Journal of Geometry and Physics 12 (1993) 93-132 JOURNAL OF

North-Holland GEOMETRY anp
PHYSICS

Strict deformation quantization of a particle in
external gravitational and Yang-Mills fields

N.P. Landsman !

Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Silver Street, Cambridge CB3 9EW, United Kingdom

Received 22 October 1992
(Revised 25 January 1993)

An adaptation of Rieffel’s notion of “strict deformation quantization” is applied to a
particle moving on an arbitrary Riemannian manifold Q in an external gauge field, that
is, a connection on a principal H-bundle P over Q. Hence the Poisson algebra A, =
Co((T*P)/H) is deformed into the C*-algebra A = K(L2(P))¥ of H-invariant compact
operators on L?(P), which is isomorphic to K (L2(Q))®C* (H), involving the group algebra
of H. Planck’s constant # is a genuine number rather than a formal expansion parameter,
and in the limit # — 0 commutators and anti-commutators converge to Poisson brackets
and pointwise products, respectively, in a well-defined analytic sense. This deformation can
be interpreted in terms of Lie groupoids and algebroids, as A is the Poisson algebra of the
Lie algebroid (7P)/H, whereas A is the C*-algebra of the gauge groupoid of the bundle
(P,Q, H). Other topics we discuss from the point of view of our formalism are Wigner
functions, and the quantization of the Hamiltonian as well as position and momentum
(including their domains).
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1. Introduction

Building upon previous leads [5,3], M. Rieffel recently proposed a mathe-
matically satisfactory framework of quantization [36,37]. The main point of
his approach is to make precise the intuitive idea, due to Dirac, that quantum
commutators (times i/#) should converge to Poisson brackets in the “classi-
cal imit” # — 0. We combine this with an analogous requirement that the
anti-commutator converge to the pointwise product, and with a physically self-
evident reality condition. Thus we are led to the following procedure of “strict
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deformation quantization”. (For standard results and terminology in the theory
of C*-algebras we refer to ref. [33], and for Poisson algebras and geometry we
recommend refs. [43,8].)

Given a Poisson manifold S, form the commutative C*-algebra A4y = ((S)
of continuous complex-valued functions on .S which vanish at infinity, and single
out a dense subalgebra Aj on which the Poisson bracket {, } is well defined (note
that Ay is not necessarily the maximal subalgebra of 4y on which the Poisson
bracket is defined). Then find a non-commutative C*-algebra A and a family of
linear maps Qy, : Ay — A, defined for /1 € (0, %), where 7 > 0 may depend on
the argument of Qy, so that the following conditions are satisfied for all /. 1}, f>
in Ay (for simplicity, we denote the norm and the adjoint in both 4, and A by
| || and *. respectively; we recall that || f|| = sup|/f|and f* = f for f € Ag):

LOn(f*) = On(f)":

2. the function # — ||Q# (/)] is continuous on [0,7%g) (with Qg = 1d):
3.0imy—o |5 (Qn (/) Qa (o) + Qn () Qn (/1)) = On(fi )] = 0

4. limy_o || /) (Qn(S1) On(f2) = Qu(2)Qn (/1)) — @ ({1, APl = 0.

Of course, 3 and 4 together imply that Qy is an “almost homomorphism™, in the
sense that Qx(/)Qx(g) — O5(f g) tends to zero in norm (this notion plays a
mayjor role in the generalized KK-theory of Connes and Higson [10]). The phys-
ical meaning of this setting is as follows: the real part of Ay is supposed to be
the classical algebra of observables of some physical system, and the self-adjoint
elements in A form the “corresponding™ quantum algebra. The observables that
can be quantized a priori are contained in Ay, and Qy (/') should be the quantum
observable with the same physical interpretation as its classical counterpart /.
Thus condition 1 guarantees that observables are mapped into observables. Con-
ditions 2-4 are a way of expressing the fact that, at the level of observables (as
opposed to states), quantum mechanics is a continuous deformation of classical
mechanics. The anti-commutator governs the spectral content of the quantum
theory, and the pointwise product plays the same role in the classical theory.
The commutator and the Poisson bracket express the role observables play as
generators of transformations of the state space. For a more detailed discussion,
cf. ref. [26]. One has to remark that the maps Qy, for fixed % are not continuous
(at least in the examples known to the author), so that the quantization cannot
be extended from Aj to Ag in any obvious way.

Our interest in strict deformation quantization lies in the fact that it pro-
vides a bridge between the modern geometric theory of symmetry and reduction
in classical mechanics [31], and the algebraic theory of superselection rules in
quantum mechanics. The latter originated in quantum field theory, and is based
on the identification of superselection sectors with certain inequivalent repre-
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sentations of the algebra of observables. One finds that the superselection sectors
of a generic local quantum field theory with short-range forces in four dimen-
sions correspond to the inequivalent unitary representations of a compact Lie
group H (the gauge group of the theory) [17]. Remarkably, an analogous result
applies to the quantum mechanics of a single particle. This was first observed
for a particle moving on a homogeneous configuration space Q = G/H [23],
which was further studied in the context of strict deformation quantization in
ref. [25]. The identification of H in G/H with the gauge group whose represen-
tation theory labels the superselection sectors is accidental, and in the present
paper we shall describe the general situation.

Thus we consider a principal fibre bundle (P, Q, H, prp_.¢) with total space P
(assumed to be paracompact, as we will employ a partition of unity on it), base
space Q, projection prp_.p : P — Q, and a compact Lie group H with right action
R, on P. We will denote a generic point of P by x (or y), and write R, (x) = xh.
The H-action on P pulls back to an action R} on T*P, so that we can form
the quotient S = (7*P)/H. The Poisson structure on .S is inherited from the
canonical symplectic form on 7*P. Specifically, we identify C ((7*P)/H) with
C(T*P)H (the continuous functions on 7* P which are invariant under the pull-
back of Rj, for all # € H); it is easily checked that the symplectic form on 7™ P
is H-invariant, so that the Poisson bracket of two functions in C2(7T*P)# is in
C(T*P)H, and this defines the Poisson structure of (7*P)/H.

The physical interpretation (originally due to Sternberg) of S is well known
[16,42,32,31]: it is the “universal phase space” of a particle moving on Q which
couples to a Yang-Mills field with gauge group H. S is fibered over 7*Q, with
fibers isomorphic to h* (the dual of the Lie algebra h of H), and the symplectic
leaves Po of S are in one-to-one correspondence with co-adjoint orbits O in h*.
The leaf Py is fibered over T*Q, too, with fibre O. Each orbit O in its entirety
plays the role of a possible classical charge the particle may have, so that S is
the union of the phase spaces Po corresponding to all possible charges.

In what follows, we shall study the classical algebra of observables A4, =
Co((T*P)/H). If we assume that P has a Riemannian structure, with an H-
invariant metric, so that 0 = P/H inherits a metric from P, we see that Ay
is the algebra of observables of a charged particle moving in an external grav-
itational field, as well as a possible external Yang-Mills field (whose explicit
form determines the metric on P, or, vice versa, is determined by it [8], also cf.
subsection 3.4 below). We assume that P is (geodesically) complete.

The quantization of Ay, i.e., the construction of the quantum algebra A and
the maps Qy, is studied in section 2. It follows from a straightforward generaliza-
tion of the Weyl prescription from R” to arbitrary curved spaces. Although we
work in a functional-analytic setting, the procedure itself is entirely geometric,
cf. subsection 2.1. Conditions 1, 3, and 4 above on a strict deformation quanti-
zation are proved in subsection 2.2. Condition 2 is most easily proved using the
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auxiliary device of a Wigner function, constructed in subsection 2.3. The result is
that, as shown in subsection 3.1, A is isomorphic to K (L2(Q)) @ C*(H), which
stands for the tensor product of the C*-algebra of compact operators on L2(Q)
with the group algebra of H. This immediately leads to the conclusion that the
dual of A (that is, the set of equivalence classes of its irreducible representa-
tions) is equal to the dual of H. Hence each unitary irreducible representation
of H corresponds to an irreducible representation of A4, and is interpreted as a
quantum charge of the particle. In subsection 3.2 we give a geometric realiza-
tion of these representations of A on Hilbert spaces of sections of certain vector
bundles over Q, which are associated to P. This leads to a close parallel between
the classical theory, with the symplectic leaves P being fibered over 7*(Q, and
the quantum theory. This realization will prove to be useful in subsection 3.4,
in which, following an algebraic discussion of classical dynamics in subsection
3.3, it is shown that the smooth sections of the vector bundles in question form
a natural domain of essential self-adjointness of the quantum Hamiltonian. A
similar statement holds for position and momentum observables, whose theory
is non-trivial in curved space and in a gauge field. The classical situation is
examined in subsection 3.5, and the quantization is in subsection 3.6.

While the quantization procedure has a clear geometric interpretation, it is
somewhat ad hoc from an algebraic point of view. Also to shed more light on
the particular Poisson and C*-algebras that appear, we reformulate the results
in terms of groupoids in section 4. The classical analogue of the C*-algebra of
a (Lie) groupoid is the Poisson algebra of a Lie algebroid, and this point of
view leads to a simple algebraic and geometric interpretation of the deformation
quantization constructed in this paper.

Although we will not discuss it here, one may replace the compact Lie group
H by a discrete group, through which our formalism may describe a system of »
identical particles [which is in fact a special case of a single particle moving on
a multiply connected configuration space Q, with H = n;(Q)]. Another gener-
alization is to start from a given Hamiltonian, rather than from a Riemannian
structure on P. All geometric notions, including the connection on the bundle
P, then appear as derived objects, subordinate to the dynamics [31].

2. Generalized Weyl quantization on Riemannian spaces

2.1. CONSTRUCTION OF THE DEFORMATION

We start by defining a Fourier transform mapping functions on 7™ P to those
on T P.In general, whenever it is easier to employ co-ordinates, we will use them.
Hence we cover P with open sets {U,},e; for some index set /, with each U,
homeomorphic to R”, and co-ordinate functions x5 : U, — R”. If no confusion
arises we take a fixed, and drop the lower index on x*. This leads to canonical
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co-ordinates (x#,p,) on T*P, and (x*, x*) on TP. We write x for the point of
P with co-ordinates x* in a given patch, and 9, = 9/9x* (so that, for example,
(x*,x*) are the co-ordinates of x#9, € T,P). We denote the metric on P by
g, with determinant g in given co-ordinates. Recall our assumption that g is
invariant under the right action of H on P. The invariant measure on P is called
u, the one on the fibre T P is uy, and the measure on 77 P is iy. In co-ordinates
one has
oo oy ane . _ d"p
du(x) = d"xv/g(x), duc(x) =d"xvg(x), dux(p) e

(2.1)
where n is the dimension of P. The fibrewise Fourier transform of a suitable
function f on T*P is defined by

FNO =700 = [ di0)¢001 ), (2.2)
T*P
where X € T, X. “Suitable” here means that f should be measurable on T*P,
and integrable over each fibre. In co-ordinates, this simply amounts to

Fx%) = /dizx (0) &P £ (x, p). (2.3)

As is clear from the co-ordinate free definition (2.1), f is a well-defined scalar
function on TP. The inverse transform is obvious, and involves the measure u,
on TP without further normalization constants. The convolution f; * f5 is the
Fourier transform of the pointwise product f] f, which gives

Fox folx,x) = /dux(mf](x,%x A ). (24)

We recall that 4, is the Poisson algebra Co((T*P)/H), realized as the H-
invariant part of Co(7T*P). We take the dense subalgebra of quantizable func-
tions to be Ay = PW(6). These are the functions f € Co((T*P)/H) whose
Fourier transform f is in C°(TP) (here PW stands for Paley-Wiener, and Ay
consists of those H-invariant C§° functions on 7* P which at each fixed x € P,
i.e., as functions on 7} P ~ R", satisfy the conditions of the Paley—Wiener theo-
rem, which characterizes functions whose Fourier transform is in C° (R") [34,
thm. IX.11]). The motivation for this choice will become clear shortly. We eas-
ily infer from the H-invariance of the metric g that ((Rj).)"oF = Fo (R} _,)",
where (Rj). and Rj are the lift of the right action R, on P to TP and T*P,
respectively. Hence Ay is isomorphic, by the Fourier transform (2.2), to Ay =
C°(TP)H, the algebra of H-invariant C° functions on 7 P, equipped with the
convolution product (2.4).

The deformation of C> (T P)* into a non-commutative operator algebra is
based on the following geometric fact. Consider the diagonal embedding 4 of P
into P x P [thatis, 4(x) = (x,x)]. The normal bundle N4 of this embedding
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may be taken to be a subbundle of 7 (P x P) by equating the fibre Ngf'm_) at

(x,x) with {X @ —X | X € TxP} C T(xx)(P x P) ~ TP+ TP. Hence N4 is
isomorphic to 7P, under the isomorphism ¢ : TP — N4, givenon X € TP
by 9(X) = X/2& —X/2 € T(x.«)(P x P). [Many other isomorphisms exist be-
tween TP and N4, and it will become clear that any particular choice determines
an operator ordering prescription in quantum mechanics. The one above corre-
sponds to (generalized) Weyl ordering, and in case of P = R” eventually leads to
the Weyl calculus of pseudo-differential operators [14]. The alternative choice
okN(X) = 0@ —X leads to the Kohn-Nirenberg calculus; the corresponding
deformation quantization violates the reality condition | in the introduction.]
By the tubular neighbourhood theorem there exists an open neighbourhood V)
of P in TP (where P C TP is the zero section) which is diffeomorphic to an
open neighbourhood 15 of P in P x P [here identifying P C P x P with 4(P)].
Utilizing the metric on P, we take }| = (J, B(x), where B(x) C TP is the
largest open ball on which the exponential map e, = exp, : 7P — P is a diffeo-
morphism. We take V5 the image of ¥} under the map ¢ : V| — P x P defined
by p(X) = (exp,(X/2),exp,(—X/2)), for X € T P.

For any pre-compact set K in TP there will exist a i > 0 so that #1K C I
for all # € (0,%). Define ¢4 (X) = ¢ (hX); we have ¢p4(K) C }5 in that
case. Now consider a fixed f € CX(TP), with K =supp /. and #, as above.
We may then define a function Qn(f) € CX(P x P) for all i € (0,%) by
putting Qs (f) = " (p;")*f on V5, and setting Q1 (f) = 0 outside V5. More
concretely, for X € TP

On(f) (M2 o T2y = i f(X). (2.5)

This defines an operator, called Q; (/) as well, on L?(P) = L2(P, u) by

O () (x) = /d;t(x’) On(f)(x,x"Hyw(x"). (2.6)
P

This is well defined: the value of Qx(f) at (x,x’) is zero when no X exists
for which (2.5) holds. Clearly, Qs (f) is a Hilbert-Schmidt operator, hence
compact.

If the exponential map is a diffeomorphism on all of 7P, then A5 = oc, and
the quantization map is defined for all #. There is, of course, an artificial way
of defining Qy (/) for all 7 on arbitrary manifolds P, by introducing a smooth
cutoff function to the effect that Q; (/) is defined but vanishes for ## > %, and
coincides with the expression above for # < 0.99%, (say). The quantization
prescription (2.5) is different from previous attempts at a generalized Weyl
quantization on manifolds [41,27], although the use of the exponential map is
the same. The difference is most easily seen from the Wigner function (2.31)
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below: in ref. [41] the Jacobian J is absent (which still leads to a self-adjoint
quantization), whereas in ref. [27] a different Jacobian is used, which entails
the loss of self-adjointness on non-homogeneous spaces (these references were
pointed out to the author after submission of this paper).

We now examine what the H-invariance of /' € Ay means for Q5 (/). Since
each R, defines an isometry on P, it maps geodesics into geodesics. This implies
that R, (exp, (Y)) = exp,, ((Ry).Y ). Define a unitary representation ng of H
on L?(P) by

(zr(h)y)(x) = w(xh). (2.7)
The previous equation then easily implies, for /* not necessarily H-invariant,
nr(h)Qn(f)mr(h)* = Qu((R}-)"f). (2.8)

Therefore, if f is in Ay € Co(T*P)H then Qs (f) commutes with all ng(h),
h € H. We express this by saying that Q;(f) € K(L?(P))H, the H-invariant
compact operators on L2(P). Hence we take 4 = K(L?(P))¥ as the non-
commutative C*-algebra into which Ay is to be deformed. The Qy are henceforth
regarded as maps from A to A.

2.2. CLASSICAL LIMIT OF (ANTI-)COMMUTATORS

In this subsection we shall prove that conditions 3 and 4 (cf. section 1),
necessary for a strict deformation quantization, are met. Condition 1 is obviously
satisfied by (2.5), as f/*(X) = f(—X) if f is self-adjoint in Ay. Condition 4
will be dealt with in the next subsection.

Let f;, /> be quantizable for# € (0, %), that is, the operators Q5 (f;) (i = 1,2)
are well defined in this interval. We will first analyse the expression

N () = (13104 (1), @ () 1+ = Cu (i), (2.9)

where the anti-commutator is written out in condition 3 (section 1), and the
norm is the usual operator norm on L2 (P). By linearity of Qy, it is sufficient to
prove conditions 3, 4 for real f;. As condition 1 is satisfied, we may therefore
assume that the operator A (%) = $[Qn(f1), Qs (/2) 1+ —Qxn(f1 /2) is self-adjoint.
Since it is also compact, it has a normalized eigenvector £y, for which || 4(%)|| =
| (A(h)Qs, 24)|. It easily follows from this expression with (2.5) and (2.6) that
limy_,o N (#1) = 0 if the f; have disjoint support. Using a partition of unity on
P, we may therefore assume that the projection (from 7*P to P) of the support
of both f; and f; is contained in a pre-compact geodesically convex set U C P,
on which we use some co-ordinate scheme {x*}.

To relate an integral over U x U C P x P to one over TU C TP we use the
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formula

/ du(xy) du(xy) F(x),x7)
UxU

= /du(.\')dux(,i‘)J(x,i‘:%)F(;'(.\',.%:%).;'(.\'.i‘:——)) (2.10)

valid for arbitrary F € C (P x P) whose support lies inside U x U. Here y (x, x;-)
is the affinely parametrized geodesic starting at x with tangent vector x at x,
and the Jacobian is

J(x.x.2) = A" [g(y(x.x: ) g (y(x, x:=4)) ] 2g(x) 7V det H(x,x:2)|.
(2.11)

H(x,x;4) isa 2n x 2n matrix

hx,x:A)  h(x,x:2)
(h(r Xi=4) hi(x, %-—;)>~ (2.12)

where 4 and % are n x n matrices, defined as follows. Let 4"

(v

)(.\',.%;~)(‘),, be the
solution of the equation of geodesic deviation [7] at the geodesic y (.x, x;-) with
initial conditions

(I,)(\ x:0) = o, ((d/d))h“,))(_\’..\";O) = 0. (2.13)

The entries of the matrix 4 are the components /{,,,. Similarly, the matrix h is

defined by replacmg the initial conditions (2.13) by
(V (X, x;0) =0, (d/d))h(,/))(x,fc:O) = 0. (2.14)

It is clear from (2.10) that J(-,-,4) is a scalar function on 7U. To derive
(2.10), one passes from the co-ordinates (x{‘, xé‘) to x#, x# via the expression
x; = y(x,x;4), x = y(x,x;—4) (where 2 = 1/2 in the special case above).
The definition of the equation of geodesic deviation implies that
Ixi (x,x32)/ox" = hf‘u)(x,,%;).), Ox{ (x,x32)[0x" = ™ (X, x:A),
Oxy (X, Xx14)[ox" = h(u)(r,i’;—}.), Ixy(x,x;4)/0x" = hf‘u)(\c,.\";—/ﬁ),
(2.15)

which leads to (2.10)-(2.14). One analogously derives the equation, valid for
any G € C(P) whose support is in U, and an arbitrary point x € U satisfying
the condition that U be contained in the image of the exponential map on 7 P,

/du(r )G(x') = /duv(x ) J(x, X5 1)G(y(x, X5 1)), (2.16)

P

(v)

with Jacobian
J(x,x":2) = |A7M[g(y (x,x"34)) /g (x)1'/3| deth(x,x"; 1)|. (2.17)
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Note that
J(x,x;1) = A(x,y(x,x;1)) 7", (2.18)
where 4 is the Van Vleck determinant [7,15]. Using (2.14) and the connection
between 4 and Jacobi fields [7], this easily follows in Riemann normal co-
ordinates around x, and it must therefore be true in general since J and 4 are
geometric objects which are independent of the co-ordinates used to define them.
From (2.9) and following text, (2.4), (2.5), (2.10) and (2.16), and the prop-
erty y(x,x,h4) = y(x,%x,A) we then find

/dﬂ(x)/dﬂx(k) /dﬂx(k’)
U TxP

TxP

N(h) =

x Qu(y(x,x30/2))Q% (y(x,x;-1/2))F (h,x,x,x")|, (2.19)

with
F(hx,x,x") = J(x,x;%/2) [%flz”j(x,k’;h)

x {Qn (1) (x,x:0/2),y(x,x"s7)) 0n (f2) (y (x, X"3 ),y (x,Xx;=h/2))
+ O0n(2) (P (x,x;7/2),y (x, X" 71))On (1) (¥ (x, X"3 ),y (x, x5 =R /2)) }
— A A =X A x + x)] (2.20)

We now analyse F for fixed x. F is invariant under co-ordinate transformations,
so we may choose Riemann normal co-ordinates (RNC) based at x. The follow-
ing order estimates hold pointwisely in x, x x’. By evaluating the geodesic devi-
ation equation in RNC [7] at 4 = 0 it follows immediately that A% (x, x,%) =
hol [1 + O(#?%)]. The initial conditions (2.13) show that A (x,x, %) = 64 [1 +
O(#%)]. Combined with the explicit form of the metric in RNC [7], we thus
infer from (2.11) and (2.17) that (in any co-ordinates)

J(x,x;h/2) =1 + O, T, x";h) =1+ OH). (2.21)

To deal with the Qs (f;) terms in (2.20) we write y#(x,x,A) = Ax* etc., and
perform a Taylor expansion of Q5 (f;) around the point (y (x, $x—x";%/2), 7 (x,
1x—x';—h/2)),and of Qs (f2) around (y (x, $x +x";7/2),y (x, $x + X' —#/2)).
The result is then rewritten in terms of the f; themselves using (2.5). If one in-
cludes the O (%) term, which will be needed later on, one encounters expressions
of the type
(52 + 52 ) @) (1 = v bt = X372, 30 = p(x b= 7 -/2))
axi " oxk V] R *2 ’ ’
to be expressed in RNC as indicated above. This is done by inverting (2.15), and
expanding in powers of 7. The result is that #” times the expression displayed
above equals (9 f;/8x*) ((x, Ix —x')) + O(h).
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The conclusion is that pointwisely
}linz)F(fz,.\',.i',,i") = 0. (2.22)

Now return to (2.19). We use (2.1) and majorize the x-integral by taking
sup, gF out of it. We then use the Cauchy-Schwarz inequality to find

N((h) < K(h) /d".i‘ d"x’ SUIL)'|g(,\‘)F(ﬁ,.\‘,.i',.i")|, (2.23)
with b
K(h) = §u?/du(.\‘) 10 (5 (s 52 7)2)) 2 /dﬂm 10 (s s A/ 2)
o : (2.24)

where C is a compact set in which the support of F in x is contained. Since £,
has norm 1 in L2(P;u), K (%) is uniformly bounded by a constant K, which is
equal to the supremum over x, x, and % of the square of the Radon-Nikodym
derivative du(x)/du(y(x,x,%/2)). This is a continuous function of x, with
continuous parametric dependence on x and %, and the supremum is taken over
a compact set. Hence K (%) in (2.23) may be replaced by the finite constant
K. We recall that F is C in x,x, X’ since fl and fz are. The dependence on
# is continuous as well, and elementary analysis shows that the pointwise result
(2.22) implies the corresponding result uniformly in x. Finally, the compact
support in x, X’ allows the use of the Lebesgue dominated convergence theorem
to interchange lim,_.o with the integrations in (2.23). Hence by (2.22) and (2.9)

lim [151Qn (/). @n (/)14 — Qa (/)] = 0 (2.25)

for all f; in Ap. An entirely analogous computation yields the classical limit of
the commutator (cf. condition 4, section 1)

lim |G/ [Qn(/1), @a(/)]- = QLA LD = 0. (2.26)

Here one needs the O (%) terms in the Taylor expansion of Q(f;), discussed
after (2.21). The Poisson bracket is the canonical one, which in canonical co-

ordinates (x,p) simply reads
oNhof 0h If

X = | - ——— ] (x,p). 2.27

(o) = (G52 - SR 20 ) (227)

The Fourier transform of (2.27), which enters the proof of (2.26) is

{fi, A} %) =1 [ dp(3) fi(x, = &)
P

— —

< |(1x + x’)ﬂ%,; + (—ix+ x')ﬂa"?} Al e+ 5. (2.28)
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2.3. WIGNER FUNCTION AND NORM CONTINUITY

We will prove property 2 of a strict deformation quantization using a (lengthy)
argument, which we do not reproduce here (cf. theorem 4 in ref. [25]), that
reduces the proof of continuity of all functions 7 — ||Q4(f)]|| on [0,%) (f €
Ay, and # defined prior to (2.5); recall that Qp, =id) to the construction of
sufficiently many “classical germs”. A classical germ is a collection of states
{wn}reioe), for some & > 0, so that wy, is a state on A for 7 > 0 and wq is a
state on 4y, with the property that the function # — w5 (Q#(f)) is continuous
for # > 0 wherever it is defined (the only essential point is continuity on [0, ')
for arbitrary ¢ > 0, e.g., the infimum of ¢ and #q for the given function f).
We say that a classical germ {ws} converges to wg. By “sufficiently many” (to
prove property 2) we mean that for any pure state wy we need a classical germ
converging to it.

To construct these germs we employ a Wigner function formalism, well known
for P = R” [14] (and generalized to arbitrary homogeneous spaces in ref. [25],
with a further extension to arbitrary Riemannian manifolds in ref. [27]; the
latter is slightly different from our procedure below). The idea is to express
expectation values of quantum observables as phase space integrals, that is,

(On()R2,Q) = / fwh (2.29)
(T*P)/H
should hold for all f/ € Ay, with a certain (Wigner) function W on (T*P)/H,

which of course depends on 2 € L?(P). More generally, one may construct a
Wigner function for a pair of vectors, so that

(Qh (/) 21, 2) = / IWh o (2.30)
(T*P)/H

so that W2 = W/ ,. To accomplish this, we define a function on 7* P, depending
on arbitrary Q; € L?>(P) (i = 1,2) by

Whaxp) = [ dus(0)JCein/2)
By (x)
x €7 Q) (y(x, X% -1/2)) (7 (x, X37/2)),  (2.31)
with y defined after (2.10), and J given in (2.11). Here By (x) = B(x)/#,
with B (x) the largest ball in 7 P on which the exponential map is a diffeomor-
phism. Clearly, ng 2 is well defined, i.e., independent of the co-ordinates used

in (2.31); this may even be more apparent from the geometric expression (2.38)
below. Subsequently, we define the Wigner function on (7*P)/H by

Wi, (16]) = /dh W o (R} (0)), (2.32)
H
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where 6 € T*P, and [6] its equivalence class in (7*P)/H (and d# is the Haar
measure on /). A simple computation, using (2.10), shows that VI;;’]QZ indeed
does the job, in the sense that the equality in (2.30) is valid exactly when the
quantization Qz (/) is defined. That is, it holds for 7 € (0, #ig), with 7 so that
the support of / in each fibre 7P of TP is contained in By (x) for all 7 in this
interval. Evidently, for exponential manifolds B (x) = 7P and (2.30) is valid
for any %. Note that a different attempt to construct a Wigner function in curved
space is made in ref. [18].

As an application of the Wigner function technique we will now construct
a classical germ {ws} converging to an arbitrarily chosen pure state @y on
Co(T*P), that is, a point § € T*P. Regarded as states on A and Ay by re-
striction, this classical germ then converges to the pure state [6] on Ay, so that
this construction provides a proof of property 2.

We use Riemann normal co-ordinates x# around pry.p_p(6) (prr.p_p being
the projection from 7*P to P), so that 6 has canonical co-ordinates (0, p,) for
some p,. Define Q, € L*(P) by

Qu(x) = (h) "AK, (x)ePa" he=x*/2h (2.33)

where K7 is a smooth cutoff function restricting the support of £ to the RNC
patch, and normalizing it to unity; we assume Kz(0) = 1 (for P = R" one has
K = 1), and (2.33) is the wavefunction of a coherent state with position x = 0
and momentum p,/). The £ define vector states wy by ws(4) = (A48, 25) for
A € A, h > 0. We wish to prove that these states converge to wg = 6 as a
classical germ. As we see from (2.29) and the definition of a classical germ, this
is the case if the Wigner functions W_é’h converge to d(g ). the Dirac distribution
on T*Pat§ = (0,p), in the weak topology defined by A, (regarded as a space
of test-functions on 7*P).

To compute the Wigner function (2.31) (with 2, = £, = ) we need to
compute the RNC of y(x, x:+%/2), for arbitrary x and x (expressed in RNC)
to O(h). To O(0) clearly y#(x,x;0) = x#*. Consider the family of geodesics
{va}s(-), defined by 7,(0) = 0 (i.e., the fixed point pry.p_p(6) we assigned
RNC x# = 0 to), and ;5(1) = y(x,x:A/2). This leads to a Jacobi field (a
solution of the equation of geodesic deviation [7]) 4 along the geodesic 3~ (-)
(for which y¥(0) = 0 and y*(1) = x), defined by & = dys/d#|s-¢. The RNC
y#(x,x;+h/2) are then equal to x* + %h dh*/dA|;—o. The field 4 satisfies the
Dirichlet boundary conditions (in RNC) A#(0) = 0; ##(1) = x*. In general, a
Jacobi field with Dirichlet data satisfies [7, V. problem 3, p. 346] dA#/dA|;—¢ =
g""(0)0,,(0,x)h? (1), where o is the Van Vleck matrix. In RNC one simply
has 0,,(0.x) = J,,. so that we conclude that

P X ER2) = XF £ LA 4 O(07). (2.34)
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From (2.31), (2.33) and (2.34) we thus find

W, (ep) = (e [ du () 0 PG () 1+ O(h) )
By (x)
(2.35)
From (2.29), (2.35) and the Lebesgue dominated convergence theorem (justi-
fied by the properties of f, and allowing us to ignore the O (#) term in (2.35)
when taking the limit) we obtain

}'iir(I)(Qh(f)Qﬁ,Qh) = [(0). (2.36)

Since the continuity of the function 7 — (Q4(f )24, £24) for # > 0 is trivial to
establish, we conclude that the collection of states {ws}4>0 consisting of vector
states defined by the ©Qy for 2 > 0 [cf. text after (2.33)],and wg = 6, 1s a classical
germ converging to 6. As remarked above, this proves that the deformation we
have constructed satisfies condition 2 in the introduction. To summarize:

Theorem 1. Let a paracompact manifold P be the total space of a principal fibre
bundle over Q with compact structure group H, and let g be a H-invariant met-
ric on P. Equip (T*P)/H with the quotient Poisson structure derived from the
canonical symplectic structure of T*P. Let Ay be the commutative C*-algebra
Co((T*P)/H), and Ay its dense subalgebra consisting of those functions whose
fibrewise Fourier transforms (2.2) are in C>°(TP). Let A = K(L*(P))! be the
C*-algebra of H-invariant compact operators on L*(P) (L? defined w.r.t. the
measure associated to g). Then the “quantization map” Qy(f), constructed for
each [ € Ag by (2.5) with (2.6), is defined on a strip (0, %), where hg > O depends
on f [and equals ~ if the manifold is exponential in the sense explained after
(2.32)], and satisfies the conditions 1-4 in the introduction (section I above) of a
strict deformation quantization.

The proof that conditions 1, 3, 4 are satisfied is in subsection 2.2 above, and the
proof of condition 2 has been the contents of the present subsection.

Although it is only of parenthetical relevance to the main subject of this paper,
we give

Theorem 2. If P is compact the Wigner functions (2.31), (2.32) are continuous for
any Qy, £, € L>(P) (and # > 0). For non-compact P they are continuous and
vanish at infinity if the following condition is satisfied by the metric g on P: the
constant

p = supdu(R(x;;x2))/du(xz) (2.37)

X1,X2
should be finite. Here the supremum is taken over all pairs of points which can be
connected by a unique geodesic, and R(x;Xx,) is the geodesic reflection of x, in
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Xy [that is, R(xy;x3) = y (1), where y is the affinely parametrized geodesic for
which y(0) = x; and y(1/2) = x,]. The Radon-Nikodym derivative in (2.37)
(which is a function of x, with x; as a parameter) relates to the Riemannian
measure u on P.

Proof. A geometric expression of (2.31) is

du(R(x3x7))

Mo 0) = 17 [ dute ST

exp(B(x2))
x /MR O (v )2 (R(x1:x2)). (2.38)

where x, = prr.p_p(0), and R(.\',;.\‘z) is the tangent vector to y at x;. To
derive (2.38), choose a regularization J5, of the (covariant) Dirac distribution
on P supported at x,, so that

o (xap) = lim /dy(.\‘) Wl o (x.p)os (x).
P

Substitute (2.31), scale 71 out, and use (2.10). Then take the limit ¢ — 0, and
(2.38) follows. Using the Cauchy-Schwarz inequality one then finds

W 0, (0)12 < i7" p? || 2,117 119217 (2.39)

with the vector norms in L?(P). Hence if p < ~ and # # 0 the map @ :
L?(P) @ L*(P) — L>(T*P) defined by @ (2,,2,) = Vl'glg’ is continuous,
since we have shown that it is bounded with norm less than =" p?. Now take
both £, in D(P). It then easily follows from the Riemann-Lebesgue lemma that
Wi o, is C2 in x and Gy in p. Now D(P) is dense in L*(P). so that @ maps a
dense subspace of L2(P) @ L?(P) into Co(T*P), which is norm-closed; hence
@, being continuous, maps all of L?(P) @ L?(P) into Cy(7*P). The theorem
follows. The analogous statement on (7*P)/H is immediate as H is compact.
Compare with prop. 1.92 in ref. [14]. O

We close this subsection with an aside. The quantization rule (2.5) is, of
course, far from unique, and corresponds to a particular operator ordering pre-
scription, but one may modify it in a certain obvious way. The motivation for
this is that in flat space P = R" (and H = {e}), one has for the transition
probability between two vectors £; € L?(R") the remarkable formula

(R )P = # / Wi Wh. (2.40)

TP
If we now regard the Wigner function Vlé’ as a classical observable (which on
the one hand is somehow justified by theorem 2, and by the correspondence
between states and observables in quantum mechanics, where a state is at the
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same time an observable via its density matrix, but on the other hand is slightly
perverse, as the Wigner function depends on #), then (2.29) and (2.40) show
that

(2] = Qn (A" W), (2.41)

showing that the orthogonal projector [£2] on a wave function £ is precisely
the quantization of the Wigner function of this wave function (times #"). Using
(2.5), one sees that this property no longer holds for general curved spaces due
to the factor J in (2.31). However, (2.40) and (2.41) are valid if we multiply
the right-hand side of (2.5) by J(X;#%/2)~'/2, and replace J in (2.31) by its
square root. This is still a strict deformation quantization due to (2.21).

3. Representation theory and dynamics

3.1. STRUCTURE OF THE QUANTUM ALGEBRA OF OBSERVABLES

We have seen that the quantum algebra of observables is A = K(L2(P))H,
the compact operators on L% (P) which commute with the representation ng (H)
[cf. (2.8)]. This C*-algebra has a very transparent structure, as we will now
spell out (what follows is completely standard). Consider its dense subalgebra
A = HS(L?(P)) ~ L2(P x P)H of H-invariant Hilbert-Schmidt operators.
An element K of A is determined by (and determines) a kernel K € L2 (P x P)*,
satisfying

K(x1h,x2h) = K(x1,x2) (3.1)

almost everywhere (w.r.t. the H-invariant Riemannian measure ¢ on P). Since
4 is H-invariant it determines a measure v on Q; moreover, H has a unique
Haar measure with total mass 1. These are related by

/dﬂ(X)f(X) = /dv(q) /dhf(S(q)h) (3.2)
P 0 H

for any f € L'(P) and any measurable section s : Q — P. The Hilbert spaces
L*(Q) and L?(H) are defined w.r.t. these respective measures. We perform a
unitary transformation 7 : L*(P) — L2(Q x H) ~ L?(Q) ® L*(H) as follows.
Choose a measurable section s : Q — P leading to a unique factorization x =
s(X)h(x) of x € PintoX = prp_o(x) € Q and h(x) € H. Put

(Ty)(q,h) = w(s(q)h) (3.3)
for w € C.(P), and extend T to L2(P) by continuity. 7 is unitary, and has
inverse T* givenon v € C.(Q x H) by

(T*y)(x) = w(X, h(x)), (3.4)

with 4 (x) determined by the factorization mentioned above.
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Now consider the group algebra C* (H ). This is defined as the C*-envelope
of the Banach algebra L' (H) [33], equipped with the convolution product

(fifo) (h) = /dkfn(hk")fz(k). (3.5)
H

We recall the left-regular representation 7; of C*(H) given on w € L*(H) by

(L (f)w) (h) = /dkf(kw(k—‘h). (3.6)
H

This leads to a faithful representation of the C*-algebra A" = K(L?(Q)) ®
C*(H) on L*(Q x H) which is the tensor product of the defining representation
of K(L?(Q)) and the left-regular representation of C*(H ). We identify A’ with
its representative. We construct a map p : A — A’, by defining it on the dense
subalgebra L2 (P x P)" ¢ Aby

(p(K))(q1,q2,h) = K(s(q1)h,s(q2)), (3.7)

where, as explained above, we identify both K € HS(L?(P))" and p(K) € A’
with their respective kernel functions (the latter tensored with a function on
H). It follows from (3.1), (3.3), and (3.4) that p(K) = TKT*,so that pisa
*-homomorphism. The image of HS(L2(P))" is L>(Q x QO x H ), which is dense
in A’. Hence the extension of p to A defines an isomorphism between A4 and A'.
In conclusion,

A =KL (P)HT ~K(L*(Q)) ® C*(H). (3.8)

This allows allows us to immediately classify the irreducible representations
of A, that is, the quantum superselection sectors of the system whose algebra
of observables is .A. These are determined by C*(H ), as the compacts X only
have one irreducible representation. There is a one-to-one correspondence be-
tween non-degenerate representations of C* (H ), and unitary representations of
H [33], hence each unitary irreducible representation of C* (H ) is determined
by a unitary irreducible representation m, of // on a Hilbert space H,. This, in
turn, induces an irreducible representation 7% of Aon H* = L?(Q) ® H,.

3.2. REALIZATION OF THE IRREDUCIBLE REPRESENTATIONS OF A

In the preceding argument the section s was just measurable. To study the
self-adjointness of certain unbounded operators relevant to physics, as well as
to get a clear-cut geometric structure, it is useful to use smooth local sections.
Hence we cover Q with open sets {U, }.cs so that smooth sections s, : U, — P
exist, cf. ref. [7]. On overlap regions U, N Ug one has sg(q) = 5,(q)hap(q)
with some smooth gauge transformation 4,4 : U,NUg — H. These sections plus
the gauge transformations incorporate the topology of the principal fibre bundle
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(P, Q, H). Each representation 7, (/) leads to an associated vector bundle EX,
whose space of smooth cross-sections is denoted by I'*. An element ¥ consists
of a collection {¥,}acs of smooth functions y, : U, — H,, which on overlap
regions U, N Up are related by

Wa(q) = my(hop(q))wp(q). (3.9)

The space of compactly supported smooth cross-sections of E* is denoted by
I'*; this space is equipped with the obvious inner product

W) = ¥ [ar@) Pu@) (wal@). v (@), (3.10)
)

a€lJ

where { P, }.cs is a partition of unity subordinate to the cover {U, }acs, and the
inner product on the right-hand side is the one in H,. The closure of I}* in this
inner product is HX = L2 (EX). '

It follows from (3.7) and harmonic analysis on H that HX carries an irreducible
representation 7¥ of .4, which on the dense subalgebra C> (P x P)* is given by

@ Ky (@) = 3 [dr(@) Pata)

aEJQ

></dhK(s/;(q)h,sa(q’))nx(h)t//ﬂ(q’), (3.11)
H

where we assume that ¢ € Up. Strictly speaking, this is defined on IX as a
bounded operator, and then extended to H* by continuity. It follows from (3.1)
and (3.9) (together with the gauge transformation rule of the sections s, ) that
(3.11) is well defined: firstly n* (K')yg transforms like wy under gauge trans-
formations (3.9), and secondly on the right-hand side one could choose, say, y
rather than « on an overlap region U, N U, without affecting the result.

It is convenient to have a different, unitarily equivalent realization of the
Hilbert space of sections at our disposal, which we call #%. This is the Hilbert
space closure of X, which is the space of H-equivariant C¢* functions on P
with values in My, that is, ¥ € [* satisfies

¥(xh) = my (A Yy (x). (3.12)
The inner product is

(v, y') = /dV(f) (W (x), ¥ (x)) 2, (3.13)
Q

where X = prp_p(x) as before; as P/H is diffeomorphic to Q, it carries the
measure v (note that due to (3.12) the H, inner product on the right-hand side
of (3.13) is a function on P/H). A unitary transformation 7 : H¥ — H¥ is given
by

(Ty)alq) = ¥ (sa(q)), (3.14)
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with inverse
(T ) (x) = 1y (ho (X)) 'y (3), (3.15)

where 4, (x) is defined by the factorization x = s,(X)h,(x); in overlap regions
the right-hand side is independent of « due to (3.9). These transformations
map I and I'X into each other, so that the former is just the space of C2* cross-
sections of E* in the given realization. We then have 7* (K) = T*7* (K)T on
HX given by

(A% (K)) (x) = /du(.v) /dh K (xh,y), (h) g (0): (3.16)
0 H

the integrand is indeed a function on P/H ~ Q due to (3.1) and (3.12). For
later use, we display an isomorphism between H* and a Hilbert subspace H* of
L?(P). We take a unit vector u € H,, and define the projector P} by

(Pfy)(x) =d, /dh (7 (h)u,t)a, w (Xh). (3.17)
H

where d,, is the dimension of 7, ; the orthogonality relations for compact groups
imply that P} is indeed a projector, and we call its image HZ. It follows from
(3.1) and the H-invariance of the measure x on P that P/ commutes with all
elements of 4. Subsequently, we define a partial isometry V% : L2(P) — HX by

(PXy) (x) = \/(Z/dh w (xh)m, (. (3.18)
H

This is unitary on 7% and annihilates its orthogonal complement. Moreover,
from (3.2), (3.16) and (3.18)

VoA =a*(A4)oVZ (3.19)

for all 4 € A [with A in its defining representation on L?(P)]. This shows that
n* (A) ~ PX A. The intertwining property (3.19) shows that L>(P) contains d
copies of each irreducible representation 7% (A4) (one for each unit vector u in
an orthogonal basis of H, ).

The physical relevance of the trivial exercise in differential geometry given
above is that the smooth cross-sections [ are a natural domain of essential
self-adjointness of position, momentum, and Hamiltonian in the representation
(superselection sector) y. Being unbounded, these operators are not of the form
X (Q#(f)) for any f € Ap; moreover, the Hamiltonian is only defined up to
a constant, and accordingly is not an observable in the proper sense. We now
proceed to explain these points in more detail.
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3.3. CLASSICAL DYNAMICS

We will analyse the dynamics defined by the classical Hamiltonian function
on T*P equal to
Hy(x,p) = 38" (X)pupy (3.20)
in canonical co-ordinates; it is invariantly defined as —1/2 times the (princi-
pal) symbol of the Laplacian on (P, g), and many of its properties are explored
in ref. [1]. Let j be the isomorphism between 7*P and TP defined by the
metric (so that g(j(6),X) = (6,X)). Then the flow p, of Hy is as follows:
p:(0) is the one-form obtained by parallel transporting 6 along the affinely
parametrized geodesic y (prr.p—p(6), j(0);t) [recall our previous notation, ac-
cording to which y(x, Y;0) = xand (d/dt)y(x, Y;0) = Y]. The corresponding
flow p, on TP maps X € Ty P into p,(X), which is the parallel transport of X
along the geodesic y (x, X;t).
The classical Hamiltonian defines a one-parameter group of *-automorphisms
a? on Co(T*P) by
al[f]=fop. (3.21)
This automorphism group quotients well to Ay = Co((T*P)/H). With (R})*
being the pull-back of R} (which is itself the pull-back of R, to T*P) to the
continuous functions on 7*P, one easily derives

(R;)*oa) = af o (R})". (3.22)

This follows, since Ry, is an isometry of P, so that (R,-1).0j = joRj}; moreover,
if y is a geodesic with initial tangent j () then R,-: (y) is a geodesic with initial
tangent j(R};0), and the parallel transport of R}, 6 along the latter equals R; of
the parallel transport of 8 along the former geodesic y. Regarding Co ((T*P)/H)
as the H-invariant subalgebra of Cy(7*P) as before, we see from (3.22) that
a? quotients to a *-automorphism of Ay, which we call by the same name for
simplicity. Apart from being automorphisms of 4j in the C*-sense, the o are
Poisson morphisms as well.

We recall that A is isomorphic by Fourier transform (2.2) to F.4p, which has
a dense subalgebra 4, = C®(TP)H, cf. the text following (2.4). The automor-
phism «? is then equivalent to a? on F Ay, defined by

&Q[f1=Fodllf], (3.23)

where f = Ff. For future use, we claim that a? on Ay may be written as

&[S1(X) = 2r)™" / / dux (V) dpn (Z) 45D £ (Y2 (1)), (3.24)
TeP T, P
where X € Ty P, and Yz (¢) is the parallel transport of Y along the geodesic ema-

nating from x with initial tangent Z. The main ingredient in the proof of (3.24) is
the fact that the measures u, are invariant under parallel transport. A geodesic
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y from x to y induces an isomorphism between 7P and 7, P through paral-
lel transport. Let y = y(x,Z;1), and define the Radon-Nikodym derivatives
v(Y) = diyxz:) (Yz (1)) /dux (Y). Clearly 11y = 1, and a computation in co-
ordinates using (2.1) and the geodesic equation reveals that div,/df(t = 0) = 0.
But v, satisfies a first-order differential equation in ¢ which follows from the
geodesic equation and the condition for parallel transport, and this equation
supplied with the two initial conditions listed implies that v, = 1 for all ¢. This
easily leads to (3.24); similarly, the measures du, on 77 P are invariant under
parallel transport. Hence an alternative way of defining the measures yu, and s,
would be to take a Lebesgue measure on some fiducial fibre, and translate this
measure to the other fibres of 7®*) P by parallel transport along geodesics. This
is globally well defined, because the holonomy of Riemannian manifolds takes
values in SO (n), which leaves the Lebesgue measure invariant.

The symplectic leaves Po of (T*P)/H are labelled by the co-adjoint orbits O
in h, and are described in refs. [16,32]. The Hamiltonian H; is H-invariant, and
quotients to a reduced Hamiltonian Ho on Py, which describes the motion of
a charged particle on Q = P/H in an external Yang-Mills field. The “charge”
of the particle is the orbit O, and the Yang-Mills field is the one encoded in the
metric g on P by standard Kaluza-Klein ideology [8]; the resulting equations
of motion on Py are the Wong equations [16,42,32,31]. This Yang-Mills field
also allows one to define a projection from Py to 7*Q, which makes Py a fibre
bundle over T*Q with fibre O.

To stress the analogy with the quantized situation, it is helpful to look at the
reduced dynamics in a more representation-theoretic way. The embedding i :
Po — (T*P)/H defines a Poisson morphism /¢, : Co((T*P)/H) — Co(Po),
which may be regarded as an irreducible realization (“classical representation”)
n° = iy, of the Poisson algebra .4;. One may then ask whether the automor-
phisms ¥ can be implemented in the representation 7, that is, is there a flow
pP on Po so that

7 (@[ f]) = n9(f) o p® (3.25)
for all f € Ay? The answer is yes of course, and the generating function of the
flow is precisely the reduced Hamiltonian Hp.

3.4. QUANTUM DYNAMICS

We now wish to define a one-parameter x-automorphism group o/ on the
quantum algebra of observables .4 which in some sense is the quantization of
the classical time evolution a? on A. Let

Hy = —3h* 48 (3.26)

in terms of the Laplace-Beltrami operator 4. g on L2(P), which is essentially
self-adjoint on C>(P) [12] (recall our assumption that (P,g) is complete).
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With 4 € A in its defining representation on L% (P), define
afl[A] = e/t ge=itH/h, (3.27)

This indeed defines an automorphism of A: o[ 4] is compact and H-invariant
if A is, because the compacts form a two-sided ideal in B(H), and as H is an
isometry group of g, exp(—i#td p/2) commutes with g (H) [cf. (2.8)].

For P = R”" with its flat metric it is easy to check that of o Q5 = Qs o
a?, but this is not the case on general Riemannian manifolds. Experience with
scattering theory suggests that even uniform convergence of quantum to classical
dynamics [that is, ||af o Qx(f) — Qs o a?(f)|| going to zero with %] cannot be
expected. Instead, we will prove convergence of certain expectation values. This
involves the notion of a classical germ, which was introduced in ref. [25] as
a generalization of a coherent state; the definition is recalled in subsection 2.3
above.

Theorem 3. Let {wx} be an arbitrary classical germ, defined for i > 0, and define
the classical and quantum dynamics by the Laplacian on a complete Rieman-
nian manifold P [cf. (3.20), (3.21) and (3.26), (3.27), respectively]. Then for each
observable [ € Ay

;gxg)wfxaf'[Qh(f)] —04(%[f])) = 0. (3.28)

Proof. We assume that the classical germ {ws} consists of vector states £y
in L2(P) [that is, ws(A4) = (AL, Q) for i > 0]; the general case follows
by decomposition [any state on A C K(L?(P)) is given by a density oper-
ator, which has a discrete decomposition into vector states]. Define Q5 (¢) =
exp(—itHy/h) 2y [cf. (3.26)] and wy () = (- 24 (1), 82, (2)) for i > 0. If {ws} is
a classical germ then so is {ws(¢)}: continuity of the function # —
(wa(1))(Q4(f)) for A > 0 follows from the strong continuity of # —
exp(—ithdLs/2), and the existence of the limit # — 0, already suggested by
the bound [(wx(¢)) (@4 (/)| < [|@x(f)]| and the continuity of [|Qx(f)]| in 7
on some strip [0, ¢), is shown below.

Obviously, for # > 0 we have from (2.29) (which we rewrite as an integral
over T*P, using the H-invariance of f')

wn(a? [Qr(N)]) = /fWgS;m, (3.29)
TP

or(Qr(al1f])) = /fWé'h(t), (3.30)
TP

where the time dependence of Wé’ﬁ (2) 1s given by the classical Liouville equation,
1.e.,
oW (1) /01 = (W, (1), Ho}, (3.31)
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where Hj is the Hamiltonian (3.20) on 7*P, and {, } is the canonical Poisson
bracket on 7* P, which in general is to be evaluated in the sense of weak (distri-
butional) derivatives with regard to the test function /. On the other hand, the
time dependence of Wé’ﬁm follows from (2.31) and the Schrodinger equation.
This holds on the domain of 4y g, so to be precise we should proceed on the
assumption that £y, is in this domain for all # > 0.

A straightforward computation, expressing the Laplacian in local co-ordinates,
and not overlooking the /g (x) in the measure du,(x) then shows that
OWL 01—0WL (1)/01 evaluated at 1 = 0 weakly tends to zero for i — 0. The
main ingredient of this calculation is to convert derivatives of Q (y (x, x; +%/2))
w.r.t. x into those w.r.t. x, which can be done using (2.15). The Jacobi fields h
that enter the resulting expressions may be evaluated for small 7 using the ex-
pressions given after (2.20), whereas J and its derivatives approach unity [cf.
(2.21)]. Finally, in converting p, into i0 /0 x* one generates boundary integrals
over 9By (x) C TP [cf. (2.31)], which multiply / evaluated on this boundary;
such terms go to zero for sufficiently small 7 because of the compact support of
f (particularly in the fibre direction, in this case).

This computation shows that

po(1) = })iilg)(wh(l))(Qh(f)) = }'Tg)wh(uf’[Qh(f)]) (3.32)

has the same derivative at 1 = 0 as ¢q defined by ¢¢o(1) = wo(a?[f]). Since
their values at 1 = 0 obviously coincide, too, and both functions satisfy a first-
order autonomous differential equation in 7 which has a solution for all ¢ (recall
our assumption that P be complete), we conclude that ¢ (1) = @q(¢) for all ¢,
provided that the wy (1 > 0) are vector states built from vectors in the domain of
Ay . But the definition (3.32) of ¢ itself (as opposed to its derivative) involves
only bounded operators, so that the conclusion may be extended to any classical
germ. This proves the theorem. O

Alternative proof. To further our insight into the way the quantum time evolution
approaches the classical one, we will sketch an instructive alternative proof of
theorem 3. This proof uses heat kernels, and only works for P compact. The
initial detour is included in order to exploit the pleasant properties of Euclidean
(as opposed to real-time) heat kernels.

For fixed f € Ay, define for # > 0

0(z1,22) = (Qu(f)e M14B/2Qy e~FZ2dn/20, ) (3.33)

Since 4 p is a positive operator, this function is holomorphic for Re z; > 0 and
Re z, > 0, hence by ref. [39, thm. 14.18] ¢5 has a continuous extension to the
real axis. The uniform bound |¢s(z|, z2)| < ||Qn(f )] < const. for these values
of its argument implies, by a well-known theorem in complex variables (cf. ref.
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[39, thms. 14.6 and 14.18]), that limj;_,o ¢4 = @¢ is holomorphic in the same
region, with a continuous extension to its boundary. Hence for ¢ real

o(t) = lim @o(zy,22), (3.34)

zy——1it

that is, the limits where the z; approach the imaginary axis and # — 0 may be
interchanged.
For real and positive 7, the heat kernel is defined by

(exp(—tdip/2)Q) (x) = /du(y)K(r;x,ym(y), (3.35)
P

and K is C* in x and y for T > 0 [12]. It follows from ref. [38, thm. 5.16] that
K = Kyo(1 + R), where

s 2
et

where o (x,y) is one-half times the distance between x and y (along a minimal
geodesic), and 4 is the Van Vleck-Morette determinant (cf. refs. [15,7]). The
remainder (which is positive definite, like K itself [12]) is uniformly bounded
for sufficiently small 7:

Ko(t3x,y) = (3.36)

R(t;x,y)<Crt (3.37)

for some constant C. Writing Ky (7)€ for (3.35), with K replaced by K, we
thus have from (3.34), (3.37), and the analyticity of ¢4

po(t) = lim Nim(Qn(f)Ko(z1)2n, Ko (h122) ). (3.38)

Zz—’—il

However, K generates a holomorphic semigroup, just like K [i.e., exp(z4ys) ],
hence the same reasoning that led to (3.34) allows us to interchange the limits
in (3.38), to conclude that for real ¢

}’ig(l)wf.(af'[Qh(f)]) = lim (Ko (=1A1) Qn (/) Ko (if12) 25, £20). (3.39)

We now take arbitrary (x;,x;) € P x P, except that x; and x, should not be
conjugate points [7]; this only removes a set of measure zero on P x P from
consideration. By a theorem of de Rham, there then exists a minimal geodesic
y connecting x; and x,, which does not have any pair of conjugate points on it.
Accordingly, we can write x; = y(x,x;1/2) and x; = y(x,x;—1/2) for some
x and x. By the theory relating conjugate points to Jacobi fields [7], we can
find an open set U C P x P containing (x, Xx;), which is diffeomorphic to an
open set ¥ C TP which contains x € TP (but it does not necessarily contain
0 € T P). We write the right-hand side of (3.39) as an integral over P x P, and
examine the contribution from U. A formula analogous to (2.10), but restricted
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to U, rewrites this integral as an integral over V. Rescaling by a factor # in the
fibre direction, this leads to the expression

/dﬂ(—\'l)dﬂ(xz)-Qh(r\‘l)Qh(v\'z)(KO(_ih[)Qh(f)KO(ih[))(«\'I*—\‘Z)
7

=" / dp(x) dp (%) / du(y) diey (9) f (0,90 (L X3 7/2)0 (3,32 2)2) -
V TP

x Ko(—iht;y (x,x;0/2), 7 (v, 33 h/2))
x Ko(iht;y (v, y,—h/2), 7(x,x:-h/2)). (3.40)

Using (3.36), and some properties of ¢ [15] this can be computed for small #;
for example, one has

o (y(x,x;0/2), 7 (0, v, h/2))
= 0’(,\’.)’) - %h[g(\'a ;'.r—',)’) + g(}."’?y—v.\')] + O(hz), (341)

where y,_., is a minimal geodesic between x and y (which is affinely param-
etrized so that y(0) = x and y(1) = y), and ,_., is its tangent at the origin.
Subsequently, one uses (2.16) (with x’ = y) and one sees that the factor J
cancels the VanVleck—Morette determinants in (3.40) for # = 0. After a simple
further rearrangement we may then use (3.24) and (3.39) to conclude that

lim / du(x1) du(x2) Tp X))
y

% (af 108 (N1 (x1x2) = Qa(af L/ D) (x1uxa) ) = 0. (3.42)

Since x; and x, were arbitrary (a.e.) this proves (3.28). d

Note that a rather different approach to the classical limit of the dynamics
(3.26) is presented in ref. [40]; the first rigorous results on the classical limit of
quantum correlation functions were obtained by Hepp [19]. He used coherent
states, of which our classical germs are a generalization.

To sum up, we have a satisfactory quantum dynamics on A defined by (3.27).
We may now ask if and how o is implemented in the irreducible representations
n* of A (cf. subsection 3.2). That is, we look for a self-adjoint operator ij on
‘HX which satisfies

(o [A]) = Ak (4)e HA/ (3.43)

for all A € A. Such an operator (defined up to a constant) clearly plays the
role of the quantum Hamiltonian in the sector x, cf. the classical case (3.25).
Before giving the answer, we recall [8] that the H-invariant metric g on P
determines a connection A4 on the bundle (P, Q, H) as well as a metric gp on Q:
the horizontal subspace H, P C TP is defined as the orthogonal complement of
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the intrinsically defined vertical subspace VP C TP, and the value of go (X, Y')
at g € Q is taken to be g(A(X),A(Y)), where A(X) is the horizontal lift of X
at an arbitrary point in the fibre above g. Conversely, a metric on Q plus an
invariant metric on H and a connection on P determine an H-invariant metric
on P.

Theorem 4. The Hamiltonian in the sector  is given by the gauge-covariant Lapla-
cian on EX [the vector bundle associated to P by the representation n, (H)] with
respect to the metric gg on Q and the connection A on P which are canonically
associated to the H-invariant metric g on P; with A* = dmy (A), and otherwise
self-evident notation

H,)f — _%fﬂvfix v (3.44)
This operator is defined and essentially self-adjoint on the space I'* C H* of
compactly supported smooth cross-sections of EX.

Proof. For simplicity, we omit the factor —#2/2 throughout this proof, as well
as the 1/% appearing in (3.27) and (3.43). As shown after (3.16), the Hilbert
space HX is naturally isomorphic to #X c L2(P). Itis clear from (3.17), (3.27),
and the H-invariance of 4. g that the unitary group exp (iz4rg), restricted to H*
(which subspace it leaves invariant), implements time evolution on P¥ 4. We
wish to identify the generator of this group, and this amounts to answering the
question whether 4, restricted to PXL2(P) = HX, is essentially self-adjoint on
the domain P} D(P) [with the Schwartz space D(P) = C2°(P)]. This question
is more easily analysed by transferring the situation to H#* using (3.18). Indeed,
V¥ maps D(P) onto [¥ = (D(P) ® H, ) [cf. (3.12)]; the notation X stands
for the H-equivariant subspace of some space X of functions or distributions; in
this case the equivariance condition is given by (3.12). Consider the inclusions

D(P)@Hy C L2 (P)@Hy CD'(P)®H,.

The Laplacian 4yg is defined on D'(P) (using weak derivatives), and acts
componentwise on D' (P) ® H, (i.e., it does not touch H, ); in what follows
we call this extended operator still 4;g. Thus 4y g acts on the two subspaces
listed by restriction, its action on D(P) ® H, being given through ordinary
(strong) derivatives. Since 4y p is essentially self-adjoint on D(P) C L?(P)
[12] (recall our assumption that P be complete), it is essentially self-adjoint on
D(P) ® Hy C L*(P) ® Hy. If D(41g) = D(P) is the domain of 4 g on L*(P)
then the domain of its adjoint D (4{g) consists of those elements ¢ of L?(P)
for which 4y ¢ is in L2(P), and the action of 4] coincides with that of 4 on
distributions (all this tensored with arbitrary vectors in H, ). This is easily seen
to be true also in the equivariant case. The space of distributions D’ (P) carries
a representation 7y of H by duality [that is, (nk(h) (), f) = (¢, nr(h™") f)
for p € D'(P) and f € D(P), cf. (2.7) for mg]. Hence it makes sense to speak
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of the subspace (D' (P) ® H, ) of H-equivariant distributions on P with values
in H, . This leads to the triple

(D(P) 2 H)T c #* c (D' (P) 2 H,)H.

Since 4y is H-invariant it is well defined on (D’ (P) @'H, ), and we denote the
restriction of A g to (D' (P) @ H, )H by 4f5. If we put D(Af) = (D(P)@H, )
then the domain D ((4{)*) of its adjoint in H* consists of those elements ¢ of
HX for which 4z isin H*. Hence D ((4fg)*) C D(4;p), and this immediately
implies that 4]y is essentially self-adjoint; namely, suppose that there exists a
VS D((A{B)") for which ((A)L‘B)* +i)y = 0then this y is in D (4}y) also, and
because 4}y coincides with (4{3)* on (D'(P) ® H, ) we would contradict the
essential self-adjointness of 4 g on D(P).

We now notice that VX ody g = A{Bo VX including their domains, so it follows
that 4 generates time evolution on 7*. Finally, we use the identity, valid on
[* [6] (cf. ref. [24] for the special case P = G)

Ay = VA4 . vAh — CE(H), (3.45)

where C¥ (H) = ¥, T? is the second-order Casimir operator of H in the rep-
resentation 7,. Since 7, is irreducible, the last term is a constant which can be
omitted from the Hamiltonian. Using the unitary intertwiner 7" [cf. (3.14)], we
can transfer the whole situation from H* to H*, and this proves the theorem.J

This theorem provides some motivation for the use of vector bundles and
their smooth cross-sections in quantum mechanics. Also, it gives a technique for
proving (essential) self-adjointness of Schrodinger operators in external (non-
abelian) magnetic fields: given the metric on Q and the connection on P defining
the field, one constructs the metric g on P and finds out whether (P, g) is geodesi-
cally complete, which is a classical problem. Further information on operators
of the type (3.44) may be found in, e.g., ref. [40].

3.5. POSITION AND MOMENTUM OBSERVABLES: CLASSICAL THEORY

As to position and momentum, in the absence of global co-ordinates on Q
one cannot expect operators of the form “g#” or “—i120/0q* to be meaningful.
In the absence of gauge fields, one can recover position and momentum from
the group Diff (Q) > C*(Q) [1,16,22]. This is the semi-direct product of the
diffeomorphism group of Q and the group of smooth functions on Q with com-
pact support; the latter is an abelian group under addition. A diffeomorphism
@ acts on a function F € C>(Q) by sending it to F o !, which defines the
semi-direct product structure.

However, in an external gauge field [described as a connection on the bundle
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(P,Q, H)] the correct group to use is
G = Aut(P) > C(Q). (3.46)

Here Aut(P) is the group of smooth bundle automorphisms of P, that is, the
restriction of Diff(P) to those C* diffeomorphisms ¢ that satisfy ¢ (xh) =
o (x)h for all x € P and A € H. The relation between Aut(P) and Diff(Q) is
described by the exact sequence of groups

1 - Gau(P) — Aut(P) — Diff(Q) — 1, (3.47)

which is the global version of the so-called Atiyah exact sequence of Lie algebras
(cf. ref. [28])
0 — &/ (P) — X7 (P) = X(Q) — 0. (3.48)

The gauge group Gau (P ) consists of those bundle automorphisms of P which do
not map points out of the fibre they are in, and the epimorphism of Aut(P) onto
Diff (Q) is the obvious one; our notation will be that ¢ € Aut(P) is mapped
onto » € Diff(Q); this defines the semi-direct product structure of G as in
the Diff(Q) case. We assume that all diffeomorphisms featuring in (3.47) are
equal to the identity outside some compact set: if we interpret (3.48) as the
Lie algebra version of (3.47), the smooth vector fields occurring in it have
compact support, so that their flows are automatically complete, and they are
closed under addition and taking Lie brackets. Hence X (P) consists of H-
invariant vertical vector fields on P, X (P) is the Lie algebra of all H-invariant
vector fields on P, and X (Q) are the vector fields on Q. The connection 4 on
P is equivalent to a splitting of the sequence (3.48), since £ € X(Q) has a
horizontal lift (&) € X¥ (P); we will denote the horizontal lift of Y € 7,0 to
T,P by A4, (Y) [prp_o(p) = q].

In our approach, the relevance of the group G is that it naturally acts as a
*-automorphism group on both Ay and A, and that the quantization maps Qy
asymptotically intertwine this action. We start by explaining how G acts on
S = (T*P)/H; this is a straightforward extension of the symplectic case with
Diff (Q) > C*(Q) [16,22]. The action is called p°, and is given by

(P°(9))([0]) = [(p~1)"0] (3.49)
for ¢ € Aut(P), and

(p°(F))([0]) = [0 + dF (prr-p_p(6))] (3.50)

for F € C=(Q). The action of (¢, F) € G is then given by p°((p,F)) =
p°(F)op®(p). Here [0] € (T*P)/H is the image of 6 € T*P under taking H-
equivalence classes, F is the lift of F € C*°(Q) to C>=(P) (that is, the pull-back
of F for the bundle projection prp_,¢); the result is independent of the particular
choice of  in its equivalence class. As in the symplectic case, it is easily checked
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that the p° are Poisson morphisms. Thus we may define an action «® of G on
Ag as the pull-back of p°, which is *-automorphic as well as Poisson, viz.,

o,y 1= fop’ (g, F)7). (3.51)

The Fourier transform (2.2) then yields an action a° on Ay = C>((TP)/H),
through a°[f] = Fal[f]. If [X] € (TP)/H is the equivalence class of X €
TP, then

0 du(p='(x)) » . .
((lg[f])([X]) = —d#m‘—f([w* 'X1). (3.52)
LI/ D XY = e "X Fx]), (3.53)

which are independent of the choice of X in [X].

Let n© be the irreducible “representation” of .4, on the symplectic leaf Po C
(T*P)/H [cf. text prior to (3.25)]. We ask whether the automorphism «? is
implemented in 7€, that is, is there a symplectomorphism p© ( (g, F)) for which

n(al, [ D) =7°(f) o p®p, F)~")? (3.54)

The answer is clearly yes, as p© is simply given by the restriction of p° to Pp
(note that the © in p° stands for the value # = O rather than the zero orbit
O = {0}). If g, is a one-parameter subgroup of Aut(P) with generator & € X¥,
then the generating function o© (&) of the flow p©(¢,) on PY is given by the
symbol ¢ (¢) quotiented to a function on P© [the symbol ¢ (&) of a vector field &
on P is the C* function on 7*P defined by (g(&))(0) = (60.&) (pry-p—p(0)):
if & € XH then o (&) is H-invariant, so by ref. [1, thm. 4.3.5] it quotients to a
function on any symplectic leafof (7*P)/H]. Similarly, the generating function
of the flow p@ (1F) is F itself (more precisely, the quotient of F to P?).

A momentum variable on Q is a vector field X’; in the presence of a gauge
field the only intrinsic object on P© to be associated to & is ¢© (4(&)). Locally
P° ~ T*Q x O, on which we choose canonical co-ordinates (g, p, ) relative
to a given trivialization (gauge) s, in which the connection A has components
s*A = A" dg® T;, and & = £*0/0q“; one finds (cf. ref. [16, 111.36])

a9 (1(E))(q.p,0) = ENq)(pa—0:4.(q)). (3.55)

We obtained this expression from the “classical” representation theory of the
classical algebra of observables Aj and its automorphism group G; for a different
perspective cf. refs. [16, ch. III] and [31, 3.3].

3.6. QUANTUM POSITION AND MOMENTUM

To quantize the structures of the preceding subsection, we start by constructing
an automorphic action of G on the quantum algebra of observables G. The first
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step is to define a unitary representation p” (for fixed # > 0) of G on L?(P) by

12
(P ()p) (x) = [autp™ N /du()] Wl X)) (3.56)
(P"(F)p) (x) = e F Oy (x), (3.57)

and p"((¢,F)) = p"(F)p"(¢p). This representation commutes with g (H)
[cf. (2.7)], so it defines a *-automorphic action of G on A by

o, 1y [A] = p"((9, F))Ap" (9, F))". (3.58)

For K € C>® (P x P) C A the kernel (called K as well, as before) transforms
as

(ol K1) (x1,x2)

(dﬂ(w“‘ (x1)) d#((ﬂ_l(xz)))l/z

du(xy) du(xy)
x K(p7 ' (x1),07" (x2)), (3.59)
(i [K]) (x1,x7) = e FO=FCaD/Ag (x) ). (3.60)

In analogy with theorem 3 we now have

Theorem 5. For each classical germ {wp}n>0 and for each f € Ay as well as any
(p,F)eg
;ligg)wf,(a?q,,m [0s(f)] = Qilal, r[f])) = 0. (3.61)

Proof. This is very similar to the proof of theorem 3, and we leave the details to
the reader. All analysis is trivial since f has compact support, so that we may
make Taylor expansions of the kernels of the operators appearing in (3.61),
and conclude that O (%) terms in the integrand do not contribute in the limit
i — 0. The result then easily follows from (3.59), (3.60), (2.5), (3.52), and
(3.53). One here needs the fact that the point a = ¢ (exp, (£%.X/2)) is equal
10 b = exp,(y)(+¢.X/2) up to O(#?), in the sense that g(a) = g(b) + O(h?)
for all g € C2(P). 0

Note that if ¢ is an isometry of P then (3.61) holds without the lim and
the wy, i.e., in that case the quantization Qy exactly intertwines af} and ag. An
interesting case where this happens is when P is a Lie group G and g is a left-
invariant metric on G. Then left multiplication by a fixed x € G is an isometry.
If we furthermore take H = G [so that (T*P)/H ~ g* and A = C*(G)] we
recover Rieffel’s result that the deformation of Cy(g*) to C*(G) is G-invariant
[37].

Let 7% be the irreducible representation of .4 on H* given by (3.16); one has
a unitary representation p¥ of G on HX, which is given by the same formulae as
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(3.56), (3.57), with y now taking values in H,. Passing to H% via the unitary
map (3.14), we obtain pX = TpxT*:

[av @ @) fav )]

x 1, (gl (52 (@) ]) " Dwp (@ ' (q)), (3.62)
(PX(FYy)a(q) = e F Dy (q), (3.63)

where hg isas defined after (3.15): it is the element of H satisfying sz (9~ (g) Yhg
= ¢~ '(s5.(q)). We here assume that g € U, and "' (¢q) € Uy. This represen-
tation pX(G) implements the automorphisms o, for, defining p*((¢, F)) =
pX(F)p*(p) it may be shown that for all 4 € Aand any (¢, F) €G

X (apry[A]) = p* (@, F))n*(4) pX((p,F))*. (3.64)

An illuminating special case is P = G and ¢ (x) = vyx for some fixed y € G.
In that case pX is just the representation of G induced by 7, (H), the argument
of m, in (3.62) reducing to the Wigner cocycle s,(g) =" ysg(y~'q). The pair
(3.62), (3.63) is then a system of imprimitivity based on Q = G/H (see refs.
[29,13], or [23] for a discussion of induced representations in connection with
quantization, fibre bundles and transformation group C*-algebras).

Following physicists’ conventions, we define a representation dU of a Lie
algebra g derived from a unitary representation U of its Lie group G by

dU(T) = ih(d/d)U ((e'T))] o, (3.65)

(P (@)w)alq)

which is defined and essentially self-adjoint on a suitable domain (for example,
the Garding domain if G is locally compact, which our group G is not, see
below). For & € X# [the Lie algebra of Aut(P)] and F € C*(Q) [identifying
the abelian group C* (Q) with its Lie algebra] we find

(AP ©p)al@) = (=if [VE + LdivE(@)] + d7, (4.8) (5.(a))) ) wala),
(3.66)
(dp* (F)y)a(q) = F(q)ya(q). (3.67)

Here & = (prp_p).(¢), and div is defined, e.g., in ref. [1]. The expression
(3.66) follows from (3.62) by direct computation plus a rearrangement bringing
in the connection A, but a more efficient derivation is to start from

(dp* (O y) (x) = —ih((€ + 3divE(x))y) (x). (3.68)

One then decomposes & = hor (&) + v ({A4,&)), where hor(¢) is the horizontal
part of &, and v (T) is the vertical vector field on P canonically associated to
any T € h, and uses the fact that

hor(&)y = Vixy.
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The equivariance condition (3.12) allows one to convert v (7T )y into [(i%)~!
times] dz, (T)y.

The operators (3.66), (3.67) are defined and essentially self-adjoint on the
domain I'* of compactly supported cross-sections of the vector bundle E*; this
is the same domain of definition of the Hamiltonian (3.44). In fact, the proof of
the essential self-adjointness of d p* (£) follows exactly the same lines as the proof
of theorem 4. The analogue of the essential self-adjointness of the Laplacian on
C>(P) C L*(P) in that proof is here the fact that ¢ is essentially self-adjoint on
C>(P) if its flow is complete [1, 5.4.2], a condition automatically satisfied in
our case as we assumed that £ has compact support. In the special case P = G
(eq. 3.66) was obtained in ref. [24], where the reader will also find a physical
interpretation of the third term in its right-hand side [viz., in case that £ is a
symmetry of the dynamics then this term is the contribution of the external
gauge field to the conserved operator dp* (£)].

Finally, if & € X (Q) then the quantum momentum operator associated with
this vector field is dp¥ (A(&)), which is given by the right-hand side of (3.66)
without the third term. If the connection A is flat this yields a representation of
Lie (Diff(Q)).

4. Groupoids and algebroids

4.1. QUANTUM THEORY

The passage from the classical algebra of observables Ay = Co((T*P)/H) to
its quantum analogue A = K(L2?(P))# has a transparent description in terms
of Lie groupoids and Lie algebroids (general references on these structures are
refs. [35,28,11]). The precise definition of a Lie groupoid is given in ref. [28,
III.1]; the ingredients are a total space €2, a base space B (both assumed to
be manifolds, all the maps occurring in what follows being smooth), and two
projections s (source) and ¢ (target) of © onto B, as well as an immersion
i : B — £.An element g € Q can be interpreted as an arrow between the
objects s(g) and ¢(g), and such arrows can be composed if their endpoints
match [that is, g; g, is defined iff s(g;) = t(g>)], in which case we write
(g1, 82) € 22; moreover, each g has an inverse /(g) = g~! as an arrow in the
opposite direction. The subspace G° = i (B) C & is called the unit space of Q;
it consists of all elements of the type gg~!, which are obviously closed arrows.
The multiplication (by composition) of three arrows is associative whenever it
is defined. An arrow is not in general uniquely determined by its endpoints, and
the unit space does not generally exhaust the set of closed arrows. A transparent
way to look at (or, indeed, define) a groupoid is as a (small) category whose
arrows all have inverses. The arrows are the elements of £2 and the objects are
the noints of R
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We will consider the so-called gauge groupoid [28,11] Qy = P xy P re-
lated to the principal bundle (P, Q, H), which is a quotient by H of the coarse
groupoid 2 = P x P. The latter has total space 2 = P x P, base space B = P,
and source and target projections s((x,y)) = y, t((x,y)) = x. The inclusion
is i(x) = (x,x), the inverse is (x,y)~! = (y,x), and the composition rule is
(x1,¥) (¥, x2) = (x1,Xx7). Its quotient P x y P is obtained by imposing the equiv-
alence relation (x;,x3) ~ (v, y2) iff (x1,x2) = (y1h,y2h) for some h € H; we
denote the equivalence class of (x,y) by [x,y]. Accordingly, B = Q = P/H,
the inverse is [x,y]~! = [y, x], the projections are s([x,v]) = prr—o(v),
t([x,y]) = prp—o(x), the inclusion is i(q) = [s(q),s(g)] (for an arbitrary
section s of P), and multiplication [x,y;] - [V, Xx2] is defined iff y, = y A for
some & € H, and the composition equals [x;4, x,] in that case.

A representation of £ [35] is a covariant functor 7 mapping 2 into the
category whose objects are Hilbert spaces and whose arrows are unitary maps.
Hence n(b) = H, is a Hilbert space for each b € B, and n(g) is a unitary
operator from H(g) 10 H,(g), With m(g182) = n(g)n(g2) whenever g,g; is
defined. If one in addition has a measure v on B, and the H; form a measurable
field, then one may form the direct integral H, = fff dv (b) H,. If all the Hy, are
identical to a fixed Hp then simply H, = L?(B,v) @ Hp. This Hilbert space H
1s useful, because it carries a representation of the groupoid C'*-algebra C*(£2).
and for a large class of groupoids (including those of the type we use) there
is a bijective correspondence between representations of C*(£2) on H, and
representations 7 of 2 itself (provided that n satisfies an obvious measurability
condition) [35]. For example, a faithful representation of the coarse groupoid
P x P is obtained by putting H, = C for all p € P, and defining 7 ((x,y)) to be
the unitary “operator” mapping | € H, to I € H,. One may choose v to be the
Riemannian measure z on P, and H, = L*(P).

A faithful representation 7 of P xy P follows from taking H, = L?>(H), and
n([x,y]) = np(ha(x)(hg(y)) '), regarded as a map from Hy to Hy, with
X = prp_g(x), etc.; my is the left-regular representation of H [cf. (3.6)], and
h, etc. i1s defined after (3.15). Alternatively, a single measurable section s may
be used, cf. subsection 3.1. We now equip Q with the measure v [see (3.2)],
and H, is L2(Q) ® L2(H), which is naturally isomorphic to L2(P), cf. (3.3).

To define C*(£2) one chooses a measure u; on each fibre Q0 = ' (b) of
£, and this system of measures should be invariant in the following sense. Each
g € Q definesamap L, : 25 — Q&) by L,(g’') = gg', which is bijective as
g has an inverse. All such maps are to be measure preserving. For 2 = P xy P
the fibres F, are all isomorphic to P, and one may take y; to be the Riemannian
measure 4. Given such an invariant collection of measures (called a Haar system
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on ), one defines a product on C. () by

i« o) (g) = /d/l:(g)(gl)fl(gg/)fz((gl)_l), 4.1)

Qs(g)

and an involution by
fr(g) = f(g™"). (4.2)

Note that the measure v on B combines with the Haar system {u},cp to a
measure 4o on £ in the obvious way [35, 1.3], putting uo (f) = [;dv(b) x
fg,,dub(g)f(g) for f € C.(R2). ForQ = Px Pwithv = uonB = P and
U, = pon Qb = P this yields uo = p ® u, whereas on Q = P xy P we
obtain the quotient of this product measure by H; in fact, realizing C.(P xy P)
as C.(P x P)H [the functions f satisfying f (xh,yh) = f(x,y) forall x,y €
P, h € H], we can put spx,p(f) = u® u(f), as H is compact.

The choice of the measures u;, makes the passage from Q2 to C*(Q) non-
canonical, but in many cases (including those of interest here, cf. the remark at
the end of this subsection) one can show that C*-algebras defined using different
measure systems are isomorphic [35]. (The choice of these measures is remi-
niscent of a corresponding situation is geometric quantization theory, where one
has to choose a measure on the space of leaves of a polarization on a symplectic
manifold.) In case that £ is a differentiable groupoid [28,11] (as in all our
examples), one may entirely forego the choice of a Haar system on 2, by using
half-densities rather than functions on £ (this was pointed out by Connes for
the special case 2 = P x P [9], and in general by Weinstein [46]). The details
are as follows.

For any g € 2, the manifold 2 has a submanifold 7, = t=!(¢(g)), which is
the fibre of the target projection, and evidently passes through g. Similarly, one
has submanifolds S, = s~!(s(g)), which are the fibres of the source projection.
Let A'/2(kert,)g (A'/2(kers.),) be the fibre at g of the bundle of half-densities
over Ty (Sg). This leads to a line bundle A4 over 2, whose fibre at g is 4, =
A2 (kers,), ® A2 (kert,),. With L, = t7'(s(g)) — t7'(¢(g)) defined as
above, and Ry : s7!1(1(g)) — s7!'(s(g)) given by R,(g’') = g'g, we have
natural isomorphisms for any composable pair (g, g’) € Q2,

(Rg’)* . (kers*)g - (kers*)gg’a
(Lg)«: (kert,)g — (kert.)ggr,
(Ligry-1g-1)s: (kert,)g — (kert.) ory-1,
I (kerty) g — (kers.) gry-1. (4.3)
Note, that the push-forward (Lg). of a map like Lg, which is only partially

defined, is not, in general, defined on the entire tangent space at a point, but it
is precisely defined on the the domain given [and similarly for the other maps
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occurring in (4.3)]. Pulling back, this leads to an isomorphism
Moot A2 (kers.) g @ A2 (ker ) ggr @ A2 (Kers.) gy 1@ A2 (kert.) (g
— A2 (kers,), @ A' (kert,) g © A2 (kert. ), (4.4)

where A' (kert,) ~ A'/2(kert,) ® A'/% (kert,) stands for the bundle of densities
over a fibre of the target projection. If f; € I.(A) are compactly supported
continuous sections of the bundle A, we may define a product by

i+ ) (g) = / o (fi(gg) @ Alg) ™). (4.5)
Qs
cf. (4.1). The involution is now given by

ST(g) =Tl (f(g™h)), (4.6)

where 7 is the operation which interchanges the order of two factors in a tensor
product. In case that 2 = G is a Lie group, the manifolds 7, and S, coincide
with G, so that A is simply the bundle of densities over GG, and we see that the
convolution algebra may be defined using densities rather than functions, with
no need for a Haar measure [46].

We now return to scalar functions on £, which are a bit easier to use in
practice. A general procedure to construct a norm on C.(Q) is given in ref.
[35], but it is easier to define it in a faithful representation. Any representation
n(£) corresponds to a representation (called n as well) of C.(£2) on H,: for
v, ¢ € Hp one has

(®(11p.0) = [dua(e) /(&) RSN D8N, - @)
Q
[This formula is correct if ug is invariant in the sense of ref. [35, 1.3], which is
the case in our examples; otherwise a Radon-Nikodym derivative enters (4.7).]
If 7(C.(L)) is faithful, one may define the norm by || f|| = ||z (/)]|, and close
C.(£) in this norm to obtain the groupoid C*-algebra C*(£2) [note that faith-
fulness of 7 (2 ) does not imply the faithfulness of 7 (C.(2))].

Applying this procedure to the coarse groupoid P x P, one easily finds that
n(PxP)onH, = L?(P) (constructed above) is faithful, and that C* (P x P) =
K(L?(P)). Similarly, using n(P xy P) above as well as the analysis in sub-
section 3.1 one finds that C*(P xy P) = A = K(L*(P))". One may ask
which representation 7% (£2) the irreducible representation 7% (LA) (cf. subsec-
tion 3.2) corresponds to; the answer is that n*¥ (q) = H, for all ¢ € Q. with
7 ([x,¥]) = 7y (ho (x) (hg(¥))~h).

In the special case P = G (a Lie group) one has P xy P ~ G x (G/H) by
the isomorphism P xy P 5 [x,y] — (xy~ ', xq9) € G x (G/H), where qp is
the coset {H} (hence (x,q) — [s(q),x 's(g)]). The groupoid G x (G/H)
has B = G/H. immersion map i(q) = (e,q), projections s((x,q)) = x g
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and f((x,q)) = g, inversion (x,q)~! = (x~',x"!g), and multiplication
(x,q9)(y,x~'q) = (xp,q). This is a special case of a semi-direct product
groupoid [35]. The fibres 9 are all isomorphic to G, which one equips with a
Haar measure. The groupoid C*-algebra C* (G, G/H) is then the transformation
group C*-algebra corresponding to the canonical action of G on G/H, or, equiv-
alently, the crossed product of G with Cy(G/H) for the natural automorphism
group of Cy(G/H) defined by G. Using various mathematical settings and mo-
tivations, it was independently proposed in refs. [13,2,30,23] that C*(G,G/H)
be the algebra of observables of a particle moving on the homogeneous con-
figuration space Q = G/H, and that the Hamiltonian be a quadratic Casimir
operator of G. This was a natural algebraic reformulation of Mackey’s quantiza-
tion on G/ H using systems of imprimitivity [29]. It was realized in refs. [24,25]
that this construction quantizes the “universal” phase space of a particle in a
Yang-Mills field [16,42,32] in the special case P = G. We now see that this
quantization is a special case of the groupoid construction presented above. The
further specialization H = G (so that C*(G,e) = C*(G) and (T*G)/G ~ g*
with the Lie-Kirillov Poisson structure) then reproduces Rieffel’s deformation
of Cy(g*) into C*(G) [37] (at least when G is compact, but we believe that our
construction generalizes to the non-compact case).

4.2. CLASSICAL THEORY

In the discussion of the quantum theory above we have exhibited the algebra
of observables 4 as a derived object, namely the C*-algebra of a certain Lie
groupoid. This is not always possible, because there are many C*-algebras which
are not related to groupoids. A similar special situation prevails classically, for
the classical algebra of observables 4y = Cy((7*P)/H) belongs to a limited
class of Poisson algebras, which are derived from an underlying Lie algebroid
[44,4.2.2.c], [11]. This leads to a neat parallel with the quantum theory, which
we wish to point out.

A Lie algebroid 4 is a vector bundle over a base manifold B, so that the
space of smooth sections I'(A4) is equipped with a Lie bracket [ , ]. Apart
from pr4_ p there is another projection pr4_,75, the “anchor” of A4, which de-
fines a Lie algebra homomorphism of I'(A4) to I'(TB) (see ref. [28, I11.2]
for details). The simplest example is A = TP with the obvious projection
onto B = P, and the identity projection to 7B = TP, the Lie bracket on
I' (T P) being the usual commutator of vector fields on P. One can pass from
Lie groupoids to Lie algebroids [28, III.3], and A = TP is the Lie algebroid
of the coarse Lie groupoid P x P. Quotienting by H, one may define the Lie
algebroid (TP)/H [28, A2] over Q. The space of sections I" ((TP)/H) is iso-
morphic to the space X¥ (P) of H-invariant vector fields on P [cf. (3.48)],
which isomorphism defines the Lie bracket on I"((TP)/H). The projection
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onto 7TQ is the obvious one, and (7 P)/H is the Lie algebroid of the gauge
groupoid P xy P [28,11].

It was pointed out by Weinstein [44] that the category of Lie algebroids is
isomorphic to the category of vector bundles with additive Poisson structures.
Hence we can associate a Poisson algebra C>°(.4*) to a Lie algebroid 4, which
consists of the smooth functions on the dual bundle 4*. The Poisson bracket
is initially constructed on elements of I"(A4) (identified with the subspace of
C> (A4*) of functions linear on the fibres) simply by the Lie bracket. This bracket
may subsequently be extended to a dense subset of "> (A4*) (in a suitable topol-
ogy) by imposing the Leibniz rule (derivation property) on products of linear
functions. On 4 = TP this procedure is equivalent to imposing the identity
{o(&)),0(&)} = a([&,&,]), where o (&) € C>(T*P) is the symbol of the
vector field £ on P [cf. text following (3.55)]. A more intrinsic construction of
this Poisson structure is given in ref. [11, I11.4.2]: in our case of a gauge groupoid
this amounts to the following. (7*P)/H is isomorphic to the conormal bundle
of the inclusion of the base space Q into P xy P, and is accordingly itself the
unit space of the symplectic groupoid 7* (P xy P) (whose groupoid structure
is spelled out in ref. [11, I1.4], and which is a symplectic manifold as a cotan-
gent bundle in the usual way). The Poisson structure on (7*P)/H is then given
by requiring the source projection of 7* (P xy P) (with the canonical Poisson
structure) onto its unit space to be a Poisson morphism. The dual of (7*P)/H
is (TP)/H (the normal bundle of the embedding), which is precisely the Lie
algebroid of P xy P. Hence the ensuing Poisson algebra is just C*°((T*P)/H)
with its canonical Poisson structure. If we restrict the Poisson bracket to its
subalgebra C>°((7*P)/H) and close in the uniform topology, we obtain the
classical algebra of observables Ay of a particle on Q moving in a Yang-Mills
field [44, 4.2.2.c].

To complete the analogy with the quantum situation, we need to develop a
suitable representation theory of Lie algebroids, and show that there is a bi-
jective correspondence between representations of a given Lie algebroid, and
realizations (“classical representations™) of its associated Poisson algebra. The
definition of a representation of a Lie algebroid given in ref. [28, I11.2.9] is too
general for this purpose, and we leave the construction of a suitable theory to
the future.

4.3. QUANTIZATION AS DEFORMATION AND GLUEING OF GROUPOIDS

We see that the step of quantizing 4y by A is equivalent to the passage from
the Lie algebroid (7'P)/H to the Lie groupoid P x y P, that is, to the integration
of a given Lie algebroid, and to subsequently finding the irreducible representa-
tions of the Poisson algebra and the C*-algebra associated to the algebroid and
the groupoid, respectively (note that it is not always possible to integrate a given
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Lie algebroid [28]). From the general point of view of groupoids, the theory in
this paper only covers the transitive differentiable case. Hence in ref. [26] we
conjecture that there exists a deformation of the Poisson algebra associated to
any integrable Lie algebroid into the C*-algebra of a corresponding differen-
tiable groupoid (this generalization was independently suggested by the referee
of the present paper). Further speculation then leads to the hope of associating
a Poisson algebra to a dense subalgebra of any C*-algebra of the type studied
in non-commutative geometry, as some form of an “infinitesimal invariant”,
similar to the Lie algebra attached to a Lie group.

The relation between this program and the theory of quantizing arbitrary Pois-
son algebras using symplectic groupoids, which is developed in refs. [21,46,47]
is not immediately clear. Given a Poisson manifold M, one looks for a symplec-
tic groupoid S (M), of which M is the base space. For M = (T*P)/H one finds
S(M) = T*(P xpy P), so that, in particular, S(g*) = T7*G. The next step is to
apply the usual geometric quantization algorithm to S (M), in order to obtain a
Hilbert space H (AM). The crucial move is now to exploit the groupoid structure
of S(M) to define an associative multiplication and an involution on H (M),
thus producing a *-algebra A(M ). Finally, one needs to introduce a polarization
to reduce the size of .A(M ), ending up with a quantum algebra of observables
A(M) (cf. refs. [46,47] for details). Even the simple case M = g* has yet to be
worked out in detail, but one may expect that A(g*) is some dense subalgebra
of C*(G), and, more generally, that the groupoid C*-algebras used in this pa-
per eventually emerge. Of course, the symplectic groupoid program is intended
to quantize even more general Poisson algebras than those obtained from Lie
algebroids.

Another way of looking at the deformation of 4 into A is to regard (TP)/H
not as an algebroid but as a groupoid, with base space Q and the vector bundle
projection of (7 P)/H onto Q. This move is equivalent to ignoring the Poisson
structure of Ap, and just using its C*-structure; indeed, Ay = C*((TP)/H).
The elements of (7P)/H are all closed arrows, and the groupoid operation is
addition inside a fibre. One may then regard P x 4 P as a deformation of (TP)/H
in the following sense: the space Qpjanek = {(TP)/H} x {0} U{P xy P} x (0, 1],
which glues (TP)/H to P xy P, may be given the structure of a manifold (with
boundary). Two equivalent ways of accomplishing this are given in a more
general context in refs. [20, III.1] and [45, 4.1]; the essence is to shrink an
open set in TP by a factor # € (0, 1] in such a way that the shrunken set lies
in a tubular neighbourhood of P C TP, so that it is diffeomorphic to an open
set in P x P. The procedure is entirely analogous to the construction of the
quantization maps Q in subsection 2.1 above.

The manifold Qpj,n is itself a Lie groupoid, with base space Q x [0,1],
and all arrows leaving each 7z € [0, 1] inert, so that the groupoid structures in
(TP)/H and in each copy of P xy P do not interfere with each other, and are
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as given before. This groupoid is the quotient of the so-called tangent groupoid
of P by H; the construction of the tangent groupoid of a manifold is due to
Connes (unpublished), and is described in ref. [20, I11.19]. It is a special case
of the normal groupoid G = G (G, G,) corresponding to a groupoid homomor-
phism ¢ : G; — G,, which is also an immersion of manifolds. To obtain Qpja,ck
as a normal groupoid, one has to perform the construction described in ref.
[20, ch. III] with G, = Q, regarded as a trivial groupoid (i.e., B = Q), and
G, = P xy P, with the immersion ¢ given by the inclusion i of B = Q into
Q = P xpy P specified in the preceding subsection. As already mentioned, the
normal bundle of this immersion is (7P)/H, and this fact easily leads to the
identification of G with Qppne. Its C*-algebra C* (Qpjanck) (improperly) con-
tains the classical algebra of observables A, as well as a copy of its quantum
counterpart A for each value of 7 € (0, 1], and appears to be a fascinating tool
for studying the classical limit of quantum mechanics (cf., in a different context,
ref. [4]).

In conclusion, we would like to thank R. Nest and G. Skandalis, without whose
comments on ref. [25] the preceding subsection could not have been written;
in particular, the identification of the continuous field of C*-algebras used in
ref. [25] (which is essentially C* (£pjanck) 1n the particular case that P is a Lie
group) as being a special case of a C*-algebra of a normal groupoid of the type
constructed in ref. [20] (in connection with KK-theory) was explained to the
author by Skandalis.
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