounded by matter; H is referred to
as a “hole”, whence the name of the argument.61 Furthermore, find a diffeomorphism ψ that is
nontrivial inside H and equals the identity outside H, so that in particular,

T (ψ∗g,ψ∗F) = T (ψ∗g,F) = T (g,F), (1.17)

both outside H (where ψ is the identity) and inside H (where T (g,F) = 0). It follows that
if g satisfies the Einstein equations for some energy-momentum tensor T , then so does ψ∗g.
Hence the space-times (M,g) and (M,ψ∗g) satisfy the Einstein equations for the same matter
distribution and are identical outside H. But they differ inside the hole. Einstein saw this
as a proof that for generally covariant equations the matter distribution fails to determine the
metric and hence the gravitational field uniquely, and regarded this as such a severe challenge to
determinism that, supported by the other problems he had, he retracted general covariance.62

When Einstein returned to general covariance during 1915 (see §1.6 below), he conveniently
forgot to mention his Hole Argument, returning to it only in his review Einstein (1916a), see
§1.10. For the moment we leave it at that, and return to development of GR during 1913–1915.

58The earliest known reference to the Hole Argument is in a memo by Einstein’s friend and colleague Besso
dated August 1913, provided this dating is correct (Janssen, 2007). Einstein subsequently presented his argument
four times in print; we just cite Einstein (1914) as the paper containing his final version. See Janssen & Renn (2022),
§4.1. Einstein’s invention of the argument formed part of his analysis of the interplay between general relativity (of
motion), general covariance (of equations under coordinate transformations), and determinism. For surveys of the
Hole Argument see Stachel (2014), Norton (2019), Pooley (2022), and Landsman (2022b); see also §1.10 and §7.8.

59 In coordinates the argument reads as follows. If gµν (x) solves some generally covariant equations in a
coordinate system (x), then so does g′µν (x

′), i.e. the same metric expressed in a new coordinate system (x′),
constructed from gµν (x) by the usual transformation rules for tensors. This is the same metric. Einstein’s point is
that g′µν (x) also solves the equations, even though (barring isometries), it is a different metric.

60We write the Einstein tensor as Ein(g); in coordinates we have Ein(g)µν = Gµν = Rµν − 1
2 gµν R.

61 Einstein’s arrangement looks unnatural to us. But he was inspired by Mach’s principle, where “the fixed stars
at infinity” determine the local inertia of matter; see Hofer (1994), Janssen (2007), Stachel (2014), and Janssen &
Renn (2022). Another argument favours Einstein’s curious setting for the Hole Argument over Hilbert’s PDE version
(see §1.10): the smaller the hole, i.e. the larger the complement of the hole, the greater the challenge to determinism,
for if even things almost everywhere outside a tiny hole fail to determine things inside that tiny hole, then we should
really worry (Butterfield, 1989). See Muller (1995) for an explicit construction of a hole diffeomorphism.

62 At the time, even nontrivial vacuum solutions were anathema to Einstein, let alone inequivalent ones.
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1.6 Finding the gravitational field equations: November 1915
During these years, Einstein became increasingly dissatisfied with his Entwurf Theorie:63

I recognized that the field equations for gravitation I had so far were totally untenable.64

It is remarkable how quickly Einstein then collected himself, since in the dramatic month of
November 1915 he wrote four brief papers converging to the final answer (1.6), although, as if
they were a compressed history of the preceding years, some of these contained new mistakes.65

One reason for Einstein’s hurry in putting his thoughts into print was a competition with Hilbert
(or at least that is what Einstein felt); we will return to Hilbert’s role in the history of GR shortly.

The first paper (Einstein, 1915a, dated November 4) still failed to achieve general covariance,
but at least Einstein states the intention to restore it (in a remarkably personal passage):

On these grounds I completely lost confidence in the field equations I had established and
searched for a way to restrict the possibilities in a natural manner. Thus I got back to the
requirement of more generally covariant field equations, which I had left only with a heavy
heart when I worked together with my friend Grossmann. In fact we had already then come
very close to the solution of the problem given in what follows.66 (Einstein, 1915a, p. 778)

Einstein recognized that (1.11) rather than (1.10), which had led to the Entwurf equations, was
the correct choice.67 Putting (1.11) in the Lagrangian (1.14) then leads to the field equations

R̃µν = κTµν , (1.18)

where the non-covariant expression R̃µν = ∂ρ Γρ

µν −Γρ

νσ Γσ
ρµ is “half” of the full Ricci tensor

Rµν = ∂ρ Γρ

µν −∂ν Γρ

µρ +Γρ

ρσ Γσ
νµ −Γρ

νσ Γσ
ρµ . (1.19)

63Einstein’s rejection of the Entwurf Theorie is a story by itself, but briefly: (i) it did not satisfy Mach’s principle
as Einstein saw it (he insisted that a uniformly rotating empty Minkowski space-time should be a solution to the
Entwurf equations, which it wasn’t–a calculation Einstein did over and over again with different results each
time); (ii) there were problems with its Lagrangian formulation; (iii) Einstein’s earlier arguments that the theory
was unique given the correct Newtonian limit and energy-momentum conservation turned out to be flawed; (iv)
energy-momentum conservation was only possible in specific coordinate systems, namely in those where the
Entwurf field equations were supposed to be valid; (v) it got the perihelion shift of Mercury wrong (by a factor 2.4).

64‘Ich erkannte nämlich, dass meine bisherigen Feldgleichungen der Gravitation gänzlich haltlos waren!’ Letter
to Sommerfeld, 28 November 1915 (Einstein, 1999, Doc. 153). This insight refers to October 1915.

65Each of these papers was based on a talk Einstein gave at the Prussian Academy of Sciences on the day the
paper is dated (in particular, he also presented his final field equations on November 25th). See Simon (2005). For
those who wish to look at the original papers it is worth mentioning that Einstein denotes the Ricci tensor by Gik
instead of the current Rµν (and today’s Gµν is the Einstein tensor Rµν − 1

2 gµν R), whilst his Rik is minus our R̃µν .
66‘Aus diesen Gründen verlor ich das Vertrauen zu den von mir aufgestellten Feldgleichungen vollständig und

suchte nach einem Wege, der die Möglichkeiten in einer natürlichen Weise einschränkte. So gelangte ich zu der
Forderung einer allgemeineren Kovarianz der Feldgleichungen zurück, von der ich vor drei Jahren, als ich zusammen
mit meinem Freunde Grossmann arbeitete, nur mit schwerem Herzen abgegangen war. In der Tat waren wir damals
der im nachfolgenden gegebenen Lösung des Problems bereits ganz nahe gekommen.’

67Compared to the Einstein–Hilbert Lagrangian LEH =
√
−gR, the Lagrangian LNov 4 = −gνσ Γρ

µν Γµ

ρσ used in
Einstein (1915a), cf. (1.11) and (1.14), assuming g = −1, is not so far off. The first two terms in (1.19), which are
absent in LNov 4, merely bring a divergence and hence do not contribute to the equations of motion; this is the reason
why the Einstein equations are second-order, although LEH contain second-order derivatives of the metric and
hence a priori one would expect fourth-order equations. Furthermore, the third term in (1.19) vanishes if g = −1,
cf. (1.20), so that all that survives of LEH is precisely LNov 4. The reason the equations (1.18) miss − 1

2 gµν R is that
this term arises from a variation of

√
−g in LEH , which is missing in LNov 4 because it has been put equal to 1.
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In unimodular coordinates, in which g≡ det(g) = −1, we actually have R̃µν = Rµν , since

∂µ

√
−g =

√
−gΓρ

µρ . (1.20)

However, it seems that Einstein recognized this fact only after he had submitted his first November
paper. For one had to wait for the second one (Einstein, 1915b) for him to say the following:

This tensor Rµν is the only tensor that is available for the formulation of generally covariant
gravitational equations. If we now agree that the field equations of gravitation should be

Rµν = κTµν , (1.21)

then we have gained generally covariant field equations.68

He then justifies (1.21) by the fact that in unimodular coordinates it coincides with his earlier
(1.18), but notes a serious problem: combining (1.18) with the unimodularity condition

det(g) = −1 (1.22)

enforces T µ

µ = 0. At this point, under less duress he would undoubtedly have seen that the
problem is solved by adding − 1

2gµνR to the left-hand side (or, equivalently, − 1
2gµνT to the

right-hand side) of (1.21). But this simple solution took him another week to arrive at.69 Instead,
he apparently felt compelled to save both his equations (1.18), which were the ones he really
believed in, and general covariance. This combination required the unimodularity condition,
and hence tracelessness of the energy-momentum tensor, which therefore had to be justified
one way or the other. Such justification was available in the form of the electromagnetic world
hypothesis, which went back to Gustav Mie (1868–1957), and also haunted Hilbert (as we shall
see). In Einstein’s case it was rather short-lived, since his only reason for believing in it was to
obtain a traceless energy-momentum tensor. During the next week he saw his reasoning collapse
once again, for he noted that the unimodularity condition was incompatible with what he still
thought was the Newtonian limit of his theory, namely (1.3). But in Einstein (1915c) he redid
the computation of the perihelion shift of Mercury, which he had first done with Besso in June
1913 using his Entwurf Theorie,70 from his new equations (1.18), and assuming (1.22):

Imagine my joy when I found that the equations correctly have the perihelion shift of
Mercury (. . . ) I was speechless from excitement for several days.71

The computation also opened Einstein’s eyes to the incorrectness of (1.3) in the Newtonian limit
and at last gave him the correct picture of it. Having rescued the condition (1.22), all that was left
was to remove its undesired consequence T ≡ T µ

µ = 0.72 Thus Einstein (1915d) finally wrote

Rµν = κ(Tµν − 1
2gµνT ) . (1.23)

This was the end of his magnificent search for generally covariant gravitational field equations.
68‘Dieser Tensor Gik ist der einzige Tensor, der für die Aufstellung allgemein kovarianter Gravitationsgleichungen

zur Verfügung steht. Setzen wir nun fest, daß die Feldgleichungen der Gravitation lauten sollen Gµν = −κTµν , so
haben wir damit allgemein kovariante Feldgleichungen gewonnen.’ (Einstein, 1915b, p. 800). The Greek indices are
in fact Einstein’s own notation; he freely mixed these up with Latin ones.

69Footnote 1 in the November 18th paper (Einstein, 1915c) shows that Einstein knew the solution by then.
70See Einstein (1996a, Doc. 14, with extensive editorial notes on pp. 344–359.
71‘Denk Dir meine Freude beim Resultat, daß die Gleichungen die Perihel-Bewegungen Merkurs richtig liefern

(. . . ), Ich war einige Tage fassungslos vor Erregung.’ From a letter to Ehrenfest, January 16, 1916, cf. Fölsing (1993,
p. 418). Fokker (1955) also reports that Einstein had told him he had got palpitations after this computation.

72Like (1.21), the linearized form of (1.23) was already in the Zürich Notebook; the extra term − 1
2 gµν T also

balances a corresponding term in the gravitational energy-momentum tensor (Janssen & Renn, 2020).
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Albert Einstein in 1916 (Credit: Museum Boerhaave, Leiden)
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1.7 Hilbert
Though this is not obvious from Einstein’s papers, his mathematical colleague David Hilbert
(1862–1943) played a significant role in the development of GR.73 Contra his shallow and
completely undeserved reputation of being a “formalist”,74 Hilbert was actually interested in
physics throughout his career and often lectured on it. He combined this interest with his
relentless emphasis on axiomatization, which started with his famous memoir Grundlagen der
Geometry from 1899, in which he rewrote Euclidean geometry and heralded the modern era in
mathematics. Exemplifying this, his Sixth Problem (from the famous list of 23 in 1900) reads:75

Mathematical Treatment of the Axioms of Physics. The investigations on the foundations
of geometry suggest the problem: To treat in the same manner, by means of axioms, those
physical sciences in which already today mathematics plays an important part; in the first
rank are the theory of probabilities and mechanics. (Hilbert, 1902a).

Hilbert’s involvement with Einstein and relativity goes back to his joint seminar during the Winter
Semester of 1907 at Göttingen with his friend and colleague Hermann Minkowski (1864–1909),
who incidentally had been one of Einstein’s teachers at Zürich (and did not think much of him).
This seminar led Minkowski to his four-dimensional space-time view of special relativity, which
after some hesitation also Einstein adopted and which of course was one of the keys to GR.

Hilbert was also interested in Mie’s theory electromagnetic of matter from 1912, which has
already been mentioned in connection with Einstein (1915b), and which was perhaps the first
example of a “unified field theory”. It was, in particular, based on an action principle (i.e. a
Lagrangian, called a “world function” at the time), an idea which fitted well with Hilbert’s notion
of axiomatization and would play a central role in his work on gravitation to come.76

In 1915 Einstein came to Göttingen to give the Wolfskehl Lectures (from June 19 to July
7), which were devoted to general relativity and especially his Entwurf Theorie, which he still
believed in at the time. Hilbert not only attended these lectures (as did e.g. Emmy Noether
and Felix Klein), but he and his wife also hosted Einstein as their personal guest at home.77 It
seems that Einstein’s visit triggered an all-out assault on the foundations of physics by Hilbert,
who tried to combine elements of Mie’s theory with Minkowski’s space-time view of special
relativit and Einstein’s insights into the applicability of Riemannian geometry and the absolute
differential calculus–all of which Hilbert was very familiar with–to the theory of gravitation.

73The sources for this subsection are Sauer (1999), Corry (2004) and Renn (2007), Vol. 4. The only biography of
Hilbert is Reid (1970); a scientific biography is lacking. Rowe (2018) is a portrait of Hilbert’s circle in Göttingen.

74Although he did not invent it, Hilbert was a pioneer of the view that rigorous mathematical proofs should be
purely syntactic and hence independent of the meaning of the symbols in them, as long as the rules for manipulating
these have been stated. This came to a head in the last part of his career (1920–1930), which was devoted to Proof
Theory (a field of mathematics he did invent). But this kind of formalization was restricted to the analysis of proofs
and axiom systems; until the 1920s Hilbert even stated axioms informally, combining mathematical and natural
language. Outside this specific context, mathematics was as much alive for Hilbert as it is for anybody. A decade
after he had played his role in GR, Hilbert also initiated the (serious) mathematical study of quantum mechanics,
culminating in von Neumann’s Hilbert space formalism; see e.g. Landsman (2022c) and references therein.

75See e.g. Wightman (1976), Gorban (2018), and Corry (2018) for essays on Hilbert’s Sixth Problem.
76Hilbert’s interest in variational principles went back to his work on the Dirichlet principle (Hilbert, 1904).
77Corry (2004, p. 325) notes that Einstein and Hilbert had similar unconventional political views, notably their

belief in the fundamentally international spirit of science. Neither had signed the patriotic and vitriolic manifesto
Aufruf an die Kulturwelt from October 1914, in which 93 leading German intellectuals wholeheartedly supported the
German side in the First World War. Among the signatories we find physicists like Fritz Haber and Max Planck, and
mathematicians like Felix Klein; it was even more courageous of Hilbert not to sign it than it was of Einstein, since
the former was a German citizen whereas the latter was, at the time, Swiss (though originally German by birth).
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This led to two papers: Hilbert (1915, 1917), of which especially the first is of historical interest.
Precisely because of the mix of the now outdated and partly incomprehensible Mie theory with
Einstein’s ideas (many of which have survived), Hilbert’s reasoning is hard to follow. Even
Einstein (who was familiar with Mie’s theory and presumably also with his own) wrote:

Why do you make it so hard for poor mortals by withholding the technique behind your
ideas? It surely does not suffice for the thoughtful reader if, although able to verify the
correctness of your equations, he cannot get a clear view of the overall plan of the analysis.78

(Einstein to Hilbert, 30 May 1916)

Furthermore, there are serious discrepancies between the first galley proofs of Hilbert (1915) and
the published version. These proofs presumably contain the paper in the form Hilbert presented
it on 20 November 1915 in a formal colloquium to the Göttingen Academy of Sciences, i.e. five
days before Einstein submitted his final paper (1915d) containing the correct field equations
(this had even been preceded by an informal talk by Hilbert on 16 November with undoubtedly
a similar content). On top of this, in a bizarre twist of events these galley proofs suffer from a
deletion of precisely the part that qua location might have contained the correct field equations,
cut out by an unknown person at an unknown time. Since Einstein and Hilbert were in regular
contact during November 1915, this has led to wild speculations to the effect that Einstein had
taken (or even stolen) his equations from Hilbert, or even if he hadn’t, that Hilbert had at least
scooped him and should get the credit for the invention of GR (seen as the “Einstein” equations).
These speculations even stretched to the extent that Einstein fans had allegedly cut out the
missing part because they contained the “Hilbert” equations–though by the same token Hilbert
fans could have taken them out to hide the fact that they did not contain the Einstein equations.79

A detailed reconstruction shows that the parts missing from the galley proofs probably did
not contain the correct field equations, or indeed any field equations, though they may well have
contained the explicit Lagrangian

√
−gR, which may therefore correctly be called the Hilbert

Lagrangian. Since Einstein (1916b) independently found this Lagrangian, but published it later
than Hilbert (1915) even as published in 1916, the name Einstein–Hilbert Lagrangian is also
correct. Having said this, knowing the correct Lagrangian, Hilbert could easily have derived the
Einstein equations, for both the galley proofs and the published version of Hilbert (1915) show
that he was perfectly familiar with the necessary variational techniques, and indeed all steps in
the computation are indicated, except that the Lagrangian is left unspecified.

It seems that until 1916 Einstein was hardly influenced by the work of Hilbert (though he
clearly admired him), except perhaps: (i) for his brief flirt with the electromagnetic world view
in Einstein (1915b), which he discarded as soon as he could, and (ii) by Hilbert’s competition
speeding up his work in November 1915–since Hilbert sent him occasional updates on his work
and invited him to at least his first talk in Göttingen on November 16, Einstein must have felt
Hilbert breathing down his neck. On the other hand, the opposite influence is very clear from e.g.
the differences between the galley proofs and the actual publication of Hilbert (1915).

78‘Warum machen Sie es dem armen Sterblichen so schwer, indem Sie ihm die Technik Ihres Denkens vorenthal-
ten? Es genügt doch dem denkenden Leser nicht, wenn er zwar die Richtigkeit Ihrer Gleichungen verifizieren aber
den Plan der ganzen Untersuchung nicht überschauen kann.’ Quoted with translation by Stachel & Renn (2007), p.
881. This paper gives a detailed reconstruction and interpretation of Hilbert’s work on GR.

79Before these galley proofs were discovered (by Corry in 2004), it was often suggested on fair grounds that
Hilbert had priority over Einstein, since the published version of Hilbert (1915), which does contain the correct
equations, carries a submission date of 20 November 1915. The tables initially turned when it was found that the
galley proofs did not contain the Einstein equations, upon which the deleted section again complicated the issue.
See Sauer (1999, 2005) and Rowe (2006) for a settlement and a review of the issue, respectively: which we follow.
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These hectic events during November 1915 led to some tension between Einstein and Hilbert:

The theory is beautiful beyond comparison. However, only one colleague has really under-
stood it [i.e. Hilbert], and he is seeking to “partake” it (Abraham’s expression) in a clever
way. In my personal experience I have hardly come to know the wretchedness of mankind
better than as a result of this theory and everything connected to it.80 (Einstein to Zangger,
26 November 1915)

Hilbert did his best to alleviate the situation, for example by changing ‘my theory’ to ‘the theory’
in his galley proofs for Hilbert (1915), and by adding that the ten gravitational potentials gµν

were ‘first introduced by Einstein’. This helped, for a month later Einstein directly wrote him:

There has been a certain ill-feeling between us, the cause of which I do not want to analyze.
I have struggled against the feelings of bitterness attached to it, and this with complete
success. I think of you again with unmarred friendliness and ask you to try to do the same
with me. Objectively it is a shame when two real fellows who have extricated themselves
somewhat from this shabby world do not afford each other mutual pleasure.
With best regards, A. Einstein.81 (Einstein to Hilbert, 20 December 1915)

Apart from his identification of the correct Lagrangian for GR, what remains of lasting value is
Hilbert’s recognition that the energy-momentum tensor Tµν is simply the variational derivative
of the matter Lagrangian.82 This enabled Hilbert (1915) to derive the complete gravitational
equations (including matter) from a single action principle.83 Furthermore, Hilbert was the
first to use the (contracted) Bianchi identities in GR, deriving them from the invariance of
the Ricci scalar under coordinate transformations (cf. §7.2). From this, he concluded that in
electrodynamics the vacuum Maxwell equations ∇µFµν = 0 follow from the coupling to gravity
plus these Bianchi identities. As will be detailed in §1.9, Hilbert (1917) was the founding paper
for the PDE approach to the Einstein equations, including a lasting version of the Hole Argument
(see §1.10 and §7.8). Last but not least, as many quotes (like the one opening this Introduction
and the one ending §1.3) show, Hilbert quickly became a champion of GR, including Einstein’s
authorship of it (sometimes even at the expense of mentioning his own contributions). Coming
from the leading mathematician in the world at a time in which Einstein was by no means yet the
iconic scientist he would become after 1919, this undoubtedly helped the theory (and its creator).

80‘Die Theorie ist von unvergleichlicher Schönheit. Aber nur ein Kollege hat sie wirklich verstanden und sucht sie
auf geschickte Weise zu “nostrifizieren” (Abraham’scher Ausdruck). Ich habe in meinen persönlichen Erfahrungen
kaum je die Jämmerlichkeit der Menschen besser kennen gelernt wie gelegentlich dieser Theorie und was damit
zusammenhängt.’ Quoted with translation by Stachel & Renn (2007), p. 911. Heinrich Zangger (1874–1957)
had been a friend of Einstein’s since 1906. See Corry (2004, §9.2) on the culture of “nostrification” in Hilbert’s
Göttingen: ‘It was widely understood, among German mathematicians at least, that “nostrification” encapsulated
the peculiar style of creating and developing scientific ideas in Göttingen, and not least because of the pervasive
influence of Hilbert. Of course, “nostrification” should not be understood as mere plagiarism.’ (p. 419).

81‘Es ist zwischen uns eine gewisse Verstimmung gewesen, deren Ursache ich nicht analyseren will. Gegen das
damit verbundene Gefühl der Bitterkeit habe ich gekämpft, und zwar mit vollständigem Erfolge. Ich gedenke Ihrer
wieder in ungetrübter Freundlichkeit, und bitte Sie, dasselbe bei mir zu versuchen. Es ist objektiv schade, wenn
zwei wirkliche Kerle, die sich aus dieser schäbiger Welt etwas herausgearbeitet haben, nicht gegensteitig zur Freude
erreichen. Es grüsst Sie bestens, Ihr A. Einstein’ (again taken from Stachel & Renn 2007, p. 913).

82Hilbert stated this for electromagnetism, but once the point had been made its generalization to other forms of
matter was obvious. Einstein specified Tµν ad hoc, even in cases where he used an action principle for pure gravity.

83 In this context Lorentz (1916) should be mentioned, in which Hendrik Antoon Lorentz (1853–1928) develops
a coordinate-free version of GR, based on a geometric interpretation of the Ricci scalar in the Lagrangian (Kox,
1988; Janssen, 1992). Unfortunately, since he did so just before the absolute differential calculus was geometrized
by Levi-Civita’s (1917a) invention of parallel transport (Iurato, 2016), his work on GR had very little influence.
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1.8 Weyl

The bridge between Einstein’s work and the modern mathematical approach to GR found in this
book (and many others, including the great texts by Hawking & Ellis and by Misner, Thorne,
& Wheeler, both of which appeared in 1973) is not so much Hilbert, whose mathematical
style in GR is surprisingly old-fashioned and in fact hardly different from Einstein’s, but his
former PhD student Hermann Weyl (1885–1955). Weyl was an extraordinary broad and versatile
mathematician, almost comparable with Hilbert himself, whose interest in physics as well as in
the foundations of mathematics he also shared.84 Weyl spent the years 1904–1913 in Göttingen,85

where, clearly under the spell of Hilbert,86 his early work was in functional analysis, then an
upcoming field which was dominated at least in Germany by Hilbert’s work on integral equations.
Weyl’s PhD thesis from 1908 was on singular integral equations and Fourier theory, after which
his Habilitation thesis from 1910 was on Sturm–Liouville problems, seen in the context of what
we now (since the work of von Neumann) call unbounded operators on Hilbert space.87

Weyl ended his Göttingen period with his famous book Die Idee der Riemannsche Fläche
(1913), which launched the global study of Riemann surfaces and is one of the stepping stones
towards to the modern definition of a manifold (see footnote 40). He then moved to Zürich (as
the successor of Geiser, the man who had introduced Einstein to differential geometry), where he
met Einstein and evidently got interested in relativity. In 1918 Weyl published his lecture notes
Raum - Zeit - Materie (Space - Time - Matter), from which we already quoted the preface at the
beginning of this historical overview. Einstein himself wrote a glowing review:

I am always tempted to read the individual parts of this book again, because every page shows
the amazingly steady hand of the master who has penetrated the subject matter from the
most diverse angles. I consider it a happy occasion that such a distinguished mathematician
has taken care of this new field. He understood how to combine mathematical rigor with
graphic intuition. From this book, the physicist can learn the foundations of geometry and
the theory of invariants, and the mathematician can learn those of electricity and the theory
of gravitation. (. . . ) One especially sees there with amazement how the most complicated
becomes simple and self-evident under Weyl’s hand. (. . . ) It is here that Weyl not only
demonstrates his easy mastery of the mathematical form, but also his deep insight into what
is essential in physics. (. . . ) The expositions of the last paragraphs exemplify how a born
mathematician can be effective here through simplifying and clarifying. The book will be
invaluably helpful to everybody who wants to work in this field, not to mention the pure joy
derived from its study.88 (Einstein, 2002, pp. 62–63)

84The latter interest even led to a break between them at the time when Weyl supported Brouwer’s intuitionism.
85See e.g. Eckes (2019). There seems to be no biography of Weyl, but see Scholz (2001) for his mathematics and

especially Raum - Zeit - Materie, and Ryckman (2005) for his philosophy (mostly in connection with GR).
86‘One cannot overstate the significance of the influence exerted by Hilbert’s thought and personality on all who

came out of [the Mathematical Institute at Göttingen]’ (Corry, 2018). However, Eckes (2019) draws attention to the
considerable influence that also Zermelo and Klein (and perhaps also Minkowski) had on the young Weyl.

87The limit point - limit circle theorem from his Habilitation thesis is still used.
88‘Immer wieder drängt es mich dazu, die einzelnen dieses Buches von neuem durchzulesen: denn jede Seite

zeigt die unerhört sichere Hand des Meisters, der den Gegenstand von den verschiedensten Seiten durchdrungen hat.
Ich betrachte es als einen Glücklichen Umstand, daß ein so ausgezeichneter Mathematiker sich des neuen Gebiets
angenommen hat. Er hat es verstanden, mathematische Strenge mit Anschaulichkeit zu verbinden. Der Physiker
kann aus seinem Buche die Grundlagen der Geometrie und Invarianzentheorie, der Mathematiker diejenigen der
Elektrizitätslehre and Gravitationstheorie lernen. (. . . ) Hier sieht man ganz besonders mit Staunen, wie in Weyls
Händen das Komplizierteste einfach und selbstverständlich wird. (. . . ) Hier zeigt sich so recht, daß Weyl nicht
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Weyl’s book is remarkable in many ways, including its attractive mix of mathematics, physics,
and philosophy,89 but also its lyrical–if not, occasionally, outright hysterical–prose, which is
very unusual for a mathematical physics text. For example, the fourth edition ends as follows:90

Whoever looks back over the ground that has been traversed (. . . ) must be overwhelmed by a
feeling of freedom won–the mind has cast off the fetters which have held it captive. He must
feel transfused with the conviction that reason is not only a human, a too human, makeshift
in the struggle for existence, but that, in spite of all the disappointments and errors, it is yet
able to follow the intelligence which has planned the world, and that the consciousness of
each one of us is the centre at which the One Light and Life of Truth comprehends itself in
Phenomena. Our ears have caught a few of the fundamental chords from that harmony of
the spheres of which Pythagoras and Kepler once dreamed.91 (Weyl, 1921, p. 284)

Back on earth, Weyl was the first author to describe tensors in a coordinate-free manner as
multilinear maps, even starting the technical part of his book with an axiomatic treatment of
vector spaces.92 He then defines tensors as pointwise multilinear maps, just as we do; although in
the spirit of the time Weyl uses coordinates as soon as he can, the abstract underpinning is clearly
there. His most significant mathematical innovation was the idea of an affine connection (cf. our
§3.3, where it is called a linear connection), which–though somewhat paradoxically introduced
through old-fashioned infinitesimals–gives a covariant derivative (as well as the associate notion
of parallel transport) independently of the metric.93 Assuming the affine connection to be torsion-
free (for which he gives some arguments), Weyl also proves that if there is a (nondegenerate)
metric, what we now call the Levi-Civita or metric connection is the unique affine connection
for which parallel transport preserves length. His derivation of the Einstein equations from
an action principle follows Hilbert, including the definition of the energy-momentum tensor
as the variational derivative of the matter action with respect to the metric. The most lasting
contribution of Raum - Zeit - Materie (from the third edition onwards) is Weyl’s emphasis
on conformal transformations of the metric. His (mistaken) attempts to see these as gauge
symmetries became, in the right context of internal symmetries, the key to the Standard Model of
high-energy physics from the 1970s onward. In the hands of Penrose, their (correct) relationship
to the causal structure of space-time became one of the keys to mathematical GR (cf. §1.9).

nur die mathematische Form spielend meistert, sondern auch mit tiefem Blick für das physikalische Wesentliche
begabt ist. (. . . ) Die Darlegungen der letzten Paragraphen zeigen, wie vereinfachend und klärend der geborene
Mathematiker da wirken kann. Jedem, der an dem Gebiet mitarbeiten will, wird das Buch unschätzbare Dienste
leisten, abgesehen von der reinen Freude, die er beim Studium findet.’ (Einstein, 1918b).

89Weyl’s wife, Helene (1893–1948), whom he incidentally betrayed with Schrödinger’s wife when they were all
in Zürich from 1921–1927 (and Weyl helped Schrödinger with the solution of the equation named after him), was a
student of Edmund Husserl and an intellectual in her own right. Weyl himself also tended towards phenomenology.

90There are many editions of the book, of which the first (1918) and the second (1919) are identical. The third
(1919) and the fourth (1921) editions are major updates, especially the third, in which Weyl introduces his own idea
of an affine connection without having a metric. The English translation from 1922 is from the fourth edition.

91‘Wer auf den durchmessenen Weg zurückschaut (. . . ) muß von dem Gefühl errungener Freiheit überwältigt
werden–ein festgefügter Käfig, in den das Denken bisher gebannt war, ist gesprengt–; er muß durchdrungen werden
von der gewißheit, daß unsere Vernunft nicht bloß ein menschlicher, allzumenschlicher Notbehelf im Kampf
des Daseins, sondern ungeachtet alle Trübungen and alles Irrtums doch der Weltvernunft gewachsen ist und das
Bewußtseins eines jeden von uns der Ort, wo das Eine Licht und Leben der Wahrheit sich selbst in der Erscheinung
ergreift. Ein paar Grundakkorde jener Harmonie der Sphären sind in unser Ohr gefallen, von der Pythagoras und
Kepler träumten.’ Translation: Henry L. Brose, pp. 311–312 in Weyl (1922).

92The lack of references in §I.2 is an example of the Göttingen habit of “nostrification” (cf. footnote 80), since
the axioms had already been given by Peano in 1888 (Moore, 1995). It is unclear whether Weyl knew Peano’s work.

93Compared with Levi-Civita (1917a), this makes an ambient flat space unnecessary even in the metric case.
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1.9 Mathematical foundations of GR: Towards the modern era
The full history of post-1915 GR remains to be written, even on the physics side. Einstein himself
continued to make major contributions to his theory, among which perhaps Einstein (1917b),
the paper that launched relativistic cosmology (and introduced his cosmological constant), and
Einstein (1918c), in which he predicted gravitational waves (directly detected almost a century
later, on 14 September 2015), stand out.94 Moreover, the confirmation of the general relativistic
prediction of the gravitational bending of sunlight, announced by Eddington in a session of
the Royal Society on November 6, 1919, sanctified by J.J. Thomson in the Chair as ‘the most
important result obtained in connection with the theory of gravitation since Newton’s day’, and
picked up by the world press, made Einstein the celebrity that he has remained until the present.

Nonetheless, despite the undeniable power and beauty of the theory and the increasing fame
and prestige of its creator, GR remained at least in physics a niche field until the 1960s. It
was immediately picked up by the leading astronomer of the day, Eddington, as well as by
his (now almost equally famous) colleagues De Sitter, and Lemaître, similarly by the greatest
mathematician of his era, Hilbert, as already mentioned, followed by Levi-Civita, Weyl, and (Élie)
Cartan in his footsteps. Even major philosophers like Cassirer, Reichenbach, and Schlick wrote
about the implications of GR.95 However, with a few exceptions the response from the physics
community (that Einstein himself–never a real astronomer, mathematician, or philosopher–came
from!) was lukewarm at best.96 This attitude may have been partly due to the hostility to German
science during and after World War I (although Einstein, while residing in Berlin, had renounced
his German citizenship as early as 1896 and was a Swiss citizen at the time). Not coincidentally,
Eddington and, from the other side, Hilbert were among the very few academics who were
interested in overcoming this hostility. But it lasted for decades. On a different note, Ehlers
(2007) writes: ‘At that time [the late 1940s] general relativity was considered a difficult and
useless subject, admitting no interaction between theory and experiment.’ Or (Bryce) DeWitt:

Most of you can have no idea how hostile the physics community was, in those days, to
persons who studied general relativity. It was worse than the hostility emanating from some
quarters today towards the string-theory community. In the mid fifties, Sam Goudsmit, then
Editor-in-Chief of the Physical Review and Physical Review Letters, would no longer accept
“papers on gravitation or other fundamental theory.” (DeWitt-Morette, 2011, p. 6)

The first international conference on general relativity was only held in 1955, and its subse-
quent revival was due to a small group of dedicated people, partly inspired by applications to
astrophysics and cosmology, and partly for the theory’s own sake.97 This led to important GR

communities in the United States (Bergmann, DeWitt, Schild, especially Wheeler at Princeton),
the Soviet Union (Fock, Ivanenko, especially Zeldovich in Moscow), and Europe, e.g. in France
(Lichnerowicz, Choquet-Bruhat), Germany (Jordan), Poland (Infeld, Trautman), Ireland (Lanc-
zos, Synge, Schrödinger), and the United Kingdom (Bondi, Dirac, Hoyle, McCrea, Whitrow,
Penrose).98 In particular, Dirac’s student Sciama created the GR school at Cambridge that still
exists today and once included Hawking, Carter, Ellis, Rees, and many other leading relativists.

94See Jannsen & Lehner (2014), and of course The Collected Papers of Albert Einstein, from Volume 6 onwards.
95See Ryckman (2005) for the reception of general relativity among philosophers.
96An exception is Pauli (1921), which he wrote at the age of 21 at the behest of his mentor Sommerfeld. This was

the first complete review of GR after Weyl. Another exception was Einstein’s friend Lorentz, see footnote 83.
97See Thorne (1994), Kaiser (1998), Eisenstaedt (2006), Melia (2009), Ashtekar (2014), Blum, Lalli, & Renn

(2015, 2016, 2020), Goenner (2017), and Lalli (2017) for personal and scholarly historical studies of this.
98See Robinson (2019) about King’s College London, and Lalli (2017) for smaller GR groups since the 1950s.
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In view of the overall structure of this book, in the remainder of this section we restrict
ourselves to a few brief comments about the transition from what was known to say Hilbert
and Weyl around 1917, to the current formalism of mathematical GR. It would be fair to say
that Hilbert mainly looked at GR from the point of view of PDEs, whereas Weyl had a more
geometric view, which he combined with an emphasis on causal structure, as explained below.
These different perspectives initially developed separately, in that the causal theory did not rely
on the PDE theory whilst the initial PDE results were local in nature. But the two areas meet
through the absolutely central notion of global hyperbolicity that is common to both, and in
modern mathematical GR they are inseparable (although one still has specialists on either side).
We first discus the PDE approach (which may indeed be a few months older than the causal one).

Hilbert (1917) predated Hadamard (1923), in which the Cauchy problem for PDEs was
first stated. The solution to a given PDE should: (i) exist on a given domain for all suitable
initial and/or boundary data;99 (ii) be uniquely determined by these data, and (iii) be stable
against variations in these data (typically as expressed by continuity with respect to certain
norm-topologies). This was seen as the form of determinism (or “causality”) appropriate for
physics. In 1917 the second volume of Courant & Hilbert (1937), which gave a complete
treatment of PDEs as the field was known at the time, was also twenty years in the future.100

However, in 1917 Hilbert certainly possessed massive knowledge of nineteenth century
PDE theory, as well as of the early twentieth century interaction between PDEs and functional
analysis, of which field he had been one of the founders. In particular, Hilbert recognized that
Einstein’s equations were not of any standard type (i.e. hyperbolic, elliptic, or parabolic) and
that because of what we now call “Bianchi identities” their initial value problem was ill-posed in
the sense that reasonable initial data do not determine a unique solution; cf. §1.5. He foresaw
what we now call geometric uniqueness, see Theorem 7.8 in §7.6, in stating that ‘physically
meaningful’ quantities were uniquely determined, and that using suitable coordinates (namely
geodesic normal coordinates, which he called ‘Gaussian’) also led to uniqueness in general.101

The next important contribution to the PDE side of GR was made by Emmy Noether (1882–
1935), whose famous article ‘Invariante Variationsprobleme’ explained the difficulties with
Einstein’s equations that Hilbert had found in terms of the infinite-dimensional symmetries of the
action or Lagrangian from which these equations could be derived, and introduced what are now
called the first and second Noether theorems.102 However, her paper is so general that, despite a
final section commenting on Hilbert’s work, it does not contain any detailed expressions for GR.

In that sense, it was Georges Darmois (1888–1960), who, citing neither Hilbert nor Noether,
(co) founded the theory of the constraints of GR. Darmois (1927) recognized the equations

Gµ0 = 0 (1.24)

99For hyperbolic PDEs such as the wave equation one has initial data; for elliptic PDEs like the Laplace equation
one has boundary data; and for parabolic PDEs such as the heat equation one has combinations thereof.

100It is impossible to resist quoting a piece from Weyl’s review of this is book, which though entirely written by
Courant clearly carried Hilbert’s spirit: ‘Nowadays many mathematical books do not seem to be written by living
men who not only know, but doubt and ask and guess, who see details in their true perspective–light surrounded by
darkness–who, endowed with a limited memory, in the twilight of questioning, discovery, and resignation, weave a
connected pattern, imperfect but growing, and colored by infinite gradations of significance. The books of the type I
refer to are rather like slot machines which fire at you for the price you pay a medley of axioms, definitions, lemmas,
and theorems, and then remain numb and dead however you shake them.’ (Weyl, 1938, p. 602).

101See Stachel (1992) for a more detailed analysis of Hilbert’s contribution, as well as for the history of the Cauchy
problem of GR up to the work of Choquet-Bruhat. For general PDE history, see Brezis & Browder (1998).

102 The original source is Noether (1918). A sample of the extensive secondary literature is Kossmann-Schwarzbach
(2011, 2020), Eggertsson (2019), and Read, Teh, & Roberts (2021). Rowe (2021) is a biography of Noether.
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as conditions restricting the initial data. He saw that they automatically “propagate” (in holding
everywhere provided they are satisfied at t = 0 and the other equations hold, see §7.5), and also
gave their geometric expressions (7.145) - (7.146) in terms of the first and second fundamental
forms of the embedded Cauchy surface where they are imposed. He also showed that in the
wave gauge (or harmonic gauge, first used by De Donder) the remaining six Einstein equations
were hyperbolic propagation equations for each of the components gµν of the metric. Finally, he
studied the possibility of giving initial data on null surfaces (i.e. lightcones), in which he was far
ahead of his time. This is very impressive for someone who was actually a statistician!

Darmois was also the thesis advisor of André Lichnerowicz (1915–1998), who worked in GR

from 1937 until 1967 and made many contributions to the field.103 His most important work,
collected in Lichnerowicz (1955), includes his theorem on asymptotically flat space-times (see
§8.4), as well as his conformal analysis of the constraint equations (see §8.6). His importance
as an organizer of the French GR community, e.g. through organizing the Journées Relativistes
conference series, can hardly be overestimated.104 In that capacity Lichnerowicz was also the
PhD advisor of Yvonne Choquet-Bruhat (born in 1923), who, during a career that spanned sixty
years, from a four-page announcement (Fourès-Bruhat, 1948) to a comprehensive 800-page
textbook General Relativity and the Einstein Equations (Choquet-Bruhat, 2009), led the PDE

approach to GR by giving direction and proving two of the most important results herself, namely
the first local existence and uniqueness result (Fourès-Bruhat, 1952) and the crowning maximal
existence and uniqueness theorem, which she proved in 1969 with Geroch.105

Subsequent work on the PDE aspects of GR falls into two directions, which might be called
hyperbolic and elliptic, depending on whether one works mainly on the evolution equations or
on the constraint equations, respectively, or, phrased differently, on the evolution of the initial
data or on the initial data themselves. Of course, these aspects cannot be entirely separated.

On the hyperbolic side, one studies global properties of the above maximal (globally hy-
perbolic) solutions, notably their extendibility (which does not contradict the formal property
of maximality) and stability. Even the simplest case, namely the question of the stability of
Minkowski space-time under small perturbations of its initial data, took a 500+ page book (by
Christodoulou and Klainerman) to settle it in the positive. Despite later simplifications of this
proof, analogous current work on the stability of black holes solutions is published in papers
whose page count even runs over 800. Apart from stability problems, other goals of this approach
include (dis)proving Penrose’s cosmic censorship and final state conjectures (see chapter 10).

On the elliptic side, one highlight has been the proof of the positive mass theorem by Schoen
& Yau (1979) and Witten (1981), to which a brief introduction will be given in §8.4.106 Many of
the techniques used in proving uniqueness or “no hair” theorems for black holes (see §§10.9 -
10.10) also come from the elliptic approach. Another achievement has been the development of
gluing techniques for solutions to the Einstein equations by gluing their initial data.107

103See Lichnerowicz (1992) for a brief memoir, in which he pays special tribute to Élie Cartan (1869–1951), one
of the founders of modern Lie theory and differential geometry, who also did important work motivated by GR,
including the geometric reformulation of Newtonian gravity now called Newton–Cartan theory (Malament, 2012).

104In this respect also the Les Houches schools founded in 1951 by Cécile Morette should be mentioned.
105The historical survey by Ringström (2015) explains the precise regularity of the solutions in Fourès-Bruhat

(1952) and also puts her work in a much wider mathematical perspective. Choquet-Bruhat (2014) also looks back
on her results; see also her autobiography A Lady Mathematician in this Strange universe (Choquet-Bruhat, 2018).

106Roughly speaking, in any asymptotically flat space-time (i.e. one in which the metric approaches the Minkowski
metric at infinity) one can define a quantity in terms of the metric, which for the Schwarzschild solution is the mass
of the star (or black hole), but which in general is not obviously positive. The theorem states that it is positive.

107See e.g. Chruściel, Galloway, & Pollack (2010), which is actually a general survey of mathematical GR.
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We now turn to the “causal” approach to GR. Its characteristic emphasis on the conformal
structure of GR, i.e. the equivalence class of the metric tensor g under a rescaling

gµν(x) 7→ eλ (x)gµν(x), (1.25)

with λ an arbitrary smooth function of space and time, originated with Weyl (1918b). Although he
mentions the analogy with Riemann surfaces,108 which undoubtedly drove him in this direction,
his real argument is that what he calls Reine Infinitesimalgeometrie must go beyond Riemannian
geometry, which (according to Weyl) suffers from the defect that parallel transport of vectors
(through the metric or Levi-Civita connection, a concept Weyl himself had co-invented) preserves
their length. This makes length of vectors an absolute quantity, which a ‘pure infinitesimal
geometry’ or a theory of general relativity cannot tolerate. To remedy this, Weyl introduced the
idea of gauge invariance, stating that the laws of nature should be invariant under the rescaling
(1.25). To this end, he introduced what we now call a gauge field ϕ = ϕµdxµ and a compensating
transformation ϕµ(x) 7→ ϕµ(x)−∂µλ (x), and identified ϕ with the electromagnetic potential
(i.e. A). Dancing to the music of time, he then proposed that the pair (g,ϕ) describes all of
physics. This is not the case,109 but the idea of gauge symmetry has lasted and forms one of the
keys to modern high-energy physics and quantum field theory: serpenditiously, although it is
misplaced in the classical gravitational context in which Weyl proposed it, through the Standard
Model it has ironically become a cornerstone of non-gravitational quantum physics!

The conformal structure of a Lorentzian manifold determines the lightcones (and hence also
their interiors), and as such Weyl was of course not the only author to discuss causal structure.
For example, Einstein (1918c) himself wondered if gravitational wave propagate with the speed
of light, and showed this in a linear approximation; Weyl mentions this also.110 Furthermore,
independently of Weyl, and in fact inspired by special rather than general relativity, Robb (1914,
1936), Reichenbach (1924), Zeeman (1964), and also others axiomatized causal structure as a
specific partial order. In modern notation, if M is Minkowski space-time then the simplest such
relation is J+ ⊂M×M, where (x,y) ∈ J+ or x 6 y if y lies within or on the future lightcone
emanating from x. For general relativistic space-times this may be generalized by defining
(x,y) ∈ J+ iff there exists a future-directed causal curve from x to y. See §5.3 and §5.11.

These themes–gravitational radiation, conformal invariance, and causal order, with additional
inspiration from algebraic geometry, spinors, and some of the drawings of the Dutch artist M.C.
Escher–were combined and came to a head in the work of Roger Penrose (born in 1931). Between
1960 and 1972, Penrose introduced most of the global causal (often topological) techniques and
ideas in GR that are now central to the mathematical analysis of the subject.111 Moreover, in
1965 he used these techniques to prove the first singularity theorem of GR, based on his concept
of a trapped surface.112 This inspired the singularity theorem of Stephen Hawking (1942–2018),
whose Adams Prize Essay (Hawking, 1966), along with the book by Hawking & Ellis (1973)
that arose from it, may also be counted among the founding documents of mathematical GR.113

108See page 397. Riemann surfaces may equivalently be defined as either one-dimensional complex manifolds
or as two-dimensional Riemannian manifolds up to conformal equivalence Modestly, Weyl does not cite his own
decisive contribution to their theory (Weyl, 1913). This equivalence also influenced Penrose’s work on GR.

109See Einstein’s negative reaction to Weyl (1918b) in Einstein (2002a), Doc. 8. See also Goenner (2004), §4.1.3.
110See e.g. page 251 of the English translation of the fourth edition of Raum - Zeit - Materie (Weyl, 1922).
111With Leray (1953), Choquet-Bruhat (1967), and Geroch (1970), Penrose (1965b, 1968) was also one of the

architects of the crucial notion of global hyperbolicity (§5.7). Penrose (1963) worked on the PDE side of GR, too.
112See §6.1 and references in footnote 283 for a brief history of the singularity theorems. See also chapter 6.
113See Ellis (2014) for the historical context of this essay and of Hawking’s early work in general.
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1.10 Epilogue: General covariance and general relativity
In this appendix to our historical introduction we return to the theme of general covariance and
its possible relationship to some relativity principle that generalizes the one underlying Einstein’s
special theory of relativity. Starting with Einstein himself, this issue has naturally concerned
many people, without a clear conclusion. But one may at least try to avoid some pitfalls.114

Although the field equations in Einstein (1915d) were generally covariant at last, it took
Einstein another year to relieve himself of all coordinate conditions. Einstein (1916a) still gives
the vacuum field equations in the form R̃µν = 0 under the unimodular coordinate condition
(1.22), and also their derivation from an action principle is the same as the one he gave in the
previous year (Einstein, 1915a). It is only in Einstein (1916b), where he derives the generally
covariant equations (1.23) from what we now call the Einstein–Hilbert action, that we read:

On the other hand, in antithesis to my own most recent treatment of the subject, there is to
be complete liberty in the choice of the system of co-ordinates.115

This, then, is what Einstein meant by “general covariance”. But he also believed that generally
covariance implies that GR satisfies a “general principe of relativity”. Returning to the recon-
struction of his reasoning in §1.3, there is little doubt that in conflating symmetry properties of
GR as a whole with symmetry properties of its solutions Einstein actually cornered himself:

• Either he explains why in GR geodesic frames of reference are equivalent to arbitrary
frames. But then the same argument (whatever it is) would apply to Minkowski space-time,
and he loses the perfect match between the special principle of relativity and the special
theory of relativity, on which his arguments for general relativity were predicated.

• Or he accepts that geodesic frames of reference are preferred (i.e. “special”) and hence
blasts the general principle of relativity even in GR. Every way you look at it you lose!

In fact, the difference between the theories of special and general relativity cannot lie in general
covariance. Consider, in Einstein’s own language, the following two equations for the metric:

Rµν = 0; (1.26)

Rρ

σ µν = 0, (1.27)

or, in modern notation, Ric(g) = 0 and Riem(g) = 0, respectively, where the former is the Ricci
tensor, the latter is the Riemann tensor, and g is a Lorentzian metric to be solved for. Eq. (1.26)
are the vacuum Einstein equations, and let us call (1.27) the Minkowski equations. They share
exactly the same covariance properties, but (1.26) gives GR (without matter) whereas by a basic
result in Riemannian geometry (1.27) gives special relativity.116 More generally, almost any
physical theory of the kind known in classical mechanics and field theory can be geometrized
and, at the expense of adding equations like (1.27), be made generally covariant. Thus Einstein
faces two problems in trying to relate general covariance to general relativity (i.e. of motion):

114The history of the debate on general covariance is reviewed in Norton (1993, 1995). Further literature includes
Anderson (1967), Friedman (1983), Norton (1989, 1999), Brown (2005), Dieks (2006), Earman (2006ab), Giulini
(2007), Pooley (2015), Wallace (2017), and Dewar (2020). Though closely related, we do not enter the philosophical
debate between substantivalism and relationalism, which was revisited in the light of the hole argument and general
covariance by Earman & Norton (1987) and Butterfield (1987, 1989). See also Pooley (2017, 2022) for reviews.

115‘Anderseits soll im Gegensatz zu meiner eigenen letzten Behandlung des Gegenstandes die Wahl des Koordi-
natensystems vollkommen freibleiben.’ (Einstein, 1916b, p. 1111). Translation by W. Perrett and G.B. Jeffery.

116At least locally, see Theorem 4.1. Eq. (1.27) is equivalent to (1.26) plus the vanishing of the Weyl tensor.
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1. GR distinguishes geodesic motion from any other and hence does contain preferred frames.
We may then ask what kind of relativity (if not relativity of motion) GR does generalize.

2. Almost any physical theory can be made generally covariant. Thus general covariance
cannot be equated with general relativity and by itself must be physically empty. This
raises the question which physical property, if any, general covariance does express.

As to the first point, we are more optimistic than the great Irish relativist Synge, who wrote:

The name [general theory of relativity] is repellent. Relativity? I have never been able
to understand what that word means in this connection. I used to think that this was my
fault, some flaw in my intelligence, but it is now apparent that nobody ever understood it,
probably not even Einstein himself. So let it go. What is before us is Einstein’s theory of
gravitation.117 (Synge, 1966, p. 7)

However, in developing his special theory Einstein used the notion of “relativity” in a way that
does seem to survive into GR in a defensible way. In special relativity, apart from the broad–one
would like to, but cannot say “general”!–relativity principle stating that the laws of physics are
the same in each inertial frame, in the context of electrodynamics that actually led him to his
theory, Einstein (1905) made the following point, with which he even starts:

It is known that Maxwell’s electrodynamics–as usually understood at the present time–when
applied to moving bodies, leads to asymmetries which do not appear to be inherent in the
phenomena. Take, for example, the reciprocal electrodynamic action of a magnet and a
conductor. The observable phenomenon here depends only on the relative motion of the
conductor and the magnet, whereas the customary view draws a sharp distinction between
the two cases in which either the one or the other of these bodies is in motion. For if the
magnet is in motion and the conductor at rest, there arises in the neighbourhood of the
magnet an electric field with a certain definite energy, producing a current at the places
where parts of the conductor are situated. But if the magnet is stationary and the conductor
in motion, no electric field arises in the neighbourhood of the magnet. In the conductor,
however, we find an electromotive force (. . . ) which gives rise (. . . ) to electric currents of
the same path and intensity as those produced by the electric forces in the former case.118

(Einstein, 1905, p. 891)

In modern language, the separation of the electromagnetic field Fµν into an electric part F0i and
a magnetic part Fi j depends on the observer. Similarly, if in GR one identifies:

117This quotation has been borrowed from Norton (1995). John Lighton Synge (1897–1995) wrote powerfully and
beautifully. The entire preface of his book (Synge, 1966) would be worth quoting, or at least the brilliant first page.

118‘Daß die Elektrodynamik Maxwells - wie dieselbe gegenwärtig aufgefaßt zu werden pflegt–in ihrer Anwendung
auf bewegte Körper zu Asymmetrien führt, welche den Phänomenen nicht anzuhaften scheinen, ist bekannt.
Man denke z. B. an die elektrodynamische Wechselwirkung zwischen einem Magneten und einem Leiter. Das
beobachtbare Phänomen hängt hier nur ab von der Relativbewegung von Leiter und Magnet, während nach der
üblichen Auffassung die beiden Fälle, daß der eine oder der andere dieser Körper der bewegte sei, streng voneinander
zu trennen sind. Bewegt sich nämlich der Magnet und ruht der Leiter, so entsteht in der Umgebung des Magneten
ein elektrisches Feld von gewissem Energiewerte, welches an den Orten, wo sich Teile des Leiters befinden, einen
Strom erzeugt. Ruht aber der Magnet und bewegt sich der Leiter, so entsteht in der Umgebung des Magneten kein
elektrisches Feld, dagegen im Leiter eine elektromotorische Kraft (. . . ) die aber (. . . ) zu elektrischen Stromen von
derselben Größe und demselben Verlaufe Veranlassung gibt, wie im ersten Falle die elektrischen Kräfte.’ Translation
by W. Perrett and G.B. Jeffery (Einstein et al., 1923). In connection with GR see also Janssen (2012, 2014).
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• the metric gµν with the frame-independent “inertio-gravitational potential”;

• the Christoffel symbols Γρ

µν with the actual gravitational field,

then the non-tensorial/covariant character of the Christoffel symbols is a blessing in disguise:

• a freely falling person locally puts Γρ

µν to zero and hence feels no gravitational field;

• a stationary observer has Γρ

µν 6= 0 and hence attributes the observed motion to gravity.

Another concept that perhaps GR relativizes more generally than special relativity does is
simultaneity. More than anything else, what makes special relativity a genuine challenge to our
world view is that the now has become (inter)subjective: for an observer at rest in the usual (t,~x)
coordinates the planes of simultaneity are horizontal, whereas for a (relatively) moving observer
they are tilted–although they are still planes (this explains phenomena like length contraction
and time dilation). As we shall see in chapter 8, in the 3+1 split of GR there is no preference for
a foliation of space-time by “horizontal” or “flat” planes; essentially any choice of hypersurfaces
of simultaneity, typically curved, is allowed. See also §8.11.

The second problem, i.e. the fact that almost any physical theory can be made generally
covariant, was first pointed out to Einstein in a (now) famous paper by a high-school teacher
called Kretschmann (1917), who raised his concerns in the specific context of Einstein’s “point-
coincidence argument”.119 This had been Einstein’s answer to his own “hole argument” discussed
in §1.5, which had led him to temporarily abandon general covariance, almost blocking his way
to GR and delaying its final formulation by about two years. Indeed, Kretschmann argued that
any physical theory whose empirical content lies solely in point-coincidences (as Einstein had
it) can be written in generally covariant form using the absolute differential calculus. Einstein
grudgingly conceded this point, but argued that only some theories (including, of course, GR) are
‘simple and transparent’ in generally covariant form.120 But this is balderdash. Eq. (1.27) is as
simple and transparent as (1.26), or even simpler, since (1.26) is a contraction of (1.27). Also,
the example of Newtonian gravity that Einstein gave would soon be reformulated in geometric
fashion by Cartan, resulting in a theory as simple and transparent as GR. Criteria like simplicity,
transparency, and beauty are subjective, time-dependent, and relative to one’s (mathematical)
education. In 1900 only a few mathematicians and physicists were familiar with linear algebra,
but now this is a first-year subject which most students find simpler than, say, analysis.121

Another answer is that GR “is a geometric theory”. But this is not a very good answer either,
since special relativity is as geometric (and as covariant) as GR, as we have already seen. In fact,
Einstein himself was not very impressed by this argument at all, pointing out that any theory
containing vectors (which would mean practically all of physics) could be called “geometric”.122

119See Norton (1993) and Giovanelli (2013, 2019) for a study of their debate.
120See Einstein’s (1918a) answer to Kretschmann (1917) as well as his 1954 letter to De Broglie (cf. §1.3).

Einstein’s (later) views in this respect, for which Norton (2000) presents a historical analysis, were similar to Dirac’s,
see e.g. Kragh (undated). For a more general analysis of this fallacy, see also Hossenfelder (2018).

121This objection also applies to various refinements of Einstein’s point that are discussed by Norton (1993, 1995).
For example, Bergmann (1942) argued that GR stands out because, starting from a generally covariant reformulation,
the structure of other theories (like special relativity and Newtonian gravity) simplifies if their covariance group
is reduced. Here again one wonders what “simplicity” means: if it means “less structure”, then special relativity
would be simpler in its generally covariant form, whose equations assume just a metric, rather than a specific one.

122See Lehmkuhl (2014).
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A third answer would be that general covariance expresses the fact that GR “lacks absolute
objects”.123 But once again, formulated like (1.27), so does special relativity, at least in writing
down its equations. Perhaps it ends up with an absolute object, namely the Minkowski metric,
but then again, any specific solution to (1.26) is also an absolute object in the same sense.124

Moreover, Minkowski space-time is less absolute than some generic solution to the Einstein
equations in the sense that the former has a large isometry group (viz. the Poincaré group, whose
dimension is the maximal one an isometry group can have), whereas the isometry group of
generic Lorentzian metrics is trivial. This also make GR less “covariant” than special relativity.

Against this, one may argue that in GR the metric is, after all, less absolute than in special
relativity because in the full Einstein equations (1.23). it is coupled to the matter distribution.
The point, then, is that there is no such coupling for (1.27), and this is supposed to make GR

superior to special relativity because GR has no objects “that act but are not acted on”. This
fact is hidden by the vacuum field equation (1.26) and hence the argument rests on a distinction
between the vacuum Einstein equations and those with matter. But this distinction is artificial.
Furthermore, where does the buck stop? At least in its modern formulation GR uses smooth
manifolds, which are modeled on R4 with the usual smooth structure and topology.125 These
are not dynamically generated but assumed, and hence should be counted as “absolute objects”.
Hence the argument, once it is carried through consistently, ultimately turns against GR, too.

The last argument we discuss is that of the particle physicist: much as the gauge invariance
of electrodynamics expresses the fact that at the quantum level this theory describes interacting
massless particles with helicity ±1, i.e., photons, the general covariance of GR leads to massless
particles with helicity ±2, i.e., gravitons (see §8.5). This is arguably the strongest and physically
most compelling argument for general covariance, but in the absence of even a perturbative
theory of quantum gravity it is still feeble, not to speak of the wide gap between this kind of
reasoning and the geometric structure of GR that leads to its general covariance in the first place.

Our conclusion is that while general covariance does not express a general relativity principle,
it remains mysterious what it does express. Any resolution will have to navigate between:

• The pull towards physical relevance of general covariance in being a symmetry of the field
equations of GR, whose ingredients (curvature and energy-momentum) are physical.126

• The pull against physical relevance, since no one has been able to figure it out so far.

In physical and mathematical practice, the second force has won: in its modern form of diffeo-
morphism invariance of Einstein’s equations, general covariance is seen as a gauge symmetry.

123The idea is that the symmetry group is the largest one preserving all “absolute objects”. This works for special
relativity if (only) the Minkowski metric is seen as absolute, and it works for GR if nothing is deemed absolute.

124The difference between GR and generally covariant special relativity is that the latter is categorical, in–barring
the topology of space-time–having only one solution, up to isomorphism, much as Hilbert’s (1900) axioms for the
real numbers (as a complete totally ordered field) are categorical, at least if they are expressed in second-order logic
(Shapiro, 1991). Whatever its implications, categoricity does not hold for e.g. Newton–Cartan gravity.

125Even with the usual topology there are innumerable inequivalent smooth structures on R4, each giving rise to a
different concept of a smooth manifold. This is a result from Donaldson theory (Donaldson & Kronheimer, 1997).

126See e.g. Brading & Castellani (2003), Belot (2013), Caulton (2015), and Dewar (2019) for discussions of the
concept of symmetry in physics. This concept is very tricky, as the debate on general covariance shows! Here we
just call general coordinate transformations (or, for that matter, diffeomorphisms) symmetries because they are
transformations that preserve solutions to the Einstein equations, cf. §1.5. Defining symmetries as transformations
that preserve solutions is a ‘recipe for disaster’ (Belot, 2013, §3), but we use the idea the other way round.
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In the philosophy of physics, on the other hand, the Hole Argument (and hence the entire
issue of general covariance) was revived by Earman & Norton (1987), with a different purpose
from Einstein’s.127 Using the notation of §1.5, in streamlined form their argument is as follows:

1. Although mathematically speaking (M,g) and (M,ψ∗g) are different space-times (un-
less of course ψ is an isometry of (M,g), i.e. ψ∗g = g), physicists—usually tacitly—
circumvent this alleged lack of determinism of GR by simply “identifying” the two, i.e. by
claiming that (M,g) and (M,ψ∗g) represent “the same physical situation”.

2. This is a special case of the more general stance in which space-times (M′,g′) and (M,g)
are identified if they are isometric;128 just take M′ = M and g′ = ψ∗g, and the pertinent
isometry from (M,ψ∗g) to (M,g) is none other than ψ . Thus the diffeomorphism group,
which trivially generates isometries in this way, is treated as a gauge group.129 This also
justifies the widespread identification of active and passive coordinate transformations.

3. However, this spells doom for space-time substantivalists, who (allegedly) should be
worried that if in order to save determinism, x ∈M, carrying the metric ψ∗g(x), must be
identified with ψ(x) ∈M, carrying the same metric, then points have lost their “this-ness”:
they cannot be identified as such, but only as carriers of metric information.

Believing that classical physics including GR should be deterministic, this looks like a knock-
down argument against space-time substantivalism. But it raises several questions.130 In
particular, is it a valid move in GR to compare—or even put—two different metrics g and g′ on
the same manifold M? For example in the Hole Argument above one takes g′ = ψ∗g. Since this
involves comparing g(x) with g′(x), the objection would really be against identifying x ∈M seen
as a point in the spacetime (M,g) with x ∈M seen as a point in a different spacetime (M,g′):

The basic principles of general relativity—as encompassed in the term ‘the principle of
general covariance’ (and also ‘principle of equivalence’)—tell us that there is no natural
way to identify the points of one spacetime with corresponding spacetime points of another.
(Penrose, 1996, p. 591).

There are also philosophical arguments against such trans-world identifications (Lewis, 1986).
However, as will be explained in §7.8, the dilemma raised by the Hole Argument can be

raised in an uncontroversial way by appealing to Theorem 7.10, which is the principal existence
and uniqueness theorem for the vacuum Einstein equations, due to Choquet-Bruhat and Geroch
(1969). In a certain sense, their theorem is—or implies—the Hole Argument, perhaps not quite
in Einstein’s literal version but rather more in the spirit of Hilbert’s (1917) PDE rendition.

127Einstein (1914) introduced the final version of the Hole Argument in terms of a conflict between general
covariance and the “law of causality” (“Kausalgesetz”), which was contemporary parlance for determinism. For
Earman & Norton (1987), on the other hand, the two horns of the dilemma raised by the Hole Argument are
determinism and space-time substantivalism. This doctrine states, roughly speaking, that points in space-time are
real by themselves, and in (early) modern physics goes back to Newton (Rynasiewicz, 2014). It is opposed to
space-time relationalism, going back to Leibniz (McDonough, 2021), in which only the conjunction of a point with
its properties is real. This opposition was famously discussed in the Leibniz–Clarke correspondence (Vailati, 1997).
See also Earman (1989) and Pooley (2013). Continuing footnote 61, Janssen (2007) notes that the ‘worries about
determinism and causality that are behind Einstein’s hole argument have strong Machian overtones.’

128A diffeomorphism M′
ψ→M is an isometry (M′,g′)

ψ→ (M,g) iff g′ = ψ∗g; in particular, following e.g. Hawking
& Ellis (1973), we always take an isometry to be a diffeomorphism in the first place.

129The gauge group depends on the details. In Einstein’s GR it is a diffeomorphism group, but in other versions of
GR it may consist of local Lorentz or Poincaré transformations (Blagojević & Hehl, 2013; Krasnov, 2020).

130See e.g. Butterfield (1988, 1989), Weatherall (2018), Arledge & Rynasiewicz (2019), Fletcher (2020), Roberts
(2020), Bradley & Weatherall (2021), Gomes (2021), Pooley & Read (2021), and Halvorson & Manchak, 2022).
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2 General differential geometry
The mathematical language of GR is differential geometry, enriched by geometric analysis.

2.1 Manifolds
We start by reviewing the key definitions underlying the concept of a manifold.131 First, a space
means a topological space, assumed Hausdorff. The topology of M (i.e. the set of its open sets)
is denoted by O(M), so that U ∈ O(M) means that U ⊂M and U is open. Since otherwise it
cannot support a Lorentzian metric, in GR we may assume that M is also metrizable.132 If M is a
(topological) manifold, this is equivalent to M being second countable as well as paracompact.

Definition 2.1 1. An n-dimensional (topological) manifold is a space M such that any x∈M
has a nbhd (= neighbourhood) U ∈ O(M) that is homeomorphic to some V ∈ O(Rn).
Equivalently, one may require V to be Rn itself, or some open ball in Rn.

2. A chart on M is a pair (U ,ϕ) where U ∈ O(M) and ϕ : U →Rn is a homeomorphism
onto its image V = ϕ(U). A chart (U ,ϕ) gives a coordinate system on U, in that the
coordinates (x1, . . . ,xn) of x ∈U of x are xi = ϕ i(x), where one writes ϕ : U → Rn as
(ϕ1, . . . ,ϕn), where ϕ i : U →R in terms of the standard basis of Rn (i = 1, . . . ,n).

3. A Ck-atlas on M (where k∈N∪{∞}) is a collection of charts (Uα ,ϕα), where M =∪αUα

(i.e. the Uα form an open cover of M), and, whenever Uαβ =Uα ∩Uβ is not empty, writing
Vαβ = ϕα(Uαβ ), the map ϕβ ◦ϕ−1

α : Vαβ →Rn is Ck (since Vαβ ⊂Rn this is well defined).

4. Two Ck-atlases (Uα ,ϕα) and (U ′
α ′ ,ϕ

′
α ′) on a topological manifold M are equivalent

if their union is a Ck-atlas, i.e., if all transition functions ϕ ′
β ′ ◦ϕ−1

α and ϕβ ◦ (ϕ ′α ′)
−1

(if defined) are Ck; this is indeed an equivalence relation. A Ck-structure on M is an
equivalence class of Ck atlases on M. A Ck-manifold is a manifold with a Ck structure.
A smooth manifold is a manifold with a C∞ structure, that is, a C∞-manifold.

5. A function f : M→R on a smooth manifold is smooth, written f ∈C∞(M), if for some
fixed atlas (within its equivalence class), each map f ◦ϕ−1

α : Vα →R is smooth.133

6. For two smooth manifolds M,N, a map ψ : M → N is smooth if for each f ∈ C∞(N)
the pullback ψ∗ f ≡ f ◦ψ is in C∞(M). Equivalently, in terms of the manifolds: for any
chart (U ,ϕ) on M and chart (Ũ , ϕ̃) on N such that U ′ = ψ(U)∩ Ũ 6= /0, the function
ϕ̃ ◦ψ ◦ϕ−1 : V ′→ Ṽ is smooth (in the calculus sense), where V ′ = ϕ(ψ−1(U ′))⊂V .

7. A diffeomorphism of M is an invertible smooth map ψ : M→M with smooth inverse.
Under the obvious operations, such maps form the diffeomorphism group Diff(M) of M.

Unless the contrary is stated, we henceforth assume that M is a smooth manifold equipped with
some C∞ atlas (Uα ,ϕα), and that all maps between smooth mathematical objects are smooth.

131See §2.6 for manifolds with boundary. References for this chapter are Choquet-Bruhat & DeWitt-Morette
(1982), Abraham & Marsden (1985), Kriele (1999), Frankel (2004), Lee (2012), and Mărcut, (2016).

132See e.g. Palomo & Romero (2006), §1.1, or Minguzzi (2019), §1.8.
133This is then true for any atlas. Conversely, M as a manifold can be reconstructed from C∞(M) as a commutative

algebra via homomorphisms ev : C∞(M)→R. See e.g. Navarro González & Sancho de Salas (2003), chapter 2.
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2.2 Tangent bundle

The differential geometry relevant to GR comes from the tangent bundle, which generates the
entire tensor calculus. Of the many roads to this bundle we prefer an (initially) algebraic
construction in terms of derivations on C∞(M), from which the geometric picture emerges.134

Readers who are mainly interested in using tangent bundles can move straight to Definition 2.4.

Definition 2.2 1. A derivation of an algebra A (over R) is a linear map δ : A→ A satisfying

δ (ab) = δ (a)b+ aδ (b). (2.1)

2. For any smooth manifold M, a point derivation at x ∈M is a linear map

δx : C∞(M)→R (2.2)

that satisfies the Leibniz rule

δx( f g) = δx( f )g(x)+ f (x)δx(g). (2.3)

In no. 2, A =C∞(M) is seen as a (commutative) algebra with respect to pointwise operations.
The set Der(A) of all derivations of A is a vector space (again over R). If A is associative and

commutative, as is the case for A =C∞(M), then Der(A) is also an A-module under the natural
action (aδ )(b) = aδ (b). In addition, Der(A) is a Lie algebra under the bracket

[δ1,δ2] := δ1 ◦δ2−δ2 ◦δ1. (2.4)

For M = Rn, taking X i = δ (xi) it follows that each derivation δ of C∞(Rn) assumes the form

δ ( f )(x) =
n

∑
j=1

X j(x)
∂ f (x)

∂x j , (2.5)

where X ∈C∞(Rn,Rn), henceforth called X(Rn), is an “old-fashioned vector field” on Rn, i.e.
a field of arrows. Conversely, X defines a derivation δ ≡ δX by reading (2.5) as a definition of
δ . This gives a bijection X ↔ δX between the set X(Rn) of all vector fields on Rn and the set
Der(C∞(Rn)) of all derivations on C∞(Rn). We further pass to point derivations by defining

δx( f ) := δ ( f )(x), (2.6)

where δ ∈ Der(C∞(Rn)). Conversely, Definition 2.2 implies that a family of point derivations
x 7→ δx, defined for all x ∈ Rn, comes from a single derivation δ via (2.6), and hence from a
vector field X via δ = δX , iff the map x 7→ δx( f ) is smooth from Rn to R for each f ∈C∞(Rn).

Eq. (2.4) also has a match for vector fields: X(Rn) is a Lie algebra under the commutator

[X ,Y ]( f ) := X(Y ( f ))−Y (X( f )). (2.7)

134An algebra A (here always defined over R) is a real vector space equipped with a bilinear map A×A→ A,
usually written (a,b) 7→ ab. Many algebras are associative in that (ab)c = a(bc) for all a,b,c ∈ A, as well as
commutative, i.e. ab = ba for all a,b ∈ A. Lie algebras are neither: here one writes (a,b) 7→ [a,b], with axioms
[a,b] =−[b,a] as well as the Jacobi identity [a, [b,c]]+ [c, [a,b]]+ [b, [c,a]] = 0. A module over an algebra A is a
vector space V with a bilinear map A×V →V , written (a,v) 7→ av, such that a(bv) = (ab)v (or a(bv) = [a,b]v).
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In coordinates, where we use components X = ∑i X i∂i and Y = ∑ j Y j∂ j, we have

[X ,Y ] = ∑
i
[X ,Y ]i∂i; [X ,Y ]i = ∑

j
(X j

∂ jY i−Y j
∂ jX i). (2.8)

Relative to (2.7) and (2.4), the bijection X ↔ δX is promoted to an isomorphism of Lie algebras.
Finally, if X(Rn) carries the C∞(Rn) action given by ( f X) j(x) = f (x)X j(x), then X↔ δX is

in addition an isomorphism of C∞(Rn) modules. Since X : Rn→Rn is given by its components
Xk : Rn→R, as a C∞(Rn) module X(Rn) decomposes as a direct sum of copies of A =C∞(Rn).
By definition, this makes X(Rn) a free module over C∞(Rn). Of course, the same is then true
for Der(C∞(Rn)). In sum, looking at a vector field X as the corresponding derivation δX , we
often identify Der(C∞(Rn)) with X(Rn), and this identification preserves all relevant structure.

We now generalize this story to arbitrary manifolds M. On the algebraic side, we have the
derivations Der(C∞(M)). We are going to define vector fields geometrically as sections of the
tangent bundle T M to M, whose construction is best understood in a more general form.

Definition 2.3 A (real, locally trivial) k-dimensional vector bundle over M is an open surjective
map π : E→M, where E is a manifold, such that:

1. For each x∈M, the fiber Ex := π−1(x) is a k-dimensional (real) vector space, i.e. Ex ∼= Rk

(where k is independent of x). This is the main point. More technically:

2. M has an open cover (Ui) with diffeomorphisms Φi : π−1(Ui)→Ui×Rk such that:

(a) Each restriction Φi : Ex→{x}×Rk is an isomorphism of vector spaces (x ∈Ui);

(b) If Ui j ≡Ui∩U j 6= /0, then Φi j ≡ Φi ◦Φ−1
j : Ui j×Rk→Ui j×Rk is the identity on

the first coordinate and a vector space isomorphism on the second one.

A vector bundle map from π1 : E → M to π2 : F → N is a pair of maps ϕ f : E → F and
ϕb : M→ N such that π2 ◦ϕ f = ϕb ◦π1, and each “fiber” map ϕ f : Ex→ Fϕb(x) is linear.

The simplest k-dimensional vector bundle over M is E = M×Rk with π given by projection
on the first coordinate; this is called a trivial bundle. A (cross-)section of E is a map s : M→ E
such that π ◦ s = idM, i.e., π(s(x)) = x for each x ∈ M. The set of smooth sections of E is
denoted by Γ(E) or Γ(M,E). This is a vector space. Under the natural action

C∞(M)×Γ(E)→ Γ(E); ( f s)(x) := f (x)s(x), (2.9)

the vector space Γ(E) is a finitely generated projective (f.g.p.) module over C∞(M).135

Sections s of the trivial bundle E = M×Rk→M bijectively correspond to maps s̃ : M→Rk

via s(x) = (x, s̃(x)). Hence we obtain, as an isomorphism of f.g.p. C∞(M)-modules,

Γ(M×Rk) ∼=C∞(M,Rk). (2.10)

The Serre–Swan Theorem provides an isomorphism between f.g.p. modules E over C∞(M) and
vector bundles E→M over M, in such a way that E ∼= Γ(E). We first define E as a set by

E := tx∈MEx; Ex := E /∼x= E /(C∞
x (M) ·E ). (2.11)

135An A-module E is called finitely generated projective if there exists an A-module F such that E ⊕F is free,
i.e. isomorphic to a finite direct sum ⊕kA. Equivalently, E ∼= p(⊕kA) for some idempotent p ∈Mk(A) (i.e. p2 = p).
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I.e. s1 ∼x s2 iff s1− s2 ∈C∞
x (M) ·E , defined as the linear span in E of all f s, where s ∈ E and

f ∈C∞
x (M) := { f ∈C∞(M) | f (x) = 0}. (2.12)

Then each fiber Ex of E is a vector space under the linear structure inherited from E , that is,

λ [s1]x + µ [s2]x := [λ s1 + µs2]x; 0 := [0]x, (2.13)

where [s]x is the equivalence class of s with respect to ∼x, and λ , µ ∈R. Subsequently, define

E → Γ(E); ŝ→ s; s(x) = [ŝ]x, (2.14)

so that s∈Ex and hence s : M→E is a cross-section of E. Then there is a unique smooth structure
on E such that (2.14) is an isomorphism of C∞(M) modules. This isomorphism maps C∞

x (M) ·E
to Γ(E;x) := {s ∈ Γ(E) | s(x) = 0}, so that the mirror of (2.11) under the isomorphism (2.14)
is

Γ(E)/Γ(E;x) ∼= Ex. (2.15)

We apply this to the C∞(M)-module E = Der(C∞(M)), and notice that we have an isomorphism

Der(C∞(M))/ ∼x
∼=→ Derx(C∞(M)); [δ ]x 7→ δx, (2.16)

where Derx(C∞(M)) is the vector space of all point derivations δx of M, cf. (2.2) - (2.3). Although
Der(C∞(M)) may no longer be free (as in M = Rn), using charts one can show that it is finitely
generated projective, so that the above procedure for defining a vector bundle E is applicable.

Definition 2.4 The tangent bundle π : T M→M is the vector bundle E constructed from

E = Der(C∞(M)) (2.17)

as in the above procedure, replacing (2.11) by (2.16). That is, the total space and fibers are

T M := tx∈MTxM; TxM := Derx(C∞(M)), (2.18)

and the smooth structure of T M is (uniquely) defined by the property that the map

Der(C∞(M))→ X(M) := Γ(T M); δ 7→ (x 7→ δx), (2.19)

where δx is defined by (2.6), is an isomorphism. A vector field on M is a cross-section of T M.

In a local chart ϕ : U →Rn, for x ∈U we define the symbol ∂i as an element of TxM by

∂i f (x) :=
∂ ( f ◦ϕ−1)

∂xi (ϕ(x)), (2.20)

where f ∈C∞(U) and ϕ−1 is the inverse of ϕ : U → V = ϕ(U). With V ⊂ Rn, the function
f ◦ϕ−1 : V →R is the coordinate expression f (x1, . . . ,xn) of f , so that ∂i in (2.20) may be taken
literally. This also shows that (∂1, . . . ,∂n) is a basis of TxM, so that we may expand Xx ∈ TxM as

Xx =
n

∑
i=1

X i
x∂i; X i

x = Xϕ
i(x), (2.21)

where ϕ = (ϕ1, . . . ,ϕn) : U →Rn. Thus T M is an n-dimensional vector bundle over M.
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In conclusion, a vector field on M, written X ∈ X(M), is a map x 7→ Xx, also written as
x 7→ X(x), where x ∈ M and Xx ∈ TxM as defined by (2.18). A derivation on M is a map
δ : C∞(M)→C∞(M) that satisfies (2.1). These concepts are related by (2.6) with δx = Xx. We
think of a vector field X ∈X(M) as the collection of all “tangent vectors” Xx ∈ TxM, whereas we
think of the corresponding derivation δ as a single global operation on C∞(M).

• Point derivations push forward under maps ψ : M→ N: for x ∈M we have linear maps

Txψ ≡ ψ
′
x : TxM→ Tψ(x)N; (ψ ′xδx)(g) = δx(ψ

∗g) (g ∈C∞(N)), (2.22)

where ψ∗g := g◦ψ is the pullback of g. Collecting these maps gives a vector bundle map

T ψ ≡ ψ∗ ≡ ψ
′ : T M→ T N. (2.23)

• However, derivations (or vector fields) push forward only if ψ : M→N is a diffeomorphism:
the map ψ∗ : Der(C∞(M))→ Der(C∞(N)), or ψ∗ : X(M)→ X(N), is given by

ψ∗(δ ) = (ψ−1)∗ ◦δ ◦ψ
∗. (2.24)

One needs (ψ−1)∗ even if N = M, since δ ◦ψ∗ fails to be a derivation of C∞(M). Check!

So far, tangent vectors Xx ∈ TxM were defined algebraically as point derivations, i.e. as linear
maps δx : C∞(M)→R satisfying (2.3). Geometrically, each tangent vector (nomen est omen!)
is tangent to some curve γ through x, i.e., a map γ : I→M, where I ⊂R is some interval we
always assume to contain 0, such that γ(0) = x (see below for the existence of γ). In other words,

Xx( f ) =
d
dt

f (γ(t))|t=0, (2.25)

which symbolically may be written as Xx = γ̇ ≡ dγ/dt, or even as Xx = d/dt, with γ understood.
This description gives a geometric perspective on the pushforward of TxM just described:

• If X = dγ/dt is tangent to γ , then ψ ′X = d(ψ ◦ γ)/dt is tangent to ψ(γ).

In a chart ϕ = (ϕ1, . . . ,ϕn) : U →Rn, with x ∈U , the components X i
ϕ of Xx are given by

X i
ϕ = Xϕ

i(x) =
d
dt

ϕ
i(γ(t))|t=0 =

d
dt

γ
i(t)|t=0, (2.26)

where γ i(t) = ϕ i(γ(t)). This also shows that γ exists, given Xx, since it just has to satisfy (2.26).
Of course, γ is far from unique. Eq. (2.26) gives the traditional transformation rule for vectors
under a change of charts (i.e. of coordinates). If x ∈Uα ∩Uβ , then (2.25) and (2.26) imply

X i
β
= ∑

j

∂xi
β

∂x j
α

X j
α , (2.27)

where X i
β
≡X i

ϕβ
etc., and each coordinate xi

β
= ϕ i

β
(x) of x with respect to ϕβ is seen as a function

of all coordinates xi
α = ϕα(x) of x with respect to ϕα via the identity ϕ i

β
= ϕ i

β
◦ϕ−1

α ◦ϕα , i.e.

xi
β
(xα) = ϕ

i
β
◦ϕ
−1
α (xα). (2.28)
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It is important to distinguish (2.27), which is a change of coordinates formula for a given
tangent vector, from the pushforward of a tangent vector under a map ψ : M → M. With
ϕ : U →V ⊂Rn, suppose for simplicity that x ∈U and also ψ(x) ∈U . Then, writing X i

ϕ ≡ X i

as above, as well as ψ i = ϕ i ◦ψ ◦ϕ−1 (which near x is a function from V to R), we have

(ψ ′X)i = ∑
j

∂ψ i

∂x j X j. (2.29)

A curve γ : I→M integrates a vector field X if Xγ(t) = dγ(t)/dt for all t ∈ I, i.e., in coordinates,

dγ j(t)
dt

= X j(γ1(t), . . . ,γn(t)), ( j = 1, . . . ,n). (2.30)

The theory of ODEs shows that for each x ∈M there exists an open interval I ⊂R (with 0 ∈ I)
and a curve γ : I→M on which (2.30) holds with γ(0) = x. This solution is unique in the sense
that if γ1 : I1→M and γ2 : I2→M both satisfy (2.30) with γ1(0) = γ2(0) = x0, then γ1 = γ2 on
I1∩ I2. Taking unions, it follows that there exists a maximal interval I on which γ is defined.

If for any x ∈ M there is a curve γ : R→ M satisfying (2.30) with γ(0) = x, we say that
X ∈ X(M) is complete.136 In that case, all integrating curves γ can be assembled into the flow
of X . This is a smooth map ψ : R×M→M, written ψt(x) ≡ ψ(t,x), that satisfies

ψ0(x) = x; (2.31)

Xψt(x) f =
d
dt

f (ψt(x)) (2.32)

for all x ∈M, t ∈R, and f ∈C∞(M). Thus the flow ψ of X gives “the” integral curve γ of X
through x0 by γ(t) = ψt(x0). Any complete vector field has a unique flow. Uniqueness implies
that M is a disjoint union of the integral curves of X (which can never cross each other because
of the uniqueness of the solution), and also implies the composition rule

ψs ◦ψt = ψs+t . (2.33)

From a group-theoretic point of view, a flow is therefore an action of R (as an additive group) on
M that in addition integrates X in the sense of (2.32). In particular, (2.33) implies ψ−t = ψ

−1
t ,

so that each ψt : M→M is automatically a diffeomorphism of M.
If X is not complete (a case that will be of great interest to GR!), we first define the domain

DX ⊂R×M of ψ as the set of all (t,x) ∈R×M for which there exists an open interval I ⊂R

containing 0 and t, as well as a (necessarily unique) curve γ : I→M that satisfies (2.30) with
initial condition γ(0) = x. Obviously {0}×M ⊂ DX , and (less trivially) it turns out that DX is
open. Then a flow of X is a map ψ : DX →M that satisfies (2.31) for all x and (2.32) for all
(t,x) ∈ DX . Eq. (2.33) then holds if the left-hand side (and hence the right-hand side) is defined.

As a first application of flows, let us define the Lie derivative LXY of some vector field
Y ∈ X(M) with respect to another vector field X ∈ X(M) by

LXY (x) = lim
t→0

Yψt(x)−ψ ′t (Yx)

t
= lim

t→0

ψ ′−t(Yψt(x))−Yx

t
(2.34)

where ψ is the flow of X . Note that Yψt(x)−Yx would be undefined, since Yψt(x) ∈ Tψt(x)M whilst
Yx ∈ TxM and these are different vector spaces; the pushforward ψ ′t serves to move Yx to Tψt(x)M.
A simple computation then yields the extremely useful result

LXY = [X ,Y ]. (2.35)
136If X has compact support, then it is complete. So if M is compact, then every vector field on M is complete.
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2.3 Dual vector spaces, metrics, and tensor products
In order to defined tensors we need some linear algebra. Let V be a finite-dimensional real
vector space, with dim(V ) = n, which in GR will be V = TxM. The dual V ∗ = Hom(V ,R)
consists of all linear maps from V to R. This is a real vector space in its own right under
pointwise constructions. It is isomorphic to V (as a vector space), but not canonically so: one
needs to specify a basis (e1, . . . ,en) of V , with corresponding dual basis (ω1, . . . ,ωn) defined
by ωa(eb) = δ a

b , upon which the ugly map ∑a vaea 7→ ∑a vaωa from V to V ∗ is an isomorphism
(which obviously depends on the chosen basis). However, we do have a canonical isomorphism

V ∼= V ∗∗; v 7→ v̂; v̂(θ ) = θ (v) (2.36)

where v̂ ∈V ∗∗ = Hom(V ∗,R). This map is injective for any V , but it is surjective (and hence an
isomorphism) iff V is finite-dimensional. One often writes 〈θ ,v〉 for both θ (v) and v̂(θ ).

The naturality of the isomorphism V ∗ ∼= V improves markedly in the presence of a metric.

Definition 2.5 A metric g on V is a bilinear map g : V ×V →R that is:

• symmetric, in that g(v,w) = g(w,v) for all v,w ∈V ;

• nondegenerate, i.e. for each nonzero vector v ∈V there is w ∈V such that g(v,w) 6= 0.

A metric g yields two maps that are mutually inverse and hence are isomorphisms V ∗ ∼= V :

[ : V →V ∗, [(v) ≡ v[; v[(w) := g(v,w); (2.37)
] : V ∗→V , ](θ ) ≡ θ]; g(θ],v) := θ (v). (2.38)

Any metric g can be diagonalized, i.e. V has an orthonormal basis (ea)≡ (e1, . . . ,en), in which

g(ea,eb) = εaδab; εa = ±1. (2.39)

The pair (n−,n+), where n−/n+ is the number of negative/positive numbers εa, is independent
of the basis and hence is an intrinsic property of a metric g, called its signature. Especially in
relativity, the signature is often written as (−·· ·−+ · · ·+), with n−/n+ minus/plus signs.

We now turn to the tensor product. In the following proposition, V and W are real but not
necessarily finite-dimensional (and the same construction works over any field, typically C).

Proposition 2.6 Let V and W be real vector spaces. There is a real vector space called V ⊗W,
in words the tensor product of V and W (over R), and a map

p : V ×W →V ⊗W ; p(v,w) ≡ v⊗w, (2.40)

such that for any vector space X and any bilinear map β : V ×W → X, there is a unique linear
map β ′ : V ⊗W → X such that β = β ′ ◦ p. In other words, the following diagram commutes:

V ×W V ⊗W

X

p

β

∃!β ′ (2.41)

Moreover, this so-called universal property implies that V ⊗W is unique up to isomorphism.
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We will not prove this here in general, but do show existence of V ⊗W if V and W are finite-
dimensional.137 We first assume that V = Y ∗ and W = Z∗, in which case we define

Y ∗⊗Z∗ := Hom(Y ×Z,R); (2.42)
(σ ⊗ρ)(y,z) := σ(y)ρ(z), (2.43)

where Hom(Y ×Z,R) is the space of bilinear maps from Y ×Z to R, and of course σ ∈ Y ∗,
ρ ∈ Z∗, y ∈Y , z ∈ Z. Then β ′(σ ⊗ρ) = β (σ ,ρ) by construction, and this uniquely extends to a
linear map β ′ : Hom(Y ×Z,R)→ X , since Hom(Y ×Z,R) is the linear span of all σ ⊗ρ .

This also covers V and W themselves, at least up to isomorphism, since in finite dimension
we have the isomorphism (2.36), so that, identifying V with V ∗∗ etc., we obtain

V ⊗W ∼= V ∗∗⊗W ∗∗ = Hom(V ∗×W ∗,R); (2.44)
(v⊗w)(θ ,τ) = θ (v)τ(w), (2.45)

where this time v ∈V , w ∈W , θ ∈V ∗, and τ ∈W ∗. Once again, β ′ : Hom(V ∗×W ∗,R)→ X is
uniquely defined by linear extension of β ′(v⊗w) = β (v,w), since the linear span of all v⊗w
equals Hom(V ∗×W ∗,R). We have effectively identified v with v̂ and w with ŵ, cf. (2.36), and
this shows up: although (2.42) gives Y ∗⊗R = Y ∗ as expected, eq. (2.44) has the consequence

V ⊗R = Hom(V ∗,R) = V ∗∗, (2.46)

where one would prefer to see V . But although no one would criticize the realization V ⊗R =V ,
eq. (2.46) reconfirms that tensor products are merely defined up to isomorphism, cf. (2.36).
Similarly, instead of V ∗⊗V = Hom(V ×V ∗,R), as suggested by (2.42) and (2.44), we may take

V ∗⊗V ∼= Hom(V ,V ), (2.47)

since one has an isomorphism Hom(V ×V ∗,R)→ Hom(V ,V ), given by linear extension of

w⊗θ 7→ (v 7→ θ (v)w). (2.48)

With v ∈V and θ ∈V ∗ as before, the inverse of the map (2.48) is given by

Hom(V ,V )→ Hom(V ×V ∗,R); ϕ 7→ ϕ̂; ϕ̂(v,θ ) = θ (ϕ(v)). (2.49)

In connection with the Riemann tensor we will have occasion to use the induced isomorphism

V ∗⊗V ∗⊗W ∗⊗W ∼= Hom(V ×V ,Hom(W ,W )); (2.50)
θ1⊗θ2⊗η⊗w1 7→ ((v1,v2) 7→ (w2 7→ θ1(v1)θ2(v2)η(w2)w1). (2.51)

To describe the inverse of this map we combine (2.42) and (2.44) to pick the realization

V ∗⊗V ∗⊗W ∗⊗W = Hom(V ×V ×W ×W ∗,R). (2.52)

The image ϕ̂ ∈ Hom(V ×V ×W ×W ∗,R) of ϕ ∈ Hom(V ⊗V ,Hom(W ,W )) is then given by

ϕ̂(v1,v2,w,η) = η(ϕ(v1,v2)(w)). (2.53)
137 The construction applies in general if we define V⊗W as the finite linear span of all a⊗b in Hom(V ∗×W ∗,R).
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2.4 Cotangent bundle
Now that we have the tangent bundle T M and the constructions in §2.3, all relevant vector
bundles on M that are relevant for GR follow. First, the cotangent bundle T ∗M is defined as

T ∗M := tx∈MT ∗x M; T ∗x M ≡ (TxM)∗ := Hom(TxM,R), (2.54)

i.e. T ∗x M is the dual of the vector space TxM, consisting of all linear maps θx : TxM→R. The
smooth structure of T ∗M is the unique one such that elements θ ∈ Γ(T ∗M) ≡Ω1(M) ≡Ω(M),
called covectors (or 1-forms), consist of those maps x 7→ θx for which the function x 7→ θx(Xx)
from M to R is smooth for each vector field X ∈X(M). Since TxM ∼=Rn we also have T ∗x M ∼=Rn,
so that, like the tangent bundle T M, also the cotangent bundle T ∗M is an n-dimensional vector
bundle over M. In a coordinate systems (xi) defined by some chart, T ∗x M has basis (dx1, . . . ,dxn)
defined by dxi(∂ j) = δ i

j, which is dual to the basis (∂1, . . . ,∂n) of TxM defined in (2.20). Thus

θ = ∑
i

θidxi; θi = θ (∂i). (2.55)

For an equivalent view of dxi, one may define the exterior derivative d : C∞(M)→Ω(M) by

d f (X) := X( f ). (2.56)

Then dxi coincides with dϕ i, where xi = ϕ i(x) as usual, and in coordinates (2.56) simply reads

d f = ∑
i

(
∂ f
∂xi

)
dxi. (2.57)

More generally, let (ea) be a basis of TxM, with dual basis (ωa) of T ∗x M (i.e. ωa(eb) = δ a
b ).

Once again, if we expand θ = ∑a θaωa, we have θa = θ (ea). This may be done at a single
point, but bases like (∂1, . . . ,∂n) and (dx1, . . . ,dxn) are defined at each x ∈ U on which the
coordinates xi = ϕ i(x) are defined. Similarly, some basis (ea) may be defined at each x ∈U ,
where U ∈ O(M) need not even be the domain of a chart. In that case (ea) is called a (moving)
frame or an n-bein (so that in GR one has a vierbein or tetrad). Abstractly, if E → M is a k-
dimensional vector bundle, one may locally find k linearly independent cross-sections (u1, . . . ,uk)
of E and expand any s ∈ Γ(E) by s(x) = ∑ j s j(x)u j(x), where s j ∈C∞(M) and u j ∈ Γ(E).

Whereas tangent vectors push forward from M to N under maps ψ : M→ N, covectors pull
back from N to M, like functions: besides the pull-back ψ∗ : C∞(N)→C∞(M) on functions,
any (smooth) map ψ induces a pullback ψ∗ : Ω(N)→Ω(M) on 1-forms by

(ψ∗θ )x(Xx) = θψ(x)(ψ
′
xXx), (2.58)

where θ ∈Ω(N) and Xx ∈ TxM. For any f ∈C∞(N) with d f ∈Ω(N), this yields

ψ
∗(d f ) = d(ψ∗ f ). (2.59)

A decent vector bundle map ψ∗ : T ∗N → T ∗M is defined only if ψ is a diffeomorphism: for
θy ∈ T ∗y N (y ∈ N), we need x = ψ−1(y) ∈M, so that the pullback ψ∗y (θy) ∈ T ∗x M is defined by

(ψ∗y θy)(Xx) = θy(ψ
′
xXx). (2.60)

If ψ is merely injective, then we still obtain a map ψ∗ : T ∗(ψ(M))→ T ∗M in this way.
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2.5 Tensor bundles
For (k, l) ∈N×N we define a vector bundle T (k,l)M over M in the usual way via its fibers

T (k,l)
x M := Hom((TxM)k× (T ∗x M)l ,R), (2.61)

i.e. the vector space of (k+ l)-fold multilinear maps from (TxM)k× (T ∗x M)l to R. These fibers
comprise the total space of the bundle as a disjoint union

T (k,l)M := tx∈MT (k,l)
x M, (2.62)

whose manifold structure will be defined below (by defining the smooth sections). We then have

T (0,0)M = M×R; T (1,0)M = T ∗M; T (0,1)M ∼= T M, (2.63)

where in the last entry we used (2.36). Repeatedly using Proposition 2.6, taking (2.44) as a
realization of “the” tensor product, and once again using (2.36), we obtain the realization

T (k,l)
x M ∼= (⊗kT ∗x M)⊗ (⊗lTxM), (2.64)

where ⊗lV is the l times iterated tensor product of V with itself. According to (2.64), the fiber
T (k,l)

x M consists of finite sums of elementary tensors α1⊗·· ·⊗αk⊗ v1⊗·· ·⊗ vl , defined for

αi ∈ T ∗x M(i = 1, . . . ,k); v j ∈ TxM( j = 1, . . . , l).

In terms of (2.61), one has

α1⊗·· ·⊗αk⊗ v1⊗·· ·⊗ vl(X1, . . . ,Xk;θ
1, . . . ,θ l) = α1(X1) · · ·αk(Xk)v1(θ

1) · · ·vl(θ
l),

where each Xi ∈ TxM and each θ j ∈ T ∗x M. We then define Γ(T (k,l)M) as the set of all cross-
sections x 7→ τx from M to T (k,l)M (i.e. maps such that τx ∈ T (k,l)

x M) for which the map

x 7→ τx(X1(x), . . . ,Xk(x);θ
1(x), . . . ,θ l(x))

from M to R is smooth for each (X1, . . . ,Xk;θ 1, . . . ,θ l) with Xi ∈ X(M) and θ j ∈Ω(M). This
equips the vector bundles T (k,l)M with a manifold structure, in that we declare Γ(T (k,l)M) to
be the space of smooth cross-sections of T (k,l)M. Elements of Γ(T (k,l)M) are called tensors (or
tensor fields (if τx is regarded as a tensor). In GR, T (2,0)M and T (3,1)M will be very important.

All this can be rewritten in terms of indices. In terms of the (coordinate) basis (∂1, . . . ,∂n) of
TxM with dual basis (dx1, . . . ,dxn) of T ∗x M, the fiber T (k,l)

x M then has a basis

(dxi1⊗·· ·⊗dxik⊗∂ j1⊗·· ·⊗∂ jl ), (2.65)

where all indices run from 1 to n. Thus T (k,l)M is an nk+l-dimensional vector bundle. Like
vectors, tensors at x may be specified by their components with respect to some basis of TxM and
associated dual basis of T ∗x M. In the usual coordinate basis (∂i) we have

τx = τ
j1··· jl

i1···ik (x)dxi1⊗·· ·⊗dxik⊗∂ j1⊗·· ·⊗∂ jl ; (2.66)

τ
j1··· jl

i1···ik (x) = τx(∂i1 , . . . ,∂ik ;dx j1 , . . . ,dx jl ), (2.67)

where we use the Einstein summation convention: repeated indices are summed over.
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That is, the right-hand side of (2.66) should really be preceded by ∑
n
i1,...,ik, j1,..., jl=1.

Similarly, in an arbitrary basis (ea) of TxM with dual basis (θ a) of T ∗x M one has

τx = τ
b1···bl
a1···ak

(x)θ
a1⊗·· ·θ ak⊗ eb1⊗·· ·⊗ ebl ; (2.68)

τ
b1···bl
a1···ak

(x) = τx(ea1 , . . . ,eak ;θ
b1 , . . . ,θ bl ). (2.69)

We write X(k,l)(M) for the space of cross-sections Γ(T (k,l)M) of T (k,l)M, so that

X(0,0)(M) =C∞(M); X(0,1)(M) = X(M); X(1,0)(M) = Ω(M). (2.70)

A tensor τ ∈ X(k,l)(M) of type (k, l) maps k vector fields (X1, . . . ,Xk) and l covector fields
(θ 1, . . . ,θ l) to a smooth function on M by pointwise evaluation, i.e.

τ : X(M)k×Ω(M)l → C∞(M); (2.71)

τ(X1, . . . ,Xk,θ 1, . . . ,θ l) : x 7→ τx(X1(x), . . . .Xk(x);θ
1(x), . . . ,θ l(x)). (2.72)

This map is evidently k+ l-multilinear over C∞(M), in being-multi-additive and satisfying

τ( f1X1, . . . , fkXk,g1θ
1, . . . ,glθ

l) = f1 · · · fk ·g1 · · ·gl · τ(X1, . . . ,Xk;θ
1, . . . ,θ l), (2.73)

for all fi,g j ∈C∞(M); here we use the fact that X(M) and Ω(M) are C∞(M) modules.

Proposition 2.7 (tensoriality test) A map

τ : X(M)k×Ω(M)l →C∞(M) (2.74)

is given by a tensor
τ ∈ X(k,l)(M) (2.75)

through (2.72) iff τ is C∞(M)-multilinear in all entries.

Proof. The proof is easy in local coordinates, where (2.73) yields

τ(X1, . . . ,Xk,θ 1, . . . ,θ l) = τ(X i1
1 ∂i1 , . . . ,X ik

k ∂ik ;θ
1
j1dx j1 , . . .θ l

jl dx jl )

= X i1
1 · · ·X

ik
k ·θ

1
j1 · · ·θ

l
jl τ(∂i1 , . . . ,∂ik ;dx j1 , . . .dx jl ), (2.76)

so if we define the components τ
j1··· jl

i1···ik (x) of τx by (2.67) and subsequently define τx itself by
(2.66), we have found the desired tensor that via (2.72) reproduces the given map τ . �

Eqs. (2.66) - (2.67) imply the transformation properties of tensors under changes of coordi-
nates (i.e. charts), which historically even defined tensors: in the situation of (2.27),

(τβ )
j1··· jl
i1···ik (xβ ) =

∂x j1
β

∂x j′1
α

· · ·
∂x jl

β

∂x
j′l
α

· ∂xi′1
α

∂xi1
β

· · · ∂x
i′k
α

∂xik
β

· (τα)
j′1··· j′l
i′1···i′k

(xα), (2.77)

where the “new” coordinates (xβ ) = (x1
β

, . . . ,xn
β
) are functions of the “old” coordinates (xα) =

(x1
α , . . . ,xn

α), cf. (2.28), and hence the matrix (∂xi′1
α /∂xi1

β
) is defined as the inverse of the matrix

(∂xi1
β

/∂xi′1
α ), both seen as functions of the (xi

α). Note that the argument xβ in (2.77) refers to the
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same point x ∈M as the argument xα (but in different coordinates). Conversely, from a “tensor”
(in the original historical sense of the word) τ

j1··· jl
i1···ik (x) we obtain a map τ of the kind (2.71) by

τ(X1, . . . ,Xk,θ 1, . . . ,θ l) : x 7→ τ
j1··· jl

i1···ik (x)X
i1
1 (x) · · ·X ik

k (x) ·θ
1
j1(x) · · ·θ

l
jl (x). (2.78)

It then follows from (2.77) that τ is well defined in being coordinate-independent. It is also
k+ l-multilinear linear over C∞(M) by construction, so that we recover (2.71) - (2.73).

A smooth map
ψ : M→ N (2.79)

induces a (vector bundle) map

ψ
(0,l)
∗ : T (0,l)M→ T (0,l)N (2.80)

via the obvious pointwise maps

ψ
(0,l)
x : T (0,l)

x M→ T (0,l)
ψ(x)N. (2.81)

However, to extend this to a map

ψ
(k,l)
∗ : T (k,l)M→ T (k,l)N, (2.82)

we need ψ to be invertible (with smooth inverse), in which case we may as well take N = M and
assume that ψ : M→M is a diffeomorphism. In that case, we have

(ψ
(k,l)
∗ (τx))(X1(ψ(x)), . . . ,θ l(ψ(x))) := τx(ψ

−1
∗ (X1(ψ(x))), . . . ,ψ∗(θ l(ψ(x)))); (2.83)

ψ
(k,l)
∗ (τx) = τ

j1··· jl
i1···ik (x) · (ψ

−1)∗x(dxi1)⊗·· ·⊗ψ
′
x(∂ jl ). (2.84)

This can also be done with ψ replaced by ψ−1, giving maps

ψ
∗
(k,l) : T (k,l)M→ T (k,l)N, (2.85)

which in turn induce maps on the sections

ψ
∗
(k,l) : X(k,l)(M)→ X(k,l)(M), (2.86)

often just called ψ∗, via

(ψ∗(k,l)τ)x(X1(x), . . . ,θ l(x)) = τψ(x)(ψ∗(X1(x)), . . . , (ψ−1)∗(θ l(x))). (2.87)

In particular, ψ∗(1,0) is the map ψ∗ from (2.58), whereas ψ∗(0,1) = ψ−1
∗ (recall that ψ∗ ≡ ψ ′).

A natural operation on tensors, which is often used in GR, is tensoring: if

τ1 ∈ X(k1,l1)(M) and τ2 ∈ X(k2,l2)(M), (2.88)

then
τ1⊗ τ2 ∈ X(k1+k2,l1+l2)(M) (2.89)
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is defined by concatenation, i.e.

τ1⊗ τ2(X1, . . . ,Xk1 ,Y1, . . .Yk2;θ
1, . . . ,θ l1 ,ρ1, . . . ,ρ l2) :=

τ1(X1, . . . ,Xk1;θ
1, . . . ,θ l1) · τ2(Y1, . . .Yk2;ρ

1, . . . ,ρ l2). (2.90)

Indeed, X(k,l)(M) itself arose in this way by tensoring copies of X(1,0)(M) and X(0,1)(M).
Another important operation for GR is (index) contraction: If k > 0 and l > 0, then a tensor

τ ∈ X(k,l)(M) may be contracted along one fixed upper and one lower index, say i and j (the
result depends on this choice) so as to obtain a tensor σ ∈ X(k−1,l−1)(M) with two indices less.
Let (ea) be a basis of TxM, with dual basis (ωa) of T ∗x M (i.e. ωa(eb) = δ a

b ); in local coordinates
one could take the (∂i) basis, with dual (dxi). Then

σ
b1,...,b̂i,...,bl
a1,...,â j,...,ak

(x) := τ
b1,...,a,...,bl
a1,...,a,...,ak

(x), (2.91)

where, according to the Einstein summation convention, a is summed over, and a hat means that
the given index is omitted. This is easily seen to be independent of the basis.

Finally, the Lie derivative LX , so far only defined on vector fields, may be extended to a
linear (and “C∞(M)-Leibnizian”) map

L
(k,l)

X : X(k,l)(M)→ X(k,l)(M) (2.92)

in two equivalent ways:

• Concretely, writing LX for L
(k,l)

X for simplicity, one may define

LX τ := lim
t→0

(ψ∗t (τ)− τ)/t (τ ∈ X(k,l)M), (2.93)

cf. (2.34). In local coordinates, this gives the following explicit formula:

(LX τ) j1··· jl
i1···ik = X i

∂iτ
j1··· jl

i1···ik +(∂i1X i)τ j1··· jl
i···ik + · · ·+(∂ikX i)τ j1··· jl

i1···i

− (∂ jX j1)τ j··· jl
i1···ik−·· ·− (∂ jX jl )τ j1··· j

i1···ik , (2.94)

of which (2.8) is clearly a special case.

• Axiomatically, one may define the LX as the unique linear maps satisfying the rules:

1. L
(0,0)

X f = X f for functions f ∈C∞(M) ≡ X(0,0)M;

2. L
(0,1)

X Y = [X ,Y ] for vector fields Y ∈ X(M) ≡ X(0,1)M;

3. (L
(1,0)

X θ )(Y ) = LX (θ (Y ))−θ (LXY ) for covector fields θ ∈Ω(M) ≡ X(1,0)M;

4. L
(k,l)

X (σ ⊗ τ) = (LX σ)⊗ τ +σ ⊗LX τ for all higher-order tensors (Leibniz rule).

It follows from either 1–4 or (2.94) that for all cases L
(k,l)

X ≡LX one has the lovely rule

[LX ,LY ] = L[X ,Y ]. (2.95)
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2.6 Manifolds with boundaries and corners
For the action principle in GR as well as for things like Penrose diagrams or Cauchy horizons
we will need an extension of the manifold concept defined in §2.1 so as to incorporate (smooth)
boundaries and, sometimes, corners (which lead to non-smooth boundaries).138 For n≥ 1, let

Rn
+ := {x ∈Rn | xn ≥ 0}; R̃n

+ := {x ∈Rn | x1 ≥ 0, . . . ,xn ≥ 0}. (2.96)

Definition 2.8 1. A Ck-manifold with boundary M is defined in the same way as a manifold
(cf. §2.1), except that one replaces Rn by Rn

+ throughout the definition. In particular, each
point x ∈M has a nbhd U ∈ O(M) that is homeomorphic to some V ∈ O(Rn

+).

2. Similarly, a manifold with corners is defined from the model space R̃n
+ instead of Rn.

3. In these definitions, Ck-regularity of the transition functions ϕβ ◦ϕ−1
α (see Definition 2.1.4

in §2.1) is defined by declaring F : V →Rm, where V ∈O(Rn
+) or V ∈O(R̃n

+), to be Ck,
0≤ k ≤ ∞, iff F can be extended to a Ck map on some open nbhd of V in Rn.139

4. In both cases a map f : M→R is Ck iff the map f ◦ϕ−1
α : Vα →R is Ck for each α .

5. The boundary ∂M of a manifold M with boundary or corners is the set of all x ∈M whose
image ϕ(x) in some chart (U ,ϕ) with x ∈U lies on the (topological) boundary ∂ϕ(U)
of ϕ(U) in Rn (this is independent of the chart).140 In addition, a boundary point of a
manifold with corners is a corner point if at least two of the coordinates of ϕ(x) vanish.

6. The interior int(M) is defined as M\∂M.

7. For k = ∞, the tangent bundle is defined exactly as in Definition 2.4. In particular, for
any x ∈M, the tangent space TxM is the space of all point derivations (2.2) of C∞(M).

The boundary of a manifold with boundary is itself a manifold (without boundary or corners),
in the same class Ck as M itself, of dimension n−1 (i.e. one less than M). This should be clear
for Rn

+ itself, where ∂Rn
+ = {x ∈ Rn | xn = 0}, which is clearly ∼= Rn−1. However, corner

points typically ruin Ck regularity of the boundary; removing them leaves a disconnected Ck

boundary. On the other hand, in both cases int(M) is again a “plain”, n-dimensional manifold.141

Surprisingly, for M = Rn
+ the tangent space is just TxRn

+ = TxRn even at x ∈ ∂Rn
+, and also

for general M the fibers TxM are vector spaces with a coordinate basis (∂ /∂x1, . . . ,∂ /∂xn) at
any x ∈M. This makes it possible to define tensors and (semi) Riemannian metrics as usual.

To recover the intuition that tangent vectors at boundary points x ∈ ∂M should be directed
inwards (at least without corners), note that the set-theoretic complement TxM\Tx∂M of Tx∂M
is the disjoint union of two open half-spaces of which one, call it T i

x M, consisting of inward
tangent vectors, is distinguished by the property that for any X ∈ T i

x M there exists a smooth (or
Ck) curve c : [0,ε)→M for which c(0,ε) ∈ int(M) and X f (x) = d f (c(t))/dt|t=0, as usual.

138See Lee (2012) for both boundaries and corners, and Gallot, Hulin, & Lafontaine (1990) for boundaries.
Manifolds with corners are usually studied using the b-calculus of Melrose (1996).

139For k = ∞, Seeley’s extension theorem states that this is equivalent to all derivatives of F being bounded on all
bounded subsets of the (topological) interior int(V ) of V (Seeley, 1964). See also Grieser (2000).

140Either x ∈M has an open nbhd U ∼= V ∈ O(Rn), in which case x /∈ ∂M, or it doesn’t, in which case x ∈ ∂M.
141 A basic result is the collar neighbourhood theorem, which states that if M is a smooth manifold with boundary,

then ∂M has an open nbhd in M that is diffeomorphic to ∂M× [0,1). See e.g. Schultz (undated).
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2.7 Summary

• Differential geometry gets going as soon as we define the space C∞(M) of smooth (real-
valued) functions on a manifold M; this is done through local charts

ϕ : U →Rn (U ⊂M). (2.97)

• The coordinates (x1, . . . ,xn) of x ∈U with respect to ϕ = (ϕ1, . . . ,ϕn) are

xi = ϕ
i(x). (2.98)

• The tangent bundle T M to M is the union

T M = tx∈MTxM, (2.99)

where TxM is the space of point derivations at x, defined as linear maps δx : C∞(M)→R

that satisfy the Leibniz rule

δx( f g) = δx( f )g(x)+ f (x)δx(g). (2.100)

Each δx takes the form

δx( f ) =
d
dt

f (γ(t))|t=0, (2.101)

where γ : (−ε ,ε)→M is some curve through x = γ(0); δx is called a tangent vector Xx.

• A smooth section x 7→ δx of T M corresponds to a derivation δ : C∞(M)→C∞(M), i.e. a
linear map satisfying

δ ( f g) = δ ( f )g+ f δ (g). (2.102)

Conversely, each derivation defines point derivations

δx( f ) = δ ( f )(x). (2.103)

Seen as x 7→ Xx, a derivation δ ≡ X is a vector field on M. The set of all vector fields on
M is denoted by X(M). It is naturally a C∞(M) module.

• The coordinates of Xx ∈ TxM with respect to ϕ are

X i = Xxϕ
i (2.104)

(where Xx = δx is restricted to U), and one has Xx = X i∂i, where ∂i = ∂ /∂xi, and
(∂1, . . . ,∂n) form a basis of TxM.

• The cotangent bundle T ∗M to M is the union

T ∗M = tx∈MT ∗x M, (2.105)

where T ∗x M is the linear dual Hom(TxM,R). Each C∞(M)-linear map θ : X(M)→C∞(M),
called a 1-form, comes from a cross-section x 7→ θx with θx ∈ T ∗x M. The set of all 1-forms
on M is called Ω(M).
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• The exterior derivative d : C∞(M)→Ω(M) is canonically defined by

d f (X) := X( f ). (2.106)

• The coordinates of θx ∈ T ∗x M with respect to ϕ are θi = θ (∂i), and then θ = θidxi.

• The vector bundle
T (k,l)M = ∪xT (k,l)

x M (2.107)

of tensors of type (k, l) over M is defined by

T (k,l)
x M := Hom((TxM)k× (T ∗x M)l ,R) ∼= (⊗kT ∗x M)⊗ (⊗lTxM).

The cross-sections x 7→ τx ∈ T (k,l)
x M) are the maps

τ : X(M)k×Ω(M)l → C∞(M) (2.108)

that are k + l-multilinear linear over C∞(M). These maps, also called tensors, form
X(k,l)(M).

• Important special cases are:

T (1,0) = T ∗M; X(1,0)(M) = Ω(M); (2.109)

T (0,1) = T M; X(0,1)(M) = X(M). (2.110)

Furthermore, the metric tensor g of GR will be in X(2,0)(M).

• The coordinates τ
j1··· jl

i1···ik of τx ∈ T (k,l)
x M are given by

τx(∂i1 , . . . ,∂ik ;dx j1 . . . ,dx jl ); τx = τ
j1··· jl

i1···ik (x)dxi1⊗·· ·dxik⊗∂ j1⊗·· ·⊗∂ jl . (2.111)

For the metric, this gives gi j = g(∂i,∂ j).

• For each vector field X ∈ X(M), the Lie derivative

LX : X(k,l)(M)→ X(k,l)(M) (2.112)

is a linear map that satisfies

LX ( f τ) = (X f )τ + f LX (τ) (X ∈ X(M), f ∈C∞(M),τ ∈ X(k,l)(M)); (2.113)
[LX ,LY ] = L[X ,Y ]; (X ,Y ∈ X(M)); (2.114)

LXY = [X ,Y ] (X ,Y ∈ X(M)); (2.115)
CLX f = X f ( f ∈C∞(M)). (2.116)

• Unless stated otherwise, all maps between smooth objects are required to be smooth.

• The Einstein summation convention holds: repeated (diagonal) indices are summed over.
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3 Metric differential geometry

The main object of study in GR is the metric tensor g ∈ X(2,0)(M). This is a smooth family

gx : TxM×TxM→R (3.1)

of metrics as defined in §2.3, where now V = TxM is indexed by x ∈M. Thus, repeating the
definition, each gx is bilinear, symmetric (i.e. gx(Xx,Yx) = gx(Yx,Xx) for all Xx,Yx ∈ TxM), and
nondegenerate (i.e. gx(Xx,Yx) = 0 for all Yx ∈ TxM iff Xx = 0). It need not be positive definite.

The orthonormal basis (ea(x)) = (e1(x), . . . ,en(x)) in which gx is diagonal (cf. §2.3) may–
and typically will–depend on x. But if M is connected, the signature of gx is independent of x by
continuity. Even if M is not connected, we assume it is independent of x. Thus the signature is
an intrinsic property not only of each pointwise metric gx, but even of an entire metric tensor g.

A manifold M with a metric tensor g is called semi-Riemannian, with two special cases:

1. The metric (or manifold) is called Riemannian if the signature is (+ · · ·+). Thus each gx is
positive definite. Given the assumption of symmetry, this implies that gx is nondegenerate,
so a metric tensor is Riemannian iff each gx is symmetric and positive definite.142

2. The metric (or manifold) is called Lorentzian if dim(M) = 4 and n−= 1, i.e. the signature
of g is (−+++).143 Hence with respect to an orthonormal basis (ea) we have

g(ea,eb) = ηab; η := diag(−1,1,1,1). (3.2)

With some abuse of notation, the symbol ηn, with η ≡ η4, is also used for the Minkowski metric

ηn : Rn×Rn→R; ηn(X ,Y ) := ηabXaY b = −X0Y 0 +∑
n−1
i=1 X iY i, (3.3)

where (X µ) and (Y µ) are either meant to be Cartesian coordinates on R4 seen as a vector
space,144 or, identifying TxR4 ∼= R4, denote components of tangent vectors X = X µ∂µ etc.
with respect to the basis (∂0,∂1,∂2,∂3) defined by the usual coordinates (x) on R4, seen as our
manifold M. Either way, (R4,η), often written as (M,η), is Minkowski space-time, which is
the oldest and simplest example of a Lorentzian manifold. The fact that, in this special case, the
metric is defined not only on each tangent space TxM, as always, but also on M itself, has no
analogue for general Lorentzian manifolds. In special relativity, however, lightcones and other
causal structures are defined in M = R4 = M itself, which makes it useful to define the metric η

on both M and TxM. Causal theory for general Lorentzian manifolds will be developed in §5.3.
Lorentzian manifolds underlie GR, but we often invoke examples from Riemannian geom-

etry in order to explain some contrast with the Lorentzian case. Furthermore, Riemannian
submanifolds of M are often important, e.g. in the Cauchy problem for GR (see chapter 7).

142The case (−·· ·−) may also be included here, since an overall change of sign in g makes it Riemannian.
143This name is sometimes also used in any dimension d ≥ 2 provided n− = dim(M)−1. Furthermore, a similar

comment as in the previous footnote applies: we may as well take n+ = dim(M)−1. In any d ≥ 2, a necessary and
sufficient condition for a metrizable manifold M to support a Lorentzian metric is that M is either non-compact, or,
if it is compact, has zero Euler characteristic. These conditions are equivalent to the existence of a non-vanishing
continuous vector field on M (Palomo & Romero 2006, §1.1; Minguzzi, 2019, §1.8). For deeper topological
constraints imposed by Lorentzian metrics with additional (causality) properties, see Chernov & Nemirovski (2013).
But in GR one often starts with a metric defined by some formula and looks for a manifold supporting it!

144Seen as Minkowski space-time, it is conventional to relabel the usual coordinates of R4 as (x0,x1,x2,x3), where
x0 = t denotes time. In diagrams, the time axis is always drawn vertically. We also introduce a convention often
used in the (physics) literature: Greek indices µ ,ν etc. run from 0 to 3, whereas Latin indices i, j etc. run from 1 to
3. Both Greek and Latin indices midway in the alphabet usually refer to the canonical coordinate basis ∂µ = ∂ /∂xµ

or ∂i = ∂ /∂xi, whereas indices a,b etc. typically refer to other bases (ea), often orthonormal ones.
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3.1 Lowering and raising indices
Let (M,g) be a (semi) Riemannian manifold. Since each gx is a metric, the distinction between
vectors and covectors is blurred, because as in §2.3 we have “musical” isomorphisms

[x : TxM→ T ∗x M; [x(X) ≡ X [; X [(Y ) := gx(X ,Y ); (3.4)
]x : T ∗x M→ TxM; ]x(θ ) ≡ θ]; gx(θ],X) := θ (X), (3.5)

which are each other’s inverse. These pointwise isomorphisms induce mutually inverse maps

[ : X(M)→Ω(M); ] : Ω(M)→ X(M), (3.6)

by pointwise application. This leads to the lowering and raising of indices, which is crucial to
almost any computation in GR. At any point x (which we omit) we define (gab) as the inverse
(matrix) to (gab), where gab = g(ea,eb) in some basis ea (so that gabgbc = δ a

c ). Then

X [
a = gabXb; θ

a
] = gab

θb, (3.7)

which notation may then be extended to any tensor, where the “sharp” and “flat” signs are
usually omitted. For example, (3.7) is simply written as Xa = gabXb and θ a = gabθb.

The above definition of (gab) is consistent with the following one. Extending ]x to a map

]x⊗ ]x : T ∗x M⊗T ∗x M→ TxM⊗TxM (3.8)

in the obvious way, i.e., by linear extension of θ ⊗η 7→ θ]⊗η], we obtain

]x⊗ ]x(gx) ∈ T (0,2)
x M = Hom(T ∗x M×T ∗x M,R). (3.9)

If (ωa) is the dual basis to (ea), then gab
x = ]x⊗ ]x(gx)(ωa(x),ωb(x)), as the reader will verify.

More generally, lowering and raising of specified indices are maps defined, respectively, by

[ : X(k,l)(M)→ X(k+1,l−1)(M); ] : X(k,l)(M)→ X(k−1,l+1)(M), (3.10)

provided l > 0 in the first and k > 0 in the second case. Taking the first index for example gives

T [(X1, . . . ,Xk+1;θ
1, . . . ,θ l−1) = T (X2, . . . ,Xk+1;X [

1 ,θ 1, . . . ,θ l−1); (3.11)

T](X1, . . . ,Xk−1;θ
1, . . . ,θ l+1) = T (θ 1

] ,X1, . . . ,Xk−1;θ
2, . . . ,θ l+1). (3.12)

Curvature will described by the Riemann tensor R ∈ X(3,1)(M), of which the only upper index is
usually written first. This index may then be lowered, so that R[ ∈ X(4,0)(M) has components

R[
abcd ≡ Rabcd = gaeRe

bcd . (3.13)

The contraction process explained at the end of the previous chapter, which in principle has
nothing to do with the metric, may now elegantly be rewritten in terms of the metric by, e.g.,

Rab = Rc
acb = gcdR[

dacb ≡ gcdRdacb. (3.14)

Metric contraction may be done even in case where the original version does not apply, as in

R = Ra
]a = gabRab. (3.15)

If R ∈ X(3,1)(M) is the Riemann tensor, so that its first contraction R ∈ X(2,0)(M) is the Ricci
tensor, this second contraction yields the Ricci scalar, which again plays a central role in GR.145

145Our use of the same letter R for the Riemann tensor, the Ricci tensor, and the Ricci scalar will never lead
to confusion, as all relevant instances contain indices distinguishing them. For experts: we do not use Penrose’s
abstract index notation, which may clarify things but ever so often leads to typographically awkward expressions.



Geodesics 49

3.2 Geodesics

Intuitively, geodesics are paths of shortest lengths between two given points.146 This idea only
makes direct sense in the Riemannian case (as opposed to the semi-Riemannian case), with
which we therefore start. We will then find a redefinition of a geodesic that does make sense also
on semi-Riemannian manifolds. Throughout this section (M,g) is a Riemannian manifold. It
will now be convenient to use closed intervals I = [a,b] as the domains of curves γ : I→M.

1. The length of a curve γ : [a,b]→M is defined as

L(γ) :=
∫ b

a
dt
√

gγ(t)(γ̇(t), γ̇(t))≡
∫ b

a
dt ‖γ̇(t)‖, (3.16)

where γ̇(t) ∈ Tγ(t)M is the tangent vector to the curve, cf. (2.25). So in coordinates one
has γ(t) = (γ1(t), . . . ,γn(t)), where γ i : [a,b]→R, and hence

gγ(t)(γ̇(t), γ̇(t)) = gi j(γ(t))
dγ i(t)

dt
dγ j(t)

dt
≡ gi j(γ(t))γ̇ i(t)γ̇ j(t). (3.17)

Using a change of variables in the integral (3.16), it is easy to show that the length of γ is
independent of its parametrization, so that it only depends on the image γ([a,b]) in M.

2. If M is connected, any two points can be connected by a smooth curve, and hence we can
define the distance d(x,y) between x,y ∈M as the infimum of L(γ) over all smooth curves
γ : [0,1]→M with γ(0) = x and γ(1) = y (one may equivalently use piecewise smooth
curves here, since these can be smoothened, cf. Lemma 5.8 below). This is a metric on M,
whose metric topology coincides with the original topology of M.147

3. A geodesic is a curve of extremal length (with a specific parametrization, see below).

We will not precisely explain what this problem in the calculus of variations means, since our
goal is merely to motivate Definition 3.1 below, which also applies to the semi-Riemannian case.
Therefore, we just outline how this extremal problem is solved. In general, a functional

S(γ) =
∫ b

a
dt L (γ(t), γ̇(t)) (3.18)

is minimized or maximized by some curve γ iff the Euler–Lagrange equations hold:

d
dt

∂L

∂ γ̇ i −
∂L

∂γ i = 0. (3.19)

Short of giving an introduction to the calculus of variations, here is a heuristic derivation of
(3.19). Let γs(t) a family of curves indexed by s, such that endpoints are fixed, that is,

γs(a) = γ(a); γs(b) = γ(b). (3.20)

146Recall our standing assumption that all maps, including curves and metrics, are smooth. Uniqueness and
variational properties of geodesics change completely if the metric is just C1 (Hartman & Wintner, 1951; Hartman,
1983). On the other hand, most of the smooth theory is already valid in the Hölder class C2,1 (Minguzzi, 2015a).

147See Jost (2002), pp. 14–15. We do not prove this since it is practically irrelevant for the Lorentzian case.
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The extremality condition that defines the variational problem is

dS(γs)/ds = 0. (3.21)

On repeatedly using the chain rule and a partial integration, eq. (3.21) with (3.20) gives

dS(γs)

ds
=
∫ b

a
dt
(

∂L

∂γ i
s

∂γ i
s

∂ s
+

∂L

∂ γ̇ i
s

∂ γ̇ i
s

∂ s

)
=
∫ b

a
dt
(

∂L

∂γ i
s

∂γ i
s

∂ s
+

∂L

∂ γ̇ i
s

∂

∂ t
∂γ i

s
∂ s

)
=
∫ b

a
dt
(

∂L

∂γ i
s
− ∂

∂ t
∂L

∂ γ̇ i
s

)
∂γ i

s
∂ s

+

∣∣∣∣a
b

∂L

∂ γ̇ i
s

dγ i
s

ds
. (3.22)

Then (3.20) gives dγs(a)/ds = dγs(b)/ds = 0, so that, for arbitrary γs and hence arbitrary
∂γs/∂ s, eq. (3.21) implies (3.19), in which s is dropped and hence ∂ /∂ t becomes d/dt.

The Euler–Lagrange equations for the length functional (3.16) are not very nice, but they can
be simplified if a preferred (“affine”) parametrization is used. To motivate this, instead of the
length (3.16), we now start from the (kinetic) energy of our curve γ , defined as

E(γ) :=
∫ b

a
dt gγ(t)(γ̇(t), γ̇(t)) =

∫ b

a
dt ‖γ̇(t)‖2. (3.23)

For the energy (3.23), the Euler–Lagrange equations (3.19) give the geodesic equation

γ̈
i(t)+Γi

jk(γ(t))γ̇
j(t)γ̇k(t) = 0, (3.24)

or briefly γ̈ i +Γi
jkγ̇ jγ̇k = 0, where γ̈ = d2γ/dt2, and the Christoffel symbols are given by

Γi
jk := 1

2gim(gm j,k + gmk, j−g jk,m), (3.25)

where we have introduced another useful notational convention from GR:

τ
j1··· jl

i1···ik, j = ∂ jτ
j1··· jl

i1···ik . (3.26)

Warning: the Christoffel symbols do not form the components of a would-be tensor “Γ ∈
X(2,1)(M)”: physicists see this from their incorrect behaviour under coordinate transformations,
whereas mathematicians note that Γ fails the tensoriality test, cf. Proposition 2.7. We will see,
however, that the Γ-symbols do combine into the Riemann tensor!

To derive (3.24) for (3.23), i.e., for L (γ(t), γ̇(t)) = gi j(γ(t))γ̇ i(t)γ̇ j(t), one uses

∂L

∂γ i = g jk,iγ̇
j
γ̇

k; (3.27)

d
dt

∂L

∂ γ̇ i = 2
d
dt

gi jγ̇
j = 2(gi j,kγ̇

k
γ̇

j + gi jγ̈
j) = (gi j,k + gik, j)γ̇

k
γ̇

j + 2gi jγ̈
j. (3.28)

Whereas solutions of (3.24) extremize the energy for any parametrization, for the length
(3.16), the Euler–Lagrange equations only take the form (3.24) iff ‖γ̇(t)‖ is constant, in which
case the parametrization of the curve γ : [a,b]→M is said to be affine. In particular, if ‖γ̇(t)‖= 1
for all t ∈ I, then we say that γ is parametrized by arc length.

Definition 3.1 A geodesic is a curve γ : I→M (with I ⊂R connected) that satisfies (3.24).
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On this definition, geodesics still extremize length, but eq. (3.24) implies that ‖γ̇(t)‖ is constant,
as can be shown by computing d(‖γ̇(t)‖2)/dt from (3.17). This time-derivative equals

d‖γ̇(t)‖2

dt
= gi j,kγ̇

i
γ̇

j
γ̇

k + 2gi jγ̈
i
γ̇

j. (3.29)

Eliminating γ̈ i via (3.24) then leads to a cancellation making the right-hand side zero; a neater
calculation will be given after (3.77). The definition of a geodesic therefore depends on the
parametrization of γ: a reparametrized geodesic may no longer satisfy (3.24), except when the
reparametrization is affine, i.e. s = at + b. However, one has the following useful criterion.

Proposition 3.2 Some curve γ : [a,b]→M can be reparametrized so as to become a geodesic
iff the right-hand side of (3.24) equals f · γ̇ i for some function f (t) defined along γ .

Proof. If some curve t 7→ γ(t) satisfies (3.24), then t 7→ γ(s(t)) satisfies (3.24) with right-hand
side s̈γ̇ i, and conversely one can solve f (t) = s̈(t) for s and switch to γ ◦ s−1. �

Such a (poorly parametrized) curve that is “almost” a geodesic is sometimes called a pregeodesic.
In M = Rn with flat metric (i.e. gi j = δi j) geodesics are straight lines that form shortest paths
between two given points. This is also true in e.g. hyperbolic space, and it is always true for
sufficiently short geodesics. On the sphere (where geodesics are great circles) one has two
geodesics between two generic points; but only one has minimal length. These lengths coincide
iff the two points are polar opposites, in which case one has infinitely many geodesics. See §5.5.

In the intuitive idea of geodesics the focus is on endpoints, whereas in defining geodesics as
solutions to the ODE (3.24) the focus is on the initial point γ(0) and initial velocity γ̇(0). The
solution to (3.24) is uniquely defined by these data, except for I. But like any solution to an ODE,
γ has some maximal domain of definition I ⊂R, and this domain may or may not equal R.

Definition 3.3 If all geodesics γ : I→R with given initial point γ(0) and initial velocity γ̇(0)
can be defined on the maximum interval I = R, we say that (M,g) is geodesically complete.

For example, Rn, the sphere Sn, and hyperbolic space Hn are geodesically complete (cf. §4.4).
In the Riemannian case this is equivalent to a purely topological property. For x,y ∈M define

d(x,y) := inf{L(γ) | γ : [a,b]→M,γ(a) = x,γ(b) = y}. (3.30)

It is easy to show that this defines a metric in the topological sense, i.e. a symmetric function
d : M×M→ [0,∞) that satisfies d(x,y) = 0 iff x = y and d(x,y) ≤ d(x,z)+ d(z,y). In other
words, a Riemannian manifold (M,g) is also a metric space (M,d). For the latter, one has the
usual notion of completeness in the sense that any Cauchy sequence converges.

Theorem 3.4 (Hopf-Rinow) A Riemannian manifold (M,g) is geodesically complete iff the
corresponding metric space (M,d) defined by (3.30) is complete. In that case, any two points
x,y can be joined by a geodesic of minimum length (compared with all curves from x to y).

Since this theorem has no analogue in the Lorentzian case we will not prove it. We do note that
any compact Riemannian manifold is complete. On the other hand, examples of incomplete
Riemannian manifolds are provided by open bounded sets Ω ⊂Rn with flat metric inherited
from Rn, or Rn itself with one or more points or regions omitted. Such examples also show that
in the incomplete case the infimum in (3.30) may not be attained. Many Lorentzian manifolds of
interest to GR are geodesically incomplete in a nontrivial (i.e. inextendible) sense; see chapter 6.
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3.3 Linear connections
The definition of a geodesic as a curve γ whose tangent vector γ̇ satisfies (3.24) along the
curve for which γ(t) is defined was inspired by the Riemannian case, but it will be taken as
the definition of a geodesic on a semi-Riemannian manifold, too. In support, we now give a
geometric perspective on the Christoffel symbols Γi

jk and hence on the geodesic equation (3.24).

Definition 3.5 A linear connection on M (which is the same thing as a connection on the
tangent bundle T M, see below), or, equivalently, a covariant derivative on X(M), is a map

X 7→ ∇X : X(M)→ X(M), (3.31)

where X itself is a vector field on M (i.e. X ∈ X(M)), such that:

1. The map X 7→ ∇X is R-linear as well as C∞(M)-linear, i.e.

∇ f XY = f ∇XY ∀ f ∈C∞(M); (3.32)

2. The map Y 7→ ∇XY is R-linear but not C∞(M)-linear: it satisfies the Leibniz rule

∇X ( fY ) = (X f )Y + f ∇XY ∀ f ∈C∞(M). (3.33)

This definition also makes sense on any open U ∈O(M), and in fact if x ∈U , then ∇XY (x) only
depends on the value of X at x and the restriction of Y to U ; this follows from (3.32) - (3.33)
and the definition of a manifold. Hence we may compute covariant derivatives locally. Recall
that a local frame (ea) for X(U) consists of n maps ea : U → T M such that at each x ∈U the
vectors ea(x) ∈ TxM form a basis of TxM (a = 1, . . . ,n). The corresponding dual basis (ωa) for
Ω(U) then consists of the ωa(x) ∈ T ∗x M that satisfy ωa(eb) = δ a

b . The given connection ∇ is
then completely characterized by its connection coefficients ωc

ab, defined (at each x) by

∇eaeb = ω
c
abec. (3.34)

Indeed, from (2.68) - (2.69) we may write X = Xaea, where Xa = ωa(X) ∈C∞(U), so

∇XY = ∇Xaea(Y
beb) = Xa

∇ea(Y
beb)

= Xa(ea(Y b) · eb +Y b
∇eaeb)

= Xa(ea(Y c)+Y b
ω

c
ab)ec. (3.35)

We write ∇XY a for (∇XY )a, so that ∇XY = (∇XY a)ea. We therefore have

∇XY a = X(Y a)+ω
a
bcXbY c, (3.36)

where X(Y a) is the action of the vector field X on the function Y a ∈ C∞(U). In terms of a
coordinate basis (eµ = ∂µ), (ων = dxν), writing ∇µ := ∇∂µ

the above relations imply

ω
ρ

µν = dxρ(∇µ∂ν); (3.37)

∇XY ρ = X µ(∂µY ρ +ω
ρ

µνY ν); (3.38)

∇µY ρ = ∂µY ρ +ω
ρ

µνY ν . (3.39)
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Linear connections formalize Levi-Civita’s notion of parallel transport. It follows from
(3.36) or (3.38) that ∇XY only depends on the values of Y along the flow lines of X , for

∇XY a(x) =
d
dt

Y a(ψt(x))|t=0 +ω
a
bc(x)X

b(x)Y c(x), (3.40)

where ψ is the flow of X . Conversely, given some curve γ : I→M with tangent vectors γ̇ (defined
along γ only!), the covariant derivative ∇γ̇Y of Y along γ is well defined for any vector field Y
defined near or even on γ(I) alone; for in (local) coordinates we have

∇γ̇Y ρ

γ(t) = γ̇
µ(t)(∂µY ρ

γ(t)+ω
ρ

µν(γ(t))Y
ν

γ(t))

=
d
dt

Y ρ

γ(t)+ω
ρ

µν(γ(t))
dγ µ(t)

dt
Y ν

γ(t), (3.41)

where γµ : I→R are the coordinates of the curve (in some given chart), as before.

Definition 3.6 A (necessarily unique) vector field t 7→Yγ(t) ∈ Tγ(t)M defined along a given curve
γ is the parallel-transport of some initial vector Y ∈ Tγ(0)M along γ if Y satisfies

∇γ̇Y = 0. (3.42)

This generalizes the Euclidean practice of freely moving vectors in Rn from place to place,
to arbitrary (semi) Riemannian manifolds. The price one pays is that such motions can only
be carried out once a linear connection has been defined. The flat connection on Rn (with
flat metric g = δ ), defined in the standard coordinates by ω

ρ

µν = 0 gives ∇µ = ∂µ and hence
Yγ(t) = Yγ(0) = Y for all t. Hence “freely moving vectors” in Rn is relative to this flat connection.

Like the Christoffel symbols, the connection coefficients do not form the components of a
tensor (the relation between the two will be clarified shortly). However, various tensors may be
defined via the connection. For now, we just define the torsion τ∇ ∈ X(2,1)(M) of ∇ by

τ∇(X ,Y ,θ ) := θ (∇XY −∇Y X− [X ,Y ]). (3.43)

A simple computation shows that this expression is C∞(M)-linear in each entry, so Proposition
2.7 shows τ is indeed a tensor of the said kind. In the coordinate basis (∂µ), we have

τ
ρ

µν = ω
ρ

µν −ω
ρ

νµ , (3.44)

since [∂µ ,∂ν ] = 0. Hence the connection ∇ is torsion-free iff any of the following hold:

ω
ρ

µν = ω
ρ

νµ ; (3.45)

∇µ∂ν = ∇ν∂µ ; (3.46)
∇XY −∇Y X = [X ,Y ]. (3.47)

We are now in a position to restate and generalize Definition 3.1:

Definition 3.7 Given some linear connection ∇ on M, a geodesic in M is a curve γ for which

∇γ̇ γ̇ = 0. (3.48)



54 Metric differential geometry

That is, the tangent vector γ̇ to γ is parallel transported along γ . As before, this definition requires
a specific parametrization of γ , which is unique up to affine transformations of t. One has a
similar situation as in the metric case for detecting “wrongly parametrized” geodesics:

Proposition 3.8 Some curve γ : [a,b]→M can be reparametrized so as to become a geodesic
iff the right-hand side of (3.48) equals f γ̇ , for some function f (t) defined along γ .

The proof is analogous to Proposition 3.24. Using (local) coordinates, eq. (3.48) may be brought
into a form that is strikingly similar to (3.24). Since according to (3.41) with Y γ̇ the expression
γ̇ µ∂µ γ̇ ρ is just d2γ̇ ρ /dt2 ≡ γ̈ ρ , we obtain

γ̈
ρ +ω

ρ

µν γ̇
µ

γ̇
ν = 0, (3.49)

from which it is obvious that geodesics are insensitive to the torsion (3.44) of the connection. Eq.
(3.49) looks like the geodesic equation (3.24), with the difference that in (3.49) the coefficients
ω

ρ

µν are defined by (3.37) in terms of an arbitrary linear connection ∇, whereas those in (3.24)
are the Christoffel symbols (3.25) defined by the metric. Their relationship is as follows.

Theorem 3.9 (Levi-Civita) Any (semi) Riemannian manifold (M,g) admits a unique linear
connection ∇ (called the Levi-Civita connection) that satisfies the following two properties:

1. The torsion τ∇ associated to ∇ vanishes, i.e. ∇XY −∇Y X = [X ,Y ].

2. The connection ∇ and the metric g are related by the condition that for all X ,Y ,Z ∈X(M),

X(g(Y ,Z)) = g(∇XY ,Z)+ g(Y ,∇X Z). (3.50)

These conditions imply that the connection coefficients of ∇ are the Christoffel symbols (3.25):

ω
ρ

µν = Γρ

µν . (3.51)

As soon as we have extended ∇ to arbitrary tensors, we will see that (3.50) comes down to

∇X g = 0 ∀X ∈ X(M). (3.52)

Also, X(g(Y ,Z)) will be the same as ∇X (g(Y ,Z)), hence some authors elegantly write (3.50) as

∇X〈Y ,Z〉= 〈∇XY ,Z〉+ 〈Y ,∇X Z〉. (3.53)

Proof. Using (3.47) and (3.50), one computes

X(g(Y ,Z))−Z(g(X ,Y ))+Y (g(Z,X)),

and rearranges this to obtain the so-called Koszul formula, partly written in the notation (3.53):

〈∇XY ,Z〉= 1
2(X〈Y ,Z〉+Y 〈Z,X〉−Z〈X ,Y 〉−〈X , [Y ,Z]〉+ 〈[X ,Y ],Z〉+ 〈Y , [Z,X ]〉). (3.54)

Since g is nondegenerate this uniquely fixes ∇XY , and in a coordinate basis this gives (3.51).
To prove existence, one easily checks (3.32) and (3.33) from (3.54). Finally, running the

derivation of (3.54) from (3.47) and (3.50) backwards verifies (3.47) and (3.50). �



General connections on vector bundles 55

3.4 General connections on vector bundles
For a more general understanding of the above constructions, as well as for a clean extension
of linear connections from vector fields to arbitrary tensors (which one often needs in GR), we
briefly discuss connections on arbitrary vector bundles. Similar to Definition 3.10, we put:

Definition 3.10 A connection on a vector bundle E→M is a linear map

X 7→ ∇X : Γ(E)→ Γ(E), (3.55)

where X ∈ X(M), such that:

1. The map X 7→ ∇X is R-linear as well as C∞(M)-linear in X, cf. (3.32);

2. The map s 7→ ∇X s is R-linear but not C∞(M)-linear: it satisfies the Leibniz rule

∇X ( f s) = (X f )s+ f ∇X s ( f ∈C∞(M)). (3.56)

A linear connection is then a connection (in the above sense) on the tangent bundle. The general
story is almost the same, including the localization of ∇X s(x) to the flow lines of X arbitrarily
close to x, and hence to any U ∈ O(M), x ∈U . In particular, define a local frame (ua), where
a= 1, . . . ,k = dim(Ex), i.e. the rank of E, by the properties that:

(i) ua ∈ Γ(U ,E), i.e., the restriction of Γ(E) ≡ Γ(M,E) to some U ∈ O(M);

(ii) the set ua(x)a=1,...dim(Ex) forms a basis of Ex for all x ∈U .

This once again yields connection coefficients defined by

∇µub =Cc
µbuc. (3.57)

The difference with the tangent bundle is that the three indices carried by C are no longer of the
same type: b and c label basis vectors in Ex, whereas µ refers to the canonical coordinate base of
TxM (recall that ∇µ = ∇∂µ

). Writing

s(x) = sa(x)ua(x), (3.58)

we now have
∇µsa = ∂µsa+Ca

µbsb, (3.59)

cf. (3.39). This is often written as

∇µs = ∂µs+ωµs, (3.60)

in which s is seen as a vector with components sa relative to the given basis (ua) and hence ωµ

is a matrix with components Ca
µb, or s ∈ Γ(E) and ωµ(x) ∈ Hom(Ex,Ex).

Even more abstractly, connections may be regarded as maps

∇ : Γ(E)→ Γ(T ∗M⊗E) ≡Ω1(E), (3.61)

i.e. the space of E-valued 1-forms, that satisfy

∇( f s) = d f ⊗ s+ f ∇s. (3.62)
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The connection with Definition 3.10 is then simply given by

∇X s = ∇s(X). (3.63)

In that case we may write
∇ = d +ω , (3.64)

where ω ∈Ω1(Hom(E,E)) is a 1-form taking values in the vector bundle Hom(E,E).148

A vector bundle E may carry a metric, i.e. nondegenerate symmetric bilinear form

gx : Ex×Ex→R (3.65)

defined for each x ∈M, that is smooth in x in the sense that for any s, t ∈ Γ(E) the function

g(s, t) : M→R; x 7→ gx(s(x), t(x)), (3.66)

is smooth. For example, a (semi) Riemannian metric on M is a metric on E = T M in precisely
this sense. A connection ∇ on E is then called metric if for all s, t ∈ Γ(E) we have

X(g(s, t)) = g(∇X s, t)+ g(s,∇X t). (3.67)

For example, the Levi-Civita connection on T M is obviously metric in this sense.
Furthermore, take E = T ∗M, and define ∇∗ in coordinates through its components by

∇
∗
µθν := ∂µθν −Γρ

µνθρ , (3.68)

where the Γρ

µν are the Christoffel symbols defined by some (semi) Riemannian metric on M, cf.
(3.25). This turns out to be a connection indeed (check the axioms), whose rationale (notably of
the minus sign!) is the Leibniz-type property (or product rule)

X(θ (Y )) = (∇∗X θ )(Y )+θ (∇XY ), (3.69)

which, omitting the star, may look even more elegant in the form

∇X〈θ ,Y 〉= 〈∇X θ ,Y 〉+ 〈θ ,∇XY 〉, (3.70)

where by fiat we have declared that on functions (such as x 7→ 〈θx,Yx〉 ≡ θx(Yx)) the covariant
derivative ∇X is simply X , i.e.

∇X f ≡ X f ( f ∈C∞(M)). (3.71)

Eq. (3.69) or (3.70) might have been used to define ∇∗ ≡ ∇ : Ω(M)→Ω(M) in the first place,
yielding (3.68). In fact, any linear connection defines a dual connection ∇∗ on T ∗M by (3.69).

Combining (3.39) and (3.68), we define a covariant derivative ∇(k,l) : X(k,l)→ X(k,l) by

(∇
(k,l)
µ τ)ρ1···ρl

ν1···νk ≡ ∇
(k,l)
µ τ

ρ1···ρl
ν1···νk = ∂µτ

ρ1···ρl
ν1···νk +Γρ1

µσ τ
σ ···ρl
ν1···νk + · · ·+Γρl

µσ τ
ρ1···σ
ν1···νk

−Γσ
µν1

τ
ρ1···ρl
σ ···νk −·· ·−Γσ

µνk
τ

ρ1···ρl
ν1···σ . (3.72)

148 For those familiar with the de Rham complex Ω•(M) (see footnote 342) and its extension Ω•(E), where
Ω0(E) = Γ(E), Ω1(E) as in (3.61), etc., we may define ∇ : Ωp(E)→ Ωp+1(E) as the unique extension of the
above map ∇ : Ω0(E)→Ω1(E) that satisfies ∇(α⊗s) = dα⊗s+(−1)pα∧∇s, where α ∈Ωp(M) and s∈ Γ(E).
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Those who do not like coordinate definitions “by formula” may be reassured that ∇(k,l) is the
unique connection on T (k,l)M that, similarly to (3.70), satisfies the Leibniz rule

∇X (τ(X1, . . . ,Xk,θ 1, . . . ,θ l)) = (∇
(k,l)
X τ)(X1, . . . ,Xk,θ 1, . . . ,θ l)

+ τ(∇X X1, . . . ,Xk,θ 1, . . . ,θ l)+ · · ·+ τ(X1, . . . ,Xk,θ 1, . . . ,∇∗X θ
l), (3.73)

where the case k = l = 0 is taken to mean

∇
(0,0)
X = X (3.74)

acting on X(0,0)(M) =C∞(M). Eq. (3.73) recovers

∇
(0,1) = ∇ (3.75)

acting on X(0,1)(M) = X(M) as well as

∇
(1,0) = ∇

∗ (3.76)

acting on X(1,0)(M) = Ω(M).
This construction of ∇(k,l) works for any linear connection ∇. If the latter is the Levi-Civita

connection, then (3.73) implies that its defining property (3.50) elegantly reads

∇
(2,0)
X g≡ ∇X g = 0. (3.77)

As in (3.77), in general one often writes ∇ for any ∇(k,l), and physicists write (3.77) as

gµν ;σ = 0, (3.78)

using the semi-colon notation, in which

τ
ρ1···ρl
ν1···νk;µ ≡ ∇µτ

ρ1···ρl
ν1···νk , (3.79)

much as τ
ρ1···ρl
ν1···νk,µ means ∂µτ

ρ1···ρl
ν1···νk . As an application, let us show once again that

d(‖γ̇(t)‖)
dt

= 0, (3.80)

for geodesics γ:

d‖γ̇(t)‖2

dt
=

dg(γ̇ , γ̇)
dt

= γ̇(g(γ̇ , γ̇)) = (∇γ̇g)(γ̇ , γ̇)+ g(∇γ̇ γ̇ , γ̇)+ g(γ̇ ,∇γ̇ γ̇),

where we used (3.73). Eqs. (3.77) and (3.48) then make the right-hand side 0+ 0+ 0 = 0.
Alternatively, one may recall the description (2.64) of T (k,l)M as the tensor product of

k copies of T ∗M and l copies of T M. In general, given two vector bundles E(1) → M and
E(2)→M, with connections ∇(1) and ∇(2), there is a unique connection ∇(1⊗2) on the vector
bundle tensor product E(1)⊗E(2) = tx∈ME(1)

x ⊗E(2)
x that satisfies the product rule

∇
(1⊗2)(s(1)⊗ s(2)) = ∇

(1)(s(1))⊗ s(2)+ s(1)⊗∇
(2)(s(2)). (3.81)
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This may be iterated to the tensor product of finitely many vector bundles, and hence (for any
linear connection ∇) the connection ∇(k,l) defined by (3.72) or (3.73) is just the tensor product
of the individual connections on each copy of T M or T ∗M present in T (k,l)M.

It follows from (3.69) that (for any ∇) the connection ∇(k,l) commutes with contraction.
Contracting the first upper and lower indices and writing σ

ρ2···ρl
ν2···νk = τ

ν1ρ2···ρl
ν1ν2···νk , one has

(∇
(k,l)
µ τ)ν1ρ2···ρl

ν1ν2···νk = (∇
(k,l)
µ σ)ρ2···ρl

ν2···νk , (3.82)

and similarly for any other pair of upper and lower indices. In particular, this makes the physicists’
notation τ

ν1ρ2···ρl
ν1ν2···νk;µ unambiguous. For example, for the Ricci tensor (see §4.5) we have

Rµν ;σ = Rρ

µρν ;σ . (3.83)

If ∇ satisfies (3.52), then ∇(k,l) in addition commutes with contraction in the metric sense
explained before (3.15), so that e.g., using (3.78), for the Ricci scalar we have

R,σ = R;σ = (gµνRµν);σ = gµν

;σ Rµν + gµνRµν ;σ = gµνRµν ;σ . (3.84)

Finally, ∇(k,l) may be used to rewrite the formula (2.94) for the Lie derivative as

LX τ
ρ1···ρl
ν1···νk = ∇X τ

ρ1···ρl
ν1···νk +(∇ν1Xν)τρ1···ρl

ν ···νk + · · ·+(∇νnXν)τρ1···ρl
ν1···ν

− (∇ρXρ1)τρ···ρl
ν1···νk−·· ·− (∇ρXρl )τρ1···ρ

ν1···νk , (3.85)

since all Christoffel symbols cancel out (check!).149 For example, using (3.52) we obtain

LX gµν = (∇µXρ)gρν +(∇νXρ)gµρ = Xν ;µ +Xµ;ν . (3.86)

A vector field X for which LX g = 0 is called a Killing (vector) field.150 Eq. (3.86) gives

Xν ;µ +Xµ;ν = 0. (3.87)

Flows of Killing fields are isometries, that is, diffeomorphisms preserving the metric. In the
notation of (2.84), this means that ψ

(2,0)
t g = g, which is usually written as ψ∗t g = g. By (2.95),

Killing fields always form a Lie algebra, whose associated Lie group (up to global analytic
issues) is the subgroup of Diff(M) consisting of isometries.

In Minkowski space-time (M,η), the Christoffels symbols vanish (at least in the usual
coordinates), so that ∇µ = ∂µ and Xµ;ν = Xµ ,ν . Hence Killing fields in (M,η) satisfy

∂µXν = −∂νXµ , (3.88)

whose general solution is a 10-dimensional vector space (within X(R4)) with basis

X(ν) = ∂ν ; X(ρσ) = xρ∂σ − xσ ∂ρ ;

X µ

(ν)
(x) = δ

µ

ν (ν = 0,1,2,3); X µ

(ρσ)
(x) = xρδ

µ

σ − xσ δ
µ

ρ , (ρ ,σ = 0,1,2,3), (3.89)

where xρ = ηρσ xσ . This is the Lie algebra of the Poincaré-group (which is the subgroup of
GL4(R) preserving the Minkowski metric η). See also Appendix A, §§A.1 - A.2.

149LX is not a connection (as it fails to be C∞(M)-linear in X), but LX and ∇X both satisfy the Leibniz rule.
150Named after the German mathematician Wilhelm Killing (1847–1923), not the movie about Cambodja.
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4 Curvature
The notion of curvature was originally introduces by Gauss in the context of lines in R2 and R3

and surfaces in R3. The modern approach via connections is highly abstract (and hence very
powerful), but we shall recover at least some of the original ideas of Gauss c.s. later on.

4.1 Curvature tensor for general connections
For any connection ∇ on a vector bundle E→M, the following map, indexed by X ,Y ∈ X(M),

Ω(X ,Y ) : Γ(E)→ Γ(E); (4.1)
Ω(X ,Y ) := [∇X ,∇Y ]−∇[X ,Y ] (4.2)

is easily verified to be C∞(M)-linear in its argument s ∈ Γ(E).151 Furthermore, Ω(X ,Y ) is
C∞(M)-linear in X and Y , so that we may equivalently write Ω as either of the following maps:

Ω̃ : X(M)×X(M)×Γ(E)→ Γ(E); (4.3)

Ω̂ : X(M)×X(M)×Γ(E∗)×Γ(E)→C∞(M), (4.4)

where the first is three times C∞(M)-linear and the second four times so; the relationship between
Ω as defined in (4.3) and Ω̂ is induced by a pointwise version of the (linear) isomorphism

Hom(V ∗×V ,R) ∼= Hom(V ,V ); (4.5)
ϕ̂(θ ,v) = θ (ϕ(v)). (4.6)

In the usual basis (∂µ) associated to a chart defining coordinates (xµ) we may write (4.1) as

[∇µ ,∇ν ]s(x) = Ωµν(x)s(x), (4.7)

where Ωµν = Ω(∂µ ,∂ν) is a linear map Ex→ Ex. Relative to a local frame (ua) for Γ(E) in
which s(x) = sa(x)ua(x), with sa ∈C∞(U), see text after (3.56), we may therefore write

[∇µ ,∇ν ]sa(x) = Ωa
bµν(x)s

b(x), (4.8)

where, switching to the version (4.4), we have the coordinate- and basis-dependent expression

Ωa
bµν = Ω̂(∂µ ,∂ν ,eb,ωa). (4.9)

Thus the curvature tensor Ω̂ defined by a connection ∇ has four indices: the first two (i.e. a and
b) refer to a basis of Ex, whereas the last two (viz. µ and ν) refer to a basis of TxM.

In the case E = T M the distinction between (µ ,ν) and (a,b) is blurred. Our maps become

Ω(X ,Y ) : X(M)→ X(M); Z 7→ ([∇X ,∇Y ]−∇[X ,Y ])Z; (4.10)

Ω̂ : Ω(M)×X(M)×X(M)×X(M)→C∞(M); (θ ,Z,X ,Y ) 7→ θ (Ω(X ,Y )Z), (4.11)

where in (4.11) we adopt the convention of moving Γ(E∗) = Ω(M) in (4.4) to the front.152

151It follows that Ω(X ,Y ) defines a cross-section of Γ(Hom(E,E)).
152Regarding a connection as a map ∇ : Ωp(E)→Ωp+1(E), as in footnote 148, the corresponding curvature is

simply defined as ∇2 : Ωp(E)→Ωp+2(E), so that ∇2u = R∧u for some R ∈Ω2(E).
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4.2 Riemann tensor

We now fix a metric on M and take ∇ to be the Levi-Civita connection on T M defined by g.
Denoting Ω̂ by Riem (or R), we obtain the Riemann tensor Riem ∈ X(3,1)(M), defined by

Riem(θ ,Z,X ,Y ) := θ (Ω(X ,Y )Z) = θ (([∇X ,∇Y ]−∇[X ,Y ])Z). (4.12)

In coordinates, where Rρ

σ µν = Riem(dxρ ,∂σ ,∂µ ,∂ν) and [∂µ ,∂ν ] = 0, we therefore have

[∇µ ,∇ν ]Zρ = Rρ

σ µνZσ ; (4.13)

Rρ

σ µν = Γρ

σν ,µ −Γρ

σ µ ,ν +Γρ

µτ Γτ
νσ −Γρ

ντ Γτ
µσ , (4.14)

where the Christoffel symbols are defined by (3.25), i.e., this time in Greek indices,

Γρ

µν = 1
2gρσ (gσ µ ,ν + gσν ,µ −gµν ,σ ). (4.15)

A (semi) Riemannian manifold (M,g) is locally flat (or locally isometric to a flat space) if
each point x ∈M has a coordinate nbhd U with a chart ϕ : U →Rn and associated coordinates
xµ = ϕµ(x), see Definition 2.1.2, in which the metric is flat, i.e. gµν(x) = δµν for each x ∈U in
the Riemannian case, gµν(x) = ηµν in the Lorentzian case, etc. The first nontrivial result about
the Riemann tensor (which was known to Riemann himself) is that it detects local flatness:

Theorem 4.1 A (semi) Riemannian manifold (M,g) is locally flat iff Riem = 0, that is,

Rρ

σ µν = 0. (4.16)

One direction is trivial: if gµν(x) = δµν (etc.), then the Christoffel symbols (4.15) vanish, so
that (4.14) vanishes. Proving local flatness from Rρ

σ µν = 0 relies on the Frobenius theorem:153

Lemma 4.2 If Riem = 0, i.e. (4.16), then each x ∈M has an open nbhd U such that for any
v ∈ TxM there is a unique vector field Z ∈ X(U) with Z(x) = v and ∇X Z = 0 for all X ∈ X(U).

Proof. We just sketch the proof and explain the role of (4.16). In local coordinates (xµ) the
condition ∇X Z = 0 for all X is equivalent to ∇µZρ = 0 for all µ . One can solve

∇µZρ(x1, . . . ,xn) = 0; Zρ(x0) = vρ , (4.17)

first for µ = 1 at fixed (x2, . . . ,xn), then for µ = 2 at fixed (x1,x3, . . . ,xn), etc. The integrability
condition [∇µ ,∇ν ]Zρ = 0 for this procedure is satisfied, since by (4.13), this is the same as
Rρ

σ µνZσ = 0, which holds by assumption, as in (4.16). �

The thrust of the Frobenius theorem, then, is that the necessary condition (4.16) for the solution
of all equations ∇X Z = 0 is also sufficient. To prove the nontrivial direction of Theorem 4.1,
take an orthonormal basis (ea) of TxM (which exists because gx can be diagonalized at any point
x ∈M) and extend this to a frame (ea(y)) defined for each y ∈U (as in Lemma 4.2), so that

ea(x) = ea ∇X ea = 0, (4.18)

153This holds for any vector bundle E→M with connection ∇: if Ω = 0, then each x ∈M has an open nbhd U
such that for any v ∈ Ex there is a unique local section s ∈ Γ(U ,E) with s(x) = v and ∇X s = 0 for all X ∈ X(U). In
this generalised version the lemma is proved in e.g. Heckman (2017), Theorem 2.34
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for all X . Property (3.50) of the Levi-Civita connection then gives X(g(ea,eb)) = 0. Hence

gy(ea,eb) = gx(ea,eb) = δab, (4.19)

and similarly for other signatures, for all y∈U . In particular, the vectors (ea) remain orthonormal
throughout U and hence remain a basis of each TyM, y ∈U . Moreover, since ∇ is torsion-free,

[ea,eb] = ∇eaeb−∇ebea = 0−0 = 0. (4.20)

Using (2.34) and (2.35), this can be used to show that the flows of all vector fields ea commute,
which in turn implies that there is an open subset Vx ⊂ TxM such that the map

taea(x) 7→ ϕ
(1)
t1 ◦ · · · ◦ϕ

(n)
tn (x), (4.21)

where ϕ
(a)
t is the flow of the vector field ea emanating from x (i.e., with initial value ϕ

(a)
0 = x),

is a diffeomorphism from Vx onto its image U ′ ⊂U in M. If the image point of taea under this
map is y, we then define its coordinates to be (ya = ta).154 By construction, ea = ∂ /∂ya, so that

gy(∂a,∂b) = gy(ea,eb) = δab. �

Proposition 4.3 Any torsion-free connection satisfies the Bianchi identities:155

Ω(X ,Y )Z +Ω(Y ,Z)X +Ω(Z,X)Y = 0; (4.22)
(∇X Ω)(Y ,Z)+ (∇Y Ω)(Z,X)+ (∇ZΩ)(X ,Y ) = 0. (4.23)

For the Levi-Civita connection, these identities read

Rρ

σ µν +Rρ

µνσ +Rρ

νσ µ = 0; (4.24)

Rρ

σ µν ;τ +Rρ

στµ;ν +Rρ

σντ;µ = 0. (4.25)

Proof. The first one, in the form (4.22) using the definition (4.2), is most simply proved by taking
commuting vector-fields X , Y , and Z, such as, in coordinates, X = ∂µ , Y = ∂ν , Z = ∂σ , which
indeed leads to (4.24). One then finds that Ω(X ,Y )Z +Ω(Y ,Z)X +Ω(Z,X)Y is equal to

∇X ∇Y Z−∇Y ∇X Z +∇Y ∇ZX−∇Z∇Y Z +∇Z∇XY −∇X ∇ZY ,

which vanishes if torsion-freeness (3.47) is taken into account, which means ∇XY = ∇Y X .
The second one is usually proved by using geodesic normal coordinates, cf. §5.1. Assuming

the reader is familiar with these, at the origin of these coordinates the Riemann tensor equals

Rρ

σ µν = 1
2gρτ(∂σ ∂µgντ −∂ν∂σ gµτ + ∂ν∂τgµσ −∂µ∂τgνσ ). (4.26)

Since at the origin ∇τRρ

σ µν = ∂τRρ

σ µν , where ∇τ can even be taken inside the brackets in (4.26),
the identity (4.25) easily follows.156 �

The real nature of both Bianchi identities is that they are a consequence of the covariance property

154This construction defines geodesic normal coordinates in the special case at hand, as will be seen in §5.2.
155Continuing footnote 152, The differential Bianchi identity (4.23) simply reads ∇R = 0.
156Another, more abstract proof of (4.23) follows from Cartan’s exterior calculus and the previous footnote.
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ψ
∗
(3,1)Riemg = Riemψ∗

(2,0)g
, (4.27)

or ψ∗Riemg = Riemψ∗g, for any diffeomorphism ψ . Here ψ∗(k,l) is defined as in (2.86), and we
have indicated the dependence of the Riemann tensor on the metric. First, eq. (4.27) reads

Riemg((ψ
−1)∗θ ,ψ∗Z,ψ∗X ,ψ∗Y ) = Riemψ∗g(θ ,Z,X ,Y ). (4.28)

Using the definition (4.12) of the Riemann tensor, this follows from the underlying property

∇
ψ∗g
X Y = ψ

−1
∗ (∇g

ψ∗X (ψ∗Z)), (4.29)

where ∇g is the Levi-Civita connection for the metric g. Eq. (4.29), in turn, follows from
Theorem 3.9, notably from the uniqueness of connections satisfying

X(ψ∗g(Y ,Z)) = ψ
∗g(∇ψ∗g

X Y ,Z)+ψ
∗g(Y ,∇ψ∗g

X Z). (4.30)

To see this, one defines a connection ∇′ by ∇′XY = ψ−1
∗ (∇g

ψ∗X (ψ∗Z)) and shows that

X(ψ∗g(Y ,Z)) = ψ
∗g(∇′XY ,Z)+ψ

∗g(Y ,∇′X Z). (4.31)

Eq. (4.27) is also true for a one-parameter family ψs, i.e. ψ∗s Riemg = Riemψ∗s g; taking dψs/ds
at s = 0 yields both Bianchi identities.157 The left-hand side equals the Lie derivative LX Riemg,
where X is the vector field whose flow is ψs, and this may in term be expressed in terms of
the covariant derivatives of Riemg using (3.85). The right-hand side may be computed uses the
techniques explained in §7.2, notably (7.31) and its consequences for Riem and (7.47) - (7.49).
After lengthy calculations and multiple cancellations, one finds that both derivatives are equal iff

Xτ(Rρ

σ µν ;τ +Rρ

στµ;ν +Rρ

σντ;µ) =
1
2(∇µ(XτBρ

ντσ )−∇ν(XτBρ

µτσ )), (4.32)

where Bρ

σ µν = Rρ

σ µν +Rρ

µνσ +Rρ

νσ µ , cf. (4.24). Choosing X = 0 at some given point gives

(∇µXτ)Bρ

ντσ = (∇νXτ)Bρ

µτσ . (4.33)

Taking ∇µXτ = δ τ
µ and using Bρ

ντσ = −Bρ

τνσ inherited from Rρ

σνµ = −Rρ

σ µν , cf. (4.13), then
forces Bρ

ντσ = 0, i.e. (4.24). Putting this in (4.32) and choosing Xτ 6= 0 then gives (4.25).
We can lower the first index of the Riemann tensor to obtain Riem[ ∈ X(4,0)(M), that is,

Riem[(W ,Z,X ,Y ) = g(W , (Ω(X ,Y )Z)) = g(W , ([∇X ,∇Y ]−∇[X ,Y ])Z); (4.34)

R[
ρσ µν = gρτRτ

σ µν ≡ Rρσ µν . (4.35)

We omit the “flat” suffix. This leads to some more identities satisfied by the Riemann tensor:

Rρσνµ = −Rρσ µν ; (4.36)
Rσρµν = −Rρσ µν ; (4.37)
Rµνρσ = Rρσ µν . (4.38)

The first is trivial from (4.13) and did not require lowering indices. The second states that each
map Ω(X ,Y ) is an infinitesimal isometry of TxM, which is equivalent to property (3.52) of the
Levi-Civita connection. But the third is bizarre, since the first pair of indices plays a completely
different role from the second pair. Eq. (4.38) follows either from (4.24), (4.36), and (4.37), or
from (4.14) - (4.15); using (4.26), the latter derivation is easy in geodesic normal coordinates.158

157See Kazdan (1981). Einstein’s contracted Bianchi identity (7.56) will be proved separately in §7.2.
158Equivalently: if V is a real vector space and R : V ×V ×V ×V → R is a multilinear map that satis-

fies R(X ,Y ,Z,W ) + R(X ,Z,W ,Y ) + R(X ,W ,Y ,Z) = 0, R(X ,Y ,Z,W ) = −R(Y ,X ,Z,W ), and R(X ,Y ,W ,Z) =
−R(X ,Y ,Z,W ), then R satisfies R(Z,W ,X ,Y ) = R(X ,Y ,Z,W ) (Kobayashi & Nomizu, 1963, Proposition V.1.1).
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4.3 Sectional curvature and Theorema Egregium
All information in the Riemann tensor is in the so-called sectional curvature. Here is the key:159

Proposition 4.4 The (pointwise) Riemann tensor Riemx ∈ (T ∗x M)⊗4 is equivalent to a map

R̂iemx : Λ2TxM→ Λ2TxM, (4.39)

which is linear and self-adjoint (i.e. symmetric) with respect to the inner product

〈X1∧X2,Y1∧Y2〉x := gx(X1,Y1)gx(X2,Y2)−gx(X1,Y2)gx(X2,Y1), (4.40)

where X ∧Y := 1
2(X⊗Y −Y ⊗X). Thus Riemx is specified by the associated quadratic form

Qx : Λ2TxM→R; X ∧Y 7→ 〈X ∧Y , R̂iemx(X ∧Y )〉x = Riemx(X ,Y ,X ,Y ). (4.41)

Proof. We first show that Riemx is equivalent to a linear map

R̃iemx : TxM⊗TxM→ TxM⊗TxM. (4.42)

1. Recalling (4.1) - (4.2) and (4.10), we have Ωx(X ,Y ) ∈ Hom(TxM,TxM) by definition.

2. Linear extension of θ ⊗ v 7→ (w 7→ θ (w)v gives an isomorphism V ∗⊗V
∼=→ Hom(V ,V ).

3. A metric on V gives V ∗ ∼= V canonically (cf. §2.3), so that Hom(V ,V ) ∼= V ⊗V .

By the symmetry (4.38), the map (4.42) is self-adjoint with respect to the bilinear form

〈X1⊗X2,Y1⊗Y2〉x = gx(X1,Y1)gx(X2,Y2). (4.43)

Because of the symmetries (4.36) - (4.38), both the map R̃iemx and the bilinear form (4.43)
restrict to the linear subspace Λ2TxM ⊂ TxM⊗TxM, without any loss of information. �

Explicitly, the map (4.39) is given by linear extension of

R̂iemx : ∂µ ∧∂ν 7→ gασ Rρ

σ µν∂ρ ∧∂α . (4.44)

It is easy to show that X ,Y ∈ TxM are linearly independent iff Px(X ∧Y ) 6= 0, where

Px(X ∧Y ) := 〈X ∧Y ,X ∧Y 〉x = gx(X ,X)gx(Y ,Y )−gx(X ,Y )2 (4.45)

is the square of the (metric) area of the parallelogram in TxM with sides X and Y , up to a sign.

Definition 4.5 If Px(X ,Y ) 6= 0, the sectional curvature Cx(X ∧Y ) of the X-Y plane is given by

Cx(X ∧Y ) :=
Qx(X ∧Y )
Px(X ∧Y )

=
Riemx(X ,Y ,X ,Y )

gx(X ,X)gx(Y ,Y )−gx(X ,Y )2 . (4.46)

159Let V be a (real) vector space. Defining τ : V ⊗V →V ⊗V by linear extension of v⊗w 7→ w⊗ v, the space
Λ2V ≡ V ⊗A V ⊂ V ⊗V is the antisymmetric part of V ⊗V , defined as the eigenspace of τ with eigenvalue -1.
Furthermore, if T : W →W is linear and symmetric with respect to some inner product 〈·, ·〉 on W , i.e., 〈X ,TY 〉=
〈T X ,Y 〉 for all X ,Y ∈W , then the associated quadratic form Q : W →R is defined by Q(X) = 〈X ,T X〉. The map
T may be then be recovered from Q (and the inner product) via the formula 〈X ,TY 〉= 1

4 (Q(X +Y )−Q(X−Y )).
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The specific combination in (4.46) makes Cx(X ∧Y ) independent of the choice of X and Y within
the plane (in TxM) they span, and hence makes Cx a function of that plane only. Moreover,
Proposition 4.4 shows that we may interchangeably use either the Riemann tensor itself or its
associated sectional curvatures. For an orthonormal pair X = ea, Y = eb we simply have

Cx(ea,eb) = Riemx(ea,eb,ea,eb). (4.47)

We now explain how the notion of sectional curvature is related to the classical differential
geometry of surfaces, especially through the famous Theorema Egregium of Gauss from 1828.

The classical theory of surfaces Σ⊂R3 was largely based on local constructions. Let U ⊂R2

be open and let F : U→R3 be a smooth map that is a homeomorphism onto its image F(S) = Σ
and also has injective derivatives F ′u : TuS→ TF(u)M for all u ∈ S (equivalently, F ′u has rank 2).

If u = (u1,u2) are the standard coordinates on U , we simply say F(u1,u2) ∈ Σ ⊂R3 has
coordinates (u2,u2), too. This gives three canonical vector fields in R3 defined on Σ, viz.160

~x1 := F ′(∂ /∂u1); ~x2 := F ′(∂ /∂u2); ~N :=~x1×~x2/‖~x1×~x2‖. (4.48)

The vectors~x1 and~x2 are tangent to Σ, whereas ~N is orthogonal to Σ. Since the pair (~x1,~x2) is
a basis of TF(u)Σ, u ∈U , the triple (~x1,~x2,~N) is a basis of TuR3 ∼= R3. Early Greek alphabet
indices α ,β etc. run through 1, 2, whereas i, j,k = 1,2,3. The following two tensors on Σ go
back to Gauss (and will be used in a similar way in the PDE approach to GR, see chapter 8):

1. The first fundamental form g̃ is the metric induced by the Euclidean metric δ on R3, i.e.

g̃αβ = g̃(∂α ,∂β ) = 〈~xα ,~xβ 〉=
3

∑
i=1

∂F i

∂uα
· ∂F i

∂uβ
. (4.49)

Note that although the (∂1,∂2) basis is orthonormal in U ⊂R2, its pushforward (~x1,~x2) to
Σ may no longer be orthonormal in R3: this depends on the embedding map F .

2. The second fundamental form or extrinsic curvature (a more telling name!) k̃ of the
embedding, is constructed as follows. First, for X = Xα~xα ∈X(Σ) we define the 3-vector

∇X~N = Xα ∂~N
∂uα

. (4.50)

If Xu ≡ XF(u) is tangent to a curve F(γ1(t),γ2(t)), then Xα = dγα /dt|t=0. We may then
also write ∇X~N(u,v) = d~N(γ1(t),γ2(t))/dt|t=0 (the notation ∇X is used because from
a “higher perspective” one uses covariant differentiation with respect to the Levi-Civita
connection defined by the flat metric δ on R3). One could also simply say that

∇X Ni = X(Ni) = Xα
∂αNi (i = 1,2,3), (4.51)

which is (3.36) with vanishing Christoffel symbols (in R3). Since 〈~N,~N〉= 1, we have

0 = X(1Σ) = X(〈~N,~N〉) = 〈∇X~N,~N〉+ 〈~N,∇X~N〉= 2〈∇X~N,~N〉, (4.52)

so that ∇X~N is orthogonal to ~N (in R3), and hence it must be tangent to Σ. This gives rise
to the Weingarten map (with a conventional minus sign for historical reasons)

W : T Σ→ T Σ; X 7→ −∇X~N. (4.53)
160Injectivity of F ′ implies that the denominator in (4.48) is nonzero.
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In terms of the Weingarten map, Gauss and Monge defined two curvature scalars, namely

K = det(W ) = κ1κ2 (Gauss curvature); (4.54)
H = tr(W ) = κ1 +κ2 (mean curvature), (4.55)

where κ1 and κ2 are the eigenvalues of W , as well as the extrinsic curvature tensor, i.e. k̃,

k̃(X ,Y ) := g̃(W (X),Y ) = −g̃(∇X~N,Y ) = −〈∇X~N,Y 〉. (4.56)

It is easy to show that the extrinsic curvature tensor thus defined is symmetric, i.e.,

k̃(X ,Y ) = k̃(Y ,X), (4.57)

which is the same as 〈∇Y~N,X〉= 〈∇X~N,Y 〉. To see this, note that 〈~N,X〉= 0 (since X and Y are
tangent to Σ and hence orthogonal to ~N), hence 0 = Y (〈~N,X〉) = 〈∇Y~N,X〉+ 〈~N,∇Y X〉. Since
∇ (as the flat Levi-Civita connection on R3) is torsion-free, we have ∇Y X = ∇XY − [X ,Y ], so

〈∇Y~N,X〉= −〈~N,∇Y X〉= −〈~N,∇XY 〉+ 〈~N, [X ,Y ]〉= −〈~N,∇XY 〉= 〈∇X~N,Y 〉. (4.58)

Here we also used 〈~N, [X ,Y ]〉= 0, because [X ,Y ] is tangent to Σ whenever X and Y are. This
computation also yields an alterative expression for k̃, which is manifestly symmetric:

k̃αβ = 〈~xαβ ,~N〉; ~xαβ ≡ ∂β~xα , (4.59)

where, in terms of F : U →R3, the components xi
αβ

of the vector~xαβ are simply given by

xi
αβ

=
∂ 2F i

∂uα∂uβ
. (4.60)

The relationship between the two curvature scalars and the two fundamental forms is

K = det(k̃)/det(g̃); (4.61)

H = tr(g̃−1k̃) = ∑
i, j=1,2

g̃i jk̃i j. (4.62)

These objects are very useful, if only because they are quite easy to compute in practice:

• In the simplest case (from which all others follow by translation and rotation), a plane in
R3 is parametrized by (x = u1,y = u2,z = 0), i.e., officially,

F1(u1,u2) = u1; F2(u1,u2) = u2; F3(u1,u2) = 0. (4.63)

The induced metric follows from (4.49) as g̃11 = g̃22 = 1, i.e.

g̃ = (du1)2 +(du2)2. (4.64)

Eq. (4.48) gives the normal as ~N = (0,0,1), which is independent of (u1,u2), so

k̃ = 0. (4.65)

Consequently, H = K = 0, as expected.
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• The cylinder Ca with radius a is defined by x2 + y2 = a2 and z arbitrary, and hence may
be parametrized by (u1,u2) = (ϕ ,z), where ϕ ∈ [0,2π ] and z ∈R, so that

(x = acosu1,y = asinu1,z = u2). (4.66)

This time the induced metric is

g̃ = a2dϕ
2 + dz2, (4.67)

whereas the normal ~N(ϕ ,z) = (cosϕ , sinϕ ,0) leads to

k̃ = −adϕ
2. (4.68)

Since g̃11 ≡ g̃ϕϕ = 1/a2, this gives

K = 0; H = −1
a

. (4.69)

This is a very natural result: the larger a is, the more the cylinder locally approximates a
plane, whose extrinsic curvature vanishes.

• Finally, the sphere S2
a is defined by x2 + y2 + z2 = a2 and hence we may define

x = asinθ cosϕ; y = asinθ sinϕ; z = acosθ , (4.70)

which of course gives the well-known “round” metric

g̃ = a2dΩ; dΩ := dθ
2 + sin2

θdϕ
2. (4.71)

The normal vector is ~N(θ ,ϕ) = (sinθ cosϕ , sinθ sinϕ , cosθ ), which gives

k̃ = −a−1g̃ = −a(dθ
2 + sin2

θdϕ
2), (4.72)

so that

K =
1
a2 ; H = −2

a
. (4.73)

Somewhat anachronistically compared to Gauss, we now define the Riemann tensor R̃δ

αγβ
in

terms of the metric g̃ on Σ as in (4.14), and lower the first index with g̃ as usual.161 Since Σ is
two-dimensional, there is just one sectional curvature, given, from (4.46), by

C =C(~x1,~x2) = R1212/det(g̃). (4.74)

In slightly modernized form, then, the Theorema Egregium of Gauss states that

K =C. (4.75)

Gauss found this theorem remarkable because it equates K, which is a priori defined extrinisically
through the Weingarten map W and hence through the embedding of Σ in R3, with C, which is
defined via the intrinsic geometry of Σ as encoded by its internal metric g̃αβ .

161This, as well as index raising, applies generally to all tensors on Σ, e.g. k̃δ
γ = g̃δβ k̃βγ . Also, k̃αγ ,β = ∂β k̃αγ .
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The proof relies on equations that are of independent interest (and will resurface in GR):

~xαβ = Γ̃γ

αβ
~xγ + k̃αβ

~N; (Gauss) (4.76)

∂α
~N = −k̃β

α~xβ ; (Weingarten) (4.77)

R̃δ

αγβ
= k̃δ

γ k̃αβ − k̃δ

β
k̃αγ ; (Gauss) (4.78)

k̃αβ ,γ + Γ̃δ

αβ
k̃γδ = k̃αγ ,β + Γ̃δ

αγ k̃βδ , (Codazzi) (4.79)

where the Γ̃γ

αβ
are the Christoffel symbols (as originally introduced!) associated to the metric

g̃ on Σ, and k̃β

α = g̃βγ k̃αγ , where (g̃βγ) is the inverse matrix to (g̃βγ), as usual. Weingarten’s
eq. (4.77) is just a restatement of (4.56), and hence is the definition of k̃αβ . Gauss’s eq. (4.76)
is simply the expansion of the 3-vectors~xαβ in terms of the basis (~xu,~xv,~N). The specific form
k̃αβ of the coefficient of ~N immediately follows from (4.59). To derive the coefficient of~xγ , let
us assume (4.76) for initially unknown coefficients Γ̃γ

αβ
. We then obtain

〈~xγ ,~xαβ 〉= Γ̃δ

αβ
〈~xγ ,~xδ 〉= g̃γδ Γ̃δ

αβ
, (4.80)

so that Γ̃γ

αβ
= gγδ 〈~xδ ,~xαβ 〉. The relation (3.25) then follows from (4.59), which yields

2〈~xδ ,~xαβ 〉= ∂β 〈~xδ ,~xα〉+ ∂α〈~xδ ,~xβ 〉−∂δ 〈~xα ,~xβ 〉. (4.81)

The Gauss–Codazzi equations (4.78) - (4.79) then follow from the integrability condition

∂γ∂β~xα = ∂β ∂γ~xα , (4.82)

i.e., ∂γ~xαβ = ∂β~xαγ . Indeed, the Gauss–Weingarten equations (4.76) - (4.77) give

~xαβγ −~xαγβ = (R̃δ

αγβ
− k̃δ

γ k̃αβ + k̃δ

β
k̃αγ)~xδ +(k̃αβ ,γ + Γ̃δ

αβ
k̃γδ − k̃αγ ,β + Γ̃δ

αγ k̃βδ )~N, (4.83)

so that Gauss’s equation (4.78) is the component of (4.82) tangential (to Σ), whilst Codazzi’s
equation (4.79) is its normal component. The Theorema Egregium now follows from (4.78),
since (4.75) is the same as det(k̃) = R1212. �

Take the cylinder, whose metric (4.67) is flat. Hence (4.75) is just 0 = 0 (and this is of
course also true for the plane). The sphere is less trivial; either direct computation or eq. (4.84)
and Theorem 4.8 in the next section show that R1212 = g11g22/a2 = a2 sin2

θ , so that, with
det(g̃) = a4 sin2

θ , we find R1212/det(g̃) = 1/a2, which, given (4.73), confirms (4.74) - (4.75).
Finally, we return to the interpretation of sectional curvature in general (semi) Riemannian

geometry. In §5.2 we will see that each x ∈M has a so-called normal neighbourhood Ux that is
diffeomorphic to some subspace Vx ⊂ TxM through the exponential map expx : Vx→M. Take
linearly independent vectors X ,Y ∈ TxM with associated plane span(X ,Y )⊂ TxM, and consider
the two-dimensional submanifold ΣX ,Y = expx(span(X ,Y )∩Vx) ⊂Ux of M; note that ΣX ,Y is
spanned by geodesics emanating from x that have tangent vectors in span(X ,Y ). This surface
has an intrinsically defined Gaussian curvature K, which, at x, by the Theorema Egregium is
just its sectional curvature Cx(X ,Y ). It follows that, through its associated sectional curvatures
(which in turn define it), the Riemann tensor gives the Gaussian curvatures K of all possible
two-dimensional subspaces of M. Conversely, these quantities give a complete description of
the Riemann tensor. Its original definition (4.12) through the covariant derivative, which is very
abstract, therefore has an interpretation in classical two-dimensional differential geometry.
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4.4 Spaces of constant curvature
As another take on sectional curvature we now turn to the important case where it is constant:

Definition 4.6 A connected semi-Riemannian manifold (M,g) has constant curvature if all
sectional curvatures Cx(X ,Y ) coincide (where x ∈M and X ,Y ∈ TxM vary).

We assume n := dim(M) ≥ 2. If n≥ 3, and Cx(X ,Y ) is independent of X and Y for each x, then
the common value of Cx(X ,Y ) is also independent of x, so that (M,g) has constant curvature.162

Proposition 4.7 If (M,g) has constant curvature, then the Riemann tensor (4.14), the Ricci
tensor (3.14), and the Ricci scalar (3.15)–see also §4.5–are given by, respectively,

Ri jkl = k(gikg jl−gilg jk); Ri j = (n−1)kgi j; R = n(n−1)k. (4.84)

where k is the common value of all sectional curvatures, called the curvature of (M,g).

Proof. Let Cx(X ,Y ) = k(x) for all X ,Y ∈ TxM and some k ∈C∞(M). In terms of the tensor

Sx(V ,W ,X ,Y ) = gx(V ,X)gx(W ,Y )−gx(V ,Y )gx(W ,X) (4.85)

of type (4,0), eq. (4.46) gives Riemx(X ,Y ,X ,Y ) = k(x)S(X ,Y ,X ,Y ). But since the Riemann
tensor is completely defined by its sectional curvatures, this implies Riemx = k(x)S. �
In n = 2 this just means that the scalar curvature is constant. Definition 4.6 becomes increasingly
stringent in higher dimension, as TxM contains an increasing number of plane whose sectional
curvatures has to be constant, but this is balanced by the larger variety of possible manifolds and
metrics, so that the classification is the same for any dimension n≥ 2. Even the Riemannian and
the Lorentzian cases look strikingly similar, as we shall see. We start with the former.163

Theorem 4.8 If n≥ 2, any (geodesically) complete and simply connected Riemannian manifold
(M,g) with constant curvature k is isometrically isomorphic to one of the following spaces:

• k = 1/ρ2 > 0: The n-dimensional sphere Sn
ρ with radius ρ > 0 in Rn+1, i.e.,

Sn
ρ :=

{
(x1, . . . ,xn+1) ∈Rn+1 |

n+1

∑
i=1

x2
i = ρ

2

}
, (4.86)

with metric inherited from Rn+1 with Euclidean metric δ (X ,Y ) = ∑
n+1
i=1 X iY i.

• k = 0: The n-dimensional Euclidean space Rn with metric δ (X ,Y ) = ∑
n
i=1 X iY i.

• k = −1/ρ2 < 0: The n-dimensional hyperboloid Hn
ρ in Rn+1 with label ρ > 0 defined

by

Hn
ρ :=

{
(x0,x1, . . . ,xn) ∈Rn+1 | −x2

0 +
n

∑
i=1

x2
i = −ρ

2, x0 > 0

}
, (4.87)

with metric inherited from Rn+1 with Minkowski metric η(X ,Y ) = −X0Y 0 +∑
n
i=1 X iY i.

In both Sn
ρ and Hn

ρ , the geodesics are the intersections with a plane in Rn+1 through zero.

162See footnote 695 in §A.5 for a proof, or Corollary 2.2.7 in Wolf (2011), which is a classic on spaces of constant
curvature in any signature. For the Riemannian case see also the beautiful treatment by Vinberg et al. (1993).

163For us, saying that M is simply connected also implies, by convention, that M is connected.
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In n = 2, where these spaces were first discovered,164 H2
ρ is often realized as the Poincaré disc,

D2
ρ = {(u,v) ∈R2 | u2 + v2 < 4ρ

2}, (4.88)

equipped with the metric (which is already given by Riemann in his 1854 Habilitation lecture)

ds2 = 4 · du2 + dv2

(1+ 1
4k(u2 + v2))2 , (4.89)

where k =−1/ρ2. The Poincaré disc has been turned into art in a famous woodcut by Escher:165

Circle Limit IV (Heaven and Hell) by M.C. Escher, showing the Poincaré disc

Independently of Bolyai and Lobachevskii, Riemann probably found the hyperbolic metric as
follows: stereographic projection of S2

ρ from the north pole onto the z = 0 plane in R3, i.e.

(x,y,z) 7→ (u,v,0); u =
ρx

ρ− z
; v =

ρy
ρ− z

, (4.90)

where (x,y,z) 6= (0,0,ρ), gives the same metric (4.89), but this time with k = 1/ρ2. However,
the later model (4.87) has the advantage that (for n = 2) its geodesics are simply the intersections
of H2

ρ with planes in R3 through the origin, exactly as for S2
ρ (giving the great circles).

164 As mentioned in the historical introduction, the 2d hyperbolic spaces were independently discovered by Bolyai
and Lobachevskii in the 1830s and caused a revolution, in that Euclidean geometry no longer provided an absolute
source of truth in mathematics, so that eventually the link between mathematics and reality came to be dropped. For
k < 0, the need for something like an embedding in Minkowski space arises because Hilbert (1901) proved that it is
impossible to isometrically embed D2

ρ with its hyperbolic metric in R3, equipped with its usual (Euclidean) metric.
165Copyright: The M.C. Escher Company, Baarn. See also Wieting (2010) and footnote 520.
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In order to discuss the Lorentzian counterpart of Theorem 4.8 we need the Lorentzian cover of a
non-simply connected Lorentzian manifold (M,g): this is the universal cover M̃ of M equipped
with the pullback metric g̃ = π∗g of the covering projection π : M̃→M. This complication was
not necessary in Theorem 4.8, since both Sn

ρ
∼= Sn and Hn

ρ
∼= Rn are simply connected for n≥ 2.

Theorem 4.9 If n≥ 2, any (geodesically) complete and simply connected Lorentzian manifold
(M,g) with constant curvature k is isometrically isomorphic to one of the following spaces:166

• k = 1/ρ2 > 0: For n > 2, the n-dimensional de Sitter space dSn
ρ with ρ > 0 in Rn+1, i.e.

dSn
ρ :=

{
(x0,x1, . . . ,xn) ∈Rn+1 | −x2

0 +
n

∑
i=1

x2
i = ρ

2

}
, (4.91)

with metric inherited from Rn+1 with Minkowski metric η(X ,Y ) = −X0Y 0 +∑
n
i=1 X iY i.

For n = 2, however, one should use the Lorentzian cover S̃2
ρ (with associated metric).

• k = 0: The n-dimensional Minkowski space-time (Mn,ηn), i.e. Rn with metric (3.3).

• k = −1/ρ2 < 0: The Lorentzian cover ÃdSn
ρ of anti de Sitter space with ρ > 0, i.e.

AdSn
ρ :=

{
(x−1,x0,x1, . . . ,xn−1) ∈Rn+1 | −x2

−1− x2
0 +

n−1

∑
i=1

x2
i = −ρ

2

}
, (4.92)

with metric inherited from Rn+1 with metric χ(X ,Y ) = −X−1Y−1−X0Y 0 +∑
n−1
i=1 X iY i.

In both dSn
ρ and AdSn

ρ , the geodesics are the intersections with a plane in Rn+1 through zero.167

The proof of Theorems 4.8 and 4.9 is very long,168 but below we sketch the main argument. This
uses some Lie group theory. We first comment on the similarity between Theorems 4.8 and 4.9.

166De Sitter space was introduced by de Sitter (1917ab), and independently, along with anti de Sitter space, by
Levi-Civita (1917b). De Sitter’s papers were a response to Einstein (1917b), the paper that launched relativistic
cosmology (and, one could say, theoretical cosmology altogether). This, in turn, arose from earlier conversations
and correspondence between Einstein and Willem de Sitter (1872–1934), who was a prominent Dutch astronomer
(based at Leiden) and also an accomplished mathematician. Einstein (1917b) is also (in)famous because Einstein
introduced his cosmological constant λ in it. In the early parts of the paper he paves the way for λ by claiming
(incorrectly) that it solves the well-known paradox in Newtonian cosmology that if matter is distributed uniformly
in an infinite universe, the gravitational force at each point is infinite. But his real purpose was to rescue Mach’s
principle in the context of his new theory (see footnote 24). De Sitter invented his model (which is a solution to
Einstein’s vacuum field equations with positive cosmological constant) to (successfully) challenge this, which led
to an interesting and historical significant debate (Smeenk, 2014). Because of the discovery, at the very end of
the twentieth century, of an accelerated expansion of the universe (Kirshner, 2002), which requires λ > 0 (now
reinterpreted as “dark energy” and usually called Λ, as in the “ΛCDM Standard Model of Cosmology”) it is now
widely believed that we approximately live in a de Sitter universe. See also Kragh (2007) and Nussbaumer & Bieri
(2009). The popularity of anti de Sitter space has also exploded after the discovery of the AdS/CFT correspondence.
Useful references on (anti) de Sitter space range from Hawking & Ellis (1973), §5.2, to Moschella (2005).

167Instead of the ones in Theorem 4.9, also here one has disc-like realizations of these spaces, which are simply
obtained by replacing the Euclidean metric du2 + dv2 in (4.89) with the Minkowski metric du2−dv2, and similarly
in higher dimension. However, the realizations of Theorem 4.9 are more widely used in GR.

168Both theorems are a special case of Theorems 2.4.4 and 2.4.9 in Wolf (2011). Their common generalization is
as follows. For s = 0, equip Rn+1 with the Euclidean metric g(n+1)

0 = δ . For 1≤ s < n, take the indefinite metric

g(n+1)
s (X ,Y ) =−∑

s
i=1 X iY i+∑

n+1
j=s+1 X iY i. For ρ > 0, define Sn,s

ρ ⊂Rn+1 as a quadric−∑
s
i=1 x2

i +∑
n+1
j=s+1 x2

i = ρ2,
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Namely, the assumption of (geodesic) completeness is much more natural in the Riemannian
setting than it is in Lorentzian geometry, where it is violated in many realistic space-times (see
chapter 6). Instead, a more natural completeness assumption would be global hyperbolicity, cf.
§5.7. In fact, de Sitter space is globally hyperbolic but anti de Sitter space is not. See §5.10.

The need for the topological covering construction comes from the diffeomorphisms

dSn
ρ
∼= R×Sn−1; (4.93)

(x0,x1, . . . ,xn) 7→

x0,
x1√

ρ2 + x2
0

, . . . ,
xn√

ρ2 + x2
0

 ; (4.94)

AdSn
ρ
∼= S1×Rn−1; (4.95)

(x−1,x0,x1, . . . ,xn−1) 7→

 x−1√
ρ2 +∑

n−1
i=1 x2

i

,
x0√

ρ2 +∑
n−1
i=1 x2

i

,x1, . . . ,xn−1

 . (4.96)

so that dS2
ρ
∼= R×S1 and hence S̃2

ρ
∼= R2, and, for any n≥ 2, we obtain ÃdSn

ρ
∼= Rn.

Given Theorems 4.8 and 4.9, any other complete Riemannian or Lorentzian manifold with
constant curvature can be constructed from the above spaces by forming quotients of M by
discrete subgroups Γ of the isometry group of (M,g) that act freely and properly discontinuously
on M.169 In particular, the 2d de Sitter space dS2

ρ has constant curvature k = 1/ρ2, and for any
n≥ 2 the multiply connected anti de Sitter spaces AdSn

ρ all have constant curvature k =−1/ρ2.
Finally, for those familiar with Lie groups, we reformulate Theorems 4.8 and 4.9 in those

terms. Spaces of constant curvature (and many other interesting Riemannian or Lorentzian
manifolds with less symmetry) can be realized as homogeneous spaces (or coset spaces). See
Appendix A; we will restrict the discussion here to the points of direct interest.

An isometry of a metric g on M is a diffeomorphism ϕ of M such that

ϕ
∗g = g ⇔ gϕ(x)(ϕ

′
x(X),ϕ ′x(Y )) = gx(X ,Y ) ∀x ∈M,X ,Y ∈ TxM. (4.97)

The set of all such diffeomorphisms ϕ is the isometry group of (M,g), denoted by Iso(M,g).
This is by definition a subgroup of the “infinite-dimensional” group Diff(M), but it can be shown
that Iso(M,g) is a finite-dimensional Lie group in the compact-open topology.170

Let G be some subgroup of Iso(M,g) and suppose that G acts transitively on M (i.e. for each
x,y ∈M there is γ ∈ G such that y = γx). Choosing some fixed x′ ∈M with stabilizer

H = {γ ∈ G | γx′ = x′}. (4.98)

with the metric induced from g(n+1)
s , and let Hn,s

ρ ⊂Rn+1 be the quadric −∑
s+1
i=1 x2

i +∑
n+1
j=s+2 x2

i = −ρ2, with the

metric induced from g(n+1)
s+1 . Then Sn,s

ρ and Hn,s
ρ are semi-Riemannian manifolds of signature (s,n− s) with constant

curvatures k = 1/ρ2 and k = −1/ρ2, respectively. In particular, dSn
ρ = Sn,1

ρ and AdSn
ρ = Hn,1

ρ . Complete this list

with the k = 0 case in signature (s,n− s), which is obviously Rn with metric g(n)s ; for s = 1 this is Minkowski
space-time. Passing to the universal semi-Riemannian cover for Sn,s

ρ if s = n−1 and for Hn,s
ρ if s = 1, up to isometry

these are all complete simply connected semi-Riemannian manifolds of signature (s,n− s) with constant curvature.
In these realizations, the geodesics are once again the intersections with a plane in Rn+1 through zero.

169We say that Γ acts freely on M if γx = x implies x = e, and properly discontinuously if each x ∈M has a nbhd
U such that the set {γ ∈ Γ | γ(U)∩U 6= /0} is finite; in particular, Γ-orbits cannot have any accumulation point. Wolf
(2011) contains a complete solution of this problem, which is already very substantial for the hyperbolic space H2

ρ .
170See e.g. O’Neill (1983), Theorem 9.32. The compact-open topology on a space of maps F : X→Y is generated

by open sets of the form CK,U = {F | F(K) ⊂U}, where K is compact in X and U is open in Y .
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This is a closed and hence Lie subgroup of G, and we obtain a diffeomorphism

ψ : M
∼=→ G/H; ψ(γ ′x′) = γ

′H. (4.99)

If we define the canonical action of G on G/H by γ(γ ′H) = (γγ ′)H, then ψ is equivariant, in
that ψ(γx) = γψ(x). We then equip G/H with the unique metric g′ = (ψ−1)∗g that makes ψ

an isometry, namely g = ψ∗g′. The above G-action on G/H is then transitive and isometric.
Conversely, we start with a Lie group G and a closed subgroup H ⊂ G and study possibly

G-invariant metrics on G/H. This is done in See Appendix A, with the following conclusion:

Proposition 4.10 1. There is a bijective correspondence between G-invariant metrics on
G/H and Ad′(H)-invariant metrics on g/h, and hence, if g= h⊕p (see below), on p.

2. There is a unique G-invariant metric on G/H (up to scaling by a positive constant) iff the
Ad′(H)-action on g/h (or, if applicable, on p) is irreducible.

Here g and h are the Lie algebras of G and H, respectively, with h⊂ g. Any group G acts on itself
by the adjoint action Adγ(δ ) = γδγ−1. If G is a Lie group, this action defines a representation
Ad′ of G on its Lie algebra g, defined by Ad′γ(X) = γXγ−1 (this notation is justified since in
Appendix A we define Lie groups and their Lie algebras as matrices). This action may, of
course, be restricted to H ⊂ G, and it is easy to see that this restriction quotients to g/h. In our
application to spaces with constant curvature, the vector space g has a canonical decomposition

g= h⊕p, (4.100)

where (trivially) not only h, but also p is invariant under Ad′h for any h ∈ H (if H is connected,
this invariance requirement is equivalent to [h,p] ⊂ p). This is meant in Proposition 4.10.1.

The proof of Proposition 4.10 is based on two ideas. First, a G-invariant metric g′ on a
homogeneous space G/H is determined by its value at any given point of G/H, for which one
takes H (seen as the equivalence class of e ∈ G in G/H). Second, one has an isomorphism

TH(G/H) ∼= g/h, (4.101)

which is both linear and H-equivariant, in that the linear H-action on TH(G/H) coming from the
G-action on G/H is mapped to the H-action on g/h mentioned above.171 Thus any G-invariant
metric g′ on G/H is determined by its value g′H at H ∈ G/H, i.e. by a metric on the tangent
space (4.101). This metric is still constrained by G-invariance, whose “infinitesimal shadow” at
H is the adjoint H-action Ad′h on g/h. If this shadow is sufficiently large, g′H is even determined
by Ad′h-invariance (up to a constant scale factor). In words, g′ is both homogeneous, i.e. “the
same” if one moves from point to point by the G-action, and, if the second part of Proposition
4.10 applies, also isotropic in being “the same” in all directions from a given point of view. This
uniqueness applies in particular to spaces of constant curvature, to which we now return.

Let O(k, l) ⊂ GL(k+ l,R) be the isometry group of the metric g = diag(− k· · · −,+
l· · ·+)

on Rk+l; elements of O(k, l) are matrices γ ∈ GL(k+ l,R) that satisfy γT gγ = g. We will be
interested in k = 0, k = 1, and k = 2 and write O(l) for O(0, l). Then the following holds:

171Let Lh(γH) = (hγ)H be the restriction of the G-action on G/H to h ∈ H. Then the pushforward L′h maps
TγH(G/H) to T(hγ)H(G/H), and so for γ = e we obtain a linear map Lh : TH(G/H)→ TH(G/H).
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• O(n+ 1) acts transitively on Sn
ρ . The stabilizer of (0, . . . ,0,ρ) ∈ Sn

ρ is O(n), seen as a
subgroup of O(n+ 1) under the obvious “upper left corner” embedding. Hence

Sn
ρ
∼= O(n+ 1)/O(n), (4.102)

first as manifolds. But if O(n+1)/O(n) is equipped with ρ2 times its canonical O(n+1)-
invariant metric (see below), then this diffeomorphism is promoted to an isometry.

• O(1,n) acts transitively on Hn
ρ . This time, take (ρ ,0 . . . ,0), whose stabilizer is again O(n),

embedded in the “lower right corner” of O(1,n). Thus, with similar comments,

Hn
ρ
∼= O(1,n)/O(n). (4.103)

• O(1,n) also acts transitively on de Sitter space dSn
ρ . Returning to (0, . . . ,0,ρ), we obtain

dSn
ρ
∼= O(1,n)/O(1,n−1). (4.104)

• O(2,n−1) acts transitively on anti de Sitter space AdSn
ρ . Taking (ρ ,0 . . . ,0) yields

AdSn
ρ
∼= O(2,n−1)/O(1,n−1). (4.105)

• Finally, for the flat Euclidean and Minkowski spaces we have

Rn ∼= E(n)/O(n); (Euclidean) (4.106)
Rn ∼= P(n)/O(1,n−1); (Minkowski), (4.107)

where the semidirect product E(n) = O(n)nRn is the Euclidean group in dimension n,
and likewise P(n) = O(1,n−1)nRn is the Poincaré group in dimension n. These are
the isometry groups of the Euclidean metric and the Minkowski metric on Rn, respectively.

In the Riemannian case the denominator is always H = O(n), whereas in the Lorentzian case
it is the (Lorentz!) group H = O(1,n−1). It turns out that case 2 of Proposition 4.10 applies:
in fact, in both cases we have g/h ∼= Rn and under this isomorphism the adjoint H-action is
simply given by the defining action of H on Rn (which is certainly irreducible). Thus G-invariant
metrics on all of the above spaces G/H are unique (up to scaling), and hence “canonical”.

Corollary 4.11 If n = dim(M) ≥ 2, then the following list (where each space G/H is equipped
with its canonical G-invariant metric) gives all complete and simply connected spaces M of
constant curvature, up to isometry and up to rescaling of the metric by a positive constant:

• Riemannian i) k > 0: O(n+ 1)/O(n). ii) k = 0: E(n)/O(n). iii) k < 0: O(1,n)/O(n).

• Lorentzian i) k > 0: O(1,n)/O(1,n−1) (for n = 2 one needs its Lorentzian cover).
ii) k = 0: P(n)/O(1,n−1). iii) k < 0: the Lorentzian cover of O(2,n−1)/O(1,n−1).

Finally, realizations of homogeneous spaces as G/H are not unique; one may have G′/H ′ ∼=
G/H (think of (G×G)/G ∼= G/{e}). As a case in point, all of the above groups are discon-
nected: O(l) has two (connected) components, of which SO(l) is the one containing the identity,
and O(1, l) and O(2, l) even have four. The above way of writing down the isomorphisms has
the advantage that O(n+ 1) is the full isometry group of Sn

ρ , and likewise O(1,n) for both Hn
ρ

and dSn
ρ , and O(2,n−1) for AdSn

ρ . However, each isomorphism is also true if both groups in
the quotient are replaced by their identity components, e.g. Sn

ρ
∼= SO(n+ 1)/SO(n), etc.
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4.5 Ricci tensor and Ricci scalar
The Riemann tensor contains all information about curvature. There also exist weaker measures
of curvature. The main actor in GR is the Ricci tensor, which like the metric has type (2,0):

Ric(X ,Y ) :=
n

∑
a=1

Riem(ea,X ,ea,Y ); Rici j ≡ Ri j = Rl
il j = gklRkil j, (4.108)

where (ea) is any orthonormal frame.172 Note that Ric is symmetric by (4.36). From Ric, we
define the scalar curvature by

R :=
n

∑
a=1

Ric(ea,ea) =
n

∑
a,b=1

C(ea,eb) = gi jRi j, (4.109)

where of course in the second sum the terms a 6= b do not contribute and hence due to symmetry
the sum just has (n2−n)/2 terms. For example, in n = 3 the Ricci scalar (at a point x) is the
average of the sectional curvatures of the x-y, x-z, and y-z planes (within the tangent space TxM).

Furthermore, the Ricci tensor defines two Einstein tensors, most easily by their components

Gi j := Ri j− 1
2gi jR; (4.110)

Ei j := Ri j−
1
n

gi jR. (4.111)

Physicists use Gi j because, as will be explained later, it emerges from the calculus of variations
applied to the functional g 7→

∫
M R(g). Mathematicians, on the other hand, use Ei j because it is

simply the traceless part of Ric (note that gi jEi j = 0). Moreover, to explain the name, suppose

Ric = λg; Ri j = λgi j, (4.112)

for some constant λ ∈R, in which case we say that (M,g) is an Einstein manifold, and that g
is an Einstein metric. Then R = λ ·n is constant and λ = R/n, so that (4.112) implies Ei j = 0.
In d > 2, also the converse is true;173 this follows from the Bianchi identity (4.25). Thus:

Proposition 4.12 For n > 2, a metric satisfies (4.112) iff its Einstein tensor (4.111) vanishes.

The symmetries (4.36) enable one to count the number of independent components of the
Riemann tensor in various dimensions n, namely n2(n2−1)/12 (check!). Therefore:

1. For n = 2 the Riemann tensor has just one independent component R1212, and also

g−1 =

(
g11 g12

g21 g22

)
=

1
det(g)

(
g22 −g12
−g12 g11

)
, (4.113)

so that the Ricci tensor Ri j = gklRkil j must equal Ri j = gi jR1212/det(g). This gives

Ri jkl = 1
2R(gikg jl−gilg jk); Ri j = 1

2gi jR, (4.114)

cf. (4.84). Hence R1212 = 1
2 det(g) ·R = det(g) ·K, where the Gaussian curvature K is

given, either as a definition or as a theorem,174 by one of the equivalent expressions

K =C(∂1,∂2) = R1212/det(g) = 1
2R. (4.115)

172Authors use various sign conventions for the Riemann tensor, but all Ricci tensors and scalars coincide.
173We will shortly see that Ei j = 0 in d = 2, where we know since Gauss that non-constant R is certainly possible.
174See §4.3, as well as e.g. Heckman (2017), Theorem 3.15.
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2. For n = 3, the Riemann tensor has 6 independent components, as does the Ricci tensor!
So these two must carry the same information.175 This can be understood from linear
algebra, as follows. If V has an inner product, any symmetric bilinear map T : V ⊗V →R

is equivalent to a self-adjoint linear map T̃ : V →V via T (v⊗w) = 〈v, T̃ w〉. In particular,
the Ricci tensor Ricx : TxM⊗TxM→R at a point x ∈M is equivalent to a linear map

R̃icx : TxM→ TxM; gx(X , R̃icxY ) = Ricx(X ,Y ). (4.116)

If dim(V ) = 3, then dim(Λ3V ) = 1, and any nonzero Vol ∈ Λ3V gives an isomorphism

Λ2V
∼=→V ∗; A 7→ Â; A∧ v = Â(v)Vol. (4.117)

This follows from a dimension count: if V has a basis (e1,e2,e3), then Λ2V has a basis
(e1∧ e2,e2∧ e3,e3∧ e1). One may then take ω = e1∧ e2∧ e3, take the basis (ω1,ω2,ω3)
of V ∗ dual to the basis of V (i.e. ω i(e j) = δ i

j), so that if A = Ai jei∧ e j ∈ Λ2V , we find

Âi = εi jkA jk. (4.118)

Here εi jk is the totally antisymmetric (Levi-Civita) symbol, that is, Â1 = A23, Â2 =
−A13, and Â3 = A12. Dually, V ∼= (Λ2V )∗ = Λ2V ∗ under v 7→ v̂, where v̂i j = εi jkvk.
Consequently, in n = 3 (only!), one has Λ2TxM ∼= T ∗x M ∼= TxM. This isomorphism also
makes linear maps Λ2TxM→ Λ2TxM and TxM→ TxM equivalent, so that the maps (4.39)
and (4.116) are essentially the same. If the Ricci tensor as in (4.116) is diagonalized by
an orthonormal basis (e1,e2,e3) of TxM with eigenvalues (λ1,λ2,λ3), then the Riemann
tensor as in (4.39) is diagonal with respect to the basis (e1∧ e2,e2∧ e3,e3∧ e1) of ∧2TxM,
with eigenvalues (λ1 +λ2−λ3,λ2 +λ3−λ1,λ1−λ2 +λ3). The Ricci scalar is given by

Rx = λ1 +λ2 +λ3. (4.119)

Though derived from the Ricci tensor, an interesting tensor in n = 3 is the Cotton tensor

Ci jk := ∇kRi j−∇ jRik + 1
4(g̃ik∇ jR− g̃i j∇kR̃). (4.120)

Much as the Riemann tensor detects if a space(-time) is flat, cf. Theorem 4.1, the Cotton
tensor detects conformal flatness. First, C is invariant under rescalings g 7→ Ω2g (i.e.
conformal transformations), where Ω ∈C∞(M) is strictly positive. Since it vanishes for
flat metrics, it then also vanishes if g = Ω2δ (or Ω2η). The converse can also be proved.
Hence: a 3d space or space-time is conformally flat iff its Cotton tensor vanishes.176

3. For n = 4 (the case of interest to physics), the Riemann tensor has 20 independent
components, whereas the Ricci tensor only has 10. The geometric information in the
Riemann tensor that is not passed on to the Ricci tensor is contained in the Weyl tensor

Wkli j := Rkli j +(gk[ jRi]l + gl[iR j]k)+
1
3(R ·gk[ig j]l), (4.121)

where [· · · ] antisymmetrizes the enclosed indices (e.g. gk[ jRi]l = gk jRil−Rkig jl). The Weyl
tensor (“Weyl”) has the same symmetries as the Riemann tensor, cf. (4.36) - (4.38), so that
Weyl also has 10 independent components, like Riem. Everything just said in n = 3 about
the Cotton tensor is now valid in n = 4 for the Weyl tensor (which vanishes in n = 3).

175In n = 3 one has Rl
i jk = gl

jRik + gikRl
j−g jkRl

i−gl
iR jk +

1
2 R(gl

ig jk−gl
jgik). In terms of the Kulkarni–Nomizu

product (P�Q)i jkl := PilQ jk +PjkQil−PikQ jl−PjlQik, this reads Riem = 1
4 R(g�g)+E�g, cf. (4.111).

176The original reference is Cotton (1899), see also Eisenhart (1926), §28. A modern treatment is Garcia et al.
(2004). There is no analogue of the Cotton or Weyl tensors in n = 2, since every 2d metric is conformally flat.
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4.6 Submanifolds and hypersurfaces
As we saw in §4.3, differential geometry started with the study of two-dimensional submanifolds
Σ of R3 (i.e. surfaces) by Gauss. In GR, a crucial role will be played by various submanifolds M̃
of a four-dimensional Lorentzian manifold M. One may define a submanifold M̃ of a manifold
M in two equivalent ways: either as a subset M̃ ⊂M of M with certain (good) properties, or
as a manifold M̃ in its own right (a concept already defined, of course) plus an explicit map
F : M̃→M with equivalent good properties. The former leads to the latter by considering the
inclusion map F : M̃ ↪→M, whereas the latter leads to the former by identifying M̃ with its image
F(M̃) ⊂M (which may lead to some confusion!). We put n := dim(M) as usual.

Definition 4.13 If M̃ is a manifold, a map F : M̃→M defines a submanifold F(M̃) ⊂M iff:

1. F is a homeomorphism onto its image F(M̃). In particular, F is injective.177

2. F ′u : TuM̃→ TF(u)M is injective for all u ∈ M̃. Equivalently, the rank of F ′u equals dim(M̃).

Equivalently,178 a subset M̃ ⊂M is a k-dimensional submanifold of M iff each x ∈ M̃ has an
open nbhd U in M for which there is chart ϕ : U

∼=→V ⊂Rn (for M) whose image takes the form

ϕ(U ∩ M̃) = ϕ(U)∩X , (4.122)

where X is a k-dimensional affine linear subspace of Rn. If k = n−1, M̃ is called a hypersurface.

Until the end of this chapter we assume M̃ is a hypersurface, i.e. dim(M̃) = n−1. If M carries a
metric tensor g, then, generalizing (4.49) in §4.3, M̃ inherits a–not necessarily metric!–tensor

g̃ := ι
∗g; g̃ ∈ X(2,0)(M̃), (4.123)

defined by the inclusion ι : M̃ ↪→M. Identifying M̃ with ι(M̃), this simply means that

g̃x(Xx,Yx) = gx(Xx,Yx), (4.124)

for any Xx,Yx ∈ TxM̃ ⊂ TxM, with x ∈ M̃. It is easy to see that if (M,g) is Riemannian, then so is
(M̃, g̃). But in the Lorentzian case the induced “metric” g̃ need not be non-degenerate.

Lemma 4.14 Let g : V ×V →R be a symmetric nondegenerate bilinear map on a real vector
space V . Then for any linear subspace W ⊂V , with W⊥ := {v ∈V | g(v,w) = 0∀w ∈W},

dim(W )+ dim(W⊥) = dim(V ); (4.125)

(W⊥)⊥ =W . (4.126)

For the proof see O’Neill (1983), Lemma 2.22. Taking V = TxM and W = TxM̃, this yields

dim((TxM̃)⊥) = 1. (4.127)

Hence at each x ∈ M̃ one has a normal (vector) Nx ∈ (TxM̃)⊥ ⊂ TxM i.e. g(Nx,Xx) = 0 for all
Xx ∈ TxM̃, which by (4.127) is unique up to scalar multiplication (but we assume Nx 6= 0).

If (M,g) is Riemannian, then we may normalize each Nx such that

gx(Nx,Nx) = 1. (4.128)

177Dropping this condition defines an immersed submanifold; what we define is an embedded submanifold.
178See e.g. Andrews (undated), Proposition 3.2.1, combined with Proposition 1.31 in O’Neill (1983).



Submanifolds and hypersurfaces 77

This still yields no canonical choice of Nx, but any two choices only differ by a sign and we
assume that we can make a smooth choice x 7→Nx throughout M̃, which is always Riemannian.179

The Lorentzian case is much richer. A hypersurface may not fall into any of the three classes
below since the sign of gx(Nx,Nx) may change with x, but let as assume it is fixed (or zero).

Definition 4.15 A hypersurface M̃ ⊂M, with nonzero normal vector field N, is called:

• spacelike iff gx(Nx,Nx)< 0 for each x ∈ M̃. This is the case iff the induced metric g|M̃ is
positive definite, so that (M̃,g|M̃) is a 3d Riemannian manifold.

• timelike or Lorentzian iff gx(Nx,Nx) > 0 for each x ∈ M̃. This is the case iff the induced
metric g|M̃ is Lorentzian (obviously with signature (−++)).

• null iff gx(Nx,Nx) = 0 for each x ∈ M̃. This is the case iff g|M̃ is degenerate.

To explain the last remark, we first note that in the null case, Nx is both normal and tangent to its
null hypersurface. To see this, take W = TxM̃ in Lemma 4.14, so that W⊥ = R ·Nx, whence

TxM̃ = (TxM̃⊥)⊥ = (R ·Nx)
⊥. (4.129)

Hence Nx ∈ TxM̃, but by definition of a normal, there exists no Xx ∈ TxM̃ for which g(Nx,Xx) 6= 0,
so that g|M̃ is degenerate. Furthermore, whereas timelike normals are usually normalized as

gx(Nx,Nx) = −1, (4.130)

and spacelike normals usually satisfy (4.128), in the null case the normals Nx lack a natural nor-
malization. To soften this, note that TxM̃ cannot contain any null vector N′x linearly independent
of Nx (for in that case gx(Nx,N′x) = 0, which would contradict the Lorentzian signature of g).
Therefore, we can find a second null vector field Nx ∈ TxM (pointing outside TxM̃) such that

gx(Nx,Nx) = −1. (4.131)

Lemma 4.16 If M̃ is null, any Xx ∈ TxM̃ is either proportional to Nx (hence null), or spacelike.

Proof. Suppose TxM̃ contains a timelike vector Tx; then g(Tx +λNx) = g(Tx,Tx) < 0 for all λ ,
but a computation in coordinates shows that any sum Tx +λNx of a timelike vector and a null
vector becomes spacelike for large λ . The claim follows by the argument after (4.130). �

This is important, because it shows that null hypersurfaces have a canonical lightlike direction
given by its normal (!); see §5.3 and §6.4 for further discussion, especially Proposition 6.9.

There are two basic examples of null hypersurfaces in Minkowski space-time (M,η). On the
one hand, we have null hyperplanes such as u := t− r or v := t + r constant, or more generally
the set of all vectors orthogonal to a given null vector (and translates thereof). On the other hand,
we have forward or backward lightcones, see §5.3. In GR, in the context of black holes event
horizons and Cauchy horizons are null hypersurfaces (see §10.7), and null hypersurfaces also
play an important role in the settting of Penrose’s singularity theorem (see §6.4).

Spacelike hypersurfaces are also very important in GR, especially Cauchy surfaces; the
simplest example in M is x0 = constant. Similarly, for a timelike hypersurface we may take
xi = constant for i = 1, 2, or 3. A more spectacular example in GR is the photon sphere in
Schwarzschild space-time (see §9.2), and also “naked singularities” are timelike (see chapter 9).

179A sufficient condition for this, i.e. triviality of the normal bundle, is that M̃ be connected and simply connected
(Kobayashi & Nomizu, 1969, p. 5). Since the criteria in Definition 4.15 are independent of the sign of Nx, by Lemma
4.14 the classification in this definition is even well defined if no continuous choice x 7→ Nx exists on M̃.
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4.7 Gauss–Weingarten and Gauss–Codazzi equations

Let M̃ ⊂M be a hypersurface with normal N; if M is Lorentzian we assume M̃ is spacelike (this
case is fundamental to GR). The orthogonal projection from TxM onto TxM̃ is given by

πx : TxM→ TxM̃ ⊂ TxM; (4.132)
πx(Xx) = Xx−gx(Xx,Nx)Nx; (Riemannian case); (4.133)
πx(Xx) = Xx + gx(Xx,Nx)Nx; (Lorentzian spacelike case), (4.134)

so that πx(Nx) = 0 and πx(Xx) = Xx if Xx ∈ TxM̃ (this projection is independent of the choice of
Nx). Then (M,g) and (M̃, g̃) each have their Levi-Civita connections ∇ and ∇̃, respectively.

Proposition 4.17 The connection ∇ on M is related to the connection ∇̃ on M̃ by

π(∇XY ) = ∇̃XY (X ,Y ∈ X(M̃)). (4.135)

Here the covariant derivative ∇̃XY on the right-hand side is clearly defined (as an element of
X(M̃)), but also the covariant derivative ∇XY in M on the left-hand side is well defined, even
though Y is merely a vector field on M̃ rather than on all of M: as in the comment preceding
(3.40), if X ∈ X(M̃) and Y ∈ X(M), then the value of ∇XY only depends on the restriction of Y
to M̃ (indeed, it only depends on the values of Y along the flow lines on X , which lie in M̃), and
so ∇XY is defined (as a vector field on M̃) even when Y ∈ X(M̃).180

Proof. We write ∇′XY for π(∇XY ), so that (in the Lorentzian case for simplicity)

∇
′
XY = ∇XY + g(∇XY ,N)N. (4.136)

We first check that ∇′ is a covariant derivative on X(M̃). Linearity in Y is obvious (since both g
and ∇X are linear), as is C∞(M̃)-linearity, cf. (3.32). The Leibniz rule (3.33) follows from the
corresponding rule for ∇ and the property g((X f )Y ,N) = (X f )g(Y ,N) = 0 (since Y ∈ X(M̃)).
To identify ∇′ with ∇̃, we need to check that ∇′ is torsion-free and metric. First,

∇
′
XY −∇

′
Y X = ∇XY −∇Y X + g(∇XY −∇Y X ,N)N

= [X ,Y ]+ g([X ,Y ],N)N = [X ,Y ], (4.137)

since ∇ (being the Levi-Civita connection on T M) is torsion-free, and [X ,Y ] ∈ X(M̃), assuming
X ,Y ∈ X(M̃), so that g([X ,Y ],N) = 0. Second, ∇′ should satisfy (3.50), i.e.

X(g̃(Y ,Z)) = g̃(∇′XY ,Z)+ g̃(Y ,∇′X Z) (X ,Y ,Z ∈ X(M̃)). (4.138)

This is quite obvious, since for X ,Y ,Z ∈ X(M̃) we have

g̃(∇′XY ,Z) = g(∇′XY ,Z) = g(∇XY + g(∇XY ,N)N,Z) = g(∇XY ,Z), (4.139)

since g(N,Z) = 0, and so the right-hand side of (4.138) equals g(∇XY ,Z) + g(Y ,∇X Z). By
(3.50) for ∇ and g, this in turn equals X(g(Y ,Z)) = X(g̃(Y ,Z)). This gives (4.138).

The claim now follows from Theorem 3.9. �

180In other words, if one insists that ∇X : X(M)→ X(M), one may extend Y ∈ X(M) to an arbitrary vector field
on M, and if X ∈ X(M̃), then ∇XY is independent of this extension.
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Eq. (4.135) implies the general Gauss–Weingarten equations, where still X ,Y ∈ X(M̃):

∇XY = ∇̃XY + k̃(X ,Y )N (Riemann); (4.140)

∇XY = ∇̃XY − k̃(X ,Y )N (Lorentz); (4.141)
∇X N =: −W (X). (4.142)

Here we take (4.142) to be the definition of the Weingarten map Wx : TxM̃→ TxM̃, noting that
since g(N,N) = ±1, we have g(∇X N,N) = 0 and hence ∇X N ∈ T M̃. Furthermore,

k̃(X ,Y ) := g(W (X),Y ) = −g(∇X N,Y ) (4.143)

defines the extrinsic curvature k̃ ∈ X(2,0)(M̃). As in (4.58), from the property

g(∇XY ,N) = −g(Y ,∇X N), (4.144)

which is proved as in the text between (4.57) and (4.58), we infer that k̃ is symmetric, viz.

k̃(X ,Y ) = −g(∇X N,Y ) = g(N,∇XY ) = g(N,∇Y X) = k̃(Y ,X). (4.145)

Eqs. (4.140) - (4.141) then easily follow from (4.135), giving the (“parallel”) component in T M̃,
and from taking the inner product with N, using (4.128) - (4.130), giving the normal component.

We also derive the general Gauss–Codazzi equations, which, for W ,X ,Y ,Z ∈ X(M̃), are:

Riem(W ,Z,X ,Y ) = R̃iem(W ,Z,X ,Y )+ k̃(W ,Y )k̃(X ,Z)− k̃(W ,X)k̃(Y ,Z) (R); (4.146)

Riem(W ,Z,X ,Y ) = R̃iem(W ,Z,X ,Y )+ k̃(W ,X)k̃(Y ,Z)− k̃(W ,Y )k̃(X ,Z) (L); (4.147)

Riem(N,Z,X ,Y ) = (∇̃X k̃)(Y ,Z)− (∇̃Y k̃)(X ,Z), (4.148)

where Riem ∈ X(3,1)(M) and R̃iem ∈ X(3,1)(M̃) are the Riemann curvature tensor for the Levi-
Civita connection ∇ on T M (for g) and ∇̃ on T M̃ (for g̃), respectively. The Codazzi relation
(4.148) is the same for the Riemannian and the Lorentzian cases. These equations follow from
two computations, which we perform for the Lorentzian case, i.e. using (4.141). The first is:

∇X ∇Y Z = ∇X (∇̃Y Z− k̃(Y ,Z)N)

= ∇̃X ∇̃Y Z− k̃(X , ∇̃Y Z)N−X(k̃(Y ,Z)) ·N− k̃(Y ,Z)∇X N

= ∇̃X ∇̃Y Z +W (X)k̃(Y ,Z)− (k̃(X , ∇̃Y Z)+X(k̃(Y ,Z)))N. (4.149)

The second computation, which uses torsion-freeness of ∇̃, i.e. ∇̃XY − ∇̃Y X = [X ,Y ], is

∇[X ,Y ]Z = ∇̃[X ,Y ]Z− k̃([X ,Y ],Z)N = ∇̃[X ,Y ]Z− (k̃(∇̃XY ,Z)− k̃(∇̃Y X ,Z))N. (4.150)

The definition (4.10) of curvature, combined with the “covariant Leibniz rule”

X(k̃(Y ,Z)) = (∇̃X k̃)(Y ,Z)+ k̃(∇̃XY ,Z)+ k̃(Y , ∇̃X Z), (4.151)

which is a special case of (3.73), then yields, after some neat cancellations:181

Ω(X ,Y )Z = (∇X ∇Y −∇Y ∇X −∇[X ,Y ])Z = Ω̃(X ,Y )Z

+W (X)k̃(Y ,Z)−W (Y )k̃(X ,Z)+ ((∇̃Y k̃)(X ,Z)− (∇̃X k̃)(Y ,Z))N. (4.152)

Taking the (metric) inner product with W and using (4.143) yields Gauss’s equation (4.147),
whereas the inner product with N and using (4.130) yields Codazzi’s equation (4.148).

181Recall that unlike k̃, the metric is covariantly constant, i.e. ∇̃X g̃ = 0 for all X ∈ X(M̃), cf. (3.78).
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4.8 Fundamental theorem for hypersurfaces

The classical theory culminates in the fundamental theorem for hypersurfaces, which was
proved (by different means) in the 19th century. We discuss the proof in some detail,182 since it
will turn out to be a good preparation for the 3+1 split of the Einstein equations later on.

Theorem 4.18 Let (M̃, g̃) be a connected and simply connected m-dimensional Riemann mani-
fold equipped with a symmetric tensor k̃ ∈ X(2,0)(M̃) satisfying the Gauss–Codazzi equations

R̃iem(W ,Z,X ,Y )+ k̃(W ,Y )k̃(X ,Z)− k̃(W ,X)k̃(Y ,Z) = 0; (4.153)

(∇̃X k̃)(Y ,Z)− (∇̃Y k̃)(X ,Z) = 0. (4.154)

Then there exists an isometric embedding F : M̃→Rm+1 for which the extrinsic curvature is the
given tensor k̃. Such an embedding is unique up to isometry, which in the case at hand (i.e. Rm+1

with Euclidean metric) means: up to combinations of translations, rotations, and reflections.

Note that (4.153) - (4.154) arise from (4.146) - (4.148) by putting Riem = 0 (because Rm+1 is
equipped with the flat Euclidean metric), and have (4.78) - (4.79) as their coordinate version.
The latter were admittedly written down and derived for m = 2, but simply letting the indices
α ,β etc. run from 1 to m rather than from 1 tot 2 immediately generalizes our treatment of the
classical theory of surfaces to any dimension (alas with some loss of visualisability).

We just prove a local version of Theorem 4.18 by PDE methods, which is enough to show
the role of the Gauss–Codazzi equations as integrability conditions. So let us initially assume
we found an F : U →Rm+1 satisfying the conditions in the theorem, where U ∈ M̃ is open. We
make F unique by imposing the conjunction of the following local conditions:

1. For arbitrary u0 ∈U and x0 ∈Rm+1, the map F satisfies F(u0) = x0;

2. For some fixed orthonormal basis (e1, . . . ,em) of Tu0M̃ and some given orthonormal basis
( f1, . . . , fm+1) of Tx0Rm+1 ∼= Rm+1, its derivative satisfies F ′u0

(eα) = fα (α = 1, . . . ,m).

Without loss of generality we may choose geodesic normal coordinates on U relative to u0, cf.
(5.33) - (5.38) below, so that eα = ∂α ≡ ∂ /∂uα is indeed orthonormal at least at u0. Furthermore,
we may pick coordinates (xi) on Rm+1 (i = 1, . . . ,m+ 1) such that fi = ∂ /∂xi for i = 1, . . . ,m.
The components F i(uα) of F : U →Rm+1 then satisfy the (initial) condition

∂F i

∂uα
(u0) = δ

i
α (α = 1, . . . ,m, i = 1, . . . ,m); (4.155)

∂Fm+1

∂uα
(u0) = 0 (α = 1, . . . ,m). (4.156)

In addition to F , we have to define a normal vector field ~N on U , whose components Ni satsify

Ni(u0) = 0 (i = 1, . . . ,m); (4.157)

Nm+1(u0) = 1. (4.158)

182Cf. Kobayashi & Nomizu (1969), §VII.7, considerably rewritten. The argument uses some exterior calculus.
For general M̃ the above theorem holds at least locally, in that any u0 ∈ M̃ has a connected and simply connected
neighbourhood U ∈ O(M̃) for which the above claims hold.
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If we recall (3.68), whose asterisk we omit, for each i = 1, . . . ,m+ 1 we have

(∇̃α dF i)β = xi
αβ
− Γ̃γ

αβ
xi

γ , (4.159)

where ∇̃α := ∇̃∂ /∂uα . Therefore, introducing 1-forms θ i ∈Ω(U) for each i = 1, . . . ,m+ 1 via

θ
i = dF i, (4.160)

Gauss’s equation (4.76) for (~xα) turns (4.159) with (4.160) into

(∇̃αθ
i)β = k̃αβ Ni (α ,β = 1, . . . ,m). (4.161)

Conversely, if θ i ∈Ω(U) satisfies (4.161), there exists F i ∈C∞(U) such that (4.160) holds. We
start with a computation for any θ i ∈Ω(U), which uses the Leibniz rule (3.73):183

dθ
i(X ,Y ) = X(θ i(Y ))−Y (θ i(X))−θ

i([X ,Y ])

= (∇̃X θ
i)(Y )+θ

i(∇̃XY )− (∇̃Y θ
i)(X)−θ

i(∇̃Y X)−θ
i([X ,Y ])

= (∇̃X θ
i)(Y )− (∇̃Y θ

i)(X)+θ
i(τ(X ,Y ))

= (∇̃X θ
i)(Y )− (∇̃Y θ

i)(X), (4.162)

since the Levi-Civita connection ∇̃ is torsion-free, cf. (3.43). Eq. (4.161) then gives

dθ
i(∂α ,∂β ) = (∇̃αθ

i)(∂β )− (∇̃β θ
i)(∂α) = Ni(k̃αβ − k̃βα) = 0, (4.163)

by symmetry of the extrinsic curvature k̃. The Poincaré lemma then gives (4.160).
It is convenient to replace the 1-forms θ i by the corresponding vector fields Zi = ](θ i) on U

(i = 1, . . . ,m+ 1), in terms of which (4.161) becomes, writing Zβ

i for (Zi)β :

∂Zβ

i
∂uα

+ Γ̃β

αγZγ

i = Nik̃β

α . (4.164)

Similarly, in terms of Zi, Weingarten’s equation (4.77) becomes

∂Ni

∂uα
= −k̃αβ Zβ

i . (4.165)

We may rewrite the coupled PDEs (4.164) and (4.165) on U , i = 1, . . . ,m+ 1, more elegantly as

∇̃X Zi = NiW (X); (4.166)

XNi = −k̃(X ,Zi), (4.167)

for X ∈ X(U) and Ni ∈C∞(U), subject to the initial conditions (4.157) - (4.158) for Ni, with

Zα
i (u0) = δ

α
i (α = 1, . . . ,m, i = 1, . . . ,m); (4.168)

Zα
m+1(u0) = 0 (α = 1, . . . ,m). (4.169)

We derived (4.166) - (4.167) with (4.168) - (4.169) from the existence of F : U →Rm+1 with
the desired properties (as stated in the theorem). Conversely, if we can solve these equations for
Zi (and Ni), we are able to construct F , having the right properties, via θ i = [(Zi) and (4.160).

183In the first line we use the identity dω(X ,Y ) = X(ω(Y ))−Y (ω(X))−ω([X ,Y ]), valid for any ω ∈Ω(U).
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We now show that this can be done. To begin with, we show that the integrability conditions
for (4.166) - (4.167) are the Gauss–Codazzi equations, which should come as no surprise, since
(4.166) - (4.167) are a version of the Gauss–Weingarten equations. From (4.167) we derive

[X ,Y ]Ni = −Xk̃(Y ,Zi)+Y k̃(X ,Zi); (4.170)

[X ,Y ]Ni = −k̃([X ,Y ],Zi). (4.171)

so that Xk̃(Y ,Zi)−Y k̃(X ,Zi) = k̃([X ,Y ],Zi); a computation very similar to (4.162) then rewrites
this as Codazzi’s eq. (4.154). Similarly, practically the same computation as (4.149) - (4.152),
using (4.154), shows that (4.166) implies Gauss’s eq. (4.153). Thus the Gauss–Codazzi equations
are necessary for the solvability of (4.166) - (4.167), which explains their role in Theorem 4.18.

To show that they are also sufficient, we have to make our hands dirty (as usual in PDE theory).
We take geodesic normal coordinates (uα) relative to u0 ∈U (it may be necessary to shrink U
in order to make it a normal nbhd) and some fixed orthonormal basis (e1, . . . ,em) of Tu0M̃, so
that the coordinates (u1, . . . ,um) specify the point u = γ~u(1), where γ~u is the (unique) geodesic
having γ~u(0) = u0 and γ̇~u(0) = uαeα (summation convention!).

For fixed u ∈U , define a vector field Zi and functions Ni along this geodesic γ~u by solving

∇̃γ̇~u Zi = NiW (γ̇~u); (4.172)

γ̇~uNi = −k̃(γ̇~u,Zi), (4.173)

at least for t ∈ [0,1], or, in coordinates, where Zi = (Z1
i , . . . ,Zm

i ) as above, and tu = γ~u(t),

dZβ

i (t)
dt

+ uγ Γ̃β

γα(tu)Z
α
i (t) = Ni(t)k̃β

α(tu)u
α ; (4.174)

dNi(t)
dt

= −k̃αβ (tu)u
αZβ

i , (4.175)

with initial conditions Zα
i (0) = δ α

i (i≤m), Zα
m+1(0) = 0, Ni(0) = 0 (i≤m), and Nm+1(0) = 1,

cf. (4.168) - (4.169) and (4.157) - (4.158). Here we identified Zi(t) with Zi(tu), etc. By standard
ODE theory, Zi(t) and Ni(t) exist and are unique. Finally, define Zi ∈ X(U) and Ni ∈C∞(U) by

Zi(u) = Zi(1); (4.176)

Ni(u) = Ni(1), (4.177)

where the Zi and Ni on the right-hand side depend on u by construction. We claim that this pair
(Zi,Ni) solves (4.166) - (4.167) with the right initial conditions (4.168) - (4.169) and (4.157) -
(4.158). To prove this, it is convenient to introduce two constant vector fields on U by

X = ∂α (α = 1, . . . ,m); (4.178)
Y = aα

∂α , (4.179)

where (a1, . . . ,an) are the normal coordinates of some fixed a ∈U . The equations

∇̃Y Zi = NiW (Y ); (4.180)

Y Ni = −k̃(Y ,Zi), (4.181)

then hold along the geodesic γ~a(t) for t ∈ [0,1], since there they coincide with (4.172) - (4.173).
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We claim that along γ~a(t) the functions (Zi,Ni) defined by (4.176) - (4.177) also satisfy

∇̃Y (∇̃X Zi−NiW (X)) = (XNi + k̃(X ,Zi))W (Y ); (4.182)

Y (XNi + k̃(X ,Zi)) = −k̃(Y , ∇̃X Zi−NiW (X)), (4.183)

which equations are none other than (4.180) - (4.181), with the substitutions

Zi ∇̃X Zi−NiW (X); (4.184)

Ni XNi + k̃(X ,Zi). (4.185)

Note that the initial conditions for (4.182) - (4.183) follow from those to (4.180) - (4.181), viz.

∇̃X Zi(u0)−N(u0)
iWu0(X) = 0; (4.186)

XNi(u0)+ k̃u0(X ,Zi) = 0. (4.187)

Indeed, by the construction of geodesic normal coordinates, at the point u0, the pair (Zi,Ni)
satisfies (4.180) - (4.181) for any Y , and so in particular for X . The point now is that, (4.182) -
(4.183) being a first-order system, its unique solution with initial conditions zero is zero, which
by (4.184) - (4.185) shows that (Zi,Ni) solves (4.166) - (4.167), with given initial conditions.

It remains to derive (4.182) - (4.183) from (4.180) - (4.181) and the Gauss-Codazzi equations.
The argument should be familiar by now, but here we go! To derive (4.182), we compute

∇̃Y (∇̃X Zi−NiW (X)) = ∇̃Y ∇̃X Zi− (Y Ni)W (X)−Ni
∇̃Y (W (X))

= ∇̃X ∇̃Y Zi−Ω(X ,Y )Zi− (Y Ni)W (X)−Ni((∇̃YW )(X)+W (∇̃Y X))

= ∇̃X (NiW (Y ))+ k̃(X ,Zi)W (Y )− k̃(Y ,Zi)W (X)

− (Y Ni)W (X)−Ni((∇̃YW )(X)+W (∇̃Y X))

= (XNi + k̃(X ,Zi))W (Y )+Ni(∇̃X (W (Y ))− (∇̃YW )(X)−W (∇̃Y X))

= (XNi + k̃(X ,Zi))W (Y ), (4.188)

where we use (4.152) to pass to the second line and use (4.181) to cancel the term k̃(Y ,Zi)W (X)
on the previous line. Finally, the coefficient of Ni in the penultimate line is zero by Codazzi’s
equation (4.154), which emerges after using (3.73) to write ∇̃X (W (Y ) = (∇̃XW )(Y )+W (∇̃XY ),
and noting that W (∇̃XY )−W (∇̃Y X) =W (∇̃XY − ∇̃Y X) = 0 because ∇̃XY = ∇̃Y X , since ∇̃ is
torsion-free and [X ,Y ] = 0 for the constant vector fields (4.178) - (4.179). Similarly, to derive
(4.183), using eqs. (4.181), (3.73), Codazzi’s (4.154), and (4.180), we compute

Y (XNi + k̃(X ,Zi)) = XY Ni +Y k̃(X ,Zi) = −Xk̃(Y ,Zi)+Y k̃(X ,Zi)

= (∇̃Y k̃)(X ,Zi)− (∇̃X k̃)(Y ,Zi)+ k̃(∇̃Y X ,Zi)− k̃(∇̃XY ,Zi)

− k̃(Y , ∇̃X Zi)+ k̃(X , ∇̃Y Zi)

= −k̃(Y , ∇̃X Zi)+ k̃(X ,NiW (Y ))

= −k̃(Y , ∇̃X Zi−NiW (X)), (4.189)

since k̃(X ,W (Y )) = k̃(Y ,W (X)), which in coordinates is the identity k̃αγgγδ k̃δβ = k̃βγgγδ k̃δα .
This proves (4.183) and completes the local proof of Theorem 4.18. �



84



85

5 Geodesics and causal structure
In this chapter we introduce the causal theory of space-times, culminating in the key notion of
global hyperbolicity. This theory also allows us to study local and global length-extremizing
properties of geodesics, which are needed for the singularity theorems in the next chapter. The
link with curvature as studied in the previous chapter is provided by the topic of the next section.

5.1 Geodesic deviation and Jacobi fields
In this section we give an interpretation of curvature through geodesic deviation. This applies to
both Riemannian and Lorentzian metrics and for the latter is a physical phenomenon, even a key
prediction of GR. Let U ∈ O(R2) be connected and let γ : U →M be a family of curves: with
(s, t) ∈U we write γs(t)≡ γ(s, t), regarding t as the ‘time’ parameter on each curve γs, and s as
a parameter labeling the curves. Apart from the vector field tangent to γs(t) along the t-flow,

γ̇s ≡ γ∗(∂ /∂ t) =
∂γs

∂ t
, (5.1)

on γ(U), which gives the tangent vectors to each γs for fixed s as t “runs”, we now also have a
second vector field tangent to γs(t) along the s-flow, i.e.,

γs
′ ≡ γ∗(∂ /∂ s) =

∂γs

∂ s
. (5.2)

Let ∇ be the Levi-Civita connection on T M. For any vector field Z defined on γ(U), abbreviate

∇sZ ≡ ∇γs ′Z; ∇tZ ≡ ∇γ̇sZ. (5.3)

Since [∂ /∂ s,∂ /∂ t] = 0 on U ⊂R2 by standard calculus, on γ(U) we have, cf. (4.12),

[γs
′, γ̇s] = 0. (5.4)

Therefore, because ∇ is torsion-free we have the important identity

∇tγs
′ = ∇sγ̇s. (5.5)

Another application of (5.4), with (4.10), is that for any Z ∈ X(γ(U)) we have

[∇t ,∇s]Z = Ω(γ̇s,γs
′)Z. (5.6)

Now assume that each curve t 7→ γs(t) is a geodesic, so that ∇t γ̇s = 0, and take Z = γ̇s. Using
also (5.5), eq. (5.6) becomes the Jacobi equation or equation of geodesic deviation

∇
2
t γs
′ = Ω(γ̇s,γs

′)γ̇s; ∇
2
t

(
∂γ

ρ
s

∂ s

)
= Rρ

σ µν

∂γ σ
s

∂ t
∂γ

µ
s

∂ t
∂γ ν

s
∂ s

. (5.7)

We now change perspective and start from a single geodesic γ . We then define a Jacobi field
along γ as any vector field J, defined along γ , that satisfies Jacobi’s equation

∇
2
t J = Ω(γ̇ ,J)γ̇ ; (5.8)

∇
2
t Jρ = Rρ

σ µν

dγ µ

dt
dγ σ

dt
Jν . (5.9)

Clearly, any one-parameter family of geodesics produces a Jacobi field along any fixed one of
them by the above procedure. Conversely, Jacobi fields give rise to such a family:
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Proposition 5.1 Any solution J of (5.8) or (5.9) along a geodesic γ enables one to extend γ to a
one-parameter family (γs) of geodesics for which γ = γ0 and

J = γ
′
0. (5.10)

This will be proved in the next subsection, since we need the exponential map for the proof.

Proposition 5.2 The collection of Jacobi fields along a given geodesic γ : [a,b]→M forms a
vector space Jγ of dimension 2dim(M). Specifically, one has a linear isomorphism

Jγ
∼= Tγ(a)M⊕Tγ(a)M; (5.11)

J 7→ (J(a),∇tJ(a)). (5.12)

Moreover, if J(a) and ∇tJ(a) are both orthogonal (parallel) to γ̇(a), then J(t) and ∇tJ(t) remain
orthogonal (parallel) to γ̇(t) for all t ∈ [a,b]. In the parallel case, one simply has

J(t) = (c1 +(t−a)c2)γ̇(t), (5.13)

for given initial conditions J(a) = c1γ̇(a) and ∇tJ(a) = c2γ̇(a), independent of Riem.184

Proof. Eq. (5.8) or (5.9) is a linear second-order ODE for J, which may be rewritten as a linear
first-order system Kρ(t) = ∇tJρ(t) and ∇tKρ(t) = Aρ

σ (t)Jσ (t). For such systems solutions not
merely exist for short times, but for all t for which the matrix Aρ

σ (t) is defined. The proof of the
other claims is almost trivial and is left to the reader. �

Jacobi fields play an important role in the variational properties of geodesics. To explain this we
compute the second variation of the length functional (3.16) in the Riemannian case and insert
the appropriate sign(s) for the Lorentzian case at the end. First, we recompute the first variation,
using the powerful notion of the covariant derivative that was not yet available in §3.2. Note that,
in contrast to our discussion of Jacobi fields, here we neither assume that each γs is a geodsic,
nor (for later use in computing the second derivative) that it is parametrized by arc length (i.e.
has constant speed). Using (3.73) and (3.52), (5.3), and (5.5), we obtain

dL(γs)

ds
=
∫ b

a
dt

∂

∂ s

√
gγs(t)(γ̇s(t), γ̇s(t))

=
∫ b

a
dt

gγs(t)(∇sγ̇s(t), γ̇s(t))√
gγs(t)(γ̇s(t), γ̇s(t))

=
∫ b

a
dt

gγs(t)(∇tγs
′(t), γ̇s(t))√

gγs(t)(γ̇s(t), γ̇s(t))
. (5.14)

If we now do put s = 0 (with γ0 = γ) and do assume constant speed, say ‖γ̇(t)‖= v, we continue:∫ b

a
dt

gγ(t)(∇tγ
′(t), γ̇(t))√

gγ(t)(γ̇(t), γ̇(t))
=

1
v

∫ b

a
dt [∂t(gγ(t)(γ

′(t), γ̇(t)))−gγ(t)(γ
′(t),∇t γ̇(t))]

=
1
v

(∣∣∣∣a
b
g(γ ′, γ̇)−

∫ b

a
dt gγ(t)(γ

′(t),∇γ̇ γ̇(t))
)

, (5.15)

since ∇t = ∇γ̇ . For fixed-endpoint variations, where γ ′(a) = γ ′(b) = 0, we therefore obtain

L′(γ) ≡ dL(γs)

ds
(s = 0) = −1

v

∫ b

a
dt gγ(t)(γ

′(t),∇γ̇ γ̇(t)), (5.16)

184This proposition is true in the Riemannian case, and for non-null geodesics in the Lorentzian case (cf. §5.3).
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since the boundary term in (5.15) vanishes. Thus we see that the extremality condition L′(γ) = 0
enforces the geodesic equation (3.48), since γ ′ in (5.16) is arbitrary and g is nondegenerate.

We now compute the second derivative of L(γs) from (5.14):

L′′(γ) ≡ d2L(γs)

ds2 (s = 0) =
∫ b

a
dt

∂

∂ s

gγs(t)(∇tγs
′(t), γ̇s(t))√

gγs(t)(γ̇s(t), γ̇s(t))

 (s = 0)

=
1
v

∫ b

a
dt [gγs(t)(∇s∇tγs

′(t), γ̇s(t))+ gγs(t)(∇tγs
′(t),∇sγ̇s(t))](s = 0)

− 1
v3

∫ b

a
dt [gγ(t)(∇tγ

′(t), γ̇(t))]2, (5.17)

where we used (5.5) to obtain the last term. Rewriting the first term using (5.6) gives

gγs(∇s∇tγs
′, γ̇s)|s=0 = gγ([∇s,∇t ]γ

′, γ̇)+ gγ(∇t∇sγ
′, γ̇)

= −gγ(Ω(γ̇ ,γ ′)γ ′, γ̇)−gγ(∇sγ
′,∇t γ̇)+

d
dt

gγ(∇sγ
′, γ̇). (5.18)

In the last line, the first term equals−Rγ(γ̇ ,γ ′, γ̇ ,γ ′), the second term vanishes for geodesics, and
for fixed-endpoint variations the third term also vanishes upon integration

∫ b
a dt. Furthermore,

we use (5.5), so that gγ(∇tγs
′,∇sγ̇s) = gγ(∇tγs

′,∇tγs
′). Introducing the component

γ
′
⊥ = γ

′− v−2g(γ ′, γ̇)γ̇ (5.19)

of γ ′ that is perpendicular to γ̇ , we have, omitting terms containing ∇t γ̇ ≡ ∇γ̇ γ̇ = 0,

gγ(∇tγ
′,∇tγ

′)− 1
v2 [gγ(∇tγ

′, γ̇)]2 = gγ(∇tγ
′
⊥,∇tγ

′
⊥). (5.20)

Up to a boundary term vanishing upon integration for fixed-endpoint variations, we may replace
the right-hand side by −gγ(γ ′⊥,∇2

t γ ′⊥). By the symmetries of the Riemann tensor, we have

−Riemγ(γ̇ ,γ ′, γ̇ ,γ ′) = −Riemγ(γ̇ ,γ ′⊥, γ̇ ,γ ′⊥) = Riemγ(γ
′
⊥, γ̇ , γ̇ ,γ ′⊥) = g(γ ′⊥,Ω(γ̇ ,γ ′⊥)γ̇),

so that we finally obtain Synge’s formula for the second variational derivative of L(γ):185

L′′(γ) = −1
v

∫ b

a
dt gγ(t)(γ

′
⊥(t),∇2

t γ
′
⊥(t)−Ω(γ̇(t),γ ′⊥(t))γ̇(t)) (5.21)

=
1
v

∫ b

a
dt [gγ(t)(∇tγ

′
⊥(t),∇tγ

′
⊥(t))−R(γ ′⊥(t), γ̇(t),γ ′⊥(t), γ̇(t))]. (5.22)

Note that we did not assume that the curves γs were geodesics, except γ0 ≡ γ . In the Lorentzian
case, for timelike curves,186 one obtains minus the the right-hand sides in (5.21) - (5.22); this
sign goes back to the one in (5.114); we invite the reader to redo the calculation for this case.

As in calculus, L(γ) is a local minimum iff L′′(γ) > 0, whereas it is a local maximum iff
L′′(γ) < 0. We will see shortly that in the Riemannian case for small t one starts out with
L′′(γ)> 0, so that at least for short times geodesics are locally minimizing. It is clear from (5.22)
that in case of negative sectional curvature this will always remain the case, but in general, L′′(γ)
may go through zero. According to (5.21) and (5.8), one has L′′(γ) = 0 precisely when γ ′⊥ is a
Jacobi field. After a necessary technical intermezzo, in §5.4 we analyze what this means.

185 See Synge (1960), §I.6., eq. (136). It is quite remarkable that not just in the first variation (5.16), where it is
expected, but also in the second variation (5.21), only the first s-derivative of the family γs appears.

186A curve t 7→ c(t) is timelike if gc(t)(ċ(t), ċ(t))< 0 for all t where c(t) is defined. See §5.3 below.
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5.2 The exponential map

Given some metric, fix x ∈M and define Vx ⊂ TxM as the set of vectors X ∈ TxM for which the
geodesic t 7→ γ

(x)
X (t) emanating at x with initial velocity X , i.e.,

γ
(x)
X (0) = x; γ̇

(x)
X (0) = X , (5.23)

is defined at least for 0≤ t ≤ 1. If (M,g) is complete, then Vx = TxM for all x. Note that each
Vx is automatically open and star-shaped in that X ∈ Vx implies tX ∈ Vx for all t ∈ [0,1]. This
follows because for any t for which γ

(x)
X (t) is defined (for given X), and any ρ > 0, one has

γ
(x)
ρX (t) = γ

(x)
X (ρt). (5.24)

Indeed, the left-hand side solves (3.24) with the same initial condition as the right-hand side.
The exponential map expx : Vx→M (based at x) is then defined by

expx(X) = γ
(x)
X (1). (5.25)

This map underlies many proofs and hence we take the reader through its main features.187

1. At each x the set Vx ⊂ TxM can be shrunk to an open star-shaped subset Ux ⊂ Vx on which

expx : Ux→M

is a diffeomorphism onto its image Ux, called a normal neighbourhood of x. This follows
from the inverse function theorem plus the observation that the derivative (pushforward) of
expx at 0 ∈ TxM is the identity map (as is easily verified). Moreover, Ux may be shrunk to a
convex neigbhourhood Wx of x: this means that Wx is a normal nbhd of any of its points,
so that any two points of Wx may be connected by a unique geodesic that lies in Wx.

Eq. (5.24) then implies that expx maps each line segment {tX | 0≤ t ≤ 1} in TxM to the
geodesic segment {γ (x)X (t) | 0≤ t ≤ 1} in M. Conversely, geodesics within Ux emanating
from x are flattened by exp−1

x . This is because any point y = expx(X) ∈Ux is connected
to x by a unique geodesic within Ux, viz. γ

(x)
X , where X = exp−1

x (y) (there may be other
geodesics from x to y, but if so, these leave Ux). To see this, consider some geodesic

c : [0,1]→M; c(0) = x; c(1) = y, (5.26)

and take Y = ċ(0). Uniqueness of geodesics c with given initial data c(0) and ċ(0), yields

c(t) = γ
(x)
Y (t). (5.27)

Then c([0,1])⊂Ux implies Y ∈Ux, and the endpoint matching condition

γ
(x)
Y (1) = y = γ

(x)
X (1) (5.28)

enforces Y = X , which implies c = γ
(x)
X .

187O’Neill (1983), Senovilla (1998), and Minguzzi (2019) are good references for this material.
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2. Jacobi fields give the pushforward of the exponential map. For each X ∈ Vx we have

(expx)
′
X : TX (TxM)→ Texpx(X)M. (5.29)

Identifying TX (TxM) ∼= TxM, which is done through the identification

Z ∈ TxM ↔ d(X + tZ)
dt

(t = 0) ∈ TX (TxM), (5.30)

(5.29) becomes a linear map (expx)
′
X : TxM→ Texpx(X)M. Take Z ∈ TxM (not necessarily

orthogonal to X = γ̇
(x)
X (0)) and let JZ(t) be the Jacobi field along γ

(x)
X with boundary

conditions J(0) = 0 and ∇tJZ(0) = Z. For t ∈ [0,1]) we have JZ(t) = (expx0
)′tX (tZ), so

(expx)
′
X (Z) = JZ(1). (5.31)

3. The exponential map leads to the idea of (geodesic) normal coordinates (GNC) relative to
both some point x0 ∈M and a choice of an orthonormal basis (eµ) of Tx0M. That is,

gx0(eµ ,eν) = δµν (Riemannian case); (5.32)
gx0(eµ ,eν) = ηµν (Lorentzian case). (5.33)

These coordinates are defined on the chart Ux0 , as follows: the normal coordinates of
x ∈Ux0 are the coordinates of exp−1

x0
(x) ∈ Tx0M with respect to the given basis of Tx0M.

In other words, if X = xµeµ , then x = expx0
(X) has GNC xµ , or, equivalently:

The normal coordinates (xµ) label the point expx0
(xµeµ) = γ

(x0)
xµ eµ

(1).

In particular, x0 has GNC xµ = 0. By definition of expx0
, and using (5.24) we also have

∂ f
∂xµ

(x0) =
d
dt

f (γ (x0)
teµ

(1))|t=0 =
d
dt

f (γ (x0)
eµ

(t))|t=0 = eµ f (x0), (5.34)

so that in Tx0M we have ∂µ = eµ and hence, say for the Lorentzian case, by (5.33),

gµν(0) = gx0(eµ(t),eν) = ηµν . (5.35)

In GNC, by (5.24) the coordinates of the curve t 7→ γxµ eµ
(t) are

xµ(t) = txµ (5.36)

which is clearly a geodesic. The geodesic equation (3.24) then gives

Γρ

µν(x(t))x
µxν = 0, (5.37)

For t = 0 and t = 1 this gives, respectively,

Γρ

µν(0) = 0; (5.38)

Γρ

µν(x)x
µxν = 0. (5.39)
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From (4.15), the first one gives

∂νgρµ + ∂µgρν −∂ρgµν = 0. (5.40)

Cyclic permutation of indices gives

∂νgρµ −∂µgρν + ∂ρgµν = 0. (5.41)

Adding these equations sharpens (5.38) to

∂ρgµν(0) = 0. (5.42)

But this is where the buck stops: for the second derivative a calculation shows that

∂ρ∂σ gµν(0) = − 1
3(Rµσνρ(0)+Rµρνσ (0)), (5.43)

which is equivalent to (4.26) and, in GNC, to

gµν(x) = ηµν − 1
3Rµρνσ xρxσ +O(x3), (5.44)

Finally, since f (t) = g
γ
(x0)(t)(γ̇

(x0)(t), γ̇ (x0)(t)) is constant along γ
(x0)
X , i.e. in t, in GNC

gµν(x)xµxν = gµν(0)xµxν = ηµνxµxν , (5.45)

as the left-hand side is f (1) whilst the right-hand side is f (0). This will be used shortly.

4. Gauss’s Lemma (which will be used in §5.4) sharpens (5.45) to

gµν(x)xµ = gµν(0)xµ , (5.46)

or, in coordinate-free form, for arbitrary X ∈ Vx and Z ∈ TxM),

gexpx(X)((expx)
′
X (X), (expx)

′
X (Z)) = gx(X ,Z). (5.47)

This states that although the presence of the curvature in the right-hand side of (5.8)
prevents the exponential map from being an isometry (which it is in flat space), the radial
component of any vector along a geodesic preserves its length under expx. To see that
(5.47) is equivalent to (5.46), note that according to (5.36), in GNC we have

((expx)
′
X (X))µ = X µ , (5.48)

so if we use (5.30) with t s, by definition of the pushforward (expx)
′
X we obtain

(expx)
′
X (Z) = d(expx(X + sZ))|s=0, (5.49)

which in GNC gives
((expx)

′
X (Z))

µ = Zµ . (5.50)

Hence the left-hand side of (5.47) is gµν(x)X µZν , and since the right-hand side is obvi-
ously gµν(0)X µZν , we have proven the said equivalence.
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To prove (5.46) and hence (5.47),188 we note that (5.39) with (4.15) implies

(2gµρ ,ν −gµν ,ρ)xµxν = 0. (5.51)

Furthermore, taking (5.45) at arbitrary t, we have

gµν(tx)xµxν = gµν(0)xµxν , (5.52)

whence, by taking the derivative ∂ρ of both sides,

tgµν ,ρ(tx)xµxν + 2gµρ(tx)xµ = 2gµρ(0)xµ . (5.53)

Combining (5.51) and (5.53) yields

d
dt
(tgµρ(tx)xµ − tgµρ(0)xµ) = 0. (5.54)

Hence we may evaluate the expression between brackets at t = 1, which gives (5.46).

Combinig (5.24), (5.31), and (5.47) gives, along the geodesic γ
(x)
X (at least for t ∈ [0,1]),

g
γ
(x)
X (t)

(JX (t),JZ(t)) = t2gx(X ,Z). (5.55)

For example, on M = Rn with Euclidean metric (i.e. gi j = δi j) one simply has

JZ(t) = tZ. (5.56)

5. We now prove Proposition 5.1. Given γ(t) and J(t), let c(s) be the unique geodesic with

c(0) = γ(0); c′(0) = J(0), (5.57)

where s ∈ (−δ ,δ ) for some δ > 0, and c′(s) = ∂c(s)/∂ s as usual. Then define vector
fields V (s) and W (s) along c(s) as the unique solutions of

∇c′V (s) = 0; V (0) = γ̇(0); (5.58)
∇c′W = 0; W (0) = ∇tJ(0). (5.59)

Then the following family does the job:

γs(t) = expc(s)(tV (s)+ stW (s)). (5.60)

• For fixed s, this is γs : t 7→ expxs
(tXs), with xs = c(s) and Xs = V (s)+ sW (s). Now

expxs
(tXs) = γtXs(1) = γXs(t) (5.61)

by (5.24), so γs = γXs , emanating from γs(0) = xs. This is surely a geodesic!

188Eq. (5.47) may also be proved from (5.31), cf. O’Neill (1983), Lemma 5.1 or Jost (2002), Corollary 4.2.2.
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• To prove (5.10), we initially put

J̃(t) =
∂γs(t)

∂ s
(s = 0). (5.62)

Then, using (5.57) - (5.61), we compute

J̃(0) =
∂ expc(s)(0)

∂ s
(s = 0) =

dc(s)
ds

(s = 0) = c′(0)

= J(0); (5.63)

∇t J̃(0) = ∇t
∂

∂ s
γs(t)|s=t=0 = ∇s

∂

∂ t
γs(t)|s=t=0

= ∇c′(V (s)+ sW (s))|s=0 =W (0)

= ∇tJ(0). (5.64)

Since J and J̃ solve the same Jacobi equation along γ , this implies J̃ = J.

6. Finally, though not needed in what follows, the mathematical underpinning of the equiv-
alence principle as usually conceived is given by the following extension of geodesic
normal coordinates.189 We just do the timelike Lorentzian case (which covers what is
physically needed; the adaptation to the Riemannian case is obvious). Let γ : (a,b)→M,
where a < 0 < b, be an affinely parametrized timelike geodesic with unit speed, i.e.

g(γ̇ , γ̇) = −1, (5.65)

and let (e0,e1,e2,e3) be an orthonormal frame in Tγ(0)M, i.e. (5.33) holds, with e0 = γ̇(0).
Parallel transport this frame along γ , i.e., the frame (eµ(t)) at Tγ(t)M solves

∇γ̇(t)eµ(t) = 0; eµ(0) = eµ , (5.66)

so that in particular e0(t) = γ̇(t). The Fermi normal coordinates (xµ) then refer to

(xµ)↔ expγ(x0)

(
3

∑
i=1

xiei)

)
, (5.67)

which defines a coordinate system in a suitable open nbhd of γ . It follows that at γ(t) one
has ∂µ = eµ(t), so that similarly to the case of GNC along γ , i.e. ∀t ∈ (a,b), one obtains

gµν(γ(t)) = ηµν ; (5.68)
Γρ

µν(γ(t)) = 0; (5.69)
gµν ,ρ(γ(t)) = 0; (5.70)
g00,i j(γ(t)) = −2R0i0 j(γ(t)); (5.71)
g0k,i j(γ(t)) = 2

3(R0 jik(γ(t))+R0i jk(γ(t))), (5.72)
glm,i j(γ(t)) = − 1

3(Ril jm(γ(t))+Rim jl(γ(t))); (5.73)
gµν ,0ρ(γ(t)) = 0. (5.74)

189This refers to version 3(a) of the equivalence principle (which was not Einstein’s), see §1.1. Fermi normal
coordinates were introduced, along arbitrary curves, by Fermi (1922). See also Misner, Thorne, & Wheeler (1973),
§13.6. The specialization to geodesics is taken from Manasse & Misner (1963). A similar construction even works
for higher-dimensional submanifolds S (instead of geodesics), provided S carries dim(S) linearly independent vector
fields each covariantly constant along S. See Schouten & Struik (1936), p. 106 and O’Raifeartaigh (1958).
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5.3 Basic causal structure in Lorentzian manifolds
The following definitions are unique to Lorentzian geometry. A vector Xx ∈ TxM is called:190

• timelike if gx(Xx,Xx) < 0 (so Xx 6= 0), and spacelike if gx(Xx,Xx) > 0 or Xx = 0;

• lightlike if gx(Xx,Xx) = 0 and Xx 6= 0, and null if gx(Xx,Xx) = 0 (so Xx may be zero);

• causal if gx(Xx,Xx) ≤ 0 and Xx 6= 0 (i.e. Xx is either timelike or lightlike).

We denote the sets of these vectors at TxM by Tx, Sx, Lx, Nx, and Cx, respectively; that is,

Tx := {Xx ∈ TxM | gx(Xx,Xx) < 0}; (5.75)
Sx := {Xx ∈ TxM | gx(Xx,Xx) > 0 or Xx = 0}; (5.76)
Lx := {Xx ∈ TxM | gx(Xx,Xx) = 0,Xx 6= 0}; (5.77)
Nx := {Xx ∈ TxM | gx(Xx,Xx) = 0}; (5.78)
Cx := {Xx ∈ TxM | gx(Xx,Xx) ≤ 0,Xx 6= 0}. (5.79)

Diagonalizing the metric gx to the Minkowski metric η , cf. (3.2), one sees that the set Tx of all
timelike vectors in TxM is disconnected, with two connected components: for any fixed Xx ∈Tx
one component T +

x consist of all Yx ∈ TxM such that gx(Xx,Yx) < 0, whereas the other, T −
x ,

contains all Yx with gx(Xx,Yx)> 0. In Minkowski space-time M, for any x, taking Xx = (1,0,0,0),
we think of Yx ∈T +

x as being future-directed (recall that η = diag(−1,1,1,1)), and of Yx ∈T −
x

as past-directed. More generally, we call a Lorentzian manifold M time orientable if it has a
global time-like vector field T ∈ X(M), i.e., gx(Tx,Tx) < 0 at each x. In that case,191 we define

T +
x := {Xx ∈Tx | gx(Tx,Xx) < 0}; C+

x := {Xx ∈ Cx | gx(Tx,Xx) < 0}; (5.80)

T −
x := {Xx ∈Tx | gx(Tx,Xx) > 0}; C−x := {Xx ∈ Cx | gx(Tx,Xx) > 0}, (5.81)

which gives a continuous choice T +
x of a distinguished component of Tx as x varies, and

similarly for causal and lightlike vectors.192 Topologically we have, also without the ± suffix,

T
(±)

x = int(C (±)
x ); ∂T

(±)
x = ∂C

(±)
x = L

(±)
x ∪{0}. (5.82)

Given a global time-like vector field T , a causal vector Xx is future-directed (fd) if Xx ∈ C+
x ,

and past-directed (pd) if Xx ∈ C−x . We call Cx ∪{0} ⊂ TxM the lightcone at x, with forward
lightcone C+

x and backward lightcone V −x (globally, there are no such things, in general
Lorentzian manifolds). If M is time orientable, many choices of T will give the same T +

x -
component of Tx, namely any T ′ for which gx(Tx,T ′x ) < 0 for all x. If we say that T ∼ T ′ if
this is the case, where both T and T ′ are timelike, this leaves only two equivalence classes,
represented by T and −T . Each of these defines a time orientation of (M,g), and we see that
a time-orientable Lorentzian manifold has just two possible time orientations. Since utmost
generality is not our goal, we include a time orientation in our definition of a space-time:

Definition 5.3 A space-time is a 4d connected Lorentzian manifold with time orientation.

190We use the conventions of Minguzzi (2019), whom we thank for advice on this point.
191Counterexamples to this are quite artificial and it can be shown that every Lorentzian manifold has a double

cover that is time orientable, cf. Minguzzi (2019), §1.7.
192Conversely, such a choice defines a global time-like vector field T ∈ X(M) and hence a time orientation.
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In both the Lorentzian and the Riemannian case, the “length” of Xx ∈ TxM may be defined by

‖Xx‖ :=
√
|gx(Xx,Xx)|. (5.83)

But even for spacelike vectors Xx,Yx the Cauchy–Schwarz and triangle inequalities inequality
may fail! For causal vectors Xx,Yx, the opposite Cauchy–Schwarz inequality holds, whilst the
opposite triangle inequality is true provided Xx and Yx are both past or future directed.193 Thus

|gx(Xx,Yx)| ≥ ‖Xx‖ · ‖Yx‖; ‖Xx +Yx‖ ≥ ‖Xx‖+ ||Yx‖, (5.84)

with equality in both cases iff Xx and Yx are collinear. If Xx and Yx are both timelike, the rule

gx(Xx,Yx) = ∓‖Xx‖‖Yx‖coshθ (5.85)

defines the hyperbolic angle θ , with minus (plus) sign if Xx and Yx have the same (opposite) time
orientatation. This replaces the angle θ defined by the usual rule gx(Xx,Yx) = ‖Xx‖‖Yx‖cosθ .

We now define the corresponding global notions in M that replace the “infinitesimal” notions
of timelike etc. in each tangent space TxM. Properties of curves are defined through their tangent
vectors: thus a curve γ is called (fd) timelike if all its tangent vectors γ̇ are (fd) timelike, i.e. if
γ̇(t) ∈ T

(+)
γ(t) for all t, (fd) lightlike if all its tangent vectors are (fd) lightlike, (fd) causal if all

its tangent vectors γ̇ are (fd) causal, and spacelike if all its tangent vectors are spacelike. For
example, in Minkowski space-time (1,0,0,0) is a timelike vector, so that t 7→ γ(t) = (t,0,0,0)
is a timelike curve (even a geodesic), since γ̇(t) = (1,0,0,0).194 This terminology for curves in
turn allows us to define various relations on M, of which the three most important ones are:195

• I+: (x,y) ∈ I+ or y ∈ I+(x) or x� y if there is a fd timelike curve from x to y;

• J+: (x,y) ∈ J+ or y ∈ J+(x) or x6 y if there is a fd causal curve from x to y, or x = y;

• E+ := J+\I+ (called horismos): y ∈ E+(x) if (x,y) ∈ J+ but (x,y) /∈ I+.

There are no timelike curves of zero length from x to x, so usually (x,x) /∈ I+, but if (M,g)
admits closed timelike curves (like Gödel’s space-time), then (x,x) ∈ I+. On the other hand,
(x,x) ∈ J+ is always true by convention. As usual, we write x < y if x6 y but x 6= y. There are
similar relations I−, J−, and E− defined by (x,y) ∈ I+ iff (y,x) ∈ I+, etc. This gives rise to

I+(x) := {y ∈M | x� y}; I−(x) := {y ∈M | y� x}; (5.86)

J+(x) := {y ∈M | x6 y}; J−(x) := {y ∈M | y6 x}; (5.87)

E+(x) := J+(x)\I+(x); E−(x) := J−(x)\I−(x). (5.88)

In Minkowski space-time R3,1 these sets are easy to compute, with the result:

I+(x) = {y ∈R4 | y0 > x0 + ‖~y−~x‖}; (5.89)

J+(x) = {y ∈R4 | y0 ≥ x0 + ‖~y−~x‖}; (5.90)

E+(x) = {y ∈R4 | y0 = x0 + ‖~y−~x‖}. (5.91)

193See O’Neill (1983), Proposition 5.30 and Corollary 5.31 or Minguzzi (2019), Theorems 1.2 and 1.3.
194 In physics, timelike curves are potential trajectories of massive particles, whereas massless particles move on

lightlike curves. Physical information should spread along causal curves; it will be an important task to prove this.
195Lemma 5.8 below implies that it does not matter if one uses smooth or piecewise smooth (or even C1) curves.
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The idea is that J+(x) is the causal future of x, consisting of all points of M that x can possibly
influence (namely by signals or actions propagating with at most the speed of light).

More generally, the following subsets of M are defined causally for any subset A⊂M:

I±(A) := ∪x∈AI±(x); J±(A) := ∪x∈AJ±(x); (5.92)

E±(A) := ∪x∈AE±(x) E ±(A) := J±(A)\I±(A), (5.93)

where is should be noted that E ±(A) ⊂ E±(A) without equality. Here are some basic facts.

Proposition 5.4 1. The relations I± and J± are transitive (but E± is not).

2. For any A⊂M the set I±(A) is open in M; in particular, I±(x) is open for any x ∈M.

3. The relations I± are open (i.e. I± ⊂M×M is open).

4. If x� y and y6 z, or x6 y and y� z, then x� z. Consequently, for any A⊂M,

I+(A) = I+(I+(A)) = I+(J+(A)) = J+(I+(A))⊂ J+(J+(A)) = J+(A). (5.94)

5. For any A⊂M one has the relations–with double equality in (5.96) iff J+(A) is closed–:

I+(A) = int(J+(A)); (5.95)

J+(A) ⊂ I+(A) = J+(A); (5.96)

∂ I+(A) = ∂J+(A). (5.97)

Proof. For the first claim, concatenate curves.196 For the second, we prove that any y ∈ I+(x)
has an open nbhd contained in I+(x). By definition there exists a timelike curve γ : x→ y. Take
z on γ close enough to y that y ∈Uz, so that y = expz(Z) for some timelike Z ∈ TzM. Since
the condition gy(Z,Z) < 0 is open, there is an open nbhd V of Z in TzM consisting of timelike
vectors. Then V = expz(V ) is an open nbhd of y, all whose points can be reached from z, and
hence from x, by timelike curves, so that y ∈Vy ⊂ I+(x). With I+(x), every I+(A) is open. A
similar argument around x shows that if (x,y) ∈ I+, then Vx×Vy ⊂ I, so that I is open.

Claim 4 follows from Proposition 5.13 below: the hypothesis that there exists a causal curve
from x to z via y that is initially timelike excludes case 3 of Proposition 5.13 (with y z).

For (5.95), the inclusion I+(A) ⊂ int(J+(A)) follows because I+(A) is open and is clearly
contained in J+(A). Conversely, if x ∈ int(J+(A)) then by definition it has a nbhd contained in
J+(A), which may be shrunk to a normal nbhd Ux. Thus there is a pd (= past-directed) timelike
geodesic γ emanating from x that lies initially in Ux and contains some point z ∈Ux; a priori
all we know is that γ has a pd timelike tangent vector γ̇ at x, but since γ̇ is constant along γ

this vector remains timelike, and since the condition g(T , γ̇)> 0 for past directedness is open,
it will also remain pd at least for a while. Hence x ∈ I+(z), so that, since z ∈ J+(A), we have
x ∈ I+(J+(A)) = I+(A) by (5.94). This gives the inclusion int(J+(A))⊂ I+(A), and (5.95) has
been proved. The proof of (5.96), which implies (5.97), is analogous but slightly more involved,
and is left to the reader.197 Eq. (5.96) implies (5.97), since for any set ∂S = S\int(S). �

196And smoothen them out, which is not necessary if piecewise smooth curves are used, cf. footnote 195.
197See e.g. O’Neill (1983), Lemma 14.6 (2). In this proof geodesically convex nbhds can be replaced with normal

nbhds, as we have done in the previous steps of the proof, compared with e.g. Penrose (1972) and O’Neill (1983).
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Against our Minkowski intuition, the relations J± need not be closed.198 Nonetheless, in a
normal nbhd Ux of some point x, one expects the causal relations I±, J±, and E± to be determined
by those in TxM. In Minkowski space-time this is even true globally: If we identify T0M with
M as usual, then (5.89) - (5.91) show that I+(0) = T +

0 defined above, J+(0) = C+
0 ∪{0}, and

E+(0) = N +
0 , i.e. the forward lightcone from x. In general, the following theorem is a rigorous

statement of the idea that “space-time is locally Lorentz.”
In what follows, for any nbhd U of x, the set I+U (x) consists of all points y ∈U such that

x� y through a fd timelike curve contained in U , and similarly I−U (x) for pd timelike curves,
J±U (x) for fd and pd causal curves, and E±U = J±U (x)\I±U (x). These sets, in which M is “reduced”
to U , are not to be confused with e.g. I+(x)∩U , which is larger than or equal to I+U (x), etc.

Theorem 5.5 In any space-time the causal structure “near x ∈ M”, i.e. in a normal nbhd
Ux = expx(Ux), is determined by its linearized version in TxM, in the sense that:

I+Ux
(x) = expx(T

+
x ∩Ux); (5.98)

J+Ux
(x) = expx((C

+
x ∪{0})∩Ux); (5.99)

E+
Ux
(x) = expx(N

+
x ∩Ux). (5.100)

Moreover, if c(·) is a fd causal curve in Ux starting at x, then:

1. If ċ(0) is timelike, then c(t) ∈ I+Ux
(x) for all t > 0 where c(t) is defined.

2. If c(t) ∈ E+
Ux
(x) for all t where c(t) is defined, then c is a lightlike (pre)geodesic.199

3. Once c enters I+Ux
(x) (especially after a sejour on E+

Ux
(x)), it cannot leave I+Ux

(x).

Finally, within Ux timelike / lightlike / causal geodesics from x ∈M are precisely the images
under expx of timelike / lightlike / causal curves geodesics in TxM starting at the zero vector.

Point 1 implies that although y ∈ I+Ux
(x) by definition means that there is a fd timelike curve

c from x to y in Ux, i.e. ċ(t) is timelike for all t, to guarantee that y ∈ I+Ux
(x) it is enough that

there is a fd causal curve from x to y in Ux for which only ċ(0) is timelike. Similarly, although
y ∈ E+

Ux
(x) by definition says that there is a fd causal curve from x to y in Ux with y /∈ I+Ux

(x),
point 2 strengthens this to y ∈ E+

Ux
(x) iff there is a fd causal curve c with c(t) /∈ I+Ux

(x) for all t.

The proof uses the following facts about Lorentzian metrics, which are of independent interest.

Lemma 5.6 Let V be a vector space with Lorentzian metric g and associated cones defined as
in (5.75), (5.77), and (5.80), where TxM is replaced by V and we omit the suffix x.

1. If X ∈T + and Y ∈ C+, then g(X ,Y ) < 0.

2. If g(Y ,Y ) ≤ 0 and g(X ,Y ) = 0 for some lightlike vector X, then Y is proportional to X.

198For example, remove (t,x) = (1,1) from 2d Minkowski space-time M2 and look at J+(0,0): the light-ray
s 7→ (s,s) from (1,1) is missing. Or remove the closed horizontal line segment from (t,x) = (2,−1) to (2,1) from
M2 and call this M′

2 or Quinten space-time. This removes the closed triangle with corners (2,−1), (3,0) and
(2,1) from J+(0,0) in M2, so that the set J+(0,0) is not closed in M′

2.
199Recall that a pregeodesic is a geodesic up to reparametrization. A lightlike curve is not necessarily a pregeodesic,

e.g. t 7→ (t, sin t, cos t) in 3d Minkowski space-time, and so a lightlike curve starting at x may not lie in E+
Ux
(x).
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Proof of Lemma 5.6. To prove the first claim, write X = λT +X ′ and Y = µT +Y ′, where
g(T ,X ′) = g(T ,Y ′) = 0 and λ , µ > 0. Then X ′ and Y ′ are spacelike and as such satisfy the usual
Cauchy–Schwarz inequality |g(X ′,Y ′)| ≤ ‖X ′‖‖Y ′‖. Assume g(T ,T ) = −1. Then g(X ,X) < 0
gives λ > ‖X ′‖ whilst g(Y ,Y ) ≤ 0 gives µ ≥ ‖Y ′‖. Thus g(X ,Y ) = −λ µ + g(X ′,Y ′) < 0.

The second claim follows (for example) from Lemma 4.16, since the assumption g(Y ,Y )≤ 0
excludes the possibility that Y is spacelike, so that only the other possibility remains. �

Proof of Theorem 5.5. To ease notation we omit all reference in notation (e.g. as suffixes) to Ux
and Ux, the restriction to which is implied throughout this proof. We use GNC (§5.2), in which

c(t) = expx(C(t)); cµ(t) =Cµ(t), (5.101)

where c(t) ∈M and C(t) ∈ TxM. Recall that any C ∈ TxM gives a geodesic γC, which in GNC is

γ
µ

C (t) =Cµt. (5.102)

Consider a fd causal curve c : [0,1]→Ux with c(0) = x and ċ(0) timelike, i.e.

gµν(c(t))ċµ(t)ċν(t) ≤ 0; (5.103)
gµν(c(0))ċµ(0)ċν(0) < 0. (5.104)

Since ċµ(t) = limt↓0 cµ(t)/t, for sufficiently small t eq. (5.104) implies

gµν(c(0))cµ(t)cν(t) < 0. (5.105)

Similarly, since ċµ(t) is fd at c(0), so is cµ(t), for small t. Eq. (5.45) propagates (5.105) to

gµν(c(t))cµ(t)cν(t) < 0. (5.106)

Furthermore, differentiating (5.105) and using Gauss’s lemma in the form (5.46) gives

d
dt

(gµν(c(0))cµ(t)cν(t)) = 2gµν(c(0))cµ(t)ċν(t) = 2gµν(c(t))cµ(t)ċν(t), (5.107)

still for small t. Eqs. (5.103) and (5.106), the fact that ċµ(t) is fd for any t by assumption, as is
ċµ(t) for small t, and Lemma 5.6.1 make the right-hand side of (5.107) negative definite, so that

d
dt

(gµν(c(0))cµ(t)cν(t)) < 0, (5.108)

for small t. Hence gµν(0)cµ(t)cν(t) can only become more negative as t flows, so that (5.105),
initially derived for small t, actually holds for all t ∈ [0,1]. By (5.101) and (5.33) this gives

ηµνCµ(t)Cν(t) < 0, (5.109)

for all t ∈ [0,1], or as long as the curve is in Ux. This gives C(t) ∈Tx, but since Cµ(t) = cµ(t)
is also fd for small t and does not leave T , by continuity we even have C(t) ∈T +

x for all t.
If now y ∈ I+(x), then by definition there is such a curve c with c(1) = y (which is even

timelike for all t), so that y = expx(C(1)) with C(1) ∈T +
x and hence y∈ exp(T +

x ). This shows
that I+(x) ⊂ expx(T

+
x ). We now prove the converse inclusion expx(T

+
x ) ⊂ I+(x).

If y = expx(C) for some C ∈T +
x , then the geodesic (5.102) connects x to y by a fd timelike

curve. Indeed, recall that the quantity gγ(t)(γ̇(t), γ̇(t)) is constant in t if γ is a geodesic. Therefore,
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if γ̇(0) =C lies in T +
x , then so does γ̇(t) for any t. Furthermore, by continuity a timelike curve

cannot change its direction, since for gc(t)(ċ(t),Tc(t)) to change sign c(·) must leave T .
We have now proved (5.98) as well as point 1. Point 3 follows from this, since if y = c(t) ∈

I+(x), one may see the remainder of c(·) as the continuation of a fd timelike curve starting at x,
to which point 1 applies (since I+(x) is open, one may smoothen the joint just before y).

Next, one shows that each nbhd of each point c(t) on a fd causal curve intersects with
exp(T +

x ); this is done by giving c a tiny fd timelike twist.200 This gives J+(x) ⊂ expx(C
+
x );

the converse inclusion is proved as in the timelike case. This proves (5.99).
To prove the inclusion E+(x)⊂ expx(N

+
x ), take y ∈ E+(x), so that there is a causal curve c

from x to y, from which it follows that C(t) ∈ C+
x for all t ∈ [0,1]. In particular, y = expx(C(1)),

where C(1) ∈ C+
x . For any C(1) ∈ T +

x there would be a fd timelike curve (as follows from
the first part of the proof), so that C(1) ∈N +

x . Conversely, if y = expx(C) with C ∈N +
x , then

y /∈ I+(x) by the first part of the proof, so that y ∈ E+(x). This proves (5.100).
To prove point 2 we show that, if C(·) lies in C+ and c(·) in J+Ux

(x), then C(·) lies in
N +

x iff c(·) is a lightlike geodesic (up to parametrization). From right to left this is obvious,
since c(t) must be γ

(x)
C (t) = expx(Ct) with C ∈N +

x . For the other way round, the condition
ηµνcµ(t)cν(t) = 0 for C to lie in N +

x implies, via (5.45) and (5.46), respectively, that

gµν(c(t))cµ(t)cν(t) = 0; gµν(c(t))ċµ(t)cν(t) = 0. (5.110)

Hence by Lemma 5.6.2 the vector ċµ(t) is proportional to the lightlike vector cµ(t), so that
gµν(c(t))ċµ(t)ċν(t) = 0. This makes c(·) a lightlike curve; the property ċµ ∼ cµ (in GNC) makes
the left-hand side of the geodesic equation (3.24) proportional to ċ, so that reparametrization
makes c(·) a lightlike geodesic. The final claim then restates what we knew from §5.2. �

Since expx is a homeomorphism and the corresponding equality holds in TxM, we also have

J+Ux
(x) = I+Ux

(x). (5.111)

We close this section with a remarkable consequence of Proposition 5.4.

Corollary 5.7 Any compact space-time contains a closed fd timelike curve.

Proof. Each set I+(x) is open by Proposition 5.4. Theorem 5.5 shows that ∪xI+(x) = M (for
any y the set I−(y) is not empty and any x ∈ I−(y) gives y ∈ I+(x)). Since M is compact,
M = ∪N

i=1I+(xi) for some N < ∞. Hence x1 ∈ I+(xi) for some i. If i = 1 we have x1 ∈ I+(x1)
and we are ready. If not, assume x1 ∈ I+(x2), so that x2� x1. Repeating this argument for the
other xi gives a chain xN � ··· � x1. But also xN ∈ I+(xi), which gives xi� ··· � xi. �

Compactness is sufficient but not necessary for the existence of closed fd timelike curves: for
example, Gödel’s space-time is topologically R4 and famously contains such a curve.201 Perhaps
without real justification, closed fd timelike curves are supposed not to exist in the real world.
But despite Corollary 5.7, there is a lively mathematical literature on compact space-times.202

200See Senovilla (1998), Proposition 2.1 or Minguzzi (2019), Theorem 2.9 and Corollary 2.10. The difficulty of
this step may be illustrated by the fact that the argument in Hawking & Ellis (1973), Proposition 4.5.1, is wrong.

201See Gödel (1949). For a very nice treatment of Gödel’s space-time see Malament (2012), §3.1. For a very
simple (spatially) noncompact example, take the Minkowski hypercylinder M = {(x0,~x) ∈R4 | 0≤ x0 ≤ 1}/ ∼,
where (0,~x) ∼ (1,~x), with induced Minkowski metric. Then I+(x) = I−(x) = M for all x ∈M.

202 In d = 2 one has interesting disanalogies between compact Lorentz surfaces and compact Riemann surfaces;
for example, the uniformization theorem looks completely different in the Lorentzian case (Weinstein, 1996).
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5.4 Do geodesics extremize length? Local case
Using (5.83), one may now define the length of a curve c : [a,b]→M in a Lorentzian manifold
by generalizing (3.16) in the obvious way to the parametrization-independent expression

L(c) =
∫ b

a
dt ‖ċ(t)‖=

∫ b

a
dt
√
|gc(t)(ċ(t), ċ(t))|; (c general); (5.112)

=
∫ b

a
dt
√

gc(t)(ċ(t), ċ(t)); (c spacelike); (5.113)

=
∫ b

a
dt
√
−gc(t)(ċ(t), ċ(t)) (c timelike or causal); (5.114)

= 0 (c lightlike), (5.115)

The formula (3.16) for the Riemannian case is the same as the spacelike case (5.113) here. It
does not matter if we work with smooth curves or with piecewise smooth curves (where in the
latter case (5.112) is defined by adding the smooth pieces in the obvious way), since we have:203

Lemma 5.8 If c is a piecewise smooth curve, there is a sequence (cn) of smooth curves such
that cn(t)→ c(t) and ċn(t)→ ċ(t) pointwise (in the topology of M and T M, respectively), and

L(c) = lim
n

L(cn). (5.116)

Moreover, if c is causal, then the approximating curves cn may be chosen so as to be timelike.

Consequently, if we naively try to define a distance function on a Lorentzian manifold M by the
expression that in the Riemannian case defines a proper metric in the topological sense, namely

dR(x,y) := inf{L(c) | c : [a,b]→M,c(a) = x,c(b) = y}, (5.117)

where the c are smooth or, equivalently, piecewise smooth curves, then dR(x,y) = 0 for any
x,y ∈M. Indeed, using covers by convex nbhds one sees that any two points can be connected
by a piecewise smooth lightlike curve c, which has length L(c) = 0, see (5.114). According to
Lemma 5.8, the infimum in (5.117) remains zero if it is taken over smooth curves. In case that x
and y are spacelike separated (in the sense that they can be connected by a spacelike curve), this
can be remedied by stipulating that the infimum in (5.117) be taken over all spacelike curves,
blocking the lightlike construction. However, if x6 y we have dR(x,y) = 0 even if we restrict
the infimum in (5.117) to piecewise smooth causal curves, or even to smooth fd timelike curves.

For causal curves, a more useful “distance” function is the so-called Lorentzian distance

dL(x,y) := sup{L(c) | c : [a,b]→M,c(a) = x,c(b) = y}, (5.118)

defined if x6 y, where the supremum is over all fd causal curves from x to y. Eq. (5.84) implies

dL(x,z) ≥ dL(x,y)+ dL(y,z), (5.119)

whenever x6 y and y6 z (which implies x6 z), which is a reversal of the triangle inequality for
a metric (Minguzzi, 2019, Theorem 2.32). Taking e.g. x = (0,0), y = (1,1) and z = (0,2) in 2d
Minkowski space-time shows this dramatically, since dL(x,z) = 2 whilst dL(x,y) = dL(y,z) = 0,
whereas with Euclidean metric dE one has dE(x,z) = 2 whilst dE(x,y) = dE(y,z) =

√
2.

203See Lemma 4.6.1 and Corollary 4.6.1 in Kriele (1999). Also cf. Minguzzi (2019), §2.8, and Theorem 2.37.
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To sum up, we see that in the Riemannian case, where our spatial intuition comes from,
a detour (notably from a geodesic) increases the length of a curve between two given points
x and y, whereas in the Lorentzian case it decreases the length of a causal curve, assuming
y ∈ J+(x). In particular, the critical points of the length functional on causal curves (namely
causal geodesics) may be expected to maximize length (whereas in the Riemannian case they
minimize length). This is indeed what happens, at least for nearby points (or small times):204

Proposition 5.9 Let x ∈M and let y ∈Ux be contained in a normal nbhd of x (cf. §5.2).

1. Riemannian (R): x and y are connected by a unique (up to parametrization) geodesic γ of
minimal length compared to other curves c from x to y lying within Ux.

2. Lorentzian (L): If y ∈ I+Ux
(x) or y ∈ E+

Ux
(x), then x and y are connected by a unique (up to

parametrization) fd timelike or lightlike geodesic γ , respectively, which in both cases has
maximal length compared to other fd causal curves c from x to y in Ux.

As in Theorem 5.5, a fd causal curve from x to y ∈ E+
Ux
(x) must be a lightlike (pre)geodesic. The

reason a lightlike geodesic from x to y ∈ E+
Ux
(x), which has zero length, can nonetheless be of

maximal length in the said way is that all other causal curves from x to y have zero length, too.
Proof. Before we discuss general Riemannian or Lorentzian manifolds, it is helpful to treat
Euclidean space (R), i.e. E =R3 with metric g= diag(1,1,1) and Minkowski space (L), i.e. M=
R4 with g = diag(−1,1,1,1), with norm (5.83) and length (5.112). The following considerations
rely on the radius function r : M→R+ and the radial vector field R on M, defined by

r(z) := ‖z‖; (5.120)
Rz := z/‖z‖, (5.121)

where we identify with TzM with M. In R3 one has Rz = ∂ /∂ r in polar coordinates. Note that

gz(Rz,Rz) = ±1; (5.122)

here and in what follows the plus sign is for (R) and the minus sign applies to (L). Without loss
of generality we may put x = 0. For any y whatsoever (R) or any y such that x� y (L) the line
γ(t) = yt is a geodesic γ : [0,1]→M from x to y, with length

L(γ) =
∫ 1

0
dt ‖y‖= ‖y‖= r(y). (5.123)

For (L) we first do the timelike case. Take a fd causal curve c from x = 0 to y. Then

ċ = ±g(ċ,R)R+N, (5.124)

where g(N,R) = 0, decomposes ċ into a parallel and a normal component to R. It follows that

‖ċ‖2 = g(ċ,R)2±g(N,N), (5.125)

with g(N,N) ≥ 0 also in (L), where the vector R is timelike, and hence N is spacelike. Hence

‖ċ‖ ≥ g(ċ,R); (R) (5.126)
‖ċ‖ ≤ −g(ċ,R), (L) (5.127)

204This is also suggested by the twin paradox of special relativity: the twin sister leaving earth and returning
cannot always travel on a geodesic and hence her curve c has shorter length (experienced by her as proper time).
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since for L we have g(ċ,R) < 0. The completion of the argument relies on the computation

d
dt

r ◦ c(t) =
d
dt
‖c(t)‖= d

dt

√
±gx(c(t),c(t)) = ±

gx(ċ(t),c(t))√
±gx(c(t),c(t))

= ±gc(t)(ċ,R).

(5.128)

Assuming c : [0,1]→M with c(0) = x = 0 and c(1) = y, together with the estimates (5.126) -
(5.127) and (5.123), the above computation gives

L(c) =
∫ 1

0
dt ‖ċ(t)‖ ≥

∫ 1

0
dt gc(t)(ċ(t),R) =

∣∣∣∣1
0
r ◦ c = r(y) = L(γ); (R) (5.129)

L(c) =
∫ 1

0
dt ‖ċ(t)‖ ≤ −

∫ 1

0
dt gc(t)(ċ(t),R) =

∣∣∣∣1
0
r ◦ c = r(y) = L(γ), (L) (5.130)

with equalities iff g(N,N) = 0 and hence, since N is spacelike, if N(t) = 0 for all t. In that case,
ċ is proportional to R and hence to c, i.e. ċ(t) = λ (t)c(t)/‖c(t)‖ for some function λ . This is
solved by c(t) = z f (t) for some z ∈M and suitable f . Since c(1) = y this means that c(t) =
y f (t)/ f (1). Because γ(t) = yt, this gives c = γ up to reparametrization, i.e. c(t) = γ(s(t)).

In general, define the radius r : Ux→R+ and the radial vector field R on Ux by

r(expx(Z)) := ‖Z‖; (5.131)

Rexpx(Z) :=
(expx)

′
Z(Z)

‖(expx)
′
Z(Z)‖

, (5.132)

A curve c : [0,1]→M from x to y in Ux may be written as c(t) = expx(C(t)). Then

d
dt

r ◦ c(t) =
d
dt
‖C(t)‖= d

dt

√
±gx(C(t),C(t)) = ±

gx(Ċ(t),C(t))√
±gx(C(t),C(t))

= ±
gc(t)((expx)

′
C(t)(Ċ(t)), (expx)

′
C(t)(C(t)))√

±gc(t)((expx)
′
C(t)(C(t)), (expx)

′
C(t)(C(t)))

= ±gc(t)(ċ,R), (5.133)

where we used Gauss’s lemma in both the denominator and the numerator. On the other hand,
“the” geodesic within Ux from x to y = expx(Y ) is given by γ

(x)
Y , where

L
(

γ
(x)
Y

)
=
∫ 1

0
dt ‖γ̇ (x)Y (t)‖= ‖γ̇ (x)Y (0)‖= ‖Y‖= r(y), (5.134)

since for geodesics γ = γ
(x)
Y the velocity ‖γ̇(t)‖ is t-independent. Eqs. (5.133) and (5.134) imply

that the computation (5.129) - (5.130) can be repeated verbatim, once again yielding

L(c) ≥ L(γY ); (R) (5.135)
L(c) ≤ L(γY ). (L) (5.136)

Finally, also the proof of uniqueness of γ up to reparametrization reduces to the flat case, since the
condition ċ(t)∼ Rc(t) comes down to Ċ(t)∼C(t). This completes the timelike case y ∈ I+Ux

(x).
The case y ∈ E+

Ux
(x) follows from the end of the proof of Theorem 5.5, which excludes timelike

curves from x to y and forces the lightlike curves to be lightlike (pre)geodesics. �
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5.5 Do geodesics extremize length? Global case
Being restricted to normal neighbourhoods Ux, Proposition 5.9 is local in nature; things may
change beyond Ux (for given x). Here is the crucial notion, which applies to the Riemannian case
in general, and to timelike or spacelike (but not: lightlike) geodesics in Lorentzian manifolds.

Definition 5.10 A conjugate point along a geodesic γ : [a,b]→M is a point γ(c), c ∈ (a,b],
for which there is a nonzero Jacobi field J along γ : [a,c]→M that vanishes at both a and c.

A conjugate point is defined relative to γ(a). It is independent of the parametrization of γ . The
point of interest is the earliest one, if it exists. Proposition 5.2 implies that J is orthogonal to γ̇ .

Proposition 5.11 A point z on a geodesic γ : [a,b]→M is conjugate iff the exponential map
expγ(a) becomes singular at z (in that its derivative fails to be injective at the point γ(c)).

Proof. This easily follows from (5.31); we leave the details to the reader. �

Some intuition may come from the two-sphere, where the first conjugate point along a great
circle emanating from (say) the South Pole is the North Pole, at which, all of a sudden, not one
unique connecting curve of minimal length exists, but infinitely many. Beyond the North Pole,
the initial great circle is not even the shortest one anymore, as one may go the other way round.
We know from Proposition 5.1 that J arises from a variation of γ , as in (5.10), but be aware
that the boundary conditions J(a) = 0 and J(c) = 0 merely imply that the variations γs fix the
endpoints of γs as s→ 0, so that (against the intuition from the two-sphere) the existence of J
does not guarantee the existence of even one alternative geodesic from γ(a) to γ(c).

Nonetheless, eq. (5.22) suggests that since L′′(γ) = 0 at a conjugate point, something happens
to the extremization property of γ . Proposition 5.11 confirms this, as it suggests that the local
analysis of Proposition 5.9 may break down. The precise situation is as follows.205

Theorem 5.12 1. Riemannian case: A geodesic γ : [a,b]→M locally minimizes the length
of curves from γ(a) to γ(b) iff there is no conjugate point on γ that lies between x and y.

2. Lorentzian case: A timelike geodesic γ : [a,b]→M locally maximizes the length of curves
from γ(a) to γ(b) iff there is no conjugate point on γ that lies between x and y.

The “⇐” part may be proved by remarking that, as we saw in §5.4, in the Lorentzian case
timelike geodesics start out maximizing length, so that L′′(γ) < 0. According to (5.21), this
remains the case until a conjugate point is encountered, so if this is never the case, one will have
L′′(γ) < 0 forever (or at least as long as the geodesic is defined). Likewise in the R case.

For the ‘⇒” part, we show that the sign of L′′(γ) may indeed change once a conjugate point
(at which its value is zero) has been crossed; in the L case, L′′(γ) then becomes positive, and a
timelike geodesic can be constructed that is longer than the given one, whereas in the R case the
opposite sign change leads to new and shorter geodesics between the given endpoints).206

Indeed, let c ∈ (a,b), with associated Jacobi field J along γ([a,c]) for which J(a) = 0 and
J(c) = 0. Then ∇tJ(c) 6= 0 (since otherwise J ≡ 0), and by Proposition 5.1 there exists a

205The word ‘local’ here means that γ([a,b]) has a nbhd U (in M) such that γ does or does not minimize or
maximize length in comparison with all curves in U , i.e. with respect to “nearby” curves only.

206The remainder of the proof is based on the final part of the proof of Hawking & Ellis (1973), Prop. 4.5.8. For
alternative proofs see Jost (2002) Theorem 4.3.1, for the Riemannian case and O’Neill (1983), Proposition 10.10
and Theorem 10.17, Wald (1984), Theorem 9.5.3, or Minguzzi (2019), Theorem 6.16, for the Lorentzian case.
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one-parameter family of geodesics (γs) for which J = γ ′|s=0. Since only the component of J that
is orthogonal to γ̇ is relevant, we can make J orthogonal to γ̇ altogether, cf. the discussion after
the statement of Proposition 5.1. Furthermore, we extend J from γ([a,c]) to γ([a,b]) by making
it zero on (c,b]. Now find some vector field K along γ : [a,b]→M that is also orthogonal to γ̇

and in addition satisfies the boundary conditions

K(a) = K(b) = 0; (5.137)
gγ(a)(∇tJ,K) = 0; (5.138)

gγ(c)(∇tJ,K) = −v. (5.139)

This is possible, since unlike the Jacobi field J, the vector field K is not meant to satisfy any
particular equation. We now take ε > 0 and consider the vector field

M = εK + ε
−1J. (5.140)

For any family of curves for which γ ′|s=0 = M, we then compute the second variation (5.21),
in which by construction γ ′⊥ is replaced by M. Since J satisfies the Jacobi equation, the term
proportional to ε−2, which only involves J, vanishes. The term proportional to ε2, which
only involves K, stands; call it Cε2 (where C may have either sign). One of the cross terms
proportional to ε · ε−1 = 1, involving each of J and K linearly, vanishes by the Jacobi equation
for J. In the L case to be specific (where the - sign in (5.21) has to be deleted), the other cross
term contributes

L′′(γ) =Cε
2 +

1
v

∫ c

a
dt gγ(t)(J(t),∇

2
t K(t)−Ω(γ̇(t),K(t))γ̇(t)). (5.141)

Here, using (3.73) and (3.52), we have

gγ(t)(J(t),∇
2
t K(t)) =

d
dt
(gγ(t)(J(t),∇tK(t)))−gγ(t)(∇tJ(t),∇tK(t)), (5.142)

of which the first term vanishes upon integration, as J(a) = J(c) = 0. The second term gives

−gγ(t)(∇tJ(t),∇tK(t)) = − d
dt
(gγ(t)(∇tJ(t),K(t)))+ gγ(t)(∇

2
t J(t),K(t)), (5.143)

whose last term combines with the curvature term in (5.141) to contribute

gγ(t)(K(t),∇2
t J(t)−Ω(γ̇(t),J(t))γ̇(t)),

which vanishes by the Jacobi equation for J (using the symmetries of the Riemann tensor R).
Finally, the first term in (5.143) gives, upon integration, +1, so that overall we obtain

L′′(γ) =Cε
2 + 1. (5.144)

Whatever the sign of C, for ε small enough we can arrange L′′(γ) > 0, and so, since it started
out negative, the sign of L′′(γ) has changed across a conjugate point, as claimed.

It is by no means excluded that there may be other variations for which L′′(γ) remains
negative; for example, by picking some K for which the sign in (5.139) is positive. All that has
been proved is the existence of a family of variations for which the sign does change, which is
enough to prove the theorem. A more comprehensive and systematic way to handle this situation
is to introduce the index form for the second variation of L, which, across a conjugate point, loses
its property of being negative definite (L) or positive definite (R).207

207 See e.g. Jost (2002), §4.2 or O’Neill (1983), chapter 10.
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Theorem 5.12 gives necessary and sufficient conditions for the existence of length-minimizing
geodesics in the Riemannian case and length-maximizing timelike geodesics in the Lorentzian
case, but we need to find out when these conditions are met. In the Riemannian case this is
settled by the second part of the Hopf–Rinow Theorem 3.4 in §3.2. The point is that prior to
this theorem we only knew that by definition a given geodesic extremizes the length function
c 7→ L(c) defined by (3.16) compared to local variations, and that, still locally, it minimizes
length until a conjugate point is encountered (and fails to to so afterwards). Theorem 3.4 is a
different kind of statement: it guarantees that some curve between any two given points x and y
exists that globally minimizes L(·), i.e., not merely compared with nearby curves from x to y,
but among all curves from x to y, and then this curve must be a geodesic by definition.

There is no full Lorentzian analogue of this, and for the result that comes closest (i.e. Theorem
5.30), geodesic completeness has to be replaced by global hyperbolicity, a concept that is unique
to Lorentzian geometry (see §5.7). But we first return to the local result Proposition 5.9.2. A
priori there seem to be four possibilities, which one could organize into a 2×2 matrix:

• For y ∈ J+(x) we have (i) either y ∈ I+(x) or y /∈ I+(x), and (ii) some fd causal curve γ

from x to y either does or does not maximize L(·) among all fd causal curves c from x to y.

The key insight is that, as in Minkowski space-time, the second options cannot go together:
although Proposition 5.9.2 itself does not hold globally, the following consequence of it does.

Proposition 5.13 If y ∈ J+(x) and γ is a fd causal curve from x to y, then there are three
mutually exclusive possibilities (where the reference curves c are causal and go from x to y):

1. y ∈ I+(x), and there is a timelike curve c with L(c) > L(γ);

2. y ∈ I+(x), and γ maximizes L(·) among all c, so that γ is a timelike (pre)geodesic;208

3. y /∈ I+(x), and γ is a lightlike (pre)geodesic that maximizes L(·) among all c.

Proof (sketch).209 Since γ lies in a compact set in M one can pick finitely many points x1, . . . ,xN
on γ (where x1 = x and xN = y) and a cover of γ by pairwise overlapping normal nbhds Uxi ,
i = 1, . . . ,N−1, such that xi+1 ∈Uxi and Uxi contains the entire segment of γ from xi to xi+1.

First, if just one segment is timelike, then y ∈ I+(x). To see this, assume the segment from
xk to xk+1 is timelike, so that xk+1 ∈ I+(xk). If xk+2 ∈ E+(xk+1), then, since I+(xk) is open,
one can move xk+1 so as to keep the segment xk→ xk+1 timelike whilst making the segment
xk+1→ xk+2 timelike, too. If necessary this can be repeated for all future and past points (relative
to xk), yielding a timelike curve x→ y. Hence for case 3 in the proposition to arise, γ must be a
lightlike curve, upon which Theorem 5.5.2 shows it must be a (pre)geodesic. The only causal
curves from x to y ∈ E+(x), then, are lightlike curves, so that γ , having length zero, trivially
maximizes L over all other causal curves from x to y, since these also have zero length.210

208By definition (pre)geodesics are at least C1, so that a curve consisting of segments of lightlike geodesics with
corners is not a (lightlike) geodesic. Otherwise, any two points could be connected by a lightlike geodesic.

209See Minguzzi (2019), Theorems 2.20 and 2.22, for details. In its most general form the proposition is valid for
continuous causal curves, see Definition 5.20 below, and indeed the proof is best understood in that light.

210This suggests that E+(x) might be a good global analogue of the fd lightcone N +
x in TxM, where y ∈ E+(x) if

and only if there is a lightlike geodesic from x to y. But in general this implication is only valid from left to right,
as Proposition 5.13 shows: with strong focusing of light rays (e.g. near a black hole) two points x and y may be
connected by a lightlike geodesic as well as by a timelike curve, so that y ∈ I+(x) and hence y /∈ E+(x).
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The case distinction between 1 and 2 is then trivial, since if γ maximizes L even globally, then it
certainly does so locally, so that it must be a geodesic (i.e. case 2). �

Corollary 5.14 1. A fd causal curve from x to y ∈ E+(x) is a lightlike (pre)geodesic.

2. A fd causal curve from x to y ∈ J+(x) that does not enter I+(x) is a lightlike (pre)geodesic.

No. 1 is case 3 of Proposition 5.13.3. This implies no. 2, whose hypothesis forces y ∈ E+(x). �
The following ideas will play a key role in causal theory, culminating in their relevance to

the abstract theory of black holes (see chapter 10). We call a subset S⊂M achronal if

I+(S)∩S = /0; or equivalently I+(S)∩ I−(S) = /0; (5.145)

that is, if no two points of S can be connected by a timelike curve. Corollary 5.14.1 then gives:

Corollary 5.15 Every causal curve in an achronal set is a maximizing lightlike (pre)geodesic.211

At the other extreme, sets with timelike curves clearly cannot be achronal, so that the above
corollary covers the situations between spacelike and timelike and therefore is not very surprising
at all. The few cases where it is nontrivial include the following: if A⊂M, then

S = ∂ I+(A), (5.146)

called an achronal boundary,212 is indeed achronal. To see this, first note the implication

x ∈ ∂ I+(A)⇒ I+(x) ⊂ I+(A). (5.147)

Indeed:

• If y ∈ I+(x) then I−(y) is a nbhd of x and hence I−(y)∩ I+(A) is not empty.

• If z ∈ I−(y) then y ∈ I+(z), and if also z ∈ I+(A) then y ∈ I+(A) by transitivity of I+.

• Hence if x,y ∈ ∂ I+(A) satisfy y ∈ I+(x), then y ∈ I+(A), which contradicts y ∈ ∂ I+(A),
since I+(A) is open.

Corollary 5.16 If J+(A) is closed, each x ∈ ∂ I+(A)\A lies on a lightlike (pre)geodesic within
∂ I+(A)\A. Thus ∂ I+(A)\A is a null hypersurface, which is ruled by lightlike geodesics.213

Proof. If J+(A) is closed, then I+(A) = J+(A) by Proposition 5.4.5. Eq. (5.97) gives

∂ I+(A) = ∂J+(A) = J+(A)\I+(A), (5.148)

since I+(A) is open by Proposition 5.4.2 and J+(A) is closed by assumption. Since, see (5.94),

J+(J+(A)) = J+(A), (5.149)

there is a causal curve c in J+(A)\I+(A) through any x ∈ J+(A). Corollary 5.15 then applies. �
Using Lemma 5.26 below this can be shown more generally for A closed,214 but the stated
version is enough for Penrose’s singularity theorem as well as various other applications.

211An achronal set need not contain any causal curve at all; it can be spacelike, e.g. x0 = c in M. But a spacelike
hypersurface need not be achronal either! Juts take a Lorentzian cylinder with a slowly creeping up spacelike line.

212More generally, an achronal boundary is a set ∂F where F is a future set. See §6.5 and §10.7.
213This means that every z ∈ ∂ I+(A)\A lies on a lightlike geodesic within ∂ I+(A)\A. See also Definition 4.15.
214See Proposition 10.16 in §10.7 below, which also gives more information about the lightlike geodesics.
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5.6 Properties of causal curves
Many concepts in causal theory, like the Cauchy surfaces to be studied in §5.8, as well as the
singularity theorems in chapter 6, rely on some specific definitions and properties of curves.

Definition 5.17 • A curve c : [a,b)→M, where a < b ≤ ∞, is iff limt↑b c(t) exist in M. If
not, c is future inextendible.215 Likewise for c : (a,b)→M.

• A curve c : (a,b]→M, where −∞≤ a < b, is past extendible iff limt↓a c(t) exists. Other-
wise, c is past inextendible. Likewise for c : (a,b)→M.

• A curve c : (a,b)→M is inextendible if it is both future and past inextendible.

Briefly: c : I→M is inextendible if I cannot be increased (whilst keeping c continuous).

Although so far all curves are smooth by assumption, this definition obviously applies to curves
that are merely continuous, and indeed is much more natural for that class. Since a continuous
curve c : [a,b]→M is always continuously extendible to c : [a,b+ ε), for some ε > 0, only the
case [a,b) is interesting for future (in)extendibility. Then c : [a,b)→M is future extendible iff it
has a continuous extension c : [a,b]→M.216 Likewise for past (in)extendibility at a.

Intuitively, the (future) limit limt↑b c(t) may not exist for three different reasons:

1. The curve moves off to infinity. For example, for b = ∞ define c : R→R by c(t) = t. But
this may also happen in finite time: take e.g. c(t) = 1/t in M = R, with I = (a,0).

2. The would-be limit point does not exist in M. For example, take the curve

c : [0,1)→R\{1}; c(t) = t. (5.150)

3. The image of c lies in a compact set, where c continues to wander around all the different
limit points of its convergent subsequences, never settling. A typical example is the curve

c : [0,1)→R2; c(t) = (t, sin(1/(1− t)), (5.151)

which is contained in the compact set [0,1]× [−1,1] (but has infinite arc length).

A geodesic γ : (a,b)→M, where a < 0 < b, is a solution to the geodesic equation (3.24)
with given initial values γ(0) and γ̇(0). It is called future complete if b = ∞. This is not a
priori a pointwise property, as in Definition 5.17, but nonetheless it can be shown that solutions
γ to (3.24) whose domain is maximal are precisely geodesics that are inextendible as curves.217

Definition 5.18 A geodesic γ : (a,b)→M is future incomplete iff it is future inextendible and
b < ∞. Similarly, γ is past incomplete iff it is past inextendible and −∞ < a. Finally, γ is
incomplete if it is either future or past incomplete, or both.

215Equivalently, an endpoint of c : [a,b)→M is a point z ∈M such that for any nbhd U of z there is s ∈ [a,b) such
that c(t) ∈U for all t ≥ s. Then c is future (in)extendible iff it has an (has no) endpoint. This criterion is especially
useful if b = ∞. For this reason a (future/past) inextendible curve is sometimes called (future/past) endless.

216If b = ∞, in order to define continuity of c we say that U ⊂ [a,∞] is open iff it is either open in [a,∞) or is the
complement in [a,∞] of a compact set in [a,∞). Topologically [a,∞] is the one-point compactification of [a,∞).

217 By Proposition 2.5.6 and Theorem 2.5.7 in Chruściel (2020), any fd causal/timelike geodesic has an inextendible
causal/timelike extension, which is maximal as a solution to the geodesic ODE with given initial values.
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Proposition 5.19 A timelike geodesic γ : (a,b)→M with −∞ < a is future incomplete iff it is
inextendible and has finite arc length, and similarly for past incompleteness, provided b < ∞.

Proof. Timelike geodesics are parametrized by arc length (up to affine reparametrizations). �
In causal theory one often needs approximations that require continuous causal curves. This

combination of words sounds problematic, because causal properties of curves c, which so far
were (piecewise) smooth by convention, were defined through their tangent vectors ċ(t), which
require differentiability of c(t). Nonetheless, the following definition makes good sense.218

Definition 5.20 Let I ⊂ R be an interval, which may be (semi) closed or open, and possibly
(semi) infinite. A continuous curve c : I→M is fd causal if every point x = c(t) on the curve
(t ∈ I) has a normal nbhd Ux (cf. §5.2) such that the unique geodesic connecting x with any later
point y ∈Ux (with y = c(t ′) for t ′ > t) is fd causal. Similarly for pd causal curves.

All relevant results so far, like Proposition 5.13, are true for continuous causal curves. To analyse
such curves we introduce an auxiliary complete Riemannian metric h on M (which always
exists),219 with associated topological metric dh defined in the usual way, cf. (3.30). Then:

Proposition 5.21 A continuous curve c : I→M is fd causal iff (possibly after reparametrization)
it is absolutely continuous and a.e. differentiable on I with ċ fd causal, and, for all [s,u] ∈ I,

Lh

(
c|[s,u]

)
=
∫ u

s
dt
√

h(ċn(t), ċn(t))< ∞. (5.152)

Proof (sketch).220 We only sketch the inference from left to right. Take x = c(s) any y = c(u)
close enough that they both lie in a convex set U with coordinates (xµ) in which the metric
is ds2 = −g00dt2 + gi jdxidx j and the interpolating geodesic has γ0(t) = t. Since γ is causal,
we have gi jγ̇

iγ̇ j ≤ g00, and since (gi j) is positive definite and U has compact closure, we have
gi jxix j ≥C ∑i(xi)2 for some C > 0. In the Euclidean distance d(x,y)2 = ∑µ |xµ − yµ |2 on U ,

d(c(s),c(u))2 = d(γ(s),γ(u))2 = ∑
µ

|γµ(s)− γ
µ(u)|2 = ∑

µ

|
∫ u

s
dt γ̇

µ(t)|2

≤∑
µ

∫ u

s
dt |γ̇µ(t)|2 ≤

(
1+

g00

C

)2
(u− s)2. (5.153)

Thus c is locally Lipschitz and the claims about ċ follow from Rademacher’s theorem. �

Since the function u 7→ Lh

(
c|[s,u]

)
is strictly increasing and hence invertible, any continuous

causal curve c may be parametrized by , h-arc length, i.e., via one of the equivalent conditions

h(ċn(t), ċn(t)) = 1; Lh

(
c|[s,u]

)
= u− s. (5.154)

By the same token, the length functional (5.112) can be defined and is finite.
218We follows Minguzzi (2019). For a slightly different (locally Lipschitz) approach see Chruściel (2011, 2020).
219 Recalling from §2.1 that our manifolds M are paracompact, a partition of unity argument gives the existence of

some Riemannian metric h̃ on M (Jost, 2002, Theorem 1.4.1). If M is compact, then h̃ is complete, cf. Theorem
3.4. So assume M is noncompact and h̃ is incomplete. We follow Nomizu & Ozeki (1961). For x ∈M, define
r(x) = sup{r > 0 | Br(x) is compact}, where Br(x) = {y ∈ M | dh̃(x,y) ≤ r}. If r = ∞ for some x, then M is
compact, so r < ∞. Take any smooth function ω : M→R such that ω(x) > 1/r(x). Then h = ω2h̃ is complete. In
particular, any incomplete Riemannian metric can be conformally rescaled so as to become complete.

220 For a complete proof see Theorem A.1 in Candela et al. (2010). See also Chruściel (2011), Theorem 2.3.2.
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For later use, we now present a number of technical results, in which (M,g) is just a space-time.

Lemma 5.22 Let a fd continuous causal curve c : (a,b)→M be parametrized proportional to
h-arc length. Then b = ∞ iff c is future inextendible, and a = −∞ iff c is past inextendible.221

Approximations of curves can most naively be done pointwise, as in Lemma 5.8, but this
loses even continuity. Instead, we use the auxiliary metric h to define uniform convergence.222

Despite the square brackets, we agree that in intervals [a,b] both a =−∞ and b = ∞ are allowed.

Definition 5.23 For curves cn : [an,bn]→M and c : [a,b]→M, uniform convergence cn→ c
(on compacta) means that for every compact interval [a′,b′] ⊂ [a,b] there is a sequence of
compact intervals [a′n,b′n] ⊂ [an,bn] such that the following three conditions hold, as n→ ∞:

a′n→ a′; b′n→ b′; sup
t∈[a′n,b′n]∩[a′,b′]

dh(cn(t),c(t))→ 0. (5.155)

This turns out to be independent of the choice of h. Uniform convergence preserves continuity of
curves, and in addition it preserves causality and (forward or backward) directedness.223

A very important result, to be used e.g. in the proof of Theorem 5.30, is upper semicontinuity
of the Lorentzian length functional. For (fd) causal curves c, L(c) was defined by (5.114), i.e.

L(c) =
∫ b

a
dt
√
−gc(t)(ċ(t), ċ(t)). (5.156)

By Proposition 5.21, this expression is even defined for continuous (fd) causal curves.

Lemma 5.24 Let c be a fd continuous causal curve c : [a,b]→M, parametrized proportional to
h-arc length. Then any sequence (cn) converging uniformly to c, as in Definition 5.23, satisfies

limsup
n

L(cn) ≤ L(c). (5.157)

The idea behind this lemma comes from the following figure,224 which shows that one may
decrease the length of a causal curve c at will by adding a chain of almost lightlike directions.

221 See Minguzzi (2008), Lemma 2.6. This is even true if c(a,b) is precompact, in which case c cannot have
an endpoint if it is future inextendible and hence wanders around its limit points, indefinitely increasing Lh(c).
There is a potential ambiguity if we apply this to geodesics. These are affinely parametrized, whereas causal curves
are parametrized by h-arc length. But by Proposition 2.5.6 in Chruściel (2020) a geodesic is inextendible iff it is
inextendible as a causal curve (in his locally Lipschitz sense, but see footnote 220). See also footnote 217.

222 Our discussion is based on Minguzzi (2008a, 2019). It is also possible to do such approximations without an
auxiliary metric, see Hawking & Ellis (1973), Lemma 6.2.1, and O’Neill (1983), chapter 14, but this is contrived.

223See Lemma 2.7 in Minguzzi (2008). However, the limit curve c need not be parametrized by h-arc length.
224Figure redrawn from Penrose (1972), page 50, Fig. 43, by Edith de Jong.
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On the other hand, increasing its length can only be done by adding timelike pieces, which be-
comes ever more difficult as one approaches c and hence will not lead to large length differences.
Nonetheless, Lemma 5.24 is difficult to prove and we will just talk the reader through it.225

Lemma 5.25 The length of any continuous causal curve c can be approximated as

L(c) = inf
γ

L(γ), (5.158)

where the infimum is over all interpolations of c by piecewise smooth causal geodesics γ .226

Intuitively, by Proposition 5.9 timelike segments of γ can only increase the length of the piece of
c they interpolate, whereas lightlike segments cannot decrease it. This explains the infimum in
(5.158). We may unfold the meaning of eq. (5.158) in Lemma 5.25: it states that

1. L(c) ≤ L(γ) for all piecewise smooth causal geodesics γ as specified in the lemma;

2. For any ε > 0 there is a γ such that L(γ) ≤ L(c)+ ε/2.

Applying the first point to cn close enough to c shows that for every ε > 0 there is N ∈N such
that for all n > N one has L(cn) ≤ L(γ)+ ε/2. Hence

L(cn) ≤ L(γ)+ ε/2≤ L(c)+ ε/2+ ε/2 = L(c)+ ε . (5.159)

This proves Lemma 5.24, which is one of the keys to Theorem 5.30 below on the existence of
length-maximizing geodesics (which in turn leads to Hawking’s singularity theorem 6.4).

Finally, we will need the following version of the limit curve lemma, for which we ask the
reader to first read Definition 5.27 of global hyperbolicity on the next page.227

Lemma 5.26 If (cn : [0,bn]→M) is a sequence of fd continuous causal curves parametrized by
h-arc length in a globally hyperbolic space-time such that cn(0)→ x and cn(bn)→ y 6= x, there
exists a fd continuous causal curve c : [0,b]→M, where b < ∞, as well as a subsequence of (cn)
that converges uniformly to c (cf. Definition 5.23), including bn→ b at the endpoint.

This lemma ultimately derives from the Arzelà–Ascoli theorem. The role of global hyperbolicity
is just to exclude the possibility that bn wanders of to infinity, in which case one would have
an inextendible fd causal limit curve c : [0,∞)→M that sort of circles around y without ever
reaching it,228 cf. Lemma 5.22. Removing the assumption of global hyperbolicity allows this.

225Complete proofs may be found in e.g. Penrose (1972), Theorem 7.5, and Hawking & Ellis (1973), Lemma
6.7.2 (both in the setting of Theorem 5.34.1 below). We follow Minguzzi (2019), Theorems 2.37 and 2.41.

226This means that the smooth segments of γ are causal geodesics that have endpoints on γ and are contained in a
convex nbhd that also contains the segment of γ they connect. Just think of picking sufficiently many points on c
such that each adjacent pair lies in a common convex nbhd, connect this pair by a unique geodesic, and continue.

227 Lemma 5.26 is a special case of case (i) of Theorem 2.53 in Minguzzi (2019), whose case (ii), where b = ∞, is
excluded by our assumption of global hyperbolicity. The need for varying bn is due to the chosen parametrization by
h-arc length. In his framework of locally Lipschitz causal curves, Chruściel (2020), Proposition 2.6.2, has a simpler
version of Lemma 5.26, according to which any sequence (c : [0,∞)→M) for which cn(0)→ x and for which there
is a constant L > 0 such that L−1|t− t ′| ≤ dh(cn(t),cn(t ′))≤ L|t− t ′| for all n and all t, t ′ ∈ [0,b] (assuming b < ∞),
has a subsequence converging to some limit curve in the sense of Definition 5.23.

228 Global hyperbolicity excludes compact sets K ⊂M that contain fd continuous causal curves c : [0,∞)→ K.
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5.7 Global hyperbolicity
In our context of analyzing geodesics, global hyperbolicity arises as an assumption in Theorem
5.30, which as such propagates into Theorem 6.4. It is also a key assumption in Penrose’s
singularity theorem. Indeed, global hyperbolicity is central to almost all of mathematical GR.229

Definition 5.27 A space-time (M,g) is called:

1. non-imprisoning if no future inextendible fd causal curve c is contained in a compact
subset of M (i.e., if every such curve c “eventually wanders off to infinity”).230

2. globally hyperbolic if it is non-imprisoning and each double cone (or causal diamond)

J(x,y) ≡ J+(x)∩ J−(y) (5.160)

is compact. N.B. by Proposition 5.4.1, J(x,y) 6= /0 requires x6 y, i.e. y ∈ J+(x).

We give various alternative characterizations of global hyperbolicity in the next section. But first,
to elucidate the role of non-imprisonment we compare it to three related assumptions:231

Definition 5.28 A space-time (M,g) is called:

1. causal if it contains no closed causal curves.232

2. strongly causal if any nbhd Ux of any x∈M contains an open nbhd Vx such that any causal
curve with endpoints in Vx entirely lies in Vx (as opposed to: leaving it and returning).
Equivalently, if c : I→M is a causal curve, the set {t ∈ I | c(t) ∈Vx} is connected.

3. non-partially imprisoning if there are no inextendible causal curves c that continue to
return to some compact set, although they may also continue to leave it (technically: there
exists no compact set K ⊂M for which the parameter set c−1(K)⊂R is non-compact).233

The meaning of causality should be obvious; its violation is associated with all kinds of “(mur-
dering one’s) grandfather” paradoxes. Strong causality is a form of causality stabilized against
perturbations of points: there aren’t even any causal curves that start at x and end at points y
arbitrarily closely near x, except the very short direct causal curves from x to y (if y ∈ J±(x)).

Partial imprisonment is a weakening of imprisonment, and the logical implications are:234

strongly causal⇒ non-partially-imprisoning⇒ non-imprisoning⇒ causal.

229Our definition of global hyperbolicity (which simplifies some arguments in §5.8) is equivalent to the usual one
in which non-imprisonment is replaced by strong causality. See Minguzzi (2019), Proof after Definition 4.117.

230This is equivalent to the same condition with future/fd changed into past/pd, see Minguzzi (2019), page 119.
231See Minguzzi (2008b, 2019). This is part of the causal ladder (Minguzzi & Sánchez, 2008). Imprisonmment

(under the name of total imprisonment) and partial imprisonment were introduced by Carter (1971a).
232One also says that (M,g) is chronological if there are no closed timelike curves.
233For an imprisoned curve c, the set c−1(K) is by definition the entire parameter space I.
234The first implication is Proposition 4.80 in Minguzzi (2019), the second is trivial from the definitions, and the

third is Proposition 4.37 in Minguzzi (2019). The implication strongly causal⇒ non imprisoning is also obvious
in the contrapositive; for any inextendible fd causal curve c : [a,b)→ K contained in a compact set K has a limit
point x as t→ b, but it has no endpoint, and so any limit point provides a counterexample to the definition of strong
causality. See Hawking & Ellis (1973), p. 195 or Minguzzi (2019, §4.3.1) for a (contrived) example of a (totally)
imprisoning space-time; but all examples must be pretty pathological.
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Compactness of J(x,y) holds in Minkowski space-time. In curved space-times it allows
“interesting” singularities but blocks “trivial” ones, as in the case where J(x,y) fails to be compact
by missing a point in its interior. In that case, there is a fd causal curve from x that disappears
into this point. This curve lies in the past of y and hence is visible for an observer at y, making
the hole a (locally) naked singularity. Global hyperbolicity prevents this possibility. See §10.4.

Technically, the following equivalences will be useful (proved by elementary topology):235

Lemma 5.29 Let (M,g) be a space-time. The following properties are equivalent:

1. Each double cone J+(x)∩ J−(y) is closed.

2. All sets J±(x) are closed.

3. All sets J±(K), where K ⊂M is compact, are closed.

Also, if (M,g) is globally hyperbolic, then J+(K)∩J−(L) is compact for any compact K,L⊂M.

The following key result is independently due to Avez, Hawking, and Seifert.236 To see the
need for global hyperbolicity in this, note that in Minkowski space-time with the origin removed,
no point (x0,~0) with x0 < 0 can be connected to (x0,~0) with x0 > 0 by a geodesic at all.

Theorem 5.30 If (M,g) is globally hyperbolic, then any x ∈M and y ∈ J+(x) can be connected
by a fd causal geodesic of finite length, which length is maximal among all fd causal curves from
x to y. If y ∈ I+(x) then this maximizing geodesic is timelike, and if y ∈ E+(x) it is lightlike.

Proof. All curves are continuous fd causal. Recall (5.117) and (5.118). Since L(γ) and hence
dL(x,y) are parameter-independent, we may assume all our curves to be parametrized by h-arc
length. We also assume that all curves start at t = 0 with c(0) = x. All curves c from x to y lie in
J(x,y), which is compact by assumption. In J(x,y) we may choose our auxiliary Riemannian
metric h such that ‖X‖g ≤ ‖X‖h for all causal vectors X . Lemma 5.31 below then gives:237

dL(x,y) ≤ dR(x,y) < ∞. (5.161)

Now take a sequence (cn) of continuous fd causal curves for which supn L(cn) = dL(x,y).
Assuming wlog that (L(cn)) is increasing, this also gives limsupn L(cn) = dL(x,y). By Lemma
5.26 this sequence has a limit curve c : [0,b]→M with c(b) = y. Lemma 5.24 gives

L(c) ≤ dL(x,y) = sup
n

L(cn) = limsup
n

L(cn) ≤ L(c), (5.162)

so that L(c) = dL(x,y). Hence c achieves the supremum in (5.118) and has maximal length.
Proposition 5.13 then makes c a (smooth) causal pregeodesic with the claimed properties,238

predicated on y ∈ I+(x) or y ∈ E+(x). Finally, reparametrization turns it into a geodesic. �

Lemma 5.31 If (M,g) is non-imprisoning, then for any compact subset K⊂M there is a constant
0 < CK < ∞ such that for any continuous (fd) causal curve c : [0,b]→ K or c : [0,b)→ K,
parametrized by h-arc length, one has the uniform bound Lh(c) <CK . In particular, b < ∞.

235See Minguzzi (2019), Theorem 4.12, for part 1, and Galloway (2014), Proposition 4.3, for the last claim.
236See Avez (1963), Hawking (1966/2014), his Adams Prize Essay, and Seifert (1967).
237See Minguzzi (2019), Theorem 2.55.
238This also follows from Theorem 2.20 in Minguzzi (2019), which states that each maximizing causal curve is a

causal geodesic. As in Proposition 5.13, the proof is done by localization to convex nbhds.
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5.8 Cauchy surfaces and Cauchy horizons

In this section we give various equivalent characterizations of global hyperbolicity.239 These
look quite different from each other, which is very useful in both causal and PDE theory and also
illustrates the richness of the concept. First, for x6 y (i.e. x ∈M and y ∈ J+(x)), define C(x,y)
as the space of continuous fd causal curves c from x to y that are defined on I = [0,1] and are
parametrized proportional to h-arc length, where h is a complete Riemannian metric, as in the
previous section: hence h(ċn(t), ċn(t)) is constant a.e. in t, though not necessarily 1. Then

d(c1,c2) := sup
t∈[0,1]

dh(c1(t),c2(t))+ |Lh(c1)−Lh(c2)| (5.163)

turns C(x,y) into a metric space; the first term makes the evaluation map

ev : C(x,y)× [0,1]→M; ev(c, t) = c(t) (5.164)

continuous, upon which the second term also makes the Riemannian curve length functional

Lh(c) =
∫ 1

0
dt
√

h(ċ(t), ċ(t)) (5.165)

continuous.240 Leray’s original definition of global hyperbolicity was essentially that each
space C(x,y) be precompact in the compact-open topology borrowed from C([0,1],M).241

Surprisingly, this is equivalent to the existence of a Cauchy surface, which we define now.

239See Leray (1953), and Choquet-Bruhat (2014) for some history. See also Choquet-Bruhat (2009), chapter XII.
Our approach combines elements of Choquet-Bruhat, loc. cit., with Theorem 4.1 in Sánchez (2007).

240This makes convergence in the metric d stricter than uniform convergence in dh (as in Definition 5.23, in which
Lh is generally merely lower semicontinuous, analogously to upper semicontinuity of the Lorentzian length L).
The metric (5.163) was introduced by Bott & Mather (1968, p. 474) and is also used by Choquet-Bruhat (2009),
§XII.8.2 (who works with the class of rectifiable continuous causal curves). Since I = [0,1] is compact, the first
term in (5.163) gives the compact-open topology, see Clarke (1993), §6.2.2. One may wonder why things are so
complicated. The reason is that if one allows arbitrary parametrizations of curves all hope of compactness of C(x,y)
or its closure are gone. The approach chosen in the main text (following Bott, Choquet-Bruhat and Sánchez) is
one way around this problem by introducing preferred parametrizations, at the cost though of the unusual metric
(5.163). Alternatively, Penrose (1972) and Hawking & Ellis (1973) work with the space Ĉ(x,y) of continuous fd
causal curves up to reparametrization, i.e. one uses the image c([0,1]) in M rather than the function c : [0,1]→M.
This image space is topologized by letting any open nbhd of c (more precisely, its image in M) consist of all fd
causal curves γ whose image lies in some open nbhd of c([0,1]) in M. This topology is very natural and coincides
with the quotient of the compact-open topology on C([0,1],M) to the image space, see again Clarke (1993), §6.2.2.
However, unlike the approach in the main text, this procedure hardly makes sense when (M,g) is not causal, since
in that case loops traversed any number of times are identified (since they have the same image in M), although
they are clearly different things. Thus one assumes causality from the outset, indeed even strong causality, in
which case Ĉ(x,y) need not be completed and global hyperbolicity is characterized by compactness of Ĉ(x,y). See
Penrose (1972), §6 or Hawking & Ellis (1973), Proposition 6.6.2. Furthermore, Lemma 5.24 remains valid, mutatis
mutandis, in that L is upper semicontinuous, i.e. for each c ∈C(x,y) and each ε > 0 there is a nbhd Γ of c such that
L(γ) ≤ L(c)+ ε for all γ ∈ Γ. See Penrose (1972), Theorem 7.5 or Hawking & Ellis (1973), Lemma 6.7.2.

241The topology induced by the metric (5.163) is not defined on all of C([0,1],M) because of the second term; the
first term would recover the compact-open topology. Restricted to C(x,y), the metric topology given by (5.163)
is of course finer than the compact-open topology, so that C(x,y) is also complete in the metric (5.163), and
indeed C(x,y) is a good model of the abstract (Cauchy) completion of C(x,y) defined for any metric space. This
is necessary because despite Lemma 5.26, the space C(x,y) is not itself complete in the metric (5.163), since,
as already mentioned in footnote 221), uniform limits of sequences of continuous causal curves parametrized
proportional to h-arc length need to be parametrized in that way and hence may disappear from C(x,y).
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Definition 5.32 A Cauchy (hyper)surface in a space-time (M,g) is a subset Σ ⊂M with the
property that each inextendible timelike curve intersects Σ in exactly one point.

An easy example is the x0 = 0 hypersurface in Minkowski space, which may be tilted or curved,
as long as all tangent vectors remain spacelike. But neither the hyperboloid H3

ρ defined in (4.87)
nor even the forward lightcone ∂ I+(x) is a Cauchy surface. Here are some first results:

Theorem 5.33 Let (M,g) be a space-time with Cauchy surface Σ ⊂M. Then:

1. Σ is a closed connected achronal 3d topological submanifold of M.

2. Any other possible Cauchy surface in M is homeomorphic to Σ.

3. M is homeomorphic to R×Σ.

We will give more precise results Theorem 5.44, especially concerning the possible smoothness
of all constructions and the existence of spacelike Cauchy surfaces, but for a first acquaintance
with Cauchy surfaces the above facts are enough (and indeed historically they were the first to be
established).242 The first claim is technical,243 except for achronality which is trivial, but the
second and third are fairly intuitive. If Σ and Σ′ are both Cauchy surfaces, then any inextendible
timelike curve meets each of them once. In particular, the integral curves of a complete timelike
vector field T on M, such as the one defining its time-orientation,244 give an identification of
Σ and Σ′. Similarly, since the integral curves c of T are topologically R (see Lemma 5.22,
extended also in the backward direction), we obtain a map

R×Σ→M; (t,σ = c(0)) 7→ c(t), (5.166)

that is, Σ is moved (forward or backward in time) with the flow of T . This map is a bijection
by definition of a Cauchy surface, and can be shown to be a homeomorphism, like the above
bijection Σ ∼= Σ′. Such arguments can be made rigorous once we have time functions (see §5.9).

Theorem 5.34 Each of the following conditions is equivalent to global hyperbolicity of (M,g):

1. The space C(x,y) is precompact for all x6 y (i.e. its closure C(x,y) is compact).

2. For each x6 y there is a constant Kx,y < ∞ such that for all c ∈C(x,y) one has

Lh(c) < Kx,y. (5.167)

3. M has a Cauchy surface.

A detailed proof of this theorem takes many pages and is hardly instructive, except for explaining
how the various assumptions are related to each other. Short of giving a complete proof, our goal
is therefore merely to sketch these relations, and refer those who want more to the literature.245

242 The topological theory of Cauchy surfaces in GR was initiated by Penrose (1965a, 1968) and Geroch (1970);
see also Hawking & Ellis (1973), chapter 6 and O’Neill (1983), chapter 14. It was extended to the smooth case by
Bernal and Sánchez (2003, 2005, 2006a); see also the reviews Sánchez (2005, 2007). See the end of §5.9.

243See e.g. O’Neill (1983), Lemma 14.29 to Corollary 14.32. Claim 3 requires a version of the limit curve lemma.
244If the given T is not complete, then T /‖T‖h is complete, where h is a complete Riemannian metric as usual.
245See for example Geroch (1970), Penrose (1972), chapters 6 and 7, Hawking & Ellis (1973), chapter 6, O’Neill
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For the implication 1→ 2 we note that Lh is continuous and hence Weierstrass’s theorem
guarantees that Lh assumes a maximum value M on the compact set C(x,y). Any Kx,y > M then
satisfies (5.167). Conversely, by the Arzelà–Ascoli theorem C(x,y) is compact iff:

1. Each set {c(t) | c ∈C(x,y)} ⊂M, where t ∈ (0,1), is bounded;

2. The family of curves C(x,y) is equicontinuous, i.e., for each t ∈ [0,1] and each ε > 0 there
is δ > 0 such that if |s− t|< δ , then d(c(s),c(t))< ε for all c ∈C(x,y).

Eq. (5.167) implies both conditions: indeed, if this is the case, then the inequalities

dh(x,c(t))≤ Lh(c) < Kx,y (5.168)

make the set {c(t) | c ∈C(x,y)} in clause 1 of the Arzelà–Ascoli theorem bounded. Assuming
for now c is parametrized by h-arc length, we have Lh(c(s, t)) = Lh(c)|s− t|, and hence

dh(c(s),c(t))≤ Lh(c)|s− t|< Kx,y, (5.169)

which proves equicontinuity. Hence C(x,y) is compact and we are ready with 1↔ 2.
To prove that 1 or 2 is equivalent to global hyperbolicity as in Definition 5.27, first note

that if C(x,y) is compact, then so is J(x,y). This follows from the continuity of the evaluation
map. The inequality (5.167) forces non-imprisonment by contradiction: if K ⊂M is compact
and contains an inextendible fd continuous causal curve c, then this curve is also contained in a
double cone J(x,y), just proven compact, to which Lemma 5.22 and (5.167) apply.246

Conversely, the implication from Definition 5.27 to (5.167), immediately follows by taking
K = J(x,y) in Lemma 5.31. Thus Definition 5.27 and properties 1 and 2 in Theorem 5.34 are
closely related and easily transferable into each other; the only technical tool was Arzelà–Ascoli.

Property 3 is quite different, and the proof of equivalence uses a whole new arsenal of
techniques, each of which is also of independent interest and has many other applications in GR.

First, the analysis of Cauchy surfaces in property 3 involves the following concept:247

Definition 5.35 Let S⊂M be an achronal susbet of M.

1. The domain of dependence or future Cauchy development D+(S) of S is the set of all
x ∈M for which every past-inextendible pd causal curve starting from x intersects S.

2. The domain of influence or past Cauchy development D−(S) of S is the set of all x ∈M
for which every future-inextendible fd causal curve starting from x intersects S.

3. The total domain of dependence or two-sided Cauchy development of S is

D(S) := D+(S)∪D−(S). (5.170)

(1983), chapter 14, Beem, Ehrlich, & Easley (1996), chapter 3, Kriele (1999), chapter 8, Choquet-Bruhat (2009),
chapter XII, Chruściel (2011), and Minguzzi (2019), chapter 3.

246If c : [0,∞)→ K is the curve in question, then take x = c(0) and y ∈ ∩t≥0c(t,∞), which is nonempty and lies
in K by Minguzzi (2019), Proposition 2.72. The curve then lies in C(x,y).

247 Definition 5.35 makes sense for any S⊂M but is only used when S is achronal, i.e. if no two points of S can
be connected by a timelike curve; see (5.145). Such surfaces S carry initial data for hyperbolic PDEs and the idea is
that in relativistic physics everything happening at x ∈ D+(S) is determined by the state of affairs at S. This is not
really a theorem of mathematical physics, but it is a principle that is backed by the theory of hyperbolic PDEs. See
Courant & Hilbert (1962), Choquet-Bruhat (2009), Bär, Ginoux, and Pfäffle (2007), and Earman (1995, 2007).
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By definition, one then has the (not necessarily strict) inclusions

S⊂ D±(S) ⊂ J±(S). (5.171)

A simple case is S = {x | x0 = 0} in Minkowski space-time, which gives D+(S) = {x | x0 ≥ 0}.
Here are four more instructive examples, all due to Penrose himself.248

Examples of domains of dependence and influence, taking place in 2d Minkowski space-time (M2,η).

• In the figure on the left, S is a generic closed, achronal, and bounded (and hence compact)
(hyper)surface. The domains D±(S) are compact, too, and so is, of course, their union D(S).

• In the figure on the right, S is the closed and achronal, but unbounded “southern” hyperboloid

S = H1
1 := {(t,x) ∈R2 | t = −

√
x2 + 1}, (5.172)

cf. (4.87), which asymptotes towards the past lightcone t = −|x|. For the domains D±(S) we find

D+(S) = {(t,x) ∈R2 | −
√

x2 + 1≤ t <−|x|}; (5.173)

D−(S) = {(t,x) ∈R2 | t ≤−
√

x2 + 1}. (5.174)

Note that D+(S) is not closed, since lightlike (hence causal) curves on t = −|x| do not meet S.

• In the figure on the left, a point has been removed from S, which has a drastic effect on D+(S).

• In the figure on the right, a point has been removed from M2, with a similar effect on D+(S).

248Adapted from Penrose (1972), pp. 39–40, Fig. 31–34, redrawn by Edith de Jong. Note that Penrose defines the
domains D±(S) using timelike curves instead of causal curves. If we write these as D±P (S), then for closed achronal
sets S one has D±P (S) = D±(S) (Minguzzi, 2019, Proposition 3.10), so that D±P (S), unlike D±(S), is closed.
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In any dimension d ≥ 2, the hyperboloid example (5.172), adding the “north”, becomes:

S = ±H3
1 =

{
x ∈R4 | x0 = ±

√
|~x|2 + 1

}
; (5.175)

D±(±H3
1 ) = J±(±H3

1 ) =

{
x ∈R4 | ±x0 ≥

√
|~x|2 + 1

}
; (5.176)

D±(∓H3
1 ) = J±(∓H3

1 )∩ I∓(0) =
{

x ∈R4 | −|~x|<±x0 ≤
√
|~x|2 + 1

}
. (5.177)

Following Hawking, we now define the future/past Cauchy horizons H+/−
C (S) of S by

H+
C (S) := D+(S)\I−(D+(S)) = {x ∈ D+(S) | I+(x)∩D+(S) = /0}; (5.178)

H−C (S) := D−(S)\I+(D−(S)) = {x ∈ D−(S) | I−(x)∩D−(S) = /0}; (5.179)

HC(S) := H+
C (S)∪H−C (S). (5.180)

That is, H+
C (S) consists of all points x ∈ D+(S) that precede no other point in D+(S), etc.249

As any point beyond H+
C (S) can be influenced by events outside S (etc.), the Cauchy horizons

H±C (S) measure the failure of S to be a Cauchy surface, cf. Proposition 5.38 below. But first, we
simplify eqs. (5.178) - (5.179) under further assumptions on S (beyond it being achronal).

Definition 5.36 1. S⊂M is acausal if there is no causal curve that starts and ends at S.

2. The edge of an achronal set S consists of all x ∈M for which every nbhd U of x contains
points y and z and two timelike curves from y to z, of which just one intersects S.250

3. A wannabe Cauchy surface is an edgeless acausal (and hence closed) subset of M.251

Wannabe Cauchy surfaces are a “second best” in the absence of Cauchy surfaces (i.e. of global
hyperbolicity).252 A sufficient condition for their existence is the existence of a time function
(see §5.9).253 Simple examples (that are not Cauchy surfaces) are the hyperboloids in (M,η):

S = ±H3
1 ; H±C (S) = /0; H∓C (S) = ∂ I±(0), (5.181)

and the x-axis in the Quinten space-time (M′
2,η2), see §10.7. Cauchy horizons of wannabe

Cauchy surface in black hole space-times provide important causal information about their
interiors (see chapter 9). In the PDE approach to GR they arise when some MGHD is extendible,
see §10.5, and a Cauchy surface for the MGHD turns into a partial one for the extension.

249In 2d Minkowski space, take S = [−1,1]×{0}. Then D+(S) consists of the triangle with vertices (−1,0),
(1,0), and (0,1), whose two upper sides comprise H+

C (S). Removing (0,0) from S removes the double cone with
vertices (0,0), (− 1

2 , 1
2 ), (0,1), and ( 1

2 , 1
2 ) from D+(S), whereas H+

C (S) now consists of two zig-zag teeth (draw!).
250See Penrose (1972), §5.6; the definition of an edge in Hawking & Ellis (1973), p. 202 or Minguzzi (2019),

§2.18 is equivalent provided S is closed. By Corollary 2.142 in Minguzzi (2019), a closed acausal or achronal subset
S⊂M (think of a spacelike hypersurface) is edgeless (i.e. a wannabe Cauchy surface) iff S∪ I+(S)∪ I−(S), the set
of all points through which an inextendible timelike curve exists that intersects S, is open. For a Cauchy surface this
set equals M, see (5.183), and is a maximal achronal set (Minguzzi, 2019, Proposition 3.37).

251Clearly, S\S⊂ edge(S) ⊂ S so that if S is edgeless in the sense that edge(S) = /0, then S is closed, as claimed.
These are usually called partial Cauchy surfaces, but this is bad since some part of a Cauchy surface is not a partial
Cauchy surface because it has an edge. Our terminology has the disadvantage that a Cauchy surface is also a
wannabe Cauchy surface, but since some wannabes actually make it (e.g. Mick Jagger), this is the lesser evil.

252By Theorem 2.146 in Minguzzi (2019), edgelessness is necessary for maximality of an achronal set.
253See Theorems 3.39 and 4.100 in Minguzzi (2019). This is a far weaker condition than global hyperbolicity!
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Without proof we now collect some key properties of all these sets:254

Lemma 5.37 1. Edgeless achronal subsets are closed topological hypersurfaces in M.

2. Future/past Cauchy horizons H±C (S) of closed sets S are closed and achronal.

3. If S is closed and achronal, then ∂D±(S) = H±(S)∪S.

4. If S is closed and achronal, then edge(H±(S)) = edge(S).

5. If S is closed and acausal, then H±C (S)∩S = edge(S).

6. If S is a wannabe Cauchy surface, then D±(S)\S is open and H±C (S)∩S = /0, so that

H±C (S) = ∂D±(S)\S; HC(S) = ∂D(S). (5.182)

We also have the following characterization of “true” Cauchy surfaces among the wannabes:

Proposition 5.38 A wannabe Cauchy surface (or more generally a closed acausal set) S⊂M is
a Cauchy surface iff one (and hence all) of the following equivalent conditions are satisfied:

1. D(S) = M, or equivalently D±(S) = J±(S);

2. HC(S) = /0, or equivalently H+
C (S) = H−C (S) = /0;

3. Every inextendible curve of fixed causality class C intersects S exactly once, where C may
(equivalently) be taken to be timelike, causal, or lightlike.

In particular, a Cauchy surface has empty Cauchy horizon, and yields M as a disjoint union

M = St I+(S)t I−(S). (5.183)

The implication 1⇒ 2 is trivial for the first members (which imply the second). Conversely, if
HC(S) = /0 then D(S) must be closed, but by Lemma 5.37.6 it is also open. Since M is connected,
D(S) = M. Furthermore, 1⇔ 3 (causal case) is almost true by definition of D(S) and of a
Cauchy surface. The equivalences within 3 are quite technical, and we omit the proofs.255

254No. 1 is Lemma 3.17 in Penrose (1972) or O’Neill (1983), Proposition 14.25 and Corollary 14.26. A topological
hypersurface is defined as in the second part of Definition 4.13, assuming all maps to be continuous. No. 2 is
Proposition 3.15 in Minguzzi (2019). No. 3 is eq. (3.2) in Minguzzi (2019). No. 4 is Proposition 3.22 in Minguzzi
(2019). No. 5 is (3.6) in Minguzzi (2019). No. 6 follows from 3 and 5, cf. Corollary 3.26 in Minguzzi (2019).

255See O’Neill (1983), Lemma 14.29 for the implication timelike⇒ causal (the converse is trivial). See also
Ringström (2009), §10.2.7, who proves 1 from 3 (timelike case), but this includes a proof of timelike⇒ causal in 3.
Given 1⇔ 3 (timelike case), Minguzzi (2019), Theorem 3.40, proves lightlike⇒ timelike (whose converse follows
from timelike⇒ causal⇒ lightlike). Note that in Lemma 14.29 O’Neill cannot exclude the case where a causal
curve hits S more than once, but in Proposition 5.38 we assume S is acausal, which excludes this by definition.
This time assuming that S is acausal, O’Neill (1983), Corollary 14.54, also directly (i.e. without assuming 1⇔ 3,
timelike case) proves the implication lightlike⇒ timelike. Note that both Hawking & Ellis (1973) and Minguzzi
(2019) define Cauchy surfaces as closed acausal sets S for which D(S) = M, whereas Geroch (1970) and Penrose
(1972) define them as achronal sets S for which D(S) = M, which is equivalent to Definition 5.32. Take t = 1 for
x≤−1, t = x for −1 < x < 0, and t = 0 for x≥ 0, in 2d Minkowski space-time. This achronal set defines a Cauchy
surface for Geroch and Penrose but not for Hawking & Ellis and Minguzzi. However, in view of Theorem 5.44 we
may always take S to be spacelike, and if we do, then by Lemma 14.42 in O’Neill (1983) it is automatically acausal.
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5.9 Time functions
Using a new technique, in this section we finish our sketch of the proof of Theorem 5.34. First,
we state a result that is important for both “wannabe” and “genuine” Cauchy surfaces:

Proposition 5.39 If S⊂M is achronal, the interior int(D(S)) of D(S) is globally hyperbolic.

Here global hyperbolicity is meant as in Definition 5.27. We will prove this proposition shortly,
but already note that it implies that a space-time with a Cauchy surface S is globally hyperbolic,
cf. Theorem 5.34.3. For given such an S, we have int(D(S)) = int(M) = M by Propositions
5.38.1. The converse inference from global hyperbolicity à la Definition 5.27 to a Cauchy surface
uses completely different arguments, which will be given later in this section.

We now sketch a proof of Proposition 5.39, based on criterion 2 in Theorem 5.34.256 If
necessary moving the Cauchy surface S in int(D(S)), as in the comments below (5.166), we
may place x ∈ D−(S) and y ∈ D+(S) (this move is not strictly necessary for the argument).257

There are two ways for the uniform bound (5.167) to fail. One is the possibility of closed causal
loops (or more generally imprisoned inextendible curves), but these would cross S many times
and this is excluded because S is achronal, cf. Theorem 5.33.1. Secondly, J(x,y) may not be
compact–not because it is unbounded but because it is not closed because of missing some points.
To understand the link with (5.167), we recall the assumption that the auxiliary Riemannian
metric h measuring arc length be complete in Theorem 5.34.2. This implies that h-geodesics
must avoid such missing points (for otherwise they would be incomplete), and they do so by
increasing h-arc length near the missing points. Take, for example, Minkowski space-time with
the origin removed. The Euclidean metric δ is incomplete on R4\{0}, but the metric

h(x) = δ /‖x‖2, (5.184)

where ‖ · ‖ is the Euclidean norm, is complete.258 Thus the h-arc length of a curve increases
arbitrarily as it approaches the origin, and hence only infinitely long curves approach the origin.
This behaviour near missing points is generic. Consequently, if the bound (5.167) is violated,
there must be causal curves from x to y coming arbitrarily close to missing points in J(x,y) and
then by Lemma 5.22 there will also be inextendible causal curves from either x or y to these
points, either of which does not cross S, contradicting S being a Cauchy surface in int(D(S)).
This argument can be made rigorous by quoting the following generalization of Lemma 5.26:259

Lemma 5.40 Let (cn : [0,bn]→M) be a sequence of fd continuous causal curves from x to y 6= x
parametrized by h-arc length, i.e. cn(0) = x and cn(bn) = y. There are two possibilities:

• Either bn→ b < ∞, in which case there exist a fd continuous causal curve

c : [0,b]→M, (5.185)

and a subsequence of (cn) that converges to c (in the sense of Definition 5.23);

256The “official” proof in Hawking & Ellis (1973), Proposition 6.6.3, or O’Neill (1983), Theorem 14.38, is very
hard to understand, though apparently uncontroversial. A much clearer version of it is given by Chruściel (2011),
Theorem 2.9.9, but the argument is still very involved. We therefore take a somewhat different route.

257One may instead use Lemma 6.6.4 in Hawking & Ellis (1973), whose proof is very clear: if x ∈D+(S)\H+
C (S),

then every past-inextendible causal curve through x intersects I−(S), and likewise for future–inextendible causal
curves, so that every inextendible curve through x ∈ int(D(S)) intersects both I+(S) and I−(S).

258Continuing footnote 219: For (5.184), where h̃ = δ , we have r(x) = ‖x‖ and ω(x) = 1/r(x) does the job.
259See Minguzzi (2019), Theorem 2.53, whose case (ii) was excluded in Lemma 5.26 by global hyperbolicity.
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• Or bn→ ∞, in which case there exist a fd future intextendible continuous causal curve

c : [0,∞)→M, (5.186)

with c(0) = x and a subsequence of (cn) that converges (uniformly) to c, as well as
a pd past intextendible continuous causal curve d : (−∞,0]→ M with d(0) = y, and
subsequences (cnk) of (cn) and (bnk) of (bn) such that dk(t) := cnk(t + bnk)→ d.

In the second case, the limit curve c starting at x somehow fails to reach y (acquiring infinite
h-arc length by wandering around), whereas d, starting at y and “moving back in time”, similarly
fails to reach x. This is the situation mentioned in the heuristic part of the proof: at least one of
these curves fails to reach S and hence S could not be a Cauchy surface in int(D(S)). �

The converse implication from Definition 5.27 to the existence of a Cauchy surface is very
different and is based on the construction of a time function:

Definition 5.41 A time function t : M→ R is a continuous surjection that strictly increases
along any fd continuous causal curve.

We now show that global hyperbolicity implies the existence of time functions,260 having further
properties guaranteeing that each level set

Σt := {x ∈M | t(x) = t} (5.187)

is a Cauchy surface. Thus we do not get one Σ but a whole family (Σt), which foliates M by

M = tt∈RΣt . (5.188)

To construct t, we once again take a complete Riemannian metric h on M, as well as some at
most countable open cover (Vn) with precompact elements (i.e. Vn is compact for each n), so
that M = ∪nVn, with some associated partition of unity (φn) subordinate to the cover.261

We then turn the standard Riemannian measure µh induced by h,262 into a probability measure
νh = χµh, where the function χ : M → R+is defined by χ = ∑n 2−nφn/

∫
Vn

dµnφn. Without
any assumption on a space-time (M,g), this measure is: i) finite (i.e. νh(A)< ∞ for any Borel
measurable A⊂M); ii) open, in that νh(U)> 0 for any open set U ⊂M; iii) regular (in the usual
sense of measure theory);263 and iv) assigns zero measure to the achronal boundaries ∂ I±(x).

Any measure with these properties can be used in the following construction. Define

V± : M→R+; t : M→R; (5.189)

V±(x) := νh(J±(x)); t(x) := ln
(

V−(x)
V+(x)

)
. (5.190)

260The existence of a time function is equivalent to the weaker assumption of stable causality, which means that a
space-time (M,g) has a Lorentzian metric g′ such that (M,g′) is causal and g(X ,X) ≤ 0 implies g′(X ,X) < 0. See
e.g. Minguzzi & Sánchez (2008), Definition 3.52 and Theorem 3.56. Global hyperbolicity yields (5.191) below.

261This means that ϕn ∈C∞
c (Vn) and ∑n ϕn(x) = 1 for all x ∈M.

262This measure is defined intrinsically, but in coordinates we have dµh(x) =
√

deth(x)dx0 · · ·dx3. See §7.1.
263This means that for any Borel set A⊂M one has outer regularity νh(A) = inf{νh(U) |U ⊃ A,U ⊂M open}

as well as inner regularity νh(A) = sup{νh(K) | K ⊂ A,K ⊂ A,K compact}. This follows from the fact that νh is
equivalent to Lebesque measure in any local chart, which also implies the last property, given that the achronal
boundaries ∂ I±(x) have dimension 3 and νh is supported in dimension 4.
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Now very simple examples (e.g. Quinten space-time) show that V− and V− may easily be dis-
continuous, but compactness of all double cones is sufficient to make both functions continuous;
in fact, for any sequence xn→ x one then has 1J±(xn)→ 1J±(x) a.e.264

Furthermore, any of the assumptions of causality, non-imprisonment, or strong causality
(which are equivalent when all double cones are compact, see below) suffice to prove that:265

1. V− strictly increases and V+ strictly decreases along fd causal curves. This is natural, as
moving forward in time leaves more causal past behind and anticipates less causal future.

2. Along any inextendible causal curve c : R→M (parametrized by h-arc length) one has

lim
t→∞

V+(c(t)) = lim
t→−∞

V−(c(t)) = 0; (5.191)

lim
t→±∞

t(c(t)) = ±∞. (5.192)

See Lemma 5.22 for the domain R. Eq. (5.191), which implies (5.192), is also quite intuitive,
for if there had been any causal future J+(x) left beyond the end of the curve, then c(·) could
have been extended into it and hence would not have been future inextendible. Similarly, no
causal past is left before the beginning of the curve.266 This implies that t as defined in (5.190)
has the right properties to serve as a time function, which strictly monotonically increases from
−∞ to +∞ along any fd causal curve parametrized by h-arc length. This also means that any
such curve hits each set Σt as defined by (5.187) once, which makes all Σt Cauchy surfaces. �

This finishes the sketch of the proof of Theorem 5.34, but there is much more to say about
the potential smoothness of the Cauchy surfaces Σt as well as of the time function t. We first
sharpen the definition of a time function (see Definition 5.41 in the following way:

Definition 5.42 A temporal function is a smooth surjection t : M → R with timelike past-
directed gradient ∇t= ](dt), or, in coordinates, ∇µt= gµν∂νt.

Temporal functions are time functions, for if c : I→M is fd timelike, then ċ(t) = g(∇t, ċ) is
strictly positive along c(·).267 If t is a temporal function, then the level set Σt as defined in
(5.187) is spacelike, since for any x ∈ Σt and X ∈ TxM we have gx(∇t,X) = Xt(x), which by
(5.187) vanishes for any X ∈ TxΣt . This forces gx(X ,X) > 0 by the following lemma.

Lemma 5.43 For any Lorentzian metric g, if g(T ,T ) < 0 and g(T ,X) = 0, then g(X ,X) > 0.

Proof. Taking an orthonormal basis reduces this to the Minkowski case. Let T = (T0,~T )
and X = (X0,~X). Then T 2

0 > ‖~T‖2 and T0X0 = ~T ·~X , so that |T0X0| ≤ ‖~T‖‖~X‖. This implies
X2

0 < ‖~X‖2, since X2
0 ≥ ‖~X‖2 gives a contradiction. For example, if T0 > 0 and X0 ≥ 0 the

assumptions give T0 > ‖~T‖ and T0X0 ≤ ‖~T‖‖~X‖, which contradict X0 ≥ ‖~X‖. The other three
cases (i.e. T0 > 0 and X0 ≤ 0, T0 < 0 and X0 ≥ 0, and T0 < 0 and X0 ≤ 0) are similar. �

264See e.g. Chruściel (2011), §2.11 for very clear proofs of this and the following properties.
265The stronger property of global hyperbolicity is needed to prove (5.191), which implies (5.192). See Minguzzi

& Sánchez (2008) as well as the papers by the latter and Bernal cited in footnote 242.
266 To illustrate what happens at a more technical level, let us show that x 7→ νh(V−(x)) is strictly increasing along

fd causal curves c. Take x and y ∈ J+(x) on c; then y /∈ J−(x) by causality. Global hyperbolicity also guarantees
that J−(x) is closed, so that its complement in M is open and hence y has an open nbhd U disjoint from J−(x). But
J−(x)⊂ J−(y) and νh(U ∩ J−(y)) = νh(U ∩ I−(y))> 0, by the properties of νh, so that νh(J−(y))> νh(J−(x)).

267Here ċ(t) : C(I)→M applies the tangent vector ċ to the function t, not te be confused with ċc(t) ∈ Tc(t)M.
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We then have the following result, which smoothens out earlier topological properties:

Theorem 5.44 A space-time (M,g) is globally hyperbolic iff it has a smooth spacelike Cauchy
surface. In that case:

1. There exists a smooth temporal function t : M→R such that M is foliated as in (5.188),
where each Σt is a smooth spacelike Cauchy surface and all Σt are diffeomorphic.

2. M is diffeomorphic to R×Σ, where Σ is diffeomorphic to Σt for any t ∈R.

3. (M,g) is isometric to (R×Σ,g′), where the metric g′ is given in the 3+ 1 form

g′ = −L2dt2 + g̃, (5.193)

in which L : R×Σ→ (0,∞) is the (smooth) lapse function and g̃ is a (possibly time-
dependent) Riemannian metric on the Cauchy surface Σ.

This landmark theorem is due Bernal and Sánchez.268 The proof, which is very technical,
constructs a temporal function t, which gives a time orientation on M via the vector field

T = −∇t. (5.194)

In Minkowski space-time, with t= x0, this would be T = ∂t , whence the minus sign in T . This
implies claim 2, for in the construction of the map R×Σ→M sketched after (5.166) one can
take T proportional to ∇t. The remainder of the proof requires machinery beyond our scope.

Definition 5.27 and Theorem 5.34 state the various definitions of global hyperbolicity as they
have been used for about the first 50 years of Lorentzian causality theory, except that in Definition
5.27 strong causality has traditionally been used instead of non-imprisonment (and even the
still weaker causality property could have been used).269 However, given compactness of the
double cones, if dim(M) ≥ 3 it turns out to be sufficient for global hyperbolicity to require the
extremely weak condition that (M,g) be non-totally vicious, which means that there need just be
a single point through which no closed timelike curve passes.270 If all J±(x) are closed (which,
as Lemma 5.29 shows, is a consequence of compactness of the double cones), this implies that
(M,g) is strongly causal (and hence non-imprisoning). Moreover, if (M,g) is totally vicious
(i.e. there is a closed causal curve through each point), then J±(x) = M for each x. If it is also
required that all J(x,y) are compact, this forces M to be compact. Hence if M is non-compact
and all double cones are compact, then (M,g) cannot be totally vicious. In conclusion, under
physically reasonable assumptions global hyperbolicity has reached a very simple form:271

Proposition 5.45 Let (M,g) be a space-time with dim(M) ≥ 3 and M non-compact. Then
(M,g) is globally hyperbolic iff all double cones J+(x)∩ J−(y) are compact.

268See references in footnote 242. Apart from these, see also Ringström (2009), chapter 11. Other constructions
of temporal functions were given by Fathi & Siconolfi (2012) and Chruściel, Grant, & Minguzzi (2016).

269See Bernal & Sánchez (2006) and Minguzzi (2019).
270And hence a space-time is totally vicious if some closed timelike curve passes through every point.
271For a complete proof see Hounnonkpe & Minguzzi (2019), which relies on results by Clarke & Joshi (1988).

Briefly, the latter proved the inference from non-total viciousness to chronology (assuming an even weaker property
than closedness of all sets J±(x), namely that (M,g) is reflecting, which means that x ∈ J−(y) iff y∈ J+(x)), which
the former then strengthened to strong causality. This simplification is quite remarkable, after 50 years!
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5.10 Global hyperbolicity: AdS as a counterexample
After all this abstraction, some specific examples may be welcome. Minkowski space-time
(M,η) is globally hyperbolic as well as geodesically complete, and the removal of any point
from it ruins both properties in a somewhat trivial way. Much more interesting examples arise
from the two combinations geodesically complete but non-globally hyperbolic and the opposite,
i.e. geodesically incomplete but globally hyperbolic. The latter will be the subject of chapters
6 and 9. A nice example of the former is anti de Sitter space-time AdSn

ρ , defined for any
n = dim(AdSn

ρ)≥ 2 and ρ > 0, see §4.4. To make our point, the case n = 2, ρ = 1 suffices, for
which we simply write AdS≡ AdS2

1; the conclusions will be true for any n≥ 2 and ρ > 0.
Eq. (4.92) gives AdS as the set of all (x−1,x0,x1) ∈ R3 such that x2

−1 + x2
0 = x2

1 + 1, with
metric induced from η ′= diag(−1,−1,+1). This space is homeomorphic to S1×R and contains
closed timelike curves, such as t 7→ (cos t, sin t,0) defined on t ∈ [0,2π ]. For this reason alone it
cannot be globally hyperbolic, but its Lorentzian cover ÃdS, where these curves are defined for
all t ∈R and no longer close, isn’t either, as it fails on compactness of double cones J(x,y).

-7,5 -5 -2,5 0 2,5 5 7,5 10

-2,5

2,5

5

7,5

Some lightlike geodesics in 2d anti de Sitter space-time. The χ-axis is horizontal, the τ-axis
is vertical. The blue lines are the two lightlike geodesics through the origin x = (0,0), cf.
the corresponding cross in 2d Minkowski space-time M2. These blue curves asymptote to
± 1

2 π as |x| → ∞. Similarly, the red lines are the lightlike geodesics through y = (4,0). The
set J+(x) is the area above the two upper blue lines (including boundary) whilst J−(y) is
the area below the two lower red lines (idem). The double cone J+(x)∩ J−(y) stretches on
forever to the left and to the right and hence is not compact, violating global hyperbolicity.

To see this,272 introduce local coordinates (τ , χ) ∈ (−π ,π)×R initially on AdS by

x−1 = cosτ cosh χ; x0 = sinτ cosh χ; x1 = sinh χ . (5.195)

In these coordinates, the metric on AdS is simply given by

ds2 = −cosh2
χ dτ

2 + dχ
2, (5.196)

and therefore ÃdS can be globally coordinatized by (τ , χ) ∈R2, with the same metric (5.196).
272 Let R3 have any (semi) Riemannian metric g′. Take a surface Σ = F(U) ⊂R3 defined by a smooth injective

function F : U →R3 satisfying the conditions stated at the beginning of §4.3, where U ⊂R2 is open. Then the
induced metric g on Σ is given by gµν (u1,u2) = ∑i, j=1,2,3 g′i j

∂F i(u1,u2)
∂uµ

∂F j(u1,u2)
∂uν , where µ ,ν = 1,2.
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Taking χ(t) = t, lightlike (pre)geodesics in ÃdS are solutions of τ̇±(t) = ±1/cosh t. Thus

τ±(χ) = ±2arctan(tanh( 1
2 χ)), (5.197)

gives the lightlike (pre) geodesics through (0,0) are whilst those through (4,0) are the same,
moved up by (4,0). In the (τ , χ) plane these give the blue and red curves, respectively.

Timelike geodesics in AdS are also quite remarkable, as the following picture shows.
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Some timelike geodesics γC through the origin in AdS. The inner blue one has C = 0.1, the
black one has C = 0.5, then next blue one has C = 1, and the outer red curve has C = 2.
For C = 0 the geodesic is simply the τ-axis; the geodesics corresponding to negative values
of c are the mirror images (in the τ-axis) of those displayed. All geodesics spiral around the
τ-axis and continue to focus and defocus. Mind the difference in scale between the axes!

The geodesic equations for the metric (5.196) are easily found to be

τ̈ + 2tanh χ · τ̇ χ̇ = 0; (5.198)

χ̈ + cosh χ sinh χ · τ̇2 = 0, (5.199)

and one can explicitly find all timelike geodesics through the origin, namely

χC(t) = arcsinh(C · sin t); (5.200)

τC(t) =
√

1+ c2
∫ t

0
ds (1+C2 sin2 s)−1, (5.201)

where C ∈R is a constant,273 physically interpreted via χ̇(0) =C and τ̇(0) =
√

1+C2. These
geodesics γC(t) = (χC(t),τC(t)) are all timelike, with g(γ̇C(t), γ̇C(t)) = −1 for all C and t ∈R.

Combining the two plots gives another way to see that AdS is not globally hyperbolic, because
vast areas in J+(0,0) are inaccessible by timelike curves from the origin, eternally attracted to
the τ-axis as these apparently are. Thus global hyperbolicity would contradict Theorem 5.30.

273For 0 < t < 1
2 π one has τ(t) = arctan(

√
1+ c2 · tan t), but the formula in the main text is more useful.
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5.11 Epilogue: Malament’s theorem
The strategy in this chapter so far was to define and explore the causal structure of a space-time
(M,g), i.e. the relations J± and I± (see §5.3), from its metric g. It suffices to consider I± (which
is topologically convenient because it is open), since it determines J± and hence the entire causal
structure.274 To what extent, then, do different metrics give rise to the same relations I±?

First, I± only depend on the conformal equivalence class of g; that is, if g′ = Ω2g for some
smooth function Ω : M→ (0,∞), in which case we say that ĝ and g are conformally equivalent,
then g and ĝ define the same relations I± (etc.). See also §1.9, §4.5, §8.6, and §10.1. But
the converse is false without additional assumptions: for example, there are many conformally
inequivalent metrics even on M = R4 that are so badly behaved that x ∈ I+(y) for all x,y. Some
causal condition on (M,g) is therefore necessary, and the right one turns out to be the following.

Definition 5.46 A space-time (M,g) is future/past distinguishing if, for each x,y ∈M, one has
I+/−(x) = I+/−(y) iff x = y. It is distinguishing if it is both future and past distinguishing.

It can be shown that (M,g) is (future/past) distinguishing iff each x ∈M has arbitrarily small
nbhds U such that each (future/past directed) causal curve from x to y ∈U lies in U (i.e., fd/pd
causal curves from x that leave U cannot return to U ; in particular this excludes causal loops).275

Define a causal isomorphism between space-times (M,g) and (M′,g′) to be a bijection
ψ : M → M′ such that x� y iff ψ(x)� ψ(y). A conformal isometry between (M,g) and
(M′,g′) is a diffeomorphism ψ : M→M′ for which ψ∗g′ and g are conformally equivalent.

Theorem 5.47 Any causal isomorphism between distinguishing space-times is a conformal
isometry. In particular, the underlying bijection is automatically smooth.

We call this Malament’s theorem.276 It is a combination of four results (number 3 is trivial):277

Lemma 5.48 Let (M,g) and (M′,g′) be space-times and ψ : M→M′ a causal isomorphism.

1. If (M,g) and (M′,g′) are distinguishing, ψ and ψ−1 preserve continuous timelike curves.

2. If ψ and ψ−1 preserve continuous timelike curves, they preserve all continuous curves.

3. If ψ and ψ−1 preserve continuous curves, ψ is a homeomorphism.

4. If ψ is a homeomorphism, it is a conformal isometry (and hence it is smooth).

Parts 1, 2, and 3 move from causal to topological structure, on an appropriate causal assumption.
Part 4 (which historically preceded the others) subsequently moves from topological and causal
structure to smooth and conformal structure, without any assumption. We omit the proof.

274This follows for example from Lemma 1 in Malament (1977) to the effect that if ψ : M→M′ is a homeomor-
phism such that both ψ and ψ−1 preserve fd continuous timelike curves, then both ψ and ψ−1 also preserve fd
continuous null geodesics. Then use Proposition 5.13 in this book. See also Kronheimer & Penrose (1967), §2.4.

275On the causal ladder, ‘distinguishing’ lies between ‘causal’ and ‘strongly causal’ (see Definition 5.28).
276As explained by Wüthrich & Huggett (2020), Theorem 5.47 has its roots in special relativity (Robb, 1914,

1936; Reichenbach, 1924; Zeeman, 1964). Key papers in GR include Kronheimer & Penrose (1967), who initiated
the abstract study of causal structures in GR and introduced distinguishing space-times; Earman (1972), who first
suggested this condition in the present context; Hakwing, King & McCarthy (1976), who proved part 4 of Lemma
5.48; and finally Malament (1977). See also Malament (2012), §2.2, Appendix, and Minguzzi (2019), §4.3.4.

277 Parts 1 and 2 are based on Definition 5.20, replacing ‘causal’ by ‘timelike’. See also Malament (1977), p. 1400.
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6 The singularity theorems of Penrose and Hawking
We now turn to the famous singularity theorems of Penrose and Hawking. The possibility of
“singular” space-times in GR was suggested by three of the earliest exact solutions to Einstein’s
equations: namely the Schwarzschild solution gS from 1916, the de de Sitter universe gdS from
1917, and the expanding metric gF of Friedman (1922). With dΩ given by (4.71), these are:278

gS = −((r−2m)/r)dt2 +(r/(r−2m))dr2 + r2dΩ; (6.1)

gdS = −cos2(r/R)dt2 + dr2 +R2 sin2(r/R)dΩ; (6.2)

gF = −dt2 + a(t)2(dχ
2 + f (χ)2dΩ). (6.3)

• In the vacuum Schwarzschild solution (6.1), m > 0 is the mass of some gravitating object
and the space-time is MS = R×Σ, where at least initially, in polar coordinates (r,θ ,ϕ),
the spatial part Σ ⊂R3 is restricted to r > 2m. Here the value r = 2m looks threatening,
as does r = 0 (although the latter is not, as yet, in the domain of the solution).279

• The de Sitter metric (6.2), initially defined for 0≤ r < R, requires a cosmological constant
λ = 3/R2, where R is supposed to be the radius of the visible universe. This time the

potential danger lies at r = R, which looks as bad as r = 2m in the Schwarzschild metric.

• Unlike the others, the solution (6.3) requires matter. The space-time is M = (0,∞)×Σ,
where Σ is one of the following spaces of constant curvature k (see Theorem 4.8):

– Σ = S3 (the 3-sphere) and f (χ) = sin χ for k = 1 (positive curvature);

– Σ = R3 (Euclidean space) and f (χ) = χ for k = 0 (zero curvature),

– Σ = H3 (the 3d hyperboloid) and f (χ) = sinh χ for k = −1 (negative curvature).

Today it is clear that r = 2m and r = R are just singularities of the coordinate systems in which
the Schwarzschild and de Sitter solution are expressed,280 whereas in the Schwarzschild solution,
r = 0, if it were part of space-time (but it is not!), would be a real singularity of the metric and
its associated tensors.281 Likewise t = 0 for the Friedman metric.282 But it took about 50 years
to clarify what the concept of a “singular space-time” was actually supposed to mean in the first
place (at least mathematically–and perhaps still not to complete satisfaction); as we shall see,
initially even Einstein, Hilbert, and Weyl were confused about both the mathematical and the
physical meaning of “singularities” in space-time. Since their struggle and its eventual resolution
are very instructive (even apart from the singularity theorems), let us review this history first.283

278For clarity none of these metrics is given in the original coordinates, and our comments are anachronistic.
279We will study this solution in detail in §9.2. Mathematically, it also makes sense for m < 0, see §9.5.
280 This is not to say that nothing interesting happens at r = 2m: this hypersurface is an event horizon, see chapters

9 and 10. Even the regular (constant-curvature) de Sitter space-time has a kind of horizon at r = R, see §9.1.
281The singularity is detected by the Kretschmann scalar Rρσ µν Rρσ µν , which goes like r−6 as r→ 0, see (9.18).
282The function a(t) depends on the matter content of the universe. For a dust-filled spatially flat universe one has

a(t) ∼ t2/3 as t→ 0, where also the Ricci scalar R blows up. The precise form of R(t) again depends on the matter,
but in the same dust-filled case one finds R(t) ∼ t−2. Similarly for other forms of matter. See also §8.3.

283 Israel (1987), Tipler, Clarke & Ellis (1980), Earman (1995, 1999), Senovilla (1998), Senovilla & Garfinkle
(2015), and Curiel (2019a) survey singularities and singularity theorems in GR in a historical context. The classical
textbook treatment of singularity theorems remains Hawking & Ellis (1973), followed by O’Neill (1983), Wald
(1984), Clarke (1993), Beem, Ehrlich, & Easley (1996), Senovilla (1998), Kriele (1999), Joshi (2007), and Minguzzi
(2019). For Penrose’s theorem in particular see also Aretakis (2013) and Galloway (2014).
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6.1 Singularities and singularity theorems: Historical introduction

Both Hilbert (1917) and Einstein (1918d) saw singularities as points in space-time where some
components gµν of the metric are ill-defined and/or det(g) = 0, with some attention paid to
the role of the coordinate system. Both failed to recognize the apparent “singularity” of the
Schwarzschild metric at r = 2m as a mere coordinate singularity, but they were not the only
ones:284 the sphere at r = 2m was alternatively described as a “discontinuity” (Schwarzschild),
“magic circle” (Eddington), “barrier” (Kottler), “limit circle” (Brillouin), and even “the death”
(Nordmann).285 It was only Lemaître (1933), §11, who correctly concluded that:

The [r = 2m] singularity of the Schwarzschild field is thus a fictitious singularity, analogous
to that which appears at the horizon of the centre in the original form of the de Sitter universe.

But his work was not well known and took decades to be digested.286 Until the 1930s almost no
attention was paid to what we now understand to be the real singularity of the Schwarzschild
metric at r = 0, firstly because Newtonian gravity has a similar singularity which was seen as
unproblematic, and secondly because this vacuum solution was not supposed to be valid in the
interior of a star, i.e. as r→ 0; indeed no star was known or expected to have a radius r < 2m.287

Similarly, both Einstein (1918d) and Weyl (1918) mistakenly saw r = πR/2 as a genuine
singularity in de Sitter’s metric (6.2).288 But Einstein did understand that r = 0 was a coordinate
singularity and also understood the need for different coordinate patches in defining a metric:

Furthermore, the continuity condition for the gµν and the gµν [including their first derivatives,
as he says earlier] must not be interpreted to mean that it must be possible to choose
coordinates such that the conditions are satisfied in the entire space. Obviously, one must
only demand that for the neighborhood of every point one can select coordinates such that
the continuity conditions are met within this neighborhood.289 (Einstein, 1918d, p. 271)

Counterfactually granting Einstein (1918d) that r = πR/2 is indeed a “singularity”—since he
believed that ‘no choice of coordinates can remove this discontinuity’—the interesting and
lasting point is his subsequent argument that it is ‘genuine’. Namely, he defines a point P to lie

in the finite domain when it can be connected by a curve with a fixed, chosen point P0, so
that the distance integral

∫ P
P0

ds has a finite value. (Einstein, 1918d, p. 270)

284‘Until the early 1960s the general opinion was that it was a real singularity’ (Earman & Eisenstaedt, 1999, p.
188). Hilbert (1917) required a coordinate transformation intended to remove an apparent singularity to be C1 and
invertible even at the location of the (alleged) singularity. This defeats the purpose and is not even true for changing
from Cartesian to polar coordinates. ‘How Hilbert, one of the great mathematical minds of the century, could have
failed to appreciate this elementary point defies rational explanation.’ (Earman & Eisenstaedt 1999, p. 193).

285The author learnt this in a seminar by Dennis Lehmkuhl on April 12th, 2021.
286Apparently unaware of Lemaître (1933), Einstein (1939), p. 922, still called the Schwarzschild metric “singular”

at r = 2m since g00 vanishes and ‘both light rays and material particles take an infinitely long time (measured
in “coordinate time”) in order to reach the point r = 2m when originating from a point r > 2m’ (scare quotes are
Einstein’s but emphasis added to highlight the changes from his reply to de Sitter below). See also Godart (1992),
Eisenstaedt (1993), Earman (1995), §1.2, and Earman & Eisenstaedt (1999), §2. It seems that Finkelstein (1958)
introduced the modern understanding of r = 2m (now no longer seen as singular) as a one-way membrane. But
he did not use the term “event horizon”, which had just been introduced by Rindler (1956), who in turn did not
mention the Schwarzschild solution! It was Penrose (1968) who first put all this together. See Chapters 9 and 10.

287This was also Einstein’s (final) reply to Hadamard, who during a lecture in Paris on April 5, 1922, asked
Einstein what happened if the radius of the Sun were less than the Schwarzschild radius (Biezunski, 1987).

288See Earman & Eisenstaedt (1999), Nussbaumer & Bieri (2009), and Janssen (2014) for this episode.
289Translation taken from Einstein, 2002b, p. 37. This also applies to the next quote.
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He then shows that the (alleged) singularities at r = πR/2 lie ‘in the finite domain’, concluding
that ‘the De Sitter solution has a genuine singularity’ (eine echte Singularität’). This, then, he
considers ‘a grave argument against the admissibility of [de Sitter’s] solution’.

Although the example to which he applies it is incorrect, Einstein’s logic as such is clear:

1. He defines exactly what he means by a singular space-time (or ‘solution’), namely:

(a) There must be some point P where in all coordinate systems some component gµν or
gµν (or its first derivative) fails to be continuous (which is the case e.g. if det(g) = 0);

(b) P can be connected to some “regular” points P0 by a curve of finite proper length.

2. He then stipulates that admissible space-times must be non-singular, which in view of the
preceding text means that either the metric is regular at all points P, or, if there happen to
be any singular points, these must lie at infinite (proper) distance from all regular points.

Criterion 1. (a) is at odds with the modern notion of a (smooth) Lorentzian manifold, which
cannot contain such points P. But in view of the examples it was (albeit mistakenly) applied to
(viz. de Sitter at r = R and Schwarzschild at r = 2m), it was hardly unreasonable at the time; in
connection with singularities the modern view where the metric is by definition regular (smooth)
at any point of space-time was only spelled out by Misner in the early 1960s (see below).290

Einstein’s second criterion arguably foreshadows causal geodesic incompleteness as “the”
(1960s) definition of a singularity in space-time (see below). However, instead of incomplete
causal geodesics (cf. Definition 5.18) Einstein uses arbitrary curves of finite proper length, which
considerably weakens the case: any two points that can be connected by a causal curve of infinite
proper length can also be connected by a causal curve of finite proper length,291 so for causal
curves Einstein’s criterion is vacuous as stated. For spacelike separated points, on the other hand,
his criterion seems to lack physical relevance.292 See also §10.4, where Penrose almost puts the
clock back to Einstein, except that, aware of the problem, he uses inextendible causal curves.

Even in the absence of satisfactory definitions of a singular space-time, towards which little
progress was made until the 1960s, one may look for “singularity theorems” prior to Penrose’s.
With hindsight, various cosmological results from the 1930s, due to Tolman, Robertson, de Sitter,
Synge, and Lemaître, may be classified as “singularity theorems”, in which “singularities” are
defined in diverse ways, including zero volume (or radius), infinite density, as well as problematic
expressions for the metric.293 Lemaître (1933), which stands out in its astronomy, mathematics,
and physics, was the first paper to use an energy condition.294 But all these authors immediately
give arguments why their results must be mathematical artifacts, typically by appealing to their
unrealistic underlying idealizations or to unknown new physics. Even Lemaître writes:

The matter has to find, though, a way of avoiding the vanishing of its volume.
( Lemaître, 1933, p. 678 of 1997 reprint)

290Even for mathematicians, leaving out singular points from the space under consideration is not an obvious
move, as for example algebraic geometry, and, even within differential geometry, stratified spaces show.

291As pointed out by Clarke (2003), pp. 2–3, in precisely the present context of Einstein (1918d), this is achieved
by ‘wiggling the curve to make its speed close to the speed of light’.

292In de Sitter one can reach singular points (r = πR/2) from regular ones (0≤ r < πR/2) with any kind of curve.
293See Earman (1999) for a review of such results, the first of which is Tolman & Ward (1932).
294This happens after eq. (2,10) on page 678 of the reprint in 1997, where he states that ‘in all reasonable

applications T 1
1 , T 2

2 and T 3
3 will be negative, and in all cases less than T 4

4 = ρ in absolute value’.
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Meanwhile, progress was also made on the astrophysical side.295 Light stars were found to
retire as white dwarfs, in which nuclear burning has ended and inward gravitational pressure
is stopped by a degenerate electron gas. In 1931, Chandrasekhar and Landau independently
discovered that this only works for masses M ≤ 1.46M� (we take the current value); heavier
stars collapse into neutron stars (typically after a supernova explosion). But also these have an
upper mass, as first suggested by Oppenheimer & Volkoff (1939); the current upper bound is
about 2.3M�. Heavier stars collapse into a black hole. Yet this conclusion, so obvious with
hindsight, was resisted as much as the idea of a big bang, despite a paper by Oppenheimer &
Snyder (1939) in which the collapse process was explicitly described within GR, albeit under the
assumption of spherical symmetry and an idealized equation of state.296 See also §9.4. It was:

a manuscript that has strong claims to be considered the most daring and uncannily prophetic
paper in the field. There is nothing in this paper which needs revision today.

(Israel 1987, pp. 226–227)

But there is a big difference between our perspective and the contemporary one:

At the end of the 1930s not only was there no agreement on how to define singularities,
there was not even a consensus about the status of singularities in the key test case, the
Schwarzschild solution. (Earman, 1999, p. 240)

After the war, the next step was taken by Raychaudhuri (1955), who studies a universe filled
with dust, i.e. T µν = ρuµuν , but allows the energy density ρ to be an arbitrary positive function
ρ(t,~x); in previous treatments ρ depended on t alone. His result is clear from the abstract:

a simple change over to anisotropy without the introduction of spin does not solve any of the
outstanding difficulties of isotropic cosmological models.297 (Raychaudhuri, 1955, p. 1123)

Instead of the parameter θ = ∇µuµ familiar from modern renditions of his work (which go back
to the Hamburg school, see footnote 302), Raychaudhuri uses the volume element

√
−det(g),

or rather G = (−det(g))1/6, but these are related by (6.26); in what follows we anticipate the
notation used in §6.2 below.298 If Rµνuµuν ≥ 0 (which Raychaudhuri infers from the energy
condition ρ ≥ 0 and the Einstein equations) and ωµν = 0 (i.e. if the flow is irrotational), then
G→ 0 at some finite time in the past.299 Justifying his abstract, he also finds that the time from
such a ‘singular state’ to ‘the present state’ is a maximum for isotropic models, so that adding
anisotropy to isotropic cosmological models even brings the initial singularity forward!300

Similar comments apply to Komar (1956), whose Introduction is worth quoting:

295See Israel (1987), Thorne (1994), and Longair (2006) for the relevant history, which is fascinating by itself.
296The interior part of their solution is just the contracting part of Friedmann’s (1922) solution. See also Datt

(1938), whose work was all but ignored; the poor author ‘died soon after on the operation table’ (Dadhich, 2020).
297By ‘spin’ Raychaudhuri means ωi j =

1
2 (∇iu j−∇ jui), noticing that ωi j = 0 iff the flow uµ is hypersurface

orthogonal. He cites Gödel (1949) as an example where ‘spin’ contributes to making this famously acausal solution
nonsingular. Gödel’s paper also played a significant role in the mathematical turn GR took in the 1960s (Tipler,
Clarke, & Ellis, 1980, p. 111). The July 2007 issue of Pramana–Journal of Physics (Volume 69, no. 1) is devoted to
Amal Kumar Raychaudhuri (1923–2005) and his equation. See also Tipler, Clarke, & Ellis (1980), Earman (1999),
and Ehlers (2006) for the history and context of Raychaudhuri’s work in GR.

298 For this reason, the famous equation (6.27) named after Raychaudhuri cannot be found in his paper; it appears
for example in Ehlers (1961), eq. (36). Instead, one finds an equivalent second-order differential equation for G.

299 Since ρ
√
−det(g) = ρG3 is constant, this suggests ρ → ∞, but G depends on the coordinates and G→ 0

could merely mark a singularity of the congruence. On Raychaudhuri’s assumption that matter moves along the
timelike geodesics tangent to u, however, he does obtain a density and curvature singularity.

300In general, θ → ∞ could indicate that the hypersurface orthogonal to the flow becomes lightlike (and then
timelike), in which case neither the density nor the space-time needs to be singular (Ryan & Shepley, 1975; Collins
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A principal success of the general theory of relativity in the realm of cosmology is given by
the Friedmann solution of the field equations. This solution, which employs the assumptions
that the universe is spacially isotropic and that the state of matter may be represented
by incoherent dust, yields the result that the universe is not stationary, but is rather in
a state either of expansion from a singular point in time (which would correspond to
creation), or of contraction toward a singular point in time (which would correspond to
annihilation). The question naturally arises whether such singular points are a consequence
of the particular symmetry presupposed in Friedmann’s model, or whether perhaps for more
general distributions of matter one need not expect instants of creation or annihilation of the
universe. The purpose of this paper is to show that singularities in the solution of the field
equations of general relativity are to be expected under very general hypotheses (enumerated
specifically below), and in particular that the singular instant of creation (or annihilation)
necessarily would occur at a finite time in the past (or future, respectively).

(Komar, 1956, p. 104)

Komar just relies on energy assumptions,301 due to which he need not specify Tµν explicitly.
But by fiat he forces his geodesic congruence to be the same as Raychaudhuri’s, including its
identification with the matter flow lines. This then leads him to very similar conclusions.302

The last important pre-Penrose paper on singularities we discuss is Misner (1963):303

the clue to clarity is to refuse ever to speak of a singularity but instead to phrase everything
in terms of the properties of differentiable metric fields on manifolds. If one is given a
manifold, and on it a metric which does not at all points satisfy the necessary differentiability
requirements, one simply throws away all the points of singularity. The starting point for
any further discussion is then the largest submanifold on which the metric is differentiable.
This is done because there is not known any useful way of describing the singularities
of a function except by describing its behavior at regular points near the singularity. The
first problem then is to select a criteria which will identify in an intuitively acceptable way
a “nonsingular space.” Evidently, differentiability is only a minimum prerequisite, since
everything becomes differentiable when the singular points are discarded. The problem is
rather to recognize the holes left in the space where singular (or even regular) points have
been omitted. (Misner, 1963, p. 924)

& Ellis, 1979; Tipler, Clarke, & Ellis, 1980; Earman, 1999). Instead of a singularity in the energy density this
implies that the domain of influence of some initial spacelike hypersurface carrying the initial data for the Einstein
equations comes to an end, so that a (necessarily lightlike) Cauchy horizon forms. This happens, for example,
in the Taub–NUT space-time (Misner, 1963; Shepley, 1964; Misner & Taub, 1969). Cauchy horizons may still
lead to singularities under a perturbation that destabilizes the Cauchy horizon, cf. §10.5. This cannot happen in
Bianchi type I models (Heckmann & Schücking, 1962) and type IX models (Shepley, 1964), where Raychaudhuri’s
argument does lead to a singularity in the energy density and even in space-time.

301These are: T00 ≥ 0 and T ≥ 0, and T00 = 0 implies Ti j = 0.
302 Similar results were found by Landau, whose Russian colleagues recognized their inconclusiveness (Earman

1999, §5). This eventually led to the so-called BKL-approach to singularities in GR (Belinski & Henneaux,
2018). Landau (undated), Raychaudhuri (1955), and Komar (1956) crossed mathematical work on relativistic fluid
mechanics and spatially homogeneous (Bianchi) cosmologies. Relevant names are Eisenhart, Synge, Lichnerowicz,
Taub, Gödel, and Behr, Ehlers, Heckmann, and Schücking from the Hamburg GR group in founded by Jordan. See
Ehlers (1961) for a contemporary review and Tipler, Clarke, & Ellis (1980) for references. Interestingly, the general
goal of all this work was ‘to find singularity free [!] fluid filled Bianchi cosmological models.’ (Ellis, 2014, p. 2).

303Misner (1963), footnote 4, thanks his PhD student Shepley for ‘preparing this review’ (i.e. of the definition
of a singularity in space-time in the Introduction), adding that ‘We have borrowed heavily from [lectures by] L.
Marcus’ (sic), i.e. Lawrence Markus (1922–2020). Shepley (1965) is a Princeton PhD thesis supervised by Misner
and Wheeler. Some relevant passages reappear in Ryan & Shepley (1975). Footnote 19 in Misner (1963) shows that
Misner & Taub (1969), which contains a similar analysis, must have been almost ready already in 1963.
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Following a comparison with the Riemannian case, geodesic incompleteness is then proposed as
a necessary condition for a space-time to be singular, in which case it is sufficient that ‘some
scalar polynomial in the curvature tensor and its covariant derivatives be unbounded on an (open)
geodesic segment of finite length,’ since this implies inextendibility of the geodesic in question
into some potential extension of the space-time. Misner therefore requires the implications

curvature singularity ⇒ (M,g) is “singular” ⇒ (M,g) is geodesically incomplete (*)

He adds that it is ‘commonly accepted’ that an ‘essentially singular space’ is not only incomplete,
but also inextendible (cf. Definition 6.1). Hence we have both necessary and sufficient conditions
for a space-time to be singular, but not yet a definition. Continuity with Einstein’s considerations
quoted above is also provided by Misner’s student Shepley (1964), whose Introduction includes:

Most cosmological models in general relativity have a point of singularity (. . . ) which
can be reached by a geodesic of finite total length from other points of the space-time
manifold, where the metric is degenerate or otherwise irregular (for example, a point where
a curvature scalar is infinite). All known dust-filled models, without cosmological constant,
have singular points, and it may be conjectured that the presence of dustlike matter filling
space always leads to a singularity. This paper shows that this conjecture is true for an
important class of universes. (Shepley, 1964, p. 1403)

All of this shows that using geodesic incompleteness as at least a necessary property of a space-
time singularity was familiar at the time.304 But it was seen as insufficient.305 Even Penrose
(1965c), the paper that made causal geodesic incompleteness as the definition of a singularity
famous, does not in fact state this definition, or indeed any other. Following a brief discussion
of gravitational collapse, Penrose explains his motivation, which is quite similar to Komar’s:

The question has been raised as to whether [the Schwarzschild] singularity is, in fact, simply
a property of the high symmetry assumed. The matter collapses radially inwards to the
single point at the center, so that a resulting space-time catastrophe there is perhaps not
surprising. Could not the presence of perturbations which destroy the spherical symmetry
alter the situation drastically? (. . . ) It will be shown that, after a certain critical condition has
been fulfilled, deviations from spherical symmetry cannot prevent space-time singularities
from arising. (Penrose, 1965c, p. 57, 58)

Penrose does not define what he means by a singularity, and does not refer to Misner (1963)
or similar work. But the examples he gives (namely gravitational collapse, Schwarzschild, and
Kerr) clearly suggest that he has curvature singularities in mind. Indeed, the preamble to his
theorem shows that he does not identify singularities with incomplete geodesics:306

The existence of a singularity can never be inferred, however, without an assumption such
as completeness [i.e. inextendibility] for the manifold under consideration. (ibid., p. 58)

304Mentioning GR (but not space-time singularities), Kundt (1963), Hermann (1964), and Fierz & Jost (1965) all
study causal geodesic (in)completeness in Lorentzian manifolds in comparison with the Riemannian case.

305Ryan & Shepley (1975), p. 80, even write: ‘completeness is vulgarly used as the definition of non-singularity.’
306‘Completeness’ here must mean inextendibility as opposed to geodesic completeness, since a few lines later

Penrose states his theorem as the incompatibility between certain assumptions (see §6.5) and future null complete-
ness, which is subsequently specified as ‘Every null geodesic in M4

+ can be extended into the future to arbitrarily
affine parameter values (null completeness)’ i.e. null geodesic completeness. Similarly, in a list of four possibilities
to avoid singularities despite his theorem, Penrose includes: ’(c) The space-time manifold is incomplete.’ Once
again, this only makes sense if he takes ‘incomplete’ to mean extendible. A slightly mysterious footnote at this
point adds that ‘The “I’m all right, Jack” philosophy with regard to the singularities would be included under this
heading!’. We take this to mean that Penrose considers extendibility a possible but cheap way to avoid singularities.
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Geodesic completeness first appears in the statement of Penrose’s theorem at the end of the
paper, in which it is a reductio ad absurdum assumption whose negation as a way out of the
ensuing contradiction is left to the reader and is nowhere defined as a singularity. All textual
evidence shows that Penrose recognized that inextendibility of the manifold, as opposed to a
‘physical’ (= curvature) singularity, could be the cause of geodesic incompleteness and as such
has to be excluded to make room for a curvature singularity as the actual cause of geodesic
incompleteness. This already foreshadows strong cosmic censorship; cf. §10.4 and §10.5.

This gap did not reduce the huge and immediate impact of the paper (later Penrose won half
of the 2020 Physics Nobel Prize on its basis, shared with Andrea Ghez and Reinhard Genzel):

However, all bets were off concerning the possibility of a non-singular outcome to a collapse
after the publication of a theorem by Roger Penrose (1965), which has claims to be con-
sidered the most influential development in general relativity in the 50 years after Einstein
founded the theory. Penrose demonstrated that singularities were, after all, a generic feature
of gravitational collapse and must appear soon after the formation of a trapped surface (a
surface from which light cannot escape outwards). Although the theorem could offer no
information about the nature of the singularity, there was a widespread belief that it would
have an all-enveloping spacelike character, as in the Schwarzschild case, thus obstructing
further development of the situation. Penrose’s paper was just as important for what it
initiated as for what it accomplished. Powerful global techniques exploiting the causal
structure of space-time had been introduced into the theory for the first time.

(Israel, 1987, p. 253)

To sum up, until 1965 it had been quite unclear whether singularities (however defined) were
generic or exceptional (i.e. typical of very special solutions with a high degree of symmetry).
Penrose’s work, almost instantly followed by Hawking’s, settled this in favour of genericity. In
fact, it seems to have been Hawking who, for better or worse, turned causal geodesic incomplete-
ness into the definition of–as opposed to a necessary condition for–a singular space-time. In the
paper announcing his singularity theorem, citing Misner (1963) at this point, he writes:

Space-time is said to be singularity free if it is time-complete (all timelike geodesics can be
extended to arbitrary length) and if the metric is a C2 tensor field. ( Hawking, 1966a, p. 444)

In his Adams Prize Essay,307 Hawking explicitly assumes inextendibility and proposes to:

take timelike and lightlike geodesic incompleteness as our definition of a singularity of
space-time. (Hawking, 1966b, §6.1)

307See Ellis (2014) and https://en.wikipedia.org/wiki/Adams_Prize for the history of this award. ‘The
Adams Prize is awarded jointly each year by the Faculty of Mathematics and St John’s College to UK-based
researchers, under the age of 40, doing first class international research in the Mathematical Sciences.’ Each year a
topic is set, which in 1966 was Geometric problems of relativity. Although Penrose won the prize, Hawking was
awarded an ‘auxiliary Adams Prize’ in the same year. The memoir of Ellis (2014) about Hawking is especially
valuable since he was around himself at the time: ‘After the publication of [Penrose’s] paper in January 1965, the
members of Dennis Sciama’s general relativity group in the Department of Applied Mathematics and Theoretical
Physics at Cambridge University (particularly Stephen Hawking, myself, and Brandon Carter) hurriedly tried to
learn the new methods that Penrose had introduced. We were assisted in this by discussions with Felix Pirani and
the group at King’s College, London; with John Wheeler and Charles Misner, who visited Cambridge from the USA
for an extended period; and with Roger Penrose and Bob Geroch, who was visiting Penrose at Birkbeck College,
London. In particular we had a one day seminar in Cambridge attended by the members of the King’s College
group, where I and Brandon Carter summarized our understandings of the ingredients of Penrose’s theorem. (. . . )
Stephen arrived at [his] results by discussions with the Cambridge group that under Dennis Sciama’s guidance met
to discuss ideas at tea time each day, and with the London groups (as well as attending many seminars, we used to
regularly catch the train to attend lectures on general relativity at King’s College, London).’ (Ellis, 2014, pp. 3–4).
See also Tipler, Clarke, & Ellis (1980), pp. 135–136.

https://en.wikipedia.org/wiki/Adams_Prize


132 The singularity theorems of Penrose and Hawking

In a later defense of this definition, he and Ellis make both a physical and a pragmatic point:308

Timelike geodesic incompleteness has an immediate physical significance in that it presents
the possibility that there could be freely moving observers or particles whose histories did
not exist after (or before) a finite interval of proper time. This would appear to be an even
more objectionable feature than infinite curvature and so it seems appropriate to regard such
a space as singular. (. . . ) The advantage of taking timelike and/or null incompleteness as
being indicative of the presence of a singularity is [also] that on this basis one can establish
a number of theorems about their occurrence. (Hawking & Ellis, 1973, p. 258)

However, crucial nuance is lost in doing so. Although Geroch (1966) uses practically the same
definition as Hawking, also citing Misner (1963), his subsequent analysis is more critical:

(a) there is no widely accepted definition of a singularity in general relativity;

(b) each of the proposed definitions is subject to some inadequacy. (Geroch, 1968, p. 526)

More than 50 years later, none of the problems that arose from Hawking’s definition has
been resolved: timelike, null (i.e. lightlike), causal, and general geodesic incompleteness are
all inequivalent to each other; each is in turn inequivalent to incompleteness with respect to
curves with either arbitrary or bounded acceleration; geodesically incomplete manifolds (of any
kind) exist without curvature singularities; global hyperbolicity is compatible with geodesic
incompleteness; geodesic completeness is compatible with a lack of global hyperbolicity; et
cetera. Nonetheless, we now formalize the “received definition” (cf. Definition 5.18).

Definition 6.1 1. A space-time (M,g) (cf. Definition 5.3) is extendible if there exists a space-
time (M′,g′) and a proper isometric embedding i : M ↪→M′ (i.e. i∗g′ = g and M′ 6= i(M))
with i(M) open. A space-time is inextendible if it has no such extension.309

2. A space-time (M,g) is causally incomplete if M contains an incomplete causal geodesic.

3. A space-time (M,g) is singular if it is both causally incomplete and inextendible in a way
relevant to its incompleteness, that is, if M contains an incomplete causal geodesic γ such
that there is no extension i : M→M′ for which the curve i◦ γ is extendible (in M′).310

A very useful criterion for proving inextendibility of space-times (M,g) is the following:311

Proposition 6.2 If either all causal (or even just all timelike) geodesics in M are complete, or
for any incomplete causal (ibid.) geodesic γ : [0,b)→M in M there is a curvature invariant
(such as R or Rρσ µνRρσ µν , etc.) that is unbounded as t→ b, then (M,g) is inextendible.

308Also cf. Geroch (1968), p. 534: ‘Finally, we remark that geodesic incompleteness (. . . ) is commonly used as a
definition of a singularity because with such a definition one can show that large classes of solutions of Einstein’s
equations are singular.’

309This tacitly assumes smoothness of (M′,g′) and i. One may also keep M′ and i smooth but lower the regularity
of g′. This is important for strong cosmic censorship, see §10.5. See also Senovilla (1998), Definition 3.1.

310 Adapted from Clarke (1993), p. 10, who uses curves instead of geodesics (cf. §10.4). See also Manchak (2014).
311See Remark 5.45 on page 155 of O’Neill (1983) or Proposition 4.4.3 in Chruściel (2020). The proof is by

contradiction: if M were extendible, then some such γ could be continued past b into M′ with a finite limit as t→ b.
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6.2 Congruences of geodesics
For the singularity theorems one needs a variation on conjugate points called focal points, which
are like conjugate points but now defined relative to a congruence of geodesics rather than a
single one. In general, a congruence of curves through an open set U ⊂M is simply a family
of curves such that each point of U lies on exactly one such curve. This is automatic if the
congruence arises as the flow of a vector field defined on U , and vice versa, a congruence yields
a vector field as its tangent, so that congruences in U and vector fields in U are interchangeable.
The following constructions on a Lorentzian manifold may be performed in either the timelike or
lightlike case. We start with the former; see §6.4 for the latter. Thus we start from a fd timelike
vector field u ∈X(U) defined locally on some open U ⊂M, normalized such that, at each x ∈U ,

gx(ux,ux) = uµ(x)uµ(x) = −1. (6.4)

The associated congruence, then, is obtained by integrating this vector field. In one example of
interest, u is the 4-velocity of some (relativistic) fluid moving in the cosmos, but for Hawking’s
singularity theorem one starts from a spacelike hypersurface Σ ⊂M (which will eventually, but
not yet, be taken to be a Cauchy surface), and defines the congruence as consisting of all timelike
geodesics γ emanating from Σ with initial velocities normal to Σ, for as long as they do not cross
and do remain timelike. This condition defines the open set U ⊃ Σ; singularities arise (outside
U) if the geodesics either cross or become lightlike. The right parametrization of each γ then
enforces (6.4), where u = γ̇; recall that g(γ̇ , γ̇) is constant along γ , so that (6.4) persists in t.

The flow ϕt of u (which at x ∈ Σ of course is given by ϕt(x) = γ(t), where γ is the geodesic
emanating from x normal to Σ and satisfying g(γ̇ , γ̇) = −1), then defines Σt = ϕt(Σ), which is
diffeomorphic to Σ as long as ϕt(x) ∈U for all x ∈ Σ, and hence one obtains a disjoint family of
spacelike hypersurfaces (Σt)t∈I , where I ⊂R is some open interval.312 Alternatively, a temporal
function t : U →R (cf. Definition 5.42) defines a family of spacelike hypersurfaces

Σt = {x ∈U | t(x) = t}, (6.5)

to each of which u remains orthogonal. Indeed, if X is a vector field on Σ, i.e. X ∈ TxΣ, then
ϕ ′t (X) ∈ Tϕt(x)Σt extends X to U . Still calling this extension X , we have LuX = 0 throughout U
and gx(u,X) = 0 for x ∈ Σ by construction. Then

d
dt

g(u,X) = ∇ug(u,X) = g(∇uu,X)+ g(u,∇uX) = g(u,∇X u) = 1
2∇X g(u,u) = 0, (6.6)

where we used ∇uu = 0 (since each γ is a geodesic), torsion-freeness (3.47) of ∇, which gives

∇uX = ∇X u+[u,X ] = ∇X u+LuX = ∇X u, (6.7)

and finally (6.4). In terms of t, the unit normal u to each Σt is then given by

u = −L∇t; (6.8)

L = 1/
√
−g(∇t,∇t), (6.9)

where the function L : U →R+
∗ is called the lapse; it will be taken up in §8.1.

312This construction fails as soon as some γ(t) = ϕt(x) reaches a focal point, as discussed in the next section.
In that case, the map ϕ(x,Y ) = expx(Y ) from NΣM to M (where NΣM is the normal vector bundle over Σ to the
embedding Σ ↪→M, i.e. X ∈ NΣ

x M if X ∈ TxM and X ⊥ TxΣ, where x ∈ Σ), which is a diffeomorphism from a nbhd
of the zero section in NΣM to a tubular nbhd of Σ in M, fails to be a diffeomorphism. Note that ϕ(x, tu) = ϕt(x).
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A timelike vector field u defines a fair amount of derived tensors, each of some importance:

aµ := uν
∇νuµ (acceleration); (6.10)

hµν := gµν + uµuν (spatial projection); (6.11)
kµν := hρ

µhσ
ν ∇ρuσ (minus extrinsic curvature); (6.12)

ωµν := k[µν ] (vorticity); (6.13)
σµν := k(µν)− 1

3θhµν (shear); (6.14)

θ := gµνkµν = hµνkµν ≡ tr(k) (expansion), (6.15)

where

k(µν) := 1
2(kµν + kνµ); k[µν ] := 1

2(kµν − kνµ); hµ

ν := δ
µ

ν + uµuν . (6.16)

It follows that

kµν = 1
3θhµν +σµν +ωµν ; (6.17)

∇µuν = kµν −uµaν ; (6.18)
θ = ∇µuµ . (6.19)

Eq. (6.17) is trivial. Eq. (6.18) can be checked by contracting both sides first with uµ , then
with uν , and finally with vectors orthogonal to u. The first contraction merely reproduces the
definition (6.10). For the second contraction we use (6.4), (3.73), and (3.52) to compute

0 = ∂µg(u,u) = (∇µg)(u,u)+ g(∇µu,u)+ g(u,∇µu) = 0+ 2g(u,∇µu), (6.20)

whence uν∇µuν = g(u,∇µu) = 0. The third contraction reproduces the definition (6.12). Eq.
(6.19) follows from (6.18) and (6.15), since again g(a,u) = 0. The interpretation of the ac-
celeration a = ∇uu is clear; by definition it vanishes for congruences of geodesics, for which

kµν = ∇µuν . (6.21)

Furthermore, eq. (6.4) implies that hµ

ν is the projection onto the orthogonal complement of u,
since we have hµ

ν uν = 0, hµ

ν Xν = X µ whenever g(u,X) = 0, and finally, hµ

ν hν
ρ = hµ

ρ .
If u comes from a spacelike hypersurface Σ as explained above, the tensor hµν is a four-

dimensional “covariant” version of the three-dimensional induced metric in Σt , in that

hµν = g(hρ

µ∂ρ ,hσ
ν ∂σ ) = hρ

µhσ
ν gρσ . (6.22)

Proposition 6.3 Let u be a timelike vector field in U ⊂M as above. Then there exists a spacelike
surface Σ ⊂U to which the vectors u are normal iff ωµν = 0 (i.e. kµν = kνµ ).

Proof. This follows from the Frobenius theorem, in the following form: the vectors orthogonal
to u form an integrable distribution (that is, they span the tangent space to a (hyper)surface Σ
orthogonal to u) iff they close under the Lie bracket. Here, this means that the condition

g(u,X) = g(u,Y ) = 0, (6.23)

implies g(u, [X ,Y ]) = 0. By (3.47) this is the same as g(u,∇XY ) = g(u,∇Y X), or as

g(∇X u,Y ) = g(∇Y u,X), (6.24)
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assuming (6.23), since 0 = X(g(u,Y )) = g(∇X u,Y )+ g(u,∇XY ), and similarly with X and Y
swapped. But (6.24), given (6.23), is equivalent to kµν = kµν and hence to ωµν = 0. �

A good way to look at θ follows from the computation (7.25) in §7.1 below, in which ∂V
should be replaced by Σt and ~N by u. Using (local) coordinates (x1,x2,x3) on Σt , such that
uxi = 0 for each i = 1,2,3, the geometric volume form on Σt is given by

σ(x) := V (x)dx1∧dx2∧dx3. (6.25)

Then (7.25), which is Luσ = θσ , comes down to V−1∂tV = θ or

θ =
1
V

∂V
∂ t

= ∂t ln(V ). (6.26)

The terminology used in (6.10) - (6.15) is hybrid: the geometric notion of extrinsic curvature
only really makes sense if the congruence arises from a hypersurface Σ in the said way, whereas
the other terms rather come from fluid mechanics. The vorticity tensor describes the rotation of
the fluid, the shear (which is traceless) describes the directed volume-preserving expansion (or,
if negative, the contraction) of the fluid, and finally θ gives the rate of total volume increase (or,
if negative, the decrease) under the flow. This is shown in the following picture: 313

Left to right: effects of rigid rotation, uniform spherical expansion, and volume-preserving shear.

We finally derive the fundamental Raychaudhuri equation for θ . Using (4.13), we compute

uσ
∇σ (∇µuν) = uσ (∇µ∇σ +[∇σ ,∇µ ])uν

= ∇µ(uσ
∇σ uν)− (∇µuσ )∇σ uν +Rνρσ µuσ uρ . (6.27)

For geodesics the first term vanishes. Eqs. (6.15), (6.21), and (6.17) then yield, along u,

∇uθ ≡ θ̇ = − 1
3θ

2−σµνσ
µν +ωµνω

µν −Rµνuµuν . (6.28)

This equation acts as a key lemma to Hawking’s singularity theorem, to which we now turn.
313Redrawn from Malament (2012), p. 174, by Edith de Jong. Caption also due to Malament.



136 The singularity theorems of Penrose and Hawking

6.3 Hawking’s singularity theorem
Hawking’s singularity theorem from 1965–1966 remains exemplary because of the clarity of
its hypotheses, its spectacular conclusion, and the elegance of its proof. Here it is:

Theorem 6.4 Let (M,g) be a space-time. Assume that:314

1. (M,g) is globally hyperbolic;

2. One has Rµν γ̇µ γ̇ν ≥ 0 along all timelike geodesics γ in M (timelike curvature condition);

3. The mean extrinsic curvature H of some spacelike Cauchy surface Σ (defined with respect
to future directed timelike normals) satisfies H(x) < H0 for some H0 < 0 and all x ∈ Σ.

Then (M,g) contains incomplete timelike geodesics: specifically, no past directed timelike
geodesic γ emanating from Σ can have arc length (i.e. proper time) L(γ) > 3/|H0|.

Before discussing the detailed meaning of the assumptions made here (including the notation H),
let us state their generic nature, which is common to all singularity theorems in GR so far:315

1. is a global causality assumption;

2. is a dynamical assumption on the curvature motivated by a corresponding assumption on
the energy-momentum tensor Tµν in the Einstein equations (see below);

3. is a static assumption on the curvature, i.e. a boundary condition imposed at some fixed
time, typically empirically motivated (in this case, by the expansion of the universe).

We have amply discussed global hyperbolicity: is it the strongest generic causality assumption.
Logically speaking, strong assumptions weaken theorems. But since Hawking’s theorem merely
states that (M,g) is timelike incomplete without giving any indication why that is, global
hyperbolicity at least strengthens the inference from geodesic incompleteness to (M,g) having
some “interesting” singularity, see the discussion preceding Lemma 5.29 in §5.7.

As the proof will show, assumption 2 means that observers moving on timelike geodesics see
these converge (by tidal forces), so that gravity is attractive. The Einstein equations

Rµν = 8π(Tµν − 1
2gµνT ), (6.29)

where Tµν is the energy-momentum tensor (discussed in more detail in §7.3), relate assumption
2 to the matter content of the universe, notably to the so-called Strong Energy Condition (SEC)

Tµν γ̇
µ

γ̇
ν ≥− 1

2T , (6.30)

where T = gµνTµν . Writing γ̇ = u, the energy relative to our observer is E = Tµνuµuν and the
average (spatial) stresses are S = gµνhρ

µhσ
ν Tρσ , where h is defined by (6.11). The inequality

(6.30) then simply becomes E ≥−S, which is satisfied by most classical forms of matter.316

314We state the physically relevant case: there is a mathematically equivalent version assuming H > 0, in which
case the future directed timelike geodesics will be incomplete (this describes a big crunch instead of a big bang).

315See Senovilla (1998) for a detailed introduction and overview, included the structure laid out here.
316 See §7.3 for a brief discussion of energy conditions in GR, as well as Curiel (2014a) and Martín-Moruno &

Visser (2017) for extensive information. As Curiel notes, ‘[SEC] says that ordinary mass-energy density cannot be
negatively dominated by the sum of the individual pressures (momentum fluxes) at any point, as determined by an
observer traversing a timelike curve. I know of no compelling elucidation of the physical content of that relation.’
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The mean extrinsic curvature of Σ ⊂M was already introduced in §4.3, see (4.55), though
in one dimension less and and in the special case where M = R3 with Euclidean metric. The
general case was taken up in §4.7. We recall that first, the extrinsic curvature of Σ ⊂M is a
tensor field k̃ ∈ X(2,0)(Σ) initially defined merely on Σ by

k̃(X ,Y ) := −g(∇X u,Y ), (6.31)

where X ,Y ∈ X(Σ) and u is the fd normal vector field on Σ discussed in the previous section.
This definition is predicated on the fact that ∇X u is tangent to Σ, which is an easy consequence
of the property g(u,u) = −1. Similarly, it is easy to show that k̃ is symmetric, namely:

k̃(X ,Y ) = −g(∇X u,Y ) = g(u,∇XY ) = g(u,∇Y X) = k̃(Y ,X). (6.32)

The tensor kµν is just a covariant version of k̃, in that k(u,u) = k(u,X) = k̃(u,u) = k̃(u,X) = 0
whenever g(u,X) = 0, and k(X ,Y ) = k̃(X ,Y ) if g(u,X) = 0 and g(u,Y ) = 0, where k(A,B) =
kµνAµBµ . From k̃, we define the mean (extrinsic) curvature H : Σ→R of Σ as

H(x) := tr(k̃x) =
3

∑
i=1

k̃x(ei(x),ei(x)), (6.33)

where (ei(x)) is any orthonormal basis of TxΣ, x ∈ Σ. Since k in (6.12) is spatial (because of the
projections h in its definition), because of the (conventional) minus sign in (6.31), on Σ we have

θ = −H. (6.34)

Let us recall some Riemannian examples from §4.3, see (4.65), (4.69), and (4.73):

• For any plane in R3 (with flat metric) we have H = 0, and hence θ = 0.

• For the cylinder of radius ρ , i.e., C2
ρ ⊂R3 (with flat metric), we have θ = 1/ρ .

• For the sphere of radius ρ , i.e., S2
ρ ⊂R3 (with flat metric), we have θ = 2/ρ .

Here the normal vectors used in the definition (6.31) are outward, and we see from these examples
that negative H, and hence positive θ , gives diverging geodesics normally emanating from Σ. By
the same token, negative θ gives converging normal geodesics, which in our universe happens in
the past direction, so we have H > 0 on Σ in the past direction and hence H < 0 in the future
direction, as assumed in the theorem (where γ̇ = u is taken to be future directed). The Lorentzian
example is the FLRW universe (cf. §8.3), where (8.88) gives θ (t) = 3ȧ(t)/a(t).
Proof. Given assumption 3, we can work in the setting explained after (6.4) in the previous section.
We write γ̇ = u and return to the Raychaudhuri equation (6.28). Since σµν is symmetric and
spatial, we have σµνσ µν = Tr (σ2)≥ 0, where σ is the matrix with components σ

µ

ν = hµρσρν .
Furthermore, ω = 0 by Proposition 6.3, whilst assumption 2 in Theorem 6.4 gives

Rµνuµuν ≥ 0. (6.35)

Therefore, the Raychaudhuri equation (6.28) gives θ̇ + 1
3θ 2 ≤ 0, i.e. θ̇−1 ≥ 1

3 . Assumption 3
gives θ > θ0 > 0 on Σ, where θ0 =−H0, whence 0 < θ−1 < θ

−1
0 . It then follows that θ−1→ 0,

or θ → ∞, at some time ts ∈ [−3θ
−1
0 ,0), i.e., backward in time, provided that the geodesic in

question can indeed be extended to ts. By (6.26), this corresponds to V → 0.
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We now transform the divergence of θ into a conclusion about conjugate points. Within the
congruence we take some fixed geodesic γ : [−a,0]→M with γ̇(t) = u(t) for all t and γ(0) =
x ∈ Σ. As in §5.1, define a smooth family of neighbouring geodesics (γs) all lying in the same
congruence, that is, γs(0) ∈ Σ and γ̇s(t) ⊥ u(t) = 0 for all s and t, and define the associated
Jacobi field J by (5.10). Since γ̇ = u, we may then rewrite (5.5) as

∇uJ = ∇Ju. (6.36)

Since dim(Σ) = 3, the space J
(Σ)
γ ⊂ Jγ of Jacobi fields arising in this way is 3-dimensional.

Hence it is convenient to introduce a moving frame (e1(t),e2(t),e3(t)) along γ(t), that is, an
orthonormal basis of T⊥

γ(t)M (see Proposition 5.2) for each t; such a frame can be constructed by
solving ∇γ̇ei = ∇uei = 0 with orthonormal initial conditions at t = 0; this equation guarantees
that the frame remains orthonormal as well as orthogonal to γ̇ .317 We may then expand

J(t) = Ji(t)ei(t) ≡
3

∑
i=1

Ji(t)ei(t); (6.37)

Ji(t) = gγ(t)(J(t),ei(t)). (6.38)

Furthermore, the covariant derivative ∇γ̇J = ∇uJ now becomes a time-derivative, since

(∇uJ)i(t) = gγ(t)(∇uJ(t),ei(t)) = u(gγ(t)(J(t),ei(t)))−gγ(t)(J(t),∇uei(t)) = J̇i(t), (6.39)

where J̇i(t) = dJi(t)/dt. Using (6.36) and ∇γ̇ei = 0, we obtain

J̇i(t) = gγ(t)(∇uJ(t),ei(t)) = gγ(t)(∇Ju(t),ei(t)) = J j(t)gγ(t)(∇ ju(t),ei(t))

= ki j(t)J j(t), (6.40)

where, keeping in mind that ki j = −k̃i j, cf. the minus sign in (6.31),

ki j(t) = gγ(t)(∇ ju(t),ei(t)) = kµν(γ(t))e
µ

i (t)e
ν
j (t), (6.41)

are the components of (6.31) in the frame (ei(t)), with ki j = k ji. Eq. (5.7) then reads

d2Ji(t)
dt2 = αi j(t)J j(t), (6.42)

αi j := g(ei,Ω(u,e j)u) = R(ei,u,e j,u). (6.43)

Conversely, a simple dimension count shows that the Jacobi fields J ∈ J
(Σ)
γ along γ that arise

from the congruence emanating from Σ in the said way are those that satisfy the initial condition

J̇i(a) = ki j(a)J j(a), (6.44)

predicated on (6.37) - (6.38), so that (6.44) implicitly also assumes the initial condition

J(a) ∈ Tγ(a)Σ ⇔ gγ(a)(J,u) = 0. (6.45)

Conversely, it follows from the Jacobi equation (6.42) with (6.43) that both initial conditions
(6.40) and (6.45) are propgated along γ , i.e., hold for all t where γ(t) is defined.

For our proof we now need the following variation on Definition 5.10, backward in time.

317This simple construction works because γ is a geodesic. Along more general curves one needs the so-called
Fermi derivative ∇F

γ̇
ei instead of the covariant derivative ∇γ̇ ei. See e.g. Hawking & Ellis, §4.1.
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Definition 6.5 A point x = γ(c), where c ∈ [−a,0), is focal relative to y = γ(0), seen as a
member of the congruence of normal geodesics to Σ, if there is a nonzero Jacobi field J ∈ J

(Σ)
γ ,

i.e. satisfying the Jacobi equation along γ with initial condition (6.44), for which J(c) = 0.

To elucidate this, for any t ∈ [−a,0] we define evaluation maps At ,Bt : Jγ → T⊥
γ(0)M⊕T⊥

γ(t)M by

At(J) = (J(0),J(t)); Bt(J) = (∇tJ(0)− kγ(0)J(0),J(t)). (6.46)

Both maps are linear, and we see that γ(c) is conjugate relative to γ(0) iff Ac is singular, whereas
it is focal iff Bc is singular. Despite this difference, Theorem 5.12 applies, mutatis mutandis:

Theorem 6.6 A timelike geodesic γ : [−a,0]→M in a congruence as above locally maximizes
the length of (pd) curves from Σ to γ(−a) iff there is no focal point γ(c) on γ , c ∈ [−a,0], which
is the case iff there is no point γ(c) on γ , c ∈ [−a,0], where the expansion θ diverges.

The proof of the first iff is the same as for Theorem 5.12, since Synge’s formula (5.21) still holds.
This is remarkable, since in its derivation one now picks up boundary terms at a, as this time
J(0) 6= 0. There are two: first, after (5.18) one needs to add −gγ(0)(∇sγ

′, γ̇), which equals

−gγ(0)(∇sγ
′, γ̇) = − d

ds
gγ(0)(γ

′, γ̇)+ gγ(0)(γ
′,∇sγ̇) = gγ(0)(γ

′,∇tγ
′) = gγ(0)(J,∇tJ), (6.47)

since in our case gγ(0)(γ
′, γ̇) = gγ(0)(J,u) = 0, and we also used (5.5). Second, after (5.20) one

picks up −gγ(γ ′⊥,∇tγ
′
⊥) = −gγ(0)(J,∇tJ), which fortunately cancels the term in (6.47).

We now relate the existence of focal points to the expansion θ of the congruence. It follows
from Proposition 5.2, which makes J(t) depend linearly on the initial conditions J(0) and J̇(0),
and eq. (6.44), according to which J̇(0) depends linearly on J(0), that if J ∈ J

(Σ)
γ , then

Ji(t) = Ai j(t)J j(0) (t ∈ [−a,0]), (6.48)

for some 3×3 matrix A(t). From (6.40) and(6.48) we obtain

J̇i(t) = Ȧi j(t)J j(0) = ki j(t)J j(t) = ki j(t)A jk(t)Jk(0), (6.49)

so that Ȧik = ki jA jk, or k = ȦA−1, and hence, since θ = tr(k) = −tr(k̃), we finally obtain

θ = tr(ȦA−1). (6.50)

Now A is finite along γ , and so is Ȧ. Hence in the scenario just considered, θ can only blow up
at t = c iff A(c)−1 does, i.e., iff A(c), which equals the identity at t = 0, has an eigenvalue zero.
But as explained after (6.46), this implies that there exists some J ∈ J

(Σ)
γ for which J(c) = 0,

which means that γ(c) is a focal point with respect to γ(0). So if θ (γ(0)) > 0 , then γ(c) is a
focal point with respect to γ(0) iff limt→c θ (t) = ∞. Therefore, the argument after (6.35) gives:

Proposition 6.7 Let γ be an element of the congruence of timelike geodesics orthogonal to a
spacelike hypersurface Σ ⊂M. If the positive curvature condition (6.35) holds along γ , and if
θ (γ(0))> 0 somewhere along γ , then γ has an earlier focal point γ(c) relative to γ(0), provided
that the geodesic in question can indeed be extended (backward) from t = 0 all the way to t = c.
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Similarly, we need a corollary to Theorem 5.30 describing the case where x is connected to Σ
(rather than to a given single point y) by a length-maximizing timelike geodesic.

Corollary 6.8 Let Σ ⊂M be a spacelike Cauchy hypersurface. For any x ∈ I−(Σ) there is a
(not necessarily unique) future-directed timelike geodesic from x to Σ that maximizes length
among all timelike geodesic from x to Σ. This geodesic necessarily crosses Σ orthogonally.

Proof. It is easy to see that J+(x)∩Σ is compact. Indeed, even J+(x)∩D−(Σ) is compact.318

Furthermore, if (M,g) is globally hyperbolic, then the Lorentzian distance function dL defined
by (5.118) is continuous in both arguments.319 For any y ∈ J+(x)∩Σ, Theorem 5.30 gives a
length-maximizing causal geodesic from x to y whose length equals dL(x,y), so keeing x fixed
we have a continuous function of y that assumes a maximum on the compact set J+(x)∩Σ, say
at y0. Since x ∈ I−(Σ), the maximizing geodesic γ from x to y0 must be timelike by Proposition
5.13. Finally, the boundary term |abg(γ ′, γ̇) in (5.15), which has to vanish, shows that γ crosses Σ
orthogonally, since the variation γ ′ vanishes at a = 0 and is tangent to Σ at b. �

At last, we can prove Hawking’s Theorem 6.4. It is sufficient to prove it for timelike geodesics
normally emanating from Σ, since by Corollary 6.8 timelike geodesics that don’t are shorter than
those which do. The proof is by contradiction; so assume all pd timelike geodesics are complete.

1. Take some x ∈ I−(Σ) and a length-maximizing timelike geodesic γ from x to y0 ∈ Σ, as in
the proof of Corollary 6.8. Suppose L(γ) > 3/|H0|; this will give our contradiction.

2. Since γ crosses Σ orthogonally, it is a member of the congruence described in the previous
section, and so by Proposition 6.7, γ will have focal points (backward in time).

3. By Theorem 6.6, the length-maximixing γ cannot have any focal points.

4. Hence γ cannot exist: it must have stopped before t = −3/|H0|. Hence it is incomplete
and the contradiction is resolved because γ never reaches its would-be focal point.

5. Any y ∈ Σ can be reached in this way, and as already noted, the conclusion that normal
timelike geodesics are incomplete implies the same conclusion for any timelike geodesic
starting at Σ, with the same bound (since they are shorter than the normal ones). �

Here assumption 1 in the theorem (i.e. global hyperbolicity) is used (via Corollary 6.8) in step 1,
whereas the two curvature assumptions are exploited in step 2. Note that the time to reach the
singularity increases as the mean extrinsic curvature Σ decreases, in accordance with intuition:
less curvature means less focusing (and a higher age of the universe). Of course, timelike
geodesic incompleteness can still be proved if the uniform bound on the extrinsic curvature is
replaced by local bounds, but the stated version of Hawking’s theorem is meant to describe the
big bang, where every indextendible past-directed timelike geodesic ends.320

318See O’Neill (1983), Lemma 14.40 for the even more general statement that for any achronal set A and x ∈
int(D(A))\I+(A), the set J+(x)∩D−(A) is compact. Correct intuition is obtained by taking a future inextendible
fd timelike curve c from x crossing Σ. Then J−(c(t)) eventually covers all of M as t→ ∞, so that there is t0 such
that J+(x)∩Σ ⊂ J−(c(t0)). Hence J+(x)∩Σ ⊂ J−(c(t0))∩ J+(x), which is compact by global hyperbolicity.
Since Σ and J+(x) are closed, this implies that J+(x)∩Σ is a closed subset of a compact set, so that it is compact.

319See, with increasing eye for detail, Hawking (1966/2014), pp. 482–483, O’Neill (1983), Lemma 14.21, and
Minguzzi (2019), Theorems 3.48 and 4.124. The key point is that dL is always lower semicontinuous, upon which
global hyperbolicity also makes it upper semicontinuous, using upper semicontinuity of L(·) and Lemma 5.26.

320Theorem 5 in Hawking (1966/2014) is a singularity theorem under weaker conditions, keeping the two curvature
assumptions but replacing global hyperbolicity by the mere existence of a compact spacelike hypersurface. The
version above is Hawking’ Theorem 3. See also O’Neill (1983), Theorems 14.55A and 14.55B.
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6.4 Null congruences and trapped surfaces
This section prepares for Penrose’s singularity theorem from 1965. Whereas Hawking’s theorem
is based on timelike geodesics and more generally on ‘timelike reasoning’, Penrose’s theorem
(indeed his entire approach to GR, cf. §1.9), is based on ‘lightlike reasoning’, based on null
geometry. This requires a preamble, which we started in §4.6 and now continue.321

Proposition 6.9 If Σ ⊂M is a null hypersurface with normal null vector field

x 7→ Lx ∈ TxΣ∩ (TxΣ)⊥ (x ∈ Σ); g(L,L) = 0, (6.51)

then the flow lines of L are lightlike pregeodesics and hence Σ is ruled by lightlike geodesics.322

To prove this, for any X ∈ T Σ, so that g(X ,L) = 0, we compute (omitting the subscript x ∈ Σ):

0 = Lg(X ,L) = (∇Lg)(X ,L)+ g(∇LX ,L)+ g(X ,∇LL) = g(∇LX ,L)+ g(X ,∇LL);
⇒ g(∇LL,X) = −g(L,∇LX) = −g(L,∇X L)−g(L, [L,X ]) = 0, (6.52)

where we used torsionlessness of the Levi-Civita connection ∇, as well as the computations

g(L,∇X L) = 1
2Xg(L,L) = 0; (6.53)

g(L, [L,X ]) = g(L,LLX) = 0, (6.54)

as follows from (3.50) and (2.35), respectively; if L ∈ T Σ and X ∈ T Σ, then also LLX ∈ T Σ and
hence this vector is orthogonal to L. Eq. (6.52) implies that ∇LL is orthogonal to every vector X
tangent to Σ, and hence must be proportional to its normal L. By Proposition 3.8, the flow of L
may therefore be (re)parametrized so as to be geodesic. See also Theorem 5.5.2. �

As a special case, consider a hypersurface Σ = {u = c} (locally) defined by a smooth function
u, where c ∈R (or rather a family thereof). Then N ≡ L = ∇u, so if Σ is null, then u satisfies

g(∇u,∇u) = 0. (6.55)

This is the basic eikonal equation of hyperbolic PDEs, and u is called an optical function. For
example, the coordinate functions u = t− r and v = t + r on Minkowski space-time are optical.

Lemma 6.10 If u is an optical function, then the flow of L = ∇u consists of lightlike geodesics.

From ∇ν∂µu = ∇µ∂νu for any function u (since ∇ is torsion-free), for any vector field X ,

XνLµ
∇ν∂µu = XνLµ

∇µ∂νu, (6.56)

i.e. g(L,∇X L) = g(X ,∇LL), where L = ∇u. By (6.53), which is true for any X (not necessarily
in T Σ) as long as g(L,L) = 0, this gives

g(X ,∇LL) = 0 (6.57)

for any X , whereas the previous lemma merely showed this for X ∈ T Σ. Hence ∇LL = 0. Thus
the flow of L consists of lightlike geodesics (without the need for reparametrization). �

321Kupeli (1987), Aretakis (2013), and Galloway (2014, 2017) are useful introductions to null geometry.
322I.e. a unique lightlike geodesic passes through every point of Σ. Conversely, a hypersurface is null if it is ruled

by lightlike geodesics and locally achronal, see Kupeli (1987), Theorem 1 and Minguzzi (2019), Theorem 6.7.
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A section of a null hypersurface Σ is a two-dimensional surface S⊂ Σ such that TxS is spacelike
(i.e. Riemannian) for each x ∈ S; hence TxΣ = TxS⊕R · L. In 2+1-dimensional Minkowski
space-time, sections of forward or backward lightcones are circles and, less easily visualized, in
d = 3+ 1 they are two-spheres. Conversely, start from an oriented closed surface S⊂M (i.e. S
is 2d, compact, and without boundary–in this context one may think of the two-sphere S2). At
each x ∈ S, the orthogonal complement (TxS)⊥ has signature (−+) and hence is spanned by two
future-directed lightlike vectors Lx and Lx. These lightlike vectors may be normalized by

gx(Lx,Lx) = −2, (6.58)

and together with any basis (e1,e2) of TxS they form a basis of TxM. For example, the pair

L := 2∂v = ∂t + ∂r; (6.59)
L := 2∂u = ∂t−∂r. (6.60)

does the job in Minkowski space-time (M,η). In that case, the family (Lx) is directed outward
and diverges off to infinity, whereas the other one, viz. (Lx), is directed inward and converges to
an apex like a Chinese hat. But in general space-times this may not be the case; e.g. inside a
black hole both families bend inwards and one has a trapped surface (cf. Definition 6.13).

At any x∈ S, consider the fd lightlike geodesic γ
(x)
L with γ

(x)
L (0) = x and γ̇

(x)
L (0) = Lx. These

geodesics collectively form a null congruence emanating from S, that is, a hypersurface

C :=
⋃
x∈S

⋃
t≥0

γ
(x)
L (t) ≡

⋃
t≥0

St , (6.61)

where
St :=

⋃
x∈S

γ
(x)
L (t) (6.62)

is the image of S = S0 at time t under the geodesic flow in question, as long as it is defined. Note
that this is not a hypersurface as we defined it, because it has at least a boundary component

∂C = S. (6.63)

Minkowski space-time shows that C may develop conical singularities at finite t and hence may
be a (smooth) surface only up to some t f . In that case, except for the boundary (6.63):

Proposition 6.11 The set C defined by (6.61) is a null hypersurface as long as it is smooth.

First, the lightlike vector field L may be extended from S to C in the obvious way, namely by

L
γ
(x)
L (t)

= γ̇
(x)
L (t), (6.64)

so that, since each γ
(x)
L is a geodesic, ∇LL = 0. If we push forward any Xx ∈ TxS to T

γ
(x)
L (t)

C by

the flow of L, then the ensuing vector field X along γ
(x)
L satisfies LLX = [L,X ] = 0, so that

d
dt

g
γ
(x)
L (t)

(L
γ
(x)
L (t)

,X
γ
(x)
L (t)

) = Lg
γ
(x)
L (t)

(L
γ
(x)
L (t)

,X
γ
(x)
L (t)

)

= g
γ
(x)
L (t)

((∇LL)
γ
(x)
L (t)

,X
γ
(x)
L (t)

)+ g
γ
(x)
L (t)

(L
γ
(x)
L (t)

, (∇LX)
γ
(x)
L (t)

)

= 0+ g
γ
(x)
L (t)

(L
γ
(x)
L (t)

, (∇X L)
γ
(x)
L (t)

)

= 1
2Xg

γ
(x)
L (t)

(L
γ
(x)
L (t)

,L
γ
(x)
L (t)

)

= 0. (6.65)
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Therefore, for fixed x ∈ S, the function

t→ g
γ
(x)
L (t)

(L
γ
(x)
L (t)

,X
γ
(x)
L (t)

) (6.66)

is constant and hence equal to its value at t = 0, i.e., at S, where it vanishes (since L is normal to
S). Since g(L,L) = 0, this is true also for X = L, so that L is also orthogonal to C. This makes C
(or rather C\S) a null hypersurface by definition. �

Thus null hypersurfaces may either be constructed from optical functions or from spacelike
2-surfaces. The former is relevant to the Cauchy problem, whereas the latter applies to Pen-
rose’s singularity theorem, to which we now slowly turn. Compared to Hawking,’s the three-
dimensional spacelike hypersurface Σ is replaced by a 2d closed spacelike surface S (with special
properties to be defined), from which one proceeds as explained above:

• Construct a null hypersurface C with normal vector field L, where S⊂C ⊂M;

• At each x ∈C, construct a basis (e1,e2,L,L), normalized, also repeating (6.58), by

g(ei,e j) = δi j (i, j = 1,2); g(ei,L) = g(ei,L) = 0 (i = 1,2); (6.67)
g(L,L) = g(L,L) = 0; g(L,L) = −2. (6.68)

This can be done by a slight refinement of the construction used for the spacelike case: Starting
at x ∈ S, seen as the initial point of a lightlike geodesic γ

(x)
L (·) ≡ γ as above, and defining the

basis at x, extend L and L as explained above, and extend (e1,e2) by solving

∇Lei = −g(∇iL,L)L. (6.69)

The definition of Jacobi fields along γ obtained by varying γ within the congruence of all lightlike
geodesics emanating from S, as in §6.4, is then entirely similar to the spacelike case. If

LLJ = 0; g(J,L) = g(J,L) = 0 (6.70)

along γ , then J(t) = ∑
2
i=1 Ji(t)ei(t) satisfies Jacobi’s equation (6.42), this time with a matrix

αi j = g(ei,Ω(L,e j)L) = R(ei,L,e j,L). (6.71)

The computations leading to (6.39) and (6.40) may also be redone, mutatis mutandis:323

(∇LJ)i(t) = gγ(t)(∇LJ(t),ei(t)) = L(gγ(t)(J(t),ei(t)))−gγ(t)(J(t),∇Lei(t))

= J̇i(t)+ gγ(t)(∇iL(t),L(t)) ·∑
i

Ji(t)gγ(t)(ei(t),L(t)) = J̇i(t);

J̇i(t) = gγ(t)(∇LJ(t),ei(t)) = gγ(t)(∇JL(t),ei(t)) = J j(t)gγ(t)(∇ ju(t),ei(t))

= ki j(t)J j(t), (6.72)

where (6.41) is replaced by
ki j(t) = gγ(t)(∇ jL(t),ei(t)). (6.73)

Since C (or the St) is given, the distribution spanned by ei and e2 is integrable and Frobenius’s
theorem again gives ki j = k ji, where i = 1,2 instead of i = 1,2,3 as in §6.2, cf. Proposition 6.3.

For Penrose’s singularity theorem we need the following variation on Definition 6.5, in which
J
(S)
γ (replacing J

(Σ)
γ in Definition 6.5) denotes the space of Jacobi fields along γ satisfying (6.70),

or, equivalently, (6.42) with (6.71), on the initial conditions (6.70) and (6.72) at t = a.

323One may introduce the form k on a null hypersurface Σ with normal L in a basis-independent way, namely as a
bilinear form on TxΣ/Kx, where Kx is the linear span of Lx (x ∈ Σ). The Lorentzian metric g, which is degenerate on
TxΣ, induces a nondegenerate (and Riemannian) metric h on TxΣ/Kx, in terms of which k([X ], [Y ]) = h([∇X L], [Y ]).
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Definition 6.12 A point y = γ(c), where a < c ≤ b, is focal relative to x = γ(a), seen as a
member of the congruence of lightlike geodesics emanating from S and lying in C, if there is a
nonzero Jacobi field J ∈ J

(S)
γ satisfying J(c) = 0, as well as (6.70) and (6.72) at t = a.

The smoothness of C breaks down at focal points. The simplest example is Minkowski space-
time (best visualized in dimension d = 2+ 1, where C is a spacelike circle): either follow the
geodesics back in time, or use the ingoing lightlike L rather than L. All lightlike geodesics then
have the same focal point. If we now define the null expansion θ on C by

θ := tr(k), (6.74)

then the arguments leading from (6.48) to (6.50) may be repeated verbatim, and so it follows that
γ(c) is a focal point iff the scalar blows up at c. Before giving conditions for this to happen, we
first investigate its geometrical meaning. Take coordinates (x1,x2) on S (for example, if S = S2,
the usual angles (x1 = ϕ ,x2 = θ ), so that the volume of St is given by

Area(St) :=
∫∫

St

dx1dx2
√

dethγ(t)(x1,x2) ≡
∫∫

St

dµt(x1,x2), (6.75)

where hγ(t) is the metric on St ⊂M induced by the metric g on M, i.e.

hγ(t)(X ,Y ) = gγ(t)(X ,Y ), (6.76)

for X ,Y ∈ Tγ(t)St . If d/dt is the directional derivative along L, the key formula, then, is

dArea(St)

dt
=
∫∫

St

dµt θ (t), (6.77)

so that θ measures the rate of change of the area of St when moving along the geodesic γL. In
particular, this area shrinks when θ < 0 and decreases to zero at a focal point, where θ = −∞.

To prove (6.77), we interpret ki j(t) as defined in (6.73) as a (symmetric) bilinear map

k(t) : Tγ(t)St×Tγ(t)St →R; k(X ,Y ) := g(∇Y L,X), (6.78)

so that we may redefine θ by rewriting (6.74) with respect to an arbitrary coordinate basis as

θ (t) = ∑
I,J=1

hIJ(t)kIJ(t). (6.79)

As usual, in this formula hIJ is the inverse matrix to hIJ = h(∂ /∂xI ,∂ /∂xJ) for any (local)
coordinates (x1,x2) on St . Using (3.86) with X = L, eq. (6.78), and the symmetry of k, yield

LLhIJ(t) = ḣIJ(t) = 2kIJ(t), (6.80)

upon which the elementary computation (7.12) and text below, applied to h, gives (6.77):

d
dt

√
dethγ(t) =

1
2

√
dethγ(t) hIJ(t)ḣIJ(t) =

√
dethγ(t),h

IJ(t)kIJ(t) =
√

dethγ(t) θ (t). (6.81)

The same constructions apply to the null hypersurface C that is obtained from the given surface
S by replacing L by L (and vice versa) throughout (6.61) - (6.77). Here is an appealing example:



Null congruences and trapped surfaces 145

If in Minkowski space-time C is erected from the outgoing lightlike directions, then C is built
from the ingoing ones, so that a focal point arises in the future as a Chinese hat. Thus we define

St =
⋃
x∈S

γ
(L)
x (t); C =

⋃
t≥0

St ; (6.82)

k(X ,Y ) = g(∇Y L,X); θ = tr(k). (6.83)

In Minkowski space-time the lightlike vectors (6.59) - (6.60) are easily shown to give

θ (t,r,θ ,ϕ) = 2/r; θ (t,r,θ ,ϕ) = −2/r. (6.84)

Assumption 3 on Σ in Hawking’s Theorem 6.4 is replaced by Penrose’s assumption on S:324

Definition 6.13 A future trapped surface is a closed spacelike surface S⊂M with

θ (x) < 0; θ (x) < 0 (6.85)

for all x ∈ S, where θ and θ are defined by (6.74) and (6.83), with L and L future directed.325

This “infinitesimally” states that all fd lightlike geodesics emanating orthogonally from S bend
inwards, not just–as in Minkowski space-time– those along L.326 See the pictures at the end of
this section. The signs of θ and θ depend on the time-orientation of the lightlike vectors L and
L; there is an analogous concept of past trapped surfaces. Let X be some convex combination of
L and L and let S(X)

t be the image of S under the flow ϕt of X , t > 0, so that St = S(L)t . Then

dArea(S(X)
t )

dt
= −

∫∫
St

dµt g(X ,θ (t)L(t)+θ (t)L(t)), (6.86)

so that the area of a trapped surface S decreases in any future orthogonal direction.
Further changes from Hawking’s setting to Penrose’s are:

324Here is Penrose’s recollection of how the idea of a trapped surface suddenly occurred to him: ‘My conversation
with [Ivor] Robinson stopped momentarily as we crossed a side road, and resumed again at the other side. Evidently,
during those few moments an idea occurred to me, but then the ensuing conversation blotted it from my mind! Later
in the day, after Robinson had left, I returned to my office. I remember having an odd feeling of elation that I could
not account for. I began going through in my mind all the various things that had happened to me during the day, in
an attempt to find what it was that had caused this elation. After eliminating numerous inadequate possibilities,
I finally brought to mind the thought that I had had while crossing the street.’ See Thorne (1994), p. 227; in an
interview with the author on July 2, 2022, Penrose confirmed that this concerned trapped surfaces. Compare with
Poincaré’s recollection of his flash of insight into the theory of Fuchsian functions, referring to an event in 1880:
‘The circumstances of the journey made me forget my mathematical work; arrived at Coutances we boarded an
omnibus for I don’t know what journey. At the moment when I put my foot on the step the idea came to me, without
anything in my previous thoughts having prepared me for it; that the transformations I had made use of to define the
Fuchsian functions were identical with those of non-Euclidean geometry. I did not verify this; I did not have the
time for it, since [as soon as] I sat down in the bus I resumed the conversation already begun, but I was entirely
certain at once. On returning to Caen I verified the result at my leisure to salve my conscience.’ (Grey, 2013, p. 217)

325 See Hawking & Ellis (1973), chapter 9, for an early analysis of trapped surfaces in causal theory per se. The
study of trapped surface formation from the PDE point of view began with Schoen & Yau (1983), who gave initial
values that already contain a trapped surface; see also Alaee, Lesourd, & Yau (2019). Christodoulou (1991, 1999a,
2009) first proved the evolution of asymptotically flat initial data into trapped surfaces. See also follow-ups by
Klainerman & Rodnianski (2012) and Klainerman, Luk, & Rodnianski (2014), and reviews by Dafermos (2012)
and Bieri (2018). For the incorporation of more realistic matter models see e.g. Burtscher & LeFloch (2014) and
Burtscher (2020). Other literature may be traced back from Li & Yu (2015) and Athanasiou & Lesourd (2020).

326Senovilla (1998), §4, gives many examples. In the presence of a radial coordinate r as in the Schwarzschild
solution, this condition is equivalent to the gradient ∇r being timelike, which happens for r < 2m.
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• The spacelike (3d) hypersurface Σ is replaced by a closed spacelike surface S;

• For the normal u one may take either L or L (as both vectors are orthogonal to S);

• The expressions (6.10) - (6.17) now become

Aµ := Lν
∇νLµ ; (6.87)

hµ

ν := δ
µ

ν + 1
2(L

µLν +LµLν); (6.88)
kµν := hρ

µhσ
ν ∇ρLσ ; (6.89)

ωµν := k[µν ]; (6.90)
σµν := k(µν)− 1

2θhµν (6.91)

θ := gµνkµν = hµνkµν ≡ tr(k); (6.92)
⇒ kµν = 1

2θhµν +σµν +ωµν . (6.93)

We have 1/2 in (6.91) and (6.93) as opposed to the 1/3 in (6.14) and (6.17) because σ is
the traceless part of k (its trace already being taken care of by θ ), and this time,

gµνhµν = δ
µ

µ + 1
2(g(L,L)+ g(L,L)) = 4−1−1 = 2 = dim(S). (6.94)

• We now assume that the lightlike vector fields L and L are normalized such that

∇LL = 0; ∇LL = 0. (6.95)

The lightlike version of the expression (6.18) is then given by

∇µLν = kµν − 1
2(LµLρ

∇ρLν +LνLρ
∇µLρ), (6.96)

which is easily verified by computing all contractions with L, L, and ei, using (6.89), (6.88),
and (6.68). Another useful result,327 still assuming (6.95), is

θ = ∇µLµ ; θ = ∇µLµ . (6.97)

To see this, one again uses (6.89), (6.88), and (6.68). For example, we compute

θ = hµνhρ

µhσ
ν ∇ρLσ = hρσ

∇ρLσ = (gρσ + 1
2(L

ρLσ +LρLσ ))∇ρLσ

= ∇µLµ + 1
2(g(L,∇LL)+ g(L,∇LL)) = ∇µLµ , (6.98)

since g(L,L) = 0 implies g(L,∇LL) = 0 by a calculation like (6.52), and we had (6.95).

• If ωµν = 0, see the comment after (6.73), as well as (6.95), the same argument as in the
timelike case then implies Raychaudhuri’s equation along the outward directions L, viz.328

∇Lθ ≡ θ̇ = − 1
2θ

2−σµνσ
µν −RµνLµLν . (6.99)

327Eq. (6.97) is a quick way to verify (6.84), e.g. θ = (Γµ

µ0 +Γµ

µr) = (0+Γθ
θr +Γϕ

ϕr) = (1/r+ 1/r) = 2/r.
328One also has a similar equation for the Weingarten map W associated to k, but in the absence of an orthogonal

projection TxC → TxS, where x ∈ C, one has to replace TxS by T̃xS := TxC/R · Lx, with associated projection
TxC→ T̃xS, X 7→ X̃ . Defining WX : T̃xS→ T̃X S by Wx(X̃) :=−∇̃X L, one can show that along γL one has Ẇ =W 2+ R̃,

where R̃x : T̃xS→ T̃X S is defined by R̃(X) := ˜Ω(X ,L)L. This also yields (6.99). See e.g. Galloway (2017).
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This replaces (6.28), with a similar derivation. First, as in (6.27) we obtain

∇L(∇µLν) = −(∇µLσ )∇σ Lν +Rνρσ µLσ Lρ (6.100)

straight from the derivation of the Riemann tensor and the property A = 0. We then
substitute (6.96), contract with gµν , and substituting (6.93), with ω = 0. Analogous
reasoning then leads to the following null counterpart of Proposition 6.7:329

Proposition 6.14 Let S ⊂ M be a closed spacelike surface, let x ∈ S, and let γ = γ
(x)
L be a

lightlike geodesic as above. If

θ (x) < 0; RµνLµLν ≥ 0 (6.101)

along γ , then γ has a (later) focal point γ(c) relative to x = γ(a), provided that γ can indeed be
extended from a to c. The same statement holds for γ = γ

(L)
x , assuming that along γ we have

θ (x) < 0; RµνLµLν ≥ 0. (6.102)1156 R. Penrose

Figure 3. The future light cone of p is caused to reconverge by the falling stars.

is actually a reasonable chance that it may find a large measure of solution in the
not-too-distant future. This would depend on the validity of a certain result which
has been independently conjectured by a number of people. I shall refer to this
as the generalized5 Israel conjecture (abbreviated GIC). Essentially GIC would
state: if an absolute event horizon develops in an asymptotically flat space-time,
then the solution exterior to this horizon approaches a Kerr-Newman solution
asymptotically with time.

5 Israel conjectured this result only in the stationary case, hence the qualification “generalized”. In
fact, Israel has expressed sentiments opposed to GIC. However, Israel’s theorem [26, 27] represents
an important step towards establishing of GIC, if the conjecture turns out to be true.

All fd lightlike geodesics emanating from p bend inwards, so that any surface (drawn as a circle in
d = 2+ 1) sufficiently high up in the picture will be trapped. Taken from Penrose (1969), Figure 3.

329See Hawking & Ellis (1973), Propositions 4.4.4 to 4.4.6, for details.
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Figure 2. Spherically symmetrical collapse in Eddington-Finkelstein co-ordinates.

Picture of a collapsing star, here shown to more directly illustrate the defining conditions for Penrose’s
concept of a trapped surface. Far from the collapsing matter, the local lightcones are as in Minkowski
space-time, with θ > 0 and θ < 0, so that the area of a surface (represented by a circle in this picture)
grows along L and shrinks along L. While θ < 0 everywhere, θ vanishes at r = 2m and then changes sign
to θ < 0 for 0 < r < 2m, so that the circles shrink in both directions and the lightcones become thinner.
The key point is that θ < 0 indicates that the originally outgoing light-rays along L now bend inwards
and cannot escape, justifying the relevance to black holes. Taken from Penrose (1969), Figure 2.
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6.5 Penrose’s singularity theorem

We now come to one of the highlights of (mathematical) GR. Proposition 6.14 will lead to a
contradiction with global hyperbolicity, as in Hawking’s theorem, provided some and hence
all Cauchy hypersurfaces Σ are non-compact. If one envisages applications to black holes in
asymptotically flat space-times (to be defined), then this seems a reasonable assumption.

Theorem 6.15 Let (M,g) be globally hyperbolic with non-compact Cauchy surface Σ. Assume:

1. One has Rµν γ̇µ γ̇ν ≥ 0 along all lightlike geodesics γ (null curvature condition);

2. The space-time M contains a future trapped surface.

Then (M,g) has incomplete future-directed lightlike geodesics.

Proof. The proof is based on properties of the future horismos E+(S) = J+(S)\I+(S).

Lemma 6.16 Let (M,g) be a globally hyperbolic space-time and let S⊂M be compact.

1. If M has a non-compact Cauchy surface, then E+(S) is non-compact.

2. If: i) assumptions 1 and 2 in the theorem hold; ii) S is a trapped surface (which is compact
by definition); iii) all lightlike geodesics in M are complete, then E+(S) is compact.

The proofs of both claims rely on the following consequence of global hyperbolicity.

Lemma 6.17 If (M,g) is globally hyperbolic and S⊂M is compact, then

E±(S) = ∂ I±(S). (6.103)

Proof. This follows from Lemma 5.29, which makes J±(S) closed, and then (5.148). �

Recall that a hypersurface A⊂M is achronal iff each timelike curve intersects it at most once,
cf. (5.145). Furthermore,330 F ⊂M is a future set if I+(F) ⊂ F (in other words, I+(x) ⊂ F for
all x ∈ F), in which case ∂F is called an achronal boundary. Clearly, F = I+(S) is a future
set, and hence ∂ I+(S) is an achronal boundary; see (5.146) etc. for the proof that it is indeed
achronal (the proof for general F , which we do not need, is similar). Since I+(S) is open, its
boundary has codimension one (i.e. is 3d in 4d space-time) where it is smooth. The following
more specific result will also be important for the analysis of event horizons (cf. §10.7):

Proposition 6.18 Achronal boundaries are locally Lipschitz topological hypersurfaces in M.

Knowing this,331 the most rigorous way to prove part 1 of Lemma 6.16 is to use the following:

Proposition 6.19 Let (M,g) be a globally hyperbolic space-time. Then any compact achronal
topological hypersurface Σ in M is a Cauchy surface.

330Penrose (1972) defines future sets through I+(F) = F . We have equality in I+(F) ⊂ F iff F is open.
331See Minguzzi (2019), Theorem 2.87 (iii). To define the Lipschitz condition we equip M with a complete

Riemannian metric, so that it also becomes a metric space, and ask the map ϕ : U →V in (4.122) to be bi-Lipschitz
(i.e. Lipschitz with Lipschitz inverse). See e.g. Naumann & Simader (2011), §2.1. The simplest examples, such as
S = ∂ I+(0) in M, whose boundary is not smooth at the apex show that achronal boundaries need not be smooth.
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Proof (sketch).332 First, the definition of a hypersurface implies that it has no boundary, which
implies that J+(Σ)∪ J−(Σ) is open. If Σ is compact, then J±(Σ) is closed by Lemma 5.29 and
the assumption of global hyperbolicity. Hence J+(Σ)∪ J−(Σ) is both open and closed, and
since our space-times M are connected by definition, we must have J+(Σ)∪ J−(Σ) = M. So
any x ∈ M must lie either in J+(Σ) or in J+(Σ), or on both, i.e. in Σ, which trivial case we
exclude. Suppose x ∈ J+(Σ) and consider a past inextendible timelike curve c ending at x. If c
does not intersect Σ, then it must stay in J+(Σ)∩ J−(x). This set is compact by Lemma 5.29, so
the curve is imprisoned, which is impossible by Definition 5.27 of global hyperbolicity. �

In view of Theorem 5.33.2, which excludes the possibility of M having one Cauchy surface that
is compact and another that is not, Propositions 6.18 and 6.19 clearly imply Lemma 6.16.1.333

We now turn to the second part of Lemma 6.16. Given (6.103), the idea is to use Corollary
5.16. The lightlike geodesics ruling ∂ I+(S) come from both L and L; in d = 2+ 1 a picture
where the trapped “surface” is just a circle shows this very clearly. This obviously gives the
inclusion ∂ I+(S) ⊂C∪C, see (6.61) and (6.82). The key is a refinement of this inclusion:

Lemma 6.20 For any closed spacelike surface S in a globally hyperbolic space-time (M,g),
with associated null surfaces C and C defined by (6.61) and (6.82), one has

E+(S) ⊂Creg∪Creg ⊂C∪C ⊂ J+(S), (6.104)

where Creg ⊂C is the regular (and hence smooth) part of C, and Creg is defined likewise. More
precisely, Creg is defined as the subset consisting of the parts of all (fd) lightlike geodesics in C
starting in S before their first focal points (if any) are encountered (and similarly for Creg).

The first inclusion in (6.104) follows from the counterpart of Theorem 6.6 for lightlike geodesics:

Theorem 6.21 A lightlike geodesic γ : [a,b]→M in C or C (with γ(a) ∈ S) locally maximizes
the length of causal curves from S to γ(b) (not necessarily in C or C) iff there is no focal point
γ(c) on γ (a < c < b) which is the case iff there is no point γ(c) on γ (a < c < b) where θ = tr(k)
diverges. In particular, if there is an intermediate focal point, then γ(b) ∈ I+(γ(a)).

This is a “lightlike” adaptation of Theorem 5.12, whose long proof we omit.334 We do note that
lightlike geodesic can only maximize length if all other comparable causal curves (between the
given endpoints) have zero length, too. This is why focal points and the existence of (longer)
timelike curves go hand in hand. See also the comment after the statement of Proposition 5.9.

332For complete proofs see Budic et al. (1978), Theorem 1, and Galloway (1985), Theorem 1 and Corollary 1.
333 Penrose (1965) himself, followed by Hawking & Ellis (1973), §8.2, Theorem 1, used a different argument:

Since M has Cauchy surface Σ and E+(S) is achronal, via the flow of a complete timelike vector field (which exists
because space-times are time orientable), any x ∈ E+(S) projects onto a unique point of Σ. This gives a continuous
injective map π : E+(S)→ Σ, which is a homeomorphism onto its image π(E+(S)) in Σ (recall that any continuous
bijection from a compact space to a Hausdorff space has a continuous inverse). Since E+(S), being a boundary
itself by (6.103), has no boundary, its homeomorphic image π(E+(S)) has no boundary either. Similarly, if E+(S)
is compact, then π(E+(S)) is compact, too. In that case the non-compact (sub)manifold Σ would have a compact
submanifold of the same dimension without boundary, which is impossible (Aretakis, 2013, §5.5): any x∈ π(E+(S))
would then have an open nbhd U which is also open in Σ, since dim(E+(S)) = dimπ(E+(S)) = dim(Σ) = 3.
Hence π(E+(S)) would be open in Σ, but it is also closed since it is compact. Since Σ is connected (by Proposition
5.33.1) this implies π(E+(S)) = Σ, which is impossible because Σ is not compact whilst π(E+(S)) is.

334See Hawking & Ellis (1973), Proposition 4.5.10 to 4.5.14, O’Neill (1983), Propositions 10.46 to 10.48, or
Kriele (1999), Lemma 4.6.15, Theorem 4.6.2(iii) and Corollary 8.3.1, and Minguzzi (2019), Theorem 6.16.
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If now y ∈C lies beyond a focal point on some lightlike geodesic γ
(x)
L in C, then by Corollary

5.16 it cannot lie in ∂ I+(S), since now there is a timelike curve from x to y, and likewise for
L and C. This gives the inclusion E+(S) ⊂Creg∪Creg. Now suppose that all assumptions in
Lemma 6.16.2 hold. Then Proposition 6.14 applies. Each (lightlike) geodesic γ in C reaches
its first focal point in finite time t f ; if γ starts at x ∈ S, then t f (x) ≤ 2/|θ (x)|, for which the
argument is the same as after (6.35), except that in the null Raychaudhuri equation (6.99) one
has − 1

2θ 2 instead of − 1
3θ 2 as in the timelike case (6.28). Since S is compact and θ (x) < 0 for

all x ∈ S by definition of a trapped surface, one has Θ := infx∈S{|θ (x)|}> 0, so that by the time
t f = 2/Θ < ∞ each geodesic in C has passed its first focal point. Likewise for L and C, giving
Θ = infx∈S{|θ (x)|}> 0 and a time t f = 2/Θ < ∞ playing the same role for C. It follows that

E+(S) ⊂Creg∪Creg ⊂ (∪t∈[0,t f ]St)
⋃

(∪t∈[0,t f ]
St). (6.105)

By (6.103), this makes E+(S) a closed subset of a compact set, so that it is compact, which proves
Lemma 6.16.2. Given the assumptions of Theorem 6.15, the only way out of the contradiction
between compactness and non-compactness of E+(S) is to invalidate the use of Proposition 6.14
by rejecting its proviso ‘provided that γ can indeed be extended from a to c’, which would be
guaranteed by lightlike geodesic completeness. So this cannot be the case; the proof shows that
at least one incomplete lightlike geodesic emanates from the trapped surface S. �

Neither Hawking’s nor Penrose’s singularity theorem proves the existence of a singularity
in the sense of Definition 6.1.3. These theorems only show causal geodesic incompleteness
and as such they are better called incompleteness theorems. The “singularity” theorems were
inspired by intuition from the big bang and from black holes, as described by the time-honoured
Schwarzschild and FLRW solutions (6.1) - (6.3), where some quantity defined via the metric
becomes singular (that is, infinite or zero). However, running ahead of chapters 9 and 10,
consider the Kerr solution (9.114) for 0 < |a|< m or even more simply the Reissner–Nordström
solution (9.92) - (9.93) for 0 < |e|< m, and suppose we do not look at the maximally extended
solutions but rather at the maximal globally hyperbolic development (MGHD) of a typical maximal
spacelike (achronal) hypersurface on which the initial data induced by the global solutions are
given (see §7.6). The picture then changes completely: the ensuing space-times still satisfy the
assumptions of Penrose’s theorem, but they are not singular in any metric sense, because the
singularities lie behind the Cauchy horizon of the initial data hypersurface. In this (PDE) picture,
causal geodesic incompleteness rather means that the space-times in questions are extendible.
The maximal (analytic) extensions are singular in a metric sense, and in addition they fail to
be globally hyperbolic (whereas any MGHD is globally hyperbolic by construction). These
properties are related to each other; see §10.4 in connection with (strong) cosmic censorship.

Penrose’s theorem is the mother of all singularity theorems in GR and, with Hawking’s
(which is perhaps the father), also the cleanest one. Apart from the introduction of topological
methods in GR, which was new at the time, among its main achievements one should already
count a key definition Penrose introduced in GR, namely that of a trapped surface.

Nonetheless, there is room for weakening the assumptions in Penrose’s theorem.335 The
most cited way of doing this is the combined Hawking–Penrose singularity theorem:336

335As well as in Hawking’s, where, as already noticed by Hawking (1967) himself, global hyperbolicity may be
replaced by strong causality, in which case the Cauchy surface in its proof may be replaced by a partial one.

336See Hawking & Penrose (1970), Hawking & Ellis (1973), §8.2, Theorem 2, or Senovilla (1998), Theorem 5.6.
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Theorem 6.22 Let (M,g) be a chronological space-time (i.e. M contains no closed timelike
curves). If Rµνuµuν ≥ 0 for every causal vector u, and on top of that the genericity condition

γ̇[αRβ ]γδ [ρ γ̇σ ]γ̇
γ
γ̇

δ 6= 0 (6.106)

holds in at least one point of every causal geodesic γ , and at least one of the following is present:

1. A compact edgeless achronal set; 2. A closed trapped surface;

3. A point x ∈M such that the lightlike geodesics from x are focused and reconverge,

then the space-time in question is causally geodesically incomplete.

The main achievement of this theorem is that global hyperbolicity has been weakened, and that
the assumptions in Hawking’s and Penrose’s theorems are somehow combined. But the price
is high: the assumption (6.106) is contrived and purpose-driven, and in addition the theorem
does not so much strengthen as weaken Penrose’s theorem:337 because of the choice menu in its
assumptions, in the case of say a black hole in an expanding universe the theorem may point
towards the big bang singularity whilst saying nothing about the black hole singularity, or vice
versa; whereas the separate theorems of Hawking and Penrose would identify both. Instead, a
real and useful strengthening of Penrose’s theorem is given by Minguzzi’s singularity theorem:

Theorem 6.23 Let a space-time (M,g) satisfy assumptions 1 and 2 in Theorem 6.15, and also:

1. I+(x) ⊂ I+(y) implies I−(y) ⊂ I−(x) (i.e., (M,g) is past reflecting);

2. M does not contain a compact spacelike hypersurface.

Then (M,g) has incomplete future-directed lightlike geodesics.

Condition 1 weakens Penrose’s assumption of global hyperbolicity. In view of Proposition 6.19,
condition 2 weakens his assumption of M of containing a non-compact Cauchy surface. These
conditions were inspired by black hole evaporation. Other assumptions one may weaken include:

• the pointwise energy/curvature conditions, which can be replaced by averages;338

• the presence of a trapped surface, which can be replaced by an outer trapped surface;339

• the assumption that the space-time is chronological (which e.g. a Kerr black hole is not);340

• the regularity of the metric, so far tacitly assumed smooth.341

337This point was made by Minguzzi (2020), which is also the source of Theorem 6.23 below.
338 See Fewster & Galloway (2011), Fewster & Kontou (2020), and Freivogel, Kontou, & Krommydas (2020).
339 These things are defined in §10.11. Briefly, a (marginally) outer trapped surfaces has θ < 0 (θ = 0), irrespective

of the sign of θ , where L is outward pointing (provided this can be defined). Outer trapped surfaces appear in
the topological singularity theorem of Gannon (1975) and Lee (1976), in which assumption 2 in Theorem 6.15 is
replaced by the mere assumption that Σ is non-simply connected. See also Galloway (2017), Theorem 3.3. The
proof constructs an outer trapped surface in the universal cover Σ̃. Eichmair, Galloway, & Pollack (2013) showed
that, assuming the genericity condition (6.106), condition 2 in Theorem 6.15 may be replaced by the presence of a
marginally outer trapped surface in the Cauchy surface Σ. In a variation on this result, Chruściel & Galloway (2014)
replaced (6.106) by assuming that the second fundamental form k defined in (6.78) is not identically zero.

340See Lesourd (2018). Another interesting (cosmological) singularity theorem of his is in Lesourd (2019).
341See Graf et al. (2018) and references therein. One can go down to C1,1 (i.e. derivatives are locally Lipschitz).
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7 The Einstein equations

As noticed independently by Einstein and Hilbert in 1916, the Einstein equations

Rµν − 1
2gµνR = 8πTµν , (7.1)

whose left-hand side we now understand, and whose right-hand side will be explained in §7.3,
can be derived from a variational principle. The geometrical quantity to be extremized in order
to obtain the left-hand side is the Einstein–Hilbert action for the gravitational field, given by

SG(g) :=
∫

V
d4x
√
−g(x)R(x), (7.2)

where R = gµνRµν is the Ricci scalar. To be on the safe side in so far as convergence of integrals
is concerned, V ⊂M is a compact region in space-time M with open interior (or, equivalently, an
open region with compact closure–this does not matter with respect to a measure like d4x), and
g≡ det(g) is the determinant of the matrix gµν (in any basis), cf. (3.14) - (3.15).

Eq. (7.2) will later be supplemented by boundary terms, which are needed in case things on
∂V are not under control; for the moment we omit these (life without them is difficult enough!).

7.1 Integration on manifolds

To make sense of (7.2) and its variation we need some integration theory, for which we assume
some familiarity with the calculus of differential forms.342 For simplicity we assume that M is
orientable, which means that there is an atlas (within the equivalence class of atlases defining
the manifold, cf. §2.1) for which all transition functions ϕβ ◦ϕ−1

α have positive Jacobian. An
orientation of an orientable manifold is the equivalence class of an atlas satisfying this condition.
It can be shown that M is orientable iff it admits a nowhere vanishing n-form ω ∈Ωn(M). Such
an ω defines an orientation: one only accepts charts ϕ whose coordinates (x1, . . . ,xn) satisfy

ω(∂1, . . . ,∂n) > 0. (7.3)

In the presence of a metric we normalize ω (which can be multiplied by an arbitrary smooth
strictly positive function) such that in some, and hence in all coordinates one has, equivalently,

ω(∂1, . . . ,∂n) =
√
|g|;

ωx =
√
|g(x)|dx1∧·· ·∧dxn. (7.4)

342 See e.g. Choquet-Bruhat & DeWitt-Morette (1982), chapter IV (a book I devoured as a student). Briefly, if
dim(M) = n and 0≤ p≤ n, a p-form on M is a totally antisymmetric element of X(p,0)(M), cf. §2.5. These form
a C∞(M)-submodule of X(p,0)(M), called Ωp(M) or Λp(M). One has multilinear maps ∧ : Ωp(M)×Ωq(M)→
Ωp+q(M) defined by concatenation followed by total antisymmetrization, called exterior multiplication, as well
as linear maps d : Ωp(M)→ Ωp+1(M), called the exterior derivative, which are uniquely characterized by the
properties: i) eq. (2.56) at p = 0; ii) d(α ∧ β ) = (dα)∧ β + (−1)pα ∧ dβ , where α ∈ Ωp(M); iii) d2 = 0;
iv) locality, in the sense that if α = β on some U ∈ O(M), then dα = dβ on U . In coordinates one then has
(dα)µ1···µp+1 = ∂[µ1

αµ2···µp+1]. It follows that dim(Ωn
x(M)) = 1 for all x ∈M, with basis dx1∧ ·· ·∧dxn. Finally,

each vector field X ∈ X(M) defines insertion maps iX : Ωp(M)→Ωp−1(M) that are uniquely characterized by the
following properties: i) iX = 0 on Ω0(M) ≡C∞(M); ii) iX θ = θ (X) for θ ∈Ω1(M) ≡Ω(M); iii) iX (α ∧β ) =
(iX α)∧β +(−1)pα ∧ iX β , where again α ∈Ωp(M). In coordinates, one has (iX α)µ2···µp = X µ1αµ1µ2···µp .
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This expression is indeed well defined in that ω keeps this form under coordinate transformations.
To see this, we use the change of coordinates formula (2.77) for the metric, i.e.,

gµ ′ν ′(y) =
∂xµ

∂yµ ′
∂xν

∂yν ′
gµν(x), (7.5)

in which we write y for xβ and x for xα , so that y = y(x), and as a matrix we have

∂xµ

∂yµ ′
≡

(
∂yµ ′

∂xµ

)−1

. (7.6)

Then

g(y) = g(x)
(

det
(

∂xµ

∂yµ ′

))2

= g(x)

(
det

(
∂yµ ′

∂xµ

))−2

. (7.7)

This gives coordinate-independence of (7.4), as well as the (equivalent) property

d4y
√
|g(y)|= d4x

∣∣∣∣∣det

(
∂yµ ′

∂xµ

)∣∣∣∣∣√|g(x)|
∣∣∣∣∣det

(
∂yµ ′

∂xµ

)∣∣∣∣∣
−1

= d4x
√
|g(x)|. (7.8)

The following formula then either defines the left-hand side or gives a formula for it:∫
V

f ω =
∫

V
dnx
√
|g(x)| f (x), (7.9)

for any f ∈C∞
c (M), where ω is defined by (7.4), and the right-hand side should be written as a

sum over various coordinate patches using a partition of unity. As we saw, the expression

d4x
√
|g(x)| (7.10)

is invariant under coordinate transformations and hence defines a “geometric” volume element.
We will encounter boundary terms. First, the divergence of a vector field X is defined as

∇ ·X = ∇µX µ . (7.11)

From now on we assume Lorentzian signature. In any coordinate system we then have

∂µ

√
−g =

√
−gΓρ

µρ . (7.12)

Indeed, since the first term in (4.15) cancels the last if ν = ρ , we have

Γρ

µρ = 1
2gρσ gρσ ,µ . (7.13)

The right-hand side can be computed by diagonalizing the symmetric invertible matrix (gρσ ),
yielding nonzero eigenvalues (λ0, . . . ,λ3). Realizing that (gρσ ) is the inverse of (gρσ ) gives

gρσ gρσ ,µ =
∂µλ0

λ0
+ · · ·+

∂µλ3

λ3
. (7.14)

Eq. (7.12) then follows from the fact that we also have

2
∂µ

√
−g

√
−g

= g−1
∂µg =

∂µ(λ0 · · ·λ3)

λ0 · · ·λ3
=

∂µλ0

λ0
+ · · ·+

∂µλ3

λ3
. (7.15)
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For later use (see §7.5) we also put on record an identity that follows from (7.12), viz.

∂ν(
√
−ggµν) =

√
−ggρσ Γµ

ρσ . (7.16)

Returning to our theme of boundary terms, eq. (7.12) implies

√
−g ∇ ·X = ∂µ(

√
−gX µ), (7.17)

and hence, by Stokes’s theorem ( = divergence theorem = Gauss’s theorem),∫
V

d4x
√
−g(x) ∇ ·X(x) =

∫
∂V

d3~σ ·X =
∫

∂V
d3

σ
µXµ , (7.18)

where ∂V is the boundary of V and d3~σ is the (outward) normal volume element of ∂V . If
we use local coordinates (y1,y2,y3) on ∂V , and g̃ = i∗g is the induced metric on ∂V (where
i : ∂V ↪→V is the inclusion, so that g̃(X ,Y ) = g(X ,Y ) for X ,Y tangent to ∂V ), we have

d3~σ = d3y
√
|det(g̃)|~N, (7.19)

where ~N is the outward normal to ∂V (here assumed to be non-null, so that det(g̃) 6= 0).
The royal (i.e. geometric) path to (7.18) is to note that (7.17) takes the abstract form

LX ω = ω ∇ ·X , (7.20)

where the volume form ω is given by (7.4), and then use Cartan’s formula

LX α = d(iX α)+ i(dα) (7.21)

for the Lie derivative of any p-form α ∈Ωp(M), p > 0, where X ∈ X(M). Since ω ∈Ωn(M)
we must have dω = 0, so that Cartan’s formula for the volume form is

LX ω = d(iX ω). (7.22)

With (7.20), this gives ω ∇ ·X = d(iX ω). The abstract version of Stokes’s theorem reads∫
V

dα =
∫

∂V
α , (7.23)

for any α ∈Ωn(M). Taking α = iX ω and hence dα = LX ω gives (7.18) geometrically:∫
V

ω ∇ ·X =
∫

∂V
iX ω . (7.24)

Moreover, the form in (7.19) is σ = i~Nω . Using (7.21) twice, as well as (7.20), we obtain

L~Nσ = L~N i~Nω = i~Nd(i~Nω) = i~NL~Nω = i~Nω∇ ·~N = σ∇ ·~N. (7.25)

This formula will not be used in what follows, but it was used in §6.2 and hence needed proof.
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7.2 Variation of the Einstein–Hilbert action
In order to set up the variational calculus around (7.2), as in the geodesic case (§3.2) we now
consider a family of metrics gs, and compute dSG(gs)/ds. This requires some preparation.

1. Each of the three terms in the integrand
√
−ggµνRµν in (7.2) depends on the metric gµν

and hence has to be varied. The variation of the Ricci tensor seems the most complicated
case, but surprisingly it contributes a divergence term and hence makes no contribution to
the Einstein equations (7.1). This is surprising, since definitions (4.14) and (4.108) give

Rµν = Γρ

µν ,ρ −Γρ

µρ ,ν +Γρ

ρσ Γσ
νµ −Γρ

νσ Γσ
ρµ , (7.26)

whose first two terms contain second-order derivaties of gµν . Their variation would
therefore in principle be expected to give a fourth-order PDE, but this does not happen.343

2. Writing δF(g) = dF(gs)/ds|s=0 and d(gs)µν /ds|s=0 = δgµν ≡ dµν , we claim that

gµν
δRµν = ∇ ·X ; (7.27)

X µ = ∇
νdµ

ν −∇
µdν

ν , (7.28)

where indices are always raised and lowered with the metric g = gs=0. In this respect the
notation δgµν is ambiguous, as it could mean either (δg)µν = gµρgνσ δgρσ , or

δgµν ≡ δ (gµν) = −gµρgνσ dρσ , (7.29)

which is what we will take it to mean. Then (7.29) follows from gµνgνρ = δ
µ

ρ , and hence

0 = δ (gµνgνρ) = (δgµν)gνρ + gµνdνρ . (7.30)

The key step in the proof of (7.27) - (7.28) is the relation

δ Γρ

µν = 1
2(∇µdρ

ν +∇νdρ

µ −∇
ρdµν) = 1

2gρσ (∇µdσν +∇νdσ µ −∇σ dµν). (7.31)

This can be shown by a lengthy computation, but also by the following instructive trick.

(a) First note that although the coefficients Γρ

µν do not form the components of a tensor,
their variation δ Γρ

µν does. This is true far more generally: if ∇ and ∇̃ are connections
on a vector bundle E, then (∇X − ∇̃X )s is C∞(M)-linear in s ∈ Γ(E) (unlike ∇X s and
∇̃X s), since the spoiler (X f )s in the Leibniz rule (3.56) drops out of the difference.
As a case in point, let ∇ be the Levi-Civita connection for a given metric g and let ∇̃

be the Levi-Civita connection for some other metric g̃. We then have a tensor Γ̂ ∈
X(2,1)(M), defined by Γ̂(X ,Y ,θ ) = θ (∇XY − ∇̃XY ), whose connection coefficients
are Γρ

µν − Γ̃ρ

µν , cf. (3.37). In particular, we make take g̃ = gs, and since

δ Γρ

µν(g) = lim
s→0

(Γρ

µν(gs)−Γρ

µν(g))/s, (7.32)

we may conclude that the coefficients δ Γρ

µν form the components of a tensor δ Γ.

343Lovelock’s Theorem (Lovelock, 1971; Navarro & Navarro, 2010) states that in d = 4 the Einstein–Hilbert
action (7.2) is the only possible geometric quantity giving rise to second-order PDE in the gµν , except for adding a
(cosmological) constant Λ = −λ to the Ricci scalar R. See Anderson (1981) for an extension to matter couplings.
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(b) Let σ and τ be tensors of the same type, say (1,1) Then σ = τ is true iff for each
x ∈M one has σν

µ (x) = τν
µ (x) in just one specific coordinate system (xµ) defined on

some nbhd U of x, which system may even depend on x (like GNC). For in that case
we have σx(∂µ ,dxν) = τx(∂µ ,dxν), and so, by C∞(M)-linearity of σ and τ in its
arguments, σ(X ,θ ) = τ(X ,θ ), where we write X = X µ∂µ and θ = θνdxν as usual,
for some X µ ∈C∞(U) and θν ∈C∞(U). And similarly for tensors of any type (k, l).

(c) It therefore suffices to verify (7.31) in geodesic normal coordinates, where at x = x0
we have ∇ = ∂ , cf. (5.38). In GNC one does not even need (7.29), since δgρσ in
(4.15) multiplies terms that vanish at x0, and hence (7.31) is almost trivial.

Similarly, noting that in GNC the variation δRµν only employs the first two terms in (7.26),
in which δ (Γρ

µν ,ρ) = ∂ρδ Γρ

µν (etc.) can be computed from (7.31), one obtains

δRµν = 1
2(∇ρ∇µdρ

ν +∇ρ∇νdρ

µ −∇µ∇νdρ

ρ −∇
ρ

∇ρdµν), (7.33)

where we note that the third term is symmetric in µ and ν because of (4.13) and (4.37).
Contraction with gµν then makes the first two terms identical to each other, and similarly,
the last two. This immediately leads to (7.27) - (7.28).

3. The computation of δ
√
−g is based on the relation ∂g/∂gµν = gµνg,344 which implies

δ
√
−g =

∂
√
−g

∂gµν

dµν = − 1
2
√
−g

∂g
∂gµν

dµν = 1
2

√
−ggµνdµν . (7.34)

4. Since we already know δgµν from (7.29), we are finally in a position to compute:

S′G(g) =
dSG(gs)

ds
(s = 0) =

∫
V

d4xδ (
√
−ggµνRµν)

=
∫

V
d4x [(δ

√
−g)gµνRµν +

√
−g (δgµν)Rµν +

√
−ggµν

δRµν ]

=
∫

V
d4x
√
−g ( 1

2gµνR−Rµν)dµν +
∫

∂V
d3~σ µ(∇νdµν −∇µdν

ν ). (7.35)

5. Now a delicate point is that although by definition of the variational principle dµν vanishes
on the boundary ∂V , this need not be the case for its (covariant) derivatives ∇νdµν etc. To
cancel the problematic boundary term in (7.35) one needs to add a boundary term SB(g)
to the Einstein–Hilbert action (7.2), giving a gravitational action S = SG + SB, where

SB(g) := 2
∫

∂V
d3~σ ·~N (Tr (k̃0)−Tr (k̃)) = 2ε

∫
∂V

d3y
√
|det(g̃)| (Tr (k̃0)−Tr (k̃)).

(7.36)
Here ε = g(~N,~N) equals ε = 1 if ∂V is timelike and ε = −1 if ∂V is spacelike; in a 3+1
split, where V typically looks like the bulk part of a cylinder, ∂V consists of two timelike
components that bound V from above and from below, as well as a single spacelike part
(cf. §8.7). Furthermore, k̃ is the trace of the extrinsic curvature of the embedding ∂V ↪→V .
The extrinsic curvature, studied in detail in §4.7, is defined by

k̃(X ,Y ) := −g(∇X N,Y ), (7.37)

344This follows from linear algebra: ∂g/∂gµν = mµν , i.e. the minor = cofactor of gµν , and gµν = mνµ /g.
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where we dropped the arrow on the normal ~N, and X ,Y are tangent to ∂V ; this form turns
out to be a symmetric tensor k̃ ∈ X(2,0)∂V on ∂V , like the induced metric g̃, cf. (4.145).
Nonetheless, there is a convenient space-time calculus for both g̃ and k̃, defined via

g̃µν := gµν − εNµNν ; (7.38)

k̃µν := −g̃ρ

µ g̃σ
ν ∇ρNσ , (7.39)

whose indices are raised and lowered with g. However, since NµNν k̃µν = 0, the trace is

Tr (k̃) = g̃µν(Γρ

µνNρ −∂µNν). (7.40)

Finally, k̃0 in (7.36) is the extrinsic curvature of the embedding ∂V ↪→M, where M is
Minkowski space-time (its trace is taken with respect to the Minkowski metric). This term
is necessary for for (7.36) to converge if ∂V stretches out to spatial infinity.

In computing the variation of SB(g), it simplifies matters greatly that dµν vanishes on ∂V ,
as do all its derivatives along ∂V , so that only its derivatives along N need to be taken into
account. For example, δ det(g̃) vanishes on ∂V , and for δTr (k̃) on ∂V we find

δTr (k̃) = g̃µνNρδ Γρ

µν = − 1
2 g̃µνNρ

∂ρdµν , (7.41)

so that
δSB(g) = ε

∫
∂V

d3y
√
|det(g̃)| g̃µνNρ

∂ρdµν . (7.42)

On the other hand, on ∂V where dµν = 0, we have, for the boundary term in (7.35),

Nµ(∇νdµν −∇µdν
ν ) = Nµgαβ (∂αdµβ −∂µdαβ )

= Nµ(g̃αβ + εNαNβ )(∂αdµβ −∂µdαβ )

= −g̃αβ
∂µdαβ , (7.43)

since g̃αβ ∂αdµβ = 0 on ∂V and NµNαNβ (∂αdµβ −∂µdαβ ) = 0 identically. Hence∫
∂V

d3~σ µ(∇νdµν −∇µdν
ν ) = −ε

∫
∂V

d3y
√
|det(g̃)| g̃αβ Nµ

∂µdαβ , (7.44)

where we used (7.19), so that the last term in (7.35) cancels (7.42), as intended.

6. In view of these computations, we obtain for the variation of S(g) = SG(g)+ SB(g):

δS(g) =
∫

V
d4x
√
−g (Rµν − 1

2gµνR)δgµν , (7.45)

where we used (7.29). If there were no matter in the universe, then requiring S′G(g) = 0
for arbitrary variations dµν (or δgµν ) therefore gives the vacuum Einstein equations

Rµν − 1
2gµνR = 0. (7.46)

It was a fact of great importance to Einstein that the gravitational action (7.2) is, as he called
it, generally covariant, i.e., invariant under arbitrary coordinate transformations. See also §1.10.
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We would now rather say that SG(g) is invariant under (orientation-preserving) diffeomorphisms.
This has a very interesting consequence.345 Consider variations of the metric that take the form

gs = ϕ
∗
s g, (7.47)

where ϕs is a one-parameter group of diffeomorphisms of M that preserve V , arising as the flow
of a vector field X ∈ X(M) having compact support within V (in which case X is complete). As
a special case of (2.93), for the above variations (7.47) we have

dgs

ds
(s = 0) = LX g, (7.48)

and hence, using (3.86).
dµν = ∇µXν +∇νXµ . (7.49)

Although this may seem obvious, we now explicitly show that

SG(ϕ
∗g) = SG(g). (7.50)

Indeed, starting from SG(g) =
∫

V ωgRg, where we have now explicitly indicated the g-dependence
of ω and R, we obtain ϕ∗ωg = ωϕ∗g and ϕ∗Rg = Rϕ∗g, so that

ωϕ∗gRϕ∗g = ϕ
∗
ωgϕ

∗Rg = ϕ∗(ωgRg). (7.51)

For any top-dimensional form α ∈Ωn(M) (with compact support) one has∫
V

ϕ
∗
α =

∫
V

α , (7.52)

so the transformed action equals

SG(ϕ
∗g) =

∫
V

ωϕ∗gRϕ∗g =
∫

V
ϕ
∗(ωgRg) =

∫
V

ωgRg = SG(g). (7.53)

Therefore, for variations of the kind (7.47) we have S′G(g) = 0 for any metric g, that is, whether
or not g solves the vacuum Einstein equations; the latter guarantee that S′G(g) = 0 under arbitrary
variations of g, as opposed to the special ones (7.47). Using the Einstein tensor

Gµν := Rµν − 1
2gµνR, (7.54)

which like Rµν and gµν is symmetric, from (7.50) we therefore have

0 = S′G(g) = −
∫

V
d4x
√
−gGµν(∇µXν +∇νXµ)

= 2
∫

V
d4x
√
−g (∇µGµν)Xν −2

∫
V

d4x
√
−g∇µ(GµνXν)

= 2
∫

V
d4x
√
−g (∇µGµν)Xν , (7.55)

since as in (7.45) the second term in the middle line is a boundary integral, which vanishes since
X was assumed to have compact support within V . The final term must then vanish for arbitrary
X . This recovers the (contracted) Bianchi identity, which holds, once again, for any metric g:

∇µGµν = 0. (7.56)

This also follows from (4.25) and (7.54). Its impact on GR will be studied in §7.5.
345These also follow from Noether’s second theorem (cf. footnote 102), but are in fact easier to understand directly.
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7.3 The energy-momentum tensor
The left-hand side of the Einstein equation (7.1) describes the geometry of space-time. The right-
hand side Tµν (times 8π), called the energy-momentum tensor, describes the matter content of
the universe. The first thing one infers from (7.1) is that T ∈ X(2,0)(M) has to satisfy

Tµν = Tνµ . (7.57)

This makes index raising unambiguous, so that we may write T µ

ν for either gµρTρν or gµρTνρ .
Relative to a swarm of observers whose four-velocities u, normalized by (6.4), comprise a (local)
timelike congruence (cf. §6.2), the energy-momentum four-vector of matter is T µ

ν uν , and

E = T (u,u) = Tµνuµuν (7.58)

is the (relative) energy density of the matter. Similarly, one has a (covariant) momentum density

Pµ = −hµ

ν T ν
ρ uρ , (7.59)

cf. (6.11), which is orthogonal to u, i.e., g(P,u) = 0. The fully orthogonal projection of T , viz.

Sµν = hρ

µhσ
ν Tρσ , (7.60)

is the stress tensor (of the given matter): if X and Y are spacelike unit vectors orthogonal to u,
then S(X ,Y ) is the force exerted by the matter in the direction X on the spacelike unit surface
element normal to Y , and vice versa, since S(X ,Y ) = S(Y ,X). This gives the decomposition

Tµν = Sµν +Pµuν +Pνuµ +Euµuν . (7.61)

Since the Einstein equations may be rewritten as

Rµν = 8π(Tµν − 1
2gµνT ), (7.62)

where T = T µ

µ = gµνTµν is the trace of T , it is often useful to know that, as implied by (7.61),

T = S−E, (7.63)

where S = gµνSµν is purely spatial, i.e. S = ∑
3
i=1 S(ei,ei) for some o.n.b. (ei) orthogonal to u.

Assuming (7.1), the curvature condition (6.35) in Hawking’s Theorem 6.4 is equivalent to

E ≥−S. (7.64)

More generally, the most straightfoward energy conditions used in GR are the following:

TµνX µY ν ≥ 0, X ∼ Y causal, (dominant energy condition = DEC); (7.65)
TµνX µXν ≥ 0, X causal, (weak energy condition = WEC); (7.66)
TµνX µXν ≥ 1

2X µXµT , X causal, (strong energy condition = SEC); (7.67)
TµνX µXν ≥ 0, X timelike, (null energy condition = NEC), (7.68)

where X ∼ Y denotes that X and Y , both causal, should be either both fd or both pd. One has
obvious implications DEC⇒WEC⇒ NEC and SEC⇒ NEC, and DEC is equivalent to WEC
plus the requirement that T µ

ν Xν be causal for causal X . As such, it may be strengthened by
the strengthened dominant energy condition = SDEC, which requires (7.66) plus the condition
that T µ

ν Xν be timelike for timelike X , provided Tµν 6= 0. DEC will be used e.g. in black hole
thermodynamics, cf. Proposition 10.37. Here is a completely different application of DEC:346

346See Malament (2012), Prop. 2.5.1, Hawking & Ellis, §4.3, and, in final form, Minguzzi (2015b).
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Proposition 7.1 Suppose a symmetric tensor Tµν satisfies DEC and the conservation law

∇
µTµν = 0. (7.69)

If S⊂M is an achronal set on which Tµν = 0, then Tµν also vanishes on D(S), cf. (5.170).

If Tµν is “the” energy-momentum tensor, then (7.69) follows either from the Bianchi identity
(7.56) and Einstein’s equation (7.1), or, if Tµν can be derived from an action principle, from an
argument like the one at the end of §7.2. To see SDEC in action, we mention another difficult
result, making Einstein’s idea that (7.1) implies geodesic motion of test particles rigorous:347

Proposition 7.2 Suppose a symmetric tensor Tµν satisfies SDEC and and (7.69). Let c : I→M
be a curve such that Tµν = 0 outside any nbhd of c(I) but Tµν(c(t)) 6= 0 for some t ∈ I. Then c
can be reparametrized (if necessary) so as to become a timelike geodesic, cf. (3.48)

The idea is that Tµν describes a point-like “test-particle”, which moves under the influence of
gravity but does not act as a source. Note that the Einstein equations (7.1) are not even assumed!

A much simpler result can be derived for so-called dust, with energy-momentum tensor

Tµν = ρuµuν , (7.70)

where ρ ∈C∞(M) is the mass density and u is as above, including (6.4). Eq. (7.69) gives

∇µ(ρuµ) ·u+ρ∇uu = 0. (7.71)

Since g(u,∇uu) = 0 because of (7.69), contraction with u yields two independent conditions

∇µ(ρuµ) = 0; ∇uu = 0, (7.72)

of which the first is a conservation law and the second is just the geodesic equation for u. Eq.
(7.70) is a special case of the energy-momentum tensor of a perfect fluid, which is given by

Tµν = (ε + p)uµuν + pgµν = εuµuν + phµν , (7.73)

where the energy density ε is related by the pressure density p through some equation of state,
such as p = 0 (dust, as above) or p = 1

3ε (ultrarelativistic fluid). Eq. (7.69) now gives

(ε + p)∇µuµ + u(ε) = 0; (ε + p)∇uuµ + hµν
∂ν p = 0, (7.74)

called the (relativistic) Euler equations. The quantities (7.58) - (7.60) are obviously given by

E = ε; P = 0; Sµν = phµν , (7.75)

so that S = 3p and T = 3p− ε . The energy conditions then come down to (nontrivial exercise!):

• SEC holds iff ε + p≥ 0 and ε + 3p≥ 0; •WEC holds iff ε + p≥ 0 and ε ≥ 0;

• DEC and SDEC coincide in the case of (7.73) and both hold iff ε ≥ |p|.
347This idea goes back to Einstein & Gommer (1927) and Einstein, Infeld, & Hoffman (1938). For Proposition 7.2

see Geroch & Jang (1975), as well as Geroch & Weatherall (2018) for further results. As in footnote 316, we refer
to Curiel (2014a) and Martín-Moruno & Visser (2017) for more information about energy conditions.
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Except for fluids,348 most energy-momentum tensors are derived from an action principle, like
the Einstein equations. The idea is that the “coupling” of gravity to matter is described by a
functional SM(g,F), where F stands for all matter fields, so that, analogously to (7.45), one has

S′M(g,F) = − 1
2

∫
V

d4x
√
−gTµνδgµν , (7.76)

where the prime has the same meaning as in §7.2 (varying the metric), or, as physicists write,349

Tµν = −2
δSM(g,F)

δgµν
. (7.77)

In this notation, the Einstein equation (7.1) then simply states that

δ

δgµν
(SG(g)+ 16πSM(g,F)) = 0. (7.78)

This equation for the metric gµν is to be supplemented with equations for the field(s), viz.350

δSM(g,F)
δF

= 0. (7.79)

The simplest example is a scalar field ϕ ∈C∞(M), whose action functional is

SM(g,ϕ) = − 1
2

∫
V

d4x
√
−g (gµν

∂µϕ∂νϕ +V (ϕ))≡− 1
2

∫
V
(g(∇ϕ ,∇ϕ)+V (ϕ)), (7.80)

where V : R→R is a “potential” (which for a free field equals V (ϕ) = 1
2m2ϕ2). The computation

(7.45), with Rµν replaced by ∂µϕ∂νϕ (so that there isn’t even a boundary term) gives

Tµν = ∂µϕ∂νϕ− 1
2gµν(g(∇ϕ ,∇ϕ)+V (ϕ)). (7.81)

Another case of interest is the electromagnetic field A ∈Ω1(M), with F = dA ∈Ω2(M), or

Fµν = ∂µAν −∂νAµ = ∇µAν −∇νAµ , (7.82)

where the last equality follows because ∇ is torsion-free. The (free) action is

SM(g,A) = − 1
8π

∫
V

d4x
√
−ggµρgνσ FµνFρσ ≡−

1
8π

∫
V

F2, (7.83)

with F2 = FµνFµν , from which a brief computation yields the energy-momentum tensor

Tµν =
1

4π
(gρσ FµρFνσ − 1

4gµνF2), (7.84)

where the last term comes from the variation of
√
−g and the first one comes from δ (gµρgνσ ).

For later use (see §§10.9–10.10), we note that (7.84) satisfies DEC, and hence certainly NEC.

348Even for ideal fluids one has a (constrained) action principle due to A.H. Taub, but it is extremely contrived.
349In order to obtain the correct Einstein equations one is, of course, free to vary prefactors and even signs in

(7.77) and (7.78), but our choice matches the convention for Tµν in quantum field theory, with respect to which one
should actually multiply Newton’s constant G with the factor 16π in (7.78) and with 8π in (7.1).

350We might as well write these as δ (SG(g)+ SM(g,F))/δF = 0, since SG(g) is independent of F .
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7.4 Electromagnetism: gauge invariance and constraints
We start with electromagnetism, since it allows us to make an important conceptual point with
regard to the Einstein equations. To make this point it is enough to work in Minkowski space-
time, in which ∇µ = ∂µ , A0 =−A0, Ai = Ai (i = 1,2,3), and the wave operator (d’Alembertian)

� := −∂
2
t +∆. (7.85)

The equation of motion for Aµ , obtained by varying Aµ in (7.83) with flat metric gµν = ηµν , is

δSM(g,A)
δAµ

=
∂L

∂Aµ

−∂ν

∂L

∂ (∂νAµ)
= 0. (7.86)

For the specific action (7.83) this immediately yields

Rµ = 0; Rµ := ∂
νFνµ = �Aµ −∂µ(∂νAν), (7.87)

which may, more intrinsically,351 be written in terms of the Hodge dual as d ∗F = 0 (the other
half of the Maxwell equations is dF = 0, which however is automatic given F = dA). In
parallel with the discussion in §7.2.7, the action (7.83) is gauge invariant, in that we have
SM(A+ dλ ) = SM(A), say for all λ ∈C∞

c (V ). Gauge invariance under δAµ = ∂µλ yields

0 =
∫

V
d4x∂νFνµ

∂µλ = −
∫

V
d4xλ∂µ∂νFνµ (7.88)

for all λ ∈C∞
c (V ), which gives the Bianchi identity for electromagnetism, ∂µ∂νFνµ = 0, i.e.

∂µRµ = 0. (7.89)

This is so obvious (in view of the antisymmetry of F) as to be disappointing, but it must be
stressed that (7.89) is similar to (7.56) in being an identity, which holds irrespective of the
equations of motion. See below for its thrust! Another consequence of gauge invariance is that

the equations of motion (7.87) are simultaneously underdetermined and overdetermined:

• They are underdetermined in that: if A solves (7.87), then so does A+ dλ , λ ∈C∞
c (R

4);

• They are overdetermined in that the initial values are constrained (i.e. cannot be arbitrary).

The first point is immediate from (7.87). For the second, we note that for µ = 0 eq. (7.87) reads

C = 0; C := R0 = ∂
νFν0 = ∂iFi0 = �A0−∂0(∂νAν) = ∆A0−∂0(∇ ·~A). (7.90)

This is not an evolution equation but a constraint on the initial data Aµ(~x) and Ȧµ(~x) at x0≡ t = 0,
~x = (x1,x2,x3). The fact that R0 does not contain second-order derivatives in time follows from
the “Bianchi identity” (7.89), for if ∂tR0 equals some expression containing at most second-order
derivatives in time, then R0 = −R0 contains at most first-order derivatives in time. Since (7.89)
follows from the gauge invariance of the action that causes the underdetermination, we see that
under- and overdetermination of the field Aµ are two sides of the same coin. Defining the electric
field Ei = Fi0 = ∂iA0−∂0Ai (i = 1,2,3), eq. (7.90) is just the Gauss law

∇ ·~E = 0. (7.91)

351In coordinates the Hodge dual of F is ∗Fµν = 1
2 gαρ gβσ ερσ µν Fαβ , where ε is the Levi-Civita tensor.
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To address the undetermination of Aµ we pick a gauge condition, namely the Lorenz gauge352

G = 0; G := ∂νAν . (7.92)

In terms of this gauge condition, we also introduce the notation

RL
µ := Rµ + ∂µG = �Aµ . (7.93)

Without imposing any of (7.87), (7.90), or (7.92), the objects Rµ , RL
µ , C, and G are related by

Ġ = −C+RL
0 ; (7.94)

�G = ∂
µRL

µ ; (7.95)

Ċ = ∂iRi = ∂i(RL
i −∂iG) = ∇ ·~RL−∆G, (7.96)

where (7.95) and (7.96) follow from the Bianchi identity (7.89): applying ∂ µ to (7.93) and using
(7.89) gives (7.95), whereas (7.96) is (7.89) itself, combined with (7.90) and (7.93).

The point of all this is that instead of directly solving the awkward (i.e. underdetermined as
well as overdetermined) Maxwell equations (7.87), one can first solve the wave equation

RL
µ = 0; ⇔ �Aµ = 0, (7.97)

which is of standard hyperbolic type: its solutions for given initial data are even known explicitly.
There are two different ways to solve the equations (7.87) via (7.97), which both come down
to the simple fact that the conjunction of (7.97) and (7.92) implies (7.87). But they differ in the
distribution of labour between (7.97) and (7.92), as follows:

• Covariant approach. Here we solve (7.97) for each µ = 0,1,2,3 subject to initial data
Aµ(~x) and Ȧµ(~x) at t = 0 that respect both the constraint and the gauge condition:

C(0,~x) = ∆A0(~x)−∂iȦi(~x) = 0; (7.98)
G(0,~x) ≡ ∂i Ai(~x)− Ȧ0(~x) = 0. (7.99)

To show that this can indeed be done, first take A0(~x) = Ȧ0(~x) = 0 (which, incidentally,
solves (7.97) by A0(x) = 0), so that (7.98) and (7.99) become ∂iȦi = 0 and ∂iAi = 0,
respectively. For example, take Ȧi(~x) = 0 but Ai(~x) 6= 0 arbitrary, and solve the elliptic
equation ∆λ = −∂i Ai for λ . Replacing Ai by Ai + ∂iλ then satisfies (7.99). Eqs. (7.97),
(7.98), and (7.94) imply Ġ(t = 0,~x) = 0. Eqs. (7.95) and (7.97) then imply

�G = 0. (7.100)

With the initial conditions G(t = 0,~x) = 0, this implies G(x) = 0 for all x ∈R4 by the
theory of the wave equation. This propagation of the gauge shows that (7.97) and (7.98)
- (7.99) yield (7.87). The analogous propagation of the constraint C(t) = 0 is just a
consistency check in this covariant approach: it follows from (7.94), since G = RL

0 = 0, or
from (7.96), which implies Ċ(t) = 0 and, given (7.98), yields C(t) = 0 at all t.

• Non-covariant approach. We solve (7.97) for each µ = 1,2,3 only, as well as (7.98)
at t = 0, but we now have to solve (7.92) for all t. By (7.96) this still gives Ċ(t) = 0
and hence C(t) = 0, so that (7.94) yields RL

0 = 0. We then have (7.97) for µ = 0,1,2,3,
and hence, given (7.92), once again have solved (7.87). Note that the propagation of the
constraint is independent of the gauge: if Ri = 0 whichever way, C(t) = 0 follows from
the first equality in (7.96) with C(0) = 0, and hence from the Bianchi identity.

352This gauge should be named after Ludvig Lorenz (1829–1891), rather than H.A. Lorentz (Kragh, 2016).
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7.5 General relativity: diffeomorphism invariance and constraints
To start, Einstein’s equations (7.1) have two key features analogous to Maxwell’s equations:353

• They are underdetermined: if g solves (7.1), then so does ψ∗g, for any ψ ∈ Diff(M).

• They are overdetermined in that the initial values are constrained (i.e. cannot be arbitrary).

As in the simpler case of electrodynamics, both properties have the same origin, namely the
diffeomorphism invariance of the action (7.2), which leads to the Bianchi identity ∇µGµν = 0,
cf. (7.56). This implies that ∂tG0ν equals some expression containing at most second-order
derivatives in time, so that G0ν contains at most first-order derivatives in time. The first point
also follows from diffeomorphism invariance of the Einstein equations (7.1) themselves. Recall
the Hole Argument in §1.5: from (2.84) with ψ  ψ−1, (3.54), (4.10) and (4.34) we obtain
Riem(ψ∗g) = ψ∗Riem(g), as in (4.27), and, from this or directly, Ric(ψ∗g) = ψ∗Ric(g) for
the Ricci tensor, R(ψ∗g) = ψ∗R(g) the Ricci scalar, and Ein(ψ∗g) = ψ∗Ein(g) for the Einstein
tensor, as in (1.15). In Hilbert’s version of the Hole Argument, we follow Einstein’s strategy in
§1.5 but now take H to be the complement C = M\U of some nbhd U of a Cauchy surface Σ in
M, anachronistically assuming our space-time (M,g) to be globally hyperbolic (which concept
was unfamiliar to Hilbert). Thus our diffeomorphism ψ is the identity on U . In particular, ψ acts
trivially on the initial data on Σ, and since it may change the metric in C we conclude that our
space-time (M,g) is not uniquely determined by the initial data and the Einstein equations.

From (4.14), (4.15), and (4.108) we easily obtain, in any coordinate system,

Rµν = − 1
2gρσ gµν ,ρσ − 1

2gρσ (gρσ ,µν −gσν ,µρ −gµρ ,σν)+F(g,∂g), (7.101)

where F(g,∂g) contains only first derivatives of the metric.354 Anticipating a detailed discussion,
we now point out that the ten (vacuum) Einstein equations Gµν = 0 come in two groups:

• The six dynamical equations Gi j = 0, where i, j = 1,2,3 as usual, in which second-order
time derivatives of the components of the metric occur;

• The four constraints Cµ := Gµ0 = 0, µ = 0,1,2,3, in which only first-order time deriva-
tives of gµν occur, so that these give relations between initial values for Gi j = 0.

As in (7.87), the first term in (7.101), which is essentially �gµν , has a good PDE theory (as we
will see, it makes the spatial components of g satisfy a hyperbolic evolution equation), but the
other three terms, which are analogous to the second term in (7.87), ruin this and hence should
be removed by a clever choice of coordinates that makes them disappear. The simplest way to do
this (introduced by Choquet-Bruhat) is to use the wave gauge,355 which given a metric gµν is

W µ = 0; W µ := �gxµ , (7.102)

where the covariant D’Alembertian �g is defined, on any tensor, by

�g = gρσ
∇ρ∇σ . (7.103)

353 In what follows we just discuss the vacuum case (T = 0), since the general case is similar. The discussion
revolves around second derivatives of gµν in the Einstein equation, which are absent in Tµν .

354We will later see that in the relevant PDE theory only the highest derivatives of the unknown functions count.
355Coordinates satisfying (7.102) are called harmonic or wave coordinates. See Choquet-Bruhat (2009), §VI.7.
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In the wave gauge as defined by condition (7.102), the coordinate functions xµ are scalars,356

which, once again given a metric gµν(y), are found (locally) as functions xµ(y) of some given
coordinates (yµ) by solving �gxµ = 0 subject to initial conditions on a spacelike hypersurface
Σ: if (x̃i) are given coordinates on Σ, and N is a fd normal vector field on Σ, we might impose
conditions like xi

|Σ = x̃i, x0
|Σ = 0, Nxi = 0, and Nx0 = 1. In the new xµ -coordinates, we have

W µ = gρσ
∇ρ∂σ xµ = gρσ (∂ρ∂σ −Γν

ρσ ∂ν)xµ = gρσ (∂ρδ
µ

σ −Γν
ρσ δ

µ

ν ) = −gρσ Γµ

ρσ , (7.104)

where gµν(x), and hence gµν(x) and Γµ

ρσ (x), are obtained from gµν(y) using the traditional
change of coordinates formula (2.77). Hence (7.102) is a second-order PDE for the xµ .

Given coordinates (xµ), on the other hand, the wave gauge (7.102) is seen as a condition on
the metric gµν(x), which because of (7.104) must satisfy any of the equivalent conditions

gρσ Γµ

ρσ = 0 ⇔ gρσ (2gρµ ,σ −gρσ ,µ) = 0, ⇔ ∂ν(
√
−det(g)gµν) = 0, (7.105)

cf. (7.16), e.g. with corresponding initial conditions g00|S =−1 and g0i|S = 0. Using (4.15) gives

gµρ∂νW ρ + gνρ∂µW ρ = gρσ (gρσ ,µν −gσν ,µρ −gµρ ,σν)+H(g,∂g), (7.106)

where H(g,∂g) has a similar meaning as F(g,∂g). Therefore, the wave-gauged Ricci tensor

RW
µν ≡ Rµν + 1

2(gµρ∂νW ρ + gνρ∂µW ρ), (7.107)

cf. (7.97), takes a desirable quasi-linear hyperbolic form, starting with the D’Alembertian:

RW
µν = − 1

2gρσ gµν ,ρσ + I(g,∂g), (7.108)

where again I contains only the metric and its first derivatives (though not necessarily linearly).
From (7.107) we also define the reduced Einstein tensor

GW
µν = RW

µν − 1
2gµνRW = Gµν + 1

2(gµρ∂νW ρ + gνρ∂µW ρ −gµν∂ρW ρ). (7.109)

We then have the following six enlightening analogies between GR and electromagnetism:

gµν ↔ Aµ ; W µ ↔ G Cµ ↔C; (7.110)

Rµν = 0↔ Rµ = 0; RW
µν = 0↔ RL

µ = 0, ∇
µGµν = 0↔ ∂µRµ = 0. (7.111)

Similarly to electromagnetism, there is no good theory for the (vacuum) Einstein equations
Rµν = 0 we want to solve, whereas there is ample theory for the gauged Einstein equations
RW

µν = 0 (though not as explicit and simple as for the wave equation �Aµ = 0). In order to
follow a similar strategy, we should also find analogues of (7.94) - (7.96). First, we have

GW
µν = RW

µν − 1
2gµνRW = Gµν + 1

2(gµρ∂νW ρ + gνρ∂µW ρ −gµν∂ρW ρ), (7.112)

so that, taking ν = 0, eq. (7.94) is replaced by four equations (µ = 0,1,2,3)

1
2(gµiẆ i + g00∂µW 0 + g0i∂µW i−gµ0∂iW i) = −Cµ +GW

µ0. (7.113)

356As opposed to components of a 4-vector. Choquet-Bruhat even writes x(µ) as a warning.
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The analogue of (7.95) follows by applying the Bianchi identity (7.56) to (7.112). Using the fact
that the W ρ are scalars and the Levi-Civita connection ∇ is metric and torsion-free, we compute

∇
µ(gµρ∂νW ρ −gµν∂ρW ρ) = ∇ρ∂νW ρ −∇ν∂ρW ρ = (∂ρ∂ν −∂ν∂ρ +Γσ

ρν −Γσ
νρ)W

ρ = 0.

Hence eqs. (7.56) and (7.112) give

�gW µ = 2gµρ
∇

νGW
ρν . (7.114)

Finally, the counterpart of (7.96) in GR again follows from the Bianchi identity (7.56), viz.

∂
0C0 = −∂

jC j +(gρσ Γµ

ρσ + g0ρ Γµ

ρ0)Cµ + g jρ(Γ0
ρ0C j +Γk

ρ0G jk); (7.115)

∂
0Ci = gρσ (Γ0

ρσCi +Γ0
ρiCσ )+ gρ0Γ j

ρiC j−∂
jGi j + gρσ Γ j

ρσ Gi j + gρkΓ j
ρiG jk, (7.116)

where we may also write Gi j in terms of GW
i j and W µ via (7.112), e.g. for (7.115) this gives

(∂ µ +W µ)Cµ = gσν Γµ

0σ
(GW

µν − 1
2(gµρ∂νW ρ + gνρ∂µW ρ −gµν∂ρW ρ)). (7.117)

Knowing all this, we can solve the vacuum Einstein equations Gµν = 0 in two alternative ways:

• Covariant approach. We solve the covariant (space-time) reduced Einstein equations

RW
µν = 0 (7.118)

for all values µ ,ν = 0,1,2,3. This can indeed be done, because (7.118) with (7.107)
is a hyperbolic quasi-linear PDE system for which good existence, uniqueness, and sta-
bility results exist; see §7.6. Since (7.118) gives gµνRW

µν = 0, it also implies GW
µν = 0.

Furthermore, we impose both the constraints and the gauge conditions at t = 0, i.e.,

Cµ(t = 0,~x) = 0; (7.119)
W µ(t = 0,~x) = 0 (7.120)

Then (7.113) also gives
Ẇ µ(t = 0) = 0, (7.121)

upon which (7.114) gives W µ(t) = 0 at all t, since this is the unique solution with
initial data (7.120) and (7.121). This is the propagation of the gauge. The full Einstein
equations Rµν = 0 are then satisfied because of (7.107), and finally–though unnecessary
in this approach–propagation of the constraints may be verified from (7.115) - (7.116).

• Non-covariant approach. We solve only the spatial part of the reduced Einstein equations

GW
i j = 0 (i, j = 1,2,3), (7.122)

whilst imposing the initial value constraints (7.119) at t = 0, and the full gauge condition
W µ(x) = 0 for all x = (t,~x). Since this gives GW

µν = Gµν , the Bianchi identities (7.115) -
(7.116) with Gi j = 0 simply become

∂
0C0 = (−∂

j + g jρ Γ0
ρ0)C j +(gρσ Γµ

ρσ + g0ρ Γµ

ρ0)Cµ ; (7.123)

∂
0Ci = gρσ (Γ0

ρσCi +Γ0
ρiCσ )+ gρ0Γ j

ρiC j. (7.124)

Thus the constraints satisfy coupled homogeneneous first-order hyperbolic PDEs, whose
solution with given initial condition (7.119) is zero. This propagation of the constraints
via the Bianchi identity gives the remaining Einstein equations Gµ0 = 0, and since we
already had Gi j = 0 for i, j = 1,2,3 from GW

i j = 0 and W µ = 0, we seem ready!
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There is a complication, however, in that the reduced Einstein equations (7.122) are neither
a priori in suitable (i.e. hyperbolic) form, nor do they follow from RW

i j = 0 (which are in
suitable form), because the Einstein tensor Gµν also involves the Ricci scalar R, which cannot be
computed from RW

i j alone. This can be resolved by passing to the (inverse) densitized metric

gµν = gµν

√
|det(g)|, (7.125)

in terms of which the gauge condition and the gauged Einstein equations read

∂νg
µν = 0; (7.126)

Gµν

W = 0, (7.127)

and moreover the gauged Einstein tensor (7.112) turns out to take the desired hyperbolic form

|det(g)|Gµν

W = 1
2g

ρσ
∂ρ∂σg

µν +O(g,∂g). (7.128)

We will not follow this path, but will set up the non-covariant approach in a more geometric way
in §7.7. This will still follow the general idea of solving RW

i j = 0 or GW
i j = 0 with initial value

constraints (7.119), and a full (but non-covariant) gauge condition like W µ(x) = 0.
Finally, since we have already treated electromagnetism as a warm-up for GR, it is interesting

to combine the two in the light of gauge fixing and constraints. Hence we briefly study the
coupled Einstein–Maxwell equations (7.62) with (7.84) and (7.79). Since T = 0, these become

Rµν = 2(gρσ FµρFνσ − 1
4gµνF2); (7.129)

Rµ := ∇
νFνµ = 0. (7.130)

Everything in §7.4 goes through, provided we replace ordinary derivatives by covariant ones, as
in (7.130). For example, in the derivation of the Bianchi identity eq. (7.88) becomes

0 =
∫

V
d4x
√
−g∇νFνµ

∂µλ = −
∫

V
d4x
√
−gλ∇µ∇νFνµ , (7.131)

where ∇µ instead of ∂µ arises because of (7.17). Hence the Bianchi identity (7.89) becomes

∇µRµ = 0, (7.132)

which unlike (7.89) is far from trivial. A simple computation using (4.13) and (4.108) yields

Rµ = �gAµ −RµνAν −∂µG, (7.133)

where, in the spirit of what was just said, the covariant Lorenz gauge is now given by

G = ∇νAν . (7.134)

Putting RL
µ = Rµ + ∂µG as before, we have RL

µ = �gAµ −RµνAν . In order to solve (7.129) -
(7.130), then, we must solve the gauge conditions G = 0 and W µ = 0 and the hyperbolic system

RW
µν = 2(gρσ FµρFνσ − 1

4gµνF2); (7.135)

�gAµ = RµνAν . (7.136)

Spelling out the “covariant” and “non-covariant” approaches is now just a tedious exercise.
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7.6 Existence, uniqueness, and maximality of solutions
In this section we give a geometric formulation of the Cauchy problem for the Einstein equations,
including its (abstract) solution in the form of Theorem 7.10, obtained in 1969 by Choquet-Bruhat
and Geroch (following two decades of progress mainly due to Choquet-Bruhat).357

So far, the procedure in §7.5 leads to solutions that are local in space and local in time:

• Locality in space follows from the use of specific coordinates, i.e. those satisfying (7.102).

• Locality in time is all that the existence (and uniqueness and stability) theorems for
quasi-linear second-order hyperbolic PDEs of the kind (7.118) provide.

We now indicate how this can be improved. First, local existence in space turns into global
existence in space by globalizing the gauge, as follows. A well-known concept in Riemannian
geometry is that of a harmonic map h : M→ M̂ between Riemannian manifolds (M,g) and
(M̂, ĝ). These maps can be described abstractly, but is is easier to use local coordinates (xµ) on
M, and likewise (x̂i) on M̂. Any map h : M→ M̂ has an associated energy functional, defined by

E(h) :=
∫

M
d3x
√

g(x)ex(h); ex(h) := 1
2gµν(x)ĝi j(h(x))

∂hi(x)
∂xµ

∂h j(x)
∂xν

, (7.137)

where hi are the components of h relative to the coordinates (x̂i). This expression turns out to be
independent of the coordinates.358 For example, if M = [a,b] with flat metric, then E( f ) is the
energy (3.23) of a curve in N. Another example is N = R with flat metric, in which case

E(h) =
∫

M
∇h ·∇h (7.138)

is the Dirichlet integral of h, which plays a fundamental role in the theory of the Laplace
equation ∆h = 0 on M. It can be shown that h extremizes E(h) iff it solves the equation

gµν

(
∂ 2hi(x)
∂xµ∂xν

−Γρ

µν(x)
∂hi(x)

∂xρ
+ Γ̂i

jk(h(x))
∂h j(x)

∂xµ

∂hk(x)
∂xν

)
= 0, (7.139)

where and Γρ

µν and Γ̂i
jk are the Christoffel symbols for g and ĝ, respectively. Thus h is called

harmonic if it solves (7.139). Exactly the same constructions work in Lorentizian geometry, in
which case a solution of (7.139) is called a wave map. In that case, standard hyperbolic PDE

theory yields existence and uniqueness of solutions h|Σ and ḣ|Σ subject to initial conditions on a
Cauchy surface Σ in M, which we (evidently) assume to be globally hyperbolic.

In order to provide the right version of the wave gauge enabling global solutions in space, we
pick some fiducial Riemannian metric γ on our Σ and introduce the Lorentzian manifold

M̂ := R×Σ ĝ := −dt2 + γ . (7.140)

Definition 7.3 We say that a (Lorentzian) metric g on M = R×Σ satisfies the ĝ-wave gauge iff
the identity map id : M→ M̂ is a wave map with respect to g and ĝ.

357 Introductions to the Cauchy problem in GR, from different perspectives, include Choquet-Bruhat & York
(1980), Friedrich & Rendall (2000), Klainerman & Nicolò (2003), Rendall (2005, 2008), Christodoulou (2008),
Dafermos (2009), Choquet-Bruhat (2009), Ringström (2009), Chruściel (2010), and Aretakis & Rodnianski (2015).

358See e.g. Jost (2002), §8.1.
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It follows from the coordinate-independence of (7.139) that this condition is coordinate-independent.
One can also see this explicitly by noting that g satisfies the ĝ-wave gauge iff

Ŵ µ = 0 (7.141)

for each µ = 0,1,2,3, where, cf. (7.102) and (7.104),

Ŵ µ = gρν(Γ̂µ

ρν −Γµ

ρν). (7.142)

Since the difference between two connections is a tensor (see §7.2), the index µ is now a true
vector index in that Ŵ µ are the components of a vector. Thus the coordinate-dependence of the
original wave gauge has been traded for ĝ-dependence. We now follow the same steps as for
the wave gauge, replacing W by Ŵ from (7.106) till the end of §7.5, with the same conclusions:
the reduced Einstein equations are quasi-linear and hyperbolic, the gauge and the constraints
propagate, etc., with the difference that none of the arguments now depend on the choice of
local coordinates and hence local (coordinate) solutions can be patched together so as to become
globally defined in space, that is, on Σ. In particular, we may treat the µ in (7.142) as a vector
index and write down neat covariant formulae. This gives, for example,

RŴ
µν := Rµν + 1

2(∇µŴν +∇νŴµ) = − 1
2gρσ gµν ,ρσ + Î(g,∂g); (7.143)

�gŴµ +Rν
µŴν = ∇

νGŴ
µν , (7.144)

cf. (7.107) - (7.109) and (7.114), which still have a desirable hyperbolic form. Mutatis mutandis,
both the covariant and the non-covariant approaches of the previous section may then proceed.

In order to (at least partially) overcome the problems with locality in time mentioned above
we explain a specific way of posing the initial data that–within PDE theory–seems unique for
GR. This construction not only brings the initial data in geometric form (as opposed to giving
(gµν(t = 0), ġµν(t = 0)) as might expected for hyperbolic PDEs) but also solves the closely
related problem that naively a solution (M,g) to the Einstein equations would be based on initial
data given on some Cauchy surface Σ ⊂M where M is given; but the problem in GR is that the
manifold M is typically constructed along with the metric g, as opposed to be given in advance.

To find the correct geometric way of posing the Cauchy problem for GR, we first assume we
have a globally hyperbolic space-time (M,g) solving the Einstein equations (in vacuum or with
matter), assume we have a spacelike Cauchy surface Σ ⊂M, seen as a triple (M,Σ, ι), where
ι : Σ ↪→M injects some given 3-manifold Σ into M (as an embedded submanifold, cf. Definition
4.13), and figure out which initial data the triple (M,g, ι) puts on Σ. These initial data will then
be taken by themselves, after which the ambient space-time (M,g) can be forgotten.

As already mentioned, instead of gµν and ġµν at Σ, one prefers geometric data, namely:

• The induced Riemannian 3-metric g̃ := ι∗g, cf. (4.123);

• The extrinsic curvature k̃ of the embedding ι : Σ ↪→M, see (4.143).

In the next section (§7.7) we will show that the Einstein equations impose constraints on these
quantities (see also §7.5 for motivation and context), which in the vacuum case are

R̃−Tr (k̃2)+Tr (k̃)2 = 0; (7.145)

∇̃ jk̃
j
i − ∇̃iTr (k̃) = 0. (7.146)
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Here R̃ is the Ricci scalar on Σ for the Riemannian metric g̃ and likewise ∇̃ is the Levi-Civita
connection on Σ determined by g̃. Thus the initial data for the Einstein equations are triples

(Σ, g̃i j, k̃i j) ≡ (Σ, g̃, k̃), (7.147)

subject to the vacuum constraints (7.145) - (7.146), or their matter analogues (8.65) - (8.67).

Definition 7.4 Given initial data (Σ, g̃, k̃) satisfying the constraints (7.145) - (7.146), any triple
(M,g, ι) that solves the Einstein equations and induces these initial data in such a way that ι(Σ)
is a Cauchy surface in M, so that in particular (M,g) is globally hyperbolic, is called a Cauchy
development or globally hyperbolic development of the data (Σ, g̃, k̃).

The theorems below may then be summarized as follows:

Theorem 7.5 Let (Σ, g̃) be a 3d Riemann manifold equipped with a second symmetric tensor

k̃ ∈ X(2,0)(Σ)

such that (Σ, g̃, k̃) satisfies the constraints (7.145) - (7.146). Then there exists a maximal globally
hyperbolic space-time (M,g) and an isometric embedding ι : Σ ↪→M for which the extrinsic
curvature is the given k̃, and such a space-time is unique up to isometry.

We will explain what ‘maximal’ means here. It is interesting to compare this with Theorem 4.18,
i.e. the fundamental theorem for hypersurfaces, which for this purpose we rephrase as follows:

Theorem 7.6 Let (Σ, g̃) be a connected and simply connected Riemann manifold equipped with
a second symmetric tensor

k̃ ∈ X(2,0)(Σ)

such that (Σ, g̃, k̃) satisfies the Gauss–Codazzi equations

R̃i jkl + k̃il k̃ jk− k̃ikk̃ jl = 0; (7.148)

∇̃ik̃ jk− ∇̃ jk̃ik = 0. (7.149)

If m = dim(Σ)≥ 2, there exists an isometric embedding ι : Σ→Rm+1 for which the extrinsic
curvature is the given tensor k̃, and such an embedding is unique up to Euclidean motions (i.e.
up to isometries, which are combinations of translations and rotations).

The constraints (7.148) - (7.149) are stronger than (7.145) - (7.146); up to a relative sign, which
accounts for the difference between the Riemannian and the Lorentzian cases, see (4.147), eq.
(7.145) follows from (7.148) by contracting it with g̃ikg̃ jl , whilst (7.146) follows from (4.154)
by contracting with g̃ik. The reason is that Theorem (4.18) asks for a stronger result, namely
embedding into Euclidean space, where Rρσ µν = 0, whereas Theorem 7.5 merely asks for
embedding in a Lorentzian manifold where Rµν = 0. Otherwise, the spirit of the two theorems
is similar, in that the Gauss–Codazzi equations and the constraints in GR, whose geometric
form (7.145) - (7.146) will actually be derived from the Gauss–Codazzi equations, both arise as
consistency conditions for the existence of a certain embedding of the initial data set (Σ, g̃, k̃):

• into Euclidean space in the nineteenth-century fundamental theorem for hypersurfaces;

• into a space-time solving the Einstein equations in the twentieth-century Theorem 7.5.
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We will now dissect Theorem 7.5, in particular making precise (in steps) what it means for the
space-time (M,g) to be maximal (this will be done in the crowning Theorem 7.10).359

Theorem 7.7 For any smooth initial data set (Σ, g̃, k̃) satisfying the constraints (7.145) - (7.146)
there is an open interval 0 ∈ I ⊂R and a Lorentzian metric g on M = I×Σ such that (M,g, ι),
where ι : Σ ↪→M given by ι(~x) = (0,~x), is a Cauchy development of (Σ, g̃, k̃). Moreover, (M,g)
is automatically a globally hyperbolic space-time, with Cauchy surface ι(Σ).

In §7.5 we have only sketched the part of the existence proof that reduces the Einstein equations
to a simpler problem involving quasilinear hyperbolic PDEs, whose theory we briefly review in
Appendix B; the entire proof can be found in the literature.360 We now turn to uniqueness.

Theorem 7.8 (Geometric uniqueness of solutions of Einstein’s equations) Any two Cauchy
developments (M1,g1, ι1) and (M2,g2, ι2) of the same (smooth) initial data are locally isometric,
in that ι1(Σ) and ι2(Σ) have open neighbourhoods U1 and U2 in M1 and M2, respectively, such
that (U1,g1) and (U2,g2) are isometric through a diffeomorphism ψ : U1→U2 satisfying

ψ
∗g2 = g1; ψ ◦ ι1 = ι2. (7.150)

The proof is very involved,361 but the idea is the argument for underdeterminacy explained at the
beginning of §7.5, where we require ψ to preserve the initial data (this is Hilbert’s version of
Einstein’s Hole Argument, cf. §1.5). Technically, construct wave maps hi : M̂→Mi (i = 1,2),
suitably shrunk to as to become diffeomorphisms, and define g′i = h∗i gi on M̂. This brings both g1
and g2 into the ĝ-wave gauge. These new metrics solve the same equations, namely the reduced
Einstein equations and the ĝ-wave gauge condition, with the same initial conditions. Hence they
must coincide by local uniqueness result from hyperbolic PDEs. From g′1 = g′2 we then obtain

g2 = (h−1
1 ◦h2)

∗g1 = ψ
∗g1. (7.151)

Definition 7.9 A maximal Cauchy development or (Mmax,gmax, ιmax) of given (smooth) initial
data (Σ, g̃, k̃) satisfying the constraints (7.145) - (7.146) is a Cauchy development with the
property that for any other Cauchy development (M,g, ι) of these data there exists an embedding

ψ : M→Mmax

that preserves time orientation, metric, and Cauchy surface, i.e., one has

ψ
∗gmax = g; ψ ◦ ι = ιmax. (7.152)

Compare with (7.150). Since a maximal Cauchy development is always globally hyperbolic, it is
also called a maximal globally hyperbolic development or MGHD of the initial data.

The word “maximal” is confusing. It does not imply that (Mmax,gmax, ιmax) is maximal as a
solution to the vacuum Einstein equations with given initial data, or as a space-time. It does not
even mean that (Mmax,gmax) cannot have any globally hyperbolic extensions. It does mean that:

359We only discuss smooth initial data. See footnote 366 for the non-smooth case. As shown in Appendix B, the
smooth case is proved from the case with initial data and thence solutions in Sobolev spaces Hs and letting s→ ∞.

360See e.g. Choquet-Bruhat (2009), chapter VI and Appendix III, and in Ringström (2009), chapter 14.
361See e.g. Choquet-Bruhat (2009), Theorem VI.8.4, or Ringström (2009), Theorem 14.3.
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If (Mmax,gmax, ιmax) can be (properly) isometrically embedded in some space-time (M′,g′), then
the ensuing copy of Σ in M′ (arising from Σ ↪→M ↪→M′) cannot be a Cauchy surface in M′.

In particular, Σ ⊂M′ would have a nonempty Cauchy horizon. This is often taken to indicate an
end to determinism, but this seems an overstatement. The correct statement is that the existence
of a Cauchy horizon for Σ in the extension M′ means that (M′,g′), unlike (M,g), is no longer
predictable from initial data on Σ. It may in principle be predictable from some new Cauchy
surface Σ′ that is not the image of any Cauchy surface in M under the embedding, although
in typical examples (cf. §10.6) the larger space-time (M′,g′) is in fact not globally hyperbolic.
Strong cosmic censorship (in its current formulation, which is different from Penrose’s original
one) excludes such extensions, and so we will take up this topic in more detail in §§10.4–10.5.

We now come to the main abstract result in the initial-value approach to GR.

Theorem 7.10 (Choquet-Bruhat and Geroch) Each smooth initial data set (Σ, g̃, k̃) satisfying
the constraints has an MGHD (i.e. maximal Cauchy development) (Mmax,gmax, ιmax), which is
unique up to time-orientation-preserving isometries fixing the Cauchy surface ι(Σ) ⊂ Mmax.
That is, for any other MGHD (M′max,g′max, ι ′max) of the same initial data (Σ, g̃, k̃) there exists an
isometry ψ : M′max→Mmax that preserves time orientation and satisfies ψ ◦ ι ′max = ιmax.

Though never mentioned in statements of the theorem, the isometry ψ is unique.362 For under-
standing both the claim and its proof it is useful to rephrase Theorem 7.10 in terms of partially
ordered sets (posets). We already saw that Cauchy developments of fixed initial data are far from
unique due to diffeomorphism invariance of the Einstein equations. We circumvent this apparent
lack of determinism by declaring two solutions equivalent if they can be transformed onto each
other by a diffeomorphism respecting ι as well as time orientation. Thus we say that

(M1,g1, ι1) ∼= (M2,g2, ι2) (7.153)

iff there is a time-orientation preserving diffeomorphism ψ : M1→M2 satisfying (7.150). This
is an equivalence relation on the set GHD(Σ, g̃, k̃) of all globally hyperbolic (i.e. Cauchy)
developments of the data (Σ, g̃, k̃). We denote the (quotient) set of its equivalence classes by
[GHD](Σ, g̃, k̃). As usual, we write [M,g, ι ] for the equivalence class of (M,g, ι).

Definition 7.11 Initially, put
(M1,g1, ι1) ≤ (M2,g2, ι2) (7.154)

iff there is a embedding ψ : M1→M2 such that (7.150) hold. This fails to be a partial ordering
on GHD(Σ, g̃, k̃) (it fails the antisymmetry axiom), but it does descend to a partial ordering on
[GHD](Σ, g̃, k̃). By abuse of notation, provided (7.154) holds we may therefore write

[M1,g1, ι1] ≤ [M2,g2, ι2]. (7.155)

This makes ([GHD](Σ, g̃, k̃) ≤) a partially ordered set (poset).

362This can be shown by Proposition 3.62 in O’Neill (1983) or the equivalent argument in footnote 675 below. In
the notation of that footnote and Theorem 7.10, take x∈ ι ′max(Σ). Since ψ in Theorem 7.10 is fixed all along ι ′max(Σ)
by the condition ψ ◦ ιmax = ι ′max and since it also fixes the (future-directed) normal Nx to ι ′(Σ) by ψ∗gmax = g′max,
it is determined locally. Theorem 1 in Halvorson & Manchak (2022) then applies, which is a rigidity theorem for
isometries going back at least to Geroch (1969), Appendix A (as Halvorson & Manchak acknowledge).
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Recall that a top element >∈ P of a poset (P,≤) is an element for which x≤> for all x ∈ P.
A top element need not exist, but it is unique if it exists.363 Theorem 7.10 then becomes:

Theorem 7.12 The poset ([GHD](Σ, g̃, k̃) ≤) has a top element (which is necessarily unique).

Note that Theorem 7.12 implies that the maximal Cauchy development (Mmax,gmax, ιmax) is
unique up to isometry.364 We first rephrase Theorem 7.8 in terms of the above poset:

Corollary 7.13 Any two Cauchy developments (M1,g1, ι1) and (M2,g2, ι2) of given initial data
have a common Cauchy development (M,g, ι), in that in that we have both orderings

(M,g, ι) ≤ (M1,g1, ι1); (M,g, ι) ≤ (M2,g2, ι2). (7.156)

Indeed, take M =U1, with: ψ1 : M→M1 given by the embedding i : U1 ⊂M1, and ψ2 : M→M2
defined by ψ2 = ψ ◦ i, where ψ is the map from Theorem 7.8. More strongly, we even have:

Lemma 7.14 Any two Cauchy developments (M1,g1, ι1) and (M2,g2, ι2) have a maximal com-
mon Cauchy development (M′,g′, ι ′), in that any other common Cauchy development satisfies

(M,g, ι) ≤ (M′,g′, ι ′). (7.157)

Indeed, if {Uα} is the set of all U1’s appearing in Theorem 7.8, i.e. Uα ⊂ M1 with given
maps ψα : Uα →M2, etc., then one may simply take the union M′ = ∪αUα , with the obvious
embedding M′ ⊂M1, and the map ψ : M′→M2 given by ψ(x) = ψα(x) if x ∈Uα . Conversely:

Lemma 7.15 Any two Cauchy developments (M1,g1, ι1) and (M2,g2, ι2) have a common exten-
sion (M12,g12, ι12), in that we have both orderings

(M1,g1, ι1) ≤ (M12,g12, ι12); (M2,g2, ι2) ≤ (M12,g12, ι12). (7.158)

Define an equivalence relation ∼ on the disjoint union M1tM2 of M1 and M2 by x∼ y if:

• either x = y;

• or x ∈M′ ⊂M1 and y = ψ(x), where ψ : M′→M2 has just been defined.

The quotient
M12 = (M1tM2)/ ∼ (7.159)

inherits a metric g12 from (M1,g1) and (M2,g2), as follows:

• for x ∈M1\M′ we put g12([x]) := g1(x);

• for y ∈M2\ψ(M′) take g12([y]) := g2(y), noting that [x] = x and [y] = y in those cases;

• for x ∈M1 and y = ψ(x), so that [x] = [y], we put g12([x]) := g1(x) (= g2(y)).

363This is different from a maximal element m ∈ P, where for all x ∈ P one has m≤ x iff x = m. Maximal elements
are often non-unique if they exist, and even if they are unique they may not be top elements (which are maximal).

364 Choquet-Bruhat & Geroch (1969) sketched a proof based on Zorn’s lemma, which they even had to use twice.
The corresponding proof in Ringström (2009), §14, is wrong, but is corrected in Ringström (2013), §23. Instead, we
outline a recent constructive proof due to Sbierski (2016), with some improvements by Wong (2013).
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The obvious maps M1 ↪→M12 and M2 ↪→M12 are isometries for g12 by construction.365 Similarly,
we obtain embeddings Σ ↪→M12 and Σ ↪→M12 from the given ones Σ ↪→M1 and Σ ↪→M2.

The construction of the maximal space-time Mmax is an extension of (7.159). One defines

Mmax = (tλ Mλ )/ ∼, (7.160)

where {Mλ} is the set of all Cauchy developments (of the given initial data), and we identify
x ∈M1 and y ∈M2 (where 1 and 2 are generic values of λ ) iff x ∼ y as defined after (7.159).
Also, the constructions of the metric gmax, the embedding ιmax, and the (isometric) embeddings

ψλ : Mλ →Mmax (7.161)

are entirely similar to the case (7.159) just explained. Maximality is then obvious. �

Theorem 7.10 is stated for smooth initial data, which give rise to smooth 4-metrics. However,
the local existence results whose proof we omitted are proved by taking limits of existence results
for rougher initial data in Sobolev spaces Hs(Σ) as s→ ∞ (see Appendix B.3 for notation and
details). These lower regularity results are also of interest as such. In particular, we have:366

Theorem 7.16 Let s > 3/2. For initial data (Σ, g̃i j, k̃i j) where g̃ is sufficiently close to γ̂ and

g̃ ∈ Hs+1
(2,0)(Σ); k̃ ∈ Hs

(2,0)(Σ), (7.162)

there is T > 0 such that the reduced vacuum Einstein equations (7.118) or their counterparts in
a ĝ-wave gauge, have a unique solution g on M = [0,T ]×Σ, where

gµν ∈C([0,T ],Hs+1(Σ))∩C1([0,T ],Hs(Σ)); (7.163)
∂ρgµν ∈C([0,T ],Hs(Σ)). (7.164)

This solution continuously depends on the initial data, in that g̃l → g̃ in Hs+1
(2,0)(Σ) and k̃l → k̃ in

Hs
(2,0)(Σ) imply gl → g in L∞([0,T ],Hs+1(Σ)) as well as ∂ρgl → g in L∞([0,T ],Hs(Σ)).

For s > m+3/2, the Sobolev embedding theorem (B.23) gives Hs(Σ)⊂Cm(Σ), so that for s >
3/2 and hence m = 0, eq. (7.162) imply that g̃ ∈C1(Σ) and k̃ ∈C(Σ), upon which eqs. (7.163)
- (7.164) then imply g ∈C1(M) and hence ∂g ∈C(M). Another refinement is localization. For
example, Theorem 7.8 gives rise to what is best seen as a causality result:

Proposition 7.17 Let (g̃i j, k̃i j) and (g̃′i j, k̃
′
i j) be (smooth) initial data on Σ that coincide on some

submanifold Σ0 ⊂ Σ. Then any two Cauchy developments ([0,T ]×Σ,g) and ([0,T ′]×Σ,g′) of
these data are isometric when restricted to D+(Σ0) ⊂ [0,T ′′]×Σ0, where T ′′ = min{T ,T ′}.

365The main difficulty in the proof is to show that M12 is a Hausdorff space; see the references in footnote 364.
366 Here γ̂ is a fiducial Riemannian metric on Σ enabling a coordinate-independent definition of Sobolev spaces

on Σ. The index (2,0) in Hs
(2,0)(Σ) refers to the tensor character of g̃ and k̃; one has such Sobolev spaces for any

(k, l). Choquet-Bruhat’s original existence proof had s > 3/2 but (geometric) uniqueness required s > 5/2, see
Choquet-Bruhat, Theorem 8.4, p. 168 (note that her s is our s−1 so that our s > 1

2 n is her s > 1
2 n+ 1, etc.). For

s > 3/2, for existence and uniqueness, also in Theorem 7.8 and Theorem 7.10, see Chruściel (2014), Theorem
1.1, or, using very different techniques, Fischer & Marsden (1979), Theorem 4.24. The world record is s = 1, i.e.
g̃ ∈ H2(Σ) and k̃ ∈ H1(Σ) (Klainerman, Rodnianski, & Szeftel, 2015).
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This does not follow from (the proof of) Theorem 7.8 alone (i.e. by reduction to a wave gauge). In
addition, one needs a uniqueness (or causality) result for quasi-linear wave equations, which states
that if two solutions have the same initial data on some submanifold Σ0 ⊂ Σ, then they coincide
on the domain of dependence D+(Σ0). See Appendix B.3 for some more background.367

In sum, an MGHD (M,g, ι) of initial data (Σ, g̃, k̃) for the Einstein equations enjoys:368

1. Existence, with satisfactory regularity dictated by regularity of the initial data (Σ, g̃, k̃).

2. Maximality, at least within the realm of globally hyperbolic solutions.

3. Uniqueness up to isometry, in the precise sense stated in Theorem 7.10.

4. Causal propagation, in that initial data at Σ0 ⊂ Σ determine the solution within D+(Σ0).

5. Cauchy stability, in that the 4-metric g continuously depends on the initial data (Σ, g̃, k̃).

These features of the initial-value approach to GR have given rise to an ideology in which:

• All valid assumptions about GR are assumptions about initial data (Σ, g̃, k̃).

• All valid questions in GR are questions about the MGHD (M,g, ι) of these data.

This PDE-based program has so far had spectacular successes.369 It sometimes gives a slightly
different perspective from the (Penrosian) mathematical approach to GR originating in the 1960s,
in which typically larger (e.g. analytically extended) space-times are studied. See §§10.4–10.5.

In fact, even the PDE results stated above should be seen as “classical” in the somewhat
different sense that they used spacelike Cauchy surfaces. Since the 1990s, much progress in the
initial-value approach to GR has been made by giving initial data on certain null hypersurfaces,
which lead to a characteristic initial value problem.370 The idea of solving PDEs through
characteristics originally came from first-order PDEs.371 The simplest version is the PDE

LX f = 0, (7.165)

where X ∈ X(M). This is solved by any f ∈C∞(M) that is constant along the integral curves
(i.e. flow) of the vector field X , which in this context are called the characteristics of the PDE.

Thus the PDE is effectively replaced by an ODE, namely integrating X . In the usual Cauchy
problem, one fixes a solution f by prescribing its value on a non-characteristic (Cauchy) surface
Σ ⊂M, in the sense that the characteristics are nowhere tangent to Σ (otherwise, one may have
constraints on the initial data and have both an under- and overdetermined problem).

367For a more detailed treatment cf. Choquet-Bruhat (2009), Appendix III, Theorem 2.15.
368These points are developed in far greater detail in Choquet-Bruhat (2009) and Ringström (2009, 2013).
369These started with the proof of stability of Minkowski space-time under small perturbations of the initial data

(Christodoulou & Klainerman, 1993), and at the time this book went to press culminated in analogous stability
results for the Schwarzschild metric (Dafermos, Holzegel, Rodnianski, & Taylor, 2021) and the slowly rotating Kerr
metric (Häfner, Hintz, & Vasy, 2019; Klainerman & Szeftel, 2021). See also the references in footnote 325.

370For GR this goes back to Penrose (1963), written in 1961 and republished in 1980, and Bondi and Sachs (see
references in Chruściel & Paetz, 2012). In Penrose’s spinorial approach (see also Penrose & Rindler, 1984, and
more briefly Stewart, 1991) there are no constraints at all. It was further developed by Friedrich (1979), and, for
numerical relativity, by Stewart & Friedrich (1982) and Friedrich & Stewart (1983). Existence theorems go back to
Rendall (1990) and were later improved by Luk (2012). See also Christodoulou & Klainerman (1993), Klainerman
& Nicolò (2003a), Christodoulou (2008), Choquet-Bruhat, Chruściel, & Martín-García (2011), and Aretakis (2013).

371For the classical theory see e.g. Courant & Hilbert (1962) or Rauch (2012).
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The general idea of solving or at least simplifying some PDE by solving an associated
“characteristic” ODE also works for certain second-order hyperbolic PDEs. The simplest example
is the wave equation (−∂ 2

t + ∂ 2
x ) f = 0 in d = 2. With u = t− x and v = t + x, this is solved by

f (u,v) = g(u)+h(v). In other words, any function that is constant along either all characteristics
u = constant or along all characteristics v = constant is a solution. In the usual Cauchy problem
one gives initial data f (0,x) and ḟ (0,x) at t = 0, or on more general spacelike Cauchy surfaces
Σ, since as long as Σ is spacelike the characteristics are nowhere tangent to it. However, in this
case it is perfectly reasonable, and perhaps even more natural, to prescribe initial data on some
fixed characteristic u = constant together with a fixed characteristic v = constant. For example,
one may take the lightcone (u = 0)∪ (v = 0), which obviously fixes both g and h, and hence f .
This also works locally, in the sense that we may take two finitely extended fd lightlike lines N1
and N2 that emanate from the same point (or, from a different point of view, would intersect at
that point), forming a “V ” (the apex is not supposed to be part of either N1 or N2). In that case,
prescribing f on N1∪N2 fixes the solution (still to the 2d wave equation) at least on the future
domain of dependence D+(N1∪N2), as one easily verifies from a picture.

This 2d setting has two different generalizations to d = 3 or 4. One may specify initial data:

• either on an open (truncated or semi-infinite) fd null cone emanating from its apex;372

• or on two bounded open null hypersurfaces N1 =C, N2 =C as described in §6.4.

We briefly summarize the latter scheme, which is more popular than the former. In d = 4, or in
d = 3, where the two-sphere S2 is replaced by the circle S1, C (C) is a null hypersurface that is: (i)
bounded in the past by a spacelike sphere; (ii) generated by the fd lightlike geodesics integrating
the lightlike vector field L (L), and (iii) foliated by two-spheres St (St), see (6.61), (6.82), for
some range 0 < t < t f (0 < t < t f ) for which C (C) is smooth. If (x1,x2) are coordinates on S2,
then (x1,x2, t) and (x1,x2, t) are coordinates on N1 and N2, respectively.

In the wave gauge (7.102), suitable “characteristic” initial data on N1∪N2 for the Einstein
equations in vacuum (as well as for certain matter sources, including electromagnetism) are
provided by a family t 7→ g̃t of 2d Riemannian metrics on the spheres St foliating C, plus a family
t 7→ kt of covariant symmetric 2-tensors playing the role of (6.73), i.e. of the “null extrinsic
curvature”, and similar data on N2. These are supplemented by a scalar function and a 1-form on
S2. The first of these will be initial value for the gtt component of the 4d metric g, whilst the
second is an initial value for what is called the “torsion” X 7→ ζ (X) := g(∇X L,L).

These initial data are constrained in a very different way from the spacelike case. Apart from
certain continuity and compatibility requirements, the key constraint on the tensors g̃t and kt on
N1 is given by the null Raychaudhuri equation (6.99), in which θ is defined by (6.79), and by a
similar equation for the initial data on N2. These Raychaudhuri equations are ODEs (as opposed
to the elliptic PDEs in the usual approach), which is of course a major simplification. In fact, as
in the spacelike case (cf. §8.6), but with very different details, unconstrained initial data may
be given using conformal methods. In particular, the unconstrained metric data are conformal
equivalence classes of such families of 2d Riemannian metrics on the spheres St and St .

This leads to a counterpart to Theorem 7.7, i.e. one locally obtains globally hyperbolic
solutions from such initial data, which are unique in appropriate coordinates.373 However, the
analogue of a coordinate-free Cauchy development of the initial data remains to be formulated
precisely. A fortiori, a “characteristic” version of Theorem 7.10 is still waiting to be proved.

372See Choquet-Bruhat, Chruściel, & Martín-García (2011) for this.
373See Luk (2012), who extended the region in which Rendall (1990) proved the existence of solutions.
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7.7 Geometric form of the constraints

In this section we pay our debt by (twice!) deriving the (vacuum) constraints (7.145) - (7.146);
matter sources give additional terms in the constraints, see (8.65) - (8.67). Thus we assume a
spacelike hypersurface Σ ⊂M of a space-time (M,g) that solves the vacuum Einstein equations
(it is not necessary for this derivation that Σ be a Cauchy surface). The constraints are geometric
and hence coordinate-independent, but their derivation is most easily done in coordinates (xµ)
where (x1,x2,x3) are coordinates on Σ, g00 = −1, and g0i = 0. Such coordinates always exist
locally, see Proposition 8.1 in §8.1. In such coordinates, the fd unit normal to Σ is simply

Nµ = ∂0 = (1,0,0,0); Nµ = (−1,0,0,0). (7.166)

In such coordinates, the Gauss relation (4.147) reads, with spatial indices i, j,k, l = 1,2,3,

Ri jkl = R̃i jkl + k̃ikk̃ jl− k̃il k̃ jk. (7.167)

Contracting this to the spatial Ricci tensor Ri j = gµνRµiν j and Ricci scalar R = gµνRµν gives

Ri j +R0i0 j = R̃i j +Tr (k̃)k̃i j− k̃2
i j; (7.168)

R+ 2R00 = R̃+Tr (k̃)2−Tr (k̃2), (7.169)

so that (7.145) is precisely the geometric form of the so-called Hamiltonian constraint

G00 := R00− 1
2g00R = R00 + 1

2R = 0. (7.170)

In the same spirit, in our coordinate system Codazzi’s equation (4.148) system comes down to

R0ki j = ∇̃ik̃ jk− ∇̃ jk̃ik. (7.171)

Contracting to the Ricci tensor gives

R0i = gµνRµ0ν i = g jkR j0ki = g jkR0i jk = ∂iTr (k̃)− ∇̃ jk̃
j
i . (7.172)

Contracting to the Ricci scalar is unnecessary, since the momentum constraint is simply

G0i := R0i− 1
2g0iR = R0i = 0, (7.173)

so that (7.146) follows from (7.172). Note that ∂iTr (k̃) = ∇̃iTr (k̃), as Tr (k̃) is a scalar.
We now also present a coordinate-free proof of (7.145) - (7.146), via a 4d-version of the

3d-objects g̃ and k̃ defined on Σ. These are given in any coordinates by

g̃µν := gµν +NµNν ; (7.174)

k̃µν := −g̃ρ

µ g̃σ
ν ∇ρNσ . (7.175)

See (6.11) - (6.11).374 Note that indices are raised and lowered with g, so that

g̃ν
µ = δ

ν
µ +NµNν . (7.176)

374Note the minus sign in (7.175) compared to (6.12), which is a consequence of different conventions in fluid
mechanics and differential geometry. Many physics texts have a plus in (7.175).
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This tensor is also called hν
µ . Taken at x∈M, it is the matrix of the orthogonal projection operator

(4.134). Unlike the original g̃ ∈ X(2,0)(Σ), the new g̃ ∈ X(2,0)(M) is defined on any pair of
vectors X ,Y ∈ TxM (x ∈ Σ), though the extension is somewhat trivial in that g̃(X ,N) = 0 for
any X ,Y ∈ TxM, whilst g̃(X ,Y ) defined from (7.174) equals the original g̃(X ,Y ) defined from
(4.123). Hence the ambiguous notation is admissible and it is always clear which g̃ is meant.
Likewise for k̃ in (7.175). In terms of the projection πx, for all x ∈ Σ and X ,Y ∈ X(M),

g̃x(X ,Y ) = g(πx(X),πx(Y )); (7.177)

k̃x(X ,Y ) = k(πx(X),πx(Y )). (7.178)

The Gauss-Codazzi identities (4.147) - (4.148) are now rewritten as

g̃µ

α g̃ν

β
g̃ρ

γ g̃σ

δ
Rρσ µν = R̃γδαβ + k̃γα k̃δβ − k̃γβ k̃αδ ; (7.179)

g̃µ

α g̃ν

β
g̃ρ

γ Nσ Rρσ µν = ∇̃β k̃αγ − ∇̃α k̃βγ . (7.180)

The corresponding contracted Gauss relations easily follow from (7.179), and are given by

g̃µ

α g̃ν

β
Rµν + g̃σ

α g̃ν

β
NµNρRρσ µν = R̃αβ +Tr (k̃)k̃αβ − k̃2

αβ
; (7.181)

R+ 2NµNνRµν = R̃+Tr (k̃)2−Tr (k̃2), (7.182)

where we used the following identity and notations:

g̃αγ g̃µ

α g̃ρ

γ = g̃ρµ = gρµ +NρNµ ; (7.183)

Tr (k̃) = k̃µ

µ = gµν k̃µν = g̃µν k̃µν ; (7.184)

Tr (k̃2) = g̃µν k̃2
µν = g̃µν k̃µρ k̃ρ

ν = g̃µν g̃ρσ k̃µρ k̃νσ . (7.185)

If we now write the Hamiltonian constraint G00 = 0 in pseudo-covariant form as

NµNνGµν = NµNν(Rµν − 1
2gµνR) = NµNνRµν + 1

2R; (7.186)
NµNνGµν = 0, (7.187)

it is clear that (7.182) and (7.187) reproduce (7.145).
Similarly, the contracted Codazzi relations (which stop at one stage) follow from (7.180) as

Nµ g̃ν
αRµν = ∂̃αTr (k̃)− ∇̃µ k̃µ

α . (7.188)

The momentum constraint Gi0 = 0 is now written pseudo-covariantly as

Nµ g̃ν
αGµν = Nµ g̃ν

α(Rµν − 1
2gµνR) = Nµ g̃ν

αRµν ; (7.189)
Nµ g̃ν

αGµν = 0, (7.190)

since gµνNµ g̃ν
α = 0. With (7.188), this recovers (7.146), and we are ready. See also §8.3.

The Gauss relation (4.147), or, equivalently, (7.167) or (7.179), describes the value of the
Riemann tensor R(W ,Z,X ,Y ) at four spatial vectors (W ,Z,X ,Y ), whereas the Codazzi relation
(4.148), or (7.171) or (7.180), gives its value R(N,Z,X ,Y ) at three spatial directions X ,Y ,Z and
one timelike direction N. For the dynamical (evolution) equations Gi j = 0 we will also need the
case R(W ,N,X ,N) of two spatial and two orthogonal timelike vectors; unlike the previous two
cases, which just rely on the embedding Σ ⊂M, this new case will contain derivatives of g̃i j
and k̃ik in the orthogonal (temporal) direction, i.e., in suitable coordinates, ∂t g̃i j and ∂t k̃ik. This
requires not just a single Cauchy surface Σ⊂M, but a foliation M = ttΣt . This is the subject of
the next chapter; the required identity will be (8.37), or, equivalently, (8.38) or (8.39).
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7.8 Epilogue: The Hole Argument revisited
With Theorem 7.10 and surrounding constructions in our hand, we return to the Hole Argument,
cf. §1.5 for Einstein’s version and §7.5 for Hilbert’s. Given Definition 7.9 of an MGHD (where we
will omit the suffix ‘max’ since all Cauchy developments will be maximal), the Hole Argument
à la Hilbert (1917) follows from the straightforward observation that if (M,g, ι) is an MGHD of
the initial data (Σ, g̃, k̃) and ψ : M′→M is a diffeomorphism, then the triple (M′,g′, ι ′), where
g′ and ι ′ are defined by (7.150), i.e. g′ = ψ∗g and ι ′ = ψ−1 ◦ ι , with time orientation induced by
ψ ,375 is an MGHD of the initial data (Σ, g̃′, k̃′) induced on Σ via ι ′ and g′. In particular:376

Proposition 7.18 Given some MGHD (M,g, ι) of initial data (Σ, g̃, k̃), let U be a neighbourhood
of ι(Σ) in M. Take a (time orientation preserving) diffeomorphism ψ of M that is the identity on
U (and is nontrivial somewhere outside U), so that in particular ι ′ = ι and (g̃′, k̃′) = (g̃, k̃).

Then the “Hilbert-triple” (M,ψ∗g, ι) is an MGHD of the same initial data (Σ, g̃, k̃).

This is a decent version of the Hole Argument. But since it starts from a diffeomorphism ψ of M
that only becomes an isometry from (M,ψ∗g) to (M,g) “with hindsight”, it may be vulnerable
to the criticism at the end of §1.10 to the effect that it involves a possibly dubious trans-world
comparison of two metrics (on the same space manifold) that define two different space-times.

However, Theorem 7.10, which may be seen as a highly nontrivial converse to Proposition
7.18, poses the same philosophical problems as the original Hole Argument, without suffering
from this vulnerability. Indeed, in Theorem 7.10 all reference to diffeomorphisms that are not
(yet) isometries has gone! As in the Hole Argument, Theorem 7.10 forces us to choose between:

1. Determinism, in the version that the Einstein equations for given initial data have a unique
solution in the sense that we agree that triples (M,g, ι) and (M′,g′, ι ′) as in the statement
of the theorem are seen as different representatives of the same physical situation;

2. Space-time substantivalism, in the sense that triples (M,g, ι) and (M′,g′, ι ′) represent
“distinct states of affairs” (although they are observationally indistinguishable). This choice
saves the “this-ness” of points at the cost of accepting some invisible indeterminism.

If we opt for determinism, the specific version thereof in GR that seems enforced by Theorem 7.10
is that we must “physically identify” all maximal globally hyperbolic spacetimes (M,g, ι) with
Cauchy surface ι(Σ̃) that carry fixed (and a priori “timeless”) initial data (Σ̃, g̃, k̃). Theorem 7.10
states that all putatively different possibilities are isometric, and hence isometries (preserving ι)
play the role of gauge symmetries.377 This may be unsurprising, since the isometries in Theorem
7.10 are a shadow of the diffeomorphism invariance of the Einstein equations, comparable to the
situation in spontaneous symmetry breaking where some symmetry group G of the Hamiltonian
(and hence of its associated equations of motion) is broken to a symmetry group H ⊂ G of its
ground state (or of some other solution to the equations). But it is also somewhat surprising,
since the isometries of a fixed spacetime (M,g) are not given by freely specifiable functions on
M, as in the case of gauge theories,378 although all points on their orbits are physically identified.

375Defining time orientation by (the equivalence class of) a global timelike vector field T on M, so that some
causal vector X is future-directed iff g(X ,T ) < 0, this means that T ′ = ψ−1

∗ T .
376This construction also works, using the notation of §7.5, if U = J−(ι(Σ)), cf. Curiel (2018) and Pooley (2022).
377See Gomes (2021) for a detailed analysis of the relationship between gauge symmetries in gauge theories and

diffeomorphisms in GR, including a discussion of the Hole Argument.
378If dim(M) = n, then for any semi-Riemannian metric g the isometry group of (M,g) is at most 1

2 n(n+ 1)-
dimensional. See O’Neill (1983), Lemma 9.28; Kobayashi & Nomizu (1963), Theorem VI.3.3 does the Riemannian
case. Thus the Poincaré-group in n = 4 has maximal dimension 10.
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It is instructive to compare Theorem 7.10 with the corresponding situation in special relativity,
seen as a generally covariant field theory à la vacuum GR, but this time with field equation

Rρσ µν = 0 (7.191)

instead of Rµν = 0, cf. §1.10. The initial value problem may then be posed in almost the same
way as in GR; the only difference is that the initial data (Σ, g̃, k̃) now satisfy the constraints

R̃i jkl− k̃il k̃ jk + k̃ikk̃ jl = 0; ∇̃ik̃ jk− ∇̃ jk̃ik = 0. (7.192)

The constraints (7.192) are stronger than (7.146), which follows from (7.192) by contracting
with g̃ikg̃ jl and g̃ik, respectively. The reason is that in GR one merely asks for an embedding of
the initial data in a Ricci-flat Lorentzian manifold (M,g), whereas in special relativity (M,g) is
(locally) flat altogether, i.e. Rρσ µν = 0. To avoid irrelevant global topological issues, we assume
that Σ is diffeomorphic to R3. By Theorem 5.44, global hyperbolicity of (M,g) then gives

M ∼= R× Σ̃ = R4 (7.193)

diffeomorphically. Without loss of generality we may take M = R4 (cf. Theorem 4.1), so
that even without using (7.192) yet, (M,g) must be Minkowski spacetime (R4,η) ≡M. As
a solution to the Einstein equations, M is not only globally hyperbolic, but also maximal.379

Imposing (7.192), we now use the Minkowskian version of Theorem 4.18; the proof of the
Minkowskian case is practically the same, up to some sign changes.380 This gives:

Theorem 7.19 For each initial data triple (R3, g̃, k̃) satisfying the constraints (7.192) there exists
an isometric embedding ι : R3→R4 carrying the Minkowski metric, whose extrinsic curvature
is the given tensor k̃. This embedding is unique up to Poincaré transformations preserving
time-orientation, in the sense that for any other map ι ′ : R3→R4 with the same properties as ι

there exists a (unique) Poincaré transformation ψ : R4→R4 that preserves time-orientation
and satisfies ψ ◦ ι ′ = ι .

There is a clear conceptual analogy between Theorems 7.10 and 7.19, except that the former
refers to the initial-value problem in general relativity, whilst the latter states the situation in
special relativity (albeit in a somewhat unusual way). In particular, the role of isometries in
the general theory is now played by Poincaré transformations (i.e. isometries of the Minkowski
metric), as was to be expected. And yet, whereas most physicists would be happy to regard
isometries in general relativity as gauge symmetries akin to coordinate transformations, few if
any would regard Poincaré transformations as physically inert. But in Theorem 7.19, they are.

In a more general context, this is explained by Gomes (2021), who makes the point that in
thinking about Poincaré transformations as bringing physical change, as for example in boosts of
Galieli’s ship or Einstein’s train, we apply such transformations to subsystems of the universe.
But Theorem 7.19 concerns the action of Poincaré transformations on space-time as a whole:

379Maximality of Minkowski spacetime follows from its inextendibility; see e.g. Corollary 13.37 in O’Neill (1983)
for the smooth case and Sbierski (2018) for inextendibility even in C0. See also footnote 567.

380In the Euclidean case the first constraint in (7.192) is R̃i jkl + k̃il k̃ jk− k̃ikk̃ jl , the sign changes going back to the
different signs in the Gauss–Codazzi equations in Euclidean and Lorentzian signature, see eqs. (4.146) - (4.147).
These sign changes do affect the outcome. For example, Hilbert (1901) proved that it is impossible to isometrically
embed two-dimensional hyperbolic space (H2,gH) in R3 with Euclidean metric, cf. §4.4. But hyperbolic space can
be isometrically embedded in R3 with Minkowski metric, cf. Hence given (H2,gH), a symmetric tensor k̃ such that
(gH , k̃) satisfy the Euclidean constraint do not exist, but such a k̃ can be found satisfying the Minkowski constraints.
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But some familiar symmetries of the whole Universe, such as velocity boosts in classical
or relativistic mechanics (Galilean or Lorentz transformations), have a direct empirical
significance when applied solely to subsystems. Thus Galileo’s famous thought-experiment
about the ship—that a process involving some set of relevant physical quantities in the
cabin below decks proceeds in exactly the same way whether or not the ship is moving
uniformly relative to the shore|shows that subsystem boosts have a direct, albeit relational,
empirical significance. For though the inertial state of motion of the ship is undetectable
to experimenters confined to the cabin, yet the entire system, composed of ship and sea
registers the difference between two such motions, namely in the different relative velocities
of the ship to the water. (Gomes 2021, p. 150)

This brings us back to the substantivalism versus relationalism debate; and indeed one sees
little difference between general and special relativity in this context. The difference between the
former and the latter is merely the one between Theorems 7.10 and 7.19, respectively, which are
good starting points for this debate. Whatever differences there are seem technical rather than
conceptual, like the underlying difference between the field equations Rµν = 0 and Rρσ µν = 0.

Even if we opt for determinism, the Hole Argument (in the guise of Theorem 7.10) gives us
a choice between two positions in the philosophy of mathematics that are traditionally seen as
opposites, namely a Frege-style abstractionism or a Hilbert-style structuralism:381

• Abstractionism: the relevant mathematical object is the equivalence class of all spacetimes
(with fixed initial data) up to isometry.

• Structuralism: spacetimes (with fixed initial data) are mathematical structures which
by their very nature can only be studied up to isomorphism. Thus the identitifcation of
isometric spacetimes called for by the Hole Argument or Theorem 7.10 was to be expected.

Against abstractionism (both in GR and in Frege’s original application to the definition of
Number), one may claim extravagance by noting that an equivalence class [x] with respect to any
equivalence relation ∼ on some given set X is typically huge; no physicist ever works with such
equivalence classes of spacetimes, or even a tiny fraction of it. To resolve this, one might try to
work with the single object (Σ̃, g̃, k̃), i.e. the initial data that give rise to all of these isometric
spacetimes. But no one does this either; all work in GR is done in terms of just a few of the
triples (M,g, ι), whose choice (within its isometry class) is made for convenience.

If instead we go for a structuralist resolution, seemingly incompatible philosophical points of
view remain possible: within mathematical structuralism, the Hole Argument seems compatible
with both structural realism (Ladyman, 2020) and empiricist structuralism (van Fraassen, 2008).
In the former, the structures in question are real, whereas in the latter they model empirical
phenomena. The latter seems to describe the practice of physicists and mathematicians in GR:

Science represents the empirical phenomena as embeddable in certain abstract structures
(theoretical models). Those abstract structures are describable only up to structural isomor-
phism. (. . . ) construction of a data model is precisely the selective relevant depiction of
the phenomena by the user of the theory required for the possibility of representation of the
phenomenon. (van Fraassen, 2008, pp. 238, 253)

Indeed, in practice some user of the theory of GR chooses a member (M,g, ι) of its equivalence
class, whilst some other user (or even the same one) may pick another member. None of these
triples “are” space-times, or even “represent” space-times; they merely represent data models.

381See Landsman (2022b for references and further discussion. Hallett (2010) and Blanchette (2018) are a start.
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8 The 3+1 split of space-time
In this chapter we develop the non-covariant approach of §7.5 through a split of space-time
into space and time.382 Philosophers would say that this split relates the “scientific” image of
GR to its “manifest image”, since what we experience is space and time separately, rather than
Minkowski’s (and subsequently also Einstein’s) lofty notion of space-time. The 3+1 split is the
key to e.g. the Hamiltonian approach to GR discussed in §8.7, as well as to numerical relativity.

8.1 Lapse and shift
In the previous section we described the constraints Gµ0 = 0 in 3+1 split geometric form (7.145)
- (7.146). These constraints do not contain time derivatives of g̃i j and k̃i j, whose time-evolution
is governed by the spatial Einstein equations Gi j = 0. To rewrite these in 3+ 1 form it is not
enough to have a single Cauchy surface Σ ⊂M; we need to assume a foliation

M = ttΣt (8.1)

of M by spacelike Cauchy surfaces Σt . In particular, we assume that (M,g) is globally hyperbolic.
The choice of a foliation may be compared with a choice of gauge in the covariant approach

in §7.5, like the wave gauge (7.102), whose goal it is to single out a unique metric solving the
Einstein equations within its equivalence class under diffeomorphisms. A foliation by spacelike
hypersurfaces is a choice of a “now” at each instant of time; it is hallmark of GR that such a
choice is arbitrary (as long as each Σt is spacelike). See §1.10 and §8.11. As explained in §7.5,
given such gauge fixing on all of M, one only needs to solve the spatial Einstein equations
Gi j = 0, and impose Gµ0 = 0, i.e. (7.145) - (7.146), as constraints on the initial value surface Σ.
See §8.3. In the light of Theorem 5.44, such a foliation is equivalent to a diffeomorphism

F : R×Σ→M (8.2)

with the property that each subspace Σt := Ft(Σ) is spacelike. With t ∈R and x ∈ Σ, we write

Ft : Σ→M; Ft(x) := F(t,x); (8.3)
Fx : R→M; Fx(t) := F(t,x), (8.4)

which shows the double role of foliations: for fixed time t ∈ R the map Ft is a spacelike
embedding of Σ in M, whereas for fixed x ∈ Σ the map Fx is a curve through F(0,x) ∈M. A
priori defined by F , such a foliation (8.1) is also equivalent to one of the following structures:

• A temporal function t : M→R with g(∇t,∇t)< 0, cf. Definition 5.42 and Theorem 5.44.

• A function called the lapse L and a vector field called the shift S of the foliation.383

The lapse and shift may be defined in a coordinate-independent way by the decomposition

dFt

dt
=: LN + S, (8.5)

seen as an equality between vectors in TyM for any y = F(x, t), as follows:384

382 The 3+ 1 split originated in the work of Darmois (1927), Lichnerowicz (1939, 1955), and Fourès-Bruhat
(1956); see Choquet-Bruhat (2018). It subsequently crossed the independent development of the Hamiltonian
formalism for GR, in particular through the work of Arnowitt, Deser, & Misner (1962). See footnote 419 in §8.7.

383One may wonder why something can simultaneously be determined by one function t and by four functions L
and ~S, but the metric information in the former is in the four components of the vector field ∇t.

384Many authors write (8.5) as ∂t = Nn+~N, where N is the lapse, n is the normal, and ~N is the shift.
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• the left-hand side is the tangent vector at y to (e.g.) the curve c(s) = Fx(t + s) at s = 0;

• L ∈C∞(M) is a scalar whilst N ∈ X(M) is the normal future-directed vector field to Σt ;

• S ∈ X(M) is the orthogonal projection of dFt/dt onto TyΣt ⊂ TtM, hence tangent to Σt .

Here we assume (4.130). Thus, given the metric g on M, a foliation F of M by spacelike Cauchy
surfaces uniquely defines L and S. Conversely, the idea is that L and S fix a foliation (8.1), but
not all pairs (L,S) do so, not even if L > 0. Starting from a Cauchy surface Σ ⊂M it turns out
that one may always globally put S = 0, see (8.14) below and Theorem 5.44 (although this may
not be the wisest choice). In addition, one may locally set L = 1 (see Proposition 8.1 below), but
the latter is generally not possible globally: if S = 0 and L = 1, then the flow lines of N would
be (pre)geodesics, whose focusing and hence crossing (in the presence of positive curvature)
would invalidate the foliation. There might be similar problems with other choices of L and S.

From the point of view of a temporal function t, the lapse and shift are given by

L =
1√

−g(∇t,∇t)
; N = −L∇t. (8.6)

We can choose coordinates (x0,x1,x2,x3) adapted to the foliation (8.1), as follows:

• x0 = t, or, more precisely, x0(x) = t, provided x ∈ Σt ;

• (xi) are (local) coordinates initially on Σ (i = 1,2,3), but subsequently on any slice Σt : if
y ∈ Σt , the flow line of the vector field ∇t (or N) hits Σ in exactly one point x0 ∈ Σ; if the
latter has coordinates x0 = (0,x1,x2,x3), the former has coordinates y = (t,x1,x2,x3).

Given (local) spatial coordinates (x1,x2,x3) on Σ, at any point x ∈ Σt one has tangent vectors
ei = ∂i to Σt , as well as a one-form θ 0 = dt. As we have seen, ∂0 may not be orthogonal to Σt
and hence to the vectors ei, but the shift S = Si∂i := ∑

3
i=1 Si∂i corrects for this, in that the vector

e0 = ∂0−S (8.7)

is orthogonal to Σ. We then have a frame (ea) with dual coframe (θ b), defined by

e0 := ∂t−Si
∂i; ei := ∂i; (8.8)

θ
0 := dt; θ

i := dxi + Sidt, (8.9)

where g(e0,ei) = 0 and g(θ 0,θ i) = 0, and, by definition, θ a(eb) = δ a
b for a,b = 0,1,2,3.

By definition of the lapse and the shift, we then have the useful relations

g = −L2(θ 0)2 + g̃i jθ
i
θ

j; e0 = LN = −L2
∇t; (8.10)

dt= dt; ∇t= gµ0
∂µ ; (8.11)

L = 1/
√
−g00; Si = −gi0/g00; (8.12)

Nµ = (−L,0,0,0); Nµ = (1/L,−S/L). (8.13)

Consequently, in coordinates adapted to the foliation, the metric and its inverse take the form

gµν =

(
−L2 + S jS j Si

Si g̃i j

)
; gµν =

(
−1/L2 Si/L2

Si/L2 g̃i j−SiS j/L2

)
, (8.14)
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where g̃i j is the matrix inverse to g̃i j and spatial indices are raised and lowered with this spatial
metric (so that e.g. S jS j = g̃i jSiS j). Thus L and Si may also be seen as parametrizations of the
non-spatial components of the metric. The local possibilities are as follows:385

Proposition 8.1 For any Cauchy surface Σ ⊂M with 3-metric g̃i j and extrinsic curvature k̃i j in
given coordinates (xµ), there exist coordinates (yµ) in which g̃i j and k̃i j are the same, whilst

gi0 = g0i = 0; g00 = g00 = −1 (8.15)

on Σ. Moreover, in a nbhd of Σ one can give the components g0µ any desired value.

We now expand the pseudo-covariant notation (7.174) - (7.175), originally defined on Σ ⊂M, to
all of M, assuming (8.1) and the ensuing extension of the normal vector field from Σ to M. Then

kµν := −∇µNν = k̃µν +NµAν , (8.16)

where the acceleration A of the vector field N is defined by

A = ∇NN; Aµ = Nν
∇νNµ . (8.17)

We now shed interesting new light on the extrinsic curvature k̃ of Σ ⊂M by showing that

k̃ = − 1
2LN g̃ (8.18)

= − 1
2L−1Le0 g̃, (8.19)

seen as equalities between symmetric tensors in either X(2,0)(Σ) or X(2,0)(M); in the former
case the proof of (8.18) in fact implies that LN g̃ ∈ X(2,0)(Σ). In arbitrary coordinates, we have

k̃µν = − 1
2LN g̃µν , (8.20)

= − 1
2L−1Le0 g̃µν . (8.21)

In coordinates (t,xi) we may restrict to spatial indices: using (8.8) and (2.94), eq. (8.21) is

(∂t−LS)g̃i j = −2Lk̃i j, (8.22)

which in coordinates where also L = 1 and S = 0 further simplifies to the transparent equality

k̃i j = − 1
2∂t g̃i j. (8.23)

Before embarking on the the derivation of (8.18) - (8.19), note that (8.23) is easy to derive:

k̃i j = −∇iN j = −∂iN j +Γµ

i jNµ = −Γ0
i j =

1
2g00

∂tgi j = − 1
2∂t g̃i j, (8.24)

since in coordinates where L = 1 and S = 0 we have (8.15) and hence (7.166), cf. (8.14).
To derive (8.18), we first use the (1,0) case of (3.85) with X = N to compute

LNNµ = Nν
∇νNµ +(∇µNν)Nν = Nν

∇νNµ = ∇NNµ , (8.25)

385This proposition is slightly adapted from Chruściel (2010), Proposition 1.4.1, which is also proved there.
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since in the second term (∇µNν)Nν vanishes because of (4.130), which gives

Nν
∇µNν = g(N,∇µN) = 1

2∂µg(N,N) = 1
2∂µ(−1) = 0. (8.26)

Using this as well as (8.16), the (2,0) case of (3.85) with X = N then gives

LN(NµNν) = Nµ∇NNν +Nν∇NNµ = NµAν +NνAµ . (8.27)

From (7.174), (3.86), (8.16), and (8.27) we then obtain, at last,

LN g̃µν = LN(gµν +NµNν) = −2k̃µν −NµAν −NνAµ +NµAν +NνAµ

= −2k̃µν . (8.28)

We derive (8.19) from (8.18) using a general fact, namely, using (8.17),

Aµ = ∂̃µ(lnL) = L−1g̃ν
µ∂νL, (8.29)

where we use the notation ∂̃µ = g̃ν
µ∂ν for the derivative along Σ.386 Note that the projection g̃ν

µ

reconfirms that A is tangent to Σ (i.e., orthogonal to N), which we already knew because

g(N,∇NN) = 0. (8.30)

Using (8.16) and (7.174), eq. (8.29) is equivalent to

∇NNν ≡ Nµ
∇µNν = L−1(NµNν∂µ + ∂ν)L, (8.31)

which we will now prove. The proof relies on torsion-freeness of ∇, which implies ∇µ∂ν f =
∇ν∂µ f for any f ∈C∞(M). We write (8.13) as Nµ = −L∂µt and compute

Nµ
∇µNν = −Nµ

∇µ(L∂νt)
= −Nµ(∂µL∂νt +L∇ν∂µt)

= L−1NµNν∂µL−LNµ
∇ν(L−1Nµ)

= L−1NµNν∂µL−NµNµ∂νL−1−LNµ
∇νNµ

= L−1(NµNν∂µ + ∂ν)L, (8.32)

where we used (8.26). Using (8.10), (2.94), and (8.18), we then compute

Le0 g̃µν = LLN g̃µν

= LLN g̃µν +Nµ∂νL+Nν∂µL+(∂µL)NρNρNν +(∂νL)NρNρNµ

= LLN g̃µν +Nµ∂νL+Nν∂µL−Nν∂µL−Nµ∂νL

= −2Lk̃µν . (8.33)

This exemplifies a general phenomenon concerning Le0: if any tensor τ ∈ X(k,0)(M) satisfies

τ(X1, . . . ,Xk) = τ(π(X1), . . . ,π(Xk)), (8.34)

i.e., τ is purely spatial, or, equivalently τ(X1, . . . ,Xk) = 0 if Xi = N for at least one i, then also

Le0τ(X1, . . . ,Xk) = Le0τ(π(X1), . . . ,π(Xk)), (8.35)

that is, also Le0τ is purely spatial. This most easily follows from the Leibniz rule for L and
hence the case k = 1. Since e0 = LN we may as well derive (Le0τ)(e0) = 0 from the assumption
τe0(e0) = 0: using (2.94) and Le0e0 = [e0,e0] = 0, we obtain

(Le0τ)(e0) = e0(τ(e0))+ τ(Le0e0) = 0+ 0 = 0. (8.36)
386This is consistent with notation ∇̃ for the covariant derivative within Σ defined with respect to g̃ because of

(4.135), which in coordinates reads g̃ν
µ ∇νY ρ = ∇̃µY ρ .
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8.2 Beyond Gauss-Codazzi: The Darmois identity
As promised at the end of §7.7, we now derive an identity for Riem(W ,N,X ,N), the Riemann
tensor at two spatial and two orthogonal timelike vectors. This is the final identity in a chain:

• the first such identity was (4.146) - (4.147), with zero entries of N (due to Gauss);

• the second was (4.148), with one slot occupied by N (due to Codazzi);

• the third will be (8.37) below, involving two copies of N (due to Darmois).

More N’s are fruitless, as the Riemann tensor vanishes due to its (anti)symmetries. This new case
will contain expressions like Le0 k̃, which unlike terms like ∇̃l k̃ik in (4.148) involves derivatives
in the orthogonal direction. Thus the case of two orthogonal vectors relies on the time function,
or, equivalently, on the foliation (8.1) (at least near Σ ≡ Σ0). The Darmois identity, then, reads

Riem(W ,N,X ,N) = L−1(Le0 k̃(X ,W )+ ∇̃W ∇̃X L)+ k̃2(X ,W ), (8.37)

where X ,W ∈ T xΣ. In general coordinates, this expression reads

g̃ρ

α g̃µ

β
Nσ NνRρσ µν = L−1(Le0 k̃αβ + ∇̃α∇̃β L)+ k̃2

αβ
, (8.38)

where k̃2
αβ
≡ k̃αρ k̃ρ

β
, in which the indices on k̃ are raised and lowered with either g̃ or g (this

does not matter because any action of the terms NµNν in (7.174) contracts to zero on k̃), and
∇̃β L = ∂̃β L. In coordinates (t,xi) with zero shift and unit lapse, as before, eq. (8.37) is simply

Ri0 j0 = ∂t k̃i j + k̃2
i j. (8.39)

To see this, eq. (4.13) gives Ri0 j0 = (∇ j∇0−∇0∇ j)Ni. Eqs. (8.15) and (7.166) then give

∇ j∇0Ni = ∂ j∇0Ni−Γν
0 j∇νNi−Γν

i j∇0Nν = −Γk
0 j∇kNi−Γ0

i j∇0N0 = Γk
0 jk̃ki−Γ0

i jΓ
0
00 = −k̃2

i j;

−∇0∇ jNi = ∇0k̃i j = ∂0k̃i j−Γl
0ik̃l j−Γl

0 jk̃li = ∂0k̃i j + k̃l
i k̃l j + k̃l

jk̃li = ∂t k̃i j + 2k̃2
i j,

since ∇0Ni = −Γµ

0iNµ = Γ0
0i = 0, Γk

0 j =
1
2gkl∂0g jl = −k̃k

j from (8.23), Γ0
00 = 0, and ∂0 ≡ ∂t .

To derive the coordinate-free version (8.38), we first note that (8.16) and (8.29) give

∇µNν = −k̃µν −Nµ ∂̃ν(lnL). (8.40)

As in the derivation of the Gauss–Codazzi equations, we start from (4.13), this time with Z = N:

Rρ

σ µνNσ = (∇µ∇ν −∇ν∇µ)Nρ = −∇µ(k̃
ρ

ν +Nν ∂̃
ρL)+∇ν(k̃

ρ

µ +Nµ ∂̃
ρL)

= ∇ν k̃ρ

µ −∇µ k̃ρ

ν +(∇νNµ −∇µNν)∂̃
ρL+(Nµ∇ν −Nν∇µ)∂̃

ρL. (8.41)

This gives

Nσ NνRρσ µν = ∇N k̃ρµ −Nν
∇µ k̃ρν + ∂̃µ(lnL)∂̃ρ(lnL)+∇µ ∂̃ρL+Nµ∇N ∂̃ρL, (8.42)

whose last term will vanish upon contraction with g̃µ

β
in (8.38). We rewrite the second term

Nν∇µ k̃ρν using the fact that Nν k̃ρν = 0 and hence also ∇µ(Nν k̃ρν) = 0. This gives

−Nν
∇µ k̃ρ

ν = k̃ρ

ν ∇µNν = −k̃ρ

ν k̃ν
µ − k̃ρ

ν Nµ ∂̃
ν(lnL), (8.43)
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whose last term will disappear upon contraction with g̃µ

β
in (8.38). We now replace the covariant

derivative in the first term ∇N k̃ρµ by a Lie derivative. Our favorite rule (3.85) gives

Le0 k̃ρµ = ∇e0 k̃ρµ +(∇µeν
0 )k̃ρν +(∇ρeν

0 )k̃µν , (8.44)

in right-hand side of which we substitute e0 = LN, and hence

∇e0 = L∇N . (8.45)

Recall that unlike the Lie derivative LX , the covariant derivative ∇X is C∞(M)-linear in X . In
the remaining terms we use (8.40). Many of the ensuing terms drop out after contraction with
g̃ρ

α g̃µ

β
, and after a lengthy but straightforward computation we obtain

g̃ρ

α g̃µ

β
∇N k̃ρµ = L−1

∇e0 k̃αβ + 2k̃2
αβ

. (8.46)

Using (8.44) and (8.46) in (8.42) finally gives (8.37), as follows:

g̃µ

α g̃ν

β
Nσ NνRρσ µν = L−1Le0 k̃αβ + 2k̃2

αβ
− k̃2

αβ
+ ∂̃α(lnL)∂̃β (lnL)+ ∇̃α ∂̃β L

= L−1(Le0 k̃αβ + ∇̃α∇̃β L)+ k̃2
αβ

. (8.47)

For the Einstein equations we do not need the full Riemann tensor Rρσ µν but its contractions

Rµν := Rρ

µρν = gρσ Rρµσν ; (8.48)

R := gµνRµν , (8.49)

defining the Ricci tensor) and Ricci scalar, respectively. For later use we therefore compute the
contractions of (8.38), which are slightly involved. First, (7.181) and (8.38) give

R̃αβ +Tr (k̃)k̃αβ − k̃2
αβ
− g̃µ

α g̃ν

β
Rµν = L−1(Le0 k̃αβ + ∇̃α∇̃β L)+ k̃2

αβ
, (8.50)

from which we obtain

g̃µ

α g̃ν

β
Rµν = −L−1(Le0 k̃αβ + ∇̃α∇̃β L)+ R̃αβ +Tr (k̃)k̃αβ −2k̃2

αβ
. (8.51)

Contracting both sides with g̃αβ , and defining the 3d covariant Laplacian

∆̃ := g̃αβ
∇̃α∇̃β , (8.52)

gives
R+NµNνRµν = −L−1(g̃αβ Le0 k̃αβ + ∆̃L)+ R̃+Tr (k̃)2−2Tr (k̃2), (8.53)

Since
Le0 g̃αβ = −2Lk̃αβ (8.54)

by (8.21), we have
Le0 g̃αβ = 2Lk̃αβ , (8.55)

cf. (7.29), and hence

g̃αβ Le0 k̃αβ = Le0Tr (k̃)− k̃αβ Le0 g̃αβ = Le0Tr (k̃)−2LTr (k̃2), (8.56)

where of course Le0Tr (k̃) = e0(Tr (k̃)). Hence (8.53) may be rewritten as

R+NµNνRµν = −L−1(Le0Tr (k̃)+ ∆̃L)+ R̃+Tr (k̃)2. (8.57)

Using (7.182), we finally obtain the twice contracted version of (8.38), namely

R = R̃−2L−1(Le0Tr (k̃)+ ∆̃L)+Tr (k̃)2 +Tr (k̃2). (8.58)



The 3+1 decomposition of the Einstein equations 189

8.3 The 3+1 decomposition of the Einstein equations
We now have all information for projecting the Einstein equations (7.1), with Tµν decomposed
according to (7.61), in three different directions, namely, contracting with:387

• The spatial projection g̃µ

α g̃ν

β
, which gives the dynamical equations

Le0 k̃µν = −∇̃µ∇̃νL+L(R̃µν +Tr (k̃)k̃µν −2k̃2
µν + 4π((S−E)g̃µν −2Sµν)); (8.59)

Le0 g̃µν = −2Lk̃µν . (8.60)

These follow from (7.62), (8.51), (7.63), and (8.21). As already noted, in Σ-adapted
coordinates eq. (8.60) becomes (8.22), and with (8.59), one may write this system as

(∂t−LS)k̃i j = −∇̃i∇̃ jL+L(R̃i j +Tr (k̃)k̃i j−2k̃2
i j + 4π((S−E)g̃i j−2Si j)); (8.61)

(∂t−LS)g̃i j = −2Lk̃i j, (8.62)

where, using (2.94) and (3.86), respectively, the two Lie derivatives may be written as

LSk̃i j = Sl
∂l k̃i j + k̃ jl∂iSl + k̃il∂ jSl; (8.63)

LSg̃i j = ∇̃iS j + ∇̃ jSi. (8.64)

• The timelike projections NµNν , which gives the Hamiltonian constraint

R̃−Tr (k̃2)+Tr (k̃)2 = 16πE, (8.65)

which follows from (7.1) and (7.182). It plays a key role in (canonical) quantum gravity.

• The mixed projections g̃µ

αNν or g̃ν

β
Nµ , producing the momentum constraint

∇̃µ k̃µ

ν − ∇̃νTr (k̃) = 8πPν . (8.66)

This follows from (7.1), whose gµνR term contracts to zero, and (7.188). Equivalently,

∇̃ jk̃
j
i − ∇̃iTr (k̃) = 8πPi. (8.67)

Altogether, in adapted coordinates, eqs. (8.61), (8.62), (8.65), and (8.67) form a coupled system
of 16 PDEs for 16 unknown functions (g̃i j, k̃i j,L,Si) defined on the Cauchy (hyper)surface Σ,
where the k̃i j may be exchanged for the time-derivaties ∂t g̃i j through (8.62), leaving 10 coupled
PDEs for 10 unknowns (g̃i j,L,Si), similar to the original covariant Einstein equations (which are
10 coupled PDEs for the 10 components gµν of the four-dimensional metric). In the latter case,
the spatial part consists of six evolution equations, whereas the other two parts contain only first
time derivatives of the spatial metric and no time derivates of the lapse and shift functions at
all; hence these act as four constraints on the initial data (g̃i j,∂t g̃i j), or, in general, on (g̃i j, k̃i j).
Also cf. §7.5. The lapse and shift functions are not determined by the equations at all and hence
can be (more or less) freely chosen; doing so amounts to fixing a (local) gauge, see §8.1. In that
respect, the diffeomorphism invariance of the original (covariant) Einstein equations (7.1) has
been traded for the arbitrariness of the lapse L and the shift ~S and hence of the foliation.

The precise way these equations are equivalent to the Einstein equations is as follows:388

387The letters S and Sµν on the right-hand sides below refer to the energy-momentum tensor, whereas the S in LS
on the left and the Si on the right refer to the shift vector, sorry!

388See Fischer & Marsden (1979), Theorem 4.1.
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Theorem 8.2 Let (M,g) be a globally hyperbolic space-time equipped with a foliation (8.1)
by spacelike Cauchy surfaces Σt , and associated lapse L and shift S. Let (g̃(t), k̃(t)) be the
(Riemannian) 3-metric and exterior curvature on Σt induced by the (Lorentzian) 4-metric g.
Then g is a solution of the Einstein equations (7.1), possibly coupled to matter with conserved
energy-momentum tensor Tµν in the sense that ∇µTµν = 0 holds identically without (7.1),389 iff:

1. For some t the pair (g̃i j(t), k̃i j(t)) satisfies the constraint equations (8.65) and (8.67);

2. The maps t 7→ g̃i j(t) and t 7→ k̃i j(t) satisfy the evolution equations (8.61) - (8.62).

This follows from our computations showing that (8.61), (8.62), (8.65), and (8.67) are equivalent
to the Einstein equations (7.1). Furthermore, the proof in §7.5 that the constraints propagate is
the same as for the vacuum case, see (7.123) - (7.124) and surrounding text. �

Conversely, for given lapse L > 0 and shift S one can only expect existence and uniqueness
of an ensuing space-time (M,g) solving the vacuum Einstein equations locally in time, i.e. in
some nbhd of Σ, since there is no a priori global control over the foliation that (L,S) give rise to.

Theorem 8.2 understates the importance of the constraints for GR. In fact:390

Theorem 8.3 A (globally hyperbolic) space-time (M,g) satisfies the Einstein equations Gµν = 0
iff the Hamiltonian constraint (7.145) holds on every spacelike (Cauchy) surface Σ ⊂M.

Proof. The implication from left to right is obvious, so assume (7.145) holds on every spacelike
surface (we leave it to the reader to insert the words between brackets in the proof). As we have
seen via eqs. (7.187) and (7.182), the Hamiltonian constraint (7.145) is, pseudo-covariantly,

NµNνGµν = 0, (8.68)

at each x ∈ Σ, where N is the (fd) normal to Σ. Requiring this for all spacelike (Cauchy) surfaces
Σ comes down to asking (8.68) for every timelike vector field N. If N1 and N2 are fd timelike,
then so is N1 +N2, which shows that (8.68) implies the seemingly stronger condition

Nµ

1 Nν
2 Gµν = 0, (8.69)

for all timelike N1 and N2. Furthermore, any spacelike vector X equals X = N1−N2 for some
timelike N1 and N2, so that (8.68) implies NµXνGµν = 0 for all timelike N and spacelike X ,
and by the same argument, X µ

1 Xν
2 Gµν = 0 for all spacelike X1 and X2. Finally, any vector Y is

Y = N +X for timelike N and spacelike X , so that (8.68) implies Y µZνGµν = 0 for arbitrary
vectors Y and Z. This is obviously equivalent to Gµν = 0. �

The simplest, perhaps somewhat trivial illustration of this formalism is Minkowski space (M,η),
foliated as M = tt∈RΣt , where Σt = {(x0,~x) | x0 = t}, corresponding to the time function

t(x0,~x) = x0. (8.70)

In the usual coordinates one has g = η , so for this foliation the lapse and the shift are simply

L = 1; S = 0. (8.71)

389This is the case, for example, if Tµν is obtained from a matter action SM via (7.77), where SM is obtained by
minimal coupling, in that in some special relativistic action, ηµν and ∂µ are replaced by gµν and ∇µ , respectively.
See Anderson (1981) and Read, Brown, & Lehmkuhl (2018) for interesting perspectives on minimal coupling.

390The theorem, due to Moncrief & Teitelboim (1973), is valid with and without the words between brackets.
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Furthermore, if we take Σ = Σ0 as our Cauchy surface–which it clearly is–then the induced initial
data on Σ are g̃i j = δi j and, since the fd normal ~N = (1,0,0,0) is independent of (x1,x2,x3) (and
even of x0), we have k̃i j = 0. Let us not fail to notice that these initial data satisfy the constraints
(7.145) - (7.146), i.e. (8.65) and (8.67) in vacuum (E = 0 and Pi = 0). From this, we recover the
(Minkowski) metric on any other Σt by solving (8.61) - (8.62) with (8.71), that is,

∂t k̃i j = R̃i j +Tr (k̃)k̃i j−2k̃2
i j; (8.72)

∂t g̃i j = −2k̃i j, (8.73)

with initial conditions g̃i j(0) = δi j and k̃i j(0) = 0, and R̃i j(t) seen as function of g̃i j(t). The
unique solution is g̃i j(t) = δi j and k̃i j(t) = 0 for all t ∈R, upon which (8.14) gives gµν = ηµν .

Now make this example nontrivial by considering the curious space-time (I+(0),η), i.e.

M = I+(0) (8.74)

is the interior of the forward lightcone emanating from the origin in Minkowski space-time, with
(relative) Minkowski metric. For ease of visualization we take d = 2+ 1, and set

x0 = t cosh(ρ); x1 = t sinh(ρ)cos(ϕ); x2 = t sinh(ρ) sin(ϕ), (8.75)

where t > 0, ρ ∈R, and ϕ ∈ [0,2π). Then define Σt ⊂ I+(0) as the hyperboloid (4.87), i.e.

Σt = H2
t = {(x0,x1,x2) ∈ I+(0) | (x0)2− (x1)2− (x2)2 = t2}, (8.76)

so that M = tt>0Σt . If we take Σ = Σ1 to be our Cauchy surface in I+(0), with initial data

g̃ = dρ
2 + sinh2(ρ)dϕ

2; (8.77)

k̃ = −g̃ = −dρ
2− sinh2(ρ)dϕ

2, (8.78)

then (g̃, k̃) satisfy the vacuum constraints (7.145) - (7.146). To check this, one may use (4.84)
with n = 2 and k = −1, so that R̃i j = −g̃i j and R̃ = −2. Secretly the initial data (8.77) - (8.78)
were obtained from the Minkowski metric η expressed in the coordinates (t,ρ ,ϕ), which is

η = −dt2 + t2(dρ
2 + sinh2(ρ)dϕ

2), (8.79)

This trivially reproduces g̃ in (8.77), and also leads to k̃ via the fact that the normal of Σt is

~N = (cosh(ρ), sinh(ρ)cos(ϕ), sinh(ρ) sin(ϕ)). (8.80)

which happens to be independent of t. To recover the Minkowski metric from the initial data
(Σ1, g̃, k̃), we once again choose (8.71), as will be justified a posteriori, and then solve (8.72) -
(8.73) subject to these initial data. A nontrivial computation shows that the solution is given by

g̃(t) = t2(dρ
2 + sinh2(ρ)dϕ

2); (8.81)

k̃(t) = −t−1g̃t = −t(dρ
2 + sinh2(ρ)dϕ

2). (8.82)

Once again using (8.14) with (8.71), this duly recovers the space-time metric (8.79).
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The cosmological FLRW solution provides another illustration of the 3+1 formalism. Short
of giving the whole story, our starting point is that homogeneity and isotropy imply that the
3d Riemannian manifold (Σ, g̃) carrying the initial data is one of the three spaces (ΣC, g̃C) of
constant curvature studied in §4.4. These spaces are parametrized by C ∈ {−1,0,1}, i.e.391

Σ−1 = H3; Σ0 = R3; Σ1 = S3. (8.83)

The associated 4-metric is given by

g = −dt2 + a(t)2gC, (8.84)

where the scale factor t 7→ a(t), initially defined on R+
∗ , is to be determined on the basis of the

Einstein equations and the specification of some energy-momentum tensor Tµν . The latter is
assumed to take the perfect fluid form (7.73), where uµ = (1,0,0,0), so that

Tµν = diag(ε , p, p, p). (8.85)

Accordingly E = ε , Pµ = 0, and Si j = pδi j, cf. (7.75). Since L = 1 and S = 0, it follows from
(8.23) and (8.84), where

g̃ = a2gC, (8.86)

that
k̃i j = −(ȧ/a)g̃i j, (8.87)

and hence
Tr (k̃) = −3ȧ/a. (8.88)

Here a depends only on t (i.e. it is constant on ΣC), so that

∇l k̃i j = −(ȧ/a)∇̃l g̃i j = 0, (8.89)

as well as
∇iTr (k̃) = ∂iTr (k̃) = 0. (8.90)

Since Pµ = 0, the momentum constraint (8.67) reads 0 = 0 and hence is satisfied. Noting that

R̃ = 6C/a2 (8.91)

from (4.84), the Hamiltonian constraint (7.145) becomes

C
a2 +

(
ȧ
a

)2

=
8π

3
ε . (8.92)

Since eq. (8.60) has been incorporated, what remains is (8.59). After some reshuffling, including
removing the R̃ term using (8.92), contracting with g̃i j gives the second Friedman equation

ä
a
= −4π

3
(ε + 3p). (8.93)

Textbooks show how to solve (8.92) - (8.93), supplemented with an equation of state (such as
p = 0, describing dust, or p = ε/3 for photons). One needs considerable philosophical skill and
courage to deny that the ensuing expansion of the universe is a real process in time! See §8.11.

391To avoid confusion with the extrinsic curvature k̃i j we now write C for the constant (curvature) k in §4.4.
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8.4 Static, stationary, and asymptotically flat space-times

From an expanding universe, we now move to the opposite end of the dynamical spectrum.
A space-time (M,g) might naively be called stationary if there is a globally defined complete
timelike Killing vector field X for g, and static if in addition, M admits a foliation à la (8.1) for
which X is orthogonal to each leaf Σt . By the Frobenius theorem this is the case iff

dX [∧X [ = 0; ⇔ X[µ∇νXρ ] = 0, (8.94)

since this expresses the property that the distribution of all vector fields orthogonal to X is
integrable. This has the following consequences for the metric.392 First, g is stationary with
respect to X iff at least away from the zeros of X (if any), in coordinates where X = ∂t ,

g = −L2(dt +θ )2 + g̃; θ = θidxi; g̃ = g̃i jdxidx j, (8.95)

where L, θi, and g̃i j are independent of t. The static case then has θ = 0, i.e.

g = −L2dt2 + g̃, (8.96)

where coordinates are such that x = (t,~x) lies in Σt as in (8.1), and~x are coordinates on Σt ∼= Σ.
Thus a metric is static iff it is stationary and invariant under time inversion t 7→ −t. The

exterior Schwarzschild solution (9.15) for r > 2m is static, whereas the Kerr metric is stationary;
time inversion makes the black hole rotate the other way round, both with X = ∂t , But if we
extend the Schwarzschild solution to 0 < r < 2m, as explained in §9.2, then ∂t becomes lightlike
at r = 2m and even spacelike when 0 < r < 2m, so that the definition of a stationary space-time
has to be relaxed if we wish to cover such cases. This is done as follows (see part 4):393

Definition 8.4 1. A 3d Riemannian manifold (Σ, g̃) is called asymptotically flat if:

(i) There is a bounded set K ⊂ Σ whose complement Σ\K is a finite union of ends Σext
α ,

each of which is diffeomorphic to R3\B3
1 (where B3

1 = {~x ∈R3 | x2 + y2 + z2 ≤ 1}).

(ii) For each α = 1, . . . ,` there exists a coordinate chart ϕα : Σext
α

∼=→R3\B3
1 in which the

3-metric g(α) = g̃|Σext
α

is asymptotically Euclidean in the sense that, pointwise as |~x| →∞,

|g̃(α)
i j (~x)−δi j|+ |~x| |∂kg̃(α)

i j (~x)|+ |~x|2 |∂k∂l g̃
(α)
i j (~x)|= O(|~x|−1). (8.97)

(iii) The Ricci scalar R̃ of g̃ is integrable, i.e.
∫

Σ ωg|R̃|=
∫

Σ d3x
√

det(g̃)(x)|R̃(x)|< ∞.

392Here we follow Chruściel (2020), §4.3.1 and then §4.3.7, where omitted details are simple exercises.
393Such definitions go back at least to Lichnerowicz (1955) and have been made increasingly precise afterwards.

For part 1 see Lee (2019), Definition 3.5, in which we take the simplest decay conditions. One may generalize
O(|~x|)−1 in (8.97) to O(|~x|−p) for some p ∈ ( 1

2 ,1], in which case (8.98) generalizes O(|~x|−2) to O(|~x|−p−1); one
needs p > 1/2 for the asymptotic mass Π0 in (8.103) to exist, and p ≤ 1 for it to be potentially nonzero. In the
presence of matter one furthermore requires |E(~x)|+ |Pi(~x)| = O(|~x|−3), cf (8.65) and (8.67), cf. Cederbaum &
Sakovich (2018). But if the constraints (8.65) - (8.67) and the dominant energy condition hold, this may be replaced
by our condition (iii), taken from Schoen (2009), Lecture 9, which condition is very convenient in practice. A
completely different way of defining asymptotic flatness, going back to Penrose, will be discussed in §10.3.
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2. An initial data set (Σ, g̃, k̃) is asymptotically flat if (Σ, g̃) is, and k̃(α) = k̃|Σext
α

satisfies

|k̃(α)
i j (~x)|+ |~x| |∂kk̃(α)

i j (~x)|= O(|~x|−2). (8.98)

3. A space-time (M,g) is asymptotically flat if it has a spacelike hypersurface ι : Σ ↪→M
for which the induced data set (Σ, g̃, k̃) given by the induced 3-metric g̃ = ι∗g and the
second fundamental form k̃ of the embedding ι is asymptotically flat (as in items 1–2).

4. An asymptotically flat space-time is stationary if it has a complete Killing vector field X
that at each end Σext

α is timelike, and L and θi in (8.95) are O(|~x|−1) as in (8.97). It is
static if X in addition satisfies the integrability condition (8.94), so that θ = 0.

The idea is that the Killing vector field X defining stationarity need only be timelike “far away”.
In asymptotically flat stationary space-times, the flow ϕt of X (assumed complete) consist of
isometries and since far-away observers with four-velocity u = X/

√
−g(X ,X) (who consider

themselves at rest) move along the flow lines, they see no change. One does need the full
complexity of this definition, since already the maximally extended Schwarzschild space-time
(i.e. the Kruskal solution) has two ends. Noting that in coordinates where (8.96) holds the shift S
vanishes, it should be clear from (8.61) - (8.62) that the static case, simply corresponds to

k̃i j = 0. (8.99)

In that case at least in vacuo the momentum constraint (8.66) is identically satisfied, whereas the
dynamical Einstein equation (8.61) and the Hamiltonian constraint (8.65) simplify to

∇̃i∇̃ jL = R̃i jL; (8.100)
R̃ = 0, (8.101)

respectively. Contracting (8.100) with g̃i j and using (8.101) gives ∆̃g̃L = 0, where ∆̃g̃ := g̃i j∇̃i∇̃ j
is the 3d Laplacian determined by g̃. In the presence of (8.100), this is equivalent to (8.101), so
that the Einstein equations for a static space-time are also given by

∇̃i∇̃ jL = R̃i jL; ∆̃g̃L = 0. (8.102)

The oldest rigorous result in this context is Lichnerowicz’s theorem from 1939, which
states that if (M,g) is static, asymptotically flat, and geodesically complete (a property the
Schwarzschild space-time lacks), then (Σ, g̃) is isometric to flat Euclidean space and L = 1, so
that (M,g) is isometric to Minkowski space-time.394 This follows from the theory of the Laplace
equation and the boundary condition L→ 1 at spatial infinity, cf. (8.96) and (8.97).

More generally, any geodesically complete stationary space-time solving the vacuum Einstein
equations is isometric to R×Σ with flat metric,395 so that the assumption of asymptotic flatness
in Lichnerowicz’s theorem is only needed to enforce Σ ∼= R3. See also Theorem 10.24 in §10.9.

As will be justified below from physics,396 the asymptotic (ADM) energy Π0 is defined by

Π0 :=
1

16π
lim
r→∞

∫
S2

r

d2
σ

i (∂ jg̃i j−∂ig̃ j j), (8.103)

where d2σ i = xi sinθdθdϕ , with~x = (r sinθ cosϕ ,r sinθ sinϕ ,r cosθ ) as usual.
394Choquet-Bruhat (2018) reports that this result even impressed Einstein, who had been unable to prove it.
395See Anderson (2000a), Chruściel, Lopes Costa, & Heusler (2012), and Cortier & Minerbe (2016).
396There are many other concepts of “mass” in GR, reviewed by Galloway, Miao, & Schoen (2015) and Lee (2019).
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The most famous “elliptic PDE” result in mathematical GR is the positive mass theorem:397

Theorem 8.5 Let (Σ, g̃) be (geodesically) complete and asymptotically flat, with R̃≥ 0.
Then Π0 ≥ 0, with equality Π0 = 0 iff (Σ, g̃) is isometric to Euclidean space (R3,δ ).

The assumption R̃≥ 0 may be motivated by noting that in static space-times one has

R̃ = 16πE, (8.104)

which is the Hamiltonian constraint (8.65) with k̃ = 0. Compare with the Newtonian formula

∆V = 4πρ (8.105)

for the gravitational potential, with the difference that (8.105) determines V , whereas (8.104)
merely constrains the metric g̃i j. In any case, R̃≥ 0 now simply comes down to E ≥ 0. In this
light, one may also justify (8.103) by noting that for asymptotically flat spaces one has

R̃ = ∂i(∂ jg̃i j−∂ig̃ j j)+O(|x|−4), (8.106)

where the first term comes from the first two terms in (7.26), in d = 3 of course, and the
last comes from the Γ ·Γ terms, where Γ contains first derivatives of g̃ and hence is O(|x|−2).
Assuming for the moment that (8.106) holds globally and that Σ = R3, the total energy Π0 of
all matter plus the gravitational field may then be defined as

Π0 := lim
r→∞

∫
B3

r

d3xE =
1

16π
lim
r→∞

∫
B3

r

d3x R̃ =
1

16π
lim
r→∞

∫
S2

r

d2
σ

i (∂ jg̃i j−∂ig̃ j j), (8.107)

which recovers (8.103).398 For example, for the spatial part of the Schwarzschild metric, i.e.

g̃ =

(
1− 2m

r

)−1

dr2 + r2(dθ
2 + sin2

θdϕ
2), (8.108)

one obtains Π0 = m.399 Similarly, the asymptotic (ADM) momentum is defined by

Π j :=
1

8π
lim
r→∞

∫
S2

r

d2
σ

i
π̃i j, (8.109)

where the canonical momentum π̃i j is defined in terms of g̃i j and k̃i j by (8.209) below in §8.7.
This leads to a generalization of Theorem 8.5. Let asymptotically flat initial data (Σ, g̃, k̃) satisfy

1
2(R̃−Tr (k̃2)+Tr (k̃)2) ≥ ‖∇̃ jk̃

j
i − ∇̃iTr (k̃)‖g̃. (8.110)

Then Π0 ≥ ‖~Π‖. If the constraints (8.65) - (8.67) hold, eq. (8.110) is equivalent to E ≥ ‖~P‖.
397 The original proof is due to Schoen & Yau (1979, 1981); see also Schoen (1989, 2009). For spin manifolds

Witten (1981) and Parker & Taubes (1982) proved the theorem in a completely different way. See also Lee (2019)
for both proofs. The Riemannian Penrose inequality sharpens the positive mass theorem; see §10.11.

398Integrability of R̃ and existence of Π0 are equivalent, and since the former is in Definition 8.4, the latter exist.
399See Poisson (2004), §4.3.2, Gourgoulhon (2012), §8.3, Example 8.1, or Schoen (2009), Lecture 9. An efficient

way to do this computation, following the latter, is to write g̃i j = (1+m/2|x|)4δi j +O(1/|x|2). This gives the
integrand as xi(∂ jg̃i j−∂ig̃ j j) = 4m(1+m/2|x|)3/|x|+O(1/|x|2). As r→ ∞ the error term does not contribute,
whilst the first gives

∫
S2

r
d2σ i (∂ jg̃i j−∂ig̃ j j) = 16πm(1+m/2r)3, which as r→∞ yields 16πm, and hence Π0 = m.
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The proof of Theorem 8.5 (which implies the generalization) is lengthy and difficult, but the
main steps are as follows. First, as explained in more detail in §8.6 one may apply a conformal
transformation ĝ = Ω4g̃, where the strictly positive function Ω ∈C∞(Σ) solves the linear PDE

(∆̃− 1
8 R̃)Ω = 0. (8.111)

Then R̂ = 0, where R̂ is the Ricci scalar for ĝ. Since the flat space Laplace equation ∆ f = 0 in
d = 3 has fundamental solution f =C/r, we obtain Ω = 1+C/r+O(1/r2). The point is that
C < 0, as follows by integrating the equality ∆̃ Ω = 1

8 R̃Ω over a three-ball B3 and using R̃≥ 0.
Hence Π0(ĝ) = Π0(g̃)−C ≤Π0(g̃), which reduces the proof to the case R̃ = 0.

The proof then proceeds by contradiction. If Π0 < 0, then one can find a smooth asymptot-
ically flat metric ǧ that equals g̃ in B3

ρ for some ρ > 0 and equals Ω̌4δ outside B3
ρ ; this works

because, as before, Ω̌ = 1+C′/r+O(1/r2) for some C′ < 0, and we now have C = Π0. This
metric can, in turn, be used to construct a new metric g′ that is exactly Euclidean outside some
three-ball and has R′ > 0. This, however, contradicts the following remarkable lemma:400

Lemma 8.6 If a Riemannian manifold with Ricci scalar R≥ 0 is isometric to Euclidean space
Rn\Bn

ρ outside some compact set (for some ρ > 0), then it is isometric to (Rn,δ ).

This argument proves the first part of Theorem 8.5. A very elegant argument for the second
claim comes from Ricci Flow, the technique used to prove the Poincaré conjecture.401 Here
(especially in d = 3) a “time” dependent Riemannian metric g̃(t) satisfies the parabolic PDE

∂ g̃i j

∂ t
= −2R̃i j, (8.112)

from some given initial metric g̃(0). This induces a flow of the Ricci scalar R̃, namely

∂t R̃ = ∆̃ R̃+ 2R̃i jR̃i j. (8.113)

It can then be shown that Π0 is independent of t (which is not surprising since it is an asymptotic
quantity), so if Π0 = 0 for g(0), then Π0 = 0 for all g(t). Step 1 above then shows that R̃(t) = 0
and hence (8.113) yields Ri j = 0. In d = 3 this means that the Riemann tensor also vanishes
(see §4.5) and hence by Theorem 4.1 our space is locally Euclidean. Asymptotic flatness then
prevents nontrivial topology for large r, whereas geodesic completeness forces the bounded set
K ⊂ Σ in Definition 8.4.1 to be compact. Lemma 8.6 finally yields the claim. �

Towards a further (covariant) justification of the definitions (8.103) and (8.109), in the physics
literature on linearized gravity, asymptotic flatness is expressed by the decomposition

gµν = ηµν + hµν , (8.114)

where ηµν is the Minkowski metric and hµν is “small”; this Ansatz seems predicated on the
topological assumption M ∼= R4. Relating this to the assumptions in Definition 8.4 is highly
nontrivial,402 but since we only try to motivate (8.103) and (8.109) we omit the details.

400See Corollary 2.32 in Lee (2019). This result, first conjectured by Geroch in 1975, is equivalent to the
nonexistence of positive scalar curvature metrics on a torus, which is Theorem 1.30 in Lee (2019).

401The Poincaré conjecture states that any compact simply connected 3-manifold is diffeomorphic to the three-
sphere S3. It was proved by the eccentric Russian mathematician Perelman in 2002–2003. See Morgan & Tian
(2007). The Ricci Flow approach to the positive mass theorem was developed by McFeron & Székelyhidi (2012).

402See Christodoulou & Klainerman (1993) and Klainerman & Nicolò (2003a). See also Weinberg (1972), §7.6,
Misner, Thorne, & Wheeler (1973), §20.2, Jaramillo & Gourgoulhon (2009), and de Haro (2021).
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Assuming (8.114) and topological triviality of M as above, we can expand the Einstein tensor
Gµν to linear order in h, calling the result GL

µν . In terms of the convenient expression

h
µν := hµν − 1

2η
µν

ηρσ hρσ , (8.115)

where indices are raised and lowered through the Minkowski metric η , this gives

GL
µν = − 1

2�ηhµν −ηµν∂α∂β h
αβ

+ ∂α∂µh
α

ν + ∂α∂νh
α

µ , (8.116)

which leads to the linearized Einstein equations

GL
µν ≈ 8πTµν . (8.117)

For later use, we note that Gµν

L := ηµρηνσ GL
ρσ may be written as

Gµν

L = 1
2∂α∂β Hµανβ ; (8.118)

Hµανβ := h
αν

η
µβ + h

µβ
η

αν −h
µν

η
αβ −h

αβ
η

µν , (8.119)

where the so-called “superpotential” H has (anti) symmetries

Hµανβ = −Hαµνβ = Hµαβν . (8.120)

One may also rewrite the full Einstein equations in exact form as

GL
µν = 8πτµν := 8π(Tµν + tµν); (8.121)

tµν := (8π)−1(GL
µν −Gµν), (8.122)

where tµν , sometimes seen as the self-energy-momentum (pseudo) tensor of the gravitational
field, is quadratic in h. Eqs. (8.118) and (8.120) then immediately give the conservation laws

∂µGµν

L = 0; ∂µτ
µν = 0, (8.123)

where the first one is an identity and the second one relies on the field equation (8.121).
Assuming for the moment that (8.114) holds globally and that Σ = R3, the total energy-

momentum Πµ of all matter plus the gravitational field may then be defined as

Πµ := lim
r→∞

∫
B3

r

d3xτ
0µ =

1
8π

lim
r→∞

∫
B3

r

d3xG0µ

L , (8.124)

where have used the exact equation (8.121). The same expression on the right-hand side appears
if we define Πµ as the integral of T 0µ instead of τ0µ , and then use the approximate (linearized)
equations (8.117). So either way, we may proceed using (8.118) and (8.120) to obtain

Πµ =
1

16π
lim

r

∫
B3

r

d3x∂α∂β H0αµβ =
1

16π
lim

r

∫
B3

r

d3x∂i∂β H0iµβ

=
1

16π
lim

r

∫
S2

r

d2
σi ∂β H0iµβ , (8.125)

which is valid whatever is going on inside the compact region K ⊂ Σ about which we have no
information, so that we may also take (8.125) as the definition of Πµ . In particular, for µ = 0,

Π0 =
1

16π
lim

r

∫
S2

r

d2
σi ∂ jH0i0 j =

1
16π

lim
r

∫
S2

r

d2
σ

i (∂ jhi j−∂ih j j)

=
1

16π
lim

r

∫
S2

r

d2
σ

i (∂ jg̃i j−∂ig̃ j j) =
1

16π
lim

r

∫
S2

r

(∇η · g̃−d(Tr η(g̃))), (8.126)

which is (8.103). The derivation of (8.109) from (8.124) is similar and is left to the reader.
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8.5 The origin of diffeomorphism invariance?

Having seen the linearized Einstein equations (8.117), it would be a pity not to mention an
argument for (at least infinitesimal) general covariance that at least sheds new light on this
property compared to the kind of arguments mentioned in §1.10. General relativists do not like
this argument, since it takes place in Minkowski space-time and puts special relativity before
general relativity. But special relativists (i.e. particle physicists) do, for the very same reason!403

The argument is based on the unitary irreducible representations of the Poincaré group P,
which were classified by Wigner (1939).404 We first define P as the semidirect product

P : = O(3,1)nR4; (8.127)

O(3,1) := {Λ ∈ GL4(R) | 〈Λx,Λy〉M = 〈x,y〉M ∀x,y ∈R4}, (8.128)

where 〈·, ·,〉M is the Minkowski inner product in R4. One calls O(3,1) the Lorentz group. This
means that P consists of pairs (Λ,a) ∈ O(3,1)×R4, equipped with group operations

(Λ,a) · (Λ′,a′) = (ΛΛ′,a+Λ ·a′); (8.129)
(Λ,a)−1 = (Λ−1,−Λ−1 ·a). (8.130)

The full Lorentz group O(3,1) has four connected components, which may be identified by the
(independent) conditions det(Λ) = ±1 and ±Λ0

0 > 0. For the moment we restrict ourselves
to the connected component containing the identity (which is like SO(3) in O(3)), in which
det(Λ) = 1 and Λ0

0 > 0. This group, which we call L, is the proper orthochronous Lorentz
group. It gives rise to P0 = LnR4, which is the connected component of the identity in P. If we
write the L-action on R4 as xµ 7→ Λµ

νxν , then Λ ∈ GL(4,R) should satisfy

ηαβ Λα
µ Λβ

ν = ηµν . (8.131)

Wigner showed that it is the dual action of L on (R4)∗, seen as 4-momentum space, that counts
for the classification: if we denote elements of the dual vector space (R4)∗ ∼= R4 by pµ , then
the dual action is pµ 7→ Λ ν

µ pν , where, as the notation indicates, Λ ν
µ = ηµαηνβ Λα

β
.

Writing p2 = −p2
0 + p2

1 + p2
2 + p2

3, the L-orbits O in (R4)∗ = R4 are easily seen to be:

1. O0
0 = {(0,0,0,0)}, with stabilizer L0 = L;

2. O±m = {p ∈R4 | p2 = −m2,±p0 > 0}, m > 0, with stabilizer L0
∼= SO(3);

3. O±0 = {p ∈R4 | p2 = 0,±p0 > 0}, with stabilizer L0
∼= E(2) = SO(2)nR2;

4. Oim = {p ∈R4 | p2 = m2}, m > 0, with stabilizer L0
∼= SO(2,1).

Here the stabilizers L0 are found by taking reference points (±m,0,0,0) in case 2, (±1,0,0,−1)
in case 3, and (0,0,0,m) in case 4. The physically relevant cases seem to be O+

m and O+
0 , since

Oim describes tachyons, which probably do not exist. The unitary irreducible representations
of P0 are then labeled by pairs (O , χ), where O ⊂ (R4)∗ is one of these orbits, and χ labels a
unitary irreducible representation of the corresponding stabilizer (which depends on O).

403See Weinberg (1972), §10.2, Scharf (2016), and, reluctantly, Misner, Thorne, & Wheeler (1973), Box 17.2 (5).
404See also Barut & Raçka (1977), chapter 17, and Landsman (1998), §IV.3.
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In particular, for O+
m with m > 0 one has χ = j ∈ {0,1,2, . . .}. This describes the spin of the

(elementary) particle described by the given representation,405 so that the total label is (m, j).
For m = 0, on the other hand, χ labels unitary irreducible representations of the 2d Euclidean
group E(2). This would in principle involve another continuous label, but it seems that in reality
only the case occurs where the elements of R2 are represented trivially, so that one just needs a
label for SO(2), which is λ ∈Z, called helicity. Denoting elements of E(2) = SO(2)nR2 by
(z,x,y), where z ∈ SO(2) ∼= T and (x,y) ∈R2, helicity is just the character

uλ : E(2)→T; uλ (z,x,y) = zλ . (8.132)

Including parity, i.e. diag(1,−1,−1,−1), in L then forces λ to be accompanied by−λ . The case
λ = 0 does not occur, but the pair λ = ±1 describes photons whereas λ = ±2 gives gravitons.

In this light, traditional (relativistic) quantum field theory may be understood as follows:

1. Linear field equations distill specific unitary irreducible representations (typically realized
in momentum space) from covariantly transforming fields (defined in space-time);

2. Nonlinear terms (often dictated by other symmetries than Poincaré invariance) are added
to the equations to describe interactions between the elementary particles thus involved.406

For example, the Klein–Gordon equation (�−m2)ϕ = 0, where�=−∂ 2
t +∆ and ϕ : R4→R

is a real scalar field, selects the representation labeled by (m,+, j = 0). Namely, we write

ϕ(x) =
∫

R3

d3p
(2π)3 p0 eipx

ϕ̂(p), (8.133)

where px = pµxµ with p0 =
√
|p|2 +m2, which solves the Klein–Gordon equation, and take

ϕ̂ ∈ H = L2(R3,d3p/p0), (8.134)

whose measure d3 p/p0 is Lorentz-invariant. The natural space-time covariant P-action

(Λ,a) ·ϕ(x) = ϕ(Λ−1(x−a)) (8.135)

then corresponds to Wigner’s realization of the (O+
m ,0) unitary irreducible representation, i.e.

U(m,+,0)(Λ,a)ϕ̂(p) = e−ipa
ϕ̂(Λ−1p). (8.136)

For m > 0 this can be generalized to arbitrary spin j > 0, but our interest lies in the case m = 0,
where we again recall Wigner’s manifestly unitary (but unrecognizably space-time covariant)
formula for the representation U(0,+,λ )(P) labeled by the orbit O+

0 and the helicity λ ∈Z. For
any λ this is realized on the same Hilbert space (8.134), but now (as in the case of higher spin)
Wigner’s formula for the explicit realization requires a (measurable) cross-section

b : O+
0 → L (8.137)

405By another analysis of Wigner, one should also include representations of the universal covering group of P,
which allows j to be half-integral, too. Likewise for helicity, but this complication is not needed in what follows.

406The reason general relativists frown on this is precisely that in GR it is the full nonlinear (Einstein) field
equations that are more natural than the linear ones, and a similar point in fact applies to Yang–Mills theories.
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of the canonical projection
π : L→ O+

0
∼= L/E(2), (8.138)

i.e. π ◦b = idO+
0

, where without loss of generality we may and will assume that

b(p′) = e, (8.139)

the unit element of L. The (L-equivariant) diffeomorphism O+
0
∼= L/E(2) is p 7→ [Λ], where

Λ ∈ L0 satisfies p = Λp′ with p′µ = (1,0,0,1) and [Λ] is its equivalence class (i.e. image under
π) in L/E(2). Moreover, we have O+

0
∼= R3 by mapping (p0,p) ∈O+

0 with p0 = |p| to p ∈R3;
this diffeomorphism is also L-equivariant if we define Λp as the spatial part of Λ ν

µ pν . One then
verifies that the Wigner cocycle b(p)Λb(Λ−1p) lies in L0 = E(2). Then for any (Λ,a) ∈ P0,

U(0,+,λ )(Λ,a)ψ̂(p) = e−ipauλ (b(p)Λb(Λ−1p))ψ̂(Λ−1p). (8.140)

For λ = ±1, we now relate this unitary yet mysterious expression to the manifestly space-time
covariant action of P0 on the electromagnetic field potential Aµ , on which we simply have

(Λ,a) ·Aµ(x) = Λ ν
µ Aν(Λ−1(x−a)). (8.141)

The idea is that we pass to a new space, consisting of solutions of the Maxwell equation

�Aµ −∂µ(∂
νAν) = 0, (8.142)

cf. (7.87), modulo gauge transformations

Aµ 7→ Aµ + ∂µλ . (8.143)

Both the equations and the quotienting are Poincaré invariant: P maps the solution space to
(8.142) to itself, and if Aµ ∼ A′µ in that Aµ = A′µ + ∂µλ , then (Λ,a) ·Aµ ∼ (Λ,a) ·A′µ for any
(Λ,a) ∈ P. The second (quotienting) step may, in turn, be performed in two stages:

1. Find a representative Aµ of A′µ in its equivalence class under (8.143) by imposing the
Lorenz gauge ∂ νAν = 0, cf. (7.92). This can be done by solving λ from �λ = −∂ νA′ν .

2. Quotient by the residual gauge transformations within some class of solutions of the pair

�Aµ = 0; ∂
νAν = 0. (8.144)

The λ in the residual gauge transformations (8.143) following (8.144) should then satisfy

�λ = 0. (8.145)

The first equation in (8.144) is solved by the spatial Fourier expansion

Aµ(x) =
∫

R3

d3p
(2π)3 p0 eipxÂµ(p), (8.146)

where this time p0 = |p| and each component Âµ ∈ H as in (8.134). The second equation in
(8.144) comes down to pµ Âµ(p) = 0. Under Lorentz transformations, from (8.141) we have

(Λ,a) · Âµ)(p) = e−ipaΛ ν
µ Âν(Λ−1p). (8.147)
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To make this look more like Wigner’s unitary expression (8.140) we change variables to

Ãµ(p) = (b(p)−1) ν
µ Âν(p), (8.148)

so that (8.147) becomes

(Λ,a) · Ãµ(p) = e−ipa(b(p)Λb(Λ−1p)) ν
µ Ãν(Λ−1p). (8.149)

Taking p = (0,0,1)≡ p′ and hence (p0,p) = p′, and Λ∈ E(2), eqs. (8.140) and (8.149) become

U(0,+,λ )(Λ,0)ψ̂(p′) = uλ (Λ)ψ̂(p′); (8.150)

(Λ,0) · Âµ(p′) = Λ ν
µ Âν(p′), (8.151)

where we used (8.139), the (defining) property Λp′ = p′ for Λ ∈ L0 = E(2), eq. (8.147), and
Ãµ(p′) = Âµ(p′), which follows from (8.148). Therefore, in order to compare the covariant
transformation (8.141) with the unitary representation (8.140) all we need to do is look at the
solutions Âµ(p) of the two equations (8.144), quotiented by (8.143) at the special point p = p′.
At this point,407 the second equation in (8.144) and gauge transformation (8.143) become

Â0(p′) = Â3(p′); (8.152)

Â0(p′) 7→ Â0(p′)+ iλ̂ (p′); Â3(p′) 7→ Â3(p′)+ iλ̂ (p′); (8.153)

Â1(p′) 7→ Â1(p′); Â2(p′) 7→ Â2(p′), (8.154)

where λ̂ ∈ H, as in (8.134), defines the residual gauge function λ , required after all to satisfy
(8.145), by a formula analogous to (8.146). Since Â0 can be eliminated in favour of Â3 and the
latter is pure gauge, is clear that, frozen at p′, the true unconstrained degrees of freedom after
solving (8.144) and quotienting by the (residual) gauge freedom, are Â1 and Â2.

The computation of the right-hand side of (8.151) and its comparison with (8.150) relies on
the precise embedding of E(2) in L. To describe this, we use a specific basis of the Lie algebra l,
of L, which consists of all real 4×4 matrices M that exponentiate to L; this comes down to the
condition Mµν = −Mνµ , where Mµν = M α

µ ηαν . We then take the following basis of l:408

B1 =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 ; B2 =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 ; B3 =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 ; (8.155)

J1 =


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

 ; J2 =


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 1 0

 ; J3 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 , (8.156)

which satisfy the commutation relations (i.e. Lie brackets) appropriate to the Lie algebra l, viz.

[Bi,B j] = −εi jkJk, [Ji,J j] = εi jkJk, [Ji,B j] = εi jkBk. (8.157)

407Of course, one should handle this carefully, since functions in L2 do not have a value at any particular point.
The functional analysis of this situation (and the next) is correctly handled in Landsman & Wiedemann (1995).

408Note that these matrices are the M ν
µ = ηαν Mµν , not the Mµν on which the condition Mµν =−Mνµ is imposed.
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Given the choice p′µ = (1,0,0,1), the stabilizer E(2) is generated by the elements

T1 = B1− J2 =


0 1 0 0
1 0 0 −1
0 0 0 0
0 1 0 0

 ; T2 = B2 + J1 =


0 0 1 0
0 0 0 0
1 0 0 −1
0 0 1 0

 , (8.158)

and J3, each of which duly annihilates (1,0,0,1). The commutation relations are

[T1,T2] = 0, [J3,T1] = T2, [J3,T2] = −T1, (8.159)

as appropriate for E(2). Here (T1,T2) generate R2 and J3 generates SO(2) in SO(2)nR2.
As we have seen, the true degrees of freedom at p′ = (0,0,1), i.e. p′µ = (1,0,0,1) are the

transverse components Â1 and Â2. The action of E(2) ⊂ L on Âµ(p′) given (in infinitesimal
form) by the above matrices then descends to an action on C2 as realized by (Â1, Â2), seen as
the quotient of C4, consisting of the 4-vectors (Â0, Â1, Â2, Â3) with Â0 = Â3, by the C-action

(Â3, Â1, Â2, Â3) 7→ (Â3 + iλ , Â1, Â2, Â3 + iλ ). (8.160)

From the above matrices, this gives

T1

(
Â1
Â2

)
= 0; T2

(
Â1
Â2

)
= 0; J3

(
Â1
Â2

)
=

(
Â2
−Â1

)
. (8.161)

This means that the R2 in E(2) acts trivially whilst the SO(2) acts in its defining representation
on R2, albeit complexified to C2. The hermitian matrix iJ3 is diagonal in the basis

u± = (e1± ie2)/
√

2, (8.162)

with eigenvalues±1. Thus the E(2)-action defined in (8.149) is a direct sum of the characters uλ

with λ = ±1. In sum, we have proved the following result (where the ±1 are these helicities):

Proposition 8.7 The space obtained by solving the Maxwell equation (8.142) modulo the gauge
transformations (8.143) is isomorphic, as a (Hilbert) space on which the Poincaré group P acts
via (8.141), to the direct sum of the unitary irreducible representations U(0,+,1) and U(0,+,−1).

We now repeat this analysis for linearized GR. Instead of the vector Aµ , we have the
symmetric tensor hµν , see §8.4, which under the Poincaré group transforms as

(Λ,a) ·hµν(x) = Λ α
µ Λ α

β
hαβ (Λ

−1(x−a)). (8.163)

Instead of the (free) Maxwell equation (8.142) we have

− 1
2�hµν −ηµν∂α∂β h

αβ
+ ∂α∂µh

α

ν + ∂α∂νh
α

µ = 0, (8.164)

i.e. the (free) linearized Einstein equations, see (8.116) - (8.117). Instead of the gauge transfor-
mation (8.143) we have the (linearized = infinitesimal) coordinate transformations

hµν 7→ hµν + ∂µξν + ∂νξµ . (8.165)
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Finally, instead of the Lorenz gauge condition ∂ µAµ = 0 we have the analogous equation

∂
µhµν = 0, (8.166)

see (8.115), which is obtained by linearizing the wave gauge (7.105). This reduces (8.164) to

�hµν = 0. (8.167)

Given (8.166) - (8.167), one may carry out residual gauge transformations (8.165), provided

�ξµ = 0. (8.168)

Quite analogously to the electromagnetic case, we now show that for helicity ±2 we have:

Proposition 8.8 The space obtained by solving the linearized Einstein equations (8.164) modulo
infinitesimal coordinate transformations (8.165), or, equivalently, the space of solutions of
the pair of equations (8.166) - (8.167) modulo the residual transformations (8.165) where ξµ

satisfies (8.168), is isomorphic, as a (Hilbert) space on which the Poincaré group P acts via
(8.163), to the direct sum of the unitary irreducible representations U(0,+,2) and U(0,+,−2).

Proof. Once again, we start by solving (8.167) analogously to (8.146), upon which a simple
computation based on (8.166) and (8.165) shows that (8.152) - (8.154) is replaced by

ĥ01 = ĥ13; ĥ02 = ĥ23; ĥ03 = 1
2(ĥ00 + ĥ33); ĥ22 = −ĥ11;

ĥ00 7→ ĥ00 + 2iξ̂0; ĥ01 7→ ĥ01 + iξ̂1; ĥ02 7→ ĥ02 + iξ̂2; ĥ03 7→ ĥ03 + i(ξ̂0 + ξ̂3);
ĥ11 7→ ĥ11; ĥ12 7→ ĥ12; ĥ22 7→ ĥ22;

ĥ13 7→ ĥ13 + iξ̂1; ĥ23 7→ ĥ23 + iξ̂2; ĥ33 7→ ĥ33 + 2iξ̂3 (8.169)

where for simplicity we omitted the argument p′ common to all ĥµν . We conclude that the
unconstrained and ungauged degrees of freedom are (ĥ11, ĥ12). Similarly to (8.161), this gives

T1

(
ĥ11
ĥ12

)
= 0; T2

(
ĥ11
ĥ12

)
= 0; J3

(
ĥ11
ĥ12

)
= 2

(
ĥ12
−ĥ11

)
, (8.170)

where the factor 2 arises from the product Λ-action on the right-hand side (8.163), which in turn
leads to a sum of J3-actions. So also here, we introduce polarized states (8.162), where this time
ei is the unit vector for the ĥ1i component, where i = 1,2. �

From the point of view of the representation theory of the Poincaré group, linearized gravity
describes massless particles (gravitons) with helicity ±2. The full Einstein equations then add
self-interactions of this particle in a seemingly beautiful and consistent way. Unfortunately, no
one has been able so far to construct a renormalizable quantum field theory on this basis. But
this argument does show that the origin of the diffeomorphism invariance of GR, though here
just represented at some infinitesimal or linearized level, may have it origins in quantum theory,
in being a space-time covariant way to describe a certain massless representation of the Poincaré
group, which is related to orbits in momentum space and realized on Hilbert space.409

409One may criticize this approach for being a hybrid between classical and quantum reasoning, the former on the
side of the linearized Einstein field equations and the latter on the side of the unitary representation theory of the
Poincaré group on Hilbert space. But in fact a similar argument may be set up in a completely classical context,
where the role of unitary representations is replaced by that of coadjoint orbits. The argument even improves,
since implementing the gauge condition and quotienting by the action of the gauge group is unified into the single
procedure of Marsden–Weinstein reduction. See Landsman & Wiedemann (1995) and Landsman (1998).



204 The 3+1 split of space-time

8.6 Conformal analysis of the constraints
The initial value constraints (8.65) - (8.67) may be analyzed from a PDE point of view.410 In the
simplest case the metric is static, which means that (M,g) has a timelike Killing vector field
uµ and has a foliation M = ttΣt whose leaves Σt are orthogonal to uµ (equivalently, ωµν = 0.
See §8.4. In that case, in the “right” (i.e. adapted) coordinates the gµν are time-independent, as
for the Minkowski metric or the Schwarzschild solution. Hence k̃ = 0, and if we also assume
vacuum for simplicity, then the only constraint on the ensuing initial data (Σ, g̃i j) is

R̃ = 0. (8.171)

This is a vastly underdetermined system, since the six independent components of the metric g̃i j
are subject to just one equation. But this doesn’t mean that the solution is trivial, and in particular
one should understand the degrees of freedom. This is a problem in pure Riemannian geometry,
whose solution as sketched below has a long and interesting history, which is worth recalling.

This history goes back to the uniformization theorem for Riemann surfaces:411

Theorem 8.9 A simply connected Riemann surface is biholomorphically equivalent to one of:

• The Riemann sphere S;

• The complex plane C;

• The upper half plane H.

Consequently, any compact Riemann surface Σ is (biholomorphically) isomorphic to U/Γ,
where U is S, C, or H, and Γ is a discrete subgroup of the group of biholomorphic bijections of
U acting freely and discontinuously on U (i.e., no Γ-orbit has an accumulation point).412

This is equivalent to the following statement purely in the language of Riemannian geometry:

Theorem 8.10 A complete Riemannian metric on a simply connected 2d manifold (and hence
on a compact 2d Riemannian manifold) is conformally equivalent to a metric with constant
curvature, cf. Theorem 4.9 (from which compact spaces may be constructed as in Theorem 8.9).

Inspired by Theorem 8.10, the Yamabe problem asks if in arbitrary dimension any complete
Riemannian metric on some closed manifold is conformally equivalent to a metric with constant
Ricci scalar.413 This problem has been solved in the positive for compact manifolds (which are
automatically complete), using the following strategy.414 In d = 3, rescale the metric by

g̃ = Ω4
γ , (8.172)

410The approach in this section goes back to Racine (1934) and Lichnerowicz (1944, 1957). For further develop-
ments see Choquet-Bruhat & York (1980), Bartnik & Isenberg (2004), Chruściel (2010), Chruściel, Galloway, &
Pollack (2010), Corvino & Pollack (2011), Isenberg (2014), Galloway, Miao, & Schoen (2015), and Rácz (2015).

411For a historical survey of the uniformization theorem see de Saint-Gervais (2010). Jones & Singerman (1987) is
an accessible low-key treatment. A Riemann surface is defined through its complex structure, whereas a Riemannian
manifold is defined by its metric. In dimension 2, complex structures up to biholomorphic equivalence bijectively
correspond to Riemannian metrics up to the equivalence relation defined by isometry and conformal equivalence.
See also footnote 520. By (our) convention, a simply connected space is also connected.

412Equivalently, each x ∈U has a nbhd U such that U ∩ γ ·U = /0 for all γ 6= e.
413This is the only choice among the many equivalent notions of curvature (which all coincide in d = 2) for which

there is any hope for the problem to have a solution. See §4.5.
414 The solution is due to Schoen (1984). See Lee & Parker (1987) and Bär (2007/08) for complete treatments.
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where the conformal factor Ω ∈C∞(Σ) is strictly positive (so that g̃ is a Riemannian metric on
Σ), such that the Ricci scalar R̃ = R̃g̃ of g̃ is constant.415 Straightforward computations give

R̃ = −8Ω−5Lγ Ω, (8.173)

where the linear differential operator Lγ , called the conformal Laplacian,416 is given by

Lγ := ∆γ − 1
8Rγ , (8.174)

in which ∆γ := γ i j∇i∇ j is the Laplacian on Σ defined by γ , and Rγ is the Ricci scalar defined
by γ (we omit tildes on geometric quantities defined by γ; those with a tilde are defined by g̃).
Given γ , the constraint (8.171) then becomes an equation for the scalar Ω, namely

Lγ Ω = 0. (8.175)

This is a linear elliptic PDE, which can indeed be solved if Σ is compact. In GR, this argument
applies more generally (e.g. assuming Ω→ 0 at infinity in the non-compact case).

Ellipticity is here to stay, but linearity is typical of the assumption k̃ = 0, and in general will
be replaced by gruesome nonlinearities. Indeed, already the next case, where

k̃i j 6= 0; Tr (k̃) := g̃i jk̃i j = 0, (8.176)

is highly nonlinear.417 The constraints (8.65) - (8.67), again in the vacuum case, simplify to

R̃−Tr (k̃2) = 0; (8.177)

g̃ jl
∇̃l k̃i j = 0. (8.178)

We now also choose some symmetric tensor ki j on Σ, such that

γ
jl

∇lki j = 0, (8.179)

but freely otherwise. It is easy to show that if we relate k̃ to k via

k̃i j = Ω−2ki j, (8.180)

then (8.179) implies (8.178) and hence only (8.177) remains, which is equivalent to

Lγ Ω+ 1
8Tr (k2)Ω−7 = 0. (8.181)

This equation can be analyzed by traditional methods from nonlinear elliptic PDEs (notably by
constructing both sub- and super-solutions, i.e. replacing “= 0” by “≤ 0” and “≥ 0”).

415In the context of GR, adding a cosmological constant λ modifies (8.171) to R̃ = 2λ . The possible signs of R̃,
i.e. R̃ = 0,±1 up to rescaling, are restricted by the topology of Σ and define the so-called Yamabe class of Σ.

416Our formulae are for d = 3. In general dimension d, eq. (8.172) should be g̃ = Ω4/(d−2)γ , whilst the conformal
Laplacian is Lγ = ∆γ − cdRγ , with cd := 1

4 (d−2)/(d−1). Then (8.173) reads R̃ = −(cdΩ(d+2)/(d−2))−1Lγ Ω.
417Foliations with Tr (k̃) = 0 are called maximal slicings. This is related to the Plateau Problem: if Σ ⊂M has

Tr (k̃) = 0, and S ⊂ Σ is a two-dimensional surface, then the volume of any three-dimensional S⊂ Σ with ∂S = S
is maximal compared to the volume of competing S⊂M subject to ∂S = S ⊂ Σ. In the purely Riemannian Plateau
Problem the volume (or, as in the original problem in one dimension lower, the surface area of the enclosed region)
would be minimal, but in the Lorentzian case it is maximal, for similar reasons why the length of timelike geodesics
is maximal rather than minimal (see §5.6): excursions of S outside Σ are in the timelike direction and hence, through
lightlike approximations, reduce the volume (rather than increase it as in the Plateau Problem). See also §10.11.
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We move to the general case. Here is it customary and physically relevant to move to a
transverse traceless version of k and k̃, where the traceless part is easy to define, namely

σ̃i j = k̃i j− 1
3Tr (k̃)g̃i j; σi j = ki j− 1

3Tr (k)γi j. (8.182)

Adding energy-momentum and using the scaling (8.180), this reformulates the constraints as

Lγ Ω+ 1
8Tr (σ2)Ω−7− 1

12Tr (k)2Ω5 = −2πEΩ5; (8.183)

∇ jσi j− 2
3(∇iTr (k))Ω6 = 8πPiΩ10. (8.184)

The first of these (i.e. the Hamiltonian constraint) is called the Lichnerowicz equation. Defining
the transverse part of σ and σ̃ is less straightforward: there exists a decomposition

σi j = σ
TT
i j +(K̂γX)i j, (8.185)

where σTT
i j is traceless and transverse in the sense that

Tr (σ) ≡ γ
i j

σi j = 0; (8.186)

∇
i
σ

TT
i j = 0, (8.187)

and X is some vector field, on which the conformal Killing operator K̂γ acts by

(K̂γX)i j = ∇iX j +∇ jXi− 2
3γi j∇kXk. (8.188)

This generalizes the usual Killing operator

KγX = ∇iX j +∇ jXi, (8.189)

whose solutions KγX = 0 are vector fields whose flow ϕt consists of isometries, i.e., ϕ∗t γ = γ;
vector fields solving K̂γX = 0 are vector fields whose flow ϕt consists of conformal isometries,
in that ϕ∗t γ = Ωγ for some Ω > 0, as above. The difficult part is the reconstruction of σi j from
its transverse traceless part σTT

i j and X . This may be done by solving a conformal version of the
Laplace equation, viz.

∆̂γX i = ∇ j(K̂γX)i j = ∆X i + 1
3∇

i
∇ jX j +Ri

jX
j. (8.190)

Note that the kernel of ∆̂γ consists of conformal Killing vectors. Likewise for g̃ and σ̃i j. In terms
of the free data γi j, σTT

i j , and τ ≡ Tr (k), the determined data Ω and X are found by solving the
final (conformal) version of the constraints, namely

Lγ Ω+ 1
8Tr (σ2

TT)Ω
−7− 1

12τ
2Ω5 = −2πEΩ5; (8.191)

∆̂γX i− 2
3(∇iτ)Ω6 = 8πPiΩ10. (8.192)

Once this has been done, g̃i j and k̃i j can be (re)constructed via (8.172) and

k̃i j = (K̂γXi j +σ
TT
i j )Ω−10 + 1

3τΩ−4
γi j, (8.193)

and these solve the original constraints (8.65) - (8.67) in terms of the above free data. Of course,
the solvability of (8.191) - (8.192) is a difficult matter, which so far is only under complete
control if Tr (k̃) = 0. In general the cases where Σ is compact or asymptotically flat are very
different, as usual in the initial-value approach to GR, and the field is still in development.418

418See e.g. Galloway, Miao, & Schoen (2015), Holst, Maxwell, & Mazzeo (2017), and Carlotto (2021).



Hamiltonian formulation of general relativity 207

8.7 Hamiltonian formulation of general relativity
The Einstein equations admit a (constrained) Hamiltonian formulation, which goes back to Dirac
and (independently) Bergmann in the 1950s. Their work was streamlined by Arnowitt, Deser, and
Misner in the early 1960s, and in the 1970s was brought into mathematically rigorous form by
various teams.419 The Hamiltonian approach does not differ dramatically from the PDE approach
as presented in §7.6 and §8.3, where both the initial data (Σ, g̃, k̃) and the equations of motion
(8.61) - (8.62) were already brought into an almost Hamiltonian form, except that the Hamiltonian
and the Poisson brackets were missing. The original motivation for the Hamiltonian formalism,
namely to provide a basis for (“canonical”) quantum gravity, remains to be fulfilled,420 but even
at the classical level it is very useful–though not indispensible–for treating boundary terms,
symmetries, and conserved quantities (see below in this section as well as §8.9).

As in the previous 3+ 1 first-order version of the initial value problem of GR, also in the
Hamiltonian formalism the role of general covariance in the original equations (or in the Einstein–
Hilbert action) is replaced by the freedom of choosing a foliation of our space-time M, and once
again this freedom is parametrized by the freely specifiable lapse and shift functions. Since
the Hamiltonian equations turn out to be (first-order) hyperbolic and hence deterministic, all
arbitrariness in the solution lies in the choice of the lapse and the shift (and hence of the foliation).

Thus we have a time function t and ensuing foliation (8.1), where Σt ∼= Σ for a single
3d-manifold Σ, and each hypersurface Σt is assumed to be spacelike in M. The action S(g),
from which the Hamiltonian will be derived, is defined on V ⊂M, for which we assume that

V = tt∈[ti,t f ]Σ
′
t ; Σ′t = Σt ∩V , (8.194)

so that, as a shadow of the factorization M ∼= Σ×R, we have

V ∼= Σ′× [ti, t f ], (8.195)

where Σ′ ∼= Σ′t . If Σ and hence each Σt is closed (= compact without boundary) we assume that
Σ′t = Σt ; otherwise (think of Σ ∼= R3), Σ′t ⊂ Σt is a compact submanifold with boundary

St := ∂ Σ′t (8.196)

in Σt (think of Σ′t ∼= B3
r , the closed 3-ball in R3 with radius r, so that St ∼= ∂B3

r = S2
r , the 2-sphere

in R3 with radius r). This means that the boundary ∂V of V decomposes as

∂V = Σti ∪Σt f ∪B; B = ∪t∈[ti,t f ]St , (8.197)

which is a (hyper)cylinder bounded above and below by 3-manifolds Σt f and Σti , respectively,
and bounded on the side by a 3-manifold B that in turn is foliated by the 2-manifolds St . Using

g = −L2g̃; ⇒
√
−g = L

√
g̃, (8.198)

419 Pioneering papers include Dirac (1950, 1958ab), Bergmann (1949), Bergmann & Brunings (1949), and
Arnowitt, Deser, & Misner (1962), whose approach is reviewed in Misner, Thorne, & Wheeler (1973), §21.6. See
Salisbury (2020) for the history of canonical GR. Of the reviews in the theoretical physics literature we mention
Poisson (2004), §4.2, and Sundermeyer (2014), chapter 7 and §C.3. The mathematics was done, in different ways,
by e.g. Fischer & Marsden (1979), Kijowski & Tulczyjew (1979), and Isenberg & Nester (1980). Dirac’s approach,
which is still used, involved a heavy “constraint algorithm”, which can be avoided as long as one realizes that the
ultimate justification of any Hamiltonian formalism is that it simply reproduces the Einstein equations.

420See DeWitt (1967), Rovelli (2004), and Thiemann (2007). As for nuclear fusion, one begins to lose patience.



208 The 3+1 split of space-time

where g≡ detg and g̃≡ det g̃, which follows from (8.14), as well as (8.58), we may then rewrite
the Einstein–Hilbert action (7.2) and the boundary term (7.36). This gives

SG(g) =
∫ t f

ti
dt
∫

Σt

d3y
√

g̃t(y) [L(R̃+Tr (k̃)2 +Tr (k̃2))−2(Le0Tr (k̃)+ ∆̃L)]; (8.199)

SB(g) = 2
∫

Σt f

d3y
√
|det(g̃)|Tr (k̃t)−2

∫
Σti

d3y
√
|det(g̃)|Tr (k̃t)

−2
∫ t f

ti
dt
∫

St

d2z
√
|det(ĝ)|Tr (k̂t))−·· · , (8.200)

where g̃t and k̃t are the induced 3-metric and the extrinsic curvature on Σt with regard to its
embedding Σt ↪→V ⊂M, respectively, and likewise k̂t is the extrinsic curvature on B ↪→V . The
dots in (8.200) mean that for the moment we omit the k̃0 terms in (7.36), which will be reinstalled
at the end of the calculation. The last term in (8.199) is also a boundary term, since∫

Σt

d3y
√

g̃t(y)∆̃L =
∫

Σ
dyx∂i(

√
g̃t(y)∇̃iL) =

∫
St

d2~σ i · ∇̃iL, (8.201)

similarly to (7.17) - (7.18), but now in 3d. Using (8.10), the penultimate term in (8.199) equals

Le0Tr (k̃) = e0Tr (k̃) = LNµ
∂µTr (k̃) = L(∇µ(Tr (k̃)Nµ)−Tr (k̃)∇µNµ). (8.202)

The first term gives a boundary term that cancels the first two terms in (8.200). The second is

∇µNµ = −Tr (k̃), (8.203)

as follows from (8.40), in which ∂̃ν is spatial, so that Nµ ∂̃ν = 0. Finally, (8.201), which came
from the bulk action (8.199), and the last term in the boundary action (8.200) neatly combine to∫

St

d2z
√
|det(ĝ)| (~ni

∇̃iL+Tr (k̂t)) =
∫

St

d2z
√
|det(ǧt)LTr (ǩt), (8.204)

where~n is the outward normal vector into Σt of the embedding St ↪→ Σt , ǧt is the induced metric
on the 2-manifold St , and ǩt is the extrinsic curvature on Σt , with respect to the embedding
St ↪→ Σt .421 Combining all, and reinserting the constant k̃0 terms in (7.36), gives the total action

S(g) = SG(g)+ SB(g) =
∫ t f

ti
dt
(∫

Σt

d3y
√

det(g̃t(y))L · (R̃+Tr (k̃2
t )−Tr (k̃t)

2)

−2
∫

St

d2z
√

det(ǧt(z))L (Tr (ǩt)−Tr (ǩ0
t ))

)
, (8.205)

where ǩ0
t is the extrinsic curvature of the embedding of the surface St in R3, seen as the x0 = t

slice of Minkowski space-time. We repeat that this term is necessary for convergence if Σt
approaches Σ, in case that Σ is not compact (if Σ is closed all boundary terms may be ignored).

In order to pass from a Lagrangian to a Hamiltonian description, we write, with x = (y, t),

SG(g) =
∫ t f

ti
dt LG(x); (8.206)

LG(x) =
√

g̃t(y)L(x) (R̃(x)+Tr (k̃t(y)2)−Tr (k̃t(y))2), (8.207)

421See Poisson (2004), §4.2.5, for a calculation yielding (8.204); his book contains many computations omitted
here. This may also be inferred by choosing L = 1 for the moment and noting that (8.204) is a geometric expression.
Note that Poisson (and many physicists) defines the extrinsic curvature as minus ours (the math convention).
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in which k̃ (and hence the quantities Tr (k̃) and Tr (k̃2) derived from it) is determined by (8.22).
If we use (8.64) in the latter expression, in terms of spatial indices, we obtain

k̃i j = 1
2L−1(g̃ik∇̃ jSk + g̃ jk∇̃iSk−∂t g̃i j), (8.208)

which allows us to compute the canonical momenta for the 3-metric g̃i j, as in pi = ∂L/∂ q̇i, viz.

π̃
i j :=

∂L

∂ ˙̃gi j
=
√

g̃(Tr (k̃)g̃i j− k̃i j). (8.209)

Thus the k̃i j will be seen as functions of g̃i j and π̃ i j by inverting (8.209), which yields√
g̃ k̃i j = 1

2Tr (π̃)g̃i j− π̃i j, (8.210)

where Tr (π̃) = g̃klπ̃
kl and π̃i j = g̃ikg̃ jlπ̃

kl . One also uses the ‘de-densitized’ momentum422

π̌i j = π̃i j/
√

g̃ = Tr (k̃)g̃i j− k̃i j, (8.211)

so that
k̃i j = 1

2Tr (π̌)g̃i j− π̌i j. (8.212)

Note that the boundary action SB(g) does not contain ˙̃gi j and hence makes no contribution to π̃ i j.
Furthermore, since neither SG nor SB contains the time derivatives L̇ and Ṡi of the lapse and the
shift, the corresponding momenta vanish and may be ignored. The canonical Hamiltonian

H(pi,qi) = ∑
i

piq̇i−L(qi, q̇i), (8.213)

where the q̇i are to be eliminated in favour of their conjugate momenta, may then be computed as
usual. For GR this gives two terms, coming from the bulk and the boundary Lagrangians. First,

H ′G =
∫

Σ
d3yH ′G(y) = lim

Σ′↗Σ
H ′G(Σ

′) = lim
Σ′↗Σ

∫
Σ′

d3yH ′G(y); (8.214)

H ′G(π̃
i j, g̃i j) = π̃

i j
∂t g̃i j−LG(g̃i j,∂t g̃i j), (8.215)

where in the spirit of the Hamiltonian formalism (called “geometrodynamics” in this regard),
we have replaced Σt by Σ and hence regard g̃i j and π̌i j as (geometric) quantities defined on Σ.
However, although SB does not contribute to the definition of the momenta, it plays the role of a
potential energy, and as such should be (negatively) added to the total Hamiltonian, in that

H(Σ′) = H ′G(Σ
′)+H ′B(Σ

′); (8.216)

H ′B(Σ
′) = 2

∫
∂ Σ′

d2z
√

det(ǧt(z))L (Tr (ǩ)−Tr (ǩ0)), (8.217)

cf. (8.205). We wrote primes here, because, like the original bulk action SG, the bulk Hamiltonian
H ′G in fact contains divergences leading to boundary terms. Indeed, if we solve (8.208) for ∂t g̃i j,

422As before, define a volume ω ∈ Ω3(Σ) by ωx =
√

g̃(x)dx1 ∧ dx2 ∧ dx3. Geometrically, the canonical mo-
mentum π̃ conjugate to the spatial metric g̃ should be regarded as an element of X(0,2)(Σ)⊗Ω3(Σ), on which
interpretation (8.209) should be written as π̃ = (Tr (k̃)g̃− k̃)]⊗ω , or π̌ i j =

√
g̃(Tr (k̃)g̃i j− k̃i j)dx1∧dx2∧dx3.
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and substitute this in (8.215), through a partial integration and Stokes’s theorem (on Σ, i.e. in
3d) one may replace the terms involving ∇̃ jSk and ∇̃iSk by terms linear in Sk. This yields

H(Σ) = HG(Σ)+HB(Σ) = lim
Σ′↗Σ

HG(Σ′)+HB(Σ′); (8.218)

HG(Σ′) =
∫

Σ′
d3y
√

det(g̃(y))HG(y); (8.219)

HB(Σ′) =
∫

∂ Σ′
d2z
√

det(ǧ(z))HB(z); (8.220)

where the true bulk and boundary Hamiltonian densities are given by

HG = LC0 + SiCi; (8.221)

HB = 2(L (Tr (ǩ)−Tr (ǩ0))+ Si~n j
π̌i j). (8.222)

These, in turn, are defined in terms of the familiar expressions, cf. (7.145) - (7.146),

C0 = −R̃+Tr (k̃2)−Tr (k̃)2 = −R̃+Tr (π̌2)− 1
2Tr (π̌)2; (8.223)

Ci = −2(∇̃ jk̃
j
i − ∇̃iTr (k̃)) = −2∇̃ jπ̃

j
i . (8.224)

Here the lapse and the shift are (freely) given functions of space and time, whereas the canonical
quantities (g̃i j, π̃ i j) or, equivalently, (g̃i j, π̌ i j), which are initially defined on Σ, evolve according
to the Hamiltonian equations of motion, and as such become time-dependent (what this “time”
means becomes clear only when the total globally hyperbolic space-time (M,g) plus its foliation
dictated by the solution is reconstructed). If Σ is compact one may put Σ′ = Σ and forget about
the boundary terms (i.e. ∂ Σ′ = ∂ Σ = /0). If Σ is non-compact and each approximant Σ′ ⊂ Σ is
compact, the metric and extrinsic curvature (ǧ, ǩ) of ∂ Σ′ seen as embedded in Σ′ are determined
by (g̃, π̌) are hence are dependent variables. Moreover, since C0 and Ci are the Hamiltonian and
momentum constraints (7.145) - (7.146), respectively, we need to put

C0 = 0; Ci = 0. (8.225)

We may simply do this “by hand”, since as mentioned before, the ultimate justification of any
Hamiltonian formulation should lie in its equivalence with the original Lagrangian formulation
of the problem.423 One could also treat (L,Si) as canonical variables, and notice that, because
the action (8.199) - (8.200) does not contain their time derivatives, the associated canonical
momenta vanish. Using the Hamiltonian (8.218), from the Hamiltonian equations of motion

q̇i = ∂H/∂ pi; ṗi = −∂H/∂qi (8.226)

we therefore obtain something like ∂H/∂L = − ˙̃πL = 0. This gives C0 = 0, noting that the
variation of L (like that of g̃i j, but not that of π̃i j) is supposed to vanish on the boundary, so that
HB(Σ′) makes no contribution to the equations of motion (although it is a crucial part of the
Hamiltonian itself, as we shall see). Similarly, ∂H/∂Si = 0 gives the spatial constraint Ci = 0.

The real equations of motion come from (8.226) applied to g̃i j and π̃ i j, as follows.424

423If (Σ, g̃) is asymptotically flat, flor L = 1 and Si = 0 the boundary Hamiltonian HB(Σ), which on the solution
to the constraints (8.225) is the Hamiltonian, equals the total mass (8.126). See Poisson (2004), Problem 4.6.7

424All boundary terms cancel, as in the Lagrangian approach, so one may as well ignore them here.
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• Using (8.212), the equation ∂t g̃i j = ∂H/∂ π̃ i j may be shown to coincide with (8.22), i.e.,

∂ g̃i j

∂ t
= 2L(π̌i j− 1

2Tr (π̌)g̃i j)+LSg̃i j. (8.227)

• The equation ∂t π̃
i j = −∂H/∂ g̃i j takes slightly more effort to make explicit; the result is

∂ π̃ i j

∂ t
= L(Tr (π̌)π̌ i j−2π̌

ik
π̌

j
k +

1
2(Tr (π̌2)− 1

2Tr (π̌)2)g̃i j− G̃i j)
√

g̃

+(∇̃i
∇̃

jL− g̃i jg̃kl
∇̃k∇̃lL)

√
g̃+LSπ̃

i j, (8.228)

where G̃i j = R̃i j− 1
2 g̃i jR̃ is the 3d Einstein tensor defined by g̃. Eq. (8.228) is equivalent

to (8.59), and so the pair (8.227) - (8.228) is equivalent to the pair (8.61) - (8.62).

• In particular, for lapse L = 1 and shift Si = 0 one obtains the Einstein flow equations

∂ g̃i j

∂ t
= 2π̌i j−Tr (π̌)g̃i j; (8.229)

1√
g̃

∂ π̃ i j

∂ t
= Tr (π̌)π̌ i j−2π̌

ik
π̌

j
k +

1
2(Tr (π̌2)− 1

2Tr (π̌)2)g̃i j− G̃i j. (8.230)

The structure of (8.221) may be further clarified by comparison with electromagnetism (cf.
§7.4). In electrodynamics (for simplicity in Minkowski space-time), the Lagrangian density is

L = − 1
4FµνFµν , (8.231)

cf. (7.83), seen as a functional of Aµ . The canonical momentum

π
0 = ∂L /∂ Ȧ0 (8.232)

conjugate to A0 vanishes, since L does not contain Ȧ0. The one conjugate to Ai equals

π
i = ∂L /∂ Ȧi = F0i = −E i, (8.233)

in terms of which the Hamiltonian is

H =
∫

d3x (−~E ·~A−L (A0,~A,∂t~A)) =
∫

d3x ( 1
2
~E ·~E + 1

2
~B ·~B+A0∇ ·~E), (8.234)

where ~B = ∇×~A, and the term relevant to us, A0∇ ·~E, comes from partially integrating−~E ·∇A0.
Thus A0 is like the lapse and its equation of motion gives the (Gauss law) constraint

∇ ·~E = 0. (8.235)

The equation of motion for Ai, i.e. Ȧi = ∂H/∂π i = −∂H/∂E i = −Ei +∇A0 gives

∂t~B = −∇×~E, (8.236)

whereas the one for π i, i.e., Ė i = −π̇ i = ∂H/∂Ai, yields

∂t~E = ∇×~B. (8.237)

Maxwell’s equations (in vacuo) are completed by the constraint (8.235), and the identity

∇ ·~B = 0, (8.238)

which follows from the definition ~B = ∇×~A.
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8.8 Constraints and deformation algebra
In the 1970s an interesting perspective on the constraints (8.65) - (8.67) arose,425 which was
believed to be relevant for (canonical) quantum gravity (a hope unfulfilled so far), but which is
also crying out for further mathematical and other conceptual understanding in classical GR.426

We return to the setting of §8.1. Let Fol(Σ,M,g) be the “space” of all spacelike foliations
F of some globally hyperbolic space-time M, as defined in §8.1, and let Emb(Σ,M,g) be the
“space” of spacelike embeddings ι : Σ ↪→M. Then each foliation F defines a curve

c : R→ Emb(Σ,M,g); t 7→ ct (8.239)

in Emb(Σ,M,g) via ct(x) = F(t,x). Although curves in Emb(Σ,M,g) do not necessarily
describe foliations of M (just think of the constant curve), it is interesting to study tangent vectors
to curves that do, and regard these vectors as “infinitesimal” foliations. Take a tangent vector

X ′ ∈ TιEmb(Σ,M,g) X ′ =
dct

dt
(t = 0), (8.240)

for some curve t 7→ ct in Emb(Σ,M,g) with c0 = ι . Given such a vector X ′, we define

X : ι(Σ)→ T M; X(ι(x)) :=
dct(x)

dt
(t = 0), (8.241)

so that X(ι(x))≡ Xι(x) ∈ Tι(x)M. The bijective correspondence X ′↔ X gives an isomorphism

TιEmb(Σ,M,g) ∼= Γ(ι(Σ),Tι(Σ)M) (8.242)

of vector spaces, where Tι(Σ)M is the restriction of T M to ι(Σ) ⊂M, seen as a vector bundle
over ι(Σ). We may even remove the dependence on ι by further identifying

Γ(ι(Σ),Tι(Σ)M) ∼=C∞(Σ)⊕X(Σ); ⇒ Tι(Emb(Σ,M,g)) ∼=C∞(Σ)⊕X(Σ), (8.243)

where the right-hand side is seen as a vector space (on this understanding one may write× instead
of ⊕). Namely, one has a unique future-directed normal vector field N to ι(Σ), normalized to

g(N,N) = −1, (8.244)

as usual. Then decompose X = L̃N + S̃, as in (8.5), with the difference that so far the lapse L̃
and the shift S̃ are defined on ι(Σ) alone (see below for their extension to M).

Before proceeding, let us first sketch a simpler situation that is well understood and which
one, with limited success so far, would like to mimic in GR. If we replace Emb(Σ,M,g) by the
diffeomorphism group Diff(Σ) of Σ (say by replacing M Σ), the analogue of (8.243) is

TψDiff(Σ) ∼= X(Σ), (8.245)

425Key papers include Teitelboim (1973), Hojman, Kuchar, & Teitelboim (1976), Kuchar (1976), and Isham
& Kuchar (1985ab). See also Anderson (2007), Gomes & Shyam (2016), and Gomes & Butterfield (2020) and
references therein to later literature. A mathematically rigorous version of the Poisson brackets involved in this
analysis, and more generally of the entire Hamiltonian approach to GR, including the PDE side, was simultaneously
and independently developed in a series of papers culminating in the review by Fischer & Marsden (1979). All of
this has so far only been done for compact Cauchy surfaces Σ, so we assume this. See also Proposition 6.19.

426See Blohmann, Barbosa Fernandes, & Weinstein (2013), Bojowald et al. (2016), Blohmann & Weinstein
(2018), and Głowacki (2019), all based on Lie algebroids. We refrain from specifying topologies and smoothness;
the best setting seems to be diffeology (Iglesias-Zemmour, 2013; van der Schaaf, 2020), as in the papers just cited.
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since vector fields integrate to one-parameter groups of diffeomorphisms. In particular, if we
regard Diff(Σ) as an infinite-dimensional Lie group, and take ψ = idΣ to be the identity, then
X(Σ) is the Lie algebra of Diff(Σ), whose Lie bracket, however, is minus the commutator.

For another way to look at this, let G be a Lie group and N some manifold. Recall that
a G-action on N is a smooth map ϕ : G×N → N, written as ϕ(γ ,x) ≡ ϕγ(x) ≡ γx, such that
ex = x and g(hx) = (gh)x for all x ∈M and g,h ∈M. A G-action on N gives rise to a map

ϕ∗ : Lie(G)→ X(N); ϕ∗(A) f (x) =
d
dt

f (e−tAx)|t=0, (8.246)

where A ∈ Lie(G), i.e. the Lie algebra of G, and f ∈C∞(M). This map can be shown to be a Lie
algebra homomorphism. Taking G = Diff(Σ) and N = Σ, with the defining action, we find

ϕ∗ : X(Σ)→ X(Σ); X 7→ −X , (8.247)

whose minus sign is correct: as has just been noted, the Lie bracket on X(Σ) = Lie(Diff(Σ)) is
minus the commutator. Towards (8.243), another relevant construction is to take N = V to be a
vector space on which G acts linearly, and form the semidirect product V oG, with Lie bracket

[(v,X), (w,Y )] = (Xw−Y v, [X ,Y ]), (8.248)

defined on the vector space Lie(V oG) = V ⊕Lie(G), where Xw is the same as ϕ∗(X)w as just
defined, evaluated at T0V ∼= Lie(V ) ∼= V . Take G = Diff(Σ) and N = C∞(Σ), where Diff(Σ)
acts on C∞(Σ) by pullback of its defining action on Σ. The bracket (8.248) is then defined on
C∞(Σ)⊕X(Σ). Writing L̃ ∈C∞(Σ) and S̃ ∈ X(Σ), eq. (8.248) becomes

[(L̃1, S̃1), (L̃2, S̃2)] = (LS̃1
L̃2−LS̃2

L̃1, [S̃1, S̃2]), (8.249)

where LS̃L̃= S̃L̃ is the defining action of the vector field S̃ on the function L̃, and [S̃1, S̃2] =LS̃1
S̃2

is the usual commutator of vector fields, all happening on Σ. However, returning to (8.243),
consider the following closely related bracket on C∞(Σ)⊕X(Σ), seen as Tι(Emb(Σ,M,g)):

[(L̃1, S̃1), (S̃1, S̃2)]ι = (LS̃1
L̃2−LS̃2

L̃1, [S̃1, S̃2]+ L̃1∇̃L̃2− L̃2∇̃L̃1). (8.250)

Here Σ has been endowed with a Riemannian metric g̃ = ι∗g, as in the initial value formulation,
and the bracket depends on this metric through its divergence operator ∇̃ := ∇ι∗g = ∇g̃ (which
sends functions to vector fields).427 In physics this bracket is called the deformation algebra.

As we shall see, the Poisson bracket of the constraints in GR reproduces this algebra, and
hence it would be nice to understand it better, for example by seeing it as a commutator. To this
end, we note that Diff(M) acts on the space Emb(Σ,M) of all embeddings Σ ↪→M via

ψ(ι) = ψ ◦ ι , (8.251)

but this does not restrict to an action on the space Emb(Σ,M,g) of all spacelike embeddings. On
the other hand, if ι(Σ) is spacelike with respect to g, then ψ ◦ ι is spacelike with respect to ψ∗g,
so that if ψ is an isometry and ι ∈ Emb(Σ,M,g), then ψ ◦ ι ∈ Emb(Σ,M,g), and hence one does
have a well-defined action of the group Iso(M,g) of all isometries of (M,g) on Emb(Σ,M,g).

427For a fixed 3d metric g̃ this is not a Lie bracket, as the Jacobi identity may fail (Blohmann et al., 2013). The
following construction may also be found in this paper, shadowed by an analogous discussion in coordinates in
Bojowald et al. (2016). For these authors, this construction is just an introduction to the use of Lie algebroids.
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One can do more, however, at least locally, in the sense of validity within some open nbhd U of
ι(Σ) in M, for some fixed ι ∈ Emb(Σ,M,g) at which we explore the tangent space (8.243). As
in making the identification (8.243), fix some spacelike embedding ι : Σ ↪→M with fd normal Ñ,
so far just defined on ι(Σ). By (for example) the tubular neighbourhood theorem of differential
geometry and the local properties of the exponential map, there exists an open nbhd

U ∼= I×Σ (8.252)

of ι(Σ) in M, where 0 ∈ I ⊂R is an open interval, such that the timelike geodesics with tangent
Ñ at ι(Σ) (and hence normal to ι(Σ)) do not cross within U . This gives a foliation

U = ts∈IΣs, (8.253)

where Σ0 = ι(Σ) and Σs is the set of points γ
(x)
Ñ (s), where x ∈ Σ0 and γ

(x)
Ñ is the geodesic with

γ
(x)
Ñ (0) = x and γ̇

(x)
Ñ (0) = Ñx. We call this local foliation, which is entirely determined by ι ,

canonical.428 It has lapse L = 1 and shift S = 0. The normal Ñ, so far defined on Σ, extends to
a vector field N on U through parallel transport along these geodesics, i.e. by solving

∇NN = 0; (8.254)

as we know, this preserves the normalization (8.244). The canonical foliation then arises by
simply transporting Σ0 along the flow of N.

Definition 8.11 A vector field X ∈ X(U) is Gaussian iff one and hence each of the following
equivalent conditions is satisfied:429

1. LX (N,Y ) = 0 for each Y ∈X(U), i.e. iNLX g = 0. Equivalently, Nµ(∇µXν +∇νXµ) = 0.

2. The flow ψt of X preserves the canonical foliation near Σ just defined.430

By definition, the first condition is equivalent to the following property of the flow:

gψt(x)(TxψtNx,TxψtYx) = gx(Nx,Yx), (8.255)

for each x ∈ Σ. This implies that, as announced, the flow of a Gaussian vector field maps
spacelike surfaces to spacelike surfaces, at least within U , i.e. for small enough t.431 In that
sense, Gaussian vector field reside somewhere between Killing vector fields and arbitrary ones.

Proposition 8.12 Each vector field X̃ ∈ Γ(Σ0,TΣ0M), where Σ0 := ι(Σ), has a unique Gaussian
extension X to U, which, if decomposed as X = LN + S, has lapse L and shift S satisfying

LNL = 0; LNS = ∇̃L, (8.256)

where ∇̃L = ∇L+ g(N,∇L)N is the spatial gradient of L, i.e. ∇̃µL = (gµν +NµNν)∂νL.
This is tangent to the leaves of the canonical foliation, so that g(LNS,N) = g(∇̃L,N) = 0.

428In general it cannot be extended to M since such geodesics may cross. We assume Σ is compact.
429The name Gaussian comes from the fact that the flow ψt also preserves the “Gaussian normal form” of the

metric g = −dt2 + g̃i j(t,x)dxidx j, which L = 1 and S = 0 imply, see eq. (8.14) and Proposition 8.1 in §8.1.
430That is, the leaves of the canonical foliation around ψt(Σ0) are the images under ψt of the Σs in (8.253).
431Although TxψtNx may not equal Nψt (x), close to Σ it is still timelike. So if Yx ∈ TxΣ0, so that gx(Nx,Yx) = 0,

the vector TxψtYx is orthogonal to some timelike vector and hence is spacelike, cf. Lemma 5.26 in O’Neill (1983).
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Proof. Using Cartan’s formula, the defining condition of a Gaussian vector field X becomes

0 = iNLX g = (LX iN + i[N,X ])g = (diX + iX d)iNg+ i[N,X ]g = d(iX iNg)+ i[N,X ]g, (8.257)

where iNg is the 1-form gµνNµdxν , and we used diNg = −ddt = 0. Eq. (8.257) is the same as

[N,X ] = −∇(g(N,X)), (8.258)

which in turn may be rearranged as ∇NS=∇SN+∇L. Taking normal and orthogonal components
with respect to N and using (8.244), (8.254), as well as torsion-freeness, from which

[N,X ] = ∇NX−∇X N = ∇NX−∇SN, (8.259)

gives (8.256). These are first-order PDEs for L and S with given initial values L̃ and S̃ on Σ0. In
coordinates (t,x) adapted to the canonical foliation they even simplify to

∂L
∂ t

= 0;
∂S
∂ t

= ∇̃L. (8.260)

The uniqueness claim then follows from the (elementary) theory of first-order PDEs. �

Corollary 8.13 Let

X1 = L1N + S1; X2 = L2N + S2 (8.261)

be the unique Gaussian extensions of vector fields X̃1 = L̃1N + S̃1 and X̃2 = L̃2N + S̃2 defined
on ι(Σ). Then, referring to (8.250), the commutator [X1,X2] at ι(Σ) is given by (8.250), i.e.,

[X1,X2]|ι(Σ) = [(L̃1, S̃1), (S̃1, S̃2)]ι . (8.262)

The proof is a simple computation, using (8.256). In (other) words, the curious bracket
(8.250) is just the commutator of the Gaussian vector fields obtained by extending the given vector
fields L̃1N + S̃1 and L̃2N + S̃2 on ι(Σ). Looking at a Gaussian vector field as an infinitesimal
diffeomorphism of the special kind that preserves spacelike embeddings, this to some extent
justifies calling (8.250) a “deformation algebra”, although the situation remains to be clarified.
As already noted, the reason for studying this algebra is that in the Hamiltonian approach to GR

the constraints reproduce it in the following sense: writing the total Hamiltonian H ≡ H(Σ) as

H(L̃,S̃)(g̃, π̃) :=
∫

Σ

√
det(g̃)(LC0(g̃, π̃)+ SiCi(g̃, π̃)), (8.263)

see (8.218), (8.223) and (8.224), the canonical Poisson bracket will turn out to be

{H(L̃1,S̃1)
,H(L̃2,S̃2)

}= −H[(L̃1,S̃1),(S̃1,S̃2)]ι
= −H(LS̃1

L̃2−LS̃2
L̃1,[S̃1,S̃2]+L̃1∇̃L̃2−L̃2∇̃L̃1)

. (8.264)

Writing HL̃ := H(L̃,0) and HS̃ := H(0,S̃), three interesting special cases of this bracket are

{HL̃1
,HL̃2
}= −HL̃1∇̃L̃2−L̃2∇̃L̃1

; (8.265)

{HS̃1
,HS̃2
}= −H[S̃1,S̃2]

= −HLS̃1S̃2
; (8.266)

{HS̃,HL̃}= −HLS̃L̃. (8.267)

Of these, the first involves the metric and is generally seen as mysterious. In the next two
sections we define a Poisson bracket for GR and try to explain the special status of the “super”
Hamiltonian (8.263) in the light of the bracket (8.264) and the theory of the momentum map.432

432 For another perspective see Głowacki (2021), who derives Definition 8.11 as a consistency condition between
the 4d and 3+ 1 descriptions of the dynamics that, unlike Theorem 8.2, also holds off the constraint surface.
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8.9 Poisson brackets, constraints, and momentum map
The momentum map was originally introduced in the 1960s by Kostant and Souriau in the setting
of symplectic geometry. It clarified especially the relationship between conserved quantities and
symmetries, culminating in a Hamiltonian version of Noether’s theorem.433 The simplest setting
for the momentum map, however, is in Poisson geometry, where the Poisson bracket is not seen
as a concept derived from the symplectic structure, but stands on its own.434

Definition 8.14 A Poisson bracket on a manifold P is a Lie bracket {−,−} on the (real) vector
space C∞(P), such that for each h ∈C∞(P) the map

Xh : f 7→ {h, f} (8.268)

defines a vector field on P, called the Hamiltonian vector field of h. A manifold P equipped
with a Poisson bracket is called a Poisson manifold, and (C∞(P),{ , }) is a Poisson algebra.

Unfolding, we have an bilinear map {−,−} : C∞(P)×C∞(P)→C∞(P) that satisfies

{g, f}= −{ f ,g}; (8.269)
{ f ,{g,h}}+ {h,{ f ,g}}+ {g,{h, f}}= 0; (8.270)

{ f ,gh}= { f ,g}h+ g{ f ,h}, (8.271)

where (8.269) - (8.270) is the Lie bracket property and (8.271) is the Leibniz rule for derivations.
The flow ψt of Xh is the motion generated by h, seen as “the Hamiltonian”. Hence if (xi) are

coordinates on P, and we write x(t) for ψt(x), then x(t) solves the coupled first-order ODEs

dxi(t)
dt

= {h,xi}(x(t)). (8.272)

The following result is crucial, although its proof is a straightforward exercise:

Proposition 8.15 A Poisson bracket on P defines a Lie algebra homomorphism

C∞(P)→ X(P); h 7→ Xh. (8.273)

In particular, for any f ,g ∈C∞(P) we have

[X f ,Xg] = X{ f ,g}. (8.274)

The oldest example of a Poisson manifold is P = R2n (even n = 1 is interesting!), where

{ f ,g}=
n

∑
j=1

(
∂ f
∂ p j

∂g
∂q j −

∂ f
∂q j

∂g
∂ p j

)
. (8.275)

In that case, the Hamiltonian vector field of h is obviously given by

Xh =
n

∑
j=1

(
∂h
∂ p j

∂

∂q j −
∂h
∂q j

∂

∂ p j

)
. (8.276)

433 See Souriau (1969), Kostant (1970), Kijowski & Tulczyjew (1979), Guillemin & Sternberg (1982), Abraham
& Marsden (1985), Marsden & Ratiu (1999), and Ortega & Ratiu (2004).

434In this approach symplectic geometry is a special case of Poisson geometry, arising when the Poisson tensor Π
is invertible. The symplectic form ω is then the inverse of Π and the Poisson bracket equals { f ,g}= ω(X f ,Xg}.
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Writing ψt(p,q) = (p(t),q(t)), we see that this flow is given by Hamilton’s equations:

d p j(t)
dt

= {h, p j}(p(t),q(t)) = −∂h(p(t),q(t))
∂q j ; (8.277)

dq j(t)
dt

= {h,q j}(p(t),q(t)) =
∂h(p(t),q(t))

∂ p j
. (8.278)

A different kind of example is P = R3, which is odd-dimensional, where we define

{ f ,g}(x,y,z) =

x
(

∂ f
∂y

∂g
∂ z
− ∂ f

∂ z
∂g
∂y

)
+ y
(

∂ f
∂ z

∂g
∂x
− ∂ f

∂x
∂g
∂ z

)
+ z
(

∂ f
∂x

∂g
∂y
− ∂ f

∂y
∂g
∂x

)
. (8.279)

This is a special case of a general construction. Let g be a Lie algebra, with basis (Ta), so that

[Ta,Tb] = ∑
c

Cc
abTc, (8.280)

for certain structure constants Cc
ab. We write θ in the dual vector space g∗ as θ = ∑a θaωa,

where (ωa) is the dual basis to a chosen basis of g̃, i.e., ωa(Tb) = δ a
b . In terms of these

coordinates, the Lie–Poisson bracket on C∞(g∗) is defined by the formula

{ f ,g}(θ ) =Cc
abθc

∂ f (θ )
∂θa

∂g(θ )
∂θb

. (8.281)

Without a basis of g, the Lie–Poisson bracket may also be defined by extending the formula

{Â, B̂}= [̂A,B], (8.282)

where A,B ∈ g and Â ∈C∞(g∗) is the evaluation map Â(θ ) = θ (A).
We now turn to the momentum map, which generalizes momentum, angular momentum, and

almost every other quantity related to symmetry and conservation laws, culminating in Noether’s
Theorem. First, independently of Lie groups, Lie algebras also “act” on manifolds:

Definition 8.16 Let g be a Lie algebra and P a manifold. A g-action on P is a Lie algebra
homomorphism from g to X(P), written A 7→ ξA, so that in particular,

[ξA,ξB] = ξ[A,B]. (8.283)

If g= Lie(G), then such actions usually arise from G-actions via (8.246), i.e. ξA = ϕ∗(A).

Definition 8.17 A momentum map for a Lie algebra action on a Poisson manifold P is a map

J : P→ g∗, (8.284)

such that, defining JA : P→R by JA(x) = 〈J(x),A〉 ≡ J(x)(A), for each A ∈ g we have

ξA = XJA := {JA,−}. (8.285)

A Lie algebra action with momentum map is called Hamiltonian.

In words, for any A ∈ g, taking the Poisson bracket with the function JA generates the flow in P
obtained by acting on P with the one-parameter subgroup s 7→ exp(−sA) of G. Noether’s (first)
theorem then gives the familiar link between symmetries and conserved quantities:
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Theorem 8.18 Let P be a Poisson manifold with an action of a connected Lie group G, whose
associated g-action (8.246) has a momentum map J : P→ g∗. If h ∈C∞(P) is G-invariant, i.e.

h(γ · x) = h(x) (8.286)

for each γ ∈ G and x ∈ X, then for each A ∈ g, the function JA is constant along the flow ψt of
Xh. That is, for any x ∈ P and any t ∈R for which ψt(x) is defined, we have

JA(ψt(x)) = JA(x). (8.287)

Proof. Using all assumptions, as well as the definition of a flow, we compute:

d
dt

JA(ψt(x)) = XhJA(ψt(x)) (ψt is flow of Xh)

= {h,JA}(ψt(x)) (definition of Xh)

= −{JA,h}(ψt(x)) (antisymmetry of bracket)
= XJAh(ψt(x)) (definition of XJA)

= −ξAh(ψt(x)) (8.285)

= − d
ds

h(e−sA
ψt(x))|s=0 (8.246)

= − d
ds

h(ψt(x))|s=0 G-invariance of h

= 0. �

A simple example is
P = R6 = R3×R3, (8.288)

with coordinates x = (~p,~q), where ~p = (p1, p2, p2) and ~q = (q1,q2,q3), equipped with the
“canonical” Poisson bracket (8.275).

• Let G = R6 (as an additive group) act on P by

(~a,~b) · (~p,~q) = (~p+~a,~q+~b). (8.289)

Then the derived g-action has a momentum map: identifying g ∼= g∗ ∼= R6, this is

J(~p,~q) = (~q,−~p), (8.290)

and if the (sub)group G = R3 acts on P by

~b : (~p,~q) 7→ (~p,~q+~b), (8.291)

we simply have
J(~p,~q) = −~p. (8.292)

The minus sign is of course unfortunate, but repairing this gives other undesirable signs
elsewhere. By Noether’s Theorem, if the potential V in a Hamiltonian

h(p,q) = p2/2m+V (q) (8.293)
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is translation-invariant, then momentum ~p is conserved. Similarly, if G = SO(3) acts on
the same phase space R6 by

R · (~p,~q) = (R~p,R~q), (8.294)

then the derived g-action has a momentum map, which, identifying so(3)∗ ∼= R3, equals

J(~p,~q) = −~q×~p, (8.295)

which is (minus) the angular momentum! This time, if in the above Hamiltonian the
potential V is rotation-invariant, Noether makes angular momentum~q×~p conserved.

• Now we keep G = SO(3) but change P to R3 with the Poisson bracket (8.279) and take
the defining action of G = SO(3). If again we identify so(3)∗ ∼= R3, this action has a
momentum map J : R3→R3, given by

J(~x) =~x. (8.296)

More generally, the momentum map for the coadjoint action of G on g∗, with Poisson bracket
(8.282), is simply the identity map g∗→ g∗, i.e.,

J(θ ) = θ ; ⇔ JA = Â. (8.297)

As a crucial point, it would be natural to expect that a momentum map J, if it exists, satisfies

{JA,JB}= J[A,B] (8.298)

for all A,B ∈ g. This property holds in our examples so far except the first,435 even on P = R2:
since G = R2 is abelian we have [A,B] = 0 and hence J[A,B] = 0, but in a suitable basis (e1,e2)

of g = R2 we have Je1 = q and Je2 = −p, so that {Je1 ,Je2} = 1, i.e. the unit function on R2.
However, one may always restore (8.298) by passing to a suitable central extension G (and g); in
the case at hand this is the (3d) Heisenberg group (see the references in footnote 433).

We now try to understand the Poisson bracket (8.264) of canonical GR in this light. We first
define the bracket (and the underlying phase space) in question. Fixing Σ, we write R ≡R(Σ)
for the space of smooth 3d Riemannian metrics on Σ. The associated tangent bundle is

TR ∼= R×S2 ⊂S2×S2, (8.299)

where S2 = T (2,0)(Σ) is the vector space of all covariant 2-tensors ti j on Σ. Similarly, the
associated cotangent bundle may be written in (cartesian) product form as

T ∗R ∼= R×S 2
d ⊂S2×S 2

d , (8.300)

where S 2
d = T (0,2)

d (Σ) is the vector space of all contravariant 2-densities di j on Σ.436 Then

〈t,d〉=
∫

Σ
ti jdi j, (8.301)

435If G is connected and the given g-action on P comes from a G-action via (8.246), then (8.298) holds iff the
G-action is equivariant with respect to the coadjoint action on g∗ (i.e. the dual to the adjoint action of G on g).

436Assuming Σ orientable, these are 3-form valued covariant 2-tensors, or equivalently tensor products of covariant
2-tensors and 3-forms, cf. §7.1, so that after contraction of the indices they can be integrated over Σ. In coordinates
one may assume dx1∧dx2∧dx3 as a standard volume form and hence S 2

d
∼= S 2

d but not canonically so. Strictly
speaking, in formulae like (8.209) one should then write

√
g̃d3x instead of

√
g̃.
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where ti j ∈ Tg̃R and di j ∈ T ∗g̃ R, defines a pairing between S2 and S 2
d .437 Writing elements of

the cotangent bundle T ∗R as (g̃, π̃), we also have

T(g̃,π̃)T
∗R ∼= S2×S 2

d . (8.302)

We may turn T ∗R into a Poisson manifold by generalizing the canonical bracket (8.275) to

{ f ,g}=
∫

Σ

(
δ f

δ π̃ i j
δg

δ g̃i j
− δg

δ π̃ i j
δ f

δ g̃i j

)
, (8.303)

where the δ are functional derivatives. This informal expression should be made precise. We
only (need to) consider functions f : T ∗R→R of the form f =

∫
Σ F , in which

F : T ∗R→C∞
d ; C∞

d ≡C∞
d (Σ) :=C∞(Σ)⊗Λ3(Σ), (8.304)

i.e. the space of density-valued smooth functions on Σ, so that the integral
∫

Σ F is defined. Using
(8.300), and assuming (typically Sobolev norm) topologies on all spaces involved for taking
limits, functions F defined as in (8.304) then have partial Fréchet derivatives

Dπ̃ f (g̃, π̃) : S 2
d →C∞

d ; Dg̃ f (g̃, π̃) : S2→C∞
d , (8.305)

defined by

Dπ̃ f (g̃, π̃)(ρ) := lim
t→0

F(g̃, π̃ + tρ)−F(g̃, π̃)
t

; (8.306)

Dg̃ f (g̃, π̃)(h) := lim
t→0

F(g̃+ th, π̃)−F(g̃, π̃)
t

, (8.307)

etc. Writing C∞ for C∞(Σ) as is customary in this business, these maps have (smooth) duals

Dπ̃ f (g̃, π̃)∗ : C∞→S2; Dg̃ f (g̃, π̃)∗ : C∞→S 2
d , (8.308)

respectively, with respect to the natural L2 pairing, cf. (8.301). Following Fischer and Marsden,
the Poisson bracket of f =

∫
Σ F and g =

∫
Σ G on T ∗R is then rigorously defined by

{ f ,g}(g̃, π̃) :=
∫

Σ
〈Dπ̃F(g̃, π̃)∗(1Σ),Dg̃G(g̃, π̃)∗(1Σ)〉. (8.309)

With respect to this Poisson bracket, lengthy computations recover (8.265) - (8.267), where
(L̃, S̃) are the values of the lapse and shift (L,S) at any fixed time t and do not necessarily come
from a Gaussian vector field. Furthermore, analogous computations bring the Hamiltonian
equations of motion (8.227) - (8.228) in the Poisson bracket form given by (8.277) - (8.278), i.e.

∂ g̃i j

∂ t
= {H(L,S), g̃i j};

∂ π̃ i j

∂ t
= {H(L,S), π̃

i j}, (8.310)

where we write H(L,S) instead of H(L̃,S̃) in order to make clear that the lapse and shift (L,S) are
arbitrary (as long as they come from a regular foliation, if only a local one).438 It is crucial that
the equivalence between (8.227) - (8.228) and (8.310) holds “off-shell”, i.e. whether or not the
constraints are valid and hence whether or not the ensuing space-time metric g is Ricci-flat.

437Since we are at g̃ ∈R from which the standard integration with respect to
√

g̃d3x is defined, one may similarly
pair S2 with the space S 2 = T (0,2)(Σ) of “ordinary” contravariant 2-densities.

438These computations are done (though never fully) in Arnowitt, Deser, & Misner (1962), DeWitt (1967), Misner,
Thorne, & Wheeler (1973), §21.6, Fischer & Marsden (1979), Poisson (2004), §4.2, and Thiemann (2007), §1.5.
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8.10 A momentum map for canonical general relativity?

The combination of (8.225), (8.250), (8.298), and (8.310) makes it attractive to regard the
Hamiltonian (8.263) as a momentum map of some kind. The point is not just that the various
Lie and Poisson brackets match,439 but also that the role of the lapse and the shift (L,S), which
appear as parameters in the Hamiltonian, is now clearly distinguished from the role of (g̃, π̃):

• The point (g̃, π̃) ∈ T ∗R is simply the argument x of H = JA(x);

• The lapse and shift (L,S) play the role of the label A ∈ g, cf. Definition 8.17.

The original idea of Fischer and Marsden to do so was as follows.440 With Poisson manifold

P = T ∗R, (8.311)

take (g̃0, π̃0) ∈ P, and some MGHD (M,g, ι) of the associated initial data (Σ, g̃0, k̃0). We relabel ι

as ι0 since it will act as a “reference embedding”; by definition (M,g, ι0) induces the initial data
(g̃0, k̃0) on ι0(Σ) ⊂M. Then ι ∈ Emb(Σ,M,g) sends (g̃0, π̃0) to the point (g̃, π̃) ∈ P obtained
from the data induced by (M,g, ι) on ι(Σ). As we have seen, tangent vectors to curves in
Emb(Σ,M,g) may be identified with pairs (L̃, S̃) ∈C∞(Σ)×X(Σ), and if we agree that these
pairs form something like a Lie algebra g of Emb(Σ,M,g), then these pairs will be labels A in
JA, as advertised above. Because of (8.310), the Hamiltonian is a momentum map for this Lie
algebra, and because of (8.264) this momentum map even satisfies the pleasant relation (8.298).

Elegant as it is, this idea is questionable in (at least) two different ways:

1. The thing that acts, i.e. Emb(Σ,M,g), depends on the point (g̃0, π̃0) of P at which the
action is supposed to be defined.441 To repair this, we will have to use (Lie) groupoids.

2. The MGHD (M,g, ι) is only defined when (g̃0, π̃0) satisfies the constraints, and even so
it is only defined up to isometry, see Theorem 7.10. Both problems can be addressed by
refraining from the use of the MGHD, and even from only working with solutions to the
(vacuum) Einstein equations. However, the constructions will then merely be local.442

We fix Σ and only consider space-times (M,g) that can be obtained from some (g̃, π̃) ∈ T ∗R
by solving the coupled evolution equations (8.227) - (8.228) with lapse L = 1 and shift S = 0;
this fixes some representative in the isometry class of (M,g). This can, in general, only be done
locally in time, but since we will quickly pass to an infinitesimal level this is no problem; the
entire Lie groupoid construction may merely be seen as motivation for the ensuing Lie algebroid
construction. We may therefore assume that M = I×Σ, where 0 ∈ I ⊂R is some open interval.

439The minus sign in (8.264) and hence the corresponding minus signs in (8.265) - (8.267) are caused by the
fact that, as mentioned after (8.245), the Lie bracket in X(M) seen as Lie(Diff(M)) is minus the commutator, and
likewise for the Gaussian vector fields and for X(Σ), so that (8.298) is correctly reproduced if we regard H as a
momentum map J. Many authors, including Fischer & Marsden (1979), have the opposite sign for (8.268) as well
as for the canonical Poisson bracket (8.275), in which case (8.263) - (8.267) has no minus signs, but (8.298) does.

440See Fischer & Marsden (1979), §4.6. The follow-up papers they referred to for details never appeared.
441This part of the construction might be justified in that the remaining steps, reviewed below, only depend on the

orbits of the “action”, rather than on the specific mathematical object that “acts” and causes these orbits.
442The ideas below are preliminary. For a different approach, so far also “work in progress” (though more

advanced), see Blohmann, Barbosa Fernandes, & Weinstein (2013) and Blohmann & Weinstein (2018). For attacks
on the problem based on (multi-)symplectic geometry rather than Lie groupoids see Kijowski & Tulczyjew (1979),
Lee & Wald (1990), the legendary GIMMsy project (Gotay et al., 1998–2004), and Forger & Romero (2005).
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One obtains a solution to the vacuum Einstein equations in this way only if (g̃, π̃) satisfies the
constraints, but this is not necessary at this stage (and would even jeopardize the construction).
Let G0 = Emb(Σ) consist of all triples (M,g, ι), where (M,g) is some space-time of the said
type and ι : Σ ↪→M is some spacelike embedding with respect to g. Let

G = Move(Σ) := Emb(Σ)×Emb(Σ) (8.312)

be the associated pair groupoid:443 elements m ∈ G “move” some ι1(Σ) to some ι2(Σ). Let

p : T ∗R→ G0 = Emb(Σ); (g̃, π̃) 7→ (M,g, ι) (8.313)

be given by taking (M,g) to be the space-time obtained by solving the evolution equations
(8.227) - (8.228) with lapse L = 1 and shift S = 0, and take ι(x) = (0,x). Then G acts on the
map p in the natural way described above, i.e., the action of ((M1,g1, ι1), (M2,g2, ι2)) ∈ G on
(g̃0, π̃0) ∈ T ∗R is defined iff the triple (M2,g2, ι2) equals p(g̃0, π̃0) = (M,g, ι) as just described,
in which case, as in Fischer–Marsden, the result is the pair (g̃, π̃) induced by g1 on ι1(Σ) ⊂M1.

With an appropriate smooth or diffeological structure, the Lie algebroid π : g→G0 associated
to G is the tangent bundle T Emb(Σ)→ Emb(Σ), which, at fixed (M,g, ι), we have studied in
some detail above. Consequently, the given G-action on p : T ∗R→ Emb(Σ) induces a g-action

ξ : X(Emb(Σ))→ X(T ∗R); A 7→ ξA, (8.314)

where, according to eq. (8.243) in §8.8, a vector field A on Emb(Σ) associates a Gaussian vector
field (L,S), or equivalently its initial data (L̃, S̃) at ι(Σ), to a triple (M,g, ι), cf. Proposition 8.12.
Writing X = LN + S as before, and letting tildes denote the restrictions of the given quantities to
ι(Σ), the map ξ defining the g-action is then quite beautifully given by

ξA : (g̃, π̃) 7→ (L̃X g,L̃X π); X = A(p(g̃, π̃)). (8.315)

443A groupoid is a small category with inverses, i.e. one has two sets G and G0 (which in our case are infinite-
dimensional manifolds whose smooth or diffeological structure remains to be developed, cf. footnote 426), with
maps i : G0→ G (the unit), s, t : G→ G0 (source and target), µ : G×G0 G→ G (multiplication), where G×G0 G :=
{(x,y) ∈ G×G | s(x) = t(y)}, and I : G→ G (inverse), such that, writing xy := µ(x,y) whenever defined, we
have s(xy) = s(y), t(xy) = t(x), t ◦ I = s, s ◦ I = t, (xy)z = x(yz), s ◦ i = t ◦ i = idG0 , xi(s(x)) = i(t(x))x = x,
I(x)x = i(s(x)), and xI(x) = i(t(x)). Thus G consists of arrows x sending s(x) ∈ G0 to t(x) ∈ G0. For example,
each equivalence relation ∼ on some set G0, i.e. each subset R⊂ G0×G0, defines a groupoid G = R with structure
borrowed from the simplest example R = G0×G0, called the pair groupoid on G0, where s(a,b) = b, t(a,b) = a,
i(a) = (a,a), I(a,b) = (b,a), and (a,b) · (b,c) = (a,c). The “opposite” example is a group, where G0 = {e}. A
groupoid G on G0 may act not so much on a space but on a map p : P→ G0, via a map ϕ : G×G0 P→ P, where
G×G0 P := {(x,ρ) ∈G×P | s(x) = p(ρ)}, subject to t(xρ) = p(ρ), where we write xρ = ϕ(x,ρ), (xy)ρ = x(yρ),
and i(a)ρ = ρ , whenever defined. This is in fact the key to the use of groupoids in our GR context, since we see
that, except when G0 = {e}, only part of G acts on a given point p ∈ P and this part may very well depend on p.
In the presence of sufficient smoothness a groupoid–then called a Lie groupoid–has an associated Lie algebroid
π : g→ G0, which is a vector bundle over G0, equipped with an additional map α : g→ T G0 (called the anchor)
and a Lie bracket on Γ(g), the space of smooth sections of π , such that [A, f B] = f [A,B] +α(A) f ·B for each
f ∈C∞(G0), and α([A,B]) = [α(A),α(B)]. Here the simplest examples are π : T G0 → G0 with trivial anchor,
which arises as the Lie algebroid of the pair groupoid on G0, and the Lie algebra of a Lie group, seen here as a
vector “bundle” on a point (and hence as a vector space). As in the Lie group case, one has a notion of a g-action on
a map p : P→G0, which often comes from a G-action but is defined independently of such an origin. Thus we have
a Lie algebra homomorphism ξ : Γ(g)→ X(P), A 7→ ξA, such that ξ f A = (p∗ f )ξA and ξA(π∗ f ) = α(A) f .

See Mackenzie (2005) for a comprehensive treatment of Lie groupoids, Lie algebroids, and their actions. Moerdijk
& Mrcun (2003) and perhaps Landsman (1998, §III.3) or (2017, §7.4, §C.16) provide concise introductions.
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The equivalence between (8.227) - (8.228) and (8.310) implies that this g-action has our Hamil-
tonian H as a momentum map.444 For X = S we have L̃Sg = LS̃g̃ and L̃Sπ = LS̃π̃ , so that
ξ degenerates to a map ξ̃ : X(Σ)→ X(T ∗R), ξ̃S̃ : (g̃, π̃) 7→ (LS̃g̃,LS̃π̃), which is the map
obtained from (8.246) by taking G = Diff(Σ), acting on N = T ∗R by pullback of its action
ϕ(g̃) = (ϕ−1)∗g̃ on R. With g̃ = X(Σ), it follows that S̃ 7→ H0,S̃ is a momentum map for ξ̃ .

In the general case we are back to Fischer and Marsden, who–and this may even have been
their main goal–now invoke a powerful construction due to Marsden and Weinstein, namely
symplectic reduction.445 In its simplest version, a Lie group G acts on a symplectic manifold
P (i.e. a Poisson manifold whose Poisson tensor is invertible) with momentum map J : P→ g∗

satisfying (8.298). On suitable regularity assumptions,446 the symplectic quotient

P//G := J−1(0)/G (8.316)

has a unique invertible Poisson tensor Π̃ whose associated symplectic form ω̃ = Π−1 satisfies

π
∗
J−1(0)→P//Gω̃ = i∗J−1(0)↪→Pω , (8.317)

where Π is the given invertible Poisson tensor on P with inverse ω = Π−1, and the notation
is hopefully self-evident.447 Under the stated regularity assumptions, P//G is a (symplectic)
manifold, which in case G defines gauge symmetries is identified with the space of physical
degrees of freedom.448 Furthermore, at each x ∈ J−1(0) the tangent space TxP decomposes as

TxP = Tx(J−1(0))⊕TxR = Tx(P//G)⊕Tx(Gx)⊕TxR, (8.318)

where TxR is any (linear) complement of Tx(J−1(0)) within TxP (if one has a positive definite
metric on TxP, one may define such complements as orthogonal complements). Furthermore,
since Tx(Gx), i.e. the tangent space to the orbit through x, is a subspace of Tx(J−1(0)), the latter
splits into Tx(Gx) and a complement thereof, which we may identify with Tx(P//G).

Apart from problems arising from the non-validity of some of the technical assumptions that
underwrite it (including the lack of a sufficiently developed smooth or diffeological framework
so far), the above constructions, originally intended for finite-dimensional Lie groups G acting on
finite-dimensional manifolds P, at least conceptually generalize to the infinite-dimensional phase
space P = T ∗R and our infinite-dimensional (Lie) groupoid G = Move(Σ,M). For x = (g̃, π̃)
lying in the constraint surface H = 0 (in which case, we recall, the ensuing space-time (M,g)
solves the vacuum Einstein equations), the orbit G · (g̃, π̃) by construction consists of all initial
data obtained from all spacelike embeddings ι : Σ ↪→M for the given metric g (i.e. on M).

444This is meant in the simplest way here, as a map J : T ∗R→ g∗. In the context of Lie groupoid actions there are
various other, more refined notions of momentum maps, see e.g. Bos (2007) and Blohmann & Weinstein (2018).

445 The original sources are Meyer (1973) and Marsden & Weinstein (1974). For a historical survey of symplectic
reduction see Marsden & Weinstein (2001). See also the references in footnote 433, as well as Landsman (1998).

446These are that 0 ∈ g∗ is a regular value of J and that G acts freely and properly at least on J−1(0).
447Poisson purists will find it preferable to write this construction in terms of the Poisson structure alone, but

this only seems possible by appealing to the symplectic stratification theorem for Poisson manifolds, which also
involves symplectic geometry. See e.g. Ortega & Ratiu (2004), §10.1. First, there is a unique Poisson bracket on
P/G such that π∗P→P/G{ f ,g}P/G = {π∗P→P/G f ,π∗P→P/Gg}P. Second, J−1(0)/G is one of the symplectic leaves in
P/G, with its associated Poisson structure (which by construction is symplectic) inherited from the one on P/G.

448This is more or less the definition of a gauge symmetry! Even if G gives observable changes, the quotient P//G
is useful for simplifying the equations of motion, provided these come from a G-invariant Hamiltonian h on P via
(8.272), since there exists a unique Hamiltonian h̃ on P//G such that, just like (8.317), π∗J−1(0)→P//Gh̃ = i∗J−1(0)↪→Ph,

from which the motion on P may be (re)constructed (in case of gauge symmetry, h̃ is the physical Hamiltonian).
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Deformations of the initial data (g̃, π̃) tangent to the G-orbit in (8.318), i.e. along the subspace

Tx(Gx) = T(g̃,π̃)(G · (g̃, π̃)), (8.319)

therefore give rise to the same space-time (M,g), at least up to isometry.449 Even though (g̃, π̃)
satisfies the constraints, as we assume, and hence lies in H−1(0), the term TxR in (8.318) consists
of deformations of (g̃, π̃) off the constraint surface H = 0. These deformations lead to space-
times not satisfying the Einstein equations and can be ignored. Finally, the term T(g̃,π̃)(T

∗R//G)

gives the direction of deformations of (g̃, π̃) that lie within the constraint surface. These give rise
to space-times that satisfy the vacuum Einstein equations but are non-isometric to the (isometric)
space-time(s) with initial data (Σ, g̃, π̃). If all this can be made to work globally, which of course
is a big “if”, the “space of gravitational degrees of freedom” may then be identified with C /G,
where C ⊂ T ∗R is the constraint set H = 0. Furthermore, if Einstein(M) is the space of all
metrics g on M that arise as the MGHD of initial data (Σ, g̃, π̃) satisfying the constraints (and
hence the vacuum Einstein equations), at least for M = R×Σ we should also have

Einstein(M)/Diff(M) ∼= C /G. (8.320)

In defense of this canonical dream,450 let us note that at least “the count is right”: at each x ∈ Σ
we a priori have 12 degrees of freedom (d.o.f.), since both g̃i j and π̃ i j (or, equivalently, k̃i j) are
symmetric 3×3 matrices, having 6 independent components each. Four constraints reduce this
number to 12−4 = 8, and four components of X = (L,S) further reduce this to 8−4 = 4, that is,
the gravitational field has 2 physical d.o.f. per point (plus 2 associated momenta). This result had
previously been derived in §8.5 on the basis of a linear approximation to the Einstein equations,
which leads to the identification of these d.o.f. with the two helicity states of a massless helicity-2
particle (i.e. the graviton). Instead, the approach here is geometric and non-perturbative.451

Jerry Marsden (1942–2010) discussing the momentum map for GR with the author in 1999.
449It is in this sense that H is said to generate gauge transformations in GR. But it does not follow that moving

initial data (Σ, g̃, π̃) in M is unobservable or otherwise unphysical! See §8.11 for further discussion.
450See Fischer & Marsden (1979), p. 207. The left-hand side was taken up by Fischer & Moncrief (1996, 1997).
451The fact that the count of the d.o.f. of the gravitational field can be done in these two very different ways reflects

a deep schism in the world of quantum gravity (Armas, 2021). The majority goes for string theory (a perturbative
particle-physics based ideology), whereas a sizable minority prefers a non-perturbative geometric approach. This
schism was already implicit in the almost simultaneous publication of the three masterpieces on GR by Weinberg
(1972) on the one hand, and Misner, Thorne, & Wheeler (1973) and Hawking & Ellis (1973) on the other.
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8.11 Epilogue: The problem of time
Although the previous analysis is preliminary and non-rigorous, we expect that its conclusion is
independent of the details, in the sense that any satisfactory analysis of the (gauge and non-gauge)
degrees of freedom of GR should lead to the same general picture (perhaps this is what we mean
by ‘satisfactory’). This enables us to put in our tuppence worth on the scarlet problem of time.

The philosophical analysis of time is as old as philosophy itself, traditionally starting around
500 BC with the opposition between Heraclitus, who famously maintained that everything
constantly changed, and Parmenides, who felt that if not change, then at least time was an
illusion.452 Jumping to the twentieth century, in what follows we focus on the implications:453

time ⇒ change ⇒ A-series ⇒ B-series, (*)

where we use the standard terminology in the philosophy of time, introduced by McTaggart:

• In the A-series, events are ordered in a time series that goes from the past to the present
and moves on towards the future. This ordering assumes the existence of a “moving now”
and as such describes what has been called manifest time, which is what we actually
experience. With respect to the “now”, any event lies either in the past, or in the present,
or in the future, and this status changes as time flows, that is, as the “now” moves on.

• The B-series, on the other hand, merely orders events according to their relative position,
which can be either that they are simultaneous, or that one is earlier or later than the other.

In particular, there is no “now” in the B-series. One version of the “problem of time”, then, is the
claim that modern physics gives us a B-series, whereas everyday experience gives us an A-series.
In other words, physics fails to incorporate the “now” that dominates our perception of time.454

However, physics is still supposed to be compatible with an A-series, whose existence is merely
foreign to its language. This problem is soft compared to the radical claim we will now discuss:

general relativity does not even provide a B-series (!)

452This Pre-Socratic opposition between “becoming” and “being”, or “change” and “existence”, continued with
Aristotle. This had disastrous consequences for mathematical physics. In his Metaphysics, Aristotle organized
knowledge into something like a 2×2 matrix, where the axes are “changing/permanent” and “dependent/independent”
(that is, of man). He put physics in the change & independent entry, whereas mathematics was supposed to be
permanent & independent (the latter against Plato). See e.g. Gaukroger (2020). This classification held back the
interaction between physics and mathematics for 2000 years, until initially Kepler and Galilei and subsequently
Huygens and especially Newton recombined them and thus provided the basis for modern science.

453These implication were all proposed by McTaggart (1908, 1927). See also Dainton (2010). The only implication
that really counts for our technical discussion is “time⇒ B-series”, or rather its contrapositive “no B-series⇒ no
time”, but the chain in (*) is convenient in order to frame the overall problem of time. The first implication goes
back at least to Aristotle (Physics, Book IV, chapter 11), see Shoemaker (1969) for a nice philosophical analysis. It
would be denied by Newton (Rynasiewicz, 2014), but GR can deny it, too, as it admits static solutions (see §8.4).
The point, however, is that according to the arguments reviewed and critiqued below GR admits no flow of time
whether or not time requires change. Similarly, the second implication needs to be argued for, as McTaggart does at
some length, but his target is the A-series, whose alleged incoherence allows him to disprove the existence of time.
Instead, the argument in our main text concerns the B-series. It is remarkable that of the two great twentieth-century
philosophical treatises about existence and time, both of which are hard-core specimens of “armchair” philosophy
based on pure speculation, McTaggart (1921, 1927) has been very influential on discussions that are informed by
modern science, whereas Heidegger (1927) has, rightly, been completely sidelined in the philosophy of science.

454This is the version of the problem addressed in Callender (2017), whose opening sentences deserve to be quoted:
‘Time is a big invisible thing that will kill you. For that reason alone, one might be curious about what it is.’
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In particular, the causal picture of space-time, based on the relations I or J, i.e. on the partial
orderings x� y or x6 y (cf. §5.3), is a hallucination (or, in more diplomatic parlance, it is part
of the “manifest” image of GR, as opposed to its “scientific” image). In reality, or so it is claimed,
there is just a “frozen” initial data set (Σ, g̃, k̃) whose development into a space-time (M,g) is
unphysical. In other words, despite the fact that relative to some foliation M = tΣt (cf. chapter
8) the initial data (Σ, g̃, k̃) appear to move into new and usually different data (Σt , g̃t , k̃t), these
data are merely different descriptions of the same physical situation. If true, there is no change,
and hence, taking the contrapositive of (*), no time either. Was Parmenides right, after all?

In the literature one finds the following two arguments for the timelessness of GR:455

• Diffeomorphisms: Since the Einstein equations of GR are invariant under diffeomorphisms,
even for given initial data its solutions are unique only up to diffeomorphisms. Therefore,
in order to save determinism, the “observables” of the theory must be diffeomorphism-
invariant, too. This excludes any explicit time-dependence of physical quantities.

• Constrained Hamiltonian dynamics: In the Dirac–Bergmann approach to GR as a con-
strained Hamiltonian system time evolution is generated by the Hamiltonian constraint,
which according to his formalism generates gauge transformations. Once again, in the
interest of saving determinism the effect of such transformations is deemed unphysical.

The second argument is a “Hamiltonian shadow” of the first.456 Both arguments are based on an
interpretational move within a certain formalism that is not in fact implied by that formalism.

In the Hamiltonian approach this move–which we question–interprets different canonical
data on the same gauge orbit as physically indistinguishable. Although this is indeed the case
in electrodynamics, in GR the situation is quite different. The real sense in which moving from
the canonical data (g̃0, π̃0) on Σ to time-evolved data (g̃(t), π̃(t)) on the same Σ is a gauge
transformation, is that both data sets give rise to–i.e. are initial data for–the same space-time
(M,g). To clarify this matter, for the convenience of the reader we now rephrase Theorem 8.2,
which may be seen as a corollary and reinterpretation of Theorem 7.10, in Hamiltonian form.

455 In connection with relativity, the philosophical analysis of time goes back to the special theory, see e.g. Cassirer
(1921), Bergson (1922), Schlick (1922), Reichenbach (1928), of whom the latter two also involve the general theory.
See e.g. Ryckman (2018) and Stuur (2019) for recent historical and philosophical analysis. The problem of time in
GR as discussed here has its historical roots in Einstein’s hole argument (see §1.5) and the ensuing issue of general
covariance (§1.10), but may more specifically be traced back to Bergmann (1958, 1961). From theoretical physics
we cite the reviews by Isham (1992) and Kuchar (1992) as well as the monograph by Anderson (2017); see also
Thiemann (2007). Defendants of claim (!) include Barbour (1999), Earman (2002), and Rovelli (2004). From
the philosophical literature our views are closest to Butterfield (1984) and Healey (2002, 2004). See also Norton
(2010), Pitts (2014), Gryb & Thébault (2016), Rovelli (2019), and Thébault (2021). Maudlin (2002) dismisses
the Hamiltonian version of the problem of time in GR as ‘completely phony’, but this verdict is predicated on his
erroneous claim, made even twice, that the initial value problem of GR ‘admits of a unique maximal solution’. See
Theorem 7.10, whose lack of absolute uniqueness (replaced by uniqueness up to isometry) is nothing but Hilbert’s
Cauchy-problem version of the hole argument and hence may be seen as the root of the problem of time in the PDE
approach to GR. Indeed, what makes the problem of time look genuine (though solvable) is that it pops up in almost
any formulation of GR. However, Maudlin’s discussion of the “diffeomorphism” version is actually quite good.

456 One also sometimes finds a mixture of these arguments to the effect that the (formal) Hamiltonian H in GR
generates (space-time) diffeomorphisms, but this is hard to make sense of. If H, taken to be (8.263), acts on phase
space T ∗R as defined in §8.9, then there simply is no notion of 4d diffeomorphisms. If what is meant is a rewriting
of Theorem 8.2 in Hamiltonian form via (8.310), then, as explained in the main text, the lapse and shift have given
values, and diffeomorphism invariance of the theory is broken by the ensuing foliation of space-time. In that setting,
what remains of the idea that time evolution in GR is a diffeomorphism is that ∂t g̃ = L∂t g̃ is a Lie derivative–indeed
an infinitesimal diffeomorphism!–, which is true for almost any quantity in almost any geometric theory.
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Theorem 8.19 Let (M,g) be a globally hyperbolic space-time equipped with a foliation (8.1)
by spacelike Cauchy surfaces Σt , and associated lapse L and shift S. Let (g̃(t), π̃(t)) be the
canonical data on Σt induced by the 4-metric g on M via the–equivalent–data (g̃(t), k̃(t))
consisting of the 3-metric and exterior curvature on Σt induced by g, cf. (8.209) - (8.210).

• Then g is a solution of the vacuum Einstein equations iff, cf. (8.223) - (8.224):

1. For some t the pair (g̃(t), π̃(t)) satisfies the constraint equations C0 = 0 and Ci = 0;

2. The maps t 7→ g̃i j(t) and t 7→ π̃i j(t) satisfy the evolution equations (8.310), where
the Hamiltonian H(L,S), indexed by the lapse L and shift S, is given by (8.263).

• Conversely, given canonical data (g̃, π̃) on Σ satisfying the constraints, the evolution
equations (8.310) with specified lapse L and shift S have a solution (t 7→ g̃i j(t), t 7→ π̃i j(t)),
which is unique in its time domain and defines a globally hyperbolic space-time (M,g)
with associated foliation that returns the solution as just described: for each t the pair
(g̃(t), π̃(t)), though originally defined on Σ, are the initial data induced on Σt by g.

In the context of Theorem 7.10 this space-time was only given up to initial-data-preserving
isometries (as in Hilbert’s version of the hole argument), but in the context of Theorem 8.19 this
lack of uniqueness is avoided by an explicit choice of the lapse L and shift S. Here it is crucial to
realize that in the Hamiltonian formalism (as presented in sections 8.7 to 8.10) the Hamiltonian
generating the dynamics (which allegedly consists of unphysical gauge transformations) is not
the Hamiltonian constraint (7.145) itself, but the function H(L,S) appearing in Theorem 8.19,
which is indexed by a specific choice of the lapse L and shift S. As explained in §8.1, such a
choice amounts to a foliation (8.1) of the space-time that the initial data (Σ, g̃t , k̃t) give rise to.

This foliation is arbitrary (as long as its leaves are spacelike), but once it has been chosen
(if only implicitly, via the lapse and shift), it sets the standard (or reference frame) against
which time and change in time are measured.457 The changes we observe in the context of
GR, from the motion of the perihelion of Mercury to the expansion of the universe, are real,
but their quantification is somewhat arbitrary in that it may depend on the foliation. In other
words, numerical indicators of change may depend on the reference frame against which they
are measured, but this is nothing new. The only–but of course crucial–difference with special
relativity is that in general relativity the “now” has become even more flexible. In Newtonian
space-time hyperplanes of simultaneity must be horizontal. In Minkowski space-time they are
no longer unique and may be tilted. In GR, all sorts of curved hypersurfaces Σt are allowed: as
we argued in §1.10, this is what makes GR general. But even within this increased arbitrariness,
the causal structure of a space-time (M,g) is well defined and hence it is perfectly clear what
moving forward in time means, namely moving along a future-directed timelike curve.

The dissection of the “diffeomorphism” argument against time is similar, to the effect that
once again time and change are perfectly well defined in GR, but are quantified relative to a
foliation or reference frame, and hence are less absolute than in pre-relativistic physics.458

In conclusion, we have argued that (compared to other theories) GR has no new features
that should affect the philosophical analysis of time. It surely supports the B-series, and seems
neutral about the existence of the A-series, i.e., about the reality of the “moving present”.

457Einstein (1917a) and Hilbert (1917) held this view. Einstein imagined a ‘reference mollusk’ (Bezugsmolluske,
ibid., p. 67), whereas Hilbert prosaically realized the frame as a system of measuring rods and ‘light-clocks’.

458See Maudlin (2002) and Healey (2004).
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9 Black holes I: Exact solutions
The theory of black holes is an interplay between abstract arguments, like Penrose’s singularity
theorem, and concrete examples. This chapter is devoted to the latter (but the next one returns to
the abstract theory). As a warm-up, we start with a simple example that has no true singularity
but illustrates the remarkable interplay between coordinate singularities and horizons.459

9.1 De Sitter space revisited
Recall from (4.91) in §4.4 that the two-dimensional de Sitter space dS2

1 (with unit radius ρ = 1) is
defined as the surface −x2

0 + x2
1 + x2

2 = 1 in R3 with metric inherited from the Minkowski metric
η = −dx2

0 + dx2
1 + dx2

2. It is a Lorentzian manifold with constant curvature k = 1, topologically
dS2

1
∼= R×S1, cf. (4.93). Each of the following coordinatizations is useful:460

x0 = sinhτ; x1 = coshτ cosψ; x2 = coshτ sinψ; (9.1)
x0 = sinh t cosϕ; x1 = cosh t cosϕ; x2 = sinϕ; (9.2)

x0 = sinh t
√

1− r2; x1 = cosh t
√

1− r2; x2 = r. (9.3)

where τ , t ∈R, ψ ,ϕ in (−π ,π), and r ∈ (−1,1). In these coordinates, the de Sitter metric is

gdS = −dτ
2 + cosh2

τ dψ
2 = −cos2

ϕ dt2 + dϕ
2 = − f (r)dt2 + f (r)−1dr2, (9.4)

where f (r) := 1− r2 = (1+ r)(1− r), see also (6.2) and ensuing discussion.

Two-dimensional de Sitter space embedded in three-dimensional Minkowski space. The left picture,
extended to ±∞ along the x0-axis (= z-axis), gives the complete space, as coordinatized by (9.1). The
picture on the right (idem dito) is the part coordinatized by (9.2). It does not contain the “singular” points
(0,0,±1), so that the boundaries at r = ±1 or ϕ = ± 1

2 π do not touch. Its right-hand part, called the
static patch, is the part coordinatized by (9.3), with a metric that at least looks singular at r = ±1.

459This section, which may be skipped at the expense of a cold start in §9.2, was inspired by §2 of Carter (1973).
Carter discusses anti de Sitter space, technically even in a quite different way, but the spirit is similar.

460The first system can be extended to ψ ∈R, giving the metric on the universal covering d̃S2
1. We will not do so.
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The first coordinate system (τ ,ψ) covers the entire space, but it obscures the static nature of
the metric. Staticity is obvious in the second system (t,ϕ), in which the timelike Killing vector
field is given by ∂t . The third system, which is obtained from the second by putting r = sinϕ and
restricting the range of ϕ to (− 1

2π , 1
2π), is pedagogically useful as it gets us closer to the black

hole solutions below. But it is also physically motivated, because the special values r = ±1 and
hence the boundaries of the region covered by the (r, t) coordinates correspond to a so-called
Killing horizon, where ∂t becomes lightlike (see §10.8). Although this is suggested by the metric
(9.4) we need better coordinates to establish this fact, since the horizon is not within the scope of
the (r, t) system. To this end, anticipating the Schwarzschild black hole case, we solve

dr∗(r)
dr

=
1

f (r)
; r∗ = arctanhr = 1

2 ln
∣∣∣∣1+ r
1− r

∣∣∣∣ , (9.5)

where r ∈ (−1,1) corresponds to r∗ ∈R, with r→±1 iff r∗→±∞. We proceed by introducing
the analogue of the lightlike coordinates u = t− r and v = t + r in Minkowski space-time, i.e.

u = t− r∗, t = 1
2(v+ u); (9.6)

v = t + r∗, r∗ = 1
2(v−u), (9.7)

In terms of these, via the relation r = tanhr∗ the metric is easily found to be

gdS = − f (r)dudv = −(1− tanh2( 1
2(v−u)))dudv. (9.8)

This expression is still singular as r→±1. To remedy this at least near r = +1, we introduce

−U = eu; V = e−v, (9.9)

which clearly satisfy U < 0, V > 0, and, in view of (9.9), (9.6) - (9.7), and (9.5), we have

UV = exp(−2r∗) =
r−1
r+ 1

. (9.10)

In terms of these coordinates, the metric is

gdS = −
4

(1−UV )2 dUdV , (9.11)

and the coordinates (x0,x1,x2) in terms of which dS2
1 was originally defined are

x0 =
−U−V
1−UV

; x1 =
−U +V
1−UV

; x2 =
1+UV
1−UV

. (9.12)

Since r→ 1 corresponds to r∗→ ∞ and hence to UV → 0, the metric is now regular for r→ 1.
We can even pass through this barrier by allowing U to also be zero or positive, at least provided
UV < 1, where we note that UV = 1 corresponds to r = ∞ (whilst r = −1 corresponds to
UV = ±∞). This may be motivated by allowing (9.5) also for r > 1; if for such r we redefine U
by U = exp(u), then (9.10) remains valid also for r ≥ 1. Furthermore, we may include V ≤ 0 in
the picture, which leads to the situation described in and after the diagram below. Note that the
(U ,V ) coordinates fail to cover all of de Sitter space; a similar construction with r replaced by
−r gives another coordinate system that covers the part near r = −1 and both systems together
describe all of dS2

1 (this will not be necessary for the Schwarzschild solution, which is easier!).
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UV = 1

UV = 1

U V

r = 1r = 1

r = 1r = 1

-1<r<1
r>1

r= ∞

r>1
-1<r<1

(static patch)
IIV

III

II

Kruskal-like diagram for (part of) de Sitter space in U-V lightlike coordinates. Region I, where U < 0
and V > 0, is the static patch, and region IV, where U > 0 and V < 0 is its mirror image (in the y-z plane).
Region II, where U > 0 and V > 0 (below the wiggly UV = 1 line) covers the open part of the right-hand
green figure behind the x-z plane at z < 0, whereas region III, where U < 0 and V < 0, covers its part at
z > 0. The part of de Sitter space left open in the right-hand green figure in front of the x-z plane is not
covered by the U-V coordinates (it lies at infinity).

Returning to our Killing field vector field ∂t for the metric, in the new coordinates we obtain

∂t =U∂U −V ∂V ; (9.13)

g(∂t ,∂t) = −8
UV

(1−UV )2 , (9.14)

which vanishes at r→ 1, as predicted. Thus the Killing field ∂t changes from being timelike in
region I (i.e. r < 1) to being lightlike for UV = 0 (r = 1) to being spacelike for U < 0, V > 0
(r > 1). This makes the line r = 1, or UV = 0, a Killing horizon, a concept we will return
to in §10.8; the cross r = ±1 is a bifurcate Killing horizon, see Definition 10.19. From the
perspective of a static observer (i.e. r = constant) in the static patch −1 < r < 1, compared to
Minkowski space-time the unusual situation arises that even in an infinite lifetime only signals
from within the static patch will reach them, the entire rest of de Sitter space being invisible
forever (in contrast, any static observer in Minkowski space-time will eventually be able to detect
signals from any other physical systems anywhere in space-time). Indeed, just rotate the first
picture in §5.10 by 90 degrees and you see the lightcones in de Sitter space: moving up in time,
the backward lightcone does not increasingly open up, but remains confined to the static patch.

As such, the Killing horizon is also an event horizon. It can be crossed (by a non-static
observer, such as a light ray or an accelerating observer), but the difference with a Schwarzschild
black hole is that an observer crossing the horizon, i.e. moving from region I to region II, will not
necessarily fall into a singularity, because de Sitter space has none (it is geodesically complete).
Instead, the coordinate singularity UV = 1 is simply the end of de Sitter space at infinity. As we
shall see, in the Reissner–Nordström solution, cf. §9.5, the situation is again different.
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9.2 The Schwarzschild solution and some of its geodesics
After this warm-up, we now state the first curved solution to the vacuum Einstein equations:461

gS = − f (r)dt2 + f (r)−1dr2 + r2(dθ
2 + sin2

θdϕ
2); (9.15)

f (r) := 1− 2m
r

=
1
r
(r− rS). (9.16)

This is the Schwarzschild metric, defined, for the moment, for some constant m > 0 (see §9.5
for m < 0),462 and coordinates t ∈R, (θ ,ϕ) ∈ S2, and r > rS := 2m, the Schwarzschild radius.
The arguably most pedagogical road towards it, which goes back to Hilbert, is as follows.463

1. Staticity. Assume: (i) M = R×Σ; (ii) coordinates adapted to this; (iii) arbitrary lapse but
zero shift. Then any static solution to the vacuum Einstein equations takes the form (8.96).

2. Spherical symmetry.464 Assuming Σ = R3\B3
c (for some c > 0), we may start from

g̃ = M(r)dr2 + r2dΩ; dΩ := dθ
2 + sin2

θdϕ
2, (9.17)

where we use polar coordinates (r,θ ,ϕ) in which the radial variable r has been normalized
so as to give two-spheres S2

r with radius r a surface areas 4πr2, as in flat space.

3. In the initial value problem,465 staticity implies k̃ = 0. Up to constant rescaling, the most
general spatial metric g̃ solving the constraint (8.101) is M(r) = f (r)−1 for some m ∈R.

4. The remaining Einstein equation (8.100) then yields L(r) =
√

f (r), and hence (9.15).466

Note that (given the above choice of Σ), asymptotic flatness (see §8.4) follows from staticity
and spherical symmetry. In §10.9 we give two other derivations of the Schwarzschild metric,
namely Birkhoff’s theorem 10.21, which derives the metric (and hence its staticity as well as its
asymptotic flatness) from spherical symmetry alone, and Israel’s theorem 10.24, which derives
the metric from staticity, asymptotic flatness, and the existence of a smooth event horizon.

461 A solution equivalent to this one was first found by Schwarzschild (1916). Up to differences in notation, it
was stated in the above form by Droste (1916), Hilbert (1917), and Weyl (1917). Karl Schwarzschild (1873–1916)
communicated his solution in a letter to Einstein dated 22 December 1915, written from the Russian front. He
died on May 11, 1916, though not from the War but from the rare autoimmune skin disease pemphigus. Johannes
Droste (1886–1963) was a PhD student of Lorentz, who did not know Schwarzschild’s work but (re)discovered the
solution a few months after him. Droste was a professor of mathematics at Leiden from 1930–1956. Hilbert and
Weyl both cite Schwarzschild, whose solution differs from these later versions since, like Einstein at an earlier stage,
he worked in unimodular coordinates (i.e. det(g) = −1). See Antoci & Liebscher (2001) and Antoci (2003).

462In physical units, m = GM/c2. The constant m equals the mass of the asymptotically flat space-time (9.15),
cf. (8.108) etc. Alternatively, a static observer is described by the four-veolcity u = f (r)−1/2∂t , normalized to
g(u,u) = −1, which gives an acceleration of ∇uu = mr−2∂r. If we replace dt2 in the metric (9.15) by c2dt2, as
we should in physical units, this is the same formula as in Newtonian gravity. Finally, the Schwarzschild radius
rS = 2m can be found–in physical units–from Newtonian gravity as the critical radius of a gravitating ball with mass
m for which the escape velocity v equals the speed of light c; indeed, one has 1

2 c2 = Gm/rS, i.e. rS = 2Gm/c2.
463See Hilbert (1917), of which O’Neill (1983), chapter 13, gives a modern presentation.
464A deeper perspective on spherical symmetry will be given in §10.9 in connection with Birkhoff’s theorem.
465As an initial-value problem the Schwarzschild case with initial data on Σ = R3\B3

c is unsatisfactory because as
a Riemannian manifold (Σ, g̃) is incomplete, even if c = 2m. This will be resolved by the Kruskal solution.

466The simplest way to get there is to solve ∆̃g̃L = 0, which comes down to ( f (r)1/2r2L′(r))′ = 0. This is solved
by L(r) =

√
f (r), which also solves (8.100), or by L(r) =C, which does not, cf. Schoen (2009), Lecture 5. Note

that in the above Hilbert-style derivation the Ansatz “L = L(r)” is supposed to follow from spherical symmetry, too.
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On the nose, the solution (9.15) applies to both r > 2m and 0 < r < 2m, and as we shall see
in §9.3, the value r = 2m is merely a coordinate singularity. Although in the present section we
restrict ourselves to r > 2m, it is worth mentioning that r = 0 is a genuine singularity, both in the
sense of the singularity theorems and in the sense that curvature blows up: this can be detected
in a coordinate-free way through the so-called Kretschmann scalar

Rρσ µνRρσ µν =
48m2

r6 . (9.18)

If a star has radius R > 2m, then its interior is modelled by some nonzero energy-momentum
tensor, so that the vacuum Einstein equations to which (9.15) is a solution are only relevant for
r > R. This is the case, for example, with our Sun. If, on the other hand, R≤ 2m, then the only
physically stable situation to which a static solution like (9.15) could possibly apply is R = 0,
which describes a black hole. See footnote 493. In that case, the vacuum solution (9.15) applies
to both r > 2m and 0 < r < 2m. Since all black holes in the universe are believed to rotate (and
hence are stationary but not static), it seems that the Schwarzschild solution for 0 < r < 2m does
not describe anything in Nature; one would need the Kerr solution instead (see §9.6). However,
one can do a few simple calculations about the metric (9.15) that are hardly changed by rotation
and explain key features of the famous image of the supermassive black hole in M87:467

First Image of the Supermassive Black Hole in M87, revealed on April 10, 2019.468

A black hole obviously does not emit any radiation itself. But if it is “illuminated” (at a
typical radio astronomy wavelength like 1.3 mm, so that the colors are fake), then some deflected
photons may reach us and provide us with an indirect image. In the case at hand, illumination
comes from a thin accretion disc whose constituents on average move around the black hole in
circular geodesics and emit photons, converting gravitational energy into radiation. The aim
of the following calculations is to show that the photon capture radius, i.e. the radius of the
central dark disc known as the black hole shadow, is a =

√
27m, instead of 2m as one would

find by (wrongly) identifying the disc with the interior of the black hole as defined by its event
horizon. Furthermore, we will give an idea of the origin of the bright area, which is a blurred
image of the photon sphere of the black hole, which is located at r = 3m (from which the step to
a =
√

27m is straightforward geometry). The key to the structure of the black hole shadow is the
existence of (unstable) circular photon orbits at radius r = 3m (and no other value).469 Perhaps
paradoxically, gravitational lensing makes this radius the edge of the shadow. The instability of
all circular geodesic orbits of massive particle at radiuses r ≤ 6m also plays a role.

467The Event Horizon Telescope (2019a) expects only a 4% change in a between Schwarzschild and Kerr.
468Source: https://eventhorizontelescope.org. Credit: The Event Horizon Telescope Collaboration.
469This was noted by Hilbert (1917)! Modern references are Luminet (1979) and Event Horizon Telescope

Collaboration (2019ab). See also Misner, Thorne, & Wheeler (1973), chapter 25, and Chruściel (2020), §3.9.
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To start, we describe geodesics (which as always are affinely parametrized by definition)

γ(s) = (t(s),r(s),θ (s),ϕ(s)) (9.19)

in the Schwarzschild metric (9.15). In the absence of off-diagonal terms, the vector fields ∂µ are
orthogonal, from which it is easy to show that the geodesic equation (3.24) becomes

d
ds

(gµµ ẋµ) = 1
2

3

∑
ν=0

(ẋν)2
∂µgνν , (9.20)

where ẋµ = dxµ(s)/ds, and µ = 0,1,2,3 is fixed. Then µ = 0 gives d( f ṫ)/ds = 0; µ = 2 gives
d(r2θ̇ )/ds = r2 sinθ cosθϕ̇2; and µ = 3 gives d(r2 sin2

θϕ̇)/ds = 0. Hence we may set

f (r(s))ṫ(s) = E; θ (s) = π/2; r(s)2
ϕ̇(s) = L, (9.21)

where E and L are constants, interpreted as energy and angular momentum, respectively.470 The
case L = 0 gives radial motion (i.e. at constant θ and ϕ). If also gµν γ̇µ γ̇ν = 0, then

t(s) = ±(s+ 2m ln |s|)+C; r(s) = s+ 2m, (9.22)

for constant C, gives the radial lightlike geodesics, initially with s > 0 and hence r > 2m (see §9.3
for r < 2m). Radial lightlike geodesics do not contribute to the black hole shadow, whereas radial
timelike geodesics of massive particles do not contribute to the accretion disc, and therefore do
not produce the photons in the EHT image either. Hence for understanding this image we may
assume L 6= 0. In that case, we may invert ϕ(s) to make r a function of ϕ instead of s.

We now use the fact that for geodesic motion the combination gµν γ̇µ γ̇ν is constant, i.e.

gµν γ̇
µ

γ̇
ν = −λ

2, (9.23)

with e.g. λ = 0 for photons. Using (9.21), eq. (9.23) may be written in terms of E := E2/L2 as(
1
r2

dr
dϕ

)2

+V (r) = E ; V (r) :=
(

1− 2m
r

)
·
(

1
r2 +

λ 2

L2

)
, (9.24)

where in the massless case E is usually called 1/b2, with impact parameter b = L/E. Thus we
can describe geodesic motion near a black hole as motion in a potential V , where ϕ plays the
role of time. In fact, the second (µ = 1) entry in (9.21) can also be derived from (9.24), viz.

1
r4

d2r
dϕ2 −

2
r5

(
dr
dϕ

)2

= − 1
2

dV
dr

. (9.25)

We start with the massless case λ = 0, so that the potential V in (9.24) becomes

V (r) =
f (r)
r2 =

1
r2 −

2m
r3 . (9.26)

This potential is plotted below. It has a maximum at r = 3m, at which the critical energy is

Ec = V (3m) = 1/(27m2). (9.27)
470As we shall show systematically for the Kerr metric, see §9.6 from eq. (9.126) onwards, the constants of motion

E, L, and π/2 come from three Killing vector fields K for the Schwardschild metric, taking the form g(γ̇ ,K).
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V (r) in units of m, i.e. V = 0 at r = 2m and V is maximal at r = 3m, where V (3m) = 1/27m2.

• The photon sphere is the orbit r = 3m (i.e. dr/dϕ = 0) at the critical value Ec where
V takes its maximum. Since V ′(3m) = 0, it follows from (9.25) that the circular orbit
r(ϕ) = 3m is a geodesic. This orbit is unstable,471 since V ′′(3m) = −2/(81m4) < 0.

• Photons with E > Ec starting at r > 3m cross the barrier and fall into the black hole.

• Photons with E < Ec are (eventually) reflected at the periastron rc > 3m where V (rc) = E
and then increase r again (perhaps after having orbited the black hole), as in the artist
impression on the next page. Such photons cannot cross the photon sphere, but depending
on their energy they can come arbitrarily close to it. Almost all photons detected on earth
belong to this category, which explains both the relatively sharp edge of the black hole
shadow at r = 3m, or rather a =

√
27m, see (9.28) below, and the bright area around it.472

We now explain why the apparent radius a of the black hole shadow does not equal a = 3m but

a =
√

27m. (9.28)

Let η be the (very very very) small angle between the radial direction from us to the center of
the black hole,473 given by the vector X = −∂r, and the direction in which we see the photon.

471There is one exception making the photon sphere “attractive”: photons whose “energy” is exactly equal to Ec
that are not already at r = 3m will asymptotically spiral towards the photon sphere (and hence are invisible to us).

472The shadow is not absolutely black, since there is some leakage from photons coming from 2m < r < 3m. See
e.g. Narayan, Johnson, & Gammie (2019), also for a general explanation of the shadow. All photons in the image of
the black hole in M87 are produced as synchrotron radiation by either a hot diffuse plasma accreting onto the black
hole, or a collimated plasma jet.

473We quote from https://blackholecam.org/research/bhshadow/: ‘The predicted size of the shadow cast
by the event horizon of the supermassive black hole at the center of our own Milky Way is about 50 microarcseconds
(that is one fifty millionth of an arcsecond, which is 1/3600th of a degree!). Although super small, this angular
size can actually be resolved by astronomical observations using an interferometric technique at radio wavelengths,
called Very Long Baseline Interferometry or VLBI.’ This makes the image by the Event Horizon Telescope an
incredible technological achievement, on a par with the first detection of gravitational waves by LIGO in 2015.
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This direction is the vector Y = (dr/dϕ)∂r + ∂ϕ . The angle is given by the usual formula

g(X ,Y ) =
√

g(X ,X)
√

g(Y ,Y )cosη , (9.29)

which holds in Riemannian geometry as well as it does in Euclidean geometry. Eq. (9.15) gives

cos2
η =

(dr/dϕ)2

(dr/dϕ)2 + r2(1−2m/r)
. (9.30)

Eliminating (dr/dϕ)2 via (9.24) with (9.26) and E = Ec given in (9.27) gives Synge’s formula

sin2
η =

27m2(r−2m)

r3 . (9.31)

Here r is our distance to the black hole, and we take E = Ec since we want to compute the angle
for the boundary of the black hole shadow, as explained above. On the other hand, Euclidean
geometry as naively used by an observer at (practically) infinity in flat space-time gives

a
r
= tanη . (9.32)

For very small η we have tanη ≈ sinη ≈ η . Also, in (9.31) we neglect the 2m/r3 term against
r/r3 = 1/r2 because r is very large. Eqs. (9.31) and (9.32) then immediately yield (9.28).

Finally, we show that there are no stable circular geodesic orbits of massive particles for
r ≤ 6m. First, putting dr/dϕ = 0 in (9.25) gives V ′(r) = 0, which in this case, i.e. λ 6= 0 in
(9.24), unlike the massless case (λ = 0) does not lead to a unique solution but to the condition

r−3m = mλ
2r2/L2. (9.33)

Hence r > 3m. Using (9.33), the stability condition V ′′(r) > 0 then becomes r > 6m.

Artist’s impression of the paths of photons in the vicinity of a black hole. The gravitational bending and
capture of light by the event horizon is the cause of the black hole shadow .474

474Source: https://www.almaobservatory.org/en/images/photon-paths-around-a-black-hole/.
Credit: Nicolle R. Fuller/NSF.
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9.3 The event horizon of Schwarzschild space-time
We now show how to cross the barrier r = 2m. In the coordinates used to express (9.15) this is
a bit awkward,475 since the metric is simply undefined at r = 2m. We resolve this coordinate
singularity as in de Sitter space, see (9.6) - (9.7). We again introduce lightlike coordinates

u = t− r∗, t = 1
2(v+ u); (9.34)

v = t + r∗, r∗ = 1
2(v−u), (9.35)

where the new (‘tortoise’) radial coordinate r∗ = r∗(r) is defined as a solution, for r > 2m, of

dr∗(r)
dr

=
1

f (r)
; f (r) := 1− 2m

r
, (9.36)

up to a constant fixed below, so that 2m < r < ∞ corresponds to −∞ < r∗ < ∞. The variables

x∗ = (r∗/2m)−1; x = (r/2m)−1, (9.37)

turn eq. (9.36) into dx∗/dx = 1+ x−1, which for x > 0 is solved by x∗ = x+ lnx+C. Hence

r∗(r) = r+ 2m ln
∣∣∣ r
2m
−1
∣∣∣= r+ 2m ln |r−2m|−2m ln(2m) (9.38)

solves (9.36). One may also solve r for r∗: for x > 0 we have x = W (ex∗), where W is the
Lambert W -function, defined for x > 0 by

W (x)eW (x) = x. (9.39)

Up to a constant,476 this gives

r(r∗) = 2m
(

W
(

e(r∗/2m)−1
)
+ 1
)

. (9.40)

To interpret the coordinate r∗, note that if in a geodesic (9.19) we write the radial coordinate r(s)
as r(t) by inverting t(s), and subsequently express r in terms of r∗, from (9.21) we obtain

dr
ds

= E
dr∗
dt

. (9.41)

This relates two perspectives on radial geodesics: travellers use proper time s and undergo
s 7→ r(s), whereas static observers, who by definition are at rest in (r,θ ,ϕ) and use time t,
monitor t 7→ r∗(t). For example, it follows from (9.22), see also (9.68) below, that a future-
directed ingoing radial lightlike geodesic approaching r→ 2m from r0 > 2m takes the form

t(s) = s−2m ln(−s)+C; r(s) = −s+ 2m. (9.42)

475The first good paper about r = 2m was Lemaître (1933), see §6.1. Eddington (1924) contributed the coordinates
now named after him; in fact, he did not use (u,r) or (v,r) but, with an obvious typo corrected, (t∗,r), where
t∗ = t−2m ln |r−2m|, so that u = t− r∗ = t∗− r (up to a constant 2m ln(2m)). This turns the metric (9.15) into

ds2 = −
(

1− 2m
r

)
dt2
∗ +

(
1+

2m
r

)
dr2− 4m

r
dt∗dr+ r2(dθ

2 + sin2
θdϕ

2),

which is well defined and Lorentzian for all r > 0. Lemaître’s coordinates were different but had the same effect.
476Take x∗ =

∫ x
ε

dy (1+ y−1), where ε > 0 solves ε = − lnε , so that in (9.38) one takes a = 2m(1+ ε).
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It then follows from (9.41), in which (9.42) gives dr/ds = −1 and E = 1, that

r∗(t) = −t +C′. (9.43)

Therefore, it takes t→ ∞ to reach r∗→−∞, which is the same as r = 2m (infinite redshift).
For (u,v) ∈R2, i.e. (t,r∗) ∈R2 and hence still 2m < r < ∞, eqs. (9.34) - (9.35) imply

gS = − f (r)dudv+ r2dΩ, (9.44)

where r = r(r∗) = r(u,v) through (9.40) and (9.35). This shows that radial lightlike geodesics
are given by constant u (outgoing) or constant v (ingoing), as in Minkowski space-time: for
r > 2m the former comes from the plus sign in (9.22) with s > 0, whereas the latter come from
the minus sign with s < 0, as can also be directly seen from (9.38). See also (9.67) - (9.70).

To cross r = 2m, we use Eddington–Finkelstein coordinates, in two versions: the ingoing
coordinates (v,r) ∈R× (2m,∞) and the outgoing ones (u,r) ∈R× (2m,∞), with metrics

g+ = − f (r)dv2 + 2dvdr+ r2dΩ; (9.45)

g− = − f (r)du2−2dudr+ r2dΩ. (9.46)

These expressions suddenly make sense for any r ∈ (0,∞) ≡R+
∗ ! Schwarzschild space-time is

MS = R×R+
∗ ×S2 ∼= R× (R3\{0}), (9.47)

with metric (9.45), where now (v,r) ∈R×R+
∗ , and (as always) θ ∈ [0,π ], ϕ ∈ [0,2π).

The reason we say that Schwarzschild space-time contains a black hole is the following.477

Theorem 9.1 The (future) event horizon H+
E = {(v,r,θ ,ϕ) | r = rS = 2m} in MS is:

1. A smooth null hypersurface (cf. §4.6), ruled by lightlike pregeodesics (cf. Proposition 6.9).

2. Diffeomorphic to R×S2;

3. A one-way membrane, in that fd causal cruves cannot cross H+
E from r < rS to r > rS.

The last claim is predicated on a time orientation T on MS. For r > 2m this is naturally given by
T = ∂t , which is timelike for r > 2m, but (as another remarkable feature of Schwarzschild space-
time) this vector becomes lightlike at r = rS and spacelike for 0 < r < rS. This is heuristically
clear from (9.15), but since these coordinates break down at r = rS it is more precise to use
(9.45), noting that ∂t = ∂v. In the absence of a geometrically natural fd timelike vector field
defined throughout MS, we therefore define time orientation via a lightlike field, namely

L = − ∂

∂ r
, (9.48)

defined in the ingoing Eddington–Finkelstein coordinates (v,r,θ ,ϕ). This is crucial, since
although the coordinate r is the same as in the original (t,r,θ ,ϕ) coordinates, the vector field ∂r
is different.478 As in (5.80), we then define the cone of future directed (fd) timelike vectors by

T +
x = {Xx ∈Tx | gx(Lx,Xx) < 0}. (9.49)

477In chapter 10 we will see that the three parts of Theorem 9.1 state general properties of (abstractly defined)
event horizons: See Corollary 10.17, Proposition 10.28, and eq. (10.79), defining the event horizon, respectively.

478 One may also do this in Minkowski space-time, where in (v,r,θ ,ϕ) coordinates (v = t + r), the vector field
L = −∂r is also lightlike and fd; to see this, just note that L = ∂t −∂r in the original coordinates (t,r,θ ,ϕ).
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In other words, a a timelike vector Xx ∈ TxMS is future directed (fd) iff

gx(Lx,Xx) < 0. (9.50)

Moving back to the original coordinates (t,r,θ ,ϕ) it is easy to check that (9.48) - (9.49) make
∂t timelike and fd for r > 2m, whereas they make −∂r in the original coordinates (which is
spacelike for r > 2m and lightlike for r = 2m) timelike and fd for r < 2m. The disadvantage in
using a lightlike field like L to define time-orientation is that one cannot define a general lightlike
vector N to be fd iff g(N,L)< 0 or even ≤ 0, since the former (< 0) fails for N = L whereas the
latter (≤ 0) would make N = −L fd. Hence the criterion (9.50) is restricted to either timelike
vectors or lightlike vectors Xx that are not proportional to L; of course, L is fd by definition.

Proof. Claim 2 follows from the coordinate definition of H+
E , which also gives smoothness. The

normal N of a hypersurface defined as a level set f = c is given by N = (d f )], which gives
N = ∂v + f (r)∂r. Hence g(N,N) =− f (r)+2 f (r) = f (r), which vanishes at r = 2m. Thus the
normal N of H+

E is a lightlike vector on H+
E and this by definition makes H+

E a null hypersurface.
Alternatively, since r is constant on H+

E , the induced metric g̃ on H+
E is (9.45) at fixed r = rS, i.e.

g = r2
SdΩ. This metric is degenerate, which again makes H+

E null, cf. §4.6.
To prove claim 3 we adopt the notation of §4.6, relabeling N as L. We then have vector fields

L = ∂v + f (r)∂r; L = − ∂

∂ r
, (9.51)

of which L is lightlike only on H+
E (where L = ∂v), whereas L is lightlike everywhere. Note the

correct normalization (6.58), which, given that (9.48) defines time orientation, implies that L is
fd whenever it is causal, which is the case for 0 < r ≤ rS. Now consider a general curve

c(λ ) = (v(λ ),r(λ ),θ (λ ),ϕ(λ )). (9.52)

Using (9.45), the conditions that the curve c(·) be timelike and future directed are, respectively,

g(ċ, ċ) < 0 ⇔ 2v̇ṙ− f (r)v̇2 + r2(θ̇ 2 + sin2
θϕ̇

2) < 0; (9.53)
g(L, ċ) < 0, ⇔ v̇ > 0. (9.54)

On H+
E we have f (r) = 0, which enforces ṙ < 0. This is an open condition, which by continuity

also holds near H+
E . Hence fd timelike curves must decrease r if they get near H+

E , which means
that they must either stay within the horizon (r ≤ rS) or cross it from r > rS.

For general causal curves: (i) eq. (9.54) should be supplemented with the additional possibility
ċ = ρL for some ρ > 0, which clearly has ṙ =−ρ < 0; (ii) one allows zero on the right of (9.53).
On the horizon, the only new case this leaves (i.e. for which ṙ≮ 0) are the so-called rest photons
that have r = rS and (θ ,ϕ) constant, and whose lightlike geodesics solve ∇LL = 0 on H+

E (these
lightlike geodesics in fact rule the null hypersurface H+

E ). Their urge to move outward with the
speed of light is exactly compensated for by the central gravitational pull, so that they are at rest
at some point on S2. Their existence does not affect the claim of the theorem. �

The proof gives us more: since f (r) < 0 inside H+
E we must have ṙ < 0 anywhere inside H+

E
and hence any fd timelike curve within H+

E hits the singularity (but the rest photons do not!).479

479It would be a mistake to think that photons can somehow travel around the two-sphere r = rS: as soon as θ̇

and/or ϕ̇ are nonzero whilst ṙ = 0, recalling that f (rS) = 0 the right-hand side of (9.53) can obviously not be zero.
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9.4 The Kruskal extension of Schwarzschild space-time
The metrics (9.45) - (9.46), both defined on MS, describe two different space-times, (MS,g±),
containing a black hole (g+) and a white hole (g−) respectively. The latter is a time-reversed
version of the former, as follows from the fact that (u,r,θ ,ϕ) 7→ (v =−u,r,θ ,ϕ) is an isometry
from (MS,g+) to (MS,g−). Note that the Schwarzschild metric is static for r > 2m, whereas
both (9.45) and (9.46), valid for 0 < r < ∞, are merely stationary and hence not time-reversal
invariant. Furthermore, both space-times are extendible, and as such they will be combined into
a single inextendible space-time. To this end, we introduce Kruskal coordinates (U ,V ) by:480

U = −e−κu = −
√∣∣∣ r

2m
−1
∣∣∣ eκ(r−t); V = eκv =

√∣∣∣ r
2m
−1
∣∣∣ eκ(r+t), (9.55)

where r > 2m, and κ , the so-called surface gravity at the event horizon,481 is defined by

κ = 1/4m. (9.56)

The pair (u,v) ∈ R2 corresponds to t ∈ R and r > 2m, and hence to U < 0 and V > 0. This
means that the metric (9.44) in terms of (u,v) applies; in terms of (U ,V ) this metric turns into

gK = −32m3

r
e−r/2mdUdV + r2dΩ, (9.57)

in which r, so far subject to r > 2m, is regarded as a function of U and V through (9.40), (9.35),
and (9.55). This dependence of r on (U ,V ) may (relatively) simply be stated as482

UV =
(

1− r
2m

)
er/2m. (9.58)

Clearly, the metric (9.57) is well defined for (U ,V ) ∈ R2 as long as r > 0. To express this
constraint in terms of (U ,V ) we extend the transformation (9.55) as follows:

U = ±
√∣∣∣ r

2m
−1
∣∣∣ eκ(r−t); V = ±

√∣∣∣ r
2m
−1
∣∣∣ eκ(r−t), (9.59)

where, using notation in which the first ± refers to U and the second to V , the signs are:

black hole space-time white hole space-time
0 < r ≤ 2m + + - -

r > 2m - + + -

Then (9.58) remains valid for r > 0, which gives

UV < 1. (9.60)
480 It is worth asking how these may be found. Searching for good coordinates near r = rS, we approximate f (r)≈

f (rS)+ (r− rS) f ′(rS)+ · · ·= 2κ(r− rS)+ · · · , since f (rS) = 0. Furthermore, near r = rS we approximate (9.38)
by just keeping the logarithm, which gives r−rS ≈ e2κr∗/2κ = eκ(v−u)/2κ . Combining these approximations gives
f (r)≈ exp(κ(v−u)), which suggests (9.55). Indeed, in terms of (U ,V ) the metric (9.44) may be approximated by
g≈−κ−2dUdV + · · · , which is regular near r = rS. And this was the whole point of the transformation!

481The true significance of the surface gravity will emerge in §10.8.
482 Following Sbierski (2018a), define F : (0,∞)→ (−∞,1) by F(r) =

(
1− r

2m

)
er/2m, i.e. the right-hand side of

(9.58). This is a homeomorphism with inverse F−1, so that r = F−1(UV ), as long as (9.60) holds.
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UV = 1

U V

r = 2mr = 2m

r = 2mr = 2m

r>2m

r<2m
r= 0

r<2m

IIII r>2m

IV

II

s=0

s→∞
s=0

s=2m

s=0

 s=2m

s=0

s→-∞

Kruskal diagram for the extended Schwarzschild space-time, which consists of all (U ,V ) ∈R2 subject
to UV < 1, where each point (U ,V ) is actually a two-sphere. The two wiggled lines correspond to
r = 0⇔UV = 1 and do not belong to the space-time; the same is true for the regions above and below
these lines. The axes U = 0 or V = 0 both correspond to r = 2m. Region I is U < 0 and V > 0, etc. The
Schwarzschild black hole space-time corresponds to U ∈R and V > 0, and hence of regions I and II. The
white hole space-time is U ∈R and V < 0, and hence consists of regions III and IV. The U-V axes are
rotated by 45◦ since radial lightlike geodesics (i.e. at constant θ and ϕ) correspond to straight lines U =

constant and V = constant, as follows from (9.57). The blue lightlike geodesic is (9.71), the green one is
(9.72), the red one is (9.73), and the orange one is (9.74); all are future directed. All of these geodesics
can clearly be extended: the blue one in the backward direction (so that it enters region IV), the green one
in the forward direction (entering II), etc. This shows that the black hole space-time is extendible, as is
the white hole one. But the total (Kruskal) space-time, containing both, is inextendible.

Kruskal space-time (MK ,gK) is given by the following space, endowed with the metric
(9.57):483

MK = {(U ,V ) ∈R2 |UV < 1}×S2. (9.61)

Schwarzschild space-time (MS,g+) is isometrically embedded in (MK ,gK) as

M+ = {(U ,V ) ∈R2 |U ∈R,V > 0,UV < 1}×S2. (9.62)

i.e. regions I and II plus the line (U = 0,V > 0). For region I this follows because (9.55)
transforms the metric (9.44) into (9.57), and we know that (9.44) is in turn equivalent to the
Schwarzschild metric (9.45), restricted to r > 2m. For region II the metric (9.45), restricted to
0 < r ≤ 2m, is the unique analytic continuation of the same metric for r > 2m. This is also true
for (9.57), and hence (9.57) must be equivalent to (9.45) in region II, too.484

483Historically, structures similar or equivalent to Kuskal coordinates and Kruskal space-time were also found by
Synge, Fronsdal, and Szekeres; see Misner, Thorne, & Wheeler (1973), Box 31.1, for more information.

484Since regions I and III are both isometric to R2× S2 with metric (9.44), and hence to the original r > 2m
Schwarzschild space-time, one might equally well realize the full space-time (MS,g+) as the union of II and III.
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Similarly, the white hole space-time (MS,g−) is isometrically embedded in (MK ,gK) as

M− = {(U ,V ) ∈R2 |U ∈R,V < 0,UV < 1}×S2, (9.63)

and hence corresponds to regions III plus IV.485 Let us draw the balance between the first two.
Kruskal space-time (MK ,gK):

1. is static;

2. has a good timelike vector field defining its time orientation;

3. is globally hyperbolic;

4. is inextendible.

For the first point,486 a simple computation shows that time translations t 7→ t + c in the original
coordinates are transformed into

U 7→ e−c/4mU ; V 7→ ec/4mV , (9.64)

which are evidently also isometries of the metric (9.57) that preserve the condition (9.58). If t is
the original time coordinate, the corresponding Killing vector field takes the simple form

∂t = κ(V ∂V −U∂U ), (9.65)

as follows from (9.34) - (9.35) and (9.55). If we now agree that in region I the vector field ∂t ,
which is timelike there, is future directed, then it follows from (9.57) that in region I, where
U < 0, V > 0, r > 2m, both ∂V and ∂U are fd lightlike vector fields. Thus

T := ∂U + ∂V (9.66)

is a globally defined fd timelike vector field that may be used to define time orientation, and
which in regions I and II is compatible with the time orientation already defined by (9.48). With
this time orientation, the Kruskal diagram displays what Theorem 9.1 proved, namely that the
surface r = 2m is an event horizon of the black hole (i.e. I + II plus their r = 2m border). The
event horizon at r = 2m of the white hole (9.46), i.e. III + IV plus border, plays the opposite role:
no fd causal curve can move from III to IV, whereas many can cross from r < 2m to r > 2m. This
follows from a similar analysis as in the proof of Theorem 9.1, with N now given by N = +∂r.
For I + IV (plus border), r = 2m is a one-way membrane permitting travel from IV to I but not
vice versa, making I + IV a white hole. Similarly, II + III is another black hole.

The radial lightlike geodesics (9.22) confirm this. If we choose the (affine) parametrization
such that they are all future directed,487 we have the following four inequivalent possibilities:

t(s) = s+ 2m lns+C1; r(s) = s+ 2m; s ∈ (0,∞), t ∈ (−∞,∞), r ∈ (2m,∞); (9.67)
t(s) = s−2m ln(−s)+C2; r(s) = −s+ 2m; s ∈ (−∞,0), t ∈ (−∞,∞), r ∈ (2m,∞); (9.68)
t(s) = −s+ 2m lns+C3; r(s) = −s+ 2m; s ∈ (0,2m), t ∈ (−∞,c3), r ∈ (0,2m); (9.69)
t(s) = s−2m lns+C4; r(s) = −s+ 2m; s ∈ (0,2m), t ∈ (c4,∞), r ∈ (0,2m). (9.70)

485It is also isometric to regions I plus IV; given (9.45) - (9.46) this would actually be the most natural identification,
except that Kruskal space-time is meant to be the disjoint union of a black hole and a white hole space-time.

486One might think that staticity can be made explicit in Kruskal–Szekeres coordinates t = 1
2 (V +U) and

x = 1
2 (V −U), where (t,x) ∈R2 are constrained by t2−x2 < 1. In terms of these, the Kruskal diagram has the usual

x and t axes, and the metric is given by gK = 32m3

r e−r/2m(−dt2 + dx2)+ r2dΩ. But since r is implicitly defined by
t2− x2 = (1− r/2m)exp(r/2m), cf. (9.58), this form of the metric is not manifestly t-independent either.

487This can be confirmed from (9.57), (9.66), and (9.71) - (9.74). For the last two, note that 1− (s/2m) > 0.
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Here c3 := −z+C3 and c4 := z+C4 with z := 2m(1− ln(2m)). In terms of (U ,V ), this reads

U(s) = −C′1; V (s) =C′′1 es/2ms; s ∈ (0,∞); (outgoing) (9.71)

U(s) =C′2e−s/2ms; V (s) =C′′2 ; s ∈ (−∞,0); (ingoing) (9.72)

U(s) =C′3; V (s) =C′′3 e−s/2ms; s ∈ (0,2m); (outgoing) (9.73)

U(s) =C′4e−s/2ms; V (s) =C′′4 ; s ∈ (0,2m), (ingoing) (9.74)

where all C′i and C′′i are positive constants (trivially computable in terms of the Ci).
For the third point, the x-axis in the Kruskal diagram above is a spacelike Cauchy surface,

and the inextendibility of Kruskal space-time follows from Proposition 6.2, eq. (9.18), and a
study of all geodesics in the Kruskal metric (which is not attempted here),488 showing that
all incomplete causal geodesics end up in the singularity at r = 0. Finally, the initial data
problem whose MGHD is (isometric to) Kruskal space-time is asymptotically flat, albeit with two
separate asymptotically flat regions of which one seems unrealistic. Hence (MK ,gK) has good
mathematical properties, but it seems not to correspond to any (known) part of our universe. In
agreement with this, arguments given below suggest that Kruskal space-time cannot be the end
result of an astrophysical collapse process (whereas, as we shall see, Schwarzschild can).

In contrast, Schwarzschild space-time, realized as either (MS,g+) or, isometrically, (M+,gK):

1. is merely stationary (and not static);

2. lacks a geometrically defined timelike vector field;

3. is globally hyperbolic;

4. is extendible.

Schwarzschild space-time came about as an extension of the static solution (9.15), defined for
r > 2m, to all values 0 < r < ∞, but this extension is no longer static because of the off-diagonal
terms in the metric (9.45). However, its maximal extension, i.e. Kruskal space-time, is once
again static: adding a white hole to a black hole restores symmetry under time reversal.489 As
to the second point, in compensation (MS,g+) does have a natural lightlike vector field, viz.
(9.48); see the proof of Theorem 9.1. For the third, Schwarzschild is globally hyperbolic, but
any underlying Cauchy surface Σ would have to extend into both regions I and II in the Kruskal
diagram drawn above (it cannot be restricted to region I since e.g. the red lightlike geodesic
just described and drawn would not cross it). In that case Σ would still carry complete initial
data; that is, the Riemannian three-manifold (Σ, g̃) is geodesically complete. Region I is also
globally hyperbolic by itself, with for example the positive x-axis as a Cauchy surface ΣI . But
here the initial data are incomplete because many geodesics end at r = 2m, and the resulting
space-time is once again extendible. In this case, the r = 2m hypersurface H+

E acts also as a
future Cauchy horizon H+

C = ∂D+(ΣI)\ΣI for ΣI , seen as a wannabe Cauchy surface for the
extension (MS,g+), cf. (5.182) and (10.85), which then coincides with the future event horizon.

488See for example O’Neill (1983), chapter 13 or Plebański & Krasiński (2006), chapter 14. The crucial result is
Proposition 13.36 in O’Neill (1983), which states that an inextendible timelike geodesic γ : I→MK in (MK ,gK) is
incomplete iff rγ(s)→ 0 as the affine parameter s approaches a finite endpoint of I, with Corollary 13.37 to the
effect that Kruskal space-time is (causally) incomplete and inextendible.

489Recall that a metric is static iff it is stationary for a hypersurface-orthogonal Killing vector field, which is the
case iff it is stationary and time-reversal invariant (in the flow parameter of the said Killing field), see §8.4.
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This reflects the extendibility of Schwarzschild space-time: for example, the radial lightlike
geodesic (9.71) can be extended to negative values of s and then describes a photon moving from
IV to I in finite affine parameter “time”.490 Similarly, the radial lightlike geodesic (9.73) can be
extended to s < 0 and then describes a photon moving from IV to II.

For those who are familiar with this technique (or jump to §10.2),491 we now give the Penrose
diagrams of both Kruskal and Schwarzschild space-time, the former in Penrose’s own hand:

One of the first Penrose diagrams: ‘The Kruskal picture with conformal infinity represented.’492

r = 0

H+
E

II

I

I +

I −

i0

i+

i−

Penrose diagram for Schwarzschild space-time (M+,gK) ∼= (MS,g+). The green line represents the event
horizon H+

E at r = 2m. The blue line represents a Cauchy surface. The red line marks the end of the
diagram; it does not (even) lie in the conformal completion (M̂+, ĝK).

490The reason we will not notice this even if white holes exist is that according to the description (9.67), it would
require extending our time t beyond minus infinity, i.e. the “beginning of time”, to see it.

491 For the moment, just note that (i) through a conformal transformation, infinity has been brought forward so as
to become a boundary at some finite distance; (ii) the causal structure is the same as in Minkowski space-time.

492Taken from Penrose (1968), p. 208, Fig. 37. See the Introduction for comments on his style. See also §10.3.
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On the other hand, we shall see at the end of this section that Schwarzschild space-time can
result from a realistic collapse process, and although all known black holes in the universe seem
to be rotating and described by the Kerr metric (with poorly known angular velocities, that is),
the Schwarzschild metric may be sufficiently close to these to call it physically realistic.

In conclusion, Kruskal space-time has good mathematical features, but is physically awkward,
whereas Schwarzschild space-time has exactly the opposite features. Perhaps it is a mistake to
regard the latter as the “hydrogen atom of GR”, as many textbooks suggest.

At the origin U =V = 0 of the Kruskal diagram (where r = 2m and t is undefined) the event
horizon of the black hole coincides with the one of the white hole. This point (which is really
a two-sphere whose abstract structure is that of a bifurcation surface, see §10.8) is called an
Einstein–Rosen bridge, which later came to be seen as a special case of a wormhole. This bridge
connects region I to region IV, but one cannot cross it since this would require spacelike (i.e.
superluminal) travel; even any (fd) timelike or lightlike deviation from it would cause the traveler
to fall into the black hole singularity. Nonetheless, one can study its geometry at some fixed
value of t, i.e. as part of a slice of constant U/V ), which turns out to be quite interesting. We
restrict ourselves to the original description of the bridge by Einstein & Rosen (1935) themselves,
since apart from some use in science fiction the idea seems to be of historical value only.

In terms of the coordinate
u =
√

r−2m, (9.75)

the r > 2m part of the Schwarzschild metric is

g = − u2

u2 + 2m
dt2 + 4(u2 + 2m)du2 +(u2 + 2m)2dΩ. (9.76)

Although u≥ 0 initially, this makes sense for any u ∈R and as such the solution describes the
exterior regions I and IV in the Kruskal diagram. The area of any two-sphere at fixed u is

A(u) = 4π(2m+ u2)2. (9.77)

This function obviously takes a minimum at u = 0, i.e., r = 2m, and increases for larger |u|. At
fixed θ , where the spheres are circles, one may then draw the bridge as a two-sided trumpet.

We return to the physical origin of Schwarzschild space-time, in the sense that it may be the
final state of a stellar collapse. To this, end, the oldest and simplest generally relativistic model
is due to Oppenheimer and Snyder (1939), whose paper played an important role towards the
acceptance of black holes, at a time where the mathematical possibility was clear but Einstein,
Eddington, and many other opinion leaders believed that they were idealizations and that some
physical mechanism would block their actual occurrence in nature.493 This model describes the
collapse of a spherically symmetric permeating dust cloud, whose energy-momentum tensor
within the cloud is given by (7.70), whilst

Tµν = 0 (9.78)

outside the cloud, which is taken to be a ball in R3 with radius R. This model has only one free
parameter, namely the total mass m (initially of the collapsing matter, eventually of the black
hole). At any point in time t one has

m = (4π/3)R3
ρ , (9.79)

493 See §6.1 as well as Longair (2006) for some very brief history, and e.g. Misner, Thorne, & Wheeler (1973),
Joshi (2007), Lasky (2010), or Weinberg (2020) for the relevant astrophysics. Our brief mathematical treatment
below is based on Alford (2020).
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where the choice of R (> 2m) reflects the choice of the origin τ = 0 of (proper) time. Given this
choice, define

τ0 = 1
3

√
2R3/m, (9.80)

in terms of which Oppenheimer–Snyder space-time is given by

M = R4\{(τ ,r,θ ,ϕ) | τ ≥ τ0,r = 0}; (9.81)

gOS = −
(

1− 2m
r

)
dτ

2 + 2

√
2m
r

dτ dr+ dr2 + r2dΩ; (r ≥ rb(τ)); (9.82)

gOS = −

(
1− 2mr2

r3
b

)
dτ

2 + 2

√
2mr2

r3
b

dτ dr+ dr2 + r2dΩ; (r < rb(τ)), (9.83)

where, compared to the original coordinates (t,r,θ ,ϕ), we have τ = t +g(r), where g(r) solves

dg(r)
dr

=

√
2mr

r−2m
. (9.84)

Indeed,494 under this coordinate transformation (9.82) is equivalent to (9.15). Furthermore, in
(9.83) the time-dependent radius of the star rb = rb(τ) is defined in terms of R = rb(τ = 0) by

rb(τ) =

(
R3/2− 3τ

2

√
2m
)2/3

. (9.85)

Hence rb(τ0) = 0, which means that, as suggested by (9.81), the collapse ends at τ = τ0 and
hence for all τ ≥ τ0 one has the Schwarzschild solution. Another critical time is τ = τ1, at which
rb(τ1) = 2m and hence the star implodes through its Schwarzschild radius. Using reduced radii

r̃ = r/2m; r̃b = rb/2m; R̃ = R/2m, (9.86)

the relevant quantities are given by

r̃b(τ) =

(
R̃3/2− 3τ

4m

)2/3

; (9.87)

τ0 =
4
3

mR̃3/2; τ1 =
4
3

m(R̃3/2−1); τ
′
0 =

4
3

m
(

R̃3/2− 27
8

)
, (9.88)

where τ ′0 is the earliest time at which the quantity r̃(τ) defined below vanishes. The event
horizon H+

E can be computed from the fact that, at any fixed angle (θ ,ϕ), the fd “outgoing” (but
bouncing) radial lightlike geodesic that passes through (r = 2m,θ ,ϕ) at τ = τ1 is given by

r̃(τ) = r̃b(τ)(3−2
√

r̃b(τ)). (9.89)

This takes its maximum r̃ = 1 at τ = τ1 and, constrained by r̃ ≥ 0, has two zeros at τ0 and τ ′0;
clearly, τ ′0 < τ1 < τ0. Together with (9.81) this gives the location of the event horizon as

H+
E = {(τ ,r,θ ,ϕ) ∈M | (τ ′0 ≤ τ ≤ τ1, r̃ = r̃(τ))∨ (τ ≥ τ1,r = 2m)}. (9.90)

494The metric is only piecewise smooth but satisfies appropriate junction conditions at r = rb(τ).
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Indeed, this definition is such that some point x = (τ ,r,θ ,ϕ) lies inside the horizon, in that:

τ
′
0 ≤ τ ≤ τ1 and r̃ ≤ r̃(τ) or τ ≥ τ1 and r̃ ≤ 1, (i.e. r ≤ 2m),

iff there are no points
y = (τ ′,r′,θ ′,ϕ ′) ∈ J+(x) (9.91)

for which τ ′≥ τ1 and r′> 2m. This, in turn, means that future null infinity I + cannot be reached
from x via a lightlike curve (or any causal curve); we will formalize this later.495 Specifically,
lightlike geodesics starting anywhere at any time τ < τ ′0 reach infinity, whereas those starting at
some τ ≥ τ ′0 must start at some r̃ > r̃(τ). The geodesics (9.89) demarcate between these two
classes. The situation is illustrated in the pictures, which say more than the formulae:

Left picture: τ-r diagram of the Oppenheimer–Snyder space-time. The green area is the interior of the
black hole and its boundary. The event horizon H+

E is initially the blue geodesic (9.89), and from τ = τ1

onwards it is the line r = 2m. Any inextendible fd lightlike curve leaving outside the green area will
eventually reach future null infinity I +. Any fd causal curve leaving within the grey area will stay there
and any such fd causal geodesic necessarily fall into the singularity. Picture drawn by Edith de Jong.

Right picture: Penrose diagram of the Oppenheimer–Snyder space-time, very slightly adapted from
Alford (2020), redrawn by Edith de Jong. The curved line shows the evolution of the radius of the star; the
45◦ line marked H+

E is the event horizon. This diagram combines features of the corresponding diagrams
for Minkowski space-time (cf. §10.2) and for Kruskal space-time (given earlier in this section).

Although the romanticism has been taken out of it, one cannot deny the physical and
mathematical improvement over Schwarzschild (or Kruskal) space-time: Oppenheimer–Snyder
space-time is geodesically incomplete only at r = 0, where it has the same curvature singularity
as Schwarzschild (the vertical r = 0 line belongs to the space-time until τ = τ0), and hence it is
inextendible–so no need for white holes. Finally, it has a complete, asymptotically flat initial
value problem: any hypersurface τ = constant at τ < τ ′0 is a space-like Cauchy surface.

495See §10.3. The black hole area will formally be defined as M\J−(I +), so that the event horizon is H+
E =

∂ (M\J−(I +)). This also gives the even horizon H+
E of the Schwarzschild solution, as well as the horizons H+

E in
the Reissner–Nordström and Kerr solutions to come in the next two section.
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9.5 The Reissner–Nordström solution
Reissner (1916) and Nordström (1918) independently extended the Schwarzschild solution to
the electrovac case where the central body is electrically charged and one continues to assume
spherical symmetry.496 This requires a nonzero energy-momentum tensor (7.84) in which Fµν

comes from the potential (A0 = −e/r,Ai = 0). A lengthy calculation gives the metric

gRN = −h(r)dt2 + h(r)−1dr2 + r2dΩ (9.92)

h(r) := 1− 2m
r

+
e2

r2 =
1
r2 (r− r+)(r− r−); r± = m±

√
m2− e2, (9.93)

where we assume m > 0 and |e| ≤ m only in rewriting h(r) as (r− r+)(r− r−)/r2. For
e > m > 0 we have h(r) > 0 and the metric (9.92), defined for all t ∈R and r > 0, turns out to
be inextendible. Other parameter values require new coordinates near both r = r±, see below.

r = 0

r = 0

I +

I −

i0

r = 0

I +

I −

H+

H−

H−

I

I

III

i0

i−

Left: Penrose diagram for the Reissner–Nordström solution with |e|>m> 0 or the Schwarzschild solution
with m < 0. The analogy with the corresponding diagram for Minkowski space-time (see §10.2) is highly
misleading, since in the solutions just mentioned r = 0 is a naked (timelike) singularity, whereas in the
Minkowski case it is a coordinate singularity. The Reissner–Nordström metric has a (naked and timelike)
singularity at r = 0 and lacks an event horizon. It does have a Cauchy horizon, drawn in red, for the
wannabe Cauchy surface drawn in blue. See §10.6 for details.

Right: Penrose diagram for the (unextended) Reissner–Nordström solution with |e| = m > 0. The
singularity at r = 0 is shielded by a future event horizon at r = m, drawn in green, which at the same
time is a future Cauchy horizon for the wannabe Cauchy surface drawn in blue, whence we write
H+

C = H+
R = H+

C . The singularity is timelike (the m > 0 Schwarzschild singularity is spacelike). The two
red lines marked H− are boundaries, but in the extensions discussed below they will be past event and
Cauchy horizons.

496There is a Birkhoff-style derivation of this metric that only requires spherical symmetry (Hoffmann, 1932ab).
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r = 0

I +

I −

H+
C

H+
E

I

II

III

i0

i+

i−

Penrose diagram for the (unextended) Reissner–Nordström solution with 0 < |e| < m, as redefined in
ingoing Eddington–Finkelstein coordinates (v,r). This time there is both an event horizon H+

E at r = r+,
viz. the green center–NE line, and a Cauchy horizon H+

C at r = r− < r+ for say the wannabe Cauchy
surface in blue, drawn as the red center–NE line. The other green and red lines are event and Cauchy
horizons, respectively, for extensions of the space-time.497

Key intuition about this metric comes from the Penrose diagrams above. Although charged
black holes probably do not exist, pedagogically the Reissner–Nordström solution is a useful
intermediate case between Schwarzschild and Kerr.498 There are three very different regimes,
which however have the same curvature singularity at r = 0, which is given by,499 cf. (9.18),

Rρσ µνRρσ µν =
48m2

r12 (r6−2me2r5 + 7
6e4r4). (9.94)

497 See (9.98) below for (v,r), The coordinate transformations leading to the conformal completion implicit in this
Penrose diagram are given in Hawking & Ellis (1973), p. 157, but one may also use Penrose’s formulae (10.72) and
(10.73) for (U+,V+) instead of (U ,V ), as defined in (9.107) below. In any case, the green SE–NW line corresponds
to v = −∞, whereas the green SE–NW line upt to H+

C corresponds to v = ∞; at H+
C the (v,r) coordinates break

down, as explained in the main text. One has a similar Penrose diagram for the outgoing Eddington–Finkelstein
coordinates (u,r), which contains a white hole, see e.g. Poisson (2004), §5.2.3. These can be combined, see below.

498An exhaustive study of the Reissner–Nordström space-time and its properties may be found in Chandrasekhar
(1983), chapter 5. For briefer treatments see also Graves & Brill (1960), Carter (1973), Simpson & Penrose (1973),
Hawking & Ellis (1973), §5.5, Poisson (2004), §5.2, and Plebański & Krasiński (2006), Chapter 14.

499See Henry (2000), who even computes the Kretschmann scalar for the Kerr–Newman metric.
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• m < 0 or 0 < m < |e|. Then h(r)> 0 and the metric (9.92) is non-singular except at r = 0.
This case is similar to Schwarzschild with m < 0. The metric (9.92) is defined for all
0 < r < ∞ and the space-time is inextendible. With T = ∂t as the obvious time orientation
(which for |e|> m stays timelike for all r > 0, as opposed to m > 0 Schwarzschild), there
are both future-directed past-incomplete timelike curves emanating from the singularity
and future-directed future-incomplete timelike curves crashing into it, so that the singularity
behaves like a point omitted from some (in fact many) double cone(s) J(x,y). Thus a
space-time with a timelike singularity cannot be globally hyperbolic.500

• 0 < m = |e|, called extremal, see below. We will treat this as a limiting case of:

• 0 < |e|< m. Though all cases are unphysical, this one is “relatively realistic”.

In the last two cases we have to deal with zeros of h(r), where the metric (9.92) breaks down. As
in the Schwarzschild case with m> 0, this is resolved by turning to better coordinates, and indeed,
we proceed in almost the same way. The tortoise coordinate r∗ now solves dr∗/dr = h(r)−1, so
that, with the simplest integration constant, eq. (9.38) is replaced by

r∗ = r+
r2
+

(r+− r−)
ln(r− r+)−

r2
−

(r+− r−)
ln(r− r−); (0 < |e|< m). (9.95)

Up to a constant 2m ln(2m), this reduces to (9.38) if r− = 0; we still have the boundary condition
limr↓r+ r∗(r) = −∞. The Schwarzschild surface gravity κ = 1/4m is now replaced by

κ+ = 1
2h′(r+) =

r+− r−
2r2

+

=

√
m2− e2

r2
+

. (9.96)

Thus the metric with |e|= m > 0 has zero surface gravity, making it an extremal black hole.
The counterparts of the Schwarzschild(ish) metrics (9.44) and (9.45) - (9.46) are given by

gRN = −h(r)dudv+ r2dΩ; (9.97)

gRN = −h(r)dv2 + 2dvdr+ r2dΩ; (9.98)

gRN = −h(r)du2−2dudr+ r2dΩ, (9.99)

where u and v are defined as in (9.34) - (9.35), and as before r = r(u,v) via (9.35) and the
inverse of the counterpart of (9.38). Taking (9.98) to define the metric gRN , we may now define
Reissner–Nordström space-time as (MRN ,gRN) where the manifold MRN is the same as the
Schwarzschild manifold MS defined in (9.47), and time orientation is given by declaring that the
lightlike vector field (9.48) be future directed, just as in the Schwarzschild case. Under the map

(v,r,θ ,ϕ) 7→ (u = −v,r,θ ,ϕ), (9.100)

this “ingoing” space-time is isometric to the “outgoing” one based on the same manifold, but
using the metric (9.99), and +∂r for time orientation.

500In Penrose’s (1979) terminology, this makes the singularity timelike. In addition, it is naked in being visible far
away, since it is not covered by an event horizon. In contrast, the Schwarzschild singularity for m > 0 is spacelike
and is covered by an event horizon. A singularity is spacelike/timelike/lightlike iff it has these properties in a Penrose
diagram. In this case, where the singularity is located at r = 0, spacelike also means that for small enough ε > 0 the
hypersurface r = ε is spacelike. This is the case for Schwarzschild with m > 0, since its normal ∂r is timelike for
0 < r < 2m, whereas this normal is spacelike for all cases of Reissner–Nordström, making the singularity timelike,
see Definition 4.15. These things come to a head in cosmic censorship, see §10.4.
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The main properties of Schwarzschild space-time are arguably that (i) it has a spacelike
curvature singularity at r = 0 (which makes it geodesically incomplete), which (ii) is covered by
an event horizon, as expressed in Theorem 9.1. Reissner–Nordström has this singularity, too, but
if 0 < |e|< m it is covered by two event horizons (and this also turns out to make it timelike):

Theorem 9.2 If 0 < |e| ≤ m, the sets H± = {(v,r,θ ,ϕ) | r = r±} ⊂MRN at which h(r±) = 0
(and which coincide iff |e|= m) are null hypersurfaces diffeomorphic to R×S2. Each H± acts
as a one-way membrane in that fd causal cruves cannot cross H± from r < r± to r > r±.

Proof. The proof of Theorem 9.1 is easily adjusted, cf. the proof of Theorem 9.3 for details. �
This makes Reissner–Nordström space-time totally different from the Schwarzschild one, even
in the extremal case with a single event horizon. The key properties for 0 < |e|< m are:

1. The outer horizon H+ = H+
E is the event horizon, since it is the boundary inside which

future (null) infinity can no longer be reached; it is the analogue of H+
E in Theorem 9.1.

2. The inner horizon H− = H+
C is a Cauchy horizon for wannabe Cauchy surfaces (cf. Defi-

nition 5.36). Cauchy surfaces do not exist and (MRN ,gRN) is not globally hyperbolic.501

3. The singularity at r = 0 is timelike and repulsive (except for radial lightlike geodesics).

4. The maximally extended space-time has an infinite number of regions (and singularities).

In the extremal case 0 6= |e|= m all this remains true: although there is a single event horizon in
that case, it plays the role of both the event horizon H+

E of Schwarzschild space-time and of a
Cauchy horizon (which is absent in Schwarzschild space-time). For |e|> m > 0, finally, only
property 3 remains, but as a relic of no. 2 also that case is not globally hyperbolic.502

Except for the first, which is Theorem 9.2, we will not prove these points (which could be
done by studying all geodesics and causal curves), but just argue for them, and relate them.

The most intuitive point is 3. In the coordinates (t,r,θ ,ϕ) the vector field R = −∂r is
spacelike for r > r+, lightlike at r = r+, and timelike at r− < r < r+. In this region R is future
directed and hence r must decrease, so that r = r− is reached, and crossed. If 0 < r < r−, then
R becomes spacelike once again, whereas the Schwarzschild-R only changes its causal nature
once, namely when crossing the single event horizon H+

E , and so R is timelike as r→ 0. This
makes the Schwarzschild singularity spacelike (as the normal vector to the r = ε hypersurface
for small ε > 0 is timelike) and unavoidable (since fd timelike curves must decrease r), whereas
the Reissner–Nordström singularity is timelike, since exactly the opposite causal situation reigns.

This suggests that the Reissner–Nordström singularity at r = 0 can be avoided; what’s more,
a fd timelike geodesic cannot even reach it because it is repelled! We only show this for radial
geodesics γ (which by their very nature should have the best chance of hitting the singularity),
but it is true in general. Taking (θ ,ϕ) constant, we parametrize γ(s) = (v(s),r(s)) affinely such
that g(γ̇ , γ̇) = −1, where γ̇ = dγ/ds as usual. In the ingoing (v,r,θ ,ϕ) coordinates this gives

hv̇2−2v̇ṙ = 1. (9.101)

Furthermore, since ∂t = ∂v is a Killing vector, the energy E =−g(γ̇ ,∂t) takes the constant value

E = hv̇− ṙ. (9.102)
501In §10.7 we will see that Cauchy horizons are always ruled by lightlike geodesics, sharpening Theorem 9.2.
502As one can infer from its Penrose diagram: no wannabe Cauchy surface, drawn as a more or less horizontal

line, is hit by a future inextendible timelike curve lying above it that hits the singularity.
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Combining (9.101) - (9.102) we see that, similarly to (9.24), the motion is controlled by

ṙ2 + h(r) = E2. (9.103)

That is, h(r) acts like a potential. Since h(r)≈ e2/r2 for r→ 0, this gives a strong repulsion. On
the other hand, incoming fd radial lightlike geodesics are simply given by constant (θ ,ϕ) and

v =C1; r(s) = −s+C2, (9.104)

where C1 and C2 > 0 are constants. Since we now have g(γ̇ , γ̇) = 0, eq. (9.101) is 0 = 0 whilst
(9.102) is E = 1, from which nothing can be concluded. Yet (9.104) gives r(s)→ 0 as s→C2.

We return to our fd timelike geodesic observer, who (unlike the incoming radial lightlike
geodesic just discussed), after having crossed the future Cauchy horizon H+

C bounces back from
the singularity, increases r, and is even able to cross the next Cauchy horizon H−C at r = r−.
Strangely enough, this makes him outgoing rather than ingoing. Naively, this would lead him
back to the area II where he came from, but according to Theorem 9.2 this is impossible for a fd
timelike curve. Therefore, he has entered a new region, interpreted as the interior of a white hole,
from which he can move on to cross its “anti” event horizon H−E and enter a new asymptotically
flat region. The process may then be repeated, which leads to (and in turn is illustrated by)
the Penrose diagram on the next page. Adding the south-east diamonds I and II to the original
north-west diamonds I and II should be familiar from the Kruskal extension of Schwarzschild
space-time, whose extension ends there; recall that regions II are then triangles whose northern
or southern borders represents a singularity. Now, however, our ingoing fd timelike observer can
cross either of the red r = r− lines into one of the triangular regions III, and move on to the new
region II as described above. To make this space-time geodesically complete also into the past
(except at the singularities), one extends the original space-time analogously, to the “south”.

If we take the blue horizontal bar as a wannabe Cauchy surface Σ in the extended space-time,
the first two red lines above it form its future Cauchy horizon H+(Σ) whilst those to the south of
the region II below the blue line form its past Cauchy horizon H−(Σ). Indeed, in the triangular
regions III north of this horizon one may initiate inextendible timelike curves that crash into
the singularity southward and go on indefinitely northbound. Such curves do not cross Σ;
contradicting the definition of a Cauchy surface (and similarly to the past).

A similar tower may be drawn for the extremal case 0 6= |e| = m, where compared to the
previous case things are simplified by the coalescence r+ = r−, so that there is just one type of
horizon H± that is simultaneously an event horizon H±E and a Cauchy horizon H±C . Thus one
simply places the entire diagram shown on top of and below itself in such a way that the red H−

lines match, and repeats this procedure. A given region III then acts as a black hole towards the
lower region I and as a white hole towards the upper one. The difference with the Schwarzschild
solution comes from the difference between the functions

f (r) = (r−2m)/r; h(r) = (r−m)2/r2 (9.105)

in the metric, which means that in the original coordinates (t,r,θ ,ϕ) neither ∂t nor ∂r changes
its causal nature if it crosses the horizon. In particular, ∂r remains spacelike and this makes the
singularity timelike (as it is in the two other regimes of the solution).
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r = 0 r = 0

I +I +

I −I −

H+
C

H+
C

H−C

H−C

H−E

H+
E

II

II

II

II

II

III III

III III

i0i0

i+i+

i+i+

i−i−

i−i−

r = 0 r = 0

Penrose diagram of the maximally extended Reissner–Nordström solution for 0 < |e| < m. Region I
corresponds to r > r+, region II to r− < r < r+, and region III to 0 < r < r−. The repetition is such that
a green cross with the associated null infinities I ± is added both above and below the red crosses, after
which a red cross and the associated r = 0 singularities are added above and below, etc. Compared to the
earlier diagram, the new regions make the space-time geodesically complete except at the singularities,
and hence it is inextendible. Each green cross is an event horizon (and even a bifurcate Killing horizon,
see §10.8), whereas each red cross is a Cauchy horizon with respect to some generic wannabe Cauchy
surface, like the one drawn in blue.503

503Redrawn from Hawking & Ellis (1973), page 158. The labeling of the regions differs from the Kruskal one.
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It is interesting to see some of the differences between Schwarzschild and Reissner–Nordström
from the procedure used to merge the solutions (9.45) and (9.46) into a single (Kruskal) space-
time.504 For 0 < |e|< m, analogously to footnote 480 we use (9.34) - (9.35) and approximate

r− r+ ≈±
1

2κ+
e2κ+r∗ = ± 1

2κ+
eκ(v−u), (9.106)

where the upper sign applies to r > r+ and the lower one to r− < r < r+. This gives the
approximation h(r) ≈±exp(κ+(v−u)). Defining u and v as in (9.34) - (9.35), as r ≈ r+, the
metric (9.92) is then regularized by the new coordinates

U+ = ∓e−κ+u; V+ = eκ+v, (9.107)

since gRN ≈−κ
−2
+ dU+dV++ · · · , as before. More precisely, since (9.58) is now replaced by

U+V+ = −e2κ+r∗ = −e2κ+r(r− r+)(r− r−)−r2
−/r2

+ . (9.108)

Together with (9.107) and (9.97), this gives the exact metric in U+-V+ coordinates as

ds2
+ = −e−2κ+r

κ2
+r2 (r− r−)1+(r2

−/r2
+)dU+dV++ r2dΩ, (9.109)

where r = r(U+,V+) is defined via (9.108), i.e. via (9.107), (9.95), and (9.34) - (9.35), as
usual.505 For r≈ r− we have r− r− ≈ (U+V+)−r2

+/r2
− , so that r = r− corresponds to U+V+ = ∞

and hence is out of the range of the (U+,V+) coordinates. To get to r = r− and a fortiori to
r→ 0, we introduce new coordinates (U−,V−) by making the replacements

κ+ κ− = 1
2h′(r−) = −

r+− r−
2r2
−

; (9.110)

U+ U− = ∓eκ−u; V+ V− = −e−κ−v; (9.111)

U+V+ U−V− = −e−2κ−r∗ = −e−2κ−r(r− r−)(r− r+)−r2
+/r2

−; (9.112)

ds2
− = −e−2κ−r

κ2
−r2 (r− r+)1+(r2

+/r2
−)dU−dV−+ r2dΩ, (9.113)

where this time the upper sign refers to r− < r < r+ and the lower one to 0 < r < r−. This metric
is singular at r = r+, so that unlike the Schwarzschild case, but somewhat like de Sitter, there
isn’t a single coordinate system that adequately describes the merger. Referring to the above
Penrose diagram, the interior of the large diamond consisting of the regions I and II from the
original space-time, plus the new regions I and II south-east of those (which totality is similar to
the entire Kruskal space-time) is described by the (U+,V+) coordinates, which however break
down near the border lines r = r− of the large diamond (both north and south). Unlike the
Kruskal case (in which r− = 0) these can be crossed, but this crossing must be described in the
new coordinates (U−,V−), which can be started in regions II and extend to regions III, etc.

However interesting all this may be, similar comments apply as in the Schwarzschild case:
realistic collapse is not expected to lead to solutions (and Penrose diagrams) like this, although
an exact solution showing this seems lacking.506 In addition, the interior part of the solution
seems unstable; in particular, the Cachy horizon is believed to turn into a curvature singularity
under small perturbations, including even such small effects as an observer trying to cross it.
This is a major point in favour of Penrose’s (strong) cosmic censorship hypothesis; see §10.4.

504We here essentially follows Poisson (2004), §5.2.
505If e = 0, then (9.109) is not quite (9.57); it would be if the constant −2m ln(2m) in (9.38) were omitted.
506See e.g. Sanchis-Gual et al. (2016) for some non-rigorous work in this direction.
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9.6 The Kerr solution
The last, and physically most relevant, solution to the vacuum Einstein equations we discuss is

gK = −dt2 +
2mr
ρ2 (asin2

θdϕ−dt)2 +ρ
2(∆−1dr2 + dθ

2)+ (r2 + a2) sin2
θdϕ

2

= −
(

1− 2mr
ρ2

)
dt2− 4mar sin2

θ

ρ2 dtdϕ +
ρ2

∆
dr2 +ρ

2dθ
2 +

Σ
ρ2 sin2

θ dϕ
2; (9.114)

∆ := r2−2mr+ a2 = r2
(

1− 2m
r

+
a2

r2

)
; (9.115)

ρ
2 := r2 + a2 cos2

θ ; (9.116)

Σ := (a2 + r2)2−a2∆ sin2
θ . (9.117)

This is the Kerr metric,507 parametrized by m> 0 and a∈R\{0}, expressed in Boyer–Lindquist
coordinates.508 These coordinates (t,r,θ ,ϕ) look the same as those in the Schwarzschild
solution (9.15), but this analogy is partly misleading and only makes sense for r > 2m.509 In that
case, (r,θ ,ϕ) are the usual spherical polar coordinates, and t is the usual time coordinate. In
particular, an important difference with both the Schwarzschild and Reissner–Nordström space-
times is that the “radial” coordinate r now takes values in R (as does t). The set {(t,r,θ ,ϕ)}
where θ ∈ [0,π ] and ϕ ∈ [0,2π)} is therefore (topologically) a two-sphere at any fixed (t,r),
even if r = 0. The curvature singularity, which in the Schwarzschild metric is located at r = 0 and
hence is a point at any fixed time t, is now located at ρ2 = 0. At fixed t this set is (topologically)
a circle (called a ring in this context), and the entire set ρ2 = 0, i.e. r = cosθ = 0, is given by

R := {(t,r = 0,θ = 1
2π ,ϕ) | t ∈R,ϕ ∈ [0,2π)}. (9.118)

Indeed, the Kretschmann scalar for (9.114) is given by the following generalization of (9.18):

Rρσ µνRρσ µν =
48m2

ρ12 (r2−a2 cos2
θ )(ρ4−16a2r2 cos2

θ ), (9.119)

which blows up in R. Apart from (9.118) there are no other singularities of (9.114) except
coordinate issues, and so we take the (preliminary) manifold underlying Kerr space-time to be

M = (R2×S2)\R. (9.120)

We have not yet found the right coordinates on all of (9.120), since the metric (9.114) looks
singular also outside the ring R, namely where ∆ = 0. This can be overcome in a similar way
as for the Schwarzschild and Reissner–Nordström metrics, namely by passing to Eddington–
Finkelstein coordinates. However, before doing so, we can already look at some interesting
geodesics. The details depend on a case distinction similar to the one for Reissner–Nordström:

507The is metric was discovered by Kerr (1963); see Melia (2009) for the history of this discovery as well as
biographical information about Kerr. An exhaustive mathematical treatment of the Kerr metric is given in the
monographs by Chandrasekhar (1983) and O’Neill (1995), whereas the volume edited by Wiltshire, Visser, & Scott
(2009) is more physics oriented. The introduction to this volume, available in preprint form as Visser (2006) is a
nice first introduction, as is Heinicke & Hehl (2015). Among the general GR texbooks, the one by Plebański &
Krasiński (2006) also gives very detailed coverage. The Les Houches lectures by Carter (1973) remain valuable.

508These coordinates were introduced in Boyer & Lindquist (1967). During a brief visit to the Center for Relativity
at the University of Texas, Austin, which is also where Kerr discovered his metric, Robert Boyer (1933–1966) was
tragically killed by Charles Whitman in the University Tower shooting massacre on August 1, 1966 (Melia, 2009).

509This places (t,r,θ ,ϕ) outside the ergosphere and hence a fortiori outside any relevant horizon, see below.
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• 0 < |a| < m, called the slowly rotating case (comparable with 0 < |e| < m), which is
astrophysically relevant. Then ∆ has two distinct zeros, which, as in (9.93), are given by

r± = m±
√

m2−a2. (9.121)

It turns out that r = r+ gives the event horizon (as in the Schwarzschild case a = 0, where
r+ = 2m), but r− is a Cauchy horizon (as for the Reissner–Nordström metric).

• 0 < |a|= m, the extremal case (comparable with |e|= m), where r+ = r−.

• 0 < m < |a|, the rapidly rotating case (comparable with 0 < m < |e|), where ∆ > 0.

The interpretation of these cases, suggested by their names, comes from the fact that, due to it
being stationary, axisymmetric, and asymptotically flat, the Kerr solution has well-defined total
mass/energy E and angular momentum J. These may be defined by the Komar formulae:510

E := − 1
8π

∫
S2

r

dσµν ∇
µT ν ; J :=

1
16π

∫
S2

r

dσµν ∇
µAν , (9.122)

where (at least in the asymptotic region) T = ∂t is the Killing vector field defining stationarity,
A = ∂ϕ is the Killing vector field defining axial symmetry. The surface element is given by

dσµν = (nµNν −nνNµ)d2
σ , (9.123)

where d2σ was defined below (8.103). One takes a spacelike wannabe Cauchy surface Σ ⊂M
(since Kerr space-time is not globally hyperbolic this is all one can do), with fd timelike normal
N, containing a sphere S2

r in the asymptotically flat region, with outward normal n relative to the
embedding S2

r ↪→ Σ. It can then be shown that E and J are independent of Σ and S2
r , and yield

E = m; J = am. (9.124)

Thus the metric (9.114) describes a space-time rotating with constant angular velocity. It is
stationary but not static: the solution is not invariant under t 7→ −t but under the double inversion

(t,ϕ) 7→ (−t,−ϕ). (9.125)

This is what one would indeed expect of an object rotating with constant angular velocity, where
ϕ is the angle of rotation, since reversing time also reverses the direction of rotation.

We now turn to geodesic motion, starting with a more abstract perspective on the Schwarzschild
constants of motion E and L, cf. (9.21). Let X be a Killing vector field, so that LX g = 0, i.e.,

g(∇Y X ,Z)+ g(∇ZX ,Y ) = 0 for all Y ,Z ∈ X(M). (9.126)

For an observer with four-velocity u = γ̇ moving along a causal geodesic γ , eq. (9.126) plus
the geodesic equation ∇uu = 0 make g(u,X) a constant of motion, since taking Y = Z = u in
(9.126) gives gγ(s)(∇uX ,u) = 0, and hence, since ∇uu = 0 because γ is a geodesic,

d
ds

gγ(s)(X ,u) = ∇u(gγ(s)(X ,u)) = gγ(s)(∇uX ,u)+ gγ(s)(X ,∇uu) = 0. (9.127)

510 See e.g. Gourgoulhon (2012), §8.6. The computation of J was first done by Kerr himself, see Melia (2017),
page 75. The computation of E , which coincides with Π0 in (8.126), is similar to the Schwarzschild case, since one
may neglect the a2/r2 term in ∆ in (9.115), and many other terms drop out by symmetry.
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Hence apart from the constant of (geodesic) motion g(u,u), whose value depends on the choice
of the affine parameter s and may be fixed to −m2, where m is the mass of the body moving
on the geodesic, our observer carries at least as many conserved quantities as there are linearly
independent Killing vector fields. For the Kerr metric this gives

E := −g(u,∂t); L := g(u,∂ϕ), (9.128)

interpreted as its energy and (azimuthal) angular momentum, respectively. If L = 0, then

dϕ(t)
dt

= −
gtϕ

gϕϕ

=
2mar

Σ
=: ω , (9.129)

which means that stationary observers rotate with the black hole (inertial frame dragging).
Surprisingly, the Kerr metric leads to a fourth constant of motion along geodesics, which is

not explicable in terms of isometries of the metric (and remains somewhat mysterious). It was
discovered by Carter and may therefore be called C. These four constants of motion turn the
four second-order geodesic equations into a first-order system,511 which for m= 0 reads:512

∆ρ ṫ = ΣE−2marL; (9.130)

ρ
2ṙ2 = E2r4 +(a2E2−L2−C)r2 + 2m((L−aE)2 +C)r−a2C; (9.131)

ρ
2
θ̇

2 =C+

(
E2a2− L2

sin2
θ

)
cos2

θ ; (9.132)

∆ρϕ̇ = 2maEr+(ρ−2mr)
L

sin2
θ

. (9.133)

Compare (9.21); one difference with the Schwarzschild case is that closed geodesic orbits are no
longer necessarily planar. However, planar orbits do exist and include the Kerr analogues of the
unstable photon rings at r = 3m in the Schwarzschild metric. These now arise by taking C = 0
and θ = π/2, in which case ρ2 = r2, and (9.131) can be written in a way similar to (9.24), viz.

ṙ2 +V (r) = E2; V (r) :=
L2−a2E2

r2 − 2m(L−aE)2

r3 , (9.134)

cf. (9.26). Photon rings by definition have constant r, and, assuming 0≤ |a| ≤ m, solving the
ensuing equations V (r) = E and V ′(r) = 0 gives two unstable orbits with constant radii

r± = 2m(1+ cos( 2
3(arccos(±|a|/m))). (9.135)

Depending on the value of |a|/m, these fall in the range m ≤ r− ≤ 3m ≤ r+ ≤ 4m. For a = 0
the Schwarzschild case r+ = r− = 3m is recovered. For a > 0 the smaller orbit is prograde (i.e.
co-rotating with the black hole), whereas the larger one is retrogade (rotating in the opposite
direction). For C > 0 there are other spherical photon orbits off the equatorial plane θ = 1

2π .
At the opposite end, one has the Kerr version of radial lightlike geodesics, which solve

ṫ =
r2 + a2

∆
; ṙ = ±1; ϕ̇ =

a
∆

; θ̇ = 0, (9.136)

at radii r where ∆(r) 6= 0; on the two horizons, where ∆(r±) = 0, these orbits are rest photons,
which solve (9.130) - (9.133) with E = L =C = 0. As in the Schwarzschild case, these lightlike
geodesics rule the event and Cauchy horizons in the sense of Corollary 10.17 below.

511 See Plebański & Krasiński (2006), §20.6, §20.7 and O’Neill (1995), chapter 4. We also consulted Teo (2003).
512Putting L = 0 in (9.133) does not directly reproduce (9.129), since also E has to be eliminated from (9.133).

This constant is a linear combination of ṫ and ϕ̇ , from which ṫ must be eliminated from the condition that L = 0,
where L is also a linear combination of ṫ and ϕ̇ . See e.g. eqs. (20.104) - (20.105) in Plebański & Krasiński (2006).
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9.7 Inside a Kerr black hole

We now find coordinates in which the zeros of ∆ are overcome, starting with the slowly rotating
case 0 < |a|< m. The starting point is once again to introduce a radial tortoise coordinate r∗(r),
but in addition we need a new azimuthal angle ϕ± = ϕ±A(r), where r∗ and A solve

dr∗(r)
dr

=
r2 + a2

∆
;

dA(r)
dr

=
a
∆

, (9.137)

cf. (9.36). With an appropriate boundary condition these equations are solved by

r∗ = r+
mr+√
m2−a2

ln |r− r+|−
mr−√

m2−a2
ln |r− r−|; (9.138)

A = 1
2

a√
m2−a2

ln
∣∣∣∣r− r+
r− r−

∣∣∣∣ . (9.139)

We pass to lightlike coordinates u≡ v− = t− r∗ and v≡ v+ = t + r∗, cf. (9.34) - (9.35). These,
in turn, give ingoing and outgoing coordinates, where we relabel (u,v) ≡ (v−,v+), i.e.

(v,r,θ ,ϕ+) ≡ (v+,r,θ ,ϕ+); (u,r,θ ,ϕ−) ≡ (v−,r,θ ,ϕ−). (9.140)

Similar to (9.45) - (9.46), the Kerr metric (9.114) then becomes

g± =−
(

1− 2mr
ρ2

)
dv2
±−

4mar sin2
θ

ρ2 dv± dϕ±+ρ
2dθ

2±2dv± dr

+
Σ
ρ2 sin2

θ dϕ
2
± ∓ 2asin2

θdϕ± dr. (9.141)

This is regular throughout the Kerr space-time (9.120); the coordinate singularities of (9.114)
caused by ∆ = 0 have now been removed. Explicit computation of the geodesic equations is
much more work now than in the Schwarzschild case, but the result is essentially the same (with
ϕ  ϕ±), namely that for constant C± the following formulae define radial lightlike geodesics:

(u(s) = v(0),r(s) = s+C−,θ (s) = θ (0),ϕ− = ϕ−(0)); (9.142)
(v(s) = v(0),r(s) = −s+C+,θ (s) = θ (0),ϕ+ = ϕ+(0)), (9.143)

which are called outgoing and ingoing, respectively, similar to the blue and the green Schwarz-
schild lightlike geodesics drawn in the Kruskal diagram in §9.4. For r > 2m one can also see this
in Boyer–Lindquist coordinates, where a “radial” lightlike geodesic γ(s) = (t(s),r(s),θ (s),ϕ(s))
still has constant θ , but moving ϕ . In terms of the constant energy E = −g(γ̇ ,∂t), one finds

ṫ =
E(r2 + a2)

∆
; ṙ = ±E; θ̇ = 0; ϕ̇ =

aE
∆

, (9.144)

with the upper sign ṙ = +E for outgoing geodesics and the lower sign ṙ = −E for incoming
ones. Both lightlike geodesics in (9.142) - (9.143) are future directed if we time-orient (MK ,gK)
as in the Schwarzschild case, cf. (9.48), namely by declaring L = −∂r in the new coordinates
(v,r,θ ,ϕ∗), which also here is a lightlike vector, to be future directed. For r > 2m this makes ∂t ,
in the original coordinates (t,r,θ ,ϕ), which is timelike in that region, also future directed, as it
should. In the same original coordinates the vector −∂r is fd timelike in the region r− < r < r+.
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In the region r < r− things are more involved. Most remarkably, there is a region near the
ring where the vector field ∂ϕ is timelike,513 so that one has closed timelike loops! Hence Kerr
space-time is acausal, cf. Definition 5.28. Few people are bothered by this, though, since both
physicists and mathematicians trust the Kerr solution only up to r−, beyond which it is supposed
to be unstable (see §10.5 and the corresponding comments at the end of §9.5).

If we vary the starting point (v(0),r(0),θ (0),ϕ+(0)), the ingoing lightlike geodesics (simi-
larly the outgoing ones) form a null congruence, cf. §6.4; the tangent vector field is traditionally
called `. In terms of these, the Kerr metric assumes the amazingly simple Kerr–Schild form

gµν = ηµν +
2mr
ρ2 `µ`ν , (9.145)

where η is the Minkowski metric in whatever coordinates are used. This shows, in particular,
that for m = 0 the Kerr metric is the Minkowski metric, which is not quite obvious from (9.114).

In any case, we may now generalize Theorems 9.1 and 9.2:

Theorem 9.3 Both horizons H± = {(v,r,θ ,ϕ) | r = r±} (where ∆ = 0) are null hypersurfaces,
are homeomorphic to R×S2, and are one-way membranes towards smaller values of r.

Proof. The proof of Theorem 9.1 is easily adjusted. First, since r is constant on H±, the induced
metric g̃ on H± is simply (9.141) without the two terms containing dr, with determinant

det(g̃) = −ρ
2∆ sin2

θ . (9.146)

This vanishes at H± (defined as the locus where ∆ = 0), so that H± are null hypersurfaces. The
other proof of this fact works as well: the normal L± to H± is given by

L± = 2(∂v +Ω±∂ϕ∗); Ω± :=
a

2mr±
=

a
r2
±+ a2 , (9.147)

which is lightlike on H± (we omit the general expression for the normal to a hypersurface r = c).
To prove the one-way membrane property, instead of (9.53) - (9.54), we now have

g(ċ, ċ) < 0 ⇔ ṙ(v̇−asin2
θϕ̇∗)+ 1

2A < 0; (9.148)

g(L, ċ) < 0, ⇔ v̇−asin2
θϕ̇∗ > 0, (9.149)

where we have abbreviated a lengthy expression coming from (9.141) by

A := −
(

1− 2mr
ρ2

)
v̇2− 4mar sin2

θ

ρ2 v̇ϕ̇∗+
Σ
ρ2 sin2

θ ϕ̇
2
∗ +ρ

2
θ̇

2.

At both horizons H±, this expression A somewhat miraculously takes the positive definite form

A|H± =
sin2

θ

ρ2 (av̇−2mr±ϕ̇∗)
2 +ρ

2
θ̇

2, (9.150)

which replaces the terms r2(θ̇ 2+sin2
θϕ̇2) in (9.53), at r = 2m. Since A≥ 0 at H±, the argument

for the Schwarzschild case still applies and hence for timelike fd curves we must have

ṙ < 0, (9.151)
513For θ = 1

2 π the prefactor of dϕ2 in (9.114) equals a2 + r2 + 2ma2/r, which is negative for small negative r.
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at, and therefore also near H±. The final step of the proof also applies here, except that the fd
“rest” photons for the Kerr metric are characterized by r = r± (and hence ṙ = 0), and θ̇ = 0, but

ϕ̇∗ = Ω±v̇; v̇ > asin2
θϕ̇∗. (9.152)

Hence ϕ∗ cannot be constant, as is also clear from the fact that, as for Schwarzschild, these
photons solve ∇L±L± = 0, with L± given by (9.147). Thus they do hover around on S2. �

The interpretation of the horizons H± is the same as for Reissner–Nordström: H+ = H+
E is

the event horizon, whereas H− = H+
C is a Cauchy horizon. The vector field ∂r also behaves

analogously:514 it is spacelike for r > r+ and r < r− and timelike for r− < r < r+. Observers
that cross H+ and subsequently H− can therefore avoid the singularity (although they cannot
return). The singularity is timelike = locally naked, cf. §10.4, but is covered by an event horizon.
We return to these horizons in §10.8; the main point will be that the Killing vector field

X := ∂t +Ω+∂ϕ ; Ω+ := ω(r+) =
2mar+

Σ
=

a
r2
++ a2 , (9.153)

which is timelike outside H+, becomes lightlike at H+, which thence is called a Killing horizon.
A closely related property of a Kerr black hole is its ergosphere.515 We first define the outer

ergosurface E + (also called the stationary limit surface) and inner ergosurface E − by

E ± = {(t,r,θ ,ϕ) | r = r±E (θ )}; r±E (θ ) := m±
√

m2−a2 cos2 θ . (9.154)

Writing gtt as −(r− r+E )(r− r−E )/ρ2, we see that E + is where ∂t changes its causal nature:

• ∂t is timelike at r > r+E (θ ); • lightlike at E +; • spacelike within the ergosphere

E = {(t,r,θ ,ϕ) | r+ < r < r+E (θ )}; (9.155)

• lightlike again at E −; • timelike again for r < r−E (θ ).

In the ergosphere a massive particle cannot be at rest (as it can for r > r+E ), but it can still escape.
Moreover, in the ergosphere the energy E = −g(u,∂t) of a particle with fd four-velocity u can
have either sign (whereas for r > r+E (θ ) is positive, since u must be fd). This allows the extraction
of energy from the black hole via the so-called Penrose process. Here, a particle coming from
infinity with necessarily positive energy Eas > 0 falls into the ergosphere, decays into a pair, one
of positive energy Epos > 0 and one of negative energy Eneg < 0, where Epos +Eneg = Eas. If the
positive-energy particle subsequently escapes, which is dynamically possible, an amount

Epos−Eas = −Eneg > 0 (9.156)

of energy has been extracted from the black hole. This extraction is at the expense of its angular
momentum: since −g(u,X) = E−Ω+L and −g(u,X) > 0 outside H+, we have, outside H+,

E > Ω+L (9.157)

where X is the Killing vector field (9.153). Hence L < E/Ω+, so if the hole absorbs a particle
with Eneg < 0, it absorbs negative angular momentum L < Eneg/Ω+ < 0, i.e., loses it. This
process could continue until the ergosphere disappear and the black hole stops rotating.

514 The vector field ∂θ is spacelike everywhere, whereas ∂ϕ is spacelike for r > 0, timelike in a certain region near
the ring at r = 0, where it gives rise to closed timelike loops, and spacelike again for r sufficiently negative.

515In Schwarzschild space-time the outer ergosurface coincides with the outer event horizon and hence the
ergosphere is empty. The inner event horizon and inner ergosurface both coincide with the (pointlike) singularity.
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Here is a picture of the various geometric structures in or near a Kerr black hole.516

Picture of important r = constant surfaces in slowly rotating Kerr space-time (in Boyer–Lindquist
coordinates) at fixed t, shown for r ≥ 0 (although in fact r ∈R). The event horizons H± where r = r±
are characterized by Theorem 9.3 as one-way membranes: H+ is the outer event horizon of a slowly
rotating Kerr black hole, since it is the boundary inside which future (null) infinity can no longer be
reached. The inner event horizon H− is a Cauchy horizon. Near the singularity ∂t is timelike and ∂r

is spacelike, so it can be avoided. The outer ergosphere is the place where the timelike Killing field ∂t

switches its causal nature from being timelike at r > r+E to lightlike at the outer ergosurface, to spacelike
until one reaches the inner ergosurface, where it becomes lightlike and then timelike once more. The
ergosphere is the region between the outer ergosurface and the outer event horizon; it is the place from
which massive particles (or timelike observers) can no longer be at rest, but can still escape to infinity. In
the extremal case (|a|= m > 0) both horizons H± coalesce, since r+ = r− = m. Furthermore, because
r±E = m(1± sinθ ) the ergosurfaces acquire cusps at θ = 0 and θ = π , at which values all three surfaces
touch each other. Otherwise, since r+E ≥ m≥ r−E (with equalities iff θ = 0 or θ = π), the single horizon
remains enclosed between the outer and inner ergosurfaces. In the fast case (|a|> m > 0) there are no
event horizons and the two ergosurfaces have merged into a single (topological) torus with cusps.517

The same misgivings as to the original or maximally extended Schwarzschild solutions apply to
this picture as well as to its extensions studied below; notably the instability of the inner event
horizon and its extravagant if not crazy causal structure. However, in this case there seems to be
no analogue of the exact Oppenheimer–Snyder solution for a rotating black hole.518

516Redrawn from Visser (2006) by Edith de Jong. Explanations and formulae as in the original.
517See Carter (1973), §7, and Plebański & Krasiński (2006), §20.5 for pictures of the last two cases.
518As a second best see e.g. Nathanail, Most, & Rezzolla (2017) for numerical simulations.
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Kerr space-time is geodesically incomplete, and not just at the ring singularity. Hence (except in
the fast case, where it is already complete) it can be extended (with all the qualifications and
misgivings discussed at the end of §9.5). Here is the relevant Penrose diagram for 0 < |a|< m,
which displays the nature of the (analytic) extension to an inextendible space-time:

r = 0 r = 0

I +I +

I −I −

I +I +

I −I −

H+
C

H−C

H−E

H+
E

II

II

II

II

III III

i0
(r = ∞)

i0
(r = −∞)

i0
(r = ∞)

i0
(r = ∞)

i+i+

i−i−

i−i−

Above: Penrose diagram for the partly extended Kerr solution with 0 < |a|< m. The complete extension
is an infinite tower: put the part with the green cross on top of the part with the red cross, and put the red
part below the green part, etc. The range of r is now (−∞,∞) instead of (0,∞), so that (at fixed time)
r = 0 is a sphere. Penrose diagrams for space-times that lack spherical symmetry (like Kerr) are less
effective than for those who are (like Schwarzschild and Reissner–Nordström). In particular, the structure
of the (ring) singularity does not come out very well: it is easier for a camel to go through the eye of a
needle (i.e. cross the ring singularity) than for a rich man to enter into the kingdom of God.

Below: Penrose diagram for the partly extended Kerr solution with 0 < |a| = m. Region II has now
disappeared and event horizons and Cauchy horizons coincide, both simply labeled as H± = H±E = H±C .
This time the infinite tower is built by placing the entire diagram shown on top of and below itself in such
a way that the green H− lines match, and repeating this procedure. In this way region III as shown, which
is a black hole for region I shown, becomes a white hole for the new region I NE of the shown region III.
Similarly, the new region III SE of the shown region I is a white hole for the latter (the distinction between
black and white holes thus fades, or rather depends on which region the hole connects with).
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r = 0

I +

I −

I +

I −
H+

H−

H−

I

III

i−

i0 (r = ∞)

i0 (r = −∞)

The maximal (analytic) extensions displayed here can be determined on the basis of the (in)com-
pleteness of radial geodesics alone, so that we may freeze θ and ϕ . Doing this shows that the
situation is very similar to Reissner–Nordström: with u and v defined by (9.34) - (9.35), where
r∗ depends on the particular case, the Reissner–Nordström and Kerr metrics with θ = 0 and
either ϕ+ (ingoing) or ϕ− (outgoing) constant are given by

gRN = −h(r)dudv; h(r) =
(r− rRN

+ )(r− rRN
− )

r2 ; rRN
± := m±

√
m2− e2; (9.158)

gK = −k(r)dudv; k(r) =
(r− rK

+)(r− rK
−)

r2 + a2 ; rK
± := m±

√
m2−a2, (9.159)

respectively; see (9.93), (9.99), (9.141), and (9.121). These horizons look analogous, but (9.158)
has a singularity whereas (9.159) does not. Since the singularity in the actual (full) solutions are
timelike in both cases and therefore can be avoided, this difference turns out not to matter and
the maximal extension of Kerr space-time is essentially the same as for Reissner–Nordström.
The only difference lies in the structure of the diamonds III: the role of the singularity at r = 0 in
Reissner–Nordström is now played by the null infinities I ± at r = −∞.

Apart from satisfying curiosity, the aim of the maximal extension is the following:519

Theorem 9.4 The maximally extended Kerr space-time (M∗K ,g∗K) for 0 < |a| ≤m is geodesically
complete, except for geodesics moving into the ring singularity (9.118), which are all incomplete.
In particular, (M∗K ,g∗K) is (smoothly) inextendible, cf. Proposition 6.2.

For the record, the Kerr–Newman metric is obtained by changing ∆ in the Kerr metric, see
(9.115), by ∆e = r2−2mr+ a2 + e2. This turns out to be a solution to the Einstein–Maxwell
equations with axisymmetric vector potential A = −er(dt−asin2

θdϕ)/ρ2, cf. (9.116).

519See O’Neill (1995), Theorem 4.3.1, with a 100-page proof through an explicit classification of all geodesics.
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10 Black holes II: General theory
The “general” (i.e. model-independent) mathematical theory of black holes is based on tech-
niques that were largely developed by Penrose in the 1960s, initially motivated by the study of
gravitational radiation. In his wake, Hawking and others also made important contributions to
the abstract study of black holes. Around 1970, this led to a mathematical definition of a black
hole via its event horizon, based on Penrose’s concept of (future) null infinity I + or “scri-plus”
and the associated notion of a conformal completion of space-time (see §10.1–10.3):520

In a general space-time with a well-defined external future infinity, the absolute event
horizon would be defined as the boundary of the union of all timelike curves which escape
to this external future infinity. In the terminology of Penrose (1968), if M is a weakly
asymptotically simple space-time, for example, then the absolute event horizon in M is
İ−(I +) [= ∂ I−(I +)]. (Penrose 1969, footnote 3, p. 1146 of the 2002 reprint)

Penrose not only delegates this extremely important mathematical idea to a footnote (perhaps
because the paper was written for physicists) but he also leaves it to the reader to extract the
mathematical definition of a black hole from this! And as in the case of the definition of a
singularity in space-time (see §6.1), it was again Hawking who was subsequently more explicit:

A black hole on a spacelike surface is defined to be a connected component of the region of
the surface bounded by the event horizon. (Hawking 1972, Abstract)

Later he explains that a black hole is a region ‘from which there is no escape to I +’ (p. 156). See
also Hawking & Ellis (1973), §9.2, and (10.78) - (10.79) below.521 According to this definition
it is not the singularity but the event horizon that defines a black “hole”, which on this definition
would better be called a black “object”. On the other hand, Penrose’s 1965 singularity theorem,
i.e. Theorem 6.15, does not say anything about event horizons–in fact, the theorem even makes
event horizons unnecessary as a means for covering singularities, because the assumption of
a Cauchy surface already suffices to make these invisible to the outside world (see especially
Corollary 10.8 below). To overcome the discrepancy between his theorem and black holes,
Penrose launched his great cosmic censorship conjectures, which we will discuss in detail.

We then analyze the structure of various black hole horizons, notably event horizons, Cauchy
horizons, and Killing horizons, and discuss the uniqueness or “no hair” theorems for black holes.
These culminate in Penrose’s “final state conjecture” and the associated Penrose inequality.
We close this chapter with a brief survey of the amazing laws of black hole thermodynamics.
Although these laws can be formulated and even proved within classical GR, they can only be
understood if quantum (field) theory is invoked. Alas, this exceeds the scope of our book.

520 When Penrose introduced conformal completions and the ensuing diagrams now named after him in GR (see
below), these provided a completely new way of looking at boundary conditions and asymptotic flatness (Friedrich,
2011). Since Penrose started in algebraic geometry (as a PhD student of Hodge in Cambridge, later switching to
Todd), in finding both conformal completions and the associated diagrams he was undoubtedly influenced by the
theory of Riemann surfaces–one of whose founders was Weyl (1913), the pioneer of the conformal approach to
GR! Indeed, Riemann surfaces may equivalently be defined as either one-dimensional complex manifolds, or as
two-dimensional Riemannian manifolds up to conformal equivalence. The key examples of the Riemann sphere
and the Poincaré upper half-plane and disc D (both actually first found by Beltrami) will be reviewed in the next
section. The Poincaré disc D lies at the basis of the famous Circle Limit woodcuts by Escher (nos. I–IV, dating
from 1958–1960), see §4.4 for number IV, with which Penrose was well familiar. See also the Introduction.

521See the appendix of Landsman (2021) by Curiel, for further history. In particular, Penrose (1969) was probably
the first to use the term “black hole” in the academic GR literature, though the term itself was already used in the
early 1960s by Dicke in discussion with a popular science writer. But Penrose initially enclosed it in scare quotes!
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10.1 Conformal completions of space-time
Penrose’s approach to GR is typically based on conformal transformations (cf. §1.9), i.e.

ĝ = Ω2g; ĝµν(x) = Ω(x)2gµν , (10.1)

where initially Ω : M→ (0,∞) is strictly positive.522 The idea is that Ω decrease near “infinity”
in such a way that large g-distances become small with respect to ĝ, with the goal of bringing
“infinity” within a finite ĝ-distance. To make this idea more precise, we first consider the
Euclidean plane (R2,g), where g is the usual flat metric. In polar coordinates, this reads

g = dr2 + r2dϕ
2. (10.2)

Now consider the two-sphere S2, whose metric in the usual spherical coordinates (θ ,ϕ) reads

ĝ = dθ
2 + sin2

θdϕ
2. (10.3)

Define a diffeomorphism i : R2→ S2\N, with N = (0,0,1) i.e. θ = 0, with its inverse, by

i(r,ϕ) := (2arctan(1/r),ϕ); i−1(θ ,ϕ) = (1/ tan(θ /2),ϕ); (10.4)

the inverse ι−1 : S2\N → R2 is the familiar stereographic projection.523 The point is that
i : R2 ↪→ S2 is a conformal embedding, in the sense that as a relation on R2 we have

i∗ĝ = (i∗Ω2)g, (10.5)

a subtle variation of (10.1), where the conformal factor Ω : S2→ [0,∞), also defined on N, is

Ω(θ ,ϕ) = 2sin2(θ /2). (10.6)

This function is strictly positive on i(R2) = S2\N but vanishes at N, as the image under i of all
points at infinity (i.e. r→ ∞). This property is crucial in keeping ĝ finite whilst g measures ever
longer distances towards “infinity”. We call (S2, ĝ) a conformal compactification of (R2,g).

A beautiful example in the same dimension is the Poincaré upper half-plane (H,g), i.e.

H = {x+ iy ∈ C | y > 0}; g =
dx2 + dy2

y2 . (10.7)

which is a model of 2d hyperbolic geometry, cf. §4.4. It is related to the Poincaré disc (D, g̃),

D = {x+ iy ∈ C | x2 + y2 < 1}; g̃ = 4
dx2 + dy2

(1− x2− y2)2 (10.8)

through the isometry i : H→D defined by the Cayley transform

i(z) =
z− i
z+ i

; i−1(ẑ) =
ẑ+ i
ẑ− i

. (10.9)

which is also defined on the boundary ∂H = {x+ iy ∈ C | y = 0} and maps this onto T\{1}.
522In our notation (which differs from many texts) g is the physical metric, usually solving the Einstein equations.
523Our spherical coordinates (θ ,ϕ) on S2 are defined by (x,y,z) = (sinθ cosϕ , sinθ sinϕ , cosθ ). In cartesian

coordinates on both R2 and S2 we have i(x,y) = (2x,2y,x2+y2−1)/(x2+y2+1) and i−1(x,y,z) = (x,y)/(1−z).
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The well-known fact that i is an isometry implies that if we now define (Ĥ, ĝ) by

Ĥ := D = {x+ iy ∈ C | x2 + y2 ≤ 1}; ĝ = dx2 + dy2, (10.10)

then (10.5) holds with conformal factor Ω : D→ [0,∞), Ω(x,y) = 1− x2− y2. Once again,
“infinity” for (H,g), consisting of both the x-axis (which because of the factor 1/y2 in g is
metrically speaking infinitely far from any point in H, in that it takes infinite arc length to get
there via a geodesic) and all other points where r→∞ (r =

√
x2 + y2), has been brought into the

finite realm, which this time consists not of a single point, as in the case of S2, but of the circle
∂D = T = {x+ iy ∈ C | x2 + y2 = 1}, where Ω duly vanishes. The single point 1 ∈ T does
absorb the entire “r = ∞” infinity of H, whereas the remainder T\{1} takes care of the x-axis.
Thus the boundary points in D have a somewhat different status in so far as their origin in Ĥ

is concerned, but from the point of view of the Riemannian manifold (with boundary) (D, ĝ)
itself the symmetries of the model guarantee that these distinctions are lost.524 Of course, more
directly one may also start from (D, g̃) and consider (D, ĝ) to be its conformal completion.

Penrose magisterially adapted such examples to a space-time context, as follows:525

Definition 10.1 A conformal completion of a (non-compact) space-time (M,g) is a space-time
(M̂, ĝ), where M̂ is a manifold with boundary,526 along with an embedding

i : M ↪→ M̂; i(M) = int(M̂) := M̂\∂M̂, (10.11)

that is conformal in that i∗ĝ = (i∗Ω2)g for some positive C∞ function Ω : M̂→R+, such that:

Ω > 0 on i(M); Ω = 0 on ∂M̂; dΩ 6= 0 on ∂M̂. (10.12)

We also require that the boundary ∂M̂ consist of null infinity I (pronounced “scri”), in that

∂M̂ = I := I +∪I −; I ± := ∂M̂∩ J±(M), (10.13)

where J± is computed in M̂. This defines future null infinity I + and past null infinityI −.

In what follows we often tacitly identify M with i(M), so that ĝ and g are related by (10.1),
understood to hold on M ≡ i(M) only, rather than all of M̂; indeed, g is not defined on ∂M̂.

This definition does not fix Ω, but the identification of the boundary ∂M̂ with null infinity I
and the conditions (10.12) are well served by choosing Ω such that Ω(γ(s)) ∼C/s for some
constant C as s→∞, along all complete lightlike geodesics affinely parametrized by s; see §10.2.

524Being an isometry, i : H→ D maps geodesics of (H,g) to geodesics of (D, g̃). The former are either
semicircles hitting the x-axis at straight angles, or straight vertical lines. The latter are segments of circles that
intersect ∂D orthogonally, including the limiting case of straight lines through the origin (which need not be images
of straight lines in H, not even when one of the endpoints happens to be 1 ∈T). See e.g. Beardon (1983), chapter 7.

525 See Penrose (1964), who–in the context of gravitational waves–adds the condition that every lightlike geodesic
has two end-points on ∂M̂, defining (M,g) to be asymptotically simple. This excludes black hole space-times and
so we will not use it, following Chruściel (2020), §3.1. For more on conformal completions see Hawking & Ellis
(1973), §6.9, Geroch (1977), Wald (1984), §11.1, Penrose & Rindler (1986), chapter 9, Stewart (1991), chapter 3,
Frauendiener (2000), and Valiente Kroon (2016). In connection with asymptotic flatness, see also footnote 532.

526See §2.6. Note that (M̂, ĝ) has no corners, unlike Penrose diagrams: points such as i0 and i± of such diagrams
are not included in M̂, which unlike the Riemannian examples is not compact. We assume that the boundary ∂M̂ is
smooth; whether this is really the case for specific space-times is a subtle issue, taken up in footnote 532. One may
define spatial and timelike conformal completions that include these points (Geroch, 1977; Ashtekar, 1980).
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10.2 Conformal completion and Penrose diagrams

We first illustrate the idea of a conformal completion for Minkowski space-time M. It is
convenient to move from Cartesian coordinates (x0,x1,x2,x3) to polar ones (t,r,θ ,ϕ), and
replace (t,r) by lightlike coordinates (u,v) ∈R2 (i.e. ∂u and ∂v are lightlike vectors), defined as

u := t− r, t = 1
2(v+ u); (10.14)

v := t + r, r = 1
2(v−u), (10.15)

so that v≥ u, and v = u iff r = 0. In the coordinates (u,v,θ ,ϕ), the Minkowski metric reads

η = −dudv+ 1
4(u− v)2(dθ

2 + sin2
θdϕ

2). (10.16)

This formula implies that the curves

s 7→ (u(s),v(s),θ (s),ϕ(s)) = (u0,v0 + s,θ ,ϕ); (10.17)
s 7→ (u(s),v(s),θ (s),ϕ(s)) = (u0− s,v0,θ ,ϕ); (10.18)

both defined for u0− v0 ≤ s < ∞, are radial lightlike geodesics: eq. (10.17), where u is constant,
is future directed (fd) whilst (10.18), where v is constant, is past directed (pd). In line with the
(second) comment following Definition 10.1, we now define Ω initially on M by

Ω(u,v,θ ,ϕ) := (1+ u2)−1/2(1+ v2)−1/2; (10.19)
Ω(p,q,θ ,ϕ) = cos pcosq, (10.20)

where for later use we have also introduced the ‘compactifying’ coordinates (p,q) defined by

p := arctanv; v = tan p, (10.21)
q := arctanu; u = tanq, (10.22)

where p,q ∈ (− 1
2π , 1

2π) and p≥ q. This turns the original and rescaled metrics into

η =
1

cos2 pcos2 q
(−d pdq+ 1

4 sin2(p−q) · (dθ
2 + sin2

θdϕ
2)); (10.23)

η̂ = Ω2
η = −d pdq+ 1

4 sin2(p−q) · (dθ
2 + sin2

θdϕ
2). (10.24)

We are now in a position to define the conformal completion (M̂, η̂) of (M,η) as

M̂ := {(p,q,θ ,ϕ) | (p,q) ∈ (− 1
2π , 1

2π)2, p≥ q, (θ ,ϕ) ∈ S2}∪I +∪I −; (10.25)

I + := {(p,q,θ ,ϕ) | p = 1
2π ,q ∈ (− 1

2π , 1
2π), (θ ,ϕ) ∈ S2}; (10.26)

I − := {(p,q,θ ,ϕ) | p ∈ (− 1
2π , 1

2π),q = − 1
2π , (θ ,ϕ) ∈ S2}, (10.27)

and η̂ given by (10.24), now also defined on the boundary I = I +∪I −, where it is perfectly
regular. Finally, the embedding i : M ↪→ M̂ is given by i(u,v,θ ,ϕ) = (arctanv, arctanu,θ ,ϕ).

A characteristically beautiful drawing of M̂ in Penrose’s own hand, including the meaning
of the (p,q,ϕ) coordinates, with the θ -coordinate suppressed, may be found on the next page.
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The conformal completion (M̂, η̂) of Minkowski space-time (M,η), with the θ -coordinate suppressed,
taken from Penrose (1964). Future timelike infinity I+, past timelike infinity I−, and spacelike infinity
I0 (called i+, i−, and i0 in the main text, following current notation), are drawn, but do not belong to
M̂. Likewise, the shells at p > 1

2 π and q <− 1
2 π are not part of M̂, which “ends” at I0 and is a rotated

diamond without the equatorial circle and north and south poles; they are just drawn to clarify the
meaning of the coordinates. Also, the caps above I+ and below I− are not part of M̂. Metrically I0 is a
point, like I+ and I−, rather than a circle.
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In a Penrose diagram of (M,η), or indeed of any space-time (M,g) admitting a conformal
completion, one suppresses the angles (θ ,ϕ) and draws M̂/S2 (or M̂/S2 in such a way that
lightlike geodesics are at±45◦, as in M (this leads to some distortions in case g is not spherically
symmetric, as e.g. the Kerr metric). This is an important tool for visualizing especially black
holes. The points i± and i0 defined below are typically included in such diagrams, although they
are not part of M̂. The Penrose diagram of Minkowski space-time, then, is as follows:

r = 0

I +

I −

i0

i+

i−

Penrose diagram for Minkowski space-time in the (p,q) coordinates, where (p,q) ∈ [−π/2,π/2] subject
to p ≥ q; the zigzag line r = 0 corresponds to p = q; it is a boundary to the diagram and as such

“singular”, but this is an unfortunate coordinate singularity. The green line (constant q) is a fd lightlike
geodesic and the red line (constant p) is a pd lightlike geodesic. The three corners are

i− = (−π/2,−π/2); i0 = (π/2,−π/2); i+ = (π/2,π/2), (10.28)

whereas the smooth boundary components are given by, cf. (10.26) - (10.27),

I + = {(p,q) | p = 1
2π ,q ∈ (− 1

2π , 1
2π)}; (10.29)

I − = {(p,q) | q = − 1
2π , p ∈ (− 1

2π , 1
2π)}. (10.30)

• Future null infinity I + corresponds to v = ∞ at finite u, i.e. r→ ∞ and t→ ∞ at fixed t− r.
All future inextendible fd lightlike geodesics end in I +, and all its points occur in this way.

• Past null infinity I − corresponds to u = −∞ at finite v, or r→ ∞ and t→−∞ at fixed t + r.
All past inextendible pd lightlike geodesics end in I −, and all its points occur in this way.

• Future timelike infinity i+ corresponds to u = v = ∞, i.e. t → ∞ at finite r, and as such is the
single endpoint of all future inextendible fd timelike geodesics.

• Past timelike infinity i− corresponds to u = v = −∞, i.e. t →−∞ at finite r, and is the single
endpoint of all past inextendible pd timelike geodesics.

• Spacelike infinity i0 corresponds to u = −∞ and v = ∞, i.e. r→ ∞ at finite t, and is the single
endpoint of all inextendible spacelike geodesics.
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Since affinely parametrized radial lightlike geodesics γ̂ with respect to η̂ are simply given by

γ̂ : ŝ 7→ (p(ŝ),q(ŝ)) = (p0 + ŝ,q0) (future directed); (10.31)
γ̂ : ŝ 7→ (p(ŝ),q(ŝ)) = (p0,q0− ŝ) (past directed), (10.32)

it should be clear that all points in I + and I −, respectively, are reached by such geodesics, so
that the last condition of Definition 10.1 is met. Note that for the geodesic (10.31) we have

Ω((p(ŝ),q(ŝ)) = cos(p0 + ŝ)cos(q0) ∼−cos(q0)(ŝ+ p0− 1
2π), (10.33)

as the η̂-geodesic γ̂ in question approaches I +, i.e. as p(ŝ)→ 1
2π . By an affine reparametrization

such that ŝ = 0 when γ̂(ŝ) ∈I +, we may therefore achieve that near I + we have

Ω(γ̂(ŝ))∼−ŝ. (10.34)

From the point of view of the original metric η , by (10.17) and (10.19) the same geodesic, but
now affinely parametrized with respect to η and relabeled γ(s), i.e. γ(s(ŝ)) = γ̂(ŝ), gives

Ω(γ(s))∼ 1/s, (10.35)

as I + is approached, i.e. as s→ ∞. The reconfirms the name “future null infinity” for I +.
More generally, suppose ĝ = Ω2g are conformally related metrics (not necessarily flat or

even Lorentzian). Let ŝ 7→ γ̂(ŝ) be a ĝ-geodesic (which by convention is affinely parametrized),
with corresponding g-geodesic s 7→ γ(s). Then a straightforward calculation gives

ds
dŝ

=
1

Ω(γ̂(ŝ))2 . (10.36)

Hence if (10.34) holds, as can always be achieved because of (10.12), then (10.35) follows.
We now state some important properties of I ±. Since each point in the diagram (excluding

i± and i0) is a two-sphere S2, eqs. (10.29) - (10.30) give topologically and diffeomorphically,

I + ∼= I − ∼= R×S2. (10.37)

However, it follows from (10.24) that the would-be two-spheres at i± and i0 have zero radius and
hence should be seen as points (once again, these do not belong to M̂). The wiggly line marked
r = 0 is indeed a line (i.e. it is homeomorphic to R); its singular appearance as a boundary in
the Penrose diagram is a consequence of the fact that such diagrams are pictures of M̂/SO(3)
rather than of M̂ itself.527 This can already be seen in the usual (defining) action of SO(3) on
R3, where the quotient R3/SO(3) ∼= [0,∞) has zero as a boundary point, corresponding to the
fact that the stabilizer of (r,θ ,ϕ) suddenly changes from SO(2) for any r > 0 to SO(3) at r = 0.

Let us also note that I + and I − are null hypersurfaces (see Definition 4.15); for example,
we see from (10.29) that TxI + is spanned by vectors (∂ /∂q,∂ /∂θ ,∂ /∂ϕ), upon which (10.24)
shows that ∂ /∂q is both normal and tangent to I +, and hence lightlike (likewise for I − with
q p). This implies that the metric η̂ is degenerate on I ±; e.g. at future null infinity I + it is

η̂|I + = 1
4(cos2 q) · (dθ

2 + sin2
θdϕ

2). (10.38)

527 Although a general metric g ∈ T (2,0)M, i.e. “gµν ”, does not push forward to M/SO(3) under the canonical
projection π : M→M/SO(3), its inverse g−1 ∈ T (0,2)M, i.e. “gµν ”, does. As long as the SO(3)-orbits are spacelike
two-spheres (i.e. even if rotations fail to be isometries), the pushforward π∗g−1 ∈ T (0,2)(M/SO(3)) is invertible
and its inverse g2 = (π∗g−1)−1 ∈ T (2,0)(M/SO(3)) is a Lorentzian metric of signature (−+) on M/SO(3).
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Future (and past) null infinity of M has another desirable property, which is shared by the usual
black hole space-times like Schwarzschild and Kerr, namely completeness. It takes some effort
to define what this means, but the idea is that at least sufficiently far away (from the black hole, if
any), there is no end to the future. This should be expressed technically by the fact that lightlike
geodesics within I + extend infinitely into the future, but unfortunately this is not the case for
the choice of the conformal completion (M̂, η̂ ,Ω) used so far:528 lightlike geodesics within I +

at constant (θ ,ϕ), and p = 1
2π , simply take the form q(s) = q0 + s with affine parameter s, and

then come to a stop as q(s)→ 1
2π , which of course happens for some s < ∞.

This can be remedied by a different choice of Ω and hence of η̂ (since η = Ω2η̂ is fixed),
keeping M̂ as it is. We give a systematic formulation in the next section, but for the moment we
note that changing Ω to Ω′ = ωΩ, with ω(p,q) = 1/ sin(p−q), rescales (10.24) into

η̂
′ = −4

d pdq
sin2(p−q)

+ dθ
2 + sin2

θdϕ
2. (10.39)

It follows that Γq
qq = − tanq for this metric at I +, i.e. for p = 1

2π , so that lightlike geodesics γ

within I + at constant (θ ,ϕ) are given, perhaps after affine reparametrization,529 by

γ(s) = (p(s),q(s),θ (s),ϕ(s)) = ( 1
2π , arcsins,θ0,ϕ0). (10.40)

These geodesics rule the null hypersurface I + (in that each point of I + lies on one of them)
and are complete (in the usual sense of being defined for all s ∈R), reaching the boundary point
i+ of I +, i.e. future timelike infinity, as s→ ∞, and i0, i.e. spacelike infinity, as s→−∞.

Finally, for a new perspective on the conformal completion of M we take the 4d cylinder

E = R×S3, (10.41)

where the 3-sphere S3 = {(x1,x2,x3,x4) ∈R4 | x2
1 + x2

2 + x2
3 + x2

4 = 1} ⊂R4 is coordinatized by

x1 = cos χ; x2 = sin χ cosθ ;
x3 = sin χ sinθ cosϕ; x4 = sin χ sinθ sinϕ , (10.42)

where χ ∈ [0,π ], θ ∈ [0,π ], and ϕ ∈ [0,2π ]. This space has a Lorentzian metric,530 given by

ĝ = −dτ
2 + gS3 = −dτ

2 + dχ
2 + sin2

χ · (dθ
2 + sin2

θdϕ
2). (10.43)

To relate this to Minkowski space-time (M,η), recall (10.21) - (10.22) and put

τ = p+ q; χ = p−q. (10.44)

Given the range p,q ∈ (− 1
2π , 1

2π) and p ≥ q, this yields τ ∈ (−π ,π) and χ ∈ (0,π), so that
we may embed M into E via i : M ↪→ M̂ as defined before and subsequently regarding M̂ as
a subspace of E; the closure of i(M) ⊂ E in E is M̂ with the corners i± and i0 added. The
embedding i : M ↪→ E is conformal, since from (10.16) and (10.43) we find the relation

ĝ|M = Ω2g, (10.45)

where Ω : M→ R+ is given by (10.20). In conclusion, (M̂, η̂) is precisely the conformal
completion of (M,η) studied above, now embedded in the larger Lorentzian manifold (E, ĝ).

528The next remark follows from the fact that Γq
qq = 0 for the metric (10.24), so that d2q/ds2 = 0.

529The general solution of d2q/ds2 = (tanq) · (dq/ds)2 is q(s) = arcsin(c1(c2 + s)), for constants c1, c2.
530Historically, this space-time arose as Einstein’s static universe, which is a solution to the Einstein equations

with cosmological constant, which indeed Einstein (1917b) introduced precisely to make the universe static.
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Null infinity I for Minkowski space-time (M,η) is null, as the name suggests. However,
this is not a consequence of the definition: I can equally well be spacelike or timelike. These
possibilities are realized, for example, in the other two Lorentzian manifolds of constant positive
and negative curvature, viz. de Sitter space and anti de Sitter space, respectively (see §4.4). In
this light, (M,η) has constant curvature and cosmological constant both equal to zero.531

We start with de Sitter space dS4
ρ , defined by (4.91) with parameter ρ ; it satisfies the Einstein

equations Rµν = λgµν with cosmological constant λ = 3/ρ2 > 0, as follows from (4.84) with
k = 1/ρ2. For simplicity we set ρ = 1 and coordinatize dS4

1
∼= R×S3 using (τ , χ ,θ ,ϕ), where

τ ∈R and (χ ,θ ,ϕ) ∈ [0,π ]× [0,π ]× [0,2π) cover the S3 part. Specifically, we have

x0 = sinhτ; x1 = coshτ cos χ; x2 = coshτ sin χ cosθ ; (10.46)
x3 = coshτ sin χ sinθ cosϕ; x4 = coshτ sin χ sinθ sinϕ; (10.47)

g+ = −dτ
2 + cosh2

τ ·gS3 ; gS3 = dχ
2 + sin2

χdΩ. (10.48)

We then compactify R by switching to η = arcsin(1/coshτ) = 2arctan(expτ) ∈ (0,π), so that

g+ = (sin−2
η) · (−dη

2 + gS3). (10.49)

The conformal factor Ω(η) = sinη then turns g into ĝ+ = Ω2g already given by (10.43). We
see that also dS4

1 can be conformally embedded into the Einstein universe (10.41), which was
in fact how it was discovered. In the absence of spacelike or timelike infinity, a conformal
completion of (dS4

1,g+) is given by the closure of this image, which simply extends the range of
η to [0,π ]. The boundary value η = 0 gives past null infinity I −, whereas η = π yields I +.

For anti de Sitter space AdS4
ρ , cf. (4.92), we have λ = −3/ρ2 < 0, in which we again take

ρ = 1. We use coordinates τ ∈R, r ≥ 0 or χ = arctan(sinhr) ∈ [0, 1
2π), and (θ ,ϕ) ∈ S2, with

x1 = sinhr cosθ ; x2 = sinhr sinθ cosϕ; x3 = sinhr sinθ sinϕ; (10.50)
x−1 = coshr cosτ; x0 = coshr sinτ; (10.51)

g− = −cosh2 r dτ
2 + dr2 + sinh2 r ·gS2 = (cos−2

χ) · (−dτ
2 + gS3), (10.52)

so that Ω(χ) = cos χ also conformally embeds (AdS4
1,g−) into the Einstein universe. This time,

null infinity is connected and timelike, corresponding to χ = 1
2π , i.e. r = ∞. See also §5.10.

χ = 0 χ = π

I +

I −

χ = 0 I

i+

i−

Penrose diagrams for de Sitter space (left), where null infinity I = I +∪I − is spacelike and discon-
nected (and χ = 0,π are mere coordinate singularities), and anti de Sitter space (right), where null infinity
I at χ = 1

2 π is timelike and connected (and χ = 0 is a coordinate singularity; the vertical timelike
direction has not been compactified and goes on forever).

531See also Griffiths & Podolský (2009), §4.2, 5.2, and Valiente Kroon (2016), §6.3, 6.4 for further details.
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10.3 Asymptotic flatness at null infinity and black holes

The example of Minkowski space-time, as well as the black hole space-times reviewed below,
suggests the following sharpening of Definition 10.1, which captures both kinds of examples.532

Definition 10.2 A space-time (M,g) is asymptotically flat at null infinity if it has a conformal
completion (M̂, ĝ) with the following additional properties:533

1. I + ∼= I − ∼= R×S2 diffeomorphically, cf. (10.37).

2. The Ricci tensor Rµν of the original metric g is such that Rµν = O(Ω3) towards ∂M̂.534

3. The lightlike geodesics ruling I ± (which by the previous clause is a null hypersurface in
M̂) are complete, provided the conformal factor has been chosen such that on I ± one has

∆̂ Ω = 0. (10.53)

In clause 2 and in what follows we tacitly identify M with i(M). The third clause, in which
∆̂ := ĝµν∇̂µ∇̂ν , makes sense because of a crucial fact, first noted by Penrose (1964, 1968):535

Proposition 10.3 On the boundary ∂M̂ the scaling function Ω satisfies the eikonal equation

ĝ(∇̂Ω, ∇̂Ω) = 0, (10.54)

so that ∂M̂ (more precisely: each connected component thereof) is a null hypersurface in M̂.

Proof. A simple computation yields the effect of a conformal rescaling on the Ricci tensor:536

Rµν = R̂µν +Ω−1(2∇̂µ∇̂ν Ω+ ĝµν ∆̂ Ω)−3Ω−2ĝ(∇̂Ω, ∇̂Ω)ĝµν . (10.55)

⇒ ĝ(∇̂Ω, ∇̂Ω) = 1
12(Ω

2R̂−R)+ 1
2 Ω ∆̂ Ω. (10.56)

Now Rµν = O(Ω3) gives R = O(Ω5). Eq. (10.54) follows, as ĝ is smooth and Ω = 0 on ∂M̂. �

532Penrose himself already realized that definitions of this kind, which combine smoothness of the boundary ∂M̂
with specific conditions at infinity, imply detailed fall-off (or ‘peeling’) properties of the Weyl tensor at infinity,
which may not always hold. See e.g. Klainerman & Nicolò (2003), Friedrich (2004, 2018), Adamo, Newman, &
Kozameh (2012), Dafermos (2012), and Kehrberger (2022abc). For the Schwarzschild, Reissner–Nordström, and
Kerr solutions the boundary is smooth, and this is true more generally, e.g. for stationary space-times satisfying
standard energy conditions (Chruściel et al., 2001). It holds even generically in a suitable topological sense
(Chruściel & Delay, 2002; Corvino, 2007; Paetz, 2014; Chruściel & Paetz, 2015), so we will not worry about this.

533Clause 3 is due to Geroch & Horowitz (1978); cf. §10.5. See also Horowitz (1979) and Wald (1984), §11.1.
534Asking Rµν = O(Ω3), as in e.g. Stewart (1991), §3.5, is on the safe side; in the presence of matter one

equivalently asks that Tµν is O(Ω3). In the mathematical literature one also finds Rµν =O(Ω2+ε ) with 1/2< ε ≤ 1,
whereas physicists assume that Ω−2Gµν has a smooth limit as Ω→ 0 (Ashtekar, 2015), which suggests ε = 0. Our
choice implies that Ω−2Rµν extends by continuity from i(M) to zero on ∂M̂, as in Rµν (r)∼ 1/r3 as r→ ∞. The
simplest way to satisfy all of these is of course to assume that (M,g) solves the vacuum Einstein equations Rµν = 0.

535If Rµν = λgµν , then ĝ(∇̂Ω, ∇̂Ω) = − 1
3 λ on ∂M̂, so that ∇̂Ω is timelike and hence ∂M̂ is spacelike if λ > 0,

and vice versa if λ < 0 (Penrose, 1964, Lecture II; Penrose, 1968, p. 181). See Ashtekar, Bonga, & Kesavan (2015)
and Ashtekar & Magnon (1984), respectively, for theory, and §10.2 above for the two simplest examples. But as the
indisputable king of null geometry in GR, Penrose must have taken special pleasure in the case λ = 0!

536It is easily verified by direct computation (see e.g. Valiente Kroon, 2016, §5.2.2; Chruściel, 2020, Appendix
H.6) that if g′ = ϕ2g, then R′µν = Rµν −ϕ−1(2∇µ ∇ν ϕ + gµν ∆gϕ) +ϕ−2(4∇µ ϕ∇ν ϕ − gµν g(∇ϕ ,∇ϕ)). Now
replace g′ g and g ĝ, so that ϕ = 1/Ω. This gives (10.55), which is eq. (11.1.16) in Wald (1984).
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Without clause 3, the definition (10.78) below of a black hole would be flawed (see footnote 542).
The need for a condition on Ω in order to state completeness of null infinity has been explained
in the previous section; for otherwise even (M̂, η̂) would be a counterexample. We write

N̂ := ∇̂Ω; N̂µ = ∂µ Ω; N̂µ = ĝµν
∂µ Ω, (10.57)

so that N̂µ N̂µ = 0 on I ±. Let us first note that on I ±, i.e. for Ω = 0, eq. (10.55) implies

ĝµν ∆̂ Ω = 4∆̂µ N̂ν , (10.58)

so that (10.53), or ∇̂µ N̂µ = 0 on I ±, is equivalent to the seemingly stronger condition

∇̂µ N̂ν = 0, (10.59)

still on I ± only. This condition, in turn, implies that on I ± we have the geodesic equation

∇̂N̂N̂ = 0. (10.60)

In other words, in the “gauge” (10.53) the flow of the vector field N̂, restricted to I ±, consists of
lightlike geodesics, and clause 3 requires that these particular lightlike geodesics be complete.537

Towards showing that (10.53) can be satisfied by a suitable choice of the the conformal factor
Ω, we first relabel ĝ as g̃, with ensuing differential operators ∇̃ and ∆̃, also relabel the original Ω
as Ω̃, i.e. g̃ = Ω̃2g, with Ñ = ∇̃Ω̃, and define Ω = ωΩ̃, where ω : M̂→ (0,∞) is smooth and
nonzero on I ±, for otherwise (10.61) below would make N̂ = 0, against Definition 10.1. Still
using the notation (10.57), a straightforward computation shows that on I ± we have

N̂µ = ωÑµ ; (10.61)

∇̂µ N̂ν = ω∇̃µ Ñν + g̃µν Ñρ
∇̃ρω . (10.62)

Eq. (10.61) follows from N̂µ = ∂µ Ω = ∂µ(ωΩ̃) = (∂µω)Ω̃+ω∂µ Ω̃, which on I ±, where
Ω̃ = 0, equals ω∂µ Ω̃ = ωÑµ . Eq. (10.62) follows from once (covariantly) differentiating (10.55)
and (10.56).538 On I ±, eqs. (10.62) and (10.58), but now for the “tilde” quantities, give

∇̂µ N̂ν = 1
4 g̃µν(ω∆̃Ω̃+ 4Ñρ

∂ρω). (10.63)

Since Ñρ∂ρ differentiates along I ±, one can solve the ODE

Ñρ
∂ρω = − 1

4 ∆̃Ω̃ (10.64)

on I ± for given Ω̃, with any initial condition ω0, and this choice of ω achieves (10.59) and
hence (10.53). Because of Definition 10.2.1, the initial condition may be stated on some fiducial
copy of S2, call it S2

0. Furthermore, as a result of the classification of compact Riemann surfaces,

537Completeness of curves depends on their parametrization. Geodesics are affinely parametrized by definition
(and an affine reparametrization does not affect their (in)completeness), but a change in Ω changes the metric and
hence the notion of a geodesic with resect to ĝ (for given g), so that completeness does depend on the choice of Ω.

538See e.g. Wald (1984), §11.1, Stewart (1991), §3.6, or Reall (2020), §5.2. for details. The extra derivative in the
derivation of (10.62) requires better asymptotics than in Definition 10.2.2, such as Rµν = O(Ω4) or o(Ω5), se we
assume this here. The following analysis is taken from Wald (1984), pp. 279–280, see also Reall (2020), §5.2.
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in this case of genus zero, any Riemannian metric on S2 is conformal to the standard one gS2 .
We may therefore choose ω0 such that gS2

0
= gS2 . We now show that on the identification

I ± ∼= R×S2 (10.65)

from Definition 10.2.1, this remains true for all copies of S2 in I ±. Below we take I +; the
other case I − involves some sign changes. We first choose coordinates (u,θ ,ϕ) on I + such
that the point γ(u) labels the solution γ of (10.60) starting at (θ ,ϕ) ∈ S2

0 for s = 0 with γ̇(0) = N̂
(so that u ∈R by Definition 10.2.3). Because of (10.12), we can also use Ω as a coordinate on
M̂, at least near I +, so that we have local coordinates (Ω,u,θ ,ϕ). Note that

∂

∂ s
= N̂ = ∇̂Ω, (10.66)

which is a lightlike vector, is tangent to I +, whereas the vector field ∂ /∂ Ω points away from it.
Eq. (10.59), written in terms of the Christoffel symbols, then implies that on I ±, i.e. for

Ω = 0, the (θ ,ϕ) components of ĝµν are independent of u. Collecting all we know, we obtain

ĝΩ=0 = 2dudΩ+ gS2 . (10.67)

If we then introduce a–by definition–radial coordinate v := 2/Ω, the physical metric near I ±

is
g = −2dudv+ 1

4(v−u)2gS2 + · · · (10.68)

as v→ ∞ at fixed u, where compared with (10.67) we have written (v−u)2 instead of v2. This
is because, using (10.59), as v→ ∞ the remainder terms denotes by · · · can be shown to be:

O(v) in dθ
2,dϕ

2,dθdϕ; O(1) in du2,dudθ ,dudϕ;

O(1/v) in dvdu,dvdθ ,dvdϕ; O(1/v3) in dv2. (10.69)

Hence the leading terms of g near I + are the same as in Minkowski space, cf. (10.16).
This completes the exegesis of Definition 10.2. Having used Minkowski space-time to

motivate this definition, let us use the Schwarzschild solution to check that it is reasonable.
To find a conformal completion of the Schwarzschild space-time (9.47) with metric (9.46) in
outgoing Eddington–Finkelstein coordinates (u,r,θ ,ϕ), first change r to w = 1/r, which gives

g =
1

w2

(
2dudw−w2(1−2mw)dw2 + dθ

2 + sin2
θdϕ

2) . (10.70)

Then take Ω(u,w,θ ,ϕ) = w, which obviously gives the unphysical metric

ĝ = 2dudw−w2(1−2mw)dw2 + dθ
2 + sin2

θdϕ
2, (10.71)

defined on a manifold with boundary M̂S given by adding all points with w = 0. The map
i : MS ↪→ M̂S is then the identity, much as in the conformal compactification of the Poincaré
disc D reviewed in §10.1. Since r→ ∞ at fixed u amounts to v→ ∞, this procedure only adds
future null infinity I +. To add past null infinity I −, one should repeat this procedure for the
incoming Eddington–Finkelstein coordinates (v,r,θ ,ϕ), and as long as r > 2m these can be
combined to define a conformal completion of the corresponding part of MS, where the passage
from outgoing to incoming coordinates is just a coordinate transformation. However, we will not
spell out the result, since what we really are interested in is the entire region 0 < r < ∞, where
the two coordinate systems are no longer related by a coordinate transformation.
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To define a conformal completion of all of MS, we may enlarge it to the Kruskal space-time
MK , described in (U ,V ) coordinates. In a subtle variation on (10.21) - (10.22), we define

V = sinh(tanP); P = arctan(arcsinhV ); (10.72)
U = sinh(tanQ); Q = arctan(arcsinhU); (10.73)

P,Q ∈ (− 1
2π , 1

2π); P+Q ∈ (− 1
2π , 1

2π). (10.74)

where the last condition is necessary to keep r > 0. The conformal completion then has P,Q ∈
[− 1

2π , 1
2π ], still subject to the second part of (10.74); for the upper r = 0 branch in the Kruskal

diagram (which is part of neither MK not M̂K) corresponds to P+Q = 1
2π in the Penrose diagram,

whereas the lower r = 0 branch is P+Q = − 1
2π . This gives

g = −32m3e−r/2m

r
· cosh(tanP)cosh(tanQ)

cos2 Pcos2 Q
dPdQ+ r2(dθ

2 + sin2
θdϕ

2), (10.75)

where r is regarded as a function of P and Q similar to the explanation following (9.57), now
adding (10.72) - (10.73) to the story. For the conformal factor we now obviously take

Ω(P,Q)2 =
rer/2m

32m3
cos2 Pcos2 Q

cosh(tanP)cosh(tanQ)
, (10.76)

which has the right asymptotics Ω(r) ∼ 1/r as r→ ∞.539 The rescaled metric then becomes

ĝ = −dPdQ+ r2Ω(P,Q)2(dθ
2 + sin2

θdϕ
2), (10.77)

which shows that the two-spheres S2 in I ± acquire their usual metric gS2 . A simple computation
shows that Definition 10.2.3 is satisfied. The other two clauses are obvious from (9.47), which
also applies to MK , and from the fact that the Ricci tensor of g vanishes.

r = 0

r = 0

H+
E

H−E

II

IV

Σ Σ

III

III

I

I I +I +

I −I −

i0i0

i+i+

i−i−

Penrose diagram for Kruskal space-time MK , in which Schwarzschild space-time MS corresponds to
regions I and II (excluding the SE–NW green diagonal but including the upper half of the green SW–NE
line), see §9.4. The P-axis is at 45◦ and the Q-axis is at 135◦, just like V and U in the Kruskal diagram,
or (p,q) in the Minkowski case. Hence radial lightlike geodesics move parallel to these axes. The green
lines are event horizons, whilst the blue line is a Cauchy surface.

539To see this, use (9.58), which for r→ ∞ gives Ω2 ∼ tanh(tanP) tanh(tanQ)cos2 Pcos2 Q. Towards e.g. I +,
where P→ 1

2 π at fixed Q, this gives Ω∼ cosP. In the same regime, r ∼ lnV ∼ ln(sinh(tanP))∼ tanP∼ 1/cosP.
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• Future null infinity I + has two components: on the right it has P = 1
2 π , Q ∈ (− 1

2 π ,0), times
the two-sphere S2. For the Schwarzschild space-time MS this is all. For Kruskal space-time, I + in
addition has the component on the left, where P ∈ (− 1

2 π ,0), Q = 1
2 π .

• Past null infinity I − similarly has two components: on the right it has P ∈ (0, 1
2 π), Q = − 1

2 π

(which is all for MS), and on the left, P = − 1
2 π , Q ∈ (0, 1

2 π).

• Future timelike infinity i+ is (P = 1
2 π ,Q = 0) on the right and (0, 1

2 π) on the left.

• Past timelike infinity i− is (P = 0,Q = − 1
2 π) on the right and (− 1

2 π ,0) on the left.

• Spacelike infinity i0 is ( 1
2 π ,− 1

2 π) on the right and (− 1
2 π , 1

2 π) on the left.540

We return to the general theory. The following definition is due to Hawking and Penrose.541

Definition 10.4 Let (M,g) be a space-time that is asymptotically flat at null infinity. The black
hole region B+ and the white hole region B− in M are defined (and then re-expressed) by

B+ := M\J−(I +) = M\I−(I +); B− := M\J+(I −) = M\I+(I −). (10.78)

Each connected component of B±, if not empty, is a black hole (or white hole). The boundaries

H+
E := ∂B+ = ∂ I−(I +); H−E := ∂B− = ∂ I+(I −) (10.79)

decompose into the future and past event horizons of each of the black and white holes in M.

The hole regions B± are closed, so that H±E ⊂ B±, i.e. the event horizons form part of the holes.
For Minkowski space-time (M,η) with conformal completion (M̂, η̂), cf. (10.24) - (10.25),

J+(I −)∩M = J−(I +)∩M = M; B± = /0. (10.80)

Thus Minkowski space-time is free of holes.542 For Kruskal space-time (MK ,gK), the Penrose
diagram shows that J−(I +)∩MK consists of regions I, III, and IV (without boundaries), whilst
J−(I +)∩MS is just region I. In both cases the black hole B+ is in region II (with boundaries).

540Eqs. (10.72) - (10.73) are suggested by Penrose (1968), p. 209. The choice V = tanP, U = tanQ, as in Valiente
Kroon (2016), p. 165, will not work here; his metric gS (which in our notation would be ĝ) vanishes on I ±.

541See Penrose (1969) and Hawking (1972), as further analyzed in the preamble. The non-defining equalities in
(10.78) and (10.79) follow from J∓(I ±)∩M = I∓(I ±)∩M = I∓(I ±), where the last equality follows because
I ± is null, cf. Proposition 10.3 and Lemma 4.16. To prove the first equality, we take x ∈ J−(y) for some x ∈M
and y ∈I +. Then we are ready if x ∈ I−(y), so assume x ∈ J−(y)\I−(y), in which case x and y must be connected
by a lightlike (pre)geodesic, cf. Corollary 5.14.1. By Propositions 10.3 and 6.9 one may take any point z ∈I + on a
fd lightlike geodesic through y within I +, which can clearly be connected to x by a path that is not a lightlike (pre)
geodesics. Hence x ∈ I−(z) again by Corollary 5.14.1. See also Wald (1984), p. 308. Finally, if Y ⊂ X , then ∂Y
consists of all x ∈ X for which any nbhd U intersects both Y and X\Y . Hence ∂Y = ∂ (X\Y ). As noted by Jacobson
& Parentani (2003), one may equivalently define the future horizon (and similarly the past horizon) by taking any
timelike curve c+ that reaches future timelike infinity i+ and putting H+

E = ∂J−(c+). Similarly, H+
E = ∂J−(i+).

542 On the other hand, truncating I + to for example {(p,q,θ ,ϕ) | p = π/2,q ∈ (−π/2,0)} instead of (10.26),
would turn J−(I +)∩M into the region u < 0 and hence make the future lightcone J+(0) a fake black hole in
M. This would still satisfy Definition 10.1, but Definition 10.2.3 would now fail. Removing B+ = J+(0), the
space-time (M,g) := (M\J+(0),η) still has a conformal completion (for example the one just described), and
is now free of black holes, but its future null infinity is incomplete. Excluding cases like this was in fact what
led Geroch & Horowitz (1978) to introduce clause 3 in Definition 10.2 (in slightly different form). A similar
inextendibility condition was proposed by Geroch (1977), pp. 13–14. Together with a regularity condition to the
effect that lightlike geodesics in M̂ sufficiently close to geodesics that do not meet x ∈I , do not meet x either, this
enabled him to prove uniqueness of conformal completions (up to equivalence). See also Chruściel (2002), §3.4.
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The future event horizon H+
E consists of the two upper r = 2m lines. Similarly, J+(I −)∩MK

consists of regions I, II, and III (without boundaries), and J+(I −)∩MS is regions I and II, i.e.,
all of MS. The white hole B− in MK is region IV (with boundaries), with past event horizon H−E
consisting of the two lower green r = 2m lines. See also the Penrose diagram below (10.77).

To close this section, we discuss the fact that though mathematically sweet, Definition (10.79)
of a horizon, based on the idealizations in Definition 10.2, is not entirely uncontroversial:

This definition depends on the whole future behaviour of the solution (. . . ) one cannot
find where the event horizon is without solving the Cauchy problem for the whole future
development of the [partial Cauchy] surface.’ (Hawking & Ellis, 1973, p. 319)

This definition is global in a strong and straightforward sense: the idea that nothing can
escape the interior of a black hole once it enters makes implicit reference to all future time–
the thing can never escape no matter how long it tries.543 Thus, in order to know the location
of the event horizon in space-time , one must know the entire structure of the space-time
, from start to finish, so to speak, and all the way out to infinity. As a consequence, no
local measurements one can make can ever determine the location of an event horizon. (. . . )
Another disturbing property of the event horizon, arising from its global nature, is that it is
prescient. Where I locate the horizon today depends on what I throw in it tomorrow–which
future-directed possible paths of particles and light rays can escape to infinity starting today
depends on where the horizon will be tomorrow, and so that information must already be
accounted for today. Physicists find this feature even more troubling. (Curiel, 2019b, p. 29)

[The notion of a horizon] is probably very useless, because it assumes we can compute the
future of real black holes, and we cannot. (Carlo Rovelli, quoted in Curiel, 2019b, p. 30)

I have no idea why there should be any controversy of any kind about the definition of a black
hole. There is a precise, clear definition in the context of asymptotically flat space-times
(. . . ) I don’t see this as any different than what occurs everywhere else in physics, where
one can give precise definitions for idealized cases but these are not achievable/measurable
in the real world. (Bob Wald, quoted in Curiel, 2019b, p. 32)

However, the disagreement may not be so bad, since two kinds of idealizations are involved
here: (i) The ability to know an entire space-time (M,g), either from initial data or by direct
construction, and (ii) The construction of (null) infinity from which the black hole and its event
horizon are defined. Rovelli’s comment seems to apply to the first point and Wald’s to the second.
On the other hand, the second point is predicated on the first, which remains unresolved, except
from the point of view of a Laplacian demon. Definition (10.79) is an axiomatic approach to
black holes, subject to Russell’s famous charge that ‘The method of “postulating” what we want
has many advantages; they are the same as the advantages of theft over honest toil.’ However,
nothing is wrong with an axiomatic approach as long as one can find representative and realistic
models for the axioms (or definitions) that show that they are reasonable. This is certainly the
case here, where the known exact black hole solutions validate all definitions.

In any case, discussions like this have led to alternative, more local definitions of event
horizons, of which apparent, dynamical, isolated, and naive horizons are examples.544 For
stationary black holes one may even avoid J at no cost in defining event horizons, see §10.9.

543Or, as Ashtekar & Galloway (2005), p. 2, insightfully write in an article on dynamical horizons: ‘[H+
E ] is the

boundary of an interior space-time region from which causal signals can never be sent to the asymptotic observers,
no matter how long they are prepared to wait. The region is therefore “black” in an absolute sense.’

544 See e.g. Hawking & Ellis (1973), §9.2, Ashtekar & Krishnan (2004), Booth (2005), Chruściel (2002; 2020,
§8.4), Hayward (2013), and Faraoni (2015). See also §10.11 for a short introduction to apparent horizons.
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10.4 Cosmic censorship à la Penrose
A key issue in the theory of black holes is Penrose’s cosmic censorship conjecture, which he
first raised in 1969 and which underwent several refinements, bifurcations, and reformulations
since then.545 One way to understand this development is to compare the actual achievement of
Penrose’s 1965 incompleteness theorem with its intended goal. Quoting Penrose’s 2020 Physics
Nobel Prize citation, this goal was to prove that ‘black hole formation is a robust prediction of
the general theory of relativity’ (see also chapter 6). However, what the theorem proved was that
the conjunction of (i) a non-compact Cauchy surface; (ii) the null energy condition, and (iii) the
presence of a trapped surface, implies null geodesic incompleteness (cf. Theorem 6.15). In the
light of the analysis in the preamble to chapter 6, it is clear that two things were missing:

1. To get closer to a curvature singularity as the source of lightlike/null geodesic incomplete-
ness, one should get rid of the possibility of extendibility of the space-time in question.

2. Although an event horizon is what makes black holes black, this concept plays no role
whatsoever in the theorem, and hence it should be involved one way or the other.546

Logically speaking,547 the first point suggests strong cosmic censorship, whereas the second
motivates weak cosmic censorship. The latter came first. Here is Penrose’s original formulation:

We are thus presented with what is perhaps the most fundamental question of general-
relativistic collapse theory, namely: does there exist a “cosmic censor” who forbids the
appearance of naked singularities, clothing each one in an absolute event horizon? In one
sense, a “cosmic censor” can be shown not to exist. For it follows from a theorem of
Hawking that the “big bang” singularity is, in principle, observable. But it is not known
whether singularities observable from outside will ever arise in a generic collapse which
starts off from a perfectly reasonable nonsingular initial state. (Penrose, 1969, p. 1162)

Or, in Penrose (1979), p. 618, with an emphasis on initial data:

A system which evolves, according to classical general relativity with reasonable equations
of state, from generic non-singular initial data on a suitable Cauchy hypersurface, does not
develop any space-time singularity which is visible from infinity. (Penrose, 1979, p. 618).

Visibility from infinity, then, is blocked by an event horizon. However, Penrose argued:

It seems to me to be comparatively unimportant whether the observer himself can escape to
infinity. Classical general relativity is a scale-invariant theory, so if locally naked singularities
occur on a very tiny scale, they should also, in principle, occur on a very large scale in
which a ‘trapped’ observer could have days or even years to ponder upon the implications of
the uncertainties introduced by the observations of such a singularity. (. . . ) It would seem,
therefore, that if cosmic censorship is a principle of Nature, it should be formulated in such
a way as to preclude such locally naked singularities. (Penrose, 1979, p. 619)

This preclusion, then, is Penrose’s original version of strong cosmic censorship.
545For reviews of cosmic censorship before the PDE people took over see Geroch & Horowitz (1979), §5.4, Tipler,

Clarke, & Ellis (1980), §6, Earman (1995), Chapter 3, and Joshi (2007), Chapter 4. See §10.5 for the PDE approach.
546Yet in one of the most important papers about black holes in observational astronomy (Event Horizon Telescope

Collaboration, 2019a), which would have deserved to share the 2020 Physics Nobel Prize with Penrose, the authors
write: ‘A defining feature of black holes is their event horizon, a one-way causal boundary in space-time from which
not even light can escape (Schwarzschild 1916). The production of black holes is generic in GR (Penrose 1965).’

547In a discussion on July 2, 2022, Penrose emphasized that he was never motivated by the problem of
(in)extendibility and always intended strong cosmic censorship to exclude timelike (or locally naked) singularities.
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We will give a unified treatment of weak and strong cosmic censorship,548 in which both
come out as special cases of a family of cosmic censorship conjectures. This family is based on a
later concept of a singularity (i.e. Definition 10.5) ‘which is not quite the same as that suggested
by the singularity theorems’ (Penrose, 1974, p. 85). It has two novel and distinguishing features:

1. A singularity is perspectival, in that its relationship to points which it can influence matters.

2. Inextendible timelike curves replace incomplete causal geodesics as marks of singularities.

As in §5.11 the change from ‘causal’ to ‘timelike’ is innocent,549 but the change from incomplete
geodesics to inextendible curves is not.550 The key difference lies in the possibility that an
inextendible causal curve may go off to infinity (instead of crashing into a curvature singularity
or reaching the boundary of some extendible space-time, as in the singularity theorems) and yet
count as a singularity in the new sense.551 For example, even M =R4 carrying plane gravitational
waves, which is geodesically complete and strongly causal but not globally hyperbolic, will
now count as singular,552 as does anti de Sitter.553 Consequently, Definition 10.5 accepts more
singularities than the singularity theorems, and excluding these new singularities–which is the aim
of cosmic censorship– therefore certainly excludes all “old-school” singularities, too: it might be
stronger than necessary. However, in strongly causal space-times that are asymptotically flat at
null infinity the right intuition to think about the “new” singularities remains: as causal curves
that either crash into a curvature singularity or reach the edge of an extendible space-time.

In what follows we will eventually assume that our space-time is strongly causal,554 but for
the moment the weaker property of past distinguishability suffices, i.e., I−(x) = I−(y) iff x = y,
see also §5.11. This allows us to exchange properties of points x for properties of I−(x).555 So
let (M,g) be a past-distinguishing space-time. The problem is to define what it means for a
signal to emanate from a singularity that is not part of space-time. This is solved as follows.

548The following discussion is based on Landsman (2022a), which was inspired by Geroch & Horowitz (1979) and
Penrose (1974, 1979). We simplify some technical points in the latter by removing the TIPs of Geroch, Kronheimer,
& Penrose (1972) from the discussion. We also work with continuous causal curves, see Definition 5.20.

549Cf. Theorem (2.3) in Geroch, Kronheimer, & Penrose (1972); one could even use lightlike curves (Flores
& Sánchez, 2008, §3.3). Using causal geodesics instead of timelike curves would characterize strong cosmic
censorship by some weaker causality condition than global hyperbolicity, cf. Theorem 10.6 below.

550 This change is required for Theorem 10.6. The second part of the proof does not work for causal geodesics
instead of curves, since the curve c constructed there is not necessarily a geodesic (we just get a causal curve at
that point because of the definition of domains of dependence and Cauchy surfaces in terms of causal curves as
opposed to causal geodesics). Recall that (in)completeness of non-geodesic curves depends on the parametrization.
If continuous causal curves are parametrized by arc length as measured by an auxiliary complete Riemannian
metric (see footnote 548), then any inextendible curve has infinite arc length, see Lemma 5.22. Also, recall that
(affinely parametrized) timelike geodesics are incomplete iff they are inextendible and have finite parameter length,
cf. Proposition 5.19. At this point, it may be interesting to read §6.1 again, especially Einstein’s reply to de Sitter.

551Another difference could have been that some inextendible causal curve may hover around in a compact set,
but this is impossible in strongly causal space-times–and strong causality is an assumption that will be made.

552This example (suggested by Senovilla) is even due to Penrose (1965a)! See Beem, Ehrlich, & Easley (1996),
Chapter 13, Flores & Sánchez (2008), and García-Parrado & Senovilla (2005) for details and generalizations.

553In this context, anti de Sitter should be seen as a special case of a Malament–Hogarth space-time (Hogarth,
1996, Manchak, 2020ab), which are never globally hyperbolic and yet typically geodesically complete.

554Strong causality is necessary for Theorem 10.6, both in Penrose’s (1979) original proof because of his reliance
on the theory of TIPs, and in our version of the proof because of the invocation of Theorem 2.53 in Minguzzi (2019),
where the case distinction we need relies on strong causality via his Remark 2.54 and Theorem 2.80.

555 One may also use past-directed inextendible causal curves, replacing I− by I+. As noted by Penrose (1979), at
least for strong cosmic censorship this would make no difference, as follows from Theorem 10.6.
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1. By definition, if z ∈ I−(x) then z can signal to x, or influence x; we may say that z is naked
for x. For the next step, we note that z ∈ I−(x) is equivalent to the property I−(z)⊂ I−(x).

2. If z is the endpoint of some future-directed timelike curve c, then I−(z) ⊂ I−(x) iff

I−(c) ⊂ I−(x). (10.81)

3. Crucially, this inclusion is also defined if c has no endpoint (i.e. is inextendible).

For example, in Minkowski space-time, for fixed x take z ∈ I−(x) and remove z. Then any fd
future-inextendible timelike curve c whose endpoint would have been z satisfies (10.81).556

Definition 10.5 Let (M,g) be a past-distinguishing space-time, and let N ⊂ M, or, if (M,g)
is asymptotically flat at null infinity (see Definition 10.2), possibly N ⊂ M̂ (where M̂ is the
conformal completion of M); we look at N as a “region of exposure”. An N-naked singularity
in M is a future-inextendible fd causal curve c in M such that I−(c) ⊂ I−(x) for some x ∈ N.

If there is such an N-naked singularity, N represents the region where observers could detect that
their universe is singular. On this definition, the big bang or the big crunch are not M-naked
singularities: for the big bang, which we can “see”, no such curve c exists (any relevant c is past
inextendible), whereas for the big crunch no x would exist.557 But are there any examples?

The N-cosmic censorship conjecture states that a “physically reasonable” space-time (M,g)
(or one arising from “generic” initial data) contains no N-naked singularities.

Various choices of the region N have (implicitly) been proposed in the literature, for example:558

1. N = I−(I +);

2. N = I−(I +)∩ I+(I −), i.e. the domain of outer communication in M;

3. N = (I−(I +)∩ I+(I −))∪I ;

4. N = J−(I +)∩ J+(S), where S is some wannabe Cauchy surface in M;

5. N = J−(I +);

6. N = I +;

7. N = M.
556The following definition is due to Georch & Horowitz (1979), pp. 274–277. See also Earman (1995), pp. 74–78.
557 See Geroch & Horowitz (1979), pp. 274–277 and Penrose (1979), §12.3.2.
558 To simplify the notation we assume that null infinity I is such that I−(I +) ⊂M. If this is not the case (as

e.g. in anti de Sitter space), just write I−(I +)∩M instead of I−(I +). No. 1 is the most obvious interpretation
of Penrose (1969). No. 2 is used e.g. in Theorem 10.25, where weak cosmic censorship is defined as global
hyperbolicity of D(M,I ). No. 3 may be found in Penrose, Sorkin, & Woolgar (1993). No. 4 comes tantalizingly
close to Hawking’s future asymptotically predictability but is not equivalent to it, see Królak (1986), especially
Lemma 2.10. See also Wald (1984), §12.1 and Chruściel (2020), §3.5.1. No. 5 appears in Tipler, Clarke & Ellis
(1980), p. 176, who define weak cosmic censorship as global hyperbolicity of J−(I +). No. 6 is inspired by Geroch
& Horowitz, 1979); their version of weak cosmic censorship is actually that the closure of N ⊂M in M̂ does not
intersect I + (p. 280). No. 6 is literally what Penrose (1974, 1979) defines as strong cosmic censorship.
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An M-naked singularity is called locally naked (at least by Penrose), and M-cosmic censorship
is the same as strong cosmic censorship (à la Penrose). For any of the first six possibilities one
would say that an N-naked singularity is simply naked, and describe N-cosmic censorship as
weak cosmic censorship (à la Penrose); the additions between brackets will be clarified in §10.5.

The first and last choices seem optimal in having characterizations via global hyperbolicity:

Theorem 10.6 1. A strongly causal space-time (M,g) has no M-naked singularities (i.e.,
satisfies strong cosmic censorship à la Penrose) iff it is globally hyperbolic.

2. If (M,g) is also asymptotically flat at infinity, then it has no I−(I +)-naked singularities
(i.e., satisfies weak cosmic censorship à la Penrose) iff I−(I +) is globally hyperbolic.

Proof. We just prove the first part; the second just adds a case distinction x ∈ / /∈ I−(I +).
To prove the implication “global hyperbolicity⇒ no M-naked singularities” by contradiction,

suppose that (M,g) is globally hyperbolic and that (10.81) holds for some c and x. Take y on c
and then take a future-directed sequence (yn) of points on c, with y0 = y. Because of (10.81)
this sequence lies in J+(y)∩ J−(x), which is compact by assumption. Hence (yn) has a limit
point z in J+(y)∩ J−(x). Now define curves (γn) as the segments of c from y to yn. By Lemma
5.26 these curves have a uniform limit γ . Its arc length (as measured by an auxiliary complete
Riemannian metric) is, on the one hand, infinite (since c is endless and hence has infinite arc
length, which is approached as the yn move up along c). But on the other hand it is finite, since
γ ends at z (and fd continuous causal curves have finite arc length iff they have an endpoint).
Hence (10.81) cannot be true for any c and x.

The (contrapositive) proof of the converse implication relies on the following lemma:559

Lemma 10.7 Let (M,g) be a space-time, let S⊂M be closed and achronal, and let x,y ∈M.

1. If y ∈ int(D−(S)), then J+(y)∩ J−(S) is compact. In particular, taking S = ∂ I−(x)
and assuming y ∈ I−(x), it follows that J+(y)∩ J−(x) is compact.

2. We have int(D−(S)) = I−(S)∩ I+(D−(S)).

To prove the converse direction of Theorem 10.6, assume that (M,g) is not globally hyperbolic.
Then, under the assumption of strong causality, there are x,y for which J−(x)∩ J+(y) is not
compact.560 We may assume that y ∈ I−(x). Part 1 of Lemma 10.7 gives

y /∈ int(D−(∂ I−(x))). (10.82)

Part 2 gives some y′ ∈ I−(x) with y′ /∈ D−(∂ I−(x)), so that, by definition of D−, there exists
some fd future-inextendible curve c from y′ that avoids ∂ I−(x). Since y′ ∈ I−(x), this curve does
lie in I−(x), and hence (10.81) holds. �

All this can be checked in the Minkowskian example preceding Definition 10.5. Assuming
z ∈ I+(y), the removal of z ruins compactness of J+(y)∩ J−(x) and hence global hyperbolicity.

To close this section, let us note that in Penrose’s formulation (unlike later ones) strong cosmic
censorship implies weak cosmic censorship, as (logically) it should: this follows either from the
definitions, or from Theorem 10.6 and the observation that if (M,g) is globally hyperbolic, then
so is I−(I +): if x ∈ J+(y) for x,y ∈ I−(I +) ⊂M, then J+(y)∩ J−(x) ⊂ I−(I +).

559Here we follow Penrose (1979), p. 624. The lemma combines Propositions 5.20 and 5.5 (h) in Penrose (1972).
560Unless M is compact this is true even without the assumption of strong causality, see Proposition 5.45.
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10.5 Cosmic censorship in the initial value (PDE) formulation
Let us pause to take stock, especially with regard to the two points laid out at the beginning of
§10.4 that were claimed to be missing from Penrose’s incompleteness/singularity theorem 6.15.

As to the second point, Theorem 6.15 has the following remarkable extension:

Corollary 10.8 Under the assumptions of Penrose’s Theorem 6.15, the “singularity” defined by
the ensuing incomplete lightlike geodesic cannot be M-naked (let alone I−(I +)-naked).

This follows from Theorems 10.6 and 5.34, because Theorem 6.15 assumes a Cauchy surface.
Similarly, one can prove Hawking’s theorem on the invisibility of trapped surfaces:561

Theorem 10.9 Under the assumptions of Theorem 6.15 and the additional clause that (M,g) be
asymptotically flat at null infinity, any future trapped surface must lie entirely within M\I−(I +).

Proof. If the trapped surface S were to (partly) lie in I−(I +), then also part of ∂ I+(S) lies in
I−(I +). By Proposition 10.16.1 below, some of the lightlike geodesics γ ruling ∂ I+(S) with
past endpoint on S would then reach I + and hence have infinite length. But the definition of a
trapped surface excludes this (cf. Lemma 6.16), since it forces each γ to be incomplete. �

Since this forces M\I−(I +) to be non-empty, there must be an event horizon ∂ I−(I +), which
by the same argument must cover not only any trapped surface but also all ensuing incomplete
null geodesics, and hence a curvature singularity if there is one. But all of this is based on the
assumption of global hyperbolicity, which on the one hand is central to mathematical GR, but on
the other hand seems problematic in a seemingly paradoxical way (cf. §7.6 for the first point):

1. Global hyperbolicity of the MGHD (M,g, ι) of any initial data set (Σ, g̃, k̃) is automatic.

2. Global hyperbolicity of space-times extended beyond the MGHD is often too strong.

For example, maximally extended Kerr space-time, or even of any part of it that contains a
Cauchy horizon, is not even globally hyperbolic in the physically relevant case 0 < |a|< m.

In what they call the ‘evolutionary approach’ to cosmic censorship, Geroch & Horowitz
(1979), §5.4, show a way out and en passant sketch the modern PDE versions of both the
weak and the strong case. First, their proposal for weak cosmic censorship is essentially their
earlier refinement of Penrose’s notion of asymptotic flatness as null infinity, namely clause 3 in
Definition 10.2. Its relevance to cosmic censorship is explained by them as follows:

Consider now the following statement: for any asymptotically flat initial-data set, topologi-
cally R3, [its MGHD satisfies Definition 10.2]. This statement, we claim, captures a sense of
cosmic censorship. That the initial-data set be topologically R3 ensures that the evolution is
not singular already on S; that S be asymptotically flat ensures that one deals with isolated
systems, and in particular that any singular behavior of the evolution must be due to the
system itself and not external influences. Suppose, then, that this maximal evolution were
singular, say to the future of S. It certainly cannot be nakedly singular for the future of S,
for S must be a Cauchy surface for its evolution. Furthermore, the statement asserts that
this evolution must be sufficiently large that it includes the entire asymptotic regime, so in
particular asymptotic observers can live out their entire lives within this maximal evolution.
What this statement means, then, is that asymptotic observers will forever be unaffected by
any singular behavior of the spacetime. (Geroch & Horowitz, 1979, pp. 285–286)

561See Hawking (1972), §2, and Hawking & Ellis, 1973, Proposition 9.2.1.
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Recalling the two principle behind the PDE approach to GR, namely (see §7.6):

• All valid assumptions about GR are assumptions about initial data;

• All valid questions in GR are questions about the MGHD of these data,

the above statement of weak cosmic censorship is exemplary: it starts with an assumption on
initial data and formulates a property or question about the ensuing MGHD. However, like the
definition of a black hole it depends on the concept of null infinity, which, as discussed at the end
of §10.3, may be seen as an undesirable idealization. Thus Christodoulou (1999a) reformulated
the above statement of weak cosmic censorship in such a way that I + no longer occurs.562

Either way, this turns the Penrosian version of weak cosmic censorship on its head! For
whereas his version states that outgoing signals from a black hole singularity are blocked by a
(future) event horizon H+

E , the new version is about incoming (null) signals: the further these
are away from H+

E , the longer it takes them to enter H+
E , and in the limit (i.e., in the original

formulation, at null infinity) this takes infinitely long, making future null infinity I + complete.
Yet there is a connection with Penrose: lack of global hyperbolicity of I−(I +) gives a wannabe
Cauchy surface in M a Cauchy horizon which cuts off I +. This is clear from examples like
Schwarzschild for m < 0, Reissner–Nordström at |e|> m > 0, or Kerr at |a|> m > 0; see §10.6.

In any case, the status of the weak cosmic censorship conjecture(s) in any reasonable form is
open.563 One especially problematic issue is the status of the genericity conditions that define
“physically reasonable” space-times (or initial conditions) and hence the range of applicability of
the conjecture(s). For example, the physical relevance of genericity conditions typically used in
the mathematical literature, which are evidently based on PDE techniques, has been questioned.

The PDE version of strong cosmic censorship also goes back to Geroch & Horowitz (1979):

Consider, for motivation, an initial-data set whose maximal evolution is extendible to the
future of S (. . . ) This extended spacetime cannot, by definition of the maximal evolution,
have S as a Cauchy surface. That is, from a point p in the extension there must exist a
maximally extended past-directed timelike curve which cannot be assigned a past endpoint,
and which fails to meet S. In this rather mild sense the extended spacetime must be nakedly
singular. One might therefore imagine formulating cosmic censorship as the assertion that
every maximal evolution [i.e. MGHD] is inextendible, i.e. that, once the maximal evolution
is completed, it is not possible to add any ‘extra regions’ as vantage points from which
observers could detect that their spacetime is singular to the future of S. (ibid., pp. 286–287)

But they question this suggestion at once by giving the example of a small spacelike disk S
in Minkowski spacetime M, whose MGHD is its domain of dependence D(S) (a double cone),
which is clearly extendible to all of M. To avoid such cases, they end up with the following:

Conjecture 5.2. For p any point in any extension of the maximal evolution of any non-
compact initial data set S, I−(p)∩S has non-compact closure. (pp. 288)

562 Let (Σ, g̃, k̃) be asymptotically flat initial data for the Einstein equations (satisfying the constraints), with
MGHD (M,g, ι). Christodoulou defines (M,g) to have complete future null infinity iff for any s > 0 there exists a
region B0 ⊂ B⊂ S such that ∂D+(B), which is ruled by null geodesics, has the property that each null geodesic
starting in ∂J+(B0)∩∂D+(B) can be future extended beyond parameter value s. Here D+(B) is the future domain
of dependence of B, and each such null geodesic is supposed to have tangent vector L = T −N, where T is the fd
unit normal to S in M and N is the outward unit normal to ∂B in S. See also Christodoulou & Klainerman (1993).

563 For reviews see for example Christodoulou (1999b, 2009), Królak (2004), Joshi (2007), Gundlach & Martin-
Garcia (2007), Dafermos (2012), Bieri (2018), and Ong (2020).
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This refinement seems not to have lasted, though, perhaps because the models on which the
conjecture is tested already exclude examples like the one mentioned. Thus we now simple have:

The appropriate notion of cosmic censorship (. . . ) is that the generic solution to Einstein’s
equations is globally hyperbolic, i.e., that the maximal Cauchy development of a generic
initial data set is inextendible. (Moncrief, 1981, p. 88)

The strong cosmic censorship conjecture says that ‘most’ spacetimes developed as solutions
of Einstein’s equations from prescribed initial data cannot be extended outside of their
maximal domains of dependence.564 (Chruściel, Isenberg, & Moncrief, 1990, p. 1671)

Conjecture 17.1 (Strong Cosmic Censorship). For generic initial data for Einstein’s equa-
tions, the MGHD is inextendible. (Ringström, 2009, p. 188)

Conjecture 3.5 (Strong cosmic censorship). For generic asymptotically flat vacuum data
sets, the maximal Cauchy development (M,g) is inextendible as a suitably regular Lorentzian
manifold. (Dafermos, 2014b, p. 11)

This formulation of strong cosmic censorship is again exemplary from a PDE point of view.
Moreover, returning to the two problems with Penrose’s singularity theorem discussed in §10.4,
it has the additional virtue of addressing the first one: if an MGHD (M,g, ι) of some initial
data is inextendible and Theorem 6.15 applies to (M,g), then the possibility that null geodesic
incompleteness is caused by extendibility of the space-time is blocked and hence it is more
likely to be due to a curvature singularity (though there seems to be no proof that this is the only
remaining possibility). But is there any relationship with Penrose’s formulation, trivial as it was
when applied to an MGHD? There is, provided possible extensions (whose existence PDE-strong
cosmic censorship tries to block) is required to satisfy the (vacuum) Einstein equations.

To see this, we need the concept of a development of initial data, which broadens the notion
of a Cauchy development in that ι(Σ) is no longer required to be Cauchy surface in M:565

Definition 10.10 A development of initial data (Σ, g̃, k̃) satisfying the vacuum constraints is
a triple (M,g, ι), where (M,g) is a space-time solving the vacuum Einstein equations and
ι : Σ→M is a spacelike embedding such that ι∗g = g̃ and i(Σ) has extrinsic curvature k̃ in M.
It is maximal if it has no proper isometric extension to another development (M′,g′, ι ′).

Apply Penrose’s strong cosmic censorship to such a maximal development, i.e. require it to be
globally hyperbolic (cf. Theorem 10.6). The connection with inextendibility is then easily made:

Proposition 10.11 A maximal development of given initial data is globally hyperbolic if and
only if the MGHD of these data is inextendible as a solution to the vacuum Einstein equations. In
that case, the maximal development of the data coincides with their MGHD (up to isomorphism).

Proof. As explained in §7.6, the set of isometry classes [M,g, ι ] of Cauchy developments (M,g, ι)
of given initial data (Σ, g̃, k̃) is partially ordered, and by Theorem 7.12 the MGHD [Mt ,gt , ιt ]
is the top element of this poset. Hence if some maximal development (Mm,gm, ιm) is globally
hyperbolic (i.e. with Cauchy surface ιm(Σ)), then [Mm,gm, ιm] ≤ [Mt ,gt , ιt ]. Since (Mt ,gt , ιt) is
a solution and (Mm,gm, ιm) is maximal also the converse holds, so (Mm,gm, ιm) ∼= (Mt ,gt , ιt). �

Thus Penrose’s strong cosmic censorship applied to the maximal development states that for
“generic” initial data the MGHD is inextendible as a solution to the vacuum Einstein equations.

564In §3 they further specify ‘most’ in terms of open and dense subsets in the space of initial data
565See Chruściel (1992), who also proves existence of maximal developments (but not uniqueness up to isometry).
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We conclude that the strong cosmic censorship conjecture as stated by the authors quoted
above in a row is stronger than the boxed one just mentioned, in that even extensions that do not
satisfy the Einstein equations are excluded. Indeed, any space-time solves these equations for
some energy-momentum tensor, and one has no idea what kind of (strange) matter is contained
in an extension. But even so, it seems reasonable to require that in the extensions to be censored
the Einstein equations should at least be defined;566 and this requirement provides regularity
conditions! One may either go for extensions in which the metric is C2, i.e. the borderline case
where Einstein equations make sense classically, or allow C0 metrics as long as the associated
Christoffel symbols are locally L2, which is the least regular case in which the metric can still be
defined as a weak solution to Einstein’s equations.567 Indeed, a weak solution of the vacuum
Einstein equations is a metric g for which for all compactly supported X ,Y ∈ X(M),∫

M
d4x
√
−det(g(x))Rµν(x)X µ(x)Y ν(x) = 0. (10.83)

Partial integration shows that this is well defined iff the Γρ

µν are locally L2.
Sensitivity to the precise formulation of genericity conditions (which from a PDE point

of view define which initial data are deemed “physically reasonable” and from a traditional
GR perspective do so for space-times) is another issue.568 Already the Kerr metric, in which
strong cosmic censorship in whatever formulation fails for all parameter values (as long as
a 6= 0 and m 6= 0), shows that genericity conditions are necessary. Such counterexamples made
it especially courageous of Penrose to conjecture strong cosmic censorship; but of course he
had good arguments. His key observation, indeed one of his most prophetic insights, was first
published in 1968 (i.e. before even weak cosmic censorship had been formulated by him):

There is a further difficulty confronting our observer who tries to cross [the Cauchy horizon]
H+(H ). As he looks out at the universe he is “leaving behind,” he sees, in one final flash, as
he crosses H+(H ), the entire later history of the rest of his “old universe.” If, for example,
an unlimited amount of matter eventually falls into the star then presumably he will be
confronted with an infinite density of matter along “H+(H )”. Even if only a finite amount
of matter falls in, it may not be possible in generic situations to avoid a curvature singularity
in place of H+(H ). This is at present an open question. But it may be, that the place to
look for curvature singularities is in this region rather than (or as well as?) at the “center.”

(Penrose, 1968, p. 222)

Here, for Penrose H+(H ) is a (future) Cauchy horizon in some “large” (maximally extended)
space-time. From a PDE point of view, on the other hand, it is the boundary of the MGHD of the
corresponding initial data on Σ, if this MGHD is extendible (in a suitable regularity class).

566 Chruściel, Isenberg, & Moncrief (1990) and Chruściel & Isenberg (1993) consider smooth extensions.
567 See Geroch & Traschen (1987), Christodoulou, (2009), p. 9, and Luk (2017), footnote 1. This simple

observation should not be confused with the very deep result that having the Ricci tensor in L2 is sufficient for
the (vacuum) Einstein equations to be weakly solvable at least locally (Klainerman, Rodnianski, & Szeftel, 2015).
Minkowski space-time turns out to be inextendible even in C0 (Sbierski, 2018), so in that case the validity of strong
cosmic censorship as meant here (i.e. in the PDE-sense) is independent of the regularity of the extension. However,
in general strong cosmic censorship turns out to be very sensitive to the precise regularity that is required. For
example, for two-ended asymptotically flat data for the spherically symmetric Einstein–Maxwell-scalar field system
(to which the conjecture, so far discussed for the vacuum case, can be extended in the obvious way), the conjecture
fails in C0, i.e. the MGHD is extendible with a C0 metric, but it holds in C1, in that the metric of the extension fails
to be C1 (Dafermos, 2003, 2005). The situation for the Kerr metric is similar (Dafermos & Luk, 2017).

568See for example Dafermos (2003), Ringström (2009, §17.2.3; 2010, §11), and Luk & Oh (2019a), §3.
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Either way, the conjectured “blueshift instability” has been confirmed in a large number of
studies and remains the key to strong cosmic censorship, unproved as it remains to date.569

With hindsight, the apparent paradox that Penrose’s formulation of strong cosmic censorship
gave rise to (as discussed after the proof of Theorem 10.9) reflected the ambiguity about the
space-time supposed to be globally hyperbolic. In the 1960s and 1970s relativists mainly had
maximal analytically extended solutions in mind,570 see e.g. the Penrose diagrams of solutions
like Reissner–Nordström and Kerr in Hawking & Ellis (1973), whereas from the 1990s onward
the MGHD in the PDE picture had become the space-time of choice. To summarize:

Definition 10.12 • The PDE-strong cosmic censorship conjecture states that the MGHD

of “generic” complete initial data is inextendible in a specific regularity class.

• The PDE-weak cosmic censorship conjecture states that if “generic” complete initial
data have an MGHD that is asymptotically flat at null infinity (and hence admits a conformal
completion), then provided (10.53) holds, future null infinity I + of this MGHD is complete.

As a compromise between the Penrosian and the PDE versions, one might informally summa-
rize the two sides of cosmic censorship as follows. In “physically reasonable” space-times:571

• weak cosmic censorship postulates the appearance and stability of event horizons;572

• strong cosmic censorship requires the instability and disappearance of Cauchy horizons.

Failure of strong cosmic censorship is often taken to imply a failure of determinism.573 This
idea is of course predicated on a suitable definition of determinism that is both precise and
general (i.e. stated in a wider context than GR), and is satisfied by GR provided strong cosmic
censorship holds. Unfortunately, it turns out to be surprisingly difficult to give such a definition!
It is rather the unmathematical, poetic, and emotionally compelling definitions of determinism
that best cover the nature of inextendible globally hyperbolic space-times in GR. The finest
example of this kind of “definition” is the following quatrain by Omar Khayyám (1048–1131):574

569 Further to Simpson & Penrose (1973), see McNamara (1978) down to Chesler, Narayan & Curiel (2020) for
heuristics. Mathematically rigorous work started with Dafermos (2003); more recent papers may be traced back
from Kehle & Van de Moortel (2021). The conclusion seems to be that at least in asymptotically flat cases Cauchy
horizons turn into weak null singularities, which are null boundaries with C0 metric but Γρ

µν not locally L2 (Luk,
2017). At least for one-ended asymptotically flat initial data, behind such a weak null singularity there is also a
strong curvature singularity at r = 0. See also Luk & Oh (2019ab) for the two-ended case, and Gajic & Luk (2017)
for extremal Reissner–Nordström black holes (i.e. 0 < m = |e|). For cosmological constant λ 6= 0 the situation
changes: in de Sitter space (λ > 0) the verdict on strong cosmic censorship depends critically on both the matter
coupling and the regularity of the extension (Dias, Reall, & Santos, 2018), whilst in anti de Sitter (λ < 0) even
weak cosmic censorship fails (Crisford & Santos, 2017). The so-called cosmological case, in which the initial data
surface Σ is compact and spacelike (which indeed includes toy examples relevant to cosmology), was first studied
by Misner & Taub (1969), who noted the instability of the Cauchy horizon in Taub–NUT space (this work predated
Penrose’s, see footnote 303). See also Ryan & Shepley (1975), Collins & Ellis (1979), and Ringström (2009, 2010).

570Although each extendible space-time has an inextendible extension (Geroch, 1970b), which may be taken as
“maximal”, this inextendible extension is not unique (except if one imposes conditions like analyticity).

571We prefer Penrose’s “physically reasonable” to the mathematicians’ “generic”, since the so-called fine-tuning
problem suggests that our cosmos is not al all generic! See Landsman (2016) and Adams (2019) for introductions.

572Whenever, of course, these are expected, e.g. when trapped surfaces form in gravitational collapse (Joshi, 2007).
573Earman (1986, 1995) are classics, taken up among others by Doboszewski (2017, 2019, 2020) and Manchak

(2020a). The literature on the Hole Argument cited in footnote 130 is also particularly relevant in this context.
574Translated by Edward FitzGerald (1859), Quatrain LIII. Drawing by Edmund J. Sullivan. Open source:
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With Earth’s first clay they did the last man knead,
And there of the last harvest sow’d the seed:
Yea, the first morning of Creation wrote
What the last dawn of Reckoning shall read.

And Leibniz fares almost as well, also without using any mathematics:575

One sees then that everything proceeds mathematically - that is, infallibly - in the whole
wide world, so that if someone could have sufficient insight into the inner parts of things,
and in addition has remembrance and intelligence enough to consider all the circumstances
and to take them into account, he would be a prophet and would see the future in the present
as in a mirror. (Leibniz, undated)

It is striking how close this is to Laplace’s much more famous (and much later!) words:576

An intelligence which could comprehend all the forces that set nature in motion, and all
positions of all items of which nature is composed–an intelligence sufficiently vast to submit
these data to analysis–it would embrace in the same formula the movements of the greatest
bodies in the universe and those of the lightest atom; for it, nothing would be uncertain and
the future, as well as the past, would be present to its eyes. (Laplace, 1814)

https://commons.wikimedia.org/wiki/File:Edmund_J_Sullivan_Illustrations_to_The_
Rubaiyat_of_Omar_Khayyam_First_Version_Quatrain-053.jpg.

575The undated German original is quoted by Cassirer (1936), pp. 19–20: ‘Hieraus sieht man nun, das alles
mathematisch, d.i. uhnfehlbar zugehe in der ganzen weiten Welt, so gar, dass wenn einer eine genugsame Insicht in
die inneren Teile der Dinge haben könnte, und dabei Gedächtnis und Verstand genug hätte, um alle Umstände vor
zu nehmen und in Rechnung zu bringen, würde er ein Prophet sein, und in dem Gegenwärtigen das Zukünftige
sehen, gleichsam als in einem Spiegel.’ English translation by the author.

576Translation: English edition (1902), p. 4. Leibniz’ prophet appeals to the logical structure of the universe that
makes it deterministic, whereas Laplace’s intelligence knows (Newtonian) physics. See also van Strien (2014).

https://commons.wikimedia.org/wiki/File:Edmund_J_Sullivan_Illustrations_to_The_Rubaiyat_of_Omar_Khayyam_First_Version_Quatrain-053.jpg
https://commons.wikimedia.org/wiki/File:Edmund_J_Sullivan_Illustrations_to_The_Rubaiyat_of_Omar_Khayyam_First_Version_Quatrain-053.jpg
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An influential way to make this idea more precise and mathematical is as follows:

The world W is Laplacian deterministic just in case for any physically possible world W ′,
if W and W ′ agree at any time, then they agree at all time. (Earman, 1986, p. 13).

This applies to (most of) Newtonian physics, as well as to relativistic field theories defined on a
fixed (“background”) space-time (M,g), assumed globally hyperbolic, where all fields except
the metric g are governed by hyperbolic PDEs with initial data on some spacelike Cauchy surface
Σ in M, so that the domain of dependence D(Σ) equals M (see Proposition 5.38).577

To cover GR, we need our space-times (M,g) to have enough structure to define wannabe
Cauchy surfaces Σ ⊂M (see Definition 5.36). Anticipating Theorem 7.10 we might try:578

Definition 10.13 A theory of space-times is Laplacian deterministic if the following holds.
If two space-times (M,g) and (M′,g′) contain wannabe Cauchy surfaces ι : Σ ↪→M and
ι ′ : Σ′ ↪→M′ that induce initial data (Σ, g̃, k̃) and (Σ′, g̃′, k̃′), respectively, then any diffeomor-
phism ψ : Σ→ Σ′ such that ψ∗g̃′ = g̃ and ψ∗k̃′ = k̃ extends to an isometry from M to M′.

This may sound unnecessarily complex and purpose-driven, but it remains in the spirit of
Earman’s definition above (in which ‘agree’ is not interpreted as ‘coincide’ but as ‘coincide up
to isometry, cf. §7.5), and any attempt to include GR in a general definition of determinism is
either wrong or based on Theorem 7.10, like the one above. Nonetheless, GR is not Laplacian
deterministic in this sense (and is precisely the goal of Definition 10.13 to clarify why not):

1. All uniqueness results for solutions of ODEs or PDEs require some maximality condition;

2. The initial data on Σ only determine the solutions within the domain of dependence D(Σ).

This means that Definition 10.13 only has a chance in GR if all admissible space-times are
MGHDs of their initial data, so that Σ is a Cauchy surface and the solution is maximal (in the
appropriate sense). Theorem 7.10 then guarantees that Definition 10.13 is satisfied.

But Definition10.13 fails as soon as some larger class of space-times is admitted in GR. In
particular, if strong cosmic censorship (as in Definition 10.12) is violated and the corresponding
extensions of MGHDs are admitted (and why shouldn’t they), GR fails to be (Laplacian) determin-
istic. This does not imply that random events occur, as in quantum mechanics; the point seems
rather that events beyond the Cauchy horizon of Σ ⊂M in some extension of an MGHD (M,g, ι)
are not determined by the initial data originally expected to do so.579 So if indeterminism in
classical (mathematical) physics comes from either a lack of uniqueness of solutions or from
a lack of existence thereof, it is the former that occurs here.580 The latter is also relevant: it
applies to geodesic incompleteness within some space-time, which may or may not be globally
hyperbolic (as the examples of Schwarzschild or Kruskal, and extended Kerr show).581

577The classical exposition of this world view is Courant & Hilbert (1962), which unfortunately does not cover GR.
In that light, see also Choquet-Bruhat (2009) and, specifically for matter fields, Bär, Ginoux, and Pfäffle (2007).

578This is inspired by but considerably adapted from Dm2 in Butterfield (1987, 1989), which is more general.
579 Such events may instead be determined by signals coming from a (locally) naked singularity, or, should it turn

into some kind of weak singularity itself (see footnote 569), by events happening on the Cauchy horizon.
580Extensions may well be non-unique (even up to isometry), which gives even more indeterminism. This happens

e.g. in Taub–NUT and Gowdy cosmologies. See e.g. Tipler, Clarke, & Ellis (1980), Moncrief (1981), Chruściel,
Isenberg, & Moncrief (1990), Chruściel & Isenberg (1993), Ringström (2009, 2010), and Doboszewski (2017).

581 In non-relativistic mechanics bodies may disappear to infinity in finite time (Xia, 1992; Saari & Xia, 1995),
and hence, by the same (time-reversed) token, may appear from nowhere in finite time and hence influence affairs
in a way unforeseeable from any Cauchy surface. This analogy with GR is discussed by Earman (2007), §3.6.
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10.6 Cosmic censorship in some simple examples
In this section we analyze the relationship between the Penrosian and the PDE versions of the
cosmic censorship from three key black hole examples and their Penrose diagrams:582

• Maximally extended Schwarzschild (i.e. Kruskal) with m > 0 (and two-sided initial data);

• Schwarzschild with m < 0, whose singularities and horizons looks like supercharged
Reissner–Nordström (|e|> m > 0), or ultrafast rotating Kerr (|a|> m > 0);

• Reissner–Nordström with 0 < |e|< m, which also resembles Kerr with 0 < |a|< m.

In the first case the solution coincides with the MGHD of the pertinent (two-ended) initial data,
so the difference between strong Penrosian and strong PDE cosmic censorship fades. We have
already drawn the Penrose diagram of the maximally extended Schwarzschild solution with
m > 0 in §10.3. The maximal Cauchy development of a generic two-sided Cauchy surface Σ
with suitable initial data (drawn as a horizontal blue line) is simply the entire space-time. In
particular, the Cauchy horizon H±C of Σ is empty. The upper two green lines form the future
event horizon H+

E of the black hole area, which is the upside-down upper triangle (labeled region
II), whereas the lower two green lines form the past event horizon H−E of the white hole area,
i.e. the lower triangle (region IV). The right-hand diamond is region I, the left-hand diamond is
region III. Fd causal curves cannot leave region II and they cannot enter IV.

Both cosmic censorship conjectures hold in both versions (i.e. Penrose and PDE):583

• Weak cosmic censorship for Kruskal space-time.

Penrose: Σ is a Cauchy surface for I−(I +), making it globally hyperbolic.584

PDE: each component of I + ends at timelike infinity i+ and hence its lightlike
geodesics are future complete (as confirmed by parametrization and computation).

• Strong cosmic censorship for Kruskal space-time.

Penrose: Kruskal space-time is globally hyperbolic (since the causal structure of the
diagram is such that the line Σ represents a Cauchy surface).
PDE: Explicit classification of the causal geodesics in Kruskal space-time (MK ,gK)
shows that the antecedent of the second (“or”) part of Proposition 6.2 is satisfied: a
causal geodesic is incomplete iff it crashes into the singularity at r = 0, in which case
it has unbounded curvature because of (9.18). Otherwise, it goes to infinity, in which
case it is complete. Hence Kruskal space-time is inextendible (cf. footnote 488).

However, for m < 0 Kruskal, Reissner–Nordström, and Kerr, differences arise between the
Penrosian and the PDE perspectives, since in these cases the maximal (analytic) solutions differ
from the MGHD of the pertinent initial data. In particular, although (curvature) singularities
are not part of space-time in any case, they can at least be drawn as boundaries in the maximal
solutions, where they lie behind a Cauchy horizon. But precisely for that reason singularities are
beyond the scope of the corresponding MGHD. Here are the Penrose diagrams:

582This section is largely based on Hawking & Ellis (1973), pages 158 and 160, as well as on Dafermos &
Rodnianski (2008) and Dafermos (2014ab, 2017, 2019) for the PDE side.

583In view of the recently proved stability of Schwarzschild space-time (Dafermos et al., 2021), they also hold in
the informal version stated at the end of the previous section. So far, such a proof is lacking for the other cases.

584Alternatively: any incomplete future inextendible timelike curve c must crash in the upper r = 0 singularity.
Hence I−(c) lies partly in region II, which is disjoint from I−(I +), so that I−(c) * I−(x) for all x ∈ I−(I +).
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Left: Penrose diagram of m < 0 Schwarzschild, or supercharged Reissner–Nordström (|e|> m > 0),
or fast Kerr (|a| > m > 0). These solutions have a singularity at r = 0, but unlike the m > 0 Kruskal
case it is not shielded by an event horizon. The red lines labeled H−C and H+

C are past and future Cauchy
horizons with respect to the blue line, which indicates a maximal spacelike surface whose initial data give
rise to the metrics in question and whose maximal Cauchy development (MGHD) is the grey area.

Right: Penrose diagram of subcritical Reissner–Nordström (0 < |e|< m), whose event and Cauchy
horizons (despite the different structure of the singularity) also resemble those of slowly rotating Kerr
(0 < |a| < m). The maximal Cauchy development (MGHD) of the pertinent initial data given on the
maximal spacelike hypersurface represented by the blue line labeled Σ is again colored in grey. It contains
past and future event horizons labeled H−E and H+

E , drawn in green, but unlike the m > 0 Schwarzschild
case, the singularity they are supposed to shield cannot be reached directly from the maximal Cauchy
development, which is bounded by the various fictitious boundaries I ±, i±, and i0, which lie at infinity,
as well as by the Cauchy horizons H±C , drawn in red, which can be reached in finite proper time.585

Despite the different space-times they apply to, the outcomes of the Penrosian version and the
PDE version of both weak and strong cosmic censorship are once again the same:586

585 This diagram can be infinitely extended in both directions (Hawking & Ellis, 1973, pp. 158, 165): to the north,
another grey area folds inside the upper two red line segments, and similarly to the south, but we do not do so here.

586For m < 0 Kruskal the initial data are not complete in this case, so strictly speaking the cosmic censorship
conjectures do not apply here. Nonetheless, they can be stated and the comparison is instructive.
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• m < 0 Kruskal (etc.): For the Penrosian total space-time the difference between weak
and strong cosmic censorship evaporates, since I−1(I +) = M, which is not globally
hyperbolic: wherever one tries to place a wannabe Cauchy surface Σ (such as the blue
line), above the surface inextendible causal curves can be drawn that enter i+ or I + in the
future and enter the singularity at r = 0 in the past, without crossing Σ. Similarly, below
Σ one may draw inextendible causal curves converging to the singularity in the future, and
to i− or I − in the past, which once again do not cross Σ. Thus neither weak nor strong
cosmic censorship holds for this space-time.

The PDE picture applies to the grey area, which is the MGHD of the initial data given on the
blue line marked Σ in the left-hand Penrose diagram. Then weak cosmic censorship fails
because future null infinity I + is clearly incomplete: lightlike geodesics terminate at the
Cauchy horizon (where they “fall off’ space-time) and hence are incomplete. On the other
hand, strong cosmic censorship fails because the grey space-time, though globally hyper-
bolic (in contrast with the entire space as we have just seen), is evidently (smoothly–even
analytically) extendible, namely by the total space displayed. Though they do not coincide,
we see that strong and weak cosmic censorship are closely related: future incompleteness
of lightlike geodesics at null infinity happens because the MGHD is extendible.

• Subcritical Reissner–Nordström (0 < |e|< m): for both Penrose and PDE strong cosmic
censorship fails, whereas the weak version holds. In the Penrosian version the total space
fails to be globally hyperbolic because of the part above the grey area (i.e. beyond the future
Cauchy horizon H+

C ): one has past-directed inextendible causal curves that (backwards
in time) end up in the singularity and hence never cross Σ (e.g. those crossing the upper
left, NW-pointing red line from N to SW). Weak cosmic censorship holds because of the
future event horizon H+

E , which shields the upper r = 0 singularity above it. Equivalently,
I−(I +) is globally hyperbolic, a property it inherits from the MGHD.587

The PDE view is cleaner here: roughly speaking, as in the m > 0 Kruskal or Schwarzschild
case (but unlike the m < 0 case) future null infinity I + ends at future timelike infinity i+

and hence is complete, so that weak cosmic censorship holds.588 Strong cosmic censorship,
on the other hand, fails because the MGHD (marked in grey) is clearly smoothly extendible,
namely into, for example, the space-time shown.

If the strong Penrosian conjecture fails for some space-time (MP,gP), then its lack of global
hyperbolicity typically occurs because (MP,gP) is an extension of the MGHD (M,g) of some
given initial data, whose Cauchy surface Σ fails to be one for (MP,gP). Similarly, if I−1(I +) is
not globally hyperbolic (so that there is a naked singularity), MP usually comes from extending
some (M,g), as above, whose Cauchy surface becomes a wannabe Cauchy surface in MP, with
an associated future Cauchy horizon that cuts off I +∩ M̃, causing its incompleteness.589

As already mentioned, the fact that these well-known examples violate (at least) strong
cosmic censorship makes it all the more remarkable that the ensuing conjecture was made in the
first place. In order to save it, such examples must be shown to be “non-generic”, for example
through the blueshift instability mentioned in the previous section, or some other mechanism.

587 This is no longer true for the maximal extension, which adds countably many components of I +. Keeping the
single Σ shown would allow many causal curves in I−(I +) not hitting it, but adding countably many copies of Σ in
the obvious way would allow causal curves hitting this total Σ many times, which then cannot be a Cauchy surface.

588It even holds in the maximal extension, driving the Penrose and PDE versions apart!
589However, these aren’t rigorous deductions: there are pathological cases where strong cosmic censorship holds

whilst the weak version fails. See e.g. the Penrose diagram at the end of §2.6.2 of Dafermos & Rodnianski (2008).
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10.7 Structure of event horizons and Cauchy horizons
Most of the physics of black holes, including cosmic censorship, is concerned with various kinds
of horizons. Three important types of black hole horizons one needs to be familiar with are:590

• Event horizons, defined in (10.79) based on Penrose’s concept of null infinity I , i.e.

H±E = ∂ I∓(I ±); (10.84)

• Cauchy horizons, defined in (5.178) - (5.182), applied to wannabe Cauchy surfaces S, i.e.

H±C (S) = ∂D±(S)\S. (10.85)

• Killing horizons (for stationary black holes), still to be defined, see §10.8.

These are all null hypersurfaces, as we will now prove for the first two cases (for the third it will
be true by definition). For convenience, let us recall some relevant definitions from chapter 5:

Definition 10.14 • A subset S⊂M is acausal if no causal curve starts and ends at S.

• A subset S⊂M is achronal if no timelike curve starts and ends at S.

• The edge of an achronal set S consists of all x ∈ M for which every open nbhd U of x
contains points y and z and two timelike curves from y to z, of which just one intersects S.

• A future/past set set F ⊂M satisfies I+/−(F)⊂ F (if F is open this implies I±(F) = F).

• An achronal boundary is a set ∂F where F is a future set.591

• The domain of dependence/influence D+/−(S) of S⊂M is the set of all x∈M for which
every past/future-inextendible pd/fd causal curve starting from x intersects S.

• The domain of dependence of S is the union D(S) = D+(S)∪D−(S).

• A wannabe Cauchy surface is an edgeless acausal (and hence closed) subset of M.

• The future/past Cauchy horizon of a wannabe Cauchy surface S is given by (10.85).

• The Cauchy horizon of a wannabe Cauchy surface S is HC(S) = ∂D(S).

• A Cauchy surface is a wannabe Cauchy surface S for which D(S) = M, i.e. HC(S) = /0.

Further to Lemma 5.37, we collect some of the properties of such sets, without proof:592

590Apparent horizons are briefly discussed in §10.11. See also footnote 544.
591For F = I+(A), below (5.146) we already showed that an achronal boundary is indeed achronal. In general,

if y ∈ I+(x) for x,y ∈ ∂F , then y ∈ I+(F) = I+(F). But this is open, so y ∈ int(F) whilst y ∈ ∂F , which is a
contradiction. Conversely, a maximal achronal set is an achronal boundary, and since any achronal set is contained
in a maximal one, any achronal set is contained in an achronal boundary. See Minguzzi (2019), Theorem 2.87.

592No. 1 is Proposition 2.136 in Minguzzi (2019), and the case F = I+(A) is Claim 2 on page 12 of Galloway
(2014). No. 2 is trivial, since I+(I+(A)) = I+(A) and I+(A) is open. No. 3 is Proposition 3.15 in Penrose (1972).
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Lemma 10.15 1. Achronal boundaries are edgeless.

2. Any F = I+/−(A) is an open future/past set, for arbitrary A⊂M.

3. Given an achronal boundary B = ∂F, where F is a future set, there is a unique disjoint
decomposition M = P∪B∪F, where P is a past set and B = ∂P (and likewise F↔ P).593

It follows that both event horizons and Cauchy horizons of wannabe Cauchy surfaces are closed
edgeless achronal topological hypersurfaces. But so are spacelike Cauchy surfaces in globally
hyperbolic space-times, so our horizons must have special features that make them contain
sufficiently many causal curves so as to become lightlike according to Corollary 5.15. These
features are different, since although according to (10.84) - (10.85) both horizons are (part of)
topological boundaries, future or past sets are very different from domains of dependence. Yet
the second case will be reduced to the first! The key proposition for this is as follows:594

Proposition 10.16 1. Let S⊂M be a closed subset of M with associated achronal boundary

B = ∂ I+(S). (10.86)

If x ∈ B\S, there exists a fd lightlike geodesic γ that is contained in B with future endpoint
x and either a past endpoint on S or no past endpoint at all (i.e. γ is past inextendible).

2. Let S⊂M be a closed achronal subset of M with associated future Cauchy horizon H+
C (S).

If x ∈ S\edge(S), there exists a fd lightlike geodesic γ that is contained in H+
C (S) with

future endpoint x and either a past endpoint on edge(S) or no past endpoint at all (ibid.).

For an example of the first case of part 1, take S = {0}, where 0 is the origin in M. Then B
is the closed forward lightcone emanating from the origin, which includes the origin. For the
second case, consider the left-hand figure in the next section §10.8, and take S to be the left-most
accelerated curve in region I. Then B is the entire SE–NW axis (i.e. x =−t) and so no pd lightlike
geodesic ever touches S. Both cases of part 2 can be covered by a single example, see next page.

A similar result holds with past and future interchanged. If we add this, and in part 1 take
S = I ±, noting that the boundaries I ± are closed in M̂ (as i(M)⊂ M̂ is open by construction),
we obtain a result about event horizons. If in part 2 we take S to be a wannabe Cauchy surface
and note that edge(S) is empty in that case, we have a result about Cauchy horizons. Thus:

Corollary 10.17 1. Let H+/−
E be the future/past event horizon of a black/white hole. Then

any x ∈ H+/−
E lies on a future/past intextendible lightlike geodesic contained in H+/−

E .

2. If H+/−
C (S) is the future/past Cauchy horizon of a wannabe Cauchy surface S, any

x ∈ H+/−
C (S) lies on a past/future intextendible lightlike geodesic contained in H+/−

C (S).

593Penrose (1972), Remark 3.16, warns that although in Minkowski space one has F = I+(B) and P = I−(B) this
need not be true in general, with a specific counterexample already in (0,1)×R⊂M2 with Minkowski metric.

594Both results are are due to Penrose (1972), Theorems 3.20 and 5.12, though neither is stated in the context of
black holes! The first one may also be found in e.g. Wald (1984), Theorem 8.1.6, Galloway (2014), Proposition
3.4, and Minguzzi (2019), Lemma 2.89 and Corollary 2.92. The second is Wald (1984), Theorem 8.3.5, Galloway
(2014), Proposition 5.3, and Minguzzi (2019), Theorem 3.24. Each author uses a slightly different version of the
curve limit lemma. Perhaps Penrose’s original proofs are now seen as heuristic, but in our view they are very clear.



296 Black holes II: General theory

A closed achronal subset S of 2d Minkowski space-time, drawn in blue, starts at edge(S) on the right, and
then, always staying spacelike, asymptotes to the left-hand side of the backward lightcone off the origin.
Its domain of dependence D+(S) is drawn in red and its future Cauchy horizon H+

C (S) consists of the two
black lines, of which the right one ends at and includes edge(S), whilst the left one goes on downward
forever along the lightcone. Past-directed lightlike geodesics within the right-hand branch of H+

C (S) end
at edge(S) (after which they may eave H+

C (S)), whereas those on the left are past inextendible.595

Thus H+/−
E is ruled by future/past intextendible lightlike geodesics (called the generators)

of H+/−
E ),596 and similarly H+/−

C (S) is ruled by past/future intextendible lightlike geodesics.
Hence both event horizons H±E and Cauchy horizons H±C (S) are (topological) null hypersurfaces.

We now prove case 1 of Proposition 10.16 for the special case S = {y}, so that

B = ∂ I+(y). (10.87)

This proof contains the idea of the general case. So take x ∈ ∂ I+(y), then by definition there is a
sequence (xn) in I+(y) converging to x, and there are pd timelike curves γn from xn to y, with

γn : [0,bn]→M; γn(0) = xn; γn(bn) = y, (10.88)

parametrized by h-arc length, cf. §5.6. By the curve limit lemma 5.26, there is a limit curve

γ : [0,b]→M; γn(0) = x; γ(b) = y, (10.89)

where bn→ b. This limit curve is causal and, coming from curves γn in I+(y) as a uniform limit,
it lies in the closure ∂ I+(y), which consists of ∂ I+(y) and its boundary B. If γ contained any
point z ∈ I+(y), then x ∈ I+(y) by Proposition 5.4.5, but I+(y) is open and x ∈ ∂ I+(y), so this
is impossible. Hence γ must lie entirely in the achronal set B, so that by Corollary 5.15 it must
be a lightlike (pre)geodesic (which after reparametrization, if necessary, becomes a geodesic).
Finally, if γ has a past endpoint w in B different from y, then the above construction could be
repeated with x in the role of w, duly extending γ . See footnote 598 for more information.

595Figure redrawn (and adapted) from Penrose (1972), Fig. 36, by Edith de Jong.
596These lightlike geodesics are intextendible in M; by Proposition 10.16 they may have future/past endpoints in

I +/−, as well as past/future endpoints in H+/−
E itself, before/after which they leave the horizon. This leaves the

possibility that lightlike geodesic on H±E hit a singularity. In the proof of Hawking’s Area theorem (see §10.12) this
is excluded by some version of weak cosmic censorship. See also Wald (1994), §6.1.
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For the case of a general closed set S, we must replace the third entry in (10.88) by

γn(bn) = yn; (yn ∈ S). (10.90)

If the sequence (yn) has an accumulation point y the proof is almost the same as above, since the
limit curve satisfies (10.89). If not, we use a trick:597 take a (geodesically) convex nbhd U of x
with compact closure and hence compact boundary ∂N, and take the intersections

zn = γn∩U . (10.91)

By compactness of ∂N the zn have an accumulation point z. We now restart the argument with
yn replaced by zn, which works because zn ∈ I−(x). This gives a causal limit curve from x to z,
which by the above reasoning must lie in B and must be a lightlike geodesic within B, etc.598

We now prove part 2 of Proposition 10.16 by reduction to case 1, which is possible because
H±C turns out to part of an achronal boundary.599 Indeed, if, for H+

C (S) to be concrete, we define

W := I+(H+
C (S)) = I+(S)\D+(S), (10.92)

where either side could be taken as the definition and the other as an inference, we have

H+
C (S) = ∂W ∩D+(S); ∂W = H+

C (S)∪∂ I+(S)\S, (10.93)

and similarly for the past Cauchy horizon H−C (S). This is easily proved, and verified in the
picture above. Let us also give two examples where S is edgeless (see next page):

• The upper picture is 2d Minkowski space-time with (1,1) deleted, and the x-axis is taken
to be our wannabe Cauchy surface S (which by definition is acausal and edgeless).

• In the Quinten space-time M′
2 (i.e. M2 with the closed horizontal line segment from

(t,x) = (2,−1) to (2,1) removed), our wannabe Cauchy surface S is again the x-axis.
Unlike the previous example, where ∂W = H+

C (S), it illustrates the full scope of (10.93).

The proof of case 2 is now virtually the same as for case 1: take x ∈H+
C (S), seen as a specific

component of the boundary of W . Since

W = I+(H+
C (S)), (10.94)

there is a sequence (xn) in I+(H+
C (S)) converging to x, for each xn there is yn ∈ H+

C (S) with
xn ∈ I+(yn), and hence there are pd timelike curves γn from xn to yn, whose limit curve is
the desired lightlike geodesic in H+

C (S). Since it is enough for Corollary 10.17.2, we assume
edge(S) = /0, in which case the above construction can be repeated, so that this geodesic has no
past endpoint in H+

C (S). �

Theorem 10.9 is an important application of Proposition 10.16.1.

597Penrose (1972), p. 24. Other proofs are in Wald (1984), Theorem 8.1.6 and Galloway (2014), Proposition 3.4.
598 Lemma 5.26 assumes that (M,g) is globally hyperbolic, but this assumption is not necessary here: the second

bullet point in Lemma 5.40, which is case (ii) in Theorem 2.53 in Minguzzi (2019), can be excluded because we now
have the sharper assumption γn(bn) = y for all n (as opposed to γn(bn)→ y in Lemma 5.26), so that Proposition
5.21 makes b finite. Alternatively, one can use Chruściel’s limit curve lemma mentioned in footnote 227. Our
argument is supposed to be a rigorous version of the corresponding proof in Geroch & Horowitz (1979), p. 234.

599The argument is due to Penrose (1972), proof of Theorem 5.12, pp. 44–45. For a different, very detailed proof
see Minguzzi (2019), Theorem 3.24, compared to which the argument we give should be seen as heuristic.
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2d Minkowski space-time with (1,1) deleted, and the x-axis as a wannabe Cauchy surface S. Then D+(S)
is the region between the x-axis and the two 45◦ lines, so that W is the shaded green area above these
lines, which is excluded from D+(S) because any causal curve in W can disappear into the “singularity”
(1,1) instead of reaching S. Furthermore, I+(S) is the upper half plane without (1,1). Thus ∂ I+(S) = S,
and ∂W = H+

C (S) consists of the two 45 ◦ lines emanating from the deleted point (1,1).

Quinten space-time, where the closed red line segment from (t,x) = (2,−1) to (2,1) is deleted from 2d
Minkowski space-time, with wannabe Cauchy surface S again taken to be the x-axis. Then I+(S) is the
upper half plane minus the dashed blue triangle with vertices (2,−1), (2,1), and (3,0), including its
interior, and D+(S)\S is the open region enclosed between the x-axis and the two 45◦ lines connected by
the red line (not included in D+(S)). Furthermore, H+

C (S) consists of these 45◦ lines. Next, ∂ I+(S)\S
consists of the blue upper sides of the triangle, and finally W is the region above the zig-zag pattern
formed by H+

C (S) and ∂ I+(S), with boundary ∂W as in (10.93). Figures by Edith de Jong-de Liefste.
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10.8 Killing horizons and surface gravity

We turn to the third type of black hole horizon, which is important for the development of black
hole thermodynamics. Unlike the previous two it is only defined if the metric is stationary.600

Definition 10.18 A Killing horizon in a space-time (M,g) is a connected null hypersurface
HK ⊂M with a normal vector field N (which by definition is lightlike on HK) that can be extended
to a Killing vector field X on some nbhd of HK , in which nbhd it is lightlike solely on HK .
Equivalently, a Killing horizon for a Killing vector field X defined on some open subset U ⊂M
is a connected hypersurface HK ⊂U that coincides with a connected component of the subset of
U where X is lightlike (and hence nonzero), and X is normal (and hence tangent) to HK .

For example, in Schwarzschild black holes X = ∂t is timelike outside the hole, lightlike on the
event horizon, making this also a Killing horizon, and spacelike after crossing the horizon inwards
(see below for Kerr and Reissner–Nordström). This situation is surprisingly well mimicked by

X = x∂t + t∂x (10.95)

in 2d Minkowski space-time (or indeed in any dimension). This is a boost generator and hence
an isometry,601 whose flow is well known from special relativity and is given by

t(s) = t0 coshs+ x0 sinhs; x(s) = x0 coshs+ t0 sinhs, (10.96)

where s ∈R (i.e. X is complete).602 Some of the flow line are displayed in the left-hand figure.

x

t

IIII

II

IV

Left: Flow lines (black) and bifurcate Killing horizon (blue) of the vector field X = x∂t + t∂x in 2d
Minkowski space. Clearly, X is timelike in the regions I and III, spacelike in regions II and IV, and lightlike
on the horizon, just like ∂t in the Kruskal case. The bifurcation surface is the origin.
Right: Bifurcate Killing horizon of the same vector field X in 3d. The bifurcation surface is the y-axis
(pointing out of the page). The bifurcation surface always has codimension 2 and e.g. for Kruskal is S2.

600For more information see e.g. Chruściel (2020), §4.3, Aretakis (2013), §5.6, and Poisson (2004), chapter 5.
601Killing’s equation Xµ;ν +Xν ;µ = 0 reads Xµ ,ν +Xν ,µ = 0, with X0 = x, X1 = t and hence X0 = −x, X1 = t.
602This flow is not parametrized by proper time τ . In region I, the Rindler wedge, putting t0 = 0 this is achieved

by t(τ) = x0 sinh(τ/x0) and x(τ) = x0 cosh(τ/x0). This gives the well-known constant acceleration 1/x2
0. See e.g.

Misner, Thorne, & Wheeler, §6.6. In this context the x ≥ 0 part of the horizon is called the Rindler horizon: it
represents the boundary of what can be (causally) known by the accelerating observers in region I (Rindler, 1956).
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Since η(X ,X) = t2− x2, the Killing horizons of X are the following lines (or hypersurfaces):

x = t, x > 0; x = t, x < 0; x = −t, x > 0; x = −t, x < 0. (10.97)

These combine into a cross |x|= |t| (without the origin in 2d and without the y-axis in 3d); the
four (open) regions I, II, III, IV enclosed by the sides of the cross resemble a Kruskal diagram.603

This cross has an interesting structure, which again is shared e.g. by Kruskal space-time:

Definition 10.19 A bifurcate Killing horizon in a space-time is a union of four (connected)
Killing horizons (for the same Killing vector field X) connected by a submanifold S of dimension
two (generally of codimension two) on which X vanishes, called the bifurcation surface, and
from which each of the four horizons emanates in a lightlike direction orthogonal to S .

This implies that a bifurcation surface S ⊂ M is spacelike. Conversely, S determines a
bifurcate Killing horizon, as follows.604 Suppose a Killing vector field X vanishes precisely
on a two-dimensional spacelike submanifold S . By Minkowski geometry (cf. the end of §4.6
and §6.4), at each x ∈S the tangent space TxM has a basis (L,L,e1,e2), where L and L are
lightlike, preferably normalized as in (6.58), (e1,e2) is a basis of TxS ⊂ TxM (so that e1 and e2
are spacelike), and L and L are orthogonal to e1 and e2 (and hence to TxS ). Since X = 0 on S ,
its flow ψt leaves S pointwise invariant, so that its pushforward (ψt)∗ ≡ T ψt maps each tangent
space TxM into itself (x ∈S ). As X is a Killing vector field, each ψt is an isometry of (M,g),
and each Txψt is an isometry of TxM. In particular, Txψt(L) must be lightlike, so that it must be
proportional to either L or L. Since Txψ0 = id and hence Txψ0(L) = L, proportionality to L is
impossible by continuity in t. Hence there must be some function f such that

Txψt(L) = f (t)L. (10.98)

Consider the geodesic γ
(x)
L for which γ

(x)
L (0) = x and γ̇

(x)
L (0) = L. In general,

γ
(x)
ψ∗Y (τ) = ψ(γ

(x)
Y (τ)); γ

(x)
sY (τ) = γ

(x)
Y (sτ), (10.99)

where Y is any element of TxM and ψ is any isometry. The equation on the left follows because
both sides are geodesics (this requires ψ to be an isometry, since arbitrary diffeomorphisms
would not map geodesics to geodesics) with the same initial point ψ(x) and tangent vector ψ∗Y
at that point. Taking Y = L and ψ = ψt , the flow of X , then shows that, for the above f (t),

ψt(γ
(x)
L (τ)) = γ

(x)
L ( f (t)τ), (10.100)

so that ψt maps γ
(x)
L to itself. This is only possible if X is proportional to γ̇L throughout γ

(x)
L ,

which in turn implies that X is lightlike throughout γ
(x)
L . Defining H+

K :=C as in (6.61), that is,
as the union of all fd lightlike geodesics emanating from S with tangent L (assuming that the
above basis is defined smoothly all over S ), we obtain a Killing horizon. The same construction
works with −L and with ±L, yielding four Killing horizons H±K and H±K , which combine with
S to form a bifurcate Killing horizon. Note that by the same arguments the space between these
horizons is filled with geodesics whose tangents, still proportional to X , cannot be lightlike.

Conversely, we will show that if the surface gravity κ on some Killing horizon HK , which
we will now introduce, is strictly nonzero, then HK extends to a bifurcate Killing horizon.

603 There is a different way of looking at these Killing horizons, which has an analogue for black holes: if γ is any
of the curves in region I, then the x = t line equals ∂ I−(γ). Similarly, x = −t equals ∂ I−(γ) for any γ in region III.

604What follows explicates an argument in Chruściel (2020), §4.3.2.
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Proposition 10.20 Let HK be a Killing horizon for some Killing vector field X. Then on HK ,

∇X X = κX , (10.101)

for some function κ defined on HK , called the surface gravity of the horizon HK . It satisfies

Xκ = 0. (10.102)

Eq. (10.102) means that κ is constant along the null generators of HK (i.e. the lightlike pre-
geodesics with tangent X); in §10.12 we give conditions under which κ is even constant on
HK (which is the zeroth law of black hole thermodynamics). Note that X is orthogonal but also
tangent to the null hypersurface HK (see §4.6), so that Xκ is well defined even if κ is not defined
outside HK . Clearly, the flow of X on HK is geodesic iff κ = 0, in which case HK is called
degenerate. Likewise, a Killing horizon is non-degenerate if κ is nonzero throughout HK .
Proof. Since g(X ,X) = 0 on HK one has Zg(X ,X) = 0 for each Z tangent to HK . Therefore,

Zg(X ,X) = (∇Zg)(X ,X)+ g(∇ZX ,X)+ g(X ,∇ZX) = 2g(∇ZX ,X) = 0. (10.103)

Taking Y = X in (9.126) and using (10.103) gives g(∇X X ,Z) = 0 for each Z tangent to HK ,
which implies that ∇X X must be normal to HK and hence proportional to X . This proves (10.101).

We derive (10.102) from an identity for any Killing vector field X and Y ,Z ∈ X(M), viz.605

∇Y ∇ZX−∇∇Y ZX = Ω(Y ,X)Z := ([∇Y ,∇X ]−∇[Y ,X ])Z. (10.104)

Putting W = ∇X X in torsion-freeness LXW = ∇XW −∇W X , and Y = Z = X in (10.104), gives

LX (∇X X) = 0. (10.105)

Using (10.101), this gives LX (κX) = 0, i.e. (Xκ)X +κLX X = (Xκ)X = 0, whence (10.102).
We also give an equivalent but self-contained proof in coordinates, starting from the identity

∇µ∇νXα = Rα

νµβ
Xβ , (10.106)

valid for any Killing vector field X . Using (9.126), i.e. ∇µXν +∇νXµ = 0, and (4.13) gives

∇µ∇νXα = −∇µ∇αXν = −∇α∇µXν +RνβαµXβ = ∇α∇νXµ +RνβαµXβ

= ∇ν∇αXµ +RµβανXβ +RνβαµXβ = −∇ν∇µXα +RµβανXβ +RνβαµXβ

= −∇µ∇νXα +Rαβ µνXβ +RµβανXβ +RνβαµXβ . (10.107)

From (4.24) and (4.36) - (4.38) we then obtain (10.106). Furthermore, also for later, we have

κ
2 = − 1

2∇
νXα

∇νXα , (10.108)

valid on the Killing horizon HK . To derives (10.108), use (8.94), which in coordinates reads

(∇νXµ)Xρ +(∇µXρ)Xν +(∇ρXν)Xµ = 0, (10.109)

contract with ∇νX µ , and use (10.101) and (3.87). Apply Xα∇α to (10.108); eq. (10.106) gives

2κXα
∂µκ = −Rα

νµβ
X µXβ ·∇νXα = 0. �

605For a proof see e.g. Aretakis (2013), page 87. Our subsequent coordinate proof follows Poisson (2004), §5.5.2.



302 Black holes II: General theory

As explained after (3.48), where we restrict the setting to HK (which can be done since X is
tangent to it), eq. (10.101) shows that the flow of X can be reparametrized to make it geodesic.
Since X is lightlike on HK by definition, the ensuing flow consists of lightlike geodesics. Hence
the lightlike geodesics ruling the null hypersurface HK according to Proposition 6.11 are
reparametrized flow lines of X. Suppose X = f L for some function f defined at least on HK , and
L a null vector field on HK so that ∇LL = 0, i.e. its flow is geodesic. Then κ = L f , i.e.

f (τ) = κτ + c; ⇒ X(τ) = (κτ + c)L, (10.110)

along the geodesic flow τ 7→ γL(τ) of L, where τ is an affine parameter. If κ 6= 0, then X vanishes
at τ = −c/κ , which means that the Killing horizon has hit the bifurcation surface of a bifurcate
Killing horizon, provided that γ can be extended that far. We close with some examples.606

• The surface gravity for the Killing vector field (10.95) in Minkowski space-time is given
by κ = ±1 on the x = ± t components of the Killing horizon.

• In the Schwarzschild solution (9.15) in the original coordinates (t,r,θ ,ϕ) the obvious
Killing vector field is X = ∂t , but since these coordinates do not apply exactly where
things become interesting, namely at r = 2m, we switch to ingoing Eddington–Finkelstein
coordinates (v,r,θ ,ϕ), with metric (9.45), and take (or: write) X = ∂v, which is the same
vector field (as a computation shows). The metric (9.45) shows that X is timelike for
r > 2m, lightlike at r = 2m, and spacelike throughout 0 < r < 2m. In particular, the
future event horizon H+

E defined in Theorem 9.1 is a Killing horizon, too. We may then
compute κ from its definition (10.101), which simply comes down to κ = Γv

vv. This can be
computed from (4.15) and (9.45), yielding Γv

vv = m/r2, which at r = 2m gives κ = 1/4m.

• In the Kruskal solution (9.57), for the Killing vector field (9.65) one finds that κ = 1/4m
on the two SW–NE Killing horizons (including the future or black hole event horizon
just treated), and κ = −1/4m on the SE–NW ones (and hence in particular on the past or
white hole event horizon). The bifurcation surface is the two-sphere at the origin.

• The Reissner–Nordström metric (9.92) with 0 < |e| ≤ m and X = ∂t = ∂v has two Killing
horizons, which coincide with the inner and outer horizons H± of Theorem 9.2. This
follows from (9.98), which makes ∂v lightlike iff h(r) = 0, which is the case at r = r±. The
surface gravities κ± coincide with those already labeled as such in (9.96) and (9.110). In
the extremal case |e|= m > 0 the surface gravity on the single remaining Killing horizon
= event horizon = Cauchy horizon vanishes. For |e|> m > 0 there is no horizon at all.

• The Kerr metric (9.114) has a second Killing vector ∂ϕ , apart from ∂t , which again
coincides with ∂v as used in (9.141). This additional symmetry makes the choice of X
ambiguous, but the Killing horizon of X coincide with the horizon H+ in Theorem 9.3 if

X+ := ∂v +Ω+∂ϕ , (10.111)

see (9.147). With this choice of X , the surface gravity at H+ = H+
E is given by

κ+ = 1
2

r+− r−
r2
++ a2 = 1

2

√
m2−a2

m2 +m
√

m2−a2
, (10.112)

at least if 0 < |a| ≤ m. The extremal case |a|= m > 0 has κ = 0 (and vice versa), and in
the ultrafast case |a|> m > 0 there is no horizon whatsoever, but a naked singularity.

606The coincidence of Killing horizons and event horizons is no coincidence and will be taken up in §10.10.
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10.9 Black hole uniqueness theorems: Static case

Uniqueness theorems in GR, more specifically in the theory of black holes, typically refer to
claims to the effect that under certain assumptions appropriate to the black hole setting, at least
the space-time outside the event horizon must be (locally) isometric to one of the classical
exact solutions, such as Schwarzschild, Reissner-Nordström, Kerr, or Kerr–Newman. Thus the
uniqueness theorems formalize what (following Wheeler) is often called the “no hair” property:

Perhaps the greatest surprise from the golden age [i.e. 1963–1975] was general relativity’s
insistence that all properties of a black hole are precisely predictable from just three numbers:
the hole’s mass, its rate of spin, and its electric charge.607 From those three numbers, if
one is sufficiently clever at mathematics, one should be able to compute, for example, the
shape of the hole’s horizon, the strength of its gravitational pull, the details of the swirl of
space-time around it, and its frequencies of pulsation. (Thorne, 1994, p. 327)

The scope of the black hole uniqueness theorems ranges from the early (misnamed) Birkhoff
theorem from 1923, see below, to Penrose’s all-encompassing final state conjecture:608

A body, or collection of bodies, collapses down to a size comparable to its Schwarzschild
radius, after which a trapped surface can be found in the region surrounding the matter. Some
way outside the trapped surface region is a surface which will ultimately be the absolute
event horizon. But at present, this surface is still expanding somewhat. Its exact location
is a complicated affair and it depends on how much more matter (or radiation) ultimately
falls in. We assume only a finite amount falls in and that GIC is true. Then the expansion of
the absolute event horizon gradually slows down to stationarity. Ultimately the field settles
down to becoming a Kerr solution (in the vacuum case) or a Kerr–Newman solution (if a
nonzero net charge is trapped in the “black hole”). (Penrose, 1969, pp. 1157–1158)

Here GIC refers to what Penrose (1969) called the Generalized Israel Conjecture, i.e.,

if an absolute event horizon develops in an asymptotically flat space-time, then the solution
exterior to this horizon approaches a Kerr–Newman solution asymptotically with time.
(Penrose, 1969, pp. 1156)

In the static case, which Israel himself proved (albeit under very restrictive assumptions) in
two papers that launched the modern era,609 this means hat the solution exterior to this horizon
equals the Reissner-Nordström solution (and hence the Schwarzschild solution in the vacuum
case). This requires the inference of spherical symmetry from staticity, which is a (much more
difficult) converse of the inference of staticity from spherical symmetry in Birkhoff’s theorem.

607The latter seems zero in astrophysical reality (where nonetheless black holes in active galactic nuclei are
surrounded by magnetic fields), unless ’t Hooft’s idea that elementary particles are tiny black holes is viable.

608‘The conjecture is extremely open, in the sense that even a reasonable formulation is unknown.’ (Wong, 2009)
609 These are Israel (1967, 1968). Overviews of the uniqueness theorem, including references to the original

literature (some of which will also be cited below) include Hawking & Ellis (1973), §9.3, Carter (1986), Heusler
(1996), and Chruściel, Lopes Costa, & Heusler (2012). The history of the theorems is discussed in first-hand
accounts by Israel (1987), Carter (2006), Thorne (1994), chapter 7, and Robinson (2009). Briefly, the “no hair”
conjecture originated in the Moscow from work by Ginzburg on quasars and independently Doroshkevich, Novikov,
and Zeldovich on deformations of black holes. In 1965 Novikov presented this work at the GR4 conference in
London, through which it reached the West, where the idea was picked up by Wheeler and his former students like
Thorne and Misner, by Israel, and subsequently, via the latter, by Carter, Hawking, and others.



304 Black holes II: General theory

Since a complete treatment of the uniqueness theorems would require an entire monograph,
our aim here is just to generate some feeling for these theorems by discussing a few special cases
in some detail, and even those, for clarity, under stronger assumptions than strictly needed, and
with mere outlines of the main steps in the proofs (which would take pages per step if done in
detail). Stronger up-to-date results will be mentioned along the way without proof.

As already mentioned, the first uniqueness theorem for black holes was Birkhoff’s:610

Theorem 10.21 Any spherically symmetric solution to the vacuum Einstein equations is locally
isometric to the Schwarzschild solution (i.e. for all values of r > 0).

The most remarkable aspect of this theorem is that spherical symmetry implies staticity, but even
if staticity is assumed the conclusion would be non-trivial. Of course, everything is predicated
on the exact definition of spherical symmetry. Using coordinates (xµ) where the rotation group
SO(3) acts trivially on x0 = t, and acts in the usual way on (x1,x2,x3), SO(3)-invariance forces

gi j = Aδi j +Bxix j; g0i =Cxi; g00 = −D, (10.113)

where A, B, C, and D depend on x2
1 + x2

2 + x2
3 and x0 = t only. Replacing (x1,x2,x3) by spherical

coordinates (r,θ ,ϕ) but redefining r so that the volume element of S2
r is r2dΩ, cf. (9.17), gives

g = −Edt2 + 2F dr dt +G2dr2 +HdΩ, (10.114)

where E, F , G, and H depend on r and t only. A further coordinate transformation then yields

g = I(u, t)du2 + 2J(u,r)dr dt +K(u,r)dΩ, (10.115)

which the vacuum Einstein equations then force into the Schwarzschild metric (9.45) or (9.46)
in Eddington–Finkelstein coordinates (the lengthy and dull computations are left to the reader).

But the above concept of spherical symmetry was coordinate-dependent. We can do better:

Definition 10.22 A space-time (M,g) is spherically symmetric if SO(3) is a subgroup of the
group Iso(M,g) of its isometries and the orbits of SO(3) are isometric to spacelike two-spheres
S2

r of some radius r > 0 (endowed with the usual round metric).611

The following–very technical–lemma will do much of the work. Part 1 may sound trivial given
Definition 10.22, but its thrust lies in the precise meaning of a foliation (see footnote 612).

610What is called Birkhoff’s theorem was also independently discovered by Jebsen (1921), Alexandrow (1923),
and Eisland (1925). See Johansen & Ravndal (2006) and Ehlers & Krasiński (2006). The name-giving source is
Birkhoff (1923), which is sometimes cited as Birkhoff & Langer (1923); the cover says ‘By George David Birkhoff,
PhD, with the coorperation of Rudolph Ernest Langer, PhD’. Most GR textbooks contain computations supporting
the theorem, e.g. Misner, Thorne, & Wheeler (1973), §23.2 and §32.2, is very clear. The Ansatz (10.113) is taken
from Deser & Franklin (2005) and the subsequent (original) use of Eddington–Finkelstein coordinates is due to van
Oosterhout (2019), which contains a detailed derivation of (9.45) or (9.46) from (10.115); this has the advantage
of not being limited to r > 2m. Complete and rigorous geometric proofs are hard to find. We follow Hawking &
Ellis (1973), Appendix B, which relies on Lemma 10.23 due to Schmidt (1967). See also van Oosterhout (2019).
Birkhoff’s theorem was extended to electrovac space-times by Hoffmann (1932ab).

611This excludes Minkowski space-time (M,η), which near r = 0, is not foliated by two-spheres! Birkhoff’s
theorem produces (M,η) without the t-axis, which can be added by moving back to Cartesian coordinates.
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Lemma 10.23 1. A spherically symmetric space-time (M,g) is foliated by two-spheres.612

2. Each x ∈M has a nbhd Ux containing a 2d submanifold Nx through x that intersects each
orbit (i.e. two-sphere S2) overlapping with Ux exactly once and does so orthogonally.

3. For any two (nearby) orbits O and O ′ the map O → O ′ that sends x ∈ O to Nx ∩O ′

(provided this is nonemtpy, in which case it has one element) is a conformal diffeomorphism
whose conformal factor Ω is constant on O (i.e. depends on O and O ′ alone).

Visualizable examples in n = 3 include R3\{0}, seen as Euclidean space (minus the origin)
foliated by two-spheres (G = SO(3)), and R3\{x1 = x2 = 0}, seen as Minkowski space-time
M3 in d = 2+ 1, foliated by circles in planes with x0 = constant (G = SO(2)). In the first
example of the previous footnote Nx is (locally) simply the radial line through x. In the second,
it is (locally) the plane defined as the product of the radial line through x and the t-axis.
Proof. If a Lie group G acts smoothly on M and dim(Gx) is constant, where

Gx = {g ∈ G | gx = x}, (10.116)

is the stabilizer of x, then the associated vector fields defined by (8.246) define a foliation of M,
whose leaves are the connected components of the G-orbits Ox = Gx. This is the situation here,
with G = SO(3) and Gx ∼= SO(2), and connected orbits ∼= S2. This proves the first claim.

For the second claim,613 the more general fact is that there is such an Nx provided each
ψ ∈ Gx (different from the identity) satisfies ψ∗X = X iff X = 0, for X ∈ TxO . This assumption
certainly holds if the SO(3) orbits are all two-spheres, in which case Gx ∼= SO(2) rotates
TxS2 ∼= R2 (note that since ψ(x) = x, the pushforward ψ∗ maps TxM to itself). To prove
this, define Nx as the submanifold generated by all geodesics emanating from x with tangents
orthogonal to the orbit Ox. The slice theorem for compact Lie group actions gives the required
nbhd Ux (where S = Nx∩Ux acts as the slice). We now show that if X ⊥ TxOx and ψ ∈ Gx, then
ψ∗X = X . Indeed, if Y = ψ∗ 6= X , then (because ψ is an isometry) Y ⊥ TxOx, and the different
geodesics γ

(x)
X and γ

(x)
Y both intersect some orbit O near x. But since ψ is an isometry,

γ
(x)
Y (t) = γ

(x)
ψ∗X (t) = ψ(γ

(x)
X (t)), (10.117)

and so O would intersect Nx in more than one point, contradicting the slice theorem. Now take
y = γ

(x)
X (s) ∈Ux for some s 6= 0. By the same calculation, ψ(y) = y, so Gx ⊆ Gy and hence

ψ∗(Y ) = Y for each Y ⊥ TyOy (where this time, ψ∗ : TyM→ TyM). Now decompose

γ̇
(x)
X (s) = Y1 +Y2, (10.118)

with Y1 ⊥ TyOy and Y2 ∈ TyOy. We know that ψ∗(Y1) = Y1, and ψ∗(Y2) 6= Y2 would lead to a
similar contradiction with the slice theorem as previously at x, so ψ∗(Y2) = Y2 and hence Y2 = 0.

612 A k-dimensional foliation of an n-dimensional manifold M, where 0 < k < n, may be defined as a subbundle
E ⊂ T M of rank k that is involutive in the sense that if X ,Y are sections of E, then so is their Lie bracket [X ,Y ]. In
that case, M is the disjoint union of the leaves of the foliation, which are (immersed) connected submanifolds L
of M such that TxLx = Ex at each x ∈M (where Lx is the leaf through x). The nontrivial fact we need is that, for
a general foliation, each x ∈M has a nbhd U and associated chart (U ,ϕ) with ensuing coordinates (xi) such that
Lx∩U is given by x1 = constant, . . . , xn−k = constant. See e.g. Guillemin & Sternberg (1984), §27.

613The general case is due to Schmidt (1967), Theorem 1. For the slice theorem used in the proof below see e.g.
Guillemin & Sternberg, 1984, Proposition 27.2.
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Thus γ
(x)
X and hence Nx intersects all orbits in Ux orthogonally, 614 proving the second claim.

Call the map in the third claim f : O → O ′; since the orbits are compact, f can indeed
be defined on all of O . This map is well defined by the previous claim and it is a local
diffeomorphism by the properties of the exponential map. For any ϕ ∈G one has f ◦ϕ = ϕ ◦ f by
computations on geodesics as in the previous step. Now choose an orthonormal basis (e1, . . . ,ek),
with k = 2 in the case G = SO(3) and Gx = SO(2) at hand, obtained from a unit vector u ∈ TxO
by ei = ψ ′i u for suitable ψi ∈ Gx. Then all ei are unit vectors, and by G-equivariance (as just
noted) these are mapped into an orthogonal basis ui = ψi( f∗e), which also consists of vectors of
the same length. Linear conformal transformations are compositions of rotations, reflections,
and dilations,615 and hence f is conformal. Since G consists of isometries and acts transitively
on each orbit, a simple computation shows that the conformal factor is constant on O . �

By foliation theory, it is now possible to introduce coordinates (t,r,θ ,ϕ) on Ux such that:

• each orbit O is given by t = constant and r = constant;

• each normal surface Nx is given by θ = constant and ϕ = constant.

Here (θ ,ϕ) are spherical coordinates on S2. This yields (10.114), with which we close our dis-
cussion of Birkhoff’s theorem; as already mentioned, we will not give the explicit computations
that lead from (10.114) to the Schwarzschild metric (but see §9.2, which assumed staticity).

Spherical symmetry is a very strong assumption, and so it is interesting to know that the
Schwarzschild solution can also be inferred from a very different set of assumptions, which now
includes staticity. The conclusion of the theorem is both global and restricted to the exterior
region r > 2m, which requires the use of a manifold with boundary in the assumptions.616

Theorem 10.24 Let (M,g) be a one-ended static asymptotically flat space-time (cf. Definition
8.4) with metric (8.96), such that L > 0 in int(M) and L = 0 on ∂M, where M = R×Σ and
∂M = R×∂ Σ, with ∂ Σ compact. If the metric solves the vacuum Einstein equations (8.100)
- (8.101) and (M,g) is maximally extended up to its boundary, then (M,g) is isometric to the
exterior region r ≥ 2m of Schwarzschild space-time (9.47) with metric (9.15) having m > 0.
In particular, the boundary ∂M is connected and coincides with the future event horizon H+

E .

Despite its strong assumptions, this theorem is quite remarkable, since it not only shows that
the Schwarzschild metric is the only static vacuum black hole space-time (which by definition
is asymptotically flat) with smooth event horizon, but it also shows that multiple black hole
configurations (which would form a space-time with disconnected boundary and hence are
excluded by the theorem) in vacuum cannot be static. In order to understand its assumptions, it
is worth recalling that L2 = −g(∂t ,∂t), where ∂t is the (usual) timelike Killing vector field of a
static space-time, so that the vanishing of L at ∂M makes the latter a Killing horizon, which a
posteriori is identified with the event horizon of a Schwarzschild black hole, cf. Theorem 9.1.

614 Since we now know that γ̇
(x)
X (s) ⊥ TyOy we may run the geodesic (and the argument) the other way round,

obtaining the inclusion Gy ⊆ Gx, and hence Gy = Gx. Since ψ∗(X) = X for ψ ∈ Gx and X ⊥ TxOx, we also have

ψ(γ
(x)
X (t)) = γ

(x)
X (t), so that Nx is pointwise invariant under Gx (as the examples indeed illustrate).

615This is Liouville’s theorem, see e.g. Akivis & Goldberg, 1996, Theorem 1.1.1.
616This is a version of Israel’s theorem from 1967, see footnote 609, due to Bunting & Masood-ul-Alam (1987).

Israel assumed the boundary ∂M to be connected and also made several other superfluous assumptions. See also
Heusler (1996), §9.2, Schoen (2009), Lecture 11, and the references in footnote 609 for historical context.
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The proof (which we only sketch) aims at recovering the spatial Schwarzschild metric
gS from certain characteristic properties, upon which (8.96) gives the space-time metric on
M′S = R×Σ′S. The spatial metric gS is defined on Σ′S := R3\((0,2m]×S2) and is given by

g̃S = L(r)−2dr2 + r2(dθ
2 + sin2

θdϕ
2); L(r) =

√
1−2m/r, (10.119)

Listed in the order of the chain of deduction, these characteristic properties of g̃S are as follows:

1. Beyond the generic properties g̃i j = δi j +O(1/r) and L = 1+O(1/r) from Definition
8.4, the specific asymptotics of g = gS, with g00 = L2 and ĝi j := L2g̃i j, also satisfy

L = 1− m
r
+O

(
1
r2

)
; ĝi j = δi j +O

(
1
r2

)
; (r→ ∞), (10.120)

whereas Definition 8.4 only requires ĝi j−δi j +O(1/r). In general, for our asymptotically
flat spatial metric g̃, the asymptotics expressed by eqs. (10.120) follow from the Einstein
equations (8.102), roughly speaking as follows.617 The second, ∆̃L = 0, where ∆̃ is the
Laplacian defined by g̃, has as lead term ∆L = 0, where ∆ = ∂ 2

x + ∂ 2
y + ∂ 2

z is the usual
flat Laplacian. In 3d flat space Laplace’s equation is solved by

L =C−m/r, (10.121)

where m and C are constants. Then L→ 1 forces C = 1 and the error term in passing from
∆ to ∆̃ gives the first entry in (10.120). Next, in terms of U = ln(L), eqs. (8.102) read

R̂i j = 2∂iU∂ jU ; ∆̂U = 0, (10.122)

where R̂i j and ∆̂ are the Ricci tensor and the Laplacian defined by ĝ, respectively. The
asymptotics of L give U = O(1/r) and hence R̂i j = O(1/r4), as r→ ∞. In harmonic
coordinates (where ∆̂xi = 0, i.e. Γi := ĝ jkΓ̂i

jk = 0), this yields the second part of (10.120).

2. The spatial metric g̃S is conformally flat.618 This follows either from a reparametrization

r = ρ(1+m/(2ρ))2; (10.123)

g̃S =(1+m/(2ρ))4(dρ
2 +ρ

2dΩ), (10.124)

or by computing the Cotton tensor (4.120) for the metric (10.119), which gives zero.

We now prove that our Riemannian manifold with boundary (Σ, g̃), as defined through the
assumptions in Theorem 10.24 plus Definition 8.4, must be conformally flat. To this end,
we first perform a useful but partly unsuccessful manoeuvre. Rescale g̃ to

ǧ :=
(

1+L
2

)4

g̃. (10.125)

617 See Beig (1980), Kennefick & Ó Murchadha (1995), or Schoen (2009), Lecture 11. One needs two identities,
cf. Wiki’s List of formulas in Riemannian geometry. First, R̂i j = R̃i j−L−1∇̃i∇̃ jL+ 2L−2∇̃iL∇̃ jL−L−1∆̃L · g̃i j,
valid in d = 3. Using (8.102) and L = exp(U), this gives R̂i j = 2∂iU∂ jU . Second, ∆̃ f = e2U (∆̂− ĝi j∂iU∂i) f for
any function f , also in d = 3, so taking f = L = exp(U) and using (8.102) gives ∆̂U = 0.

618This was noted at least as early as Synge (1960), §VIII.4. We learnt it from Cederbaum (2019), Lecture 1.
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The Riemannian manifold (Σ, ǧ) has vanishing Ricci scalar and asymptotic mass, i.e.

Ř = 0; Π0(ǧ) = 0, (10.126)

where Π0 is defined by (8.103). The first property follows from a simple computation.619

The second follows from the asymptotics (10.120), noting that Π0 is determined by the
1/r term (cf. the computation of the Schwarzschild case in footnote 399). Since(

1+L
2

)4

= 1− 2m
r

+O
(

1
r2

)
; g̃i j =

(
1+

2m
r

)
δi j +O

(
1
r2

)
, (10.127)

the m/r terms cancel in the product ǧ. We would now like to invoke the second part of
the positive mass theorem 8.5 in order to infer that (Σ, ǧ) is isometric to Euclidean space
(R3,δ ), so that (Σ, g̃) is conformally flat. But this does not work since Σ is not a manifold
but a manifold with boundary, on top of which (and for that reason) it is not complete.

To remedy this, we perform a trick.620 First as a manifold, we form the “double”

Σd = Σ∪∂ Σ Σ, (10.128)

with metric g̃d given as the original one g̃ on both copies of Σ including their common
boundary. The function L, though, is extended to a function Ld on Σd defined as L on one
copy of Σ and as −L on the other; this can be done continuously (though not smoothly)
since L = 0 on ∂ Σ (and also the metric g̃d is no longer smooth on the boundary).

Now rescale g̃d through (10.125), leading to a Riemannian manifold (Σd , ǧd) without
boundary. The end where L→ 1 of course remains asymptotically flat, but because of the
conformal transformation (10.125) the end where L→−1 can be compactified by adding
a single point (which for the metric g̃ would have been a two-sphere at infinity).621 The
ensuing Riemannian manifold (Σ̇d , ǧd) is complete (basically since one end is asymptoti-
cally flat and the other end has been compactified). The computations that imply (10.126)
also work for (Σ̇d , ǧd), which, then, satisfies the hypotheses of the second part of Theorem
8.5 and hence is isometric to (R3,δ ). Consequently, (Σ̇d , g̃d) is conformally flat, but since
this is a local property we conclude that (Σ, g̃) is conformally flat.

3. The spatial metric g̃S is spherically symmetric. This is clear for g̃S. For our general
metric g̃ (re)constructed so far, spherical symmetry follows from conformal flatness in the
situation where the Ricci tensor is given by (8.100). The proof uses the fact that dL 6= 0
and that the level sets L = constant are (topologically) two-spheres, which in turn follows
from from (10.120).622 Up to the boundary where L = 0, the space Σ of Definition 8.4.1

619For a conformal transformation ǧ = Ω2g̃ we have Ř = Ω−2R̃−4Ω−3∆̃ Ω+ 2Ω−4g̃i j∂iΩ∂ jΩ. Taking Ω =
(1+L)2/4 and using (8.102) gives Ř = 0.

620For any manifold M with boundary ∂M, the manifold M∪∂M M is topologically defined as (MtM)/∼, where
x ∼ y iff x,y ∈ ∂M and x = y, with a unique smooth structure making this space a manifold (without boundary).
More generally, given two manifolds with boundary M1 and M2 with a diffeomorophism f : ∂M1 → ∂M2, one
may define M1∪ f M2 as (M1tM2)/ ∼, where x∼ y iff x ∈ ∂M1 and y = f (x) ∈ ∂M2. The existence of a smooth
structure on this quotient derives from the collar neighbourhood theorem, which states that for any manifold M
with boundary ∂M there is a neighbourhood U of ∂M in M and an associated diffeomorphism ψ : U

∼=→ ∂M× [0,1).
621This requires much more detailed arguments, see Lemma 3 in Bunting & Masood-ul-Alam (1987).
622This requires some elliptic PDE theory and Morse theory. See Theorem 1 in Künzle (1971), which goes back to

Lichnerowicz (1955), §78: an asymptotically flat space is either flat (which corresponds to the case m = 0), or, if
m 6= 0, has dL 6= 0 throughout, with level sets ∼= S2. The maximum principle for elliptic PDEs (or the last claim of
Theorem 8.5) gives the first claim, whereas the absence of points where dL = 0 makes all level sets homeomorphic
to those near r→ ∞. From Definition 8.4 and the first entry in (10.120), these level sets are two-spheres.
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is then foliated by the level sets of L, and one may set up a calculus à la (6.10) - (6.15),
but in one dimension lower. Indicating this by the use of spatial indices, and writing

W := ∇̃
iL∇̃iL, (10.129)

a computation shows that the Cotton tensor squared is given by

Ci jkCi jk = L−4W 2(8σi jσ
i j +W−2hi j

∂
iW∂ jW ), (10.130)

where hi j = g̃i j−nin j is the projection onto the level sets, in terms of their normal~n. Thus
conformal invariance, i.e. Ci jk = 0, enforces σi j = 0 and hi j∂ jW = 0. This makes the level
sets, already known to be two-spheres topologically, also two-spheres metrically (i.e. with
the usual SO(3)-invariant metric Ω), so that Σ is spherically symmetric.623

We have shown (at least in outline) that the Riemannian manifold with boundary (Σ, g̃) defined
through the assumptions in Theorem 10.24 plus Definition 8.4 is spherically symmetric. Using
Birkhoff’s theorem in the simple case where staticity has already been assumed, the spatial
Schwarzschild metric (10.119) and then the full one (9.15) via (8.96) then follow. The case
m≤ 0 is excluded by the assumptions in Theorem 10.24, since L has no zeros in that case. �

Short of Birkhoff’s, this is the simplest uniqueness theorem for black holes! Similar rea-
soning shows that the subcritical Reissner–Nordström metric (i.e. 0 < |e| < m) is the unique
(exterior) static “electrovac” black hole space-time with smooth non-degenerate event horizon
and vanishing magnetic charge (where ‘non-degenerate’ means nonzero surface gravity).624

However, the degenerate case (|e|= m > 0) is not unique! Consider the Reissner–Nordström
metric (9.92) for this case, given by the usual static metric (8.96), now with spatial part

g̃RNd = L(r)−2dr2 + r2(dθ
2 + sin2

θdϕ
2); L(r) = 1−m/r. (10.131)

Compared with the Schwarschild metric (10.119), we have 1−m/r instead of
√

1−2m/r. The
coordinate transformation ρ = r−m and then ρ  r turns the total space-time metric into

gMP = −dt2

U2 +U2(dr2 + r2dΩ), (10.132)

where r > 0 and
U := 1+m/r. (10.133)

Clearly, U solves the (flat space) Laplace equation

∆U = 0, (10.134)

The point is that (10.132) is a static solution to the Einstein–Maxwell equations for arbitrary
(static) solutions to (10.134), provided the electromagnetic field potential is taken to be

A =U−1dt. (10.135)

As such, (10.132) is called a Majumdar–Papapetrou metric. For example, one may take

U = 1+
N

∑
i=1

ei

|~x−~yi|
, (10.136)

623See Theorem 2 in Künzle (1971) or Corollary 9.3 in Heusler (1996).
624See Israel, 1968, Masood-ul-Alam (1992), and Heusler (1996), §9.3, and further references in the latter.
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where (~y1, . . . ,~yN) =: Y is any finite set of points in R3, so that gMP is defined on

MMP := R×R3\(~y1, . . . ,~yN). (10.137)

It turns out that the event horizon H+
E equals Y , and that ei is the charge at the puncture~yi.625

This leads to a generalization of Theorem 10.24, which like most uniqueness theorems
describes the domain of outer communication (DOC). Apart from its axiomatic definition

D = I−(I +)∩ I+(I −) (10.138)

in the presence of I , this domain can also be defined for a stationary asymptotically flat
space-time (M,g), with asymptotically timelike Killing vector X (= ∂t), by

D = ∪αDα ; Dα := I−(Mext
α )∩ I+(Mext

α ); Mext
α := ∪t∈Rϕt(Σext

α ), (10.139)

where Σext
α are the (asymptotic) ends of M, cf. Definition 8.4.1, and ϕt is the flow of X (assumed

complete). For example, in Kruskal space-time with Σext
I “to the right”, DI corresponds to region

I. Similarly, we may define connected black and white hole regions and their event horizons by

B±α := M\I∓(Mext
α ); (H±E )α := ∂B±α = ∂ I∓(Mext

α ). (10.140)

Recent uniqueness theorems assume that D is globally hyperbolic,626 which is a “Penrosian”
version of weak cosmic censorship, see the end of §10.4. In the static case, we then have:627

Theorem 10.25 Let (M,g) be a static asymptotically flat electrovac space-time (i.e. solving the
source-free Einstein–Maxwell equations) containing a connected acausal spacelike hypersurface
Σ (cf. Definition 8.4.3) whose closure Σ is a topological manifold with boundary consisting (as
a disjoint union) of a compact set K and finitely many ends Σext

α (cf. Definition 8.4.1). If the DOC

(D,g) is globally hyperbolic and ∂ Σ ⊂M\D, then Σ can have only one asymptotic end, and:

• If the event horizon H+
E defined in (10.140) is connected, then the DOC of the unique end

Σext is isometric to the DOC of a Reissner–Nordström space-time with 0≤ |e| ≤ m 6= 0.

• If the event horizon H+
E is not connected, then the DOC of Σext is isometric to the DOC of a

Majumdar–Papapetrou space-time with N ≥ 2.

In particular, in the vacuum case one recovers the DOC of Schwarzschild space-time with m > 0.

Here Reissner–Nordström includes e = 0, i.e., Schwarzschild with m > 0. The cases |e|> m > 0
and e = 0 > m are excluded because they lack event horizons (and have D = M, which is not
globally hyperbolic, cf. §10.6). The Minkowski case e = m = 0 has no event horizon either.

625See Chruściel (2020), §4.7. The charge is defined by −(4π)−1 ∫
S2

i
∗F , where S2

i is some two-sphere around~yi.
626Global hyperbolicity of D is clearly a necessary condition for the theorems (as the space-times in their

conclusions satisfy it). Galloway (1995) showed that global hyperbolicity of D plus the null energy condition (which
is satisfied here) imply that D is is simply connected, which is needed for the proof of Theorem 10.25 (which we
omit). Global hyperbolicity of D is also needed to underpin the heavy PDE analysis in all proofs (Chruściel &
Lopes Costa, 2008). The original assumption used in this context by Hawking and others in the 1970s was strong
asymptotic (future) predictability, see footnote 672.

627 Theorem 10.25 is Theorem 3.1 in Chruściel, Lopes Costa, & Heusler (2012), which as the authors explain is
the culmination of a long development starting with Israel’s theorem 10.24 (and we would say: with Birkhoff’s).
The implication that Σ can then only have one asymptotically flat end is part of Theorem 3.3.1 in Chruściel (2020),
originally due to Chruściel & Wald (1994a). This follows from topological censorship, see footnote 635 in §10.10.
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10.10 Black hole uniqueness theorems: Stationary case

Passing from the static to the stationary case, a natural generalization of Theorem 10.25 would
be that the domain of outer communication (D,g) is isometric to the DOC of a Kerr–Newman
space-time (with 0≤ a2 + e2 ≤ m2), at least if the event horizon is connected.628 Unfortunately,
this has only been proved under considerably stronger assumptions, namely:629

1. Those of Theorem 10.25, of course replacing static by stationary;630

2. Connectedness and non-degeneracy of the horizon H+
E (i.e. surface gravity κ 6= 0).631

3. ∂ Σ ⊂ ∂D∩ I+(D), such that ∂ Σ intersects each null generator of ∂D∩ I+(D) once.632

4. Analyticity of the space-time metric g.633

Theorem 10.26 Let (M,g) be a stationary asymptotically flat electrovac space-time satisfying
1–4. Then (D,g) is isometric to the DOC of a Kerr–Newman space-time with 0≤ a2 + e2 < m2.

Thus (M,g) is characterized by just three numbers (m,a,e) and hence this is the ultimate “no-hair
theorem”. An important stepping stone from the static to the stationary case is Hawking’s rigidity
theorem, which is very interesting by itself and explains the coincidence of event horizons and
Killing horizons in the Schwarzschild, Reissner–Nordström, and Kerr metrics.634

Theorem 10.27 Under the assumptions of Theorem 10.26, either the asymptotically timelike
Killing vector field X defining stationarity is tangent to the event horizon H+

E , or the isometry
group of (M,g) contains R×U(1), where U(1) acts via spatial rotations, and there is another
vector field Y that is a linear combination of X and the generator ∂ϕ of the U(1) isometries, for
which H+

E is a Killing horizon. Either way, the event horizon H+
E is also a Killing horizon.

Although the first option describes the situation for the Schwarzschild metric, see Theorem 9.1,
and the second the one for the Kerr metric, see Theorem 9.3 and eq. (9.147), in general it seems
quite mysterious where the axial symmetry should come from. This much we will explain. A
key lemma for Hawking’s rigidity theorem and a very important result in its own right is:635

628There are various candidates for space-times with multiple rotating black holes generalizing the Majumdar–
Papapetrou metrics to the stationary case, none of which are well understood. See e.g. Weinstein (1996) as well as
numerous physics papers, partly reviewed in Chruściel, Lopes Costa, & Heusler (2012), §3.2.2.

629Theorem 10.26 is due to Chruściel & Lopes Costa (2008); see also Lopes Costa (2010). There are many other
stationary axisymmetric solutions (Stephani et al., 2003, chapters 19–21) but these are either not asymptotically flat
or have non-globally hyperbolic DOC and hence lack an event horizon and fail weak cosmic censorship.

630Completeness of the Killing field X in charge of stationarity is included as part of the definition of the latter.
631One may drop non-degeneracy at the expense of assuming U(1)-invariance (Chruściel & Nguyen, 2010).
632By (10.139) and Proposition 10.16.1, ∂D∩ I+(D) is ruled by lightlike geodesics. This assumption is technical

and is explained in detail in Lopes Costa (2010). Roughly speaking, the specific cross-section of the horizon given
by intersection with ∂ Σ must hit its null generators once. This is clearly the case for Kerr–Newman.

633This is the most undesirable hypothesis, required for Theorem 10.27. See also footnote 638.
634The original version is in Hawking (1972) and Hawking & Ellis (1973), Proposition 9.3.6. Theorem 10.27 is

like Theorem 5.1 in Chruściel (1996), based on Chruściel (1997). See also Friedrich, Rácz, & Wald (1999).
635 This proposition goes back to Hawking (1972) and Hawking & Ellis (1973), §9.3, with dubious proof. The

approach via topological censorship, introduced by Friedman, Schleich, & Witt (1993), is due to Chruściel &
Wald (1994a), Galloway (1995), Browdy & Galloway (1995), and Jacobson & Venkataramani (1995). For the
topological singularity theorem of Gannon (1995) and Lee (1976) see footnote 339. Overall, see §3.3 in Chruściel
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Proposition 10.28 Let (M,g) be a stationary asymptotically flat space-time satisfying the null
energy condition, as well as weak cosmic censorship in the sense that its DOC D is globally
hyperbolic. Accordingly, let Σ be a Cauchy surface in D, with Σext ∼= (0,∞)×S2. Then:

1. The domain of outer communication D is simply connected.

2. If the closure Σ of Σ in M intersects the future event horizon H+
E in a compact set K, and

H+
E is connected, then K ∼= S2 and hence H+

E
∼= R×S2 (both meant topologically).

Both results are very deep and as usual by now, we can only sketch the arguments. The inference
from global hyperbolicity to simple connectedness is essentially the principle of topological
censorship, which is proved (by contradiction) by combining ideas from Theorem 10.9 and the
topological singularity theorem, which all go back to Penrose’s singularity theorem. The second
claim follows from the first, combined with a result from differential topology:636

Lemma 10.29 If N is a compact simply connected 3-manifold with non-empty boundary ∂N,
then all connected components of ∂N must be diffeomorphic to two-spheres S2.

The simplest example is the three-ball B3 with ∂B3 ∼= S2. In the case at hand, Theorem 5.33
gives D ∼= R×Σ and hence Σ is simply connected by part 1 of Proposition 10.28. Since (M,g)
is asymptotically flat we can cut off Σ at some large radius r, giving the N of the lemma. The
component of ∂N at the asymptotically flat end is ∼= S2 (this much is clear even without the
lemma, which of course confirms it), and the other is Σ∩H+

E
∼= S2 (from Lemma 10.29). �

Towards Theorem 10.27, by stationarity of the metric, the event horizon (which is defined by the
causal structure and hence by the metric) is invariant under the flow of X (which by definition
of a Killing vector field consists of isometries), and hence X is tangent to H+

E . Thus X = L−Z
on H+

E , where L is tangent to the null generators of H+
E , and Z is tangent to the spacelike

two-spheres S2 of Proposition 10.28.2. Let ǧ = ∑
2
i, j=1 ǧi jdxidx j be the Riemannian metric on

S2 (so far meant topologically, rather than metrically), and write L = d/ds and Z = ∑
2
i=1 Zi∂i.

Using ǧis = ǧs j = 0 (expressing orthogonality of L to the null hypersurface H+
E , to which L is

simultaneously tangent!), the Killing equation LX ǧi j = 0, given by (2.94), comes down to

LZ ǧ+ ∂sǧi jdxidx j = 0; ∂sZi = 0. (10.141)

Now the conceptual key to Hawking’s argument is that, (possibly) apart from the isometries
generated by the “stationarity” Killing vector field X , at least the intrinsic geometry of the
horizon of a stationary black hole, as determined by ǧ, is also invariant under the flow of L, i.e.
along its null generators. This will follow from the arguments leading to (10.172) below, which
give kµν = 0 on the horizon. Eq. (8.23) then gives ∂sǧi j = 0, so that (10.141) becomes

LZ ǧ = 0; ∂sZi = 0. (10.142)

(2020). As noted at the end of §7.3, the null energy condition required in Proposition 10.28 is satisfied by electrovac
space-times, so we need not assume it separately in Theorem 10.26. Finally, Proposition 10.28 speaks of “the” DOC,
since by footnote 627 there can only be one asymptotically flat end in M. See also footnote 627.

636This is Lemma 4.9 in Hempel (1976). A simpler proof, kindly provided by my colleague Ioan Mărcut,, uses a
long exact sequence in de Rham cohomology, viz. 0→ H0(∂N)→ H2(N)→ H1(N)→ H1(∂N)→ H1(N)→ ·· · ,
valid in d = 3. By assumption, H1(N) = 0, which gives 0→R→H0(∂N)→H2(N)→ 0 as well as H1(∂N) = 0.
The former gives dim(H2(N))+ 1 components of ∂N and the latter makes each of these diffeomorphic to S2.
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Hence the vector field Z, so far defined only on H+
E , is independent of s and generates (the

same) isometries on each spacelike two-sphere within H+
E that is orthogonal to L, i.e. to the null

generators of the horizon. Now there are clearly two mutually exclusive possibilities:

• Either Z = 0, in which case X = L is tangent to the horizon, which thereby becomes a
Killing horizon with respect to X . By highly nontrivial further arguments going under the
name staticity theorem,637 the stationary case is eventually reduced to the static case.

• Or Z 6= 0, in which case X +Z = L is tangent to the horizon, making it a Killing horizon
for a new Killing vector field. By Lemma 10.30 below, Z has periodic orbits on the
horizon, and by (10.142) the vector fields Z and X commute. This eventually leads to
the factorization R×U(1) of (asymptotic) time-evolution and rotation. As Hawking
suggested, the extension of Z and hence of the U(1) symmetry it generates off the horizon
to all of M can be done via analyticity of the metric, which is why this was assumed.638

Lemma 10.30 If a (Riemannian) metric ǧ of a two-sphere S2 (seen as a manifold only) admits a
nonzero Killing vector field Z, then the orbits of the flow of Z are closed (i.e. periodic).639

Proof.640 First, like any vector field on a compact manifold, Z is complete and hence has a
globally defined flow ψ : R× S2→ S2; as usual we write ψt(x) = ψ(t,x), with ψt : S2→ S2.
By the “hairy ball” theorem,641 Z has a zero on S2, say at z (for Z = ∂ψ on S2 with the usual
metric, z would be the north pole or the south pole). The tangent map Tzψt (= (ψt)∗ at z) then
maps TzS2 to itself (for each t ∈ R), and since each ψt is an isometry, Tzψt is an isometry of
ǧz. Identifying TzS2 ∼= R2 through the choice of an orthonormal basis, we have Tzψt ∈ SO(2),
and more precisely, Tzψt = exp(tA) for some A in the Lie algebra of SO(2). Consequently,
TzψT = id for some (smallest) 0 < T < ∞; we may normalize Z such that T = 2π . Furthermore,

ψt(expz(V )) = expz(Tzψt(V )). (10.143)

By Hopf–Rinow, the map expz : TzS2→ S2 is surjective, and hence ψT (x) = x for any x ∈ S2. �

637 Such a theorem shows that under the assumptions of Theorem 10.26, where in addition (M,g) is not rotating,
X is hypersurface orthogonal (Sudarsky & Wald, 2002, 2003; Chruściel & Wald, 1994b; Heusler, 1996, §8.2).

638 See Hawking & Ellis (1973), Proposition 9.3.6, Chruściel (1996), Lemma 5.2 and Heusler (1996), §8.1.
Stationary vacuum solutions can only be proved to be analytic (i.e. gµν has a convergent power series expansion)
where X is timelike (Müller zum Hagen, 1970ab), i.e. in the DOC. Attempts to remove analyticity of the metric
from the assumptions of Theorems 10.26 and 10.27 have led to a program (still in progress) called Kerr rigidity.
This aims at a different version of the black hole uniqueness theorems, where in compensation for weakening the
assumptions along the above lines, one also has to strengthen them, in that (so far in the vacuum setting) one tries to
show that at least stationary solutions to Einstein’s equations that are close to Kerr, in the DOC actually coincide
with Kerr. See Alexakis, Ionescu, & Klainerman (2014) and Ionescu & Klainerman (2015). Kerr rigidity is to be
distinguished from Kerr stability, which is the conjecture that generic perturbations of the initial data for the Kerr
metric lead to an MGHD that is close to the original one (at least in the DOC). This would generalize the paradigmatic
theorem on the stability of Minkowski space-time (Christodoulou & Klainerman, 1993; Lindblad & Rodnianski,
2010) to black holes. There is numerical evidence for this (Zilhão et al., 2014), and recent mathematical results
prove it for a = 0, i.e. Schwarzschild (Dafermos, Holzegel, Rodnianski, & Taylor, 2021), and for small a, both for
cosmological constant λ = 0 (Klainerman & Szeftel, 2021) and λ > 0 (Hintz & Vasy, 2018).

639There is a smallest period T0 of which all other periods are integral multiples. First, by the period bounding
lemma (stating that the non-zero periods of a vector field on a compact manifold are bounded from below) there
are only finitely many periods. Second, by the proof of Lemma 10.29, each periods equals T /ni, for some ni ∈N.
Taking n0 = LCM(n1, . . . ,nk), where T /ni are the periods, it follows that each period is a multiple of T /n0.

640This proof was again kindly provided by my colleague Ioan Mărcut,. The lemma fails if S2 is replaced by for
example the 2-torus (Kronecker foliation) or the three-sphere (Reeb foliation), cf. Moerdijk & Mrcun (2003), §1.1.

641 This theorem is often attributed to Brouwer (who generalized it to S2n), but it goes back to Poincaré (1885).
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At this stage we know that a space-time satisfying the assumptions of Theorem 10.26 is both
stationary and axisymmetric, in that its isometry group contains R×U(1), where R at least in
the DOC gives timelike transformations, whereas U(1) gives spatial rotations around a symmetry
axis (which consists of all points where the Killing vector field Z generating these rotations
vanishes).642 The next step is the circularity theorem to the effect that the distribution orthogonal
to X and Z is integrable,643 so that, roughly speaking, in suitable coordinates the 2-surfaces
generated by the R×U(1) action (which in the DOC have constant r and θ ) are orthogonal to
2-surfaces having constant t and ϕ . The assumptions in this theorem are automatically satisfied
when the Ricci tensor vanishes, so for simplicity we restrict ourselves to the vacuum case.644

The circularity theorem brings the metric into the so-called Papapetrou form,

g = −ρ
2e2λ dt2 + e−2λ (dϕ +Adt)2 + e2λ e2h(dρ

2 + dz2), (10.144)

in coordinates (t,ρ ,z,ϕ) resembling the usual cylindrical coordinates (x= ρ cosϕ ,y= ρ sinϕ ,z),
where the functions λ , A, and h only depend on (ρ ,z). In terms of the 2d Riemannian manifold
(Σ,g) defined by Σ = R× (0,∞), coordinatized by ρ > 0 and z ∈R, and g = e2h(dρ2 + dz2),
solving the vacuum Einstein equations Rµν = 0 then comes down to solving the elliptic PDE

X∇i(ρ∇
i
E)+ρ∇iE∇

i
E = 0, (10.145)

called the (vacuum) Ernst equation, for the complex Ernst potential E =−X + iY , with X > 0.
Here i = 1,2, and ∇ is the covariant derivative defined by the 2d metric gi j. Namely, if we know
E we find λ from X = exp(−2λ ), whereas A and h come from solving the first-order PDEs

∂ρA =
ρ

X2 ∂zY ; ∂ρh =
ρ

X2 (∂ρE∂ρE−∂zE∂zE); (10.146)

∂zA = − ρ

X2 ∂ρY ; ∂zh = 1
4

ρ

X2 (∂ρE∂zE + ∂zE∂ρE). (10.147)

Eq. (10.145) is subject to boundary conditions dictated by the assumptions in Theorem 10.26,645

and the last difficult part of the proof of Theorem 10.26 is to show that these conditions precisely
allow the Kerr metric (or, in the electrovac case, where (10.145) has extra terms, the Kerr–
Newman metric) and no other solutions. This has been done in at least four different ways, none
of which is easily explained.646 The general point, though, is that through stationarity and its
consequence axisymmetry, the vacuum Einstein equations have been reduced to a 2d elliptic
boundary value problem, which can be completely controlled and gives the desired uniqueness.

These results are very impressive and should suffice for stationary (i.e. long-term) astrophysi-
cal situations. However, from a theoretical point of view it should be stressed that couplings to
other forms of matter than electromagentism typically do give “hair” to black holes.647

642This set is non-empty by Lemma 10.29 and Poincaré’s hairy ball theorem used in the proof of Lemma 10.30.
643Compare with Lemma 10.23.2, which in the spherically symmetric case gives 2-surfaces with constant r and t

that are orthogonal to 2-surfaces with constant θ and ϕ , viz. the leaves of the S2- foliation of Lemma 10.23.1.
644For all that follows, see Carter (1979, 1986), Heusler (1996), and Chruściel, Lopes Costa, & Heusler (2012).
645In order to resolve the ambiguity that ρ = 0 both at the horizon and at the zeros of the rotation generator Z,

these boundary conditions are usually stated in terms coordinates (x,y) instead of (ρ ,z), constrained by so as to lie
in the semi-strip x >C := m−2ΩJ and −1 < y < 1, and defined by ρ =

√
(x2−C2)(1− y2) and z = xy. In terms

of these, the 2d metric becomes dρ2 + dz2 = dx2 · (x2− y2)/(x2−C2)+ dy2/(1− y2)), and x→C is the horizon,
whereas y→±1 is the symmetry axis. See Carter (1986), p. 106, or Heusler (1996), p. 55. For example, asymptotic
flatness gives boundary conditions as x→∞, namely x−2X = (1−y2)(1+O(1/x)) and Y = 2Jx(3−y2)+O(1/x),
where J is a constant. As y→±1, we have X , ∂xY , and ∂yY all O(1−y2), and ∂yX = c+O(y2−1) for some c > 0.

646These are reviewed, with references to the original literature, in Chruściel, Lopes Costa, & Heusler (2012).
647See e.g. Volkov, 2018, and references therein, as well as, again, Chruściel, Lopes Costa, & Heusler (2012).
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10.11 The Penrose inequality
The final state conjecture mentioned in §10.9 has an interesting and testable consequence known
as the Penrose inequality.648 Because of its paramount role in the final state conjecture, the
Penrose inequality is often seen as a test of weak cosmic censorship. The logic seems to be:

final state conjecture ⇒ weak cosmic censorship ⇒ Penrose inequality,

where at least Penrose himself seemed clearly interested in the contrapositive implication

violation of Penrose inequality, ⇒ violation of weak cosmic censorship.

To motivate the inequality, let us first define the area AK of a Kerr black hole in the regime
0 < |a| ≤ m, where weak cosmic censorship holds (see Theorem 9.3 in §9.7 and §10.6), as the
area of its (future) event horizon H+

E at some fixed value v0 of the lightlike coordinate v≡ v+
defined above (9.140). Since r = r+ at this horizon, one may also say that t is fixed, and hence
that AK is the area of the intersection of H+

E with some spacelike “wannabe” (i.e. partial) Cauchy
surface Σ. Since the metric is stationary, this area is in fact independent of ν of t or Σ. We obtain

AK :=
∫

π

0
dθ

∫ 2π

0
dϕ

√
deth(v0,r+,θ ,ϕ) =

∫
π

0
dθ

∫ 2π

0
dϕ

√
Σ(r+) sinθ

=
∫

π

0
dθ

∫ 2π

0
dϕ (r2

++ a2) sinθ = 4π(r2
++ a2) = 8π(m2 +m

√
m2−a2), (10.148)

where h is the metric on the set H+
E ∩{v = v0} induced by the Kerr metric (9.141). Here we

used (9.117), of which only the first term remains, since ∆ = 0 at r = r+, cf. (9.121). For the
Schwarzschild black hole, in which a = 0, with rS = 2m this simply gives

AS = 4πr2
S = 16πm2. (10.149)

For the Kerr metric, still assuming 0 < |a| ≤ m and hence weak cosmic censorship, we have

AK ≤ 16πm2. (10.150)

This fact about Kerr space-time is the key to the Penrose inequality. It gives a positive lower
bound on the (asymptotic) mass of a black hole in terms of the area of some spatial cross-section
of its event horizon, and the inequality is saturated by the Schwarzschild metric.

Suppose the Kerr black hole is the final state of a gravitational collapse process. At some
earlier time t, captured by a spacelike hypersurface Σt ≡ Σ, assuming weak cosmic censorship,
an event horizon has formed with spatial or cross-sectional area At ≡ AΣ at time t, that is,

AΣ := Area(H+
E ∩Σ). (10.151)

Here H+
E is the event horizon of the space-time of the collapsing matter as defined in (10.79).

By Hawking’s area law (10.162), to be discussed in the next section, the area can only increase
during the collapse process, so that AΣ ≤ AK , since AK ≡ A∞ is now seen as the horizon area at
t = ∞, where the collapse has been completed and a stationary Kerr black hole has been formed.

648The original source is Penrose (1973), to be recommended also for its figures. Penrose describes weak cosmic
censorship and the final state conjecture, both of which rank among his most visionary contributions to GR, as ‘the
establishment viewpoint’, and sees his inequality as ‘an attempt to derive a contradiction with this viewpoint.’ The
subject can be traced through the reviews by Bray (2002), Bray & Chruściel (2004), Mars (2009), and Lee (2019).
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On the other hand, the mass mt ≡ mΣ of the black hole at time t (the “now” of Σ) can only
decrease through gravitational radiation, i.e. mt ≥m≡m∞. Thus (10.150) gives At ≤ 16πm2

t , or

AΣ ≤ 16πm2
Σ, (10.152)

where, in the presence of possible asymptotic momentum, the asymptotic mass is defined by

mΣ :=
√
(Π0)2−‖~Π‖2. (10.153)

Here Π0 and ~Π are defined by (8.103) and (8.109), respectively, and the spacelike hypersurface
Σ is supposed to carry initial data (g̃, k̃) satisfying the inequality (8.110). Since this implies

Π0 ≥ ‖~Π‖ (10.154)

by the (generalized) positive mass theorem, the mass mΣ in (10.153) is well defined, and
(10.153) simply reflects the basic formula p0 =

√
|~p|2 +m2 from relativistic mechanics. Thus

the assumption (8.110) on the initial data will be made throughout this section.649 This is not as
threatening as it sounds, since in the main case of interest, i.e. the static case, one has k̃ = 0 and
hence (8.110) just comes down to non-negative scalar curvature, i.e. R̃≥ 0. See below.

Eq. (10.152), then, is a first version of the Penrose inequality. However, since the event
horizon H+

E has the disadvantage explained at the end of §10.3, which makes AΣ effectively
uncomputable from the initial data on Σ, the meaning of the inequality must be modified. The
idea is to replace AΣ by some computable number ÃΣ resembling the area of a spatial cross-
section of the event horizon, in such a way that ÃΣ ≤ AΣ. The redefined Penrose inequality
would then become ÃΣ ≤ 16πm2

Σ, and although this is weaker than (10.152) and hence its proof
would give less information than a proof of (10.152), a violation of the weaker version, i.e.
ÃΣ > 16πm2, would still falsify cosmic censorship, as Penrose intended in Popperian spirit.

A natural candidate to replace the “absolute” event horizon (10.79) is the apparent horizon.
Its definition relies on the notion of an outer trapped surface, which is predicated on the possibility
of defining an outer direction among the pair of lightlike vectors (L,L) emanating from a closed
spacelike surface S, as defined in §6.4. This can be done, for example, if the given space-time
(M,g) has a non-compact spacelike (full or wannabe) Cauchy surface Σ and S is such that S⊂ Σ
and Σ\S =U tV with U compact and V non-compact, so that S separates Σ into an inside part
U and an outside part V . In that case, the outer lightlike vector field L is selected by g(L,n)> 0,
where n is the outward normal to S within Σ (i.e. n points towards V ). This applies if (M,g) is
asymptotically flat (cf. Definition 8.4) and S is the boundary of a region that does not extend to
the asymptotic end Σext of Σ (we assume there is only one such end). We only consider closed
spacelike surfaces S with this property, which are simply called surfaces in what follows.

In the presence of a preferred outer direction we write (L+,L−) for (L,L), normalized to
g(L+,L−) = −2 as in (6.58), and similarly write (θ+,θ−) for (θ ,θ ). If S ⊂ Σ ⊂M, with Σ
a spacelike hypersurface, as above, as usual we write N for the fd normal to the embedding
Σ ↪→M, normalized by g(N,N) = −1, and denote the corresponding extrinsic curvature by k̃.
Furthermore, let n be the outward directed normal to the purely Riemannian embedding S ↪→ Σ,
with extrinsic curvature ǩ. Generalizing (6.59) - (6.60), one has

L± = N±n; θ
± = Tr S(k̃)±Tr S(ǩ), (10.155)

649 Eq. (8.110) follows if the constraints (8.65) - (8.67) as well as the dominant energy condition E ≥ ‖~P‖ hold.
But since the matter content is not specified, the constraints are usually not imposed in the Penrose inequality.
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where = Tr S(k̃) is the trace of the pull-back of k̃ to S under the embedding S ↪→ Σ, and Tr S(ǩ)
might as well have been written Tr (ǩ) since ǩ was already defined on S in the first place.650

The following definition may look unnecessarily complicated, but that’s the way it is:651

Definition 10.31 In the above circumstances, a surface S⊂ Σ ⊂M is:

• future outer trapped if θ+ < 0, cf. (6.74) and (6.97);

• weakly outer trapped if θ+ ≤ 0,

• marginally outer trapped if θ+ = 0, in which case we call S an MOTS.

1. The outer trapped region outer trapped region T+
Σ ⊂ Σ is is the union of the interiors

of all weakly outer trapped surfaces in Σ.

2. The apparent horizon of M within Σ is A+
Σ := ∂T+

Σ .

In the asymptotically flat case, it can be shown that the apparent horizon is smooth and is an
MOTS,652 which by definition encloses all weakly outer trapped surfaces in Σ. For stationary
black holes the apparent horizon A+

Σ coincides with H+
E ∩Σ, which therefore is an MOTS.

For example, for the Schwarzschild metric the property θ+ = 0 easily follows from eqs.
(6.97), and (9.51), and (9.45). In fact, we also find θ− = 0, either by computation, or because

θ
− = −θ

+ (10.156)

in static space-times. This follows from (10.155), since now k̃ = 0 and hence θ± = ±Tr S(ǩ).

Proposition 10.32 An MOTS S⊂ Σ ⊂M in a static space-time (M,g) has lightlike expansions

θ
+ = θ

− = 0. (10.157)

In particular,653 S is a minimal surface in the 3d Riemannian manifold Σ.

Proof. This follows immediately from the definitions and from eqs. (10.156) and (6.86). �

This proposition suggests that in general space-times MOTSs are Lorentzian analogues of
minimal (hyper)surfaces in Riemannian geometry, which partly explains their enormous interest.
More importantly, Proposition 10.32 is the key to the Riemannian Penrose inequality below.

We return to the general (i.e. not necessarily static) case. A slight variation of Theorem 10.9
shows that the apparent horizon lies within the event horizon.654 But this does not mean that
Area(A+

Σ ) ≤ Area(H+
E ∩Σ), and hence, taking the left-hand side to be ÃΣ and the right-hand

side as AΣ, the desired inequality ÃΣ ≤ AΣ fails. This may be remedied as follows.655

650See e.g. Minguzzi (2019), §6.4, for a derivation of (10.155) and similar results.
651Hawking & Ellis (1973), §9.2, pp. 319–320, define the apparent horizon as the boundary of the outer trapped

region, which they define as the set of all points x ∈ Σ that lie on some outer trapped surface. However, this faces
problems with the smoothness of the boundaries involved. See Andersson & Metzger (2009) and Chruściel (2020),
§8.4. Andersson, Mars, & Simon (2008) and Galloway, Miao, & Schoen (2015) are references on MOTSs.

652See Andersson & Metzger (2009), Theorem 7.3.
653A minimal surface in a Riemannian manifold (locally) minimizes the volume functional, which is the case iff

its mean extrinsic curvature vanishes. See e.g. Jost (2002), §3.6. Euclidean space R3 only has non-compact minimal
surfaces; beside the (affine) planes, one has interesting examples like the catenoid and the helicoid (see Wiki).

654See Proposition 9.2.8 in Hawking & Ellis (1973) and Theorem 3.3.18 in Chruściel (2020).
655One could sharpen this definition to make mae(S) unique, but this is not necessary for S = A+

Σ : since any of
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Definition 10.33 For any surface S⊂ Σ (in the above sense), a minimal area enclosure mae(S)
is a surface such that mae(S) ⊃ S, and Area(mae(S))≤ Area(S′) for all surfaces S′ ⊃ S.

Thus we replace A+
Σ by mae(A+

Σ ), which exists and, being an extremizing surface, saturates the
inequality θ+ ≤ 0. Thus mae(A+

Σ ) is an MOTS. Taking S = A+
Σ and S′ = H+

E ∩Σ we see that

Area(mae(A+
Σ ))≤ Area(H+

E ∩Σ), (10.158)

as desired. Hence we may take ÃΣ = Area(mae(A+
Σ )) in our earlier discussion. Thus we put:

Definition 10.34 For any asymptotically flat initial data set (Σ, g̃, k̃) satisfying (8.110), with
associated asymptotic mass (10.153) and apparent horizon A+

Σ , the Penrose inequality is

Area(mae(A+
Σ ))≤ 16πm2

Σ. (10.159)

In the static case, i.e. k̃ = 0, the following simplifications take place (cf. Definition 8.4);

1. The initial data set (Σ, g̃, k̃) becomes an asymptotically flat Riemannian manifold (Σ, g̃);

2. The assumption (8.110) on the initial data becomes R̃≥ 0, where R̃ is the Ricci scalar;

3. The apparent horizon A+
Σ becomes the outermost minimal surface AΣ in Σ, i.e., the

(unique) minimal surface such that no other minimal surface in Σ properly encloses AΣ.656

4. In computing the area there is no need for the minimal area enclosure.

One can see this for the spatial Schwarzschild metric, provided one uses the radial coordinate ρ

instead of r, since the metric (10.119) is singular at the place of interest r = 2m, see (10.124). By
spherical symmetry it is enough to consider radial perturbations: the area 4πr(ρ)2 is minimized
iff ρ = m/2, which corresponds to r = 2m and hence recovers the apparent = event horizon.657

Theorem 10.35 Any complete asymptotically flat 3d Riemann manifold (Σ, g̃) with R̃≥ 0, with
asymptotic mass mΣ = Π0 defined by (8.103), satisfies the Riemannian Penrose inequality

Area(AΣ) ≤ 16πm2
Σ, (10.160)

where AΣ is the unique outermost minimal surface in Σ (assumed to have one end only).658

Furthermore (“rigidity”), equality in (10.160) holds iff the region outside AΣ is isometric to the
part r > 2m of the Schwarzschild space (Σ′S, g̃S) defined in and above (10.119).

We have to refer to the literature for a proof of this.659 Meanwhile, the general case in Definition
10.34 seems out of reach (it has been proved only for spherically symmetric space-times).

its minimal area enclosures is an MOTS, by definition mae(A+
Σ ) encloses, and hence must coincide with, any rival.

Technically, mae(A+
Σ ) is not just an MOTS but an outermost MOTS, which is unique if it exists. Even its possible

non-uniqueness would not affect the Penrose inequality (10.159), since any two candidates have the same area.
656Equivalently, AΣ = ∂ (∪{U ∈ O(Σ) | ∂U is a minimal surface}), where “surface” is meant as explained above

(10.155). See Theorem 4.7 in Lee (2019) for existence and uniqueness of AΣ. It can be shown that provided R̃≥ 0,
outermost minimal surfaces are two-spheres (Meeks & Yau, 1980). Note that dim(Σ) = 3 throughout this section,
but mutatis mutandis result like this are valid up to dim(Σ) < 8 (at n≥ 8 smoothness of AΣ turns out to be lost).

657Note that the spatial Schwarzschild metric g̃S is complete on the full space ΣS = R3\{0} on which it is defined.
658This assumption can be dropped by taking the outermost minimal surface with respect to some given end. See

Lee (2019), Conjecture 4.12, which also generalizes the inequality to arbitrary dimension.
659See Huisken & Ilmanen (1997, 2001) and Bray (2001), as well as the reviews cited in footnote 648.
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10.12 Epilogue: The laws of black hole thermodynamics

Around 1970, it was noted by various people that the following dictionary made some sense:660

Thermodynamics Black Holes
equilibrium state σ stationary metric g

temperature T surface gravity κ

entropy S horizon surface area A
energy E asymptotic mass m

other conserved quantities (Komar) asymptotic quantities

The basis for this analogy lies in the following three laws of black hole thermodynamics:661

Zeroth law: The surface gravity is constant on each connected component of the event horizon.

First law: For simplicity taking just one conserved quantity into account, viz. angular momentum J,

κ

8π
δA = δm−ΩHδJ, (10.161)

where ΩH is a constant at the event horizon (playing the role of a chemical potential).

Second law: Hawking’s area law,662 i.e.
δA≥ 0. (10.162)

These were initially seen as laws of black hole mechanics. Despite powerful arguments by
Bekenstein, the possibility of a true thermodynamic underpinning was even explicitly denied:663

660 See Thorne (1994) and Weinstein (2021) for some of the history of black hole thermodynamics; pioneering
papers include Christodoulou (1970), Christodoulou & Ruffini (1971), Penrose & Floyd (1971), Hawking (1972),
Bekenstein (1972, 1973, 1974), and Bardeen, Carter & Hawking (1973), which stated all four laws.

661 The zeroth law of classical thermodynamics states that (thermal) equilibrium is an equivalence relation, which
is what allows the introduction of temperature T in the first place, and then implies that T is constant in thermal
equilibirium. The first law (or, if seen as “conservation of energy”, a consequence thereof) is T δS = δE +∑i µiδQi,
where the Qi are the relevant conserved quantities and the µi their (generalized) chemical potentials (for example,
we count volume V as one such Qi, with µi = p). The second law is δS≥ 0, one of the great mysteries of physics.
We omit the third law, which states that κ cannot be brought to zero by a ‘finite sequence of operations’ (Bardeen,
Carter & Hawking, 1973) or ‘within a finite advanced time’ (Israel, 1986). This idea is physically ambiguous if not
disputable and also lacks a clear connection with the usual version of the third law of thermodynamics, to the effect
that the entropy is zero at zero temperature (which would even be violated by extremal black holes).

662Continuing footnote ?? on the history of the definition (10.79) of the “absolute” event horizon, i.e. H+
E :=

∂ I−(I +), left as something between Hawking and Penrose: in Seife (2021, p. 478 of e-book) Penrose recalls a
telephone conversation he had with Hawking in 1970 in which they discussed the area law including the crucial
role of the definition of the horizon, which Hawking proposed to Penrose but followed this with: ‘it was your idea’
Penrose adds: ‘I don’t know what he thought. Maybe he thought I had the idea but didn’t quite have it. It’s not clear.
I don’t know what the story was, really. I never wanted to bring it up. Because it was a big thing for him.’

663We read in Seife (2021), chapter 13, that the word “mechanics” in the title ‘The four laws of black hole
mechanics’ of Bardeen, Carter, & Hawking (1973) was a deliberate provocation against Bekenstein (whose name
they even misspelled as Beckenstein), who first proposed that the analogy between the pertinent laws for black holes
and the laws of (ordinary) thermodynamics was more than a purely formal one, and hence has physical content.
Especially Hawking, who had discovered his singularity theorem and the second law, among other things, and
(perhaps with hindsight) was well on his way to fame and fortune, initially responded quite harshly to Bekenstein,
who at the time was just a PhD student (though not an entirely powerless one, as his supervisor, Wheeler, who at the
time had a significant if not controlling influence on the Western GR community, took his side).
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It should however be emphasized that κ/8π and A are distinct from the temperature and
entropy of the black hole. In fact the effective temperature of a black hole is absolute zero.
(Bardeen, Carter, & Hawking, 1973, p. 168)

However, within a year Hawking made a remarkable U-turn, which changed physics. On the
basis of a calculation in quantum field theory in curved space-time involving pair creation near
the horizon, he predicted the radiation now named after him, which turns a black hole into a
black body and (allegedly) shows that the laws of black holes mechanics are genuinely laws of
black hole thermodynamics. Hawking’s calculation also allowed the explicit identifications

S =
kBc3

4Gh̄
A≡ A/4; (10.163)

kBT =
h̄

2πc
κ ≡ κ/2π , (10.164)

called the Bekenstein–Hawking entropy and the Hawking temperature, respectively.664 For
example, for a Schwarzschild black hole, where κ = c4/4mG≡ 1/4m, for the latter we obtain

T =
h̄c3

8πGmkB
(≈ 6 ·10−8 ◦K). (10.165)

Tombstone of Stephen Hawking’s grave in Westminster’s Abbey, containing his ashes. At his 60th birthday
in 2002, Hawking requested equation (10.165) to be engraved on his tombstone.

Note the spectacular combination of fundamental constants,665 hidden by the use of “natural”
units G = h̄ = c = kB = 1 on the right in (10.163) - (10.164). For a Schwarzschild black hole
one has A = 4πr2

S with rS = 2Gm/c2 ≡ 2m, and hence its dimensionless entropy equals

S/kB = 4πGm2/h̄c (≈ 1077). (10.166)
664Bekenstein (1973) gave a similar formula for the temperature of a Kerr black hole, whose Schwarzschild limit

differs from Hawking’s by a multiplicative constant. Hawking’s formula first appeared, in the form (10.164), in
Hawking (1974). Thus also the temperature T is sometimes named after both Bekenstein and Hawking.

665See e.g. https://www.vttoth.com/CMS/physics-notes/311-hawking-radiation-calculator.
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We will not discuss the microscopic justification of black hole thermodynamics, since unlike
black hole thermodynamics itself, all attempts to underpin it use quantum (field) theory or string
theory etc. and hence blast the framework of classical GR.666 Within the classical setting, it
cannot be overemphasized how closely this topic is related to black hole uniqueness theorems
(cf. the previous two sections), since the key to both classical thermodynamics and black hole
thermodynamics lies in the fact that just a few “emergent” parameters control the situation.

Black hole thermodynamics comes with all the problems of classical thermodynamics,
starting with the question what the symbol “δ” in the first and second laws is supposed to mean.
Amidst the huge literature on thermodynamics and its foundations, mathematical physicists
typically prefer the axiomatization of Lieb and Yngvason.667 This is restricted to equilibrium
states and transitions between these through processes that fall under the following heading:

Adiabatic accessibility: A state Y is adiabatically accessible from a state X (. . . ) if it is
possible to change the state from X to Y by means of an interaction with some device (which
may consist of mechanical and electrical parts as well as auxiliary thermodynamic systems)
and a weight, in such a way that the device returns to its initial state at the end of the process.
(Lieb & Yngvason, 1999, p. 17)

In contrast, the weight may have risen or fallen (in a gravitational field). This incorporates
the original thermodynamic idea of a cycle, but avoids the equally traditional but mysterious
concept of “heat”, which in any case is problematic for black holes. The definition of adiabatic
accessibility also includes what in black holes thermodynamics is called the “physical process”
interpretation, in which one studies what happens if things are thrown into a black hole.668

Thus the “δ” in the laws of black hole thermodynamics should, in principle, refer to changes
in selected properties of a black hole metric (viz. its asymptotic mass, angular momentum,
possibly charge, and spatial horizon area) if, due to some intervention, the metric evolves from
one stationary value to another. Unfortunately, this only seems to apply to the first law (which is
predicated on the zeroth). A typical application of the second law, mentioned from the beginning
by Hawking and others, is the merger of two black holes into one, whose area, then, is greater
than or equal to the sum of the areas of the original constituents.669 Since multi-black hole
metrics are typically unstable (except for the charged Majumdar–Papapetrou metric studied in
§10.9) it seems impossible to see this merger as an adiabatic evolution of the said type.670

This, and in fact the whole theory, suggests that each of the laws of black hole thermo-
dynamics is valid in its own unique setting, and that there is not, as far as we know, a single
setting–formalized as a set of mathematical assumptions–in which all laws are valid. This nature
of black hole thermodynamics as patchwork will be reflected by the following discussion, which
starts out historically and then, in vain, tries to converge to a more systematic presentation.

666Surveys of black hole thermodynamics include Wald (1994, 2001), Jacobson (1996), Compère (2006), Bravetti
(2014), Carlip (2014), Curiel (2014b), Dougherty & Callender (2016), Wall (2018), and Wallace (2018, 2019).

667See Lieb & Yngvason (1999), which (as they note) was partly inspired by Planck (1926) and Giles (1964). For
the connection with (classical) statistical mechanics see also Martin-Löf (1979) and Uffink (2007).

668See Wald (1994) and Gao & Wald (2001). This interpretation complements Bardeen, Carter & Hawking (1973),
who study (asymptotic) parameter changes of unidentified origin for ‘two slightly different stationary axisymmetric
black hole solutions’, clearly inspired (via the uniqueness theorems) by the Kerr–Newman metric. Their proofs
suggest that these changes always pass through other such solutions, whereas the “physical process” interpretation
makes no such assumption, as long as eventually a new equilibrium state = stationary metric is reached.

669Hawking (1972) shows that the opposite process, i.e. a bifurcation of one black hole into various black holes,
cannot happen (even if it were compatible with the area law). See also Hawking & Ellis (1973), Proposition 9.2.5.

670Black hole mergers are the source of the gravitational waves detected on earth (Castelvecchi, 2020).
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With hindsight, black hole thermodynamics started with the Penrose process discussed in
§9.6. In the spirit of “E = mc2” we may opportunistically rewrite the inequality (9.157) as

δm−Ω+δJ > 0, (10.167)

where m is the mass and J = am is the angular momentum of the (Kerr) black hole, cf. (9.124).
Eq. (10.148) now gives Smarr’s formula as well as, with more work, its variational form

κ+

4π
AK = m−2Ω+J;

κ+

4π
δAK = 2(δm−Ω+δJ), (10.168)

where the surface gravity κ+ at the outer (event) horizon is given by (10.112). To derive the
second part, one should first express κ+ and Ω+ in the independent variables m and J via (9.124),
(9.147), (9.121), and (10.112), and then put them back at the end of the calculation.

Clearly, eq. (10.168) is a special case of the first law of black hole thermodynamics, and if we
combine it with (10.167) we also obtain an example of the second law (10.162), i.e. the Hawking
area theorem, at least in the special case that the change of area is caused by the Penrose process.

A more general argument for (10.162) is obtained by turning Proposition 6.14 on its head.671

Originally intended to prove that the assumption θ (x) < 0 leads to cusps or focal points in the
null hypersurface C defined by (6.61), if we instead assume that C is smooth and that its null
generators are future complete, then θ (x) < 0 leads to a contradiction, so that under the stated
assumptions we must have θ (x) ≥ 0. We apply this to the case where C is some component
of the event horizon H+

E of a black hole region as defined in (10.79), which is not necessarily
stationary and may even consist of various components, that is, of various black holes (which
may merge). The structure of these components is described by Proposition 10.16.1, which
shows that C is ruled by future inextendible lightlike geodesics γ . In order to apply Proposition
6.14 (contrapositively) we now need to argue that each component C is smooth (which is not
automatic, since from Proposition 6.18 we merely know it is locally Lipschitz). This should
follow from additional assumptions, such as some form of weak cosmic censorship that prevents
the inextendibility of the lightlike geodesics that rule C to be caused by incompleteness.672

It is also assumed that one can foliate at least the relevant part of space-time by partial (i.e.
“wannabe”) Cauchy surfaces Σt , which intersect each component C of H+

E in a two-sphere St (cf.
Proposition 10.28). In other words, each St is a spatial cross-section of some component of the
event horizon, whose area Area(St) is defined by (6.75). As already remarked, smoothness of
C then enforces θ ≥ 0. Under the assumptions of Proposition 6.14, notably the null curvature
condition, eq. (6.77) then implies that each area Area(St) and hence also their sum At , i.e. the
total area of H+

E ∩Σt , can only increase with time (or stay the same). We may write this as

Σt1 ⊂ J−(Σt2) ⇒ Area(H+
E ∩Σt1) ≤ Area(H+

E ∩Σt2). (10.169)

This is a precise version of the second law, from which the problematic “δA” has been removed.

671See Hawking (1972) and Hawking & Ellis (1973), §9.2. Various sets of assumptions are known not merely for a
rigorous proof of the area theorem, but even for its formulation, since the lack of smoothness of the horizon (which
a priori is only locally Lipschitz, cf. Proposition 6.18) requires conditions making the area (6.75) well defined. See
Chruściel et al. (2001) for a detailed analysis of various assumptions, including the corresponding proofs. The
simplest–though by no means the weakest–assumption is global hyperbolicity of the conformal completion (M̂, ĝ)
of the given asymptotically flat space-time (M,g), see Definition 10.1, along with future completeness of the null
generators of the horizon H+

E and validity of the null curvature condition (as in Theorem 6.15) on I−(J +).
672 In Hawking’s proof this form was strong asymptotic predictability, which roughly speaking means that

I−(J +) is contained in a globally hyperbolic region (Hawking & Ellis, 1973, p. 313). See also Wall (2009), §1.2.3.
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Turning to the (later) zeroth law, the key observation was that under various assumptions one
can sharpen Proposition 10.20 to constancy of the surface gravity κ on the entire Killing horizon.
The relevance of this result follows from Hawking’s rigidity theorem in §10.10, which makes the
event horizon a Killing horizon. The simplest such result is as follows.673

Proposition 10.36 The surface gravity κ is constant and nonzero on each component of a
bifurcate Killing horizon HK , and differs at most by a sign on different components thereof.

Proof. As in the proof of Proposition 10.20, from (10.108) and (10.106) we obtain

LeI κ
2 = eµ

I ∂µκ
2 = −Rα

νµβ
eµ

I Xβ ·∇νXα , (10.170)

where I = 1,2 and the spacelike unit vectors eI form an orthogonal basis of the orthogonal
complement of X at each TxHK , x ∈HK (cf. Lemma 4.16). Since X = 0 at the bifurcation surface
S, it follows from (10.170) that κ2 is constant on S. Since different lightlike geodesics ruling HK
emanate from different points of S, eq. (10.102) implies that κ2 is constant on HK altogether.

To show that κ 6= 0, we note, proving by contradiction, that κ = 0 and (10.108) imply
∇µXν = 0 on S, because the spacelike contractions in (10.108) vanish by themselves and hence
the total expression is negative semidefinite.674 Hence ∇µXν and Xν both vanish on S, but this
implies that X is identically zero (so that it could not be lightlike, see §5.3).675 �

The zeroth law exemplifies the fact that the laws of black hole thermodynamics may be
derived under various inequivalent assumptions, since the original version was as follows:676

Proposition 10.37 If the Einstein equations (7.1) and the dominant energy condition (7.65) hold,
then the surface gravity κ is constant on any (necessarily connected) Killing horizon HK .

Proof. If the null generators of HK have tangent vectors L, then by Lemma 4.16 we have on HK :

X = f ·L, (10.171)

where f is some function defined on HK . From (10.101) and ∇LL = 0, we find κ = L f . As-
suming that HK is sufficiently smooth, the Frobenius condition (8.94) for (null) hypersurface
orthogonality of the Killing vector field X and (6.89) then give kµν = 0 on HK , so that also θ = 0
and σµν = 0 on HK . The null Raychaudhuri equation (6.99) then gives

RµνX µXν = 0. (10.172)

This also follows by noting that the area Area(St) of a stationary black hole must be independent
of t, so that (6.77) gives θ = 0 and hence θ̇ = 0, after which (6.99) again yields (10.172).

673The assumption of a bifurcate Killing horizon is not very heavy; Rácz & Wald (1996) give arguments ‘supporting
the view that any space-time representing the asymptotic final state of a black hole formed by gravitational collapse
may be assumed to posses a bifurcate Killing horizon or Killing horizon with vanishing surface gravity’ (the latter
occurs in extremal Kerr and Reissner–Nordström black holes, whose existence astrophysicists deny).

674On S we have ∇eI X
µ = eα

I (∂α X µ +Γµ

Iβ
Xβ ) = 0+ 0 = 0, as X vanishes on S and eα

I ∂α = eI is tangent to S.
675Any isometry ψ of M is determined at least locally (i.e. in a convex nbhd of x) by its tangent map ψ ′x at some

fixed x ∈M: to find ψ(y), take the unique geodesic γ from x to y, so that y = expx(Y ) for some Y ∈ TxM, and if
ψ is an isometry, then ψ(expx(Y )) = expx(ψ

′
x(Y )). Infinitesimally, this implies that any Killing vector field X is

determined by X(x) and ∇µ Xν (x). See also Chruściel (2020), Proposition 4.3.10, for a direct proof of this.
676See Bardeen, Carter & Hawking (1973), §2, as well as Wald (1984), §12.5, and Chruściel (2020), §4.3.4.
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Eq. (10.172) holds on HK , where, using the Einstein equations (7.1), it implies that TµνX µXν = 0.
Hence the vector T (X), with components T (X)µ := T µ

ν Xν , is orthogonal to X , since

g(T (X),X) = TµνX µXν = 0. (10.173)

Therefore, by Lemma 4.16 this vector is either spacelike, or lightlike and hence proportional
to X , or zero. On the other hand, since X is lightlike and hence causal, the dominant energy
condition (7.65) forces T (X) to be causal or zero. This excludes the possibility that T (X) is
spacelike and hence it must be null, all of this on HK only. Again invoking Lemma 4.16, we
conclude that T (X) must be proportional to X . Using (7.1) in the opposite direction gives

X [∧R(X)[ = X [∧ (T (X)− 1
2T ·X)[ = 0. (10.174)

The final step in the proof is the following equality, which as usual in this proof is valid on HK :

X [∧R(X)[ = dκ ∧X . (10.175)

To prove this, we note that since X is a Killing vector field, eq. (10.101) is equivalent to

X µ
∇νXµ = −κXν , (10.176)

cf. (3.87). Eq. (10.175) follows by applying the antisymmetrized expression X[ρ∇σ ] to both
(10.176) and (8.94) and carrying out some lengthy but straightforward rearrangements. Eqs.
(10.174) and (10.175) yield dκ ∧X = 0 on HK , which forces dκ = 0 on HK . �

We now return to the first law of black hole thermodynamics (10.161), which “morally” reads

T δS = δE−ΩHδJ. (10.177)

where we identify m = E and regard the constant ΩH as a generalized chemical potential. The
mass/energy m/E and the angular momentum J of a black hole are defined by the Komar
formulae (9.122), see below. Referring to the Penrose process discussed above for at least an
example of the “physical process” interpretation of (10.177), we now give a derivation based
on the idea that the δ ’s indicate that one gently moves the metric from one stationary value to
another through intermediate stationary metrics. This derivation is based on the Hamiltonian
formalism of GR.677 Like Proposition 10.36, the argument requires a bifurcate Killing horizon,
but as argued after (10.110) and in footnote 673 this is not really a very strong assumption.

More seriously, the proof relies on Hawking’s rigidity theorem (i.e. Theorem 10.27 in §10.10),
to the effect that the event horizon is a Killing horizon for a Killing vector field

X = ∂t +ΩH∂ϕ , (10.178)

which generalizes the one for the Kerr metric, cf. (9.153). This means that this particular
derivation of the first law also requires the assumptions of the rigidity theorem, which include,

677We follow Sudarsky & Wald (1992). The existence of the spacelike surface Σ used in the proof was proved by
Chruściel & Wald (1994b). The equivalence between the Hamiltonian (ADM) versions of the asymptotic mass and
angular momentum (which only holds in stationary asymptotically flat space-times) is discussed in Jaramillo &
Gourgoulhon (2009); see also Poisson (2004), §4.3 and Gourgoulhon (2012), chapter 8. A more elegant derivation
can be given from the Lagrangian formalism and its associated covariant Noether charges, originally developed by
Kijowski & Tulczyjew (1979). See Wald (1993), Iyer & Wald (1994), and Jacobson, Kang, & Myers (1994). See
Gao & Wald (2001) and Poisson (2004), §5.5.3 and §5.5.4 for “physical process” derivations of the first law.
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for example, a version of weak cosmic censorship and imply, among other things, that (M,g) is
axisymmetric, with Killing vector field ∂ϕ (the special case X = ∂t , i.e. the Killing vector field
defining stationarity, is just ΩH = 0). In general, ΩH is some constant (interpreted as the angular
velocity of the black hole) chosen so that indeed g(X ,X) = 0 at the event horizon, see §10.10.

Recall eqs. (8.214) - (8.222) from the Hamiltonian approach to GR, in which we take Σ to be
a spacelike surface whose boundary at one end is the given bifurcation surface S , and at the
other end is a two-sphere S2

r as in (8.126), where we eventually let r→ ∞; for simplicity we just
write this boundary component as S2

∞. Using manipulations similar to those in the derivation of
(7.44) but now in one dimension lower, we may rewrite the boundary Hamiltonian (8.220) as

HB(Σ) =
∫

S2
∞∪S

d2
σ

i (L(∇̃ jg̃i j− ∇̃ig̃
j
j)+ 2S j

π̌i j) =: HB(S2
∞)+HB(S ), (10.179)

where L is the lapse and S = Si∂i is the shift, so far arbitrary. The trick is to choose these as

LN + S = X , (10.180)

cf. (8.5), where N is the future-pointing normal to Σ as usual. This has the effect that

∂ g̃i j

∂ t
= 0;

∂ π̃ i j

∂t
= 0, (10.181)

since the time evolution generated by (10.180), i.e. the flow of X , consists of isometries.
Now consider variations of HG(Σ), see (8.218) and (8.221), induced by one-parameter

families (homotopies) g̃s
i j and π̃

i j
s that satisfy the constraints (8.225). Then the variations

δ g̃i j :=
dg̃s

i j

ds
(s = 0); δ π̃

i j :=
dπ̃

i j
s

ds
(s = 0) (10.182)

satisfy the linearized constraint equations, i.e. C′0(δ g̃,δ π̃) := dC0(g̃s, π̃s)|s=0 = 0, etc. Then

δHG(Σ) = 0 (10.183)

by (8.221). On the other hand, δHG(Σ) consists of a bulk term giving the equations of motion
(8.227) and (8.228) and a boundary term. By (10.181) the former vanishes, and so we must have

δHB(Σ) = 0. (10.184)

The Killing vector field X in Theorem 10.27 is such that at (spatial) infinity we have N→ 1 and
S→ ∂ /∂ϕ , and hence by definition of these quantities the integral over S2

∞ in (10.179) gives

δHB(S2
∞) = 16π(δE−ΩHδJ), (10.185)

cf. (8.126).678 To compute the integral over the bifurcation surface S , we perform a partial
integration and realize that by definition X = 0 and hence L = Si = 0 on S . This simply gives

δHB(S ) = −
∫
S

d2
σi (∂ jL) · (g̃i jg̃kl− g̃ikg jl)δ g̃kl , (10.186)

678The factor 16π comes from the fact that the Einstein–Hilbert action (7.2) should really be (c4/16πG)
∫

R.
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where d2σi = d2σ ·ni, with n the inward normal to S within Σ (see footnote 680), and

d2
σ = d2z

√
det(ǧ(z)), (10.187)

as in (8.220). Since X = 0 and hence L = 0 on S , cf. (10.180), we have ∂ jL = n j∇nL, so that

δHB(S ) = −
∫
S

d2
σ (∇nL) · (g̃kl−nknl)δ g̃kl = −2δ

∫
S

d2
σ ∇nL, (10.188)

where the second equality follows as in (7.34), with the additional remark that (g̃kl−nknl)g̃kl
is the “covariant” expression for the metric ǧ on S , as in (7.38) but in one dimension higher
(throughout this derivation, δ acts only on g̃ and π̃ , not on L and S). We now use the identity

2
∫

S
d2

σ (∇nL− k̃i j niS j) = −
∫

S
dσµν ∇

µXν , (10.189)

which is valid on any 2-surface S, and relates HB to the Komar definition of a conserved quantity
defined through any Killing vector field X , cf. (9.122).679 This time the surface element is

dσµν = (XµXν −XνX µ)d2
σ , (10.190)

where X is seen as a lightlike vector on the Killing horizon and hence is complemented by
another lightlike vector X orthogonal to S , cf. §6.4, which unlike (6.58) is normalized such that

g(X ,X) = X µX µ = −1. (10.191)

Furthermore, k̃i j is given by (8.24), but in view of (8.210) we can ignore the term k̃i j niS j since
S j = 0 on the bifurcation surface S = S . Using (10.190), (10.101), and (10.191) we obtain∫

S
dσµν ∇

µXν = −κA, (10.192)

as the second term in (10.190) gives zero because X µXµ = 0 implies Xν∇µXν = 0, and we have
taken κ out of the integral since it is constant by the zeroth law of black hole thermodynamics,
i.e. Proposition 10.36.680 Since δ in (10.188) only acted on the surface element, we find

δHB(S ) = −2κδA. (10.193)

Eqs. (10.184), (10.185), (10.188), and (10.193) then recover (10.161), which using the identifi-
cations (10.163) and (10.164) is the first law of black hole thermodynamics (10.177).

The situation covered by this proof of the first law is quite different from its original Penrose
process context, in which particles were thrown into a Kerr black hole. Perhaps because it is the
frontier of fundamental physics, black hole thermodynamics is also a gallimaufry of ideas.681

679 See e.g. Jaramillo & Gourgoulhon (2009), eq. (16). This is a fairly easy exercise. See also footnote 680.
680 See Poisson (2004), §5.5.3. This shows that ∇nL = κ , as stated without proof in Sudarsky & Wald (1992). The

sign of κ depends on the branch of the bifurcate Killing horizon, and hence on the sign of the normal n to S within
Σ. It can be checked on the example (10.95) in 4d that one needs the inward normal, which gives the minus sign in
(10.186), since Stokes’s theorem (i.e. partial integration) uses the outward normal. In this example, the bifurcation
surface is x = t = 0, i.e. the y-z plane, and L = x. The correct normal for the future horizon x = t, where κ = 1, is
n = ∂ /∂x, which is directed inward, and indeed we duly obtain ∇nL = ∂x/∂x = 1 = κ .

681One good idea is that black hole thermodynamics is not about black holes but about causal horizons (Jacobson
& Parentani, 2003). These are horizons of the kind H = ∂J−(c), where c is any timelike curve having infinite
proper length in the future direction. See also footnote 541, showing that event horizons are a special case.
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A Lie groups, Lie algebras, and constant curvature
This appendix contains material supporting §4.4 on spaces of constant curvature, but is also
interesting elsewhere. Its content underpins much of mathematics and mathematical physics.682

A.1 Lie groups

We only need real linear Lie groups, which are closed subgroups of GLn(R), i.e. the group of
real invertible n×n matrices, with group multiplication simply given by matrix multiplication.683

For example, SO(3) is the subgroup of GL3(R) consisting of matrices R that satisfy

RT R = 13; (A.1)
det(R) = 1. (A.2)

More generally, for some given Γ ∈ GLn(R), the matrices γ ∈ GLn(R) that for all x,y satisfy

〈γx,Γγy〉= 〈x,Γy〉, (A.3)

or, in other words, leave the bilinear form 〈x,y〉Γ = 〈x,Γy〉 invariant (where 〈·, ·〉) is the usual
inner product on Rn), form a linear Lie group GΓ. In other words,

GΓ = {γ ∈ GLn(R) | γT Γγ = Γ}. (A.4)

For n = 3 and Γ = 13 we obtain GΓ = O(3), which has has two components: the one containing
the identity is SO(3) ≡ O(3)+, singled out by det(R) = 1, whereas the other component O(3)−
consists of those elements R ∈ O(3) with det(R) = −1. Note that SO(3) is connected but not
simply connected. Furthermore, O(3) and SO(3) are compact in the topology inherited from
M3(R) ∼= R9: this follows from the following parametrization of SO(3), with α ,β ,γ ∈ [0,2π ]:

Rz
γ =

 cosγ −sinγ 0
sinγ cosγ 0

0 0 1

 ,Ry
β
=

 cosβ 0 −sinβ

0 1 0
sinβ 0 cosβ

 ,Rx
α =

 1 0
0 cosα −sinα

0 sinα cosα

 .

Staying in n = 3 for the moment, instead of Γ = 13 we may take Γ = diag(−1,1,1). Then
GΓ ≡ O(1,2) is called the Lorentz group (in space-time dimension 3). It has four components,
singled out by the four combinations of the two independent conditions

det(λ ) = ±1; ±λ00 > 0; (A.5)

for an indefinite matrix Γ like this it is customary to label the entries λi j by i, j = 0,1,2 instead
of 1,2,3. In particular, the identity component O(1,2)0 satisfies det(λ ) = 1 and λ00 > 0.684

Consequently, even the subgroup SO(1,2) = {λ ∈ O(1,2) | det(λ ) = 1} has two components.

682References for this appendix are Helgason (1978), O’Neill (1983), Vinberg (1993), and Wolf (2011).
683Such Lie groups are not necessarily closed in Mn(R), since invertibility of matrices is an open condition (we

call a condition open if its solution set is open, and closed if its solution set is closed). For example, the sequence
gn = 1n/n in GLn(R) converges to zero, so the limit is not in GLn(R). The topology used may either be the usual
one on Rn2

or the matrix norm topology; these are equivalent.
684This follows from the fact that any matrix λ ∈O(1,2) satisfies λ 2

00−λ 2
10−λ 2

20 = 1, so that |λ00| ≥ 1, and from
the fact that sgn(λ00) and det(λ ) are continuous functions on O(1,2).
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Another important difference with SO(3) is that SO(1,2) is non-compact. This follows, for
example, from the following parametrization of O(1,2)0, where α ∈ [0,2π ] and β ,γ ∈R:

Bx
γ =

 coshγ sinhγ 0
sinhγ coshγ 0

0 0 1

 ,By
β
=

 coshβ 0 sinhβ

0 1 0
sinhβ 0 coshβ

 ,Rα =

 1 0
0 cosα −sinα

0 sinα cosα

 .

From these, one obtains the matrices λ with det(λ ) = 1 and λ00 < 0 by multiplication with
diag(−1,−1,1), those with det(λ ) =−1 and λ00 > 0 by multiplication with diag(1,−1,1), and
finally, those with det(λ ) = −1 and λ00 < 0 by multiplication with diag(−1,1,1).

More generally O(k, l) ⊂ GL(k+ l,R) is the linear Lie group defined by n = k+ l and

Γ = diag(−1,
k· · ·,−1,+1,

l· · ·,+1); (A.6)

hence elements of O(k, l) are matrices γ ∈ GL(k+ l,R) that satisfy γT gγ = g. Of course, the
Lorentz group O(1,3) is crucial for special and general relativity, but apart from k = 1 we will
also be interested in k = 0 and k = 2. We write O(l) for O(0, l), which is compact, but none
of the groups O(k, l) with k > 0 is compact, except when l = 0, in which case O(k,0) = O(k).
Each group O(l) has two components (distinguished as for l = 3 by the sign of their determinant,
or, equivalently, by being orientation-preserving or reversing), whereas each O(k, l) with k > 0
and l > 0 has four, distinguished by their containing I, −I, Γ (time reversal), and −Γ (parity).

The additive (and hence abelian) groups Rn are also real linear Lie groups (although this is
not their simplest description!), since one may identify a ∈Rn with the 2n×2n-matrix

a≡
(

1n diag(a)
0 1n

)
, (A.7)

where diag(a) is the diaginal n× n matrix with entries (a1, . . . ,an) on the diagonal. Indeed,
matrix multiplication reproduces addition in diag(a). The last Lie groups of interest to us are

E(n) = O(n)nRn; (A.8)
P(n) = O(1,n−1)nRn, (A.9)

called the Euclidean group and the Poincaré group in dimension n. They are the isometry
groups of the Euclidean metric δ = diag(1, . . . ,1) and Minkowski metric η = diag(−1,1, . . . ,1)
on Rn, respectively. These are examples of semidirect products, which are defined more
generally as follows. Let some group L act linearly on a vector space V . Then the operation

(λ ,v) · (λ ′,v′) = (λλ
′,v+λ · v′); (A.10)

(λ ,v)−1 = (λ−1,−λ
−1 · v), (A.11)

turns LnV into a group, called the semidirect product of L and V . If L ⊂ GLn(R) is a linear
Lie group and V = Rn, then LnV is a linear Lie group in GL2n(R), realized by the matrices(

L v
0 1n

)
, (A.12)

where v ∈ GLn(R) is the matrix with v ∈V in every column.
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A.2 Lie algebras
Abstractly, a Lie algebra over R is defined as a real vector space A equipped with an bilinear
map [·, ·] : A×A→ A that satisfies antisymmetry and the Jacobi identity, i.e.,

[a,b]+ [b,a] = 0; (A.13)
[a, [b,c]]+ [c, [a,b]]+ [b, [c,a]] = 0 (a,b,c ∈ A). (A.14)

Concretely, any linear subspace g⊂Mn(R) that is closed under the commutator

[A,B] := AB−BA, (A.15)

which automatically satisfies the Jacobi identity, is a Lie algebra (and similarly over the complex
numbers). A special case is the Lie algebra of a linear Lie group G⊂GLn(R), subtly defined by

g= {A ∈Mn(R) | etA ∈ G∀t ∈R}, (A.16)

where the exponential map exp : g→G is just given by its usual (norm-convergent) power series.
It is a nontrivial fact that this concrete Lie algebra is also an abstract one, notably that g is a
vector space and that the bracket (A.15) indeed maps g×g to g. The former property follows
from the Lie product formula

eA+B = lim
m→∞

(
eA/meB/m

)m
, (A.17)

combined with the axiom that G be closed in GLn(R). The latter property derives from

[A,B] =
d
dt

etABe−tA, (A.18)

combined with a lemma about matrices showing that if g ∈ G and A ∈ g, then gAg−1 ∈ g, which
in turn follows from the definition of the exponential, implying exp(gAg−1) = gexp(A)g−1.

If G = GΓ is defined by (A.4), then its Lie algebra is

gΓ = {A ∈Mn(R) | AT Γ = −ΓA}. (A.19)

For example, taking Γ = diag(1,1,1), the Lie algebra so(3) of SO(3) consists of all real 3×3
matrices X that satisfy XT = −X . As a vector space so(3) ∼= R3, since so(3) has a basis

J1 =

 0 0 0
0 0 −1
0 1 0

 , J2 =

 0 0 1
0 0 0
−1 0 0

 , J3 =

 0 −1 0
1 0 0
0 0 0

 , (A.20)

whose linear span gives all 3× 3 real antisymmeric matrices. A vector space isomorphism
R
∼=→ so(3) is then given by (x,y,z) 7→ xe1 + ye2 + ze3. The commutators of these elements are

[J1,J2] = J3; [J3,J2] = −J1; [J3,J1] = J2, (A.21)

and by linearity these determine the Lie bracket of arbitrary elements of so(3).
Similarly, according to (A.19) the Lie algebra of SO(1,2) consists of all A ∈M3(R) that satisfy

AT diag(−1,1,1) = −diag(−1,1,1)A. (A.22)



330 Lie groups, Lie algebras, and constant curvature

There are good reasons for taking the basis

e1 =

 0 0 0
0 0 −1
0 1 0

 , e2 =

 0 0 −1
0 0 0
−1 0 0

 , e3 =

 0 1 0
1 0 0
0 0 0

 , (A.23)

with commutation relations

[e1,e2] = e3; [e3,e1] = e2; [e3,e2] = e1. (A.24)

For later use, also another basis

e′1 = e3; e′2 = −e2; e′3 = e1 (A.25)

is useful, with Lie brackets

[e′1,e′2] = −e3; [e′3,e′1] = e′2; [e′3,e′2] = −e′1. (A.26)

Although SO(2,1) is isomorphic to SO(1,2), its Lie algebra has a different basis, e.g.

f1 =

 0 0 −1
0 0 0
−1 0 0

 , f2 =

 0 1 0
−1 0 0
0 0 0

 , f3 =

 0 0 0
0 0 1
0 1 0

 , (A.27)

with commutation relations

[ f1, f2] = − f3; [ f3, f1] = f2; [ f3, f2] = f1. (A.28)

The last interesting three-dimensional cases are the Lie algebras of the groups (A.8) and (A.9) in
n = 2. To find the Lie brackets in a suitable basis, we note that in general the Lie algebra g of a
semidirect product LnRn is l⊕Rn as a vector space, with commutators given by

[(A,v), (B,w)] = ([A,B],Aw−Bv), (A.29)

where A,B ∈ l and v,w ∈V . Since SO(2) consists of all matrices(
cosα −sinα

sinα cosα

)
, α ∈ [0,2π ], (A.30)

we may take the basis

j1 =
(

1
0

)
, j2 =

(
0
1

)
, j3 =

(
0 −1
1 0

)
, (A.31)

the former forming a basis of R2, and find the commutation relations from (A.29) to be

[ j1, j2] = 0; [ j3, j1] = j2, [ j3, j2] = − j1; . (A.32)

For the Poincaré-group in 2d, i.e. P(2), on the other hand, we take

k1 =

(
1
0

)
, k2 =

(
0
1

)
, k3 =

(
0 1
1 0

)
, (A.33)

to obtain the commutation relations

[k1,k2] = 0; [k3,k1] = k2; [k3,k2] = k1. (A.34)



Homogeneous manifolds 331

A.3 Homogeneous manifolds
Spaces of constant curvature are special cases of homogeneous manifolds (and more specifically
of symmetric spaces). To start, we quote the following basic technical result without proof:685

Proposition A.1 Let G be a Lie group and H ⊂ G a closed subgroup. Then H is itself a Lie
group and there exists a smooth structure on the homogeneous space G/H such that:

1. dim(G/H) = dim(G)−dim(H);

2. The canonical projection G→ G/H, γ 7→ γH, is smooth;

3. The canonical G-action G× (G/H)→ G/H, (γ1,γ2H) 7→ (γ1γ2)H, is smooth.

We write such group actions as γ1(γ2H) = (γ1γ2)H. It is clear that G acts transitively on G/H
(for any x ∈ G/H and y ∈ G/H there is γ ∈ G such that y = γx). Without loss of generality,686

we may also assume that G acts effectively on G/H: if γx = x for all x ∈ G/H, then x = e.
Homogeneous spaces arise naturally if a Lie group G acts smoothly and transitively on

a manifold M (in which case M is called a homogeneous G-space). Then M ∼= G/H with
H = Gx′ (i.e. the stability group of some fixed x′ ∈M), under the diffeomorphism M→ G/H,
x 7→ γH, where γ ∈ G satisfies γx′ = x; the inverse map G/H→M is γH 7→ γx′ (both maps are
independent of the choice of γ ∈ γH), and this identification M↔ G/H is G-equivariant.

The following isomorphism will be very useful in all that follows:

TH(G/H) ∼= g/h, (A.35)

where g and h are the Lie algebras of the Lie groups G and H, respectively. To see this, let us
consider a more general situation, where a Lie group G acts smoothly on a manifold M, that is,
ϕ : G×M→M is a smooth G-action on M. We will write ϕγ(x) (or simply γ · x) for ϕ(γ ,x), so
that each map ϕγ : M→M is a diffeomorphism. For each A ∈ g we define a map

AM : C∞(M)→ Der(C∞(M)); AM f (x) =
d
dt

f (etA · x)|t=0. (A.36)

This defines a derivation on C∞(M) and hence a vector field on M, so that AM ∈ X(M), and we
have a map A 7→ AM from g to X(M). It can be shown that our map has good properties:687

Proposition A.2 The map A 7→ AM is linear and for all A,B ∈ g satisfies

[AM,BM] = −[A,B]M. (A.37)

In other words, our map is an anti-homomorphisms of Lie algebras (with respect to the usual
commutator bracket of vector fields). Clearly, at any x ∈ M we obtain a map g→ TxM by
regarding AM(x) as an element of TxM. In the case M = G/H at hand, let us now take x = H.

Lemma A.3 The linear map g 7→ TH(G/H) defined by (A.36) has kernel h.

685See e.g. Kobayashi & Nomizu (1963), Proposition I.4.2, or Helgason (1978), §II.4.
686If G does not act effectively on G/H, take the largest normal subgroup H0 ⊂ H that is also normal in G, and

define G∗ = G/H0 and H∗ = H/H0. Then G/H ∼= G∗/H∗ and G∗ acts effectively on G∗/H∗. An example where
this is necessary occurs if H ⊂ Z(G), in which case all of H acts trivially on G/H. Fortunately, the isometry group
of a (semi) Riemannian manifold always acts effectively on M.

687See e.g. Marsden & Ratiu (1994), Proposition 9.3.6. Note that AM = −ϕ∗(A), cf. (8.246).
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Proof. If A ∈ h, then exp(tA) ∈ H by definition of h (see §A.2). But hH = H for any h ∈ H,
whence AG/H(H) = 0. Hence h lies in the kernel of the map g 7→ TH(G/H). Conversely,
γH = H iff γ ∈ H, and h ∈ H lies near the identity iff h = exp(tA) for some A ∈ h. �

Lemma A.3 implies (A.35) by a dimension count based on Proposition A.1.1, which gives

dim(G/H) = dim(G)−dim(H) = dim(g)−dim(h) = dim(g/h). (A.38)

The isomorphism (A.35) gets more body of we combine it with the residual H-action on
TH(G/H). For any diffeomorphism ϕ of M, the derivative ϕ ′x maps TxM linearly to Tϕ(x)M. If
ϕ(x) = x, then ϕ ′x ∈ Hom(TxM). If the diffeomorphisms ϕ come from a G-action on M, then

Gx = {γ ∈ G | γ · x = x}. (A.39)

is the stabilizer of x. If γ ∈Gx, the linear maps ϕ ′γ : TxM→ TxM, combine into a homomorphism

πx : Gx→ GL(TxM); γ 7→ ϕ
′
γ , (A.40)

called the isotropy representation of Gx in TxM (here GL(TxM) consists of all invertible linear
maps from TxM to TxM). This applies in particular to M = G/H and x = H, so that we obtain

πH : H→ GL(TH(G/H)); k 7→ ϕ
′
k. (A.41)

We will now explicitly find πH under the isomorphism (A.35). We know that any group G acts
on itself by the adjoint action Adγ(δ ) = γδγ−1. If G is a Lie group,688 this action defines a
representation Ad′ of G on its Lie algebra g, defined by Ad′γ(X) = γXγ−1. This action may, of
course, be restricted to H ⊂ G, and it is easy to see that this restriction quotients to g/h. In our
application to spaces with constant curvature, g will have a reductive decomposition

g= h⊕p, (A.42)

where (trivially) not only h, but also p is invariant under Ad′k for any k ∈ H (if H is connected,
this is equivalent to [h,p] ⊂ p). In that case, we may replace the isomorphism (A.35) by

TH(G/H) ∼= p, (A.43)

Proposition A.4 1. Under the isomorphism (A.35), the isotropy representation (A.41) of H
on TH(G/H) maps to the adjoint action of H on g/h (still denoted by Ad′):

πH(k)[A] = [Ad′k(A)], (A.44)

where A ∈ g and [A] ∈ g/h, seen as an element of TH(G/H) via the isomorphism (A.35).

2. Consequently, under the isomorphism (A.43), assuming that p is Ad′(H)-invariant, the
same isotropy representation of H is mapped to the adjoint action of H on p.

Indeed, for any A ∈ g, k ∈ H, and f ∈C∞(G/H) we have, cf. (A.36) and (A.41),

(πH(k)AG/H) f (H) =
d
dt

f (ketA ·H)|t=0 =
d
dt

f (ketAk−1 ·H)|t=0

=
d
dt

f (etkAk−1
·H)|t=0 = (Ad′kA)G/H f (H). �

688It follows from our definition of a Lie algebra in Appendix A.2 that Ad′ is well defined as well as linear.
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The following examples of homogeneous spaces arose in §4.4, restricted to dimension two:

S2 ∼= O(3)/O(2); dS2 ∼= O(1,2)/O(1,1); (A.45)

R2 ∼= E(2)/O(2); R2 ∼= P(2)/O(1,1); (A.46)

H2 ∼= O(1,2)/O(2); AdS2 ∼= O(2,1)/O(1,1), (A.47)

where we put ρ = 1 (and also S2
1 ≡ S2, etc.), so that the non-flat spaces in question are given by

S2 = {(x1,x2,x3) ∈R3 | x2
1 + x2

2 + x2
3 = 1}; (A.48)

dS2 = {(x0,x1,x2) ∈R3 | −x2
0 + x2

1 + x2
2 = 1}; (A.49)

H2 = {(x0,x1,x2) ∈R3 | −x2
0 + x2

1 + x2
2 = −1}; (A.50)

AdS2 = {(x−1,x0,x1) ∈R3 | −x2
−1− x2

0 + x2
1 = −1}, (A.51)

and the Lie groups in question were defined in Appendix A.1. In d = 2 de Sitter space dS2 is
diffeomorphic to anti de Sitter space AdS2, but they will be different as Lorentzian manifolds, as
in the case R2 in (A.46). To verify (A.45), let O(3) act on S2 by restricting its defining action on
R3, and take x′ ∈ S2 to be the north pole (0,0,1), in which case the O(2) in (A.45) consists of
rotations around the z-axis and reflections in planes through the origin that contain the z-axis.689

Similarly, for dS2, where one also takes x′ = (0,0,1), and for H2 and AdS2, where the most
convenient fiducial point is (1,0,0). For (A.46), we let the 2d Euclidean group E(2) and the 2d
Poincaré group P(2) act on R2 in the defining representation, and take x′ = (0,0).

Writing (A.45) - (A.47) generically as M ∼= G/H, where H = O(2) or H = O(1,1), the
Ad′(H)-invariant decomposition (A.42) applies to each G in the list. In all six cases we have

g ∼= R3, h ∼= R, p ∼= R2, (A.52)

as vector spaces, taking h to be the linear span of the third generator and p to be the linear span
of the first two generators: see (A.21) for the Lie algebra of O(3) as relevant for S2, see (A.24)
for SO(1,2) in the context of dS2, see (A.26) again for SO(1,2) but now applied to H2, then
(A.27) for O(2,1) applied to AdS2, then (A.31) for E(2) applied to R2 in Riemannian signature,
and finally, eq. (A.34) for P(2) applied to R2 in Lorentzian signature. All cases give

[h,p] ⊂ p. (A.53)

Lemma A.5 In all six cases the decomposition (A.42) is Ad′(H)-invariant. In addition, under
the last isomorphism in (A.52) the adjoint H-action on p is just its defining action on R2.

The significance of this observation will become clear in the next section. The proof is long!

Proof. Let u : G→ GL(V ) be a representation (i.e. a homomorphism) of a Lie group G on a
finite-dimensional vector space V . For A ∈ g we define a linear map du(A) : V →V by

du(A)v =
d
dt

u
(

etA
)

v|t=0. (A.54)

689Note that O(2) has two components, like O(3), again distinguished by det = ±1. Elements γ with det(γ) = 1
are rotations whereas those with det(γ) = −1 are reflections in a line through the origin (e.g. diag(1,−1)).
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Letting A ∈ g vary, this construction gives a linear map du : g→ Hom(V ), which satisfies

[du(A),du(B)] = du([A,B]); edu(A) = u
(

eA
)

. (A.55)

In particular, if G is connected, then u can be recovered from du via (A.55). If G is simply
connected, this even gives an equivalence between finite-dimensional Lie group and Lie algebra
representations. For example, the adjoint representation Ad′ : G→ GL(g), Ad′(γ)A = γAγ−1,
defines a Lie algebra homomorphism ad : g→ Hom(g),690 where ad≡ d(Ad′), namely

ad(A)B = [A,B]. (A.56)

In view of this, for G = O(3), the commutation relations (A.21) show that

ad(J3)J1 = J2; ad(J3)J2 = −J1, (A.57)

where we repeat that J3 is the generator of the subgroup O(2) of O(3) that consists of rotations
around the z-axis. This means that as a matrix relative to the basis (J1,J2) of R2, the restriction
of the linear map ad(J3) : so(3)→ so(3) to p = span(J1,J2) ∼= R2 (which restriction is well
defined, as the above relations show) is just the usual generator of so(2), see (A.31), which
is obtained from the defining action id of G = O(2) on V = R2 by the procedure (A.54). By
exponentiation, we then conclude that the corresponding Ad-action of SO(2) on p is the defining
action, too. To obtain the Ad-action of all of O(2) it suffices to take the element

Rx =

(
1 0
0 −1

)
, which, seen as an element of O(3), is Rxz =

 1 0 0
0 −1 0
0 0 1

 ,

the reflection in the x-z plane. Its adjoint action on the generators of R2 can be computed to give

AdRxzJ1 = RxzJ1R−1
xz = −J1; AdRxzJ2 = RxzJ2R−1

xz = J2, (A.58)

which means that the adjoint representation of Rx on p= span(J1,J2) is not only well defined in
mapping p to itself, but also that under the identification p ∼= R2, Ad′|p maps Rx to itself.

However, the (J1,J2) basis of R2 is not the geometrically natural basis in the given context.
Instead, we compute the map (A.36), first at arbitrary points (x1,x2,x3) ∈ S2. This gives

J1 7→ −x3
∂

∂x2
+ x2

∂

∂x3
; J2 7→ x3

∂

∂x1
− x1

∂

∂x3
; J3 7→ −x2

∂

∂x1
+ x1

∂

∂x2
. (A.59)

At the point x′ = (0,0,1) ∈ S2, the generator J3 is mapped to zero and for the other two we have

J1 7→ −
∂

∂x2
; J2 7→

∂

∂x1
. (A.60)

Hence the natural basis for Tx′S2 ∼= R2 is u1 = (1,0) = J2 = ∂ /∂x1 and u2 = (0,1) = −J1 =
∂ /∂x2. Fortunately, this leads to exactly the same conclusions as the previous basis, as the
reader can easily verify. This proves Lemma A.5 for S2, i.e., G = SO(3) and H = SO(2).

690Each map ad(A) is even a derivation of g as a Lie algebra, as follows from the Jacobi identity.
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For hyperbolic space H2, that is, G = SO(1,2) and H = SO(2), we use the basis (e′1,e′2,e′3)
of the Lie algebra of O(1,2) defined in (A.26) and the fiducial point x′ = (1,0,0) ∈ H2. Then

e′1 7→
∂

∂x1
; e′2 7→

∂

∂x2
, (A.61)

in coordinates (x0,x1,x2) on R3, so that for H2 the right basis of R2, seen as p= span(e′1,e′2),
is simply u1 = e′1 and u2 = e′2. The Lie brackets (A.26), now reinterpreted as

ad(e′3)e
′
1 = e′2; ad(e′3)e

′
2 = −e′1, (A.62)

then lead to the same conclusion as for S2: the Ad-action of SO(2) on R2 is the defining action.
This is also true for the component that is not connected to the identity; the matrix Rx shown
above is now embedded into SO(1,2) as diag(1,1,−1), but the result remains Ad(Rx) = Rx.

For Euclidean R2, i.e. G = E(2) and H = O(2), p is literally R2, seen as the Lie algebra of
the second factor in the semidirect product (A.8), and the lemma should be evident from (A.32).

For de Sitter space dS2 we need similar computations as for S2 and H2. Using the basis
(A.24) and the fiducial point x′ = (0,0,1) on dS2, we find

e1 7→ −
∂

∂x1
; e2 7→ −

∂

∂x0
, (A.63)

in coordinates (x0,x1,x2) on R3, making u0 = (1,0) = −e2 and u1 = (0,1) = −e1 the natural
basis of p∼=R2. This gives ad(e3)u0 =−[e3,e2] =−e1 = u1 and ad(e3)u1 =−[e3,e1] =−e2 =
u0. which implies that ad(e3) is the matrix k3 in (A.33), coming from the 2d boost generator(

cosh χ sinh χ

sinh χ cosh χ

)
, χ ∈R. (A.64)

Thus the adjoint k3-action on p generates the defining O(1,1)0-action on R2. This time there are
three other components that contribute to the full O(1,1)-action, generated by the matrices

P =

(
1 0
0 −1

)
, T =

(
−1 0
0 1

)
, PT =

(
−1 0
0 −1

)
, (A.65)

which as elements of O(1,2) under O(1,1) ⊂ O(1,2) are given by

P̃ =

 1 0 0
0 −1 0
0 0 1

 , T̃ =

 −1 0 0
0 1 0
0 0 1

 , P̃T =

 −1 0 0
0 −1 0
0 0 1

 , (A.66)

Then Ad(P)u0 = −P̃e2P̃−1 = −e2 = u0 and Ad(P)u1 = −P̃e1P̃−1 = e1 = −u1, which show
that Ad(P) = P on p ∼= R2. The other two cases are similar, which settles the case of dS2.

For AdS2, in coordinates (x−1,x0,x1) with fiducial point x′ = (1,0,0), we obtain

f1 7→ −
∂

∂x1
; f2 7→ −

∂

∂x0
, (A.67)

which is similar to (A.63). Indeed, using the basis u0 = (1,0) =− f2 and u1 = (0,1) =− f1, and
the Lie brackets (A.28), we obtain ad( f3)u0 = −[ f3, f2] = − f1 = u1 and likewise ad( f3)u1 =
−[ f3, f1] = − f2 = u0, so that once again ad( f3) is given by the matrix k3 in (A.33), which
generates the 2d boosts in (A.64). We leave the verification that the discrete elements (A.65)
of O(1,1) also act correctly on p = span( f1, f2) to the reader; their embedding in O(2,1) is
different from (A.66), and is now given by always having +1 in the upper left entry.

Finally, the case of Minkowski R2, with G = P(2) acting on R2 and H = O(1,1), is very
similar to the Euclidean case, with eqs. (A.33) - (A.34) replacing (A.31) - (A.32). �
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A.4 Symmetric spaces
So far, this was an exercise in Lie group theory and differential geometry. We now bring in a
metric. The relationship between homogeneous spaces and metric geometry is twofold:

1. Given M = G/H (always connected), one may study possible G-invariant metrics g on M.

2. Given (M,g), one may find out if the isometry group of g possibly acts transitively on M.

In general, a metric g on M is invariant under a diffeomorphism ϕ of M if

ϕ
∗g = g ⇔ gϕ(x)(ϕ

′
x(X),ϕ ′x(Y )) = gx(X ,Y ) ∀x ∈M,X ,Y ∈ TxM. (A.68)

The set of all such diffeomorphisms ϕ is the isometry group of (M,g), denoted by Iso(M,g). If
M is a G-space, we say that g is G-invariant if ϕ∗γ g = g for all γ ∈ G. If this is the case, then
G⊂ Iso(M,g) by definition (typically without equality). If in addition G acts transitively on M,
we say that (M,g) is a homogeneous (semi) Riemannian manifold, so that M ∼= G/H.

We return to the second point in the next section. The first is settled as follows:

Proposition A.6 1. There is a bijective correspondence between G-invariant semi-
Riemannian metrics on G/H and Ad′(H)-invariant metrics on g/h (in the sense of
Definition 2.5) and hence, if (A.42) applies, on p.

2. If H ∼= GΓ for some GΓ ⊂ GLn(R) as defined in (A.4), and the Ad′(H)-action on g/h (or,
if applicable, on p) is equivalent to the defining action of GΓ on Rn, then g/h (etc.) has a
unique Ad′(H)-invariant metric (up to scaling by a nonzero constant), and hence G/H
has a a unique G-invariant semi-Riemannian metric (up to scaling by a nonzero constant).

Proof. To prove the first claim, just use (A.35) or (A.43): any metric on g/h or p defines a metric
g on TH(G/H), which the G-action then pushes to any other point. Invariance under G clearly
requires ϕ∗k gH = gH for any k ∈ H, so that Proposition A.4 shows that Ad′(H)-invariance of the
inner product is necessary. It is a simple exercise to show that it is also sufficient.691

For the second claim, any metric g on Rn takes the form

g(x,y) = 〈x,Ay〉Γ = 〈x,ΓAy〉, (A.69)

for some A ∈ GLn(R) (to see this, regard metrics as symmetric quadratic forms). GΓ-invariance
of 〈−,−〉Γ gives 〈γx,y〉Γ = 〈x,γ−1y〉Γ, so that GΓ-invariance of g, i.e. g(γx,γy) = g(x,y) for all
x,y ∈Rn and γ ∈ GΓ, is equivalent to [A,γ ] = 0 for all γ ∈ GΓ. Since the GΓ-action on Rn is
irreducible, Schur’s lemma gives A = λ · id, for some λ 6= 0, so that g(x,y) = λ 〈x,y〉Γ. �

Proposition A.7 For any Riemannian or Lorentzian manifold (M,g) and G ⊂ Iso(M,g), the
isotropy representation πx(Gx) defined in (A.40) is injective.

Proof. Near x, any isometry ϕ of M is determined by its tangent map ϕ ′x at some fixed x ∈M: to
find ϕ(y) for y in a normal nbhd Ux, assume y = expx(Y ) for some Y ∈ TxM. If ϕ is an isometry,
then ϕ(expx(Y )) = expx(ϕ

′
x(Y )). Injectivity of πx then follows from (A.40). �

691See e.g. Proposition 3.1 in Kobayashi & Nomizu (1969) or Proposition 11.22 in O’Neill (1983).
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Our proof of Corollary 4.11 in the main text is based on the concept of a symmetric space.692

Definition A.8 1. A (semi) Riemannian manifold (M,g) is locally symmetric if each x ∈M
has a normal nbhd Ux and an isometry lx : Ux→Ux with the following properties:

lx(x) = x (lx)′x = −idTxM. (A.70)

2. It is called symmetric if, for each x ∈M, the above properties hold for Ux = M,

Such a map lx is often called a geodesic reflection, since (A.70) is equivalent to

lx(expx(X)) = expx(−X), X ∈ exp−1
x (Ux) ⊂ TxM. (A.71)

Eq. (A.71), and hence also (A.70), gives l2
x = idUx . Eq. (A.71) easily implies (A.70), and the

converse implication follows from the fact that, as just mentioned, near x a local isometry ϕ is
determined by its tangent ϕ ′x at x. In view of the assumptions in Corollary 4.11, we note:693

Lemma A.9 If (M,g) is complete and simply connected and is locally symmetric, then it is
symmetric. Conversely, a symmetric space is complete.

The connection between symmetric spaces and spaces with constant curvature will run via:

Lemma A.10 A space (M,g) is locally symmetric iff ∇Riem = 0.

The implication “⇒” is a simple exercise. For the converse, take x,y ∈M and let F : TxM→ TyM
be a linear isomorphism. If Ux and Uy are normal nbhds of x and y, we obtain a map

f : Ux→Uy; f := expy ◦F ◦ exp−1
x . (A.72)

It follows from the Cartan–Ambrose–Hicks theorem that if F preserves both the metric and the
Riemann tensor, and in addition ∇Riem = 0, then f is an isometry.694 If x = y, then F :=−idTxM
trivially satisfies the assumptions of this theorem, simply because both g and Riem have even
rank (namely 2 and 4, respectively). The ensuing map f is our desired local isometry lx. �

Proposition A.11 The isometry group Iso(M,g) of a symmetric space acts transitively on M.
Moreover, already its identity component Iso(M,g)0 acts transitively on M.

Proof. First assume that any two points y,z of M may be connected by a geodesic γ (in the
Riemannian case this is true by Lemma A.9 and the Hopf–Rinow theorem). So let y = γ(0) and
z = γ(T ). Then y = lx(z) for x = γ(T /2), and we recall that lx is an isometry. In general, the
same argument applies to each segment of a chain of geodesic segments connecting y and z. This
argument can be iterated to connect y to z via a composition of arbitrarily many small geodesic
reflections, each contained in Iso(M,g)0, which yields the second claim. �

692See Helgason (1978), passim, Kobayashi & Nomizu (1969), chapter IX, and Joos (2002), chapter 5.
693See Kobayaski & Nomizu (1969), Corollary VI.7.9 and Theorems XI.1.2 and 1.3.
694See Kobayaski & Nomizu (1963), Theorem 7.4. The Cartan–Ambrose–Hicks theorem states that f is a (local)

isometry iff F preserves g and Riem, and for all Y ∈ TxM such that expx(Y ) ∈Ux one has

Riemexpx(F(Y ))(PY (U),PY (V ),PY (W ),PY (X)) = Riemexpx(Y )(U ,V ,W ,X)

for all U ,V ,W ,X ∈ Texpx(Y ), where PY : Texpx(Y )M→ TxM→ Texpx(F(Y ))M is the composition of parallel transport
along the geodesics γY (traversed backward) and γF(Y ). This condition is automatically satisfied when ∇Riem = 0.
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A.5 Classification of spaces with constant curvature

Our proof of Corollary 4.11 consists of three steps, of which we state the first two as a lemma:

Lemma A.12 1. If (M,g) has constant curvature, it is locally symmetric. Consequently, if
(M,g) is simply connected, complete, and has constant curvature, then it is symmetric.

2. If (M,g) is symmetric, then it is a homogeneous (semi) Riemannian manifold.

Therefore, among (semi) Riemannian manifolds we have the following implications:

constant curvature⇒ symmetric⇒ homogeneous.

This lemma reduces the classification problem of spaces with constant curvature to a problem
in Lie groups and Lie algebras, which we will discuss and solve. The second part of the above
lemma is a restatement of Proposition A.11. For the first part we return to the proof of Proposition
4.7, namely Riemx = k(x)S. Taking the covariant derivative with respect to an arbitrary vector-
field U ∈ X(M) gives ∇U Riem = (Uk) · S, since ∇U S = 0 by definition of the Levi-Civita
connection (which gives ∇U g = 0). Eq. (4.23) then gives, for arbitrary X ,Y ,Z ∈ X(M),

(Uk) · (g(Z,Y )X−g(Z,X)Y )+ (Xk) · (g(Z,U)Y −g(Z,Y )U)

+ (Y k) · (g(Z,X)U−g(Z,U)X) = 0. (A.73)

The first part of the lemma then follows from Lemma A.10.695 �

Hence under the assumptions of Corollary 4.11 we have M ∼= G/H, with G = Iso(M,g) (or
G = Iso(M,g)0), and H = Gx′ for some x′ ∈M (or its identity component H0). By Proposition
4.10, the given G-invariant (constant curvature) metric g on M is entirely determined by some
suitable inner product 〈·, ·〉 on g/h, and by Proposition A.4 the H-action on Tx′M is mapped
to the Ad′(H)-action on g/h (which by implication preserves 〈·, ·〉). By Proposition A.7 the
representation Ad′ is injective on H so if we choose an orthonormal basis of g/h with respect to
〈·, ·〉, and hence obtain an identification g/h ∼= Rn, we may also identify H ∼= Ad′(H) with a
certain subgroup of O(n) in the Riemannian case, or of O(1,n−1) in the Lorentzian case.

Lemma A.13 If, in the situation just described, (M,g) has constant curvature and G= Iso(M,g),
then H = O(n) in the Riemannian case and H = O(1,n−1) in the Lorentzian case.

This follows by the argument in the proof of Lemma A.10, which applies because constant
curvature implies Riem = k · S, see Proposition 4.7 and especially eq. (4.85). Any element
F ∈ O(n) or F ∈ O(1,n−1) preserves the inner product, and hence the metric, and hence, by
the above formula, the Riemann tensor. Thus F comes from an isometry f , i.e. F ∈ H. �

We now know that M ∼= G/H as a homogeneous Riemannian or Lorentzian manifold, where

G = Iso(M,g); (A.74)
H = O(n) or O(1,n−1). (A.75)

695 This argument also leads to a proof of the claim below Definition 4.6 to the effect that if M is connected,
dim(M) ≥ 3, and Cx(X ,Y ) is independent of X and Y for each x, then this common value is also independent of x.
Indeed, in d ≥ 3 we may take Z =U to be unit vectors and (X ,Y ,Z) mutually perpendicular, so that (A.73) yields
(Xk) ·Y − (Y k) ·X = 0. Since this is true for all X ⊥ Y , it follows that Xk = Y k = 0, and hence k is constant.



Classification of spaces with constant curvature 339

Since O(n) and O(1,n− 1) act irreducibly on Rn, so that Ad′(H) is irreducible on g/h, by
Proposition A.6 there is exactly one possible G-invariant metric g on G/H (up to scaling).

We now transfer the involutions lx on M to G. Since for all x ∈M and γ ∈ Iso(M,g) one has

γlxγ
−1 = lγx, (A.76)

it is sufficient to consider a single lx′ : M→M, where x′ ∈M is arbitrary. For (A.74), define

l : G→ G; (A.77)
γ 7→ lx′γlx′ . (A.78)

Using (A.76) and the definition of the maps lx, it is easy to show that l has the properties

l 6= idG; l2 = idG; l(γδ ) = l(γ)l(δ ). (A.79)

We defined l by (A.78) for (A.74) - (A.75), in which context (A.79) follow from the definition.
Conversely, for any Lie group G one may start with a nontrivial smooth involutive automorphism
(A.77), i.e. a map (A.77) satisfying (A.79), called a Cartan involution on G, and define

H := Gl ≡ {γ ∈ G | l(γ) = γ} (A.80)

as the fixed-point set of l. Then construct a family (lx)x∈G/H of diffeomorphisms of G/H by

lH(γH) := l(γ)H; (A.81)

lγH(x) := γ · lH(γ−1 · x). (A.82)

If H is connected, these procedures are equivalent; if H is disconnected, then Gl
0 ⊂ H ⊂ Gl .696

Thus one may start either with a symmetric space(M,g) or with the corresponding (Lie) group-
theoretical data (G, l). Up to issues with connectedness, which have to be dealt with by hand,
these group-theoretical data can in turn be replaced by algebraic data, to which we now turn.

Since l : G→ G is smooth, it has a derivative l′ : g→ g, defined by, cf. (A.16),

l′(A) =
d
dt

l
(

etA
)

t=0
. (A.83)

As in (A.55), this map satisfies exp(l′(A)) = l(exp(A)). From this, and l2 = idG, we compute

l′ ◦ l′(A) =
d
dt

l
(

etl′(A)
)

t=0
=

d
dt

l (l(exp(tA)))t=0 =
d
dt

(
etA
)

t=0
= A, (A.84)

so that (l′)2 = idg. We therefore have our promised canonical decomposition (A.42), in which h
and p are the eigenspaces of l′ with eigenvalue 1 and −1, respectively. Furthermore, it follows
from the last entry in (A.79) that l′ is a Lie algebra automorphism, i.e., l′ is linear and

l′([A,B]) = [l′(A), l′(B)]. (A.85)

This implies the following properties (of which the first one is trivial since H ⊂G is a subgroup):

[h,h] ⊂ h; [h,p] ⊂ p; [p,p] ⊂ h. (A.86)

696See Helgason (1978) or even wikipedia, symmetric space, which entry is excellent.
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We return to the proof of Corollary 4.11 (our classification problem). Proposition A.6 and A.74 -
(A.75) apply, as well as the remarks preceding Lemma A.13. Consequently,

p ∼= Rn, (A.87)

and the Ad′(H)-action on p is the defining action of H = O(n) or H = O(1,n−1) on Rn. By
(A.56), the derivative of the Ad′(H)-action is the ad(h)-action, i.e. for A ∈ h and v ∈ p we have

[A,v] = A · v, (A.88)

where A · v is the derivative of the defining action of H0, see (A.54). Since the Lie bracket [A,B]
for A,B ∈ h is also known (because h= o(n) or h= o(1,n−1)), by (A.86) all we need to find
out to determine g as a Lie algebra (and hence, by Lie’s third theorem,697 to determine G as a
Lie group) is the commutator [u,v] ∈ h of u,v ∈ p ∼= Rn. For n = 2 the only known unknown is

[T1,T2] = ρT3, (A.89)

for some constant ρ ∈R, where (T1,T2) is some basis of R2 and

T3 = j3 H = O(n); (A.90)
T3 = k3 H = O(1,1), (A.91)

see (A.31) and (A.33), respectively. Rescaling the metric by a positive constant then restricts us
to ρ = 1,0,−1. For H = O(2) this leaves us with the following list:

ρ = 1 : [T1,T2] = T3; [T3,T1] = T2; [T3,T2] = −T1; (A.92)
ρ = 0 : [T1,T2] = 0; [T3,T1] = T2; [T3,T2] = −T1; (A.93)
ρ = −1 : [T1,T2] = −T3; [T3,T1] = T2; [T3,T2] = −T1. (A.94)

These are the Lie algebras of O(3), E(2), and O(1,2), respectively, cf. (A.21), (A.32), and
(A.26). Thus we find the homogeneous spaces

O(3)/O(2) ∼= S2; ρ = 1, (A.95)

E(2)/O(2) ∼= R2; ρ = 0, (A.96)

O(1,2)/O(2) ∼= H2; ρ = −1, (A.97)

see the left-hand sides of (A.45) - (A.47) in §A.3.
For H = O(1,1) each third bracket changes sign (k3 versus j3), and hence we obtain

ρ = 1 : [T1,T2] = T3; [T3,T1] = T2; [T3,T2] = T1; (A.98)
ρ = 0 : [T1,T2] = 0; [T3,T1] = T2; [T3,T2] = T1; (A.99)
ρ = −1 : [T1,T2] = −T3; [T3,T1] = T2; [T3,T2] = T1. (A.100)

697Let g be a Lie algebra. There exists a simply connected Lie group G̃, unique up to isomorphism, such that the
Lie algebra of G̃ is g (and any Lie group isomorophic to G̃ has a Lie algebra ismomorphic to g). Furthermore, if G
is a connected Lie group with Lie algebra isomorphic to g, then G ∼= G̃/D, where D is a discrete normal subgroup
of the center of G̃. This called Lie’s third theorem (first proved by Cartan). See e.g. Duistermaat & Kolk (2000).
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Now we have the Lie algebras of O(1,2) (bis), P(2), and O(2,1), see (A.23), (A.34), and (A.28),
respectively, and therewith, the homogeneous spaces

O(1,2)/O(1,1) ∼= dS2; ρ = 1, (A.101)

P(2)/O(1,1) ∼= R2; ρ = 0, (A.102)

O(2,1)/O(1,1) ∼= AdS2; ρ = −1, (A.103)

see the right-hand sides of (A.45) - (A.47) in §A.3.
We still need to compute the (constant) curvature of these spaces.

Lemma A.14 For any symmetric space M = G/H, the Riemann tensor at H ∈ G/H is given
by

RiemH(X ,Y ,X ,Y ) = −gH([[X ,Y ],Y ],X), (A.104)

where gH is the metric at H ∈ G/H (which determines the metric on G/H, cf. Proposition A.6).

Proof. This formula follows from (4.12) and the Koszul formula (3.54) for the covariant
derivative of the Levi-Civita connection.698 It is enough to verify (A.104) for orthonormal basis
vectors X = Ta and Y = Tb, which come from a basis of p, as explained in the main text for
n = 2. In (3.54) only the last three (commutator) terms are nonzero, whilst in (4.12) only the
term −g(X ,∇[X ,Y ])Y ) contributes; the others all involve commutators taking values in h, which
give vectors that vanish at H ∈ G/H. This gives

Rabab = − 1
2(gH([[Ta,Tb],Tb],Ta)+ g([[Ta, [Ta,Tb]],Tb)). (A.105)

These two terms are equal because of ad(h)-invariance of gH , which gives

gH([X ,Y ],Z)+ g(Y , [X ,Z]) = 0 (A.106)

for any Y ,Z ∈ p and X ∈ h; use this with X = [Ta,Tb], Y = Ta, and Tb. This gives

Rabab = −gH([[Ta,Tb],Tb],Ta), (A.107)

which is (A.104). �

By H-invariance, in an orthonormal basis gH must be the Euclidean or the Minkowski metric.
In the former case, for n = 2, the orthonormal basis (u1,u2) of TH(G/H) ∼= R2 may be either
taken to be (T1,T2) for any ρ , or, for ρ = 1 and hence O(3), the geometrically more natural basis
discussed in §A.3, i.e., (J2,−J1) (for the other two cases (T1,T2) was also the natural basis).
Either way, the Lie brackets (A.92) - (A.94) or (A.21), (A.32), and (A.26) give

R1212 = ρ . (A.108)

By (4.46) this also gives the sectional curvature, so that, so far in the Riemannian case,

k = ρ . (A.109)

Eq. (A.104) is also valid in the Lorentzian case, but here one must be more careful about the
choice of the basis (u0,u1) in 2d Minkowski space (R2,η), with η = diag(−1,1).

We now study the three cases separately.

698 See Kobayashi & Nomizu (1969), chapter XI, Theorems 3.2 and 3.3.
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• As explained in §A.3, for ρ = 1, i.e., G = O(1,2), we take u0 = −e2 and u1 = −e1.
Eqs. (A.104) and (A.24) with η(e2,e2) = η00 = −1 then give R0101 = −1. Since the
sectional curvature picks up a minus sign because of the denominator in (4.46), which in
the Riemannian case equals +1 in an orthonormal basis but in the Lorentzian case equals
−1, this gives k = 1.

• Similarly, for ρ = −1 and hence G = O(2,1), with basis u0 = − f2 and u0 = − f1 of
Minkowski R2, eqs. (A.104) and (A.28) give R0101 = 1 and hence k = −1.

• Finally, for ρ = 0 we obtain R0101 = 0 because in (4.12) the commutator vanishes:

[X ,Y ] = [T1,T2] = 0. (A.110)

Hence we have k = ρ in all six cases.
This proves Corollary 4.11 for n = 2. As a bridge to the general case n≥ 2, we note that

[u,v]w = ρ(〈u,w〉v−〈v,w〉u), (A.111)

where the inner product is either the Euclidean or the Minkowski one, as the case requires.
This follows from linear extension of (A.89) and hence has been derived for n = 2 only. But
(A.111) holds in any dimension! To see this, we note that the adjoint action of H = O(n) or
H = O(1,n−1) on g consists of Lie algebra automorphisms (as this is true for all of G). Hence

[ku,kv] = Ad(k)([u,v]) = k[u,v]k−1, (A.112)

for any k ∈ H and u,v ∈ p ∼= Rn, with [u,v] ∈ so(n). If n > 2, we may take three mutually
orthogonal vectors u,v,w and take k to be the reflection in the (hyper)plane orthogonal to w.
Then by construction we have

ku = u; kv = v; k−1w = kw = −w, (A.113)

so that (A.112) gives
[u,v]w = −k([u,v]w). (A.114)

By definition of k (which implies that kx = −x is only true if x is a multiple of w), this implies
that [u,v]w is a multiple of w, which is impossible unless [u,v]w = 0. Therefore, [u,v] maps any
vector orthogonal to u and v to zero, which yields (A.111) for any n. The covariance property
(A.112) has not only delivered the conclusion just given, but it also implies that the constant ρ in
(A.111) is independent of the u-v plane (since H can move any plane to any other plane).

Given (A.111), the Lie algebra g is now entirely known.699 What remains is to find the right
basis of g for the three cases ρ = 1,0,−1, and thus recover the Lie algebras of

O(n+ 1); E(n); O(n,1) (A.115)

in the Euclidean case, and in the Minkowski case, of

O(1,n); P(n); O(2,n−1). (A.116)

Once again using (A.104) to show that k = ρ , this finishes the proof of Corollary 4.11. �

699The next step is best done in a basis provided by the root space decomposition of semi-simple Lie algebras,
which requires more background than this appendix offers. Helgason (1978) is a complete reference for this.
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B Background from formal PDE theory
This appendix collects some background for the study of the (gauged) Einstein equations as
quasi-linear second-order hyperbolic PDEs. This field is huge and we just describe what we need
for chapter 7. To start, all modern (i.e. post 1945) PDE theory is based on distributions.

B.1 Distributions and Sobolev spaces on manifolds
This section collects some basic fact, more or less in staccato style, and without proofs.700

1. Notation. Let n > 0 and x ∈Rn. It is convenient to write x = (x1, . . . ,xn) rather than our
usual (x1, . . . ,xn). Let α = (α1, . . .αn), with αi ∈N (where 0 ∈N). We abbreviate

|α| :=
n

∑
i=1

αi; (B.1)

Dα :=
(

∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn

≡ ∂
α1
1 · · ·∂

αn
n ≡

∂ |α|

∂xα1
1 · · ·∂xαn

n
; (B.2)

xα := xα1
1 · · ·x

αn
n . (B.3)

2. Test functions. For each measurable (usually open) subset Ω ⊂Rn, let D(Ω) be C∞
c (Ω)

as a set, equipped with the topology in which fλ → f iff there is a compact set K ⊂ Ω
such that supp( fλ ) ⊂ K for all λ , and for all multi-indices α one has

‖Dα( fλ − f )‖∞→ 0. (B.4)

This implies supp( f )⊂K also for the limit function. This may be generalized to manifolds
M, as follows. For some given atlas (Ui,ϕi) we say that fλ → f in D(M) = C∞

c (M) iff
for each ψi ∈C∞

c (Ui) and all multi-indices α one has

‖Dα(ψi( fλ − f ) ◦ϕ
−1
i )‖∞→ 0. (B.5)

This turns out to be independent of the choice of the atlas. Elements of D(Rn), D(Ω), or
D(M) are all called test functions.

A rapidly decreasing (test) function f ∈S (Rn) is a function f ∈C∞(Rn) for which the
function x 7→ xαDβ f is bounded for all multi-indices α and β . One often writes

〈x〉 := (1+ ‖x‖2)1/2, (B.6)

and uses x 7→ 〈x〉αDβ f , which of course gives the same space. The topology on S (Rn) is
such that fλ → f iff for all l,m ∈N and multi-indices α and β with |α| ≤ l and |β | ≤ m,

‖xαDβ ( fλ − f )‖∞→ 0. (B.7)

3. Distributions on Ω are elements of the space D ′(Ω) of all continuous maps u : D(Ω)→C.
A linear map u : D(Ω)→C is continuous in the topology just defined iff for each compact
K ⊂Ω there is m ∈N and C > 0 such that for all α with |α| ≤ m,

|〈u, f 〉| ≡ |u( f )| ≤C‖Dα f‖∞. (B.8)

700 For details see for example Hörmander (1990), §6.3, Taylor (1996), §4.3, and Grubb (2009), passim.
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For example, a distribution of order zero (i.e. m = 0 is just a (Radon) measure on Ω.

The space D ′(Ω) carries the weak topology, in which uλ → u iff 〈uλ , f 〉 → 〈u, f 〉 for
each f ∈ D(Ω). In this topology, D(Ω) is dense in D ′(Ω), where u ∈ D(Ω) defines
u ∈D ′(Ω) through the L2 inner product, i.e., 〈u, f 〉= 〈u, f 〉L2(Ω). Adding a middle man
gives a Gelfand triple, in which each embedding is continuous and dense:

D(Ω) ⊂ L2(Ω) ⊂D ′(Ω). (B.9)

Likewise for D(M), provided we equip our manifold M with a measure that in coordinates
has the same null sets as Lebesgue measure.701 For example, any (background) Riemannian
metric on M provides such a measure (7.10). Also in that case we obtain a Gelfand triple

D(M) ⊂ L2(M) ⊂D ′(M). (B.10)

Tempered distributions on Rn are continuous linear maps u : S (Rn)→ C. The (weak)
topology on the ensuing space S ′(Rn) defines convergence uλ → u of nets iff there are
l,m ∈N and C > 0 such that for all α with |α| ≤ l and β with |β | ≤ m one has

|〈u, f 〉| ≤C‖xαDβ f‖∞. (B.11)

Similarly to (B.9), one has a Gelfand triple (i.e. the embeddings are continuous and dense)

S (Rn) ⊂ L2(Rn) ⊂S ′(Rn), (B.12)

and since D(Rn)⊂S (Rn) continuously, and hence S ′(Rn)⊂D ′(Rn), this extends to

D(Rn) ⊂S (Rn) ⊂ L2(Rn) ⊂S ′(Rn) ⊂D ′(Rn). (B.13)

4. Weak derivatives. It will be convenient from now on to write, whenever convenient, 〈u, f 〉
for u( f ). For each multi-index α , the weak derivative Dαu of u ∈D ′(Rn) is defined by

〈Dαu, f 〉 := (−1)|α|〈u,Dα f 〉. (B.14)

This definition comes from the fake formula 〈u, f 〉=
∫

Rn dnxu(x) f (x), which on repeated
partial integration would give (B.14). Any linear partial differential operator may therefore
be regarded as a map L : D ′(Rn)→D ′(Rn), with adjoint L∗ : D(Rn)→D(Rn), i.e.,

〈Lu, f 〉= 〈u,L∗ f 〉. (B.15)

For example, if L = Dα , then L∗ = (−1)|α|Dα . The derivatives in Lu are called weak,
those in L∗ f being classical. Similarly, a solution u ∈ D ′(Rn) of a linear PDE Lu = F
(with initial conditions), i.e. 〈Lu, f 〉= 〈u,L∗ f 〉 for all f ∈D(Rn), is called weak.

The definition (B.14) also applies to u ∈D ′(Rn), at least if Ω is open in Rn,702 as well as
to D ′(M), provided M has no boundary (which indeed is our standing assumption).

701Hörmander’s definition of a distribution on M coincides with the one above if we choose such a measure.
702Be careful with (B.15) if Ω is not open. For example, if Ω = [0,∞)×Rn and L = −�= ∂ 2

t −∆, then (due to
boundary terms in partial integration) the inhomogeneous wave equation Lu = F with initial conditions u(0,x) = f
and u̇(0,x) = g(x) becomes −

∫
∞

0 dt
∫

Rn dnxu� f =
∫

∞

0 dt
∫

Rn dnxF f +
∫

Rn dnxg(x) f (0,x)− f (x) ḟ (0,x).
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5. Sobolev spaces. For any s ∈N, based on (B.9), define the Sobolev space

Hs(Ω) := {u ∈ L2(Ω) | Dαu ∈ L2(Ω)∀α : |α| ≤ s}, (B.16)

where accordingly the derivatives inherent in Dα are weak. Clearly, H0(Ω) = L2(Ω), but
it can be shown that all Hs(Ω) are Hilbert spaces with respect to the inner product

〈u,v〉s := ∑
|α|≤s
〈Dαu,Dαv〉, (B.17)

where ∑|α|≤s means ∑α :|α|≤s, and 〈·, ·〉 is the inner product in L2(Ω). Note the danger
of ambiguous notation here: 〈·, ·〉p often denotes the inner product in Lp, but here 〈·, ·〉s
stands for the inner product in Hs; in our notation the inner product in L2 would be 〈·, ·〉0.

For Ω = Rn a different perspective on Sobolev spaces comes from the Fourier transform

f̂ (ξ ) := (2π)−n/2
∫

Rn
dnx f (x)e−iξ x; (B.18)

f̌ (x) := (2π)−n/2
∫

Rn
dn

ξ f (ξ )eiξ x, (B.19)

which make sense as Lebesgue integrals for f ∈ L1(Rn). If one also has f̂ ∈ L1(Rn), then

ˇ̂f = f . (B.20)

The scope of these formulae may be extended in at least three different ways:703

(a) Eq. (B.18) yields a unitary isomorphism L2(Rn)
∼=→ L2(Rn) of Hilbert spaces.

(b) The Fourier transform also defines a linear homeomorphism S (Rn)
∼=→S (Rn).

(c) Defining f̂ for f ∈S ′(Rn) by 〈 f̂ , f 〉 = 〈 f , f̌ 〉, the Fourier transform (B.18) even
defines a linear homeomorphism S ′(Rn)

∼=→S ′(Rn) of tempered distributions.

Returning to Sobolev spaces, for Ω = Rn may now (re)define, for any s ∈R,

Hs(Rn) := {u ∈S ′(Rn) | ξ 7→ 〈ξ 〉sû(ξ ) ∈ L2(Rn)}, (B.21)

with inner product

〈u,v〉s :=
∫

Rn
dn

ξ 〈ξ 〉2s û(ξ )v̂(ξ ) =
∫

Rn
dn

ξ (1+ ‖ξ‖2)s û(ξ )v̂(ξ ) (B.22)

For s ∈N this reproduces (B.16) as a vector space (a fact that is not obvious), but the
inner products (B.17) and (B.22) are different. Although they induce equivalent norms,
for s ∈N one has to specify which one is used. Either way, we have:

703If one equips C∞
c (R

n) with the unusual norm ‖ f‖0 = max{‖ f‖∞,‖ f̂‖∞}, with associated completion denoted by
C∗0(R

n), then (B.18) yields an isometric isomorphism C∗0(R
n)
∼=→C∗0(R

n) as Banach spaces. For C*-algebra experts

we note that the Fourier transform also yields an isomorphism C∗(Rn)
∼=→C0(Rn) of commutative C*-algebras

(here C∗(Rn) is the completion of C∞
c (R

n) in the operator norm obtained by letting f ∈C∞
c (R

n) act on L2(Rn) by
convolution, whereas C0(Rn) carries the supremum-norm). In this case (which follows from the Riemann–Lebesgue
lemma) the Fourier transform is a special case of the Gelfand transform. See Landsman (2017), §C.15.
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Theorem B.1 1. Sobolev embedding theorem: For m≥ 0 and s > m+ 1
2n, one has

Hs(Rn) ⊂Cm
b (R

n), (B.23)

where the embedding is continuous with respect to the norm ‖u‖m,∞ = ∑|α|≤m ‖Dαu‖∞.

2. Sobolev duality theorem: For any s ∈R one has

Hs(Rn)∗ ∼= H−s(Rn), (B.24)

i.e. Λ ∈ Hs(Rn)∗ linearly, bijectively, and isometrically corresponds to f ∈ H−s(Rn) via

Λ(u) =
∫

Rn
dnx f (x)u(x) ≡ 〈 f ,u〉. (B.25)

3. For s > 0 we have our third Gelfand triple

Hs(Rn) ⊂ L2(Rn) ⊂ H−s(Rn), (B.26)

which analogously to (B.13) may be extended to a “Gelfand quintuple”

S (Rn) ⊂ Hs(Rn) ⊂ L2(Rn) ⊂ H−s(Rn) ⊂S ′(Rn). (B.27)

6. Sobolev spaces can also be defined on manifolds. For u∈D ′(M), we define u∈H2(M) iff
for each chart (Ui,ϕi) and χi ∈C∞

c (Vi), where Vi = ϕi(Ui)⊂Rn, the distribution u◦ϕ
−1
i χi

on D(Rn), defined on f ∈D(Rn) by 〈u◦ϕ
−1
i χi, f 〉= 〈u, (χi f ) ◦ϕi〉, is in Hs(Rn).

Theorem B.2 Let M be a compact Riemannian manifold.

1. For each s ∈R the space D(M) is dense in Hs(M).

2. For each s ∈R we have an isometric (Banach space) isomorphism

Hs(M)∗ ∼= H−s(M), (B.28)

understood in the following way:704 any continuous functional Λ ∈ Hs(M)∗ corresponds
linearly, bijectively, and isometrically to f ∈ H−s(M) via

Λ(u) = 〈 f ,u〉L2(M). (B.29)

3. Sobolev embedding theorem: If s > 1
2n+k, then Hs(M)⊂Ck

b(M), where the embedding
is continuous with respect to the norm ‖u‖m,∞ = ∑|α|≤m ‖Dαu‖∞ on Ck(M).

4. Rellich theorem: For s ∈R and δ > 0, the injection Hs+δ (M) ↪→ Hs(M) is compact.

5. For s > 0 we have our final Gelfand triple, cf. (B.26),

Hs(M) ⊂ L2(M) ⊂ H−s(M). (B.30)
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B.2 Linear wave equations
For the PDEs of interest to GR, Rn will be space, and time needs to be treated separately. Typically,
for fixed time T > 0 one considers Banach spaces like C([0,T ],Hs(Rn)), with norm

‖u‖∞ = sup
t∈[0,T ]

‖u(t)‖s, (B.31)

or C1([0,T ],Hs(Rn)) with analogous norm, or Lp([0,T ],Hs(Rn)), 1≤ p < ∞, normed by

‖u‖p =

(∫ T

0
dt (‖u(t)‖s)

p
)1/p

, (B.32)

or L∞([0,T ],Hs(Rn)), with norm

‖u‖∞ = esssupt∈[0,T ]‖u(t)‖s. (B.33)

Here we define Lp([0,T ],Hs(Rn)), 1 ≤ p < ∞, as the completion of C([0,T ],Hs(Rn)) in
the norm (B.32), and also (avoiding Banach space-valued measurable functions), define the
space L∞([0,T ],Hs(Rn)) as the (Banach) dual of L1([0,T ],H−s(Rn)), in that we identify
f ∈ L∞([0,T ],Hs(Rn)) with the functional Λ f ∈ (L1([0,T ],H−s(Rn)))∗ given by, cf. (B.29),

Λ f (g) =
∫ T

0
dt 〈 f (t),g(t)〉. (B.34)

To see such spaces in action, we consider the free wave equation on Rn+1, i.e.

(−∂
2
t +∆)u = F ; u(0,x) = f ; u̇(0,x) = g(x). (B.35)

For F = 0 and n = 1,3, the (unique) solution (known since the 18th century) is

u(t,x) = 1
2

(
f (x+ t)− f (x− t)+

∫ x+t

x−t
dyg(y)

)
; (n = 1); (B.36)

u(t,x) =
1

4πt2

∫
|y−x|=t

dσ
2(y)

(
tg(y)+ f (y)−

3

∑
i=1

∂i f (y)(xi− yi)

)
; (n = 3). (B.37)

From this, we see that in n = 1 the solution at (t,x) only depends on initial data within its causal
past J−(x, t), intersected with the Cauchy surface Σ = {(x0 = 0,x),x ∈Rn}. Indeed, recall the
causal past J−(t,x), emanating from (t,x), and its boundary E−(t,x), i.e. the past lightcone,

J−(t,x) = {(y0,y) ∈Rn+1, |y0− x0| ≥ |y− x|, y0 ≤ x0}; (B.38)

E−(t,x) = {(y0,y) ∈Rn+1, |y0− x0|= |y− x|, y0 ≤ x0}, (B.39)

cf. (5.90) - (5.91) with y0 ≥ x0 replaced by y0 ≤ x0 (as well as x by (t,x), etc.). In n = 1,

Σ∩ J−(x, t) = {(y0 = 0,y),y ∈ [x− t,x+ t]}. (B.40)

In n = 3 the solution u(t,x) even depends on the initial data at Σ∩E−(x, t) only, since

Σ∩E−(t,x) = {(y0 = 0,y), |y− x|= t}. (B.41)

704Also, Hs(M)∗ ∼= Hs(M) through its own inner product; the pairing in (B.25) is through the L2 inner product.
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An analogous phenomenon holds in the inhomogeneous case F 6= 0, in which case the solution

u(t,x) =
1

4π

∫
E−(t,x)

d3
σ(s,y)

F(s,y)
|(s− t,y− x)|

, (B.42)

for zero initial data for simplicity, only depends on the values of F at the past lightcone E−(t,x).
In other words, F(s,y) only influences u along the forward lightcone emanating from (s,y). The
situation in n = 3 (and also in all higher odd spatial dimensions), in which both initial data f ,g
and the inhomogeneous term F affect the solution only along future light rays is called the
strong Huygens principle. The (ordinary) Huygens principle, then, formalizes the situation in
n = 1,2, and all higher even dimensions, in which the entire causal future of (s,y) affects the
solution–or, equivalently, u(t,x) only depends on data within its causal past.

An explicit solution for any F , f , and g may be written down using the Fourier transform:

û(t,ξ ) = cos(t|ξ |) f̂ (ξ )+
sin(t|ξ |)
|ξ |

ĝ(ξ )+
∫ t

0
ds

sin((t− s)|ξ |)
|ξ |

F̂(s,ξ ); (B.43)

as the notation indicates, the formula (B.18) is only applied to the x-variable, and, within the
function classes to be discussed, the actual solution u(t,x) may be (re)constructed from (B.19).
Although the space-time and causal structure of the solution is not at all obvious from this
formula, the advantage is that (B.43) easily implies an energy inequality: for any s ∈Z,

‖u(t, ·)‖s+1 + ‖u̇(t, ·)‖s ≤Cs,T

(
(‖ f‖s+1 + ‖g‖s)+

∫ T

0
dτ ‖F(τ , ·)‖s

)
, (B.44)

where 0 < T < ∞, provided that F ∈ L1([0,T ],Hs(Rn)), f ∈ Hs+1(Rn), and g ∈ Hs(Rn), so
that the right-hand side makes sense. The proof is an exercise, using the fact that (B.22) implies

‖u(t)‖2
s =

∫
Rn

dn
ξ (1+ ‖ξ‖2)s |û(t,ξ )|2. (B.45)

Corollary B.3 For any T > 0 and s ∈Z, the free wave equation (B.35) with initial conditions
f ∈ Hs+1(Rn) and g ∈ Hs(Rn), and F ∈ L1([0,T ],Hs(Rn)), has a unique solution

u(t,x) ∈C([0,T ],Hs+1(Rn))∩C1([0,T ],Hs(Rn)). (B.46)

Uniqueness follows either from the derivation of the explicit solution (B.43) from the
initial data, or from (B.44): if u1 and u2 both solve (B.35), then u = u1−u2 solves (B.35) for
F = f = g = 0, so that the right-hand side and hence the left-hand side of (B.44) vanishes, etc.

We now turn to linear wave equations of the form Lu = F with initial data (B.35), and

L = gρσ (t,x)∂ρ∂σ + bρ(t,x)pρ + a(t,x). (B.47)

Since we don’t have an explicit solution, the derivation of a suitable energy inequality (to be
used as a lemma for proving existence, uniqueness, and analytic properties of solutions) will
have to be a priori.705 A particularly useful energy inequality for the operator (B.47) is

∑
|α|≤1

‖Dαu(t, ·)‖s ≤C′s,T

(
∑
|α|≤1

‖Dαu(0, ·)‖s +
∫ t

0
dτ ‖Lu(τ , ·)‖s

)
. (B.48)

705These a priori derivations are straightforward but very lengthy, and therefore we simply state the results without
derivation; for (B.48) see Sogge (2008), §I.3 and Luk (undated), §4. See also Ringström (2009) for similar estimates.
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This inequality is valid for any 0 < t < T < ∞, s ∈ Z, and u such that (B.46) holds,706 with
Lu ∈ L1([0,T ],Hs). It immediately gives uniqueness by the same argument as for the free wave
equation, but existence and regularity require a more advanced, functional-analytic argument.707

In order to explain the reasoning, let us first take a simpler situation. For Ω ⊂Rn, let

L : D ′(Ω)→D ′(Ω) (B.49)

be a linear operator, e.g. as in (B.47), with adjoint L∗ : D(Ω)→D(Ω) defined by (B.15). As
already mentioned, the PDE Lu = F (with zero initial conditions for simplicity) then means

〈u,L∗ f 〉= 〈F , f 〉 (B.50)

for all f ∈D(Ω). Throughout the argument, we must assume that, for any net ( fλ ) in D(Ω),

L∗ fλ → L∗ f ⇒ fλ → f . (B.51)

If L∗ is a bijection, and F ∈ D ′(Ω), which is the very least regularity to impose, then we are
done at the coarsest level of proving existence and uniqueness of a solution u ∈D ′(Ω), since its
value at ψ ∈D ′(Ω) is given by finding the unique f ∈D(Ω) for which ψ = L∗ f , and putting

〈u,ψ〉= 〈F , f 〉. (B.52)

The assumption (B.51) then implies that if ψλ → ψ , i.e., L∗ fλ → L∗ f , then fλ → f , and
hence 〈F , fλ 〉 → 〈F , f 〉 since F ∈ D ′(Ω) by assumption, and hence 〈u,ψλ 〉 → 〈u,ψ〉, since
〈u,ψλ 〉= 〈F , fλ 〉. Thus u is a continuous linear functional on D(Ω) and hence u ∈D ′(Ω).

If L∗, still assumed to be injective, merely has dense range ran(L∗)⊂D(Ω), then one still
has existence and uniqueness of u, since for ψ ∈ ran(L∗) eq. (B.52) continues to apply, whereas
for ψ outside the range of L∗ we may write ψ = limλ L∗ fλ and then 〈u,ψ〉= limλ 〈F , fλ 〉.

Finally, if L∗, still injective, does not have dense range, the Hahn–Banach theorem (for locally
convex vector spaces) yields existence of u by extending the solution u : ran(L∗)→C constructed
above to a continuous linear map u : D ′(Ω)→C, but one loses uniqueness. Fortunately, in many
applications to PDEs uniqueness still follows from suitable energy inequalities.

Such inequalities also play a central role in refining the above argument. Suppose one has
two Gelfand(ish) triples D(Ω) ⊂W ⊂ D ′(Ω) and D(Ω) ⊂ Z ⊂ D ′(Ω), where W and Z are
Banach spaces and all inclusion maps are continuous with dense image, and suppose that

‖ f‖Z ≤C‖L∗ f‖W (∀ f ∈D(Ω)). (B.53)

This ‘energy condition’ supersedes the continuity assumption (B.51) within D(Ω), and is also
more powerful in that it clearly implies that L is injective, which is an essential condition for the
whole analysis to apply in the first place. Furthermore, the inequality (B.53) implies:

Provided L∗ is injective, for any F ∈ Z∗ there is a solution u ∈W ∗ to Lu = F .

Note that D(Ω) ⊂ Z implies Z∗ ⊂ D ′(Ω), and similarly D(Ω) ⊂W implies W ∗ ⊂ D ′(Ω).
Compared with the earlier argument where the assumption F ∈D ′(Ω) gave a solution u∈D ′(Ω),

706Moreover, the derivation requires that gµν (t,x), bµ (t,x), and a(t,x) be C∞ with uniform bounds on all
derivatives, where (t,x) ∈ [0,T ]×Rn, as well as ∑µ ,nu |gµν (t,x)−ηµν | ≤ 1

2 , where η is the Minkowski metric.
707The following arguments are adapted from Vasy (2015), chapter 17. The entire book is very useful.
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we have now strengthened the assumption to F ∈ Z∗ ⊂D ′(Ω), and, given (B.53), accordingly
strengthened the conclusion u ∈D ′(Ω) to u ∈W ∗ ⊂D ′(Ω). Indeed, noting that

ran(L∗) ⊂D(Ω) ⊂W , (B.54)

let ψ ∈ ran(L∗), so ψ = L∗ f , and define a linear map u : W → C initially on ran(L∗) ⊂W by

〈u,L∗ f 〉W ∗−W = 〈F , f 〉Z∗−Z . (B.55)

Because of (B.53), if L∗ fλ → L∗ f in W , then fλ → f in Z, and hence on the assumption F ∈ Z∗,
the functional u defined by (B.55) is continuous on ran(L∗) in the (norm) topology of W . Once
again, the Hahn–Banach extension theorem (but this time simply for Banach spaces) gives a
continuous extension u : W → C, i.e. u ∈W ∗, as claimed.

We now show how the energy estimate (B.48) implies an estimate à la (B.53). For any T > 0,
we replace u in (B.48) by f ∈C∞

c ((0,T )×Rn), which certainly satisfies the assumptions vali-
dating (B.48), and replace L by L∗. Then Dαu(0, ·) is replaced by Dα f (0, ·) = 0. Furthermore,
for any multi-index α , s ∈R, k ∈N, and f ∈ Hs, by definition of the Sobolev spaces we have

‖ f‖−s ≤C′ ∑
|α|≤k
‖Dα f‖−s−k. (B.56)

With k = 1, also using the trivial estimate
∫ t

0 dτ g(τ)≤
∫ T

0 dτ g(τ) for 0 < t < T and g(τ)≥ 0,
in this case with g(τ) = ‖L∗ f (τ , ·)‖−s−1, we find, for any s ∈Z and f ∈C∞

c ((0,∞)×Rn),

‖ f (t, ·)‖−s ≤C
∫ T

0
dτ ‖L∗ f (τ , ·)‖−s−1. (B.57)

This is a special case of (B.53), with

W = L1([0,T ],H−s−1(Rn)); Z =C([0,T ],H−s(Rn)); (B.58)

W ∗ = L∞([0,T ],Hs+1(Rn)); Z∗ ⊃ L1([0,T ],Hs(Rn)). (B.59)

The precise form of Z∗ (which is the space of bounded measures on [0,T ] taking values in Hs) is
not needed here. Assuming zero initial conditions for the moment, the abstract argument above
gives a solution u ∈ L∞([0,T ],Hs+1(Rn)) for F ∈ L1([0,T ],Hs(Rn)), which, by the original
energy inequality (B.48) is also unique. More advanced arguments involving elliptic regularity
further push the solution into (B.46).708 Finally, the case of nonzero initial data f ,g can be
reduced to the case f = g = 0 by a standard trick. For given F , let v solve Lv = F for zero initial
data. Define w(t,x) = f (x)+ tg(x). Then u = v+w solves Lu = F for given f ,g. Thus:

Theorem B.4 For any T > 0, let L be defined by (B.47), including all assumption stated
afterwards. For any s ∈Z, the linear wave equation Lu = F, with F ∈ L1([0,T ],Hs(Rn)) and
initial conditions f ∈ Hs+1(Rn) and g ∈ Hs(Rn), see (B.35), has a unique solution

u(t,x) ∈C([0,T ],Hs+1(Rn))∩C1([0,T ],Hs(Rn)). (B.60)

The Sobolev embedding theorem (B.23) then pushes this into the smooth realm:

Corollary B.5 In the setting of the previous theorem, if F, f , and g are smooth, then so is u.

One can also show that the causal properties of the solution relative to F and the initial data f ,g
are the same as for the free wave equation, except that the strong Huygens principle need not
apply. But the ‘ordinary’ one, implying causal propagation of initial data and F , always does.

708See Sogge (2008), p. 20.
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B.3 Quasi-linear wave equations

In either the (naive) wave gauge or its refinement the ĝ-wave gauge, the vacuum Einstein
equations (7.118) have the abstract form Lu = F , where u = gµν and L is like (B.47), with the
difference that in L = gρσ (u)∂ρ∂σ the coefficient of the highest (i.e. second) order derivative
now depends on u, and furthermore F = F(u,∂u) depends on u and ∂u. Such equations (in the
more general case that g and F may depend on u, ∂u, and even (t,x)) are called quasi-linear,
and if the signature of g is Lorentzian, as we of course assume, the PDE is hyperbolic.709

We assume for the moment that u takes values in R; the generalization to u = (gµν) taking
values in R10, is straightforward and will be outlined shortly. It is also sufficient for basic
applications to GR to assume that gρσ : R→R is smooth, as is F : R×Rn+1→R. So we study

gρσ (u)∂ρ∂σ u = F(u,∂u). (B.61)

As opposed to truly nonlinear hyperbolic PDEs, the quasi-linear case is relatively easy because
it can be solved by reduction to the linear case. One can only feel fortunate that the Einstein
equations (at least in a suitable gauge) fall into this category. Here is the basic result:710

Theorem B.6 Let F be smooth and gρσ smooth and not too far from the Minkowski metric.711

1. With f := u(0, ·)∈Hs+1(Rn) and g := u̇(0, ·)∈Hs(Rn), eq. (B.61) has a unique solution

u ∈ L∞([0,T ],Hs+1(Rn)); u̇ ∈ L∞([0,T ],Hs(Rn)), (B.62)

provided s > 1
2n. Here T is either arbitrary (as in the linear case),712 or there exists

T∗ = T∗(‖ f‖s+1,‖g‖s) (B.63)

such that ‖Dαu‖∞ = ∞ on [0,T∗]×Rn, for some |α| ≤ 2.

2. This u depends continuously on the initial data, i.e. if fk→ f in Hs+1(Rn) and gk→ g in
Hs(Rn), then uk→ u in L∞([0,T ],Hs+1(Rn)) with u̇k→ u̇ in L∞([0,T ],Hs(Rn)).

3. If f ∈C∞
c (R

n) and g ∈C∞
c (R

n), then u ∈C∞([0,T ]×Rn), cf. Corollary B.5.

Eq. (B.61) is solved using a generalization of the Picard iteration procedure.713 Take

u0(x) = f (x) = u(0,x), (B.64)

and iteratively define uk+1 as the solution to the inhomogeneous linear PDE

gρσ (uk)∂ρ∂σ uk+1 = F(uk,∂uk), (B.65)

709In fluid mechanics all these dependencies also occur, see e.g. Taylor (1996), chapter 16.
710See Sogge (2008), §I.4, Luk (undated), §6, Choquet-Bruhat (2009), App. III, or Ringström (2009), chapter 9.
711Think of ∑ρ ,σ ‖gρσ −ηρσ‖∞ ≤ 1

2 , as in Sogge (2008). For initial data f ∈ Hs+1(Rn) and g ∈ Hs(Rn), one
can make further (contrived) regularity assumptions on gρσ and F that push u into (B.60). See Ringström, Ch. 9.

712For an example with T∗ < ∞, take (∂ 2
t −∆)u = u3 with u(0,x) = u̇(0,x) = 1 (times a cutoff function), so that

u(t,x) = 1/(1− t) (for small x), and hence T ∗ = 1.
713Recall that an ODE u′(t) = f (t,u(t)) with initial condition u(0) = u0, which is equivalent to the integral equa-

tion u(t) = u0 +
∫ t

0 ds f (s,u(s)), may be solved by iteration from u0(t) = u0 and uk+1(t) = u0 +
∫ t

0 ds f (s,uk(s)).
For suitably regular f , this sequence (uk) uniformly converges to a solution u on some interval [0,T ].
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subject to the initial conditions uk+1(0,x) = f (x) and u̇k+1(0,x) = g(x), as for u itself.714 For
given uk(t,x), eq. (B.65) is the type of PDE studied in the previous section. Hence Theorem B.4
guarantees a solution for any T > 0, but convergence of the iteration and uniformity of the energy
inequality (B.44) in k, gives a less regular solution in Theorem B.6 compared to the linear case.

Theorem B.6 applies to the Einstein equations in the (ĝ-) wave gauge, except that:

• Instead of a single unknown u we now have 10 unknowns gµν , with one equation for each
(but the ensuing system is coupled, since gρσ is a function of all gµν and so is F(g,∂g)).

• The Cauchy surface {t = 0} ⊂Rn+1 is replaced by a 3d (Riemannian) manifold Σ.

• The initial data u(0, ·) = f and u̇(0, ·) = g are replaced by the Cauchy data (g̃, k̃ on Σ.

• Using either local coordinate patches and a partition of unity, or a background metric γ̂

on Σ making the construction coordinate-independent (like the ĝ-wave gauge), one can
define Sobolev spaces Hs(Σ) for any s ∈R (in view of s < 1

2n+1 in Theorem B.6, s ∈N

is enough).715 This construction may be extended from functions on Σ to arbitrary tensors
τ ∈ X(k,l)(Σ), yielding Sobolev spaces Hs

(k,l)(Σ). Thus one may say, e.g., k̃ ∈ Hs
(2,0)(Σ).

• The PDE (B.65) is replaced by the reduced (vacuum) Einstein equations (7.118).

This eventually leads to Theorem 7.16 in §7.6 and its localization Proposition 7.17. Much as
uniqueness is proved from an energy inequality, the localized uniqueness of the above kind is
proved from a localized energy inequality. We merely explain this for the free wave equation
�u = 0 in Rn+1, but the principle is the same also in Lorentzian geometry.716

For any 0≤ t ≤ R, (t,x) ∈Rn+1, and (reasonable) function u(t,x), define

E(t,x,R) = 1
2

∫
|y−x|≤R−t

dny [u̇(t,y)2 +∇u(t,y) ·∇u(t,y)]. (B.66)

This is just the energy of u, restricted to the ball B(x;R− t) ⊂Rn. If �u = 0, then

0≤ s≤ t ⇒ 0≤ E(t,x,R) ≤ E(s,x,R). (B.67)

That is, t 7→ E(t,x,R) is monotonically non-increasing. Fix R > 0, and note that

E(0,x,R) = 1
2

∫
B(x,R)

dny(g(y)2 +∇ f (y) ·∇ f (y)). (B.68)

Eq. (B.68) implies that if f (y) = g(y) = 0 for all y such that |y− x| ≤ R, then E(0,x,R) = 0,
and hence E(t,x,R) = 0 for all 0 ≤ t ≤ R by (B.67), and hence u(t,x) = 0 by (B.68). Taking
R = t shows that if f (y) = g(y) = 0 for all y such that |y− x| ≤ t, then u(t,x) = 0. In other
words, if f = g = 0 within Σ0 ⊂ Σ (defined as the t = 0 hyperplane Rn

0 in Rn+1), then u = 0
within D+(Σ). Equivalently, if u1 = u2 and u̇1 = u̇2 at Σ0, then u1 = u2 in D+(Σ0). In case of
the Einstein equations, u1 = u2 becomes g1

∼= g2 (isometrically), but otherwise the reasoning is
similar, ultimately based on the property g1 = g2 if both metrics are brought into the same gauge.

714This works if f ,g ∈C∞
c (R

n). For initial data f ∈Hs(Rn) and g ∈Hs+1(Rn) one needs to approximate f and g
within the spaces mentioned by sequences ( fk) and (gk) in C∞

c (R
n), respectively, upon which the initial conditions

for (B.65) change into uk+1(0,x) = fk+1(x) and u̇k+1(0,x) = gk+1(x).
715See Taylor (1996), Vol. I, chapter 4, Ringström (2009), chapter 15, or Choquet-Bruhat (2009), Appendix I.
716See Choquet-Bruhat (2009), Appendix III, Theorem 2.15.
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Leray, J. (1953). Hyperbolic Differential Equations (Mimeographed Lecture Notes, The Institute for Advanced
Study).

Levi-Civita, T. (1917a). Nozione di parallelismo in una varietà qualunque e conseguente specificazione geometrica
della curvatura riemanniana. Rendiconti del Circolo Matematico di Palermo XLII, 173–215.

Levi-Civita, T. (1917b). Realtà fisica di alcuni spazî normali del Bianchi, Rendiconti della Reale Accademia dei
Lincei 26, 519–31.

Levi-Civita, T. (1926). The Absolute Differential Calculus (Blackie & Son).

Lichnerowicz, A. (1939). Sur Certains Problèmes Globaux Relatifs au Système des Équations d’Einstein. PhD
Thesis, Université de Paris. http://archive.numdam.org/article/THESE_1939__226__1_0.pdf.

http://archive.numdam.org/article/THESE_1939__226__1_0.pdf


History of general relativity: Primary sources 357

Lichnerowicz, A. (1944). L’intégration des équations de la gravitation relativiste et le problème des n-corps. Journal
de Mathématiques Pures et Appliquées 23, 37–63.

Lichnerowicz, A. (1955). Théories Relativistes de la Gravitation et de l’Électromagnetisme (Masson).

Lorentz, H.A. (1916). Over Einstein’s theorie der zwaartekracht, I-IV. Koninklijke Akademie van Wetenschappen
te Amsterdam. Verslagen van de Gewone Vergaderingen der Wis- en Natuurkundige Afdeeling 24, 1389–1402,
1759–1774, 25, 468–486, 1380–1396. English translation in Lorentz, H.A. (1937), Collected Papers, Vol. 5, pp.
246–313 (Nijhoff).

Manasse, F.K., Misner, C.W. (1963). Fermi normal coordinates and some basic concepts in differential geometry.
Journal of Mathematical Physics 4, 735–745.

Misner, C.W. (1963). The flatter regions of Newman, Unti, and Tamburino’s generalized Schwarzschild space.
Journal of Mathematical Physics 4, 924–937.

Misner, C.W., Taub, A.H. (1969). A singularity-free empty universe. Soviet Physics JETP 55, 233–255.

Noether, E. (1918). Invariante Variationsprobleme. Nachrichten von der Königlichen Gesellschaft der Wissenschaften
zu Göttingen, Mathematisch-Physikalische Klasse 253–260.

Nordström, G. (1918). On the energy of the gravitational field in Einstein’s theory. Koninklijke Akademie van
Wetenschappen te Amsterdam. Verslagen van de Gewone Vergaderingen der Wis- en Natuurkundige Afdeeling 26,
1201–1208.

Oppenheimer, J.R., Volkoff, G.M. (1939). On massive neutron cores. Physical Review 55, 374–381.

Oppenheimer, J.R., Snyder, H. (1939). On continued gravitational contraction. Physical Review 56, 455–459.

Pauli, W. (1921). Relativitätstheorie. Encyklopädie der mathematischen Wissenschafen Vol. V19 (Teubner). Transla-
tion: Theory of Relativity (Pergamon Press, 1958, Dover, 1981).

Penrose, R. (1963). Null hypersurface initial data for classical fields of arbitrary spin and for general relativity.
Aerospace Research Laboratories 63–65. Reprinted in General Relativity and Gravitation 12, 225–264 (1980).

Penrose, R. (1964). Conformal treatment of infinity. Relativity, Groups, and Topology, eds. DeWitt, B., DeWitt-
Morette, C.M. , pp. 565–584 (Gordon & Breach). Reprinted in General Relativity and Gravitation 43, 901–922
(2011).

Penrose, R. (1965a). A remarkable property of plane waves in general relativity. Reviews of Modern Physics 37,
215–220.

Penrose, R. (1965b). Zero rest-mass fields including gravitation: asymptotic behaviour. Proceedings of the Royal
Society of London A 284, 159–203.

Penrose, R. (1965c). Gravitational collapse and space-time singularities. Physical Review Letters 14, 57–59.

Penrose, R. (1966). An analysis of the structure of space-time. Adams Prize Essay. Roger Penrose: Collected Works,
Volume 1: 1953–1967, pp. 579–730 (Oxford University Press, 2011).

Penrose, R. (1968). Structure of space-time. Batelle Rencontres: 1967 Lectures in Mathematics and Physics, eds.
DeWitt, C., Wheeler, J.A., pp. 121–235 (W.A. Benjamin).

Penrose, R. (1969). Gravitational collapse: The role of general relativity. Rivista del Nuovo Cimento, Numero
Speziale I, 252. Reprinted in General Relativity and Gravitation 34, 1141–1165 (2002).

Poincaré, H. (1895). Analysis Situs. Journal de l’École Polytechnique. Serié 11. Translation (by J. Stillwell): Papers
on Topology: Analysis Situs and Its Five Supplements. https://www.maths.ed.ac.uk/~v1ranick/papers/
poincare2009.pdf

Racine, C. (1934). Le problème des n corps dans la théorie de la Relativité. PhD Thesis, University of Paris.

Reichenbach, H. (1924). Axiomatik der relativistische Raum-Zeit-Lehre (Vieweg).

Reichenbach, H. (1928). Philosophie der Raum-Zeit-Lehre (Walter de Gruyter).

Reissner, H. (1916). Über die Eigengravitation des elektrischen Feldes nach der Einsteinschen Theorie. Annalen der
Physik 50, 106–120.

Ricci, M.M.G, Levi-Civita, T. (1901). Méthodes de calcul différentiel absolu et leurs applications. Mathematische
Annalen 54, 125–201.

Riemann, B. (1854). Über die Hypothesen, welche der Geometrie zu Grunde liegen (Habilitationsvortrag). Abhand-
lungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen 13, 132–152 (1867).

https://www.maths.ed.ac.uk/~v1ranick/papers/poincare2009.pdf
https://www.maths.ed.ac.uk/~v1ranick/papers/poincare2009.pdf


358 Literature

Riemann, B. (1876). Gesammelte Werke und Wissenschaftlicher Nachlass, eds. R. Dedekind & H. Weber (Teubner).
https://www.emis.de/classics/Riemann/Geom.pdf.

Rindler, W. (1956). Visual horizons in world models. Monthly Notices of the Royal Astronomical Society 116,
662–677.

Robb, A.A. (1914). A Theory of Time and Space (Cambridge University Press).

Robb, A.A. (1936). Geometry of Time and Space (Cambridge University Press).

Schlick, M. (1922). Raum und Zeit in der gegenwärtigen Physik (Springer).

Schouten, J.A.. (1918). Die direkte Analysis zur neueren Relativitätsttheorie, Verhandelingen der Koninklijke
Akademie van Wetenschappen te Amsterdam, 12, 1–95.

Schouten, J.A.. (1924). Der Ricci-Kalkül (Springer, 1924).

Schouten, J. A., Struik, D. J. (1936). Einführung in die neueren Methoden der Differentialgeometrie (Noordhoff).

Schrödinger, E. (1950). Space-Time Structure (Cambridge University Press).

Schwarzschild, K. (1916). Über das Gravitationsfeld eines Massenpunktes nach der einsteinschen Theorie. Sitzungs-
berichte der Königlich Preußischen Akademie der Wissenschaften (Berlin) 189–196. English translation: On the
gravitational field of a mass point according to Einstein’s theory. arXiv:physics/9905030.

Shepley, L.C. (1964). Singularities in spatially homogeneous, dust-filled uiverses. Proceedings of the National
Academy of Sciences 52, 1403–1409.

Shepley, L.C. (1965). SO(3,R)-Homogeneous Cosmologies. PhD Thesis, Princeton University.

Sitter, W. de (1917a). On the relativity of inertia: Remarks concerning Einstein’s latest hypothesis. Proceedings
of the Royal Netherlands Academy of Arts and Sciences (KNAW) 19,1217–1225. https://archive.org/
details/proceedingsofsec192koni/page/1216/mode/2up.

Sitter, W. de (1917b). On the curvature of space. Proceedings of the Royal Netherlands Academy of Arts and
Sciences (KNAW) 20, 229–243. https://archive.org/details/proceedingsofsec201koni/page/228/
mode/2up.

Tolman, R.C., Ward, M. (1932). On the behavior of non-static models of the universe when the cosmological term is
omitted. Physical Review 39, 835–843.

Veblen, O., Whitehead, J.H.C. (1932). The Foundations of Differential Geometry (Cambridge University Press).

Weyl, H. (1913). Die Idee der Riemannschen Fläche (Teubner).

Weyl, H. (1917). Zur Gravitationstheorie. Annalen der Physik 54, 117–145.

Weyl, H. (1918a). Raum - Zeit - Materie: Vorlesungen über Allgemeine Relativitätstheorie (Springer). English
translation (of the fourth edition from 1921): Space - Time - Matter (Methuen, 1922).

Weyl, H. (1918b). Reine Infinitesimalgeometrie. Mathematische Zeitschrift 2, 384–411.

Whitney, H. (1936). Differentiable manifolds. Annals of Mathematics 37, 645–680.

Zeeman, E.C. (1964). Causality implies the Lorentz group. Journal of Mathematical Physics 5, 490–493.

History of general relativity: Secondary sources
Antoci, S. (2003). David Hilbert and the origin of the “Schwarzschild solution”. arXiv:physics/0310104.

Antoci, S., Liebscher, E. (2001). Reconsidering Schwarzschild’s original solution. Astronomical Notes 322, 137–142.

Ashtekar, A. (2014). The last 50 years of general relativity and gravitation: from GR3 to GR20 Warsaw conferences.
General Relativity and Gravitation 46:1706.

Barbour, J.B. (1989). Absolute or Relative Motion? Volume 1: The Discovery of Dynamics (Cambridge University
Press).

Biezunski, M. (1987). Einstein’s reception in Paris in 1922. The Comparative Reception of Relativity, ed. Glick,
T.F., pp. 169–188 (Springer).

Blum, A., Lalli, R., Renn, J. (2015). The reinvention of general relativity: A historiographical framework for
assessing one hundred years of curved space-time. Isis 106, 598–620.

https://www.emis.de/classics/Riemann/Geom.pdf
arXiv:physics/9905030
https://archive.org/details/proceedingsofsec192koni/page/1216/mode/2up
https://archive.org/details/proceedingsofsec192koni/page/1216/mode/2up
https://archive.org/details/proceedingsofsec201koni/page/228/mode/2up
https://archive.org/details/proceedingsofsec201koni/page/228/mode/2up
arXiv:physics/0310104


History of general relativity: Secondary sources 359

Blum, A.S., Lalli, R., Renn, J. (2016). The renaissance of general relativity: How and why it happened. Annalen der
Physik 528, 344–349.

Blum, A.S., Lalli, R., Renn, J., eds. (2020). The Renaissance of General Relativity in Context (Springer).

Brezis, H., Browder, F. (1998). Partial differential equations in the 20th century. Advances in Mathematics 135,
76–144.

Carter, B. (2006). Half a century of black hole theory: From physicists’ purgatory to mathematicians’ paradise. AIP
Conference Proceedings 841, 29–50.

Cassirer, E. (1936). Determinismus und Indeterminismus in der modernen Physik: Historische und systematische
Studien zum Kausalproblem. Acta Universitatis Gotoburgensis XLII, no. 3, pp. 1–256. Reprinted in Cassirer, E.
(2004). Gesammelte Werke, Hamburger Ausgabe, Band 19. Recki, B. (ed.). Hamburg: Felix Meiner Verlag.

Choquet-Bruhat, Y. (2014). Beginnings of the Cauchy problem. arXiv:1410.3490.

Choquet-Bruhat, Y. (2018). A Lady Mathematician in this Strange Universe: Memoirs (World Scientific).

Corry, L. (1999). From Mie’s electromagnetic theory of matter to Hilbert’s unified foundations of physics, Studies
in History and Philosophy of Modern Physics 30, 159–183.

Corry, L. (2004). David Hilbert and the Axiomatization of Physics (1898–1918): From Grundlagen der Geometrie
to Grundlagen der Physik (Kluwer).

Corry, L. (2018). Hilbert’s sixth problem: Between the foundations of geometry and the axiomatization of physics.
Philosophical Transactions of the Royal Society A. DOI: 10.1098/rsta.2017.0221.

Curiel, E. (2019a). Singularities and Black Holes. The Stanford Encyclopedia of Philosophy (Spring
2019 Edition), ed. Zalta, E.N. https://plato.stanford.edu/archives/spr2019/entries/
spacetime-singularities/.

Dadhich, N. (2020). Indian contribution to the physics of black holes: 2020 Nobel Prize. Current Science 119,
2030–2033.

Darrigol, O. (2014). The mystery of Riemann’s curvature. Historia Mathematica 42, 47–83.

DeWitt-Morette, C. (2011). The Pursuit of Quantum Gravity: Memoirs of Bryce DeWitt from 1946 to 2004
(Springer).

Dell’Aglio, L. (1997). On the genesis of the concept of covariant differentiation. Revue d’histoire des mathématiques
2, 215–264.

Dieks, D. (2006). Another look at general covariance and the equivalence of reference frames. Studies in History
and Philosophy of Modern Physics 37, 174–191.

Dieks, D. (2018). Time, coordinates and clocks: Einstein’s struggle. arXiv:1801.09297.

Dongen, J. van (2010). Einstein’s Unification (Cambridge University Press).

Dongen, J. van (2017). The epistemic virtues of the virtuous theorist: On Albert Einstein and his autobiography.
Epistemic Virtues in the Sciences and the Humanities, Boston Studies in the Philosophy and History of Science,
Vol. 321, eds. Dongen, J. van, Paul, H., pp. 63–77 (Springer).

Earman, J. (1989). World Enough and Space-Time: Absolute versus Relational Theories of Space and Time (The
MIT Press).

Earman, J. (1995). Bangs, Crunches, Whimpers, and Shrieks: Singularities and Acausalities in Relativistic
Spacetimes (Oxford University Press).

Earman, J. (1999). The Penrose–Hawking singularity theorems: History and implications. The Expanding Worlds
of General Relativity (Einstein Studies Vol. 7), eds. Goenner, H., Renn, J., Ritter, T., Sauer, T., pp. 236–267
(Birkhäuser).

Earman, J., Eisenstaedt, J. (1999). Einstein and singularities. Studies in History and Philosophy of Modern Physics
30, 185–235.

Eckes, C. (2019). Hermann Weyl in Göttingen (1904–1913): The combined impact of Hilbert, Klein
and Zermelo, Bhavana: The Mathematics Magazine 3 (January 2019). https://bhavana.org.in/
hermann-weyl-part2/.

Eggertsson, R. (2019). The Noether Theorems. MSc Thesis, Radboud University Nijmegen. Available on request.

Ehlers, J. (2007). A K Raychaudhuri and his equation. Pramana–Journal of Physics 69, 7–14.

arXiv:1410.3490
10.1098/rsta.2017.0221
https://plato.stanford.edu/archives/spr2019/entries/spacetime-singularities/
https://plato.stanford.edu/archives/spr2019/entries/spacetime-singularities/
arXiv:1801.09297
https://bhavana.org.in/hermann-weyl-part2/
https://bhavana.org.in/hermann-weyl-part2/


360 Literature
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Chruściel, P.T. (1996). Uniqueness of stationary, electro-vacuum black holes revisited. arXiv:gr-qc/9610010.
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Chruściel, P.T., Galloway, G.J., Pollack, D. (2010). Mathematical general relativity: A sampler. Bulletin of the
American Mathematical Society 47, 567–638.
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Chruściel, P.T., Lopes Costa, J., Heusler, M. (2012). Stationary black holes: Uniqueness and beyond. Living Reviews
in Relativity 15:7. https://link.springer.com/article/10.12942/lrr-2012-7.
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Reissner–Nordström, 251

Cauchy surface, 113
wannabe (= partial), 116, 294
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Cayley transform, 266
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Choquet-Bruhat, Yvonne (1923), vi, 24
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circularity theorem, 314
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Killing operator, 206
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connection
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linear, 52
metric, 56
on a vector bundle, 55
torsion-free, 53
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constant curvature, 68, 338
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general relativity, 165
Hamiltonian, 178, 189
momentum, 178, 189
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corner point, 44
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cosmic censorship, 282

PDE version, 284
Penrose version, 280, 283
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Cotton tensor, 75
covariant approach
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general relativity, 167
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curvature, 68
curvature tensor, 59
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energy, 50
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inextendible, 106
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spacelike, 94
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D
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Darmois identity, 187

Darmois, Georges (1888–1960), 23
de Sitter space, 70, 125, 229

as space of constant curvature, 70
Killing horizon, 230
static patch, 229

deformation algebra, 213
derivation, 32, 45

point, 32
derivative

classical, 344
weak, 344

determinism, 173, 180, 288
development of initial data, 286
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diffeomorphism group, 31
Dirichlet integral, 169
distance, 49
distribution, 343

tempered, 344
divergence, 154
domain of dependence, 114, 294
domain of flow, 36
domain of influence, 114, 294
domain of outer communication, 282
double cone, 110
dual basis, 43
dual vector space, 37
dust, 161

E
Eddington–Finkelstein coordinates, 238
edge, 116, 294
edgeless subset, 116
eikonal equation, 141
Einstein field equations, 1, 15, 153

characteristic initial value problem, 176
dynamical, 165, 189
existence and uniqueness of solutions, 173
non-characteristic initial value problem, 169
properties of solutions, 176

Einstein flow, 211
Einstein manifold, 74
Einstein metric, 74
Einstein summation convention, 40, 46
Einstein tensor, 74, 159

reduced, 166
Einstein’s static universe, 272
Einstein, Albert (1879–1955), v, 1–6, 8–12, 14–19, 22,

26–28, 70, 126, 161
Einstein–Hilbert action, 153
Einstein–Rosen bridge, 245
electric field, 163
electromagnetic field, 162
electromagnetism, 163
end (of asymptotically flat space-time), 193
energy conditions, 160

dominant (DEC), 160
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strengthened dominant (SDEC), 160
weak (WEC), 160

energy density, 160
energy inequality, 348
energy-momentum four-vector, 160
energy-momentum tensor, 160

conservation law, 161
dust, 161
electromagnetic field, 162
gravitational field, 197
perfect fluid, 161
scalar field, 162

Entwurf Theorie, 12
equation of geodesic deviation, 85
equivalence principle, 4
equivariant map, 72
ergosphere, 260
ergosurface

inner, 260
outer, 260

Ernst equation, 314
Ernst potential, 314
Escher, Maurits Cornelis (1898–1972), vii, 69
Euclidean group, 73, 328
Euclidean space, 68
Euler equations, 161
Euler–Lagrange equations, 49
event horizon, 294

future, 278
Kerr, 259
past, 278
Reissner–Nordström, 251
Schwarzschild, 238

exponential map, 67, 88
exterior derivative, 39, 46, 153
exterior multiplication, 153
extrinsic curvature, 64, 79, 137

mean, 137

F
p-form, 153
1-form, 39, 45
Fermi derivative, 138
Fermi normal coordinates, 92
fiber, 33
final state conjecture, 303
fine-tuning problem, 288
first fundamental form, 64
FLRW solution, 125
focal point, 139, 144
foliation, 183

canonical, 214
Fourier transform, 345
frame, 39
Frobenius theorem, 60
function

smooth, 31
fundamental theorem for hypersurfaces, 80
future

asymptotically predictability, 282
Cauchy development, 114
distinguishing, 124
event horizon, 278
null infinity, 267
set, 294

G
gauge invariance, 163
Gauss equation, 79
Gauss curvature, 65
Gauss law, 163
Gauss Lemma, 90
Gauss, Carl Friedrich (1777–1855), 6, 59, 64, 66
Gauss–Codazzi equations, 67, 79
Gauss–Weingarten equations, 67, 79
Geiser, Carl Friedrich (1843–1934), 6
Gelfand triple, 344
general covariance, 8–13, 15, 26–29, 198, 207
generator of horizon, 296
genericity condition (Hawking–Penrose), 152
geodesic, 49, 53

(in)complete, 106
deviation, 85
equation, 50
future complete, 106
normal coordinates, 89
past complete, 106
reflection, 337

geodesically complete manifold, 51
geometric uniqueness, 172
global hyperbolicity, 110–113, 118, 121, 136, 149,

152, 283
and strong cosmic censorship, 284
failure in anti de Sitter space-time, 122
failure in Kerr space-time, 293
failure in Reissner–Nordström space-time, 293

globally hyperbolic development, 171
maximal (= MGHD), 172

graviton, 199
Grossmann, Marcel (1878–1936), 6
groupoid, 222

action, 222
Lie, 222
pair, 222

H
h-arc length, 107
Hamilton’s equations, 217
Hamiltonian Lie algebra action, 217
harmonic coordinates, 165
harmonic map, 169
Hawking temperature, 320
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Hawking, Stephen (1942–2018), v, vii, 25, 111, 116,
265, 278, 320

area law, 319
rigidity theorem, 311
singularity (incompleteness) theorem, 136

Hawking–Penrose singularity theorem, 151
Hilbert, David (1862–1943), 1, 8, 10, 14, 15, 17–20,

22, 23, 126, 153, 227, 232
Hole Argument

Earman–Norton’s version, 30
Einstein’s version, 13
Hilbert’s version, 165, 180
revisited, 180

homogeneous
G-space, 331
(semi) Riemannian manifold, 336
space, 71, 72, 331

horismos, 94
horizon

apparent, 317
Cauchy, 116, 294
event, 278, 294
Killing, 299

Huygens principle, 348
strong, 348

hyperboloid, 68
hypersurface, 76

null, 77
spacelike, 77
timelike, 77

I
impact parameter, 234
indices, 40
inertial frame dragging, 257
infinite redshift, 238
insertion map, 153
integration of curve, 36
interior (of manifold with boundary), 44
isometry, 30, 58, 71
isometry group, 71, 336
isotropic space, 72
isotropy representation, 332
Israel’s theorem, 306

J
Jacobi equation, 85
Jacobi field, 85
Jacobi identity, 32, 329

K
Kerr metric, 255

extremal, 256
Kerr–Schild form, 259
rapidly rotating, 256
slowly rotating, 256

Kerr rigidity, 313

Kerr stability, 313
Killing horizon, 294, 299

bifurcate, 231, 300
de Sitter space-time, 231
degenerate, 301
Kerr space-time, 260
non-degenerate, 301
Reissner–Nordström space-time, 253
Schwarzschild space-time, 230

Killing vector field, 58
Komar formulae, 256
Koszul formula, 54
Kretschmann scalar

Kerr, 255
Reissner–Nordström, 249
Schwarzschild, 233

Kruskal coordinates, 240
Kruskal diagram, 241
Kruskal metric, 240
Kruskal–Szekeres coordinates, 242
Kulkarni–Nomizu product, 75

L
Lambert W -function, 237
lapse, 121, 133, 183
Leibniz rule, 32, 43, 52, 55
Levi-Civita, Tulio (1873–1941), 8, 19
Lichnerowicz, André (1915–1998), 24

equation, 206
theorem, 194

Lie algebra, 32, 329
action, 217
structure constants, 217

Lie algebroid, 222
Lie derivative, 36, 43, 46
Lie group, 327
Lie product formula, 329
Lie’s third theorem, 340
Lie–Poisson bracket, 217
lightcone, 93

backward, 93
forward, 93

limit curve lemma, 109, 118
Liouville’s theorem, 306
Lorentz group, 198, 327

proper orthochronous, 198
Lorentzian cover, 70
Lorentzian distance, 99
Lorenz gauge, 164
Lovelock’s Theorem, 156
lowering and raising of indices, 48

M
Mach’s principle, 3
Malament’s theorem, 124
manifest image, 183
manifold
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Ck, 31
geodesically complete, 51
locally flat, 60
Lorentzian, 47
orientable, 153
Riemannian, 47
semi-Riemannian, 47
smooth, 31
time orientable, 93
topological, 31
with boundary, 44
with corners, 44

marginally outer trapped surface (MOTS ), 317
maximal slicings, 205
mean curvature, 65
metric

de Sitter, 125
densitized, 168
FLRW, 125
Kerr, 255
Kerr–Newman, 263
Majumdar–Papapetrou, 309
Minkowski, 47
on vector bundle, 56
on vector space, 37
Papapetrou form, 314
Reissner–Nordström, 248
Schwarzschild, 125, 232

metric tensor, 47
Lorentzian, 47
Riemannian, 47
semi-Riemannian, 47

MGHD = maximal globally hyperbolic development,
172

Minguzzi’s singularity theorem, 152
minimal area enclosure, 318
minimal coupling, 190
minimal surface, 317

outermost, 318
Minkowski hypercylinder, 98
Minkowski space-time, 47, 70
Minkowski, Hermann (1864–1909), 17
Misner, Charles (1932), vi, 129
module, 32

finitely generated projective, 33
free, 33

momentum density, 160
momentum map, 217
MOTS = marginally outer trapped surface, 317

N
naked singularity, 282
nbhd = neighbourhood, 31

convex, 88
normal, 67, 88
star-shaped, 88

Noether’s theorem, 159, 217

non-covariant approach
electromagnetism, 164
general relativity, 167, 183

null curvature condition, 149
null expansion, 144
null infinity

future, 267, 270, 278
past, 267, 270, 278

O
optical function, 141
orientation, 153
orthonormal basis, 37

P
parallel transport, 52
past

(in)complete geodesic, 106
Cauchy development, 114
distinguishing, 124
event horizon, 278
null infinity, 267
reflecting, 152
set, 294

PDE
hyperbolic, 351
quasi-linear, 351

Penrose diagram, 270
anti de Sitter space, 273
de Sitter space, 273
Kerr space-time, 262, 263
Kruskal space-time, 244, 277
Minkowski space-time, 270
Oppenheimer–Snyder space-time, 247
Reissner–Nordström space-time, 248, 249, 253
Schwarzschild space-time, 244

Penrose inequality, 318
Riemannian, 318

Penrose process, 260, 322
Penrose, Roger (1931), v–vii, 1, 22, 25, 141, 151, 176,

278
cosmic censorship, 280, 283
final state conjecture, 303
singularity (incompleteness) theorem, 130, 149

perfect fluid, 161
photon, 199
photon capture radius, 233
photon sphere, 233, 235
Plateau Problem, 205
Poincaré disc, 266
Poincaré group, 73, 328
Poincaré upper half-plane, 266
point derivation, 45
Poisson algebra, 216
Poisson bracket, 216
Poisson manifold, 216
positive mass theorem, 195
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pregeodesic, 51
problem of time, 225

A-series, 225
B-series, 225
manifest time, 225

propagation of constraints
electromagnetism, 164
general relativity, 167

propagation of gauge
electromagnetism, 164
general relativity, 167

pullback of covector, 39
pullback of function, 35
pushforward of point derivation, 35
pushforward of tangent vector, 36

R
Raychaudhuri equation, 135

null, 147
reductive decomposition, 332
Rellich theorem, 346
rest photons, 239
Ricci Flow, 196
Ricci scalar, 48
Ricci tensor, 74

wave-gauged, 166
Ricci-Curbastro, Gregorio (1853–1925), 8
Riemann tensor, 60
Riemann, Bernhard (1826–1866), 6, 7, 69
Riemannian geometry, 6
Riemannian manifold, 47

asymptotically flat, 193
Rindler horizon, 299
Rindler wedge, 299

S
scalar curvature, 74
scalar field, 162
Schwarzschild radius, 232
Schwarzschild solution, 125
scientific image, 183
second fundamental form, 64
section of null hypersurface, 142
sectional curvature, 63
Seeley’s extension theorem, 44
semi-colon notation, 57
semidirect product, 328
Serre–Swan Theorem, 33
shift, 183
signature of metric, 37
singularity

definition, 132
locally naked, 283
naked, 250, 283
ring, 255
spacelike, 250
timelike, 250

singularity (incompleteness) theorem
Chruściel–Galloway, 152
Eichmair–Galloway–Pollack, 152
Fewster–Galloway, Fewster–Kontou, 152
Freivogel–Kontou–Krommydas, 152
Gannon–Lee (topological), 152
Graf–Grant–Kunzinger–Steinbauer, 152
Hawking, 136
Hawking–Penrose, 151
Lesourd, 152
Minguzzi, 152
Penrose, 130, 149

Smarr’s formula, 322
smooth map, 31
Sobolev duality theorem, 346
Sobolev embedding theorem, 346
Sobolev space, 345
space, 31

constant curvature, 68, 338
locally symmetric, 337
symmetric, 337

space-time, 93
anti de Sitter, 70
asymptotically flat, 193
asymptotically flat and stationary, 194
asymptotically flat at null infinity, 274
asymptotically simple, 267
causal, 110
causally incomplete, 132
chronological, 110
de Sitter, 70
distinguishing, 124
electrovac, 310
extendible, 132
globally hyperbolic, 110
inextendible, 132
Kerr, 255
Kerr–Newman, 263
Kruskal, 241
Majumdar–Papapetrou, 309
Malament–Hogarth, 281
Minkowski, 47
non-imprisoning, 110
non-partially imprisoning, 110
non-totally vicious, 121
Oppenheimer–Snyder, 246
Quinten, 96
reflecting, 121
Reissner–Nordström, 250
Schwarzschild, 238, 241
singular, 132
spherically symmetric, 304
stably causal, 119
static, 193
stationary, 193
strongly causal, 110
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substantivalism, 30
totally vicious, 121

spacelike infinity, 270, 278
spatial projection, 134
sphere, 68
stabilizer, 332
static observer, 237
staticity theorem, 313
stationary limit surface, 260
Stokes theorem, 155
stress tensor, 160
strong cosmic censorship

PDE version, 288
Penrose version, 283

Strong Energy Condition (SEC), 136
submanifold, 76

k-dimensional, 76
embedded, 76
immersed, 76

surface gravity, 300, 301
Reissner–Nordström, 250
Schwarzschild, 240

symmetric space, 337
symplectic quotient, 223
symplectic reduction, 223
Synge’s formula, 87, 236

T
tangent bundle, 33, 34, 45

of manifold with boundary or corners, 44
tangent vector, 45
temporal function, 120
tensor, 40

of type (k, l), 46
tensor field, 40
tensor product, 37
tensoring, 42
test function, 343

rapidly decreasing, 343
tetrad, 39
Theorema Egregium, 66
time function, 119
time orientation, 93
timelike curvature condition, 136
timelike infinity

future, 270, 278
past, 270, 278

top element of poset, 174
topological censorship, 312
topological singularity theorem, 152
torsion, 53
total domain of dependence, 114
total imprisonment, 110
transverse traceless, 206
trapped surface

future, 145
future outer, 317
marginally outer, 317
outer, 152
weakly outer, 317

trivial bundle, 33

U
uniform convergence, 108
uniformization theorem, 204
uniqueness theorems, 303

V
vacuum Einstein equations, 158
vector

“length”, 94
causal, 93
future-directed (fd), 93
lightlike, 93
null, 93
past-directed (pd), 93
spacelike, 93
timelike, 93

vector bundle, 33
vector bundle map, 33
vector field, 34, 45

acceleration, 185
complete, 36
flow, 36
Gaussian, 214
Hamiltonian, 216

vierbein, 39

W
wave coordinates, 165
wave equations

linear, 347
quasi-linear, 351

wave gauge, 165
wave map, 169
weak cosmic censorship

PDE version, 288
Penrose version, 283

Weingarten map, 64, 79
Weyl tensor, 75
Weyl, Hermann (1885–1955), v, 2, 20, 21, 23, 25, 126,

232
white hole, 240, 278
white hole region, 278
Wigner cocycle, 200
wormhole, 245

Y
Yamabe class, 205
Yamabe problem, 204
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