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An adaptationof Rieffel’s notion of “strict deformation quantization” is applied to a
particle moving on an arbitrary Riemannianmanifold Q in an externalgaugefield, that
is, a connection on a principal H-bundle P over Q. Hence the PoissonalgebraA

0 =

C0 ( (T* P)/H) is deformedinto theC*~algebraA = K (L
2(P)~ of H-invariant compact

operatorson L2(P), which is isomorphicto ~C(L2(Q))®C* (H), involving thegroupalgebra
of H. Planck’sconstanth is a genuinenumberratherthan a formal expansionparameter,
and in the limit h —* 0 commutatorsand anti-commutatorsconvergeto Poissonbrackets
andpointwiseproducts,respectively,in a well-definedanalyticsense.This deformationcan
beinterpretedin termsof Lie groupoidsandalgebroids,asA

0 is thePoissonalgebraof the
Lie algebroid (TP)/H, whereasA is the C*~algebraof the gaugegroupoidof the bundle
(P, Q, H). Other topics we discussfrom the point of view of our formalism are Wigner
functions, and the quantizationof the Hamiltonian as well as position and momentum
(includingtheir domains).
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1. Introduction

Building upon previousleads [5,3], M. Rieffel recently proposeda mathe-
matically satisfactory frameworkof quantization [36,37]. The main point of
his approachis to makeprecisethe intuitive idea, dueto Dirac, that quantum
commutators(times i/h) should convergeto Poissonbracketsin the “classi-
cal limit” h —p 0. We combinethis with an analogousrequirementthat the
anti-commutatorconvergeto the pointwiseproduct,andwith a physicallyself-
evidentreality condition. Thus we areled to the following procedureof “strict
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deformationquantization”. (For standardresultsandterminologyin the theory
of C*~algebraswe refer to ref. [33], andfor Poissonalgebrasandgeometrywe
recommendrefs. [43,8].)

Given a Poissonmanifold S, form the commutativeC*~algebraA0 = C0(S)
ofcontinuouscomplex-valuedfunctionson Swhichvanishat infinity, andsingle
outadensesubalgebraAo on which the Poissonbracket{ , } iswell defined(note
that Ao ~5 not necessarilythe maximal subalgebraof A0 on which the Poisson
bracketis defined).Thenfind a non-commutativeC*~algebraA anda family of
linear mapsQh : A(J ) A, definedfor h ~ (0,h0), whereh0 > 0 may dependon
the argumentof Q~,so that the following conditionsaresatisfiedfor all f, f1 ,

in Aç~(for simplicity, we denotethe norm andthe adjoint in bothA0 andA by

H H and ~, respectively;we recall that ~f~j= sup f~and f* = ~ for ~fE A0):

1. Qh(f*) = Qh(f)*;

2. the functionh —~ ~Q~(ffl~is continuouson [0,I)~) (with Qo ~ id);

3. limh~oI~~ ( QhCf1 ) Qh (.f~) + Q~(.f2 ) Qh (.fi ) ) - Qn (fi .f2 ) U = 0;

4.limh~oI~(i/h)(Qh(fi)Qh(f7)—Qh(f7)Qh(fi))—Qh({fI,f2})~=0.

Ofcourse,3 and4 togetherimply thatQ~is an “almosthomomorphism”,in the
sensethat Q~(f )Q~(g) — Qh (fg) tendsto zero in norm (this notion plays a
majorrole in thegeneralizedKK-theory ofConnesandHigson [10] ). Thephys-
ical meaningof this settingis as follows: the realpart of A0 is supposedto be
theclassicalalgebraof observablesof somephysical system,andthe self-adjoint
elementsin A form the “corresponding”quantumalgebra.Theobservablesthat
canbequantizedapriori arecontainedin A0,andQh (f) shouldbethequantum
observablewith the samephysical interpretationas its classicalcounterpartf.
Thuscondition 1 guaranteesthat observablesaremappedinto observables.Con-
ditions 2—4 area way of expressingthe fact that, at the levelof observables(as
opposedto states),quantummechanicsis a continuousdeformationof classical
mechanics.The anti-commutatorgovernsthe spectralcontentof the quantum
theory, and the pointwiseproductplays the samerole in the classicaltheory.
The commutatorandthe Poissonbracketexpressthe role observablesplay as

generatorsof transformationsof the statespace.For a moredetaileddiscussion,
cf. ref. [26]. Onehasto remarkthat the mapsQh for fixed 11 arenotcontinuous
(at leastin the examplesknown to the author),so that the quantizationcannot
be extendedfrom A0 to A0 in any obviousway.

Our interest in strict deformationquantizationlies in the fact that it pro-
videsabridgebetweenthemoderngeometrictheoryof symmetryandreduction
in classicalmechanics[31], andthe algebraictheoryof superselectionrules in
quantummechanics.Thelatteroriginatedin quantumfield theory, andis based
on the identification of superselectionsectorswith certain inequivalentrepre-
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sentationsofthealgebraofobservables.Onefinds that thesuperselectionsectors
of ageneric local quantumfield theorywith short-rangeforcesin four dimen-

sions correspondto the inequivalentunitary representationsof a compactLie
groupH (thegaugegroupofthe theory) [ 1 7 ] . Remarkably,ananalogousresult
appliesto the quantummechanicsof a singleparticle. This wasfirst observed
for a particle moving on a homogeneousconfigurationspaceQ = G/H [23],
which wasfurther studiedin the contextof strict deformationquantizationin

ref. [251 . Theidentification ofH in G/H with thegaugegroupwhoserepresen-
tation theory labelsthe superselectionsectorsis accidental,and in the present
paperweshalldescribethegeneralsituation.

Thus weconsideraprincipal fibre bundle (P,Q, H, prp~Q) with totalspaceP
(assumedto beparacompact,aswewill employapartition of unity on it) , base
spaceQ, projectionprp~Q: P —~ Q, andacompactLie groupH with rightaction
Rh on P. Wewill denotea genericpointof P by x (ory ), andwrite Rh (x) ~ xh.
The H-action on P pulls back to an actionR~on T*P, so that we canform

the quotientS = (T*P)/H. The Poissonstructureon S is inheritedfrom the
canonicalsymplecticform on T*P. Specifically,weidentify C((T*P)/H) with
C( T* p )H (the continuousfunctionson T* p whichareinvariantunderthepull-
backof R~for all h e H); it is easilycheckedthat the symplecticform on T* J~
is H-invariant, sothat the Poissonbracketof two functionsin C2 ( T*p)H is in
C(T*P)~~,andthis definesthe Poissonstructureof (T*P)/H.

The physical interpretation(originally dueto Sternberg)of S is well known
[16,42,32,31]: it is the “universalphasespace”ofaparticlemovingon Q which
couplesto a Yang—Mills field with gaugegroupH. S is fiberedoverT*Q, with
fibersisomorphicto h* (the dualof the Lie algebrah of H), andthe symplectic
leavesP

0 of S are in one-to-onecorrespondencewith co-adjointorbits0 in h*.
The leafP0 is fiberedover T*Q, too, with fibre 0. Eachorbit 0 in its entirety
plays the role of a possibleclassicalchargethe particle may have,sothat S is
theunionof thephasespacesP0 correspondingto all possiblecharges.

In what follows, we shall studythe classicalalgebra of observablesA0 =

C0 ( (T* P)/H). If we assumethat P has a Riemannianstructure,with an H-
invariantmetric, so that Q = P/H inherits a metric from P, we seethat A0
is the algebraof observablesof a chargedparticlemoving in an externalgrav-
itational field, as well as a possibleexternalYang—Mills field (whoseexplicit
formdeterminesthemetric on P,or, vice versa,is determinedby it [8], alsocf.
subsection3.4below). We assumethat P is (geodesically)complete.

The quantizationof A0, i.e., the constructionof thequantumalgebraA and
themapsQh, isstudiedin section2. It follows from astraightforwardgeneraliza-
tion of the Weyl prescriptionfrom 11” to arbitrarycurvedspaces.Although we
work in afunctional-analyticsetting,the procedureitself is entirely geometric,
cf. subsection2.1. Conditions1, 3, and4 aboveon a strict deformationquanti-
zationareprovedin subsection2.2. Condition2 is mosteasilyprovedusingthe
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auxiliary deviceofaWignerfunction, constructedin subsection2.3. Theresultis

that,as shownin subsection3.1, A is isomorphicto K(L2 (Q)) ® C~(H), which
standsfor the tensorproduct ofthe C*~algebraofcompactoperatorson L2(Q)
with the group algebraof H. This immediatelyleadsto the conclusionthat the
dual of A (that is, the set of equivalenceclassesof its irreduciblerepresenta-
tions) is equalto the dual of H. Henceeachunitary irreduciblerepresentation
of H correspondsto an irreducible representationof A, and is interpretedas a
quantumchargeof the particle. In subsection3.2 wegive a geometricrealiza-
tion oftheserepresentationsofA on Hilbert spacesofsectionsofcertainvector
bundlesoverQ, whichareassociatedto P. This leadsto a closeparallelbetween
the classicaltheory,with the symplecticleavesP

0 being fiberedoverT*Q, and
the quantumtheory. This realizationwill proveto be useful in subsection3.4,
in which, following an algebraicdiscussionof classicaldynamicsin subsection

3.3, it is shownthat the smoothsectionsofthe vectorbundlesin questionform
a naturaldomain of essentialself-adjointnessof the quantumHamiltonian. A
similarstatementholds for positionandmomentumobservables,whosetheory
is non-trivial in curved spaceand in a gaugefield. The classicalsituation is
examinedin subsection3.5, andthe quantizationis in subsection3.6.

While the quantizationprocedurehas a cleargeometricinterpretation,it is
somewhatad hoc from an algebraicpoint of view. Also to shedmorelight on
the particular Poissonand C*~algebrasthat appear,we reformulatethe results
in termsof groupoidsin section4. The classicalanalogueof the C*~algebraof
a (Lie) groupoid is the Poissonalgebraof a Lie algebroid, and this point of
view leadsto asimplealgebraicandgeometricinterpretationofthedeformation
quantizationconstructedin this paper.

Although we will not discussit here,onemay replacethe compactLie group
H by a discretegroup,throughwhichour formalism may describea systemof n
identicalparticles[which is in fact a specialcaseof a singleparticlemoving on
a multiply connectedconfigurationspaceQ, with H = m1 (Q)]. Anothergener-
alization is to start from a given Hamiltonian,ratherthan from a Riemannian
structureon P. All geometricnotions, including the connectionon the bundle
P, thenappearasderivedobjects,subordinateto the dynamics [31].

2. GeneralizedWeyl quantization on Riemannian spaces

2.1. CONSTRUCTIONOF THE DEFORMATION

We startby defininga Fourier transformmappingfunctionson T*P to those
on TP. In general,wheneverit iseasierto employ co-ordinates,wewill usethem.
Hencewe cover P with open sets {Ua}aEJ for someindex set I, with each Ua
homeomorphicto ~ andco-ordinatefunctions 4~:U0 —f R’

1. If no confusion
ariseswetakea fixed, and drop the lower index on x~.This leadsto canonical
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co-ordinates(x
2,pp ) on T*P, and (x’2, ~ ) on TP. We write x for thepoint of

P with co-ordinatesx~2in agiven patch,and 9~~ a/axM (so that, for example,
(x~L,~P) are the co-ordinatesof i~’~8~L~ TXP).We denotethe metric on P by
g, with determinantg in given co-ordinates.Recallour assumptionthat g is
invariantundertheright actionofH on P.Theinvariantmeasureon P is called

IL, the oneon the fibre T~Pis /2~,andthemeasureon TP is /i~.In co-ordinates

onehas

d~(x ) = d~x~, ~ (±) = d~~, ~ (p ) = d~p
( 2m) ‘~

(2.1)
where n is the dimensionof P. The fibrewise Fourier transformof a suitable
function f on T*P is definedby

(Ff)(X) ~J(X) =f d~x(O)e~°’~f(O), (2.2)

where A’ E T~X.“Suitable” heremeansthat f shouldbe measurableon T*P,
and integrableovereachfibre. In co-ordinates,this simply amountsto

f(x,~)= fd~x(P)e’~~f(x~P). (2.3)

As is clear from the co-ordinatefree definition (2.1), f is a well-defined scalar
function on TP. Theinversetransformisobvious,andinvolvesthe measure~
on T~Pwithout furthernormalizationconstants.Theconvolutionfj * f2 is the
Fouriertransformof the pointwiseproductfi f2, which gives

* ~(x,~) = f dIx(~’)~(X, ~ - ~‘)j~(x, ~ + i’). (2.4)

We recall that A
0 is the Poissonalgebra C0( (T* P ) /H), realizedas the H-

invariantpart of C0(T* P). We takethe densesubalgebraof quantizablefunc-

tions to be A0 = PW (0). Theseare the functions f ~ C0 ( (T* P)/H) whose
Fouriertransformf is in C~(TP) (herePW standsfor Paley—Wiener,andA0
consistsofthoseH-invariant C~functionson T*P which at eachfixed x e P,
i.e., as functionson TP ~ satisfy theconditionsof the Paley—Wienertheo-
rem, which characterizesfunctionswhoseFouriertransformis in C~(lv) [34,

thm. IX. 11]). Themotivation for this choicewill becomeclearshortly. We eas-
ily infer from the H-invarianceofthemetricg that ((Rh)* )* oJ = .Fo (R~_)*,

where (Rh)* and R~are the lift of the right actionRh on P to TP and T*P,
respectively.Hence A~is isomorphic,by the Fouriertransform (2.2), to Ao =

C~(TP )H, the algebraof H-invariant C~functionson TP, equippedwith the
convolutionproduct (2.4).

The deformationof C~(TP )H into a non-commutativeoperatoralgebrais
basedon thefollowing geometricfact. Considerthe diagonalembeddingA of P
into P x P [that is, A (x) = (x,x)]. The normal bundle N

4 of this embedding
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may be taken to be a subbundleof T(P x P) by equatingthe fibre N~X)at

(x,x) with {X ~ —X ~X e T~P}c T(XX)(P x P) ~ 1~P~ T~P.HenceN4 is
isomorphic to TP, underthe isomorphismç~: TP —~ N~,given on X e 1~P
by ç~(X)= X/2 ~ —X/2 e T(X~)(P x P). [Many other isomorphismsexistbe-
tweenTPandN4, andit will becomeclearthatanyparticularchoicedetermines
an operatororderingprescriptionin quantummechanics.The oneabovecorre-
spondsto (generalized)Weyl ordering,and in caseofP = 1~”eventuallyleadsto

the Weyl calculusof pseudo-differentialoperators[ 1 4 ] . The alternativechoice

~PKN(X) = 0 ~ —X leadsto the Kohn—Nirenbergcalculus; the corresponding
deformationquantizationviolatesthe reality condition 1 in the introduction.I
By the tubular neighbourhoodtheoremthereexistsan openneighbourhoodV

1
of P in TP (whereP ci TP is the zero section)which is diffeomorphic to an
openneighbourhood~ ofP in P x P [here identifying P c P >< P with A (P)].
Utilizing the metric on P. we take J~= U~B(x), whereB(x) c T~Pis the
largest open ball on which the exponential mape~ exp~: 7VP —~ P is a diffeo-
morphism.We take V2 the image of V1 under the map ço: V~—~ P x P defined
by ~(X) = (exp~(X/2),exp~(—X/2)), forX E TiP.

For any pre-compact set K in TP there will exist a h0 > 0 so that hK c V1
for all h e (0,h0). Define ‘ph(X) = ço(hX); we have ç~~(K)c V~in that
case.Now considera fixed f e C~(TP), with K =supp f, and h0 as above.
We may then define a function Qh (f) ~ C~(P x P) for all h E (0, h0) by

putting Qh(f) = h~(çQ~’)*f on V2, and setting Qh(f) = 0 outside V2. More
concretely, for X e T~P

Qh(f)(e
2,e~~2) = h~t(X). (2.5)

This definesan operator,called Qh (f) as well, on L2 (P) L~(P,~i) by

(Qh(f)W)(x) = fdi~(x’) Qh(f)(x,x’)~(x’). (2.6)

This is well defined: the value of Qh (f) at (x,x’) is zero when no X exists
for which (2.5) holds. Clearly, Qh() is a Hilbert—Schmidtoperator,hence
compact.

If the exponentialmap is a diffeomorphismon all of TP, thenh
0 = ~c,and

the quantizationmap is definedfor all h. There is, of course,an artificial way
of definingQh (f) for all h on arbitrary manifoldsP, by introducinga smooth
cutoff function to the effect that Qh (f) is definedbut vanishesfor h> h0, and
coincideswith the expressionabovefor h < 0.99h0 (say). The quantization
prescription (2.5) is different from previousattemptsat a generalizedWeyl
quantizationon manifolds [41,27], althoughthe useof the exponentialmap is
the same.The differenceis most easily seenfrom the Wigner function (2.31)
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below: in ref. [41 1 the JacobianJ is absent(which still leadsto a self-adjoint
quantization),whereasin ref. [27] a different Jacobianis used,which entails
thelossof self-adjointnesson non-homogeneousspaces(thesereferenceswere
pointedout to the authoraftersubmissionof this paper).

We now examinewhat the H-invarianceof f eA~meansfor Q~(f ) . Since

eachRh definesan isometryon P, it mapsgeodesicsinto geodesics.This implies
that Rh (exp5( Y) ) = expXh( (Rh ) ~Y) . Define a unitary representationJrR of H
on L

2(P) by

(irR(h)W)(x) = yi(xh). (2.7)

The previousequationtheneasily implies,for f not necessarilyH-invariant,

7CR(h)Qh(f)7(R(h) = Qh((R~_l)*f). (2.8)

Therefore,if f is in Ao C C
0(T*P)~~then Qh(f) commuteswith all mR(h),

h E H. We expressthis by saying that Qh (f) e K(L
2(P) )H, the H-invariant

compactoperatorson L2(P). Hence we take A = K (L2 (P))” as the non-
commutativeC*~algebrainto whichA

0 is to bedeformed.TheQn arehenceforth
regardedas mapsfrom A0 to A.

2.2. CLASSICAL LIMIT OF (ANTI-)COMMUTATORS

In this subsectionwe shall prove that conditions 3 and 4 (cf. section 1),
necessaryforastrictdeformationquantization,aremet.Condition 1 isobviously
satisfiedby (2.5), asf~(X) = f (—X) if f is self-adjoint in A0.Condition 4
will bedealtwith in the next subsection.

Letf1, f2 bequantizableforh e (0,h0), that is, theoperatorsQh(f1) (i = 1,2)
arewell definedin this interval. We will first analysethe expression

N(h) = I~[Qh(f1),Qh(f2)]+ —Qh(flf2)H, (2.9)

where the anti-commutatoris written out in condition 3 (section 1), and the
norm is the usualoperatornormon L

2 (P). By linearity of Qh, it is sufficient to
proveconditions 3, 4 for realJ. As condition 1 is satisfied,we may therefore
assumethattheoperatorA (h) = ~ [Q~(fi ), Qh (f2) I + —Qh(flf2) is self-adjoint.
Sinceit is alsocompact,it hasa normalizedeigenvectorQh, for which ~A(h)H =

I (A(h)Qh,Qh ) . It easily follows from this expressionwith (2.5) and (2.6) that
limh~0N(h) = 0 if the J havedisjoint support.Using a partition of unity on
P, wemay thereforeassumethat theprojection (from T*P to P) of the support
of both fi and f2 is containedin apre-compactgeodesicallyconvexset U c P,
on whichwe usesomeco-ordinatescheme{xM}.

To relatean integral overU x U C P x P to oneover TU C TPwe usethe
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formula

/
UX U

TU (2.10)

valid for arbitraryF e C(Px P) whosesupportliesinsideU x U. Herey (x, x;.)
is the affinely parametrizedgeodesicstartingat x with tangentvector* at x,
andthe Jacobianis

J(x,*,2) = 2~ [g(y(x,*;2) )g(y(x,*; -2))] “2g(x)’~ detH(x,*;2)L
(2.11)

H(x,*;2) is a 2n x 2n matrix

( h(x,*;2) h(x,*;2) ~ (217)
\~h(x,x;—2) h(x,*;—2))’

where h and h are n x n matrices, defined as follows. Let h~~)(x, *; .)D,~be the

solution of the equation of geodesic deviation [7] at the geodesicy (x, x;.) with
initial conditions

h~)(x,*;0) = ô~, ((d/dA)h~))(x,*;0) = 0. (2.13)

The entriesof the matrix h are the componentsh~V).Similarly, the matrix h is

defined by replacing the initial conditions (2. 13) by

h~)(x,x;0)= 0, ((d/dA)h~~))(x,*;0) = 5~. (2.14)

It is clear from (2.10) that J (., , 2) is a scalar function on TU. To derive
(2.10), one passes from the co-ordinates (x~, x~) to x~, *‘~ via the expression

x
1 = y(x, *;2), x2 = y(x,*; —A) (where A = 1/2 in the special case above).

The definition of the equationof geodesicdeviationimplies that

axff(x,*;A)/0f = h~)(x,*;A), ~x~(x,*;A)/a*v = h~)(x,*;A),

= h~)(x,*;—A), ~x~(x,*;A)/L)*v = h~)(x,*;—A),

(2.15)

which leadsto (2.10)-(2.14). Oneanalogouslyderivesthe equation,valid for
any G E C(P) whosesupport is in U, and an arbitrary point x e U satisfying
the condition that U be contained in the image of the exponential map on TiP,

fd/~(x’)G(x’) =1 d~t~(*’)J(x,*’;1)G(y(x,*’; 1)), (2.16)

with Jacobian

J(x,*’;A) = 2’~[g(y(x,*’;A) )/g(x)] 1/21 deth(x,*’;A)I. (2.17)
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Note that

J(x,*;l) = A(x,y(x,*;l)y’, (2.18)

whereA is the VanVleck determinant[7,15]. Using (2.14) andthe connection
betweenA and Jacobifields [7 1 , this easily follows in Riemannnormal co-
ordinatesaroundx, and it must thereforebetrue in generalsinceJ andA are
geometricobjectswhichareindependentoftheco-ordinatesusedto definethem.

From (2.9) andfollowing text, (2.4), (2.5), (2.10) and (2.16),andthe prop-
erty y(x,*,hA) = y(x,h*,A)we then find

N(h) = fd~xf di~x(*)f d~~(*’)

x Qh(y(x,*;h/2))Qh(y(x,*;—h/2))F(h,x,*,*’) , (2.19)

with

F(h,x,*,*’) = J(x,*;h/2) [~h2nJ(x,*1;h)

x {Qh(fl)(y(x,*;h/2),y(x,*’;h))Qh(f2)(y(x,*’;h),y(x,*;-h/2))

+ Qh(f2)(y(x,*;h/2),y(x,*’;h))Qh(fl)(y(x,*’;h),y(x,*;-h/2))}

- f~(x, ~* - *‘)~(x, ~* + *1)]. (2.20)

Wenow analyseF for fixed x. F is invariantunderco-ordinatetransformations,
sowemaychooseRiemannnormalco-ordinates(RNC) basedatx. Thefollow-
ing orderestimateshold pointwisely in x, * *‘. By evaluatingthe geodesicdevi-
ation equationin RNC [7] at A = 0 it follows immediatelythat h~(x,*, h) =

hô~{1+ 0(h
2)]. Theinitial conditions(2.13) showthath~(x,*,h)= ~5~[l+

0(h2)]. Combinedwith the explicit form of the metric in RNC [7], we thus
infer from (2.11) and (2.17)that (in any co-ordinates)

J(x,*;h/2) = 1 + 0(h2), J(x,*’;h) = 1 + 0(h2). (2.21)

To deal with the Qh(f
1) terms in (2.20) we write y’~(x,*, A) = A*~etc., and

performaTaylorexpansionof Qh(11) aroundthe point (y (x, ~*— *‘; h/2), y(x,
~*—*‘; —h/2)), andofQh(f2)around(y(x, ~*+*‘;h/2), y(x, ~*+*‘; —h/2)).
The resultis thenrewrittenin termsof the J themselvesusing (2.5). If onein-
cludesthe 0(h) term,whichwill beneededlateron, oneencountersexpressions
of thetype

[(~+ ~)Qh(fi)] (x1 = y(x,~*-*’;h/2),x2 =

tobe expressedin RNC asindicatedabove.This is doneby inverting(2.15),and
expandingin powersof h. Theresult is thath” timesthe expressiondisplayed
aboveequals (af1/ax’

2)((x, ~* — *‘)) + 0(h).
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The conclusionis thatpointwisely

limF(h,x,*,*’) = 0. (2.22)

Now return to (2.19). We use (2.1 ) and majorizethe x-integral by taking

supx gF out of it. We thenusethe Cauchy—Schwarzinequalityto find

N(h) ~ K(h) fdn*dn*’ sup g(x)F(h,x,*,*’)~, (2.23)
xE U

with

K(h) =supfdJl(x)lQh(y(x,x;h/2))12Jdp(x)lQh(y(x,x;_h/2))12,
xEC

U U

(2.24)
where C is a compactset in which the support of F in * is contained.SinceQh
has norm 1 in L2(P;jt), K(h) is uniformly boundedby a constantK, which is
equal to the supremumoverx, *, and h of the squareof the Radon—Nikodym
derivative d~(x )/dp(y (x, *, h/2)). This is a continuousfunction of x, with
continuousparametricdependenceon * andh, andthe supremumis takenover
a compact set. Hence K(h) in (2.23) may be replaced by the finite constant
K. We recall that F is C~in x, *, *‘ since f1 and f2 are. The dependenceon

h is continuousas well, andelementaryanalysisshowsthat the pointwiseresult
(2.22) implies the correspondingresult uniformly in x. Finally, the compact
supportin *, *‘ allowsthe useof the Lebesguedominatedconvergencetheorem
to interchangelimh,o with the integrationsin (2.23). Henceby (2.22) and (2.9)

iinlI~.[Qh(fl),Qh(f
2)]+—Qh(flf2)ll =0 (2.25)

for all ~ in A0. An entirely analogouscomputationyields the classicallimit of
the commutator(cf. condition4, section1)

iinll(i/h)[Qh(fl),Qh(f2)]_ — Qh({fl,f2})ll = 0. (2.26)

Here one needsthe 0(h) terms in the Taylor expansionof Qh (J), discussed

after (2.21).The Poissonbracketis the canonicalone,which in canonicalco-
ordinates(x, p) simply reads

{fl,f2}(x,p) = (~-Li~~4- ~-L~-~4)(x,p). (2.27)

The Fouriertransformof (2.27),which enters the proof of (2.26) is

{t~,/}(x,*) = d~~(*’)fi(x,~*-*’)

x [(~*+ *‘)~~ + (-~* + *~~]~(x, ~* + *‘). (2.28)
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2.3. WIGNER FUNCTION AND NORM CONTINUITY

Wewill proveproperty2 ofa strictdeformationquantizationusinga(lengthy)
argument,which we do not reproducehere (cf. theorem4 in ref. [25] ), that
reducestheproofof continuityof all functionsh —~ llQh (f )lI on [0, h0 ) (f E

A~,andh0 definedprior to (2.5); recall that Qo ~trid) to the constructionof

sufficiently many “classical germs”. A classical germ is a collection of states
{ Wh}hE[0,e), for some e > 0, sothat ~

0h is a stateon A for h > 0 andw
0 is a

stateon A0,with the propertythat the function h —~ Wh ( Qh (f ) ) is continuous
for h > 0 whereverit is defined(the only essentialpoint is continuityon [0, e’)
for arbitrarye’ > 0, e.g., the infimum of e and h0 for the given function f).
We say that a classicalgerm {wh} convergesto w0. By “sufficiently many” (to
proveproperty2) we meanthat for any purestatew0 we need a classicalgerm

convergingto it.
To constructthesegermsweemployaWignerfunctionformalism,well known

for P = l~[14] (andgeneralizedto arbitraryhomogeneousspacesin ref. [25],
with a further extensionto arbitraryRiemannianmanifolds in ref. [27]; the

latter is slightly different from our procedurebelow). The idea is to express
expectationvaluesof quantumobservablesas phasespaceintegrals,that is,

(Qh(f)Q,Q) = f fW~ (2.29)

(T*P)/H

shouldhold for all f ~ ~ with a certain (Wigner) function l’V~on (T*P)/H,
which of coursedependson Q E L

2 (P). More generally,one may constructa
Wigner function for a pairof vectors,sothat

(Qh(f)Q1,Q2) = f ~ (2.30)
(T*P)/H

sothatW~ W~Q.To accomplishthis,we definea functionon T*P, depending
on arbitraryQ e L2 (P) (i = 1,2) by

WQQ
2(X,p) = f d~~(*)J(x,*;h/2)

Bh(x)

x e”~Q1(y(x,*;—h/2))Q2(y(x,*;h/2)), (2.31)

with y definedafter (2.10), and J given in (2.11). Here Bh(X) 2 B(x)/h,
with B (x) the largestball in T~Pon which the exponentialmap is a diffeomor-
phism.Clearly, WQQ is well defined,i.e., independentof the co-ordinatesused
in (2.31); this mayevenbemoreapparentfrom thegeometricexpression(2.38)
below. Subsequently,wedefinethe Wigner functionon (T* P)/H by

W~Q2([0]) = fdh l~V~Q2(R~(0)), (2.32)
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where0 e T*P, and [0] its equivalenceclassin (T*P)/H (anddh is the Haar
measureon H). A simplecomputation,using (2.10),showsthat J4~Q2indeed

doesthe job, in the sensethat the equality in (2.30) is valid exactlywhen the
quantizationQt~~(f)is defined.That is, it holdsfor h e (0,h0), with h0 sothat
the supportoff in eachfibre T~Pof TP is containedin Bh(X) for all h in this
interval. Evidently, for exponentialmanifolds B(x) = 1~Pand (2.30) is valid
for any h. Notethat adifferent attemptto constructaWignerfunction in curved
spaceis madein ref. [ 1 8].

As an applicationof the Wigner function techniquewe will now construct
a classicalgerm {Wh} convergingto an arbitrarily chosenpure state w~on
Co(T*P), that is, a point 0 E T*P. Regardedas stateson A and A0 by re-
striction, this classicalgermthenconvergesto the purestate [0 ] on A0, so that
this constructionprovidesa proofof property2.

WeuseRiemannnormalco-ordinatesx~aroundprT~p~p(0 ) (prT~p~pbeing
the projectionfrom T*P to P), sothat 0 hascanonicalco-ordinates(0,~)for
some~. Define Qh e L

2 (P) by

Qh(x) = (mh)4Kh(x)e1~/he_v2/2h. (2.33)

whereKñ i5 a smoothcutoff function restrictingthe support of Qh to the RNC
patch,and normalizing it to unity; we assumeKñ(0) = 1 (for P = ~ one has

= 1),and (2.33) is the wavefunctionofa coherentstatewith positionx = 0
andmomentum~ The Qh definevectorstatesWft by ~‘~h(A) = (AQh,Qh) for
A E A, h > 0. We wish to prove that these states converge to w

0 = 0 as a
classicalgerm.As we seefrom (2.29) andthe definition of a classicalgerm, this
is thecaseif the Wigner functionsJ1~J~convergeto ~ the Dirac distribution
on T*P at 0 = (0,JJ),in the weak topology defined by A0 (regardedasa space
of test-functions on T*P).

To computethe Wigner function (2.31) (with Q1 = = Qh) we needto
computethe RNC of;’(x, *; +h/2), for arbitraryx and* (expressedin RNC)
to 0(h). To 0(0) clearly ;“~(x, *; 0) = x’

1. Considerthe family of geodesics

{yh}h()~ definedby ;‘h(O) = 0 (i.e., the fixed point prT~p~p(O)we assigned
RNC x’1 = 0 to), and ?h( 1) = ;‘(x, *;h/2). This leadsto a Jacobifield (a
solutionof the equationof geodesicdeviation [71)h along the geodesic;X (.)
(for which ;~x(0)= 0 and yX(l) = x), definedby h = dyh/dhlho. The RNC
y~L(x, *; ±h/2)are thenequal to x’~±~h dh~/dAI~o.The field h satisfiesthe
Dirichlet boundaryconditions (in RNC) h’~(0) = 0; h~(1) = *‘~. In general,a
Jacobifield with Dirichlet datasatisfies[7, V. problem 3, p. 346] dh~/dAlAo =

g’~’(0)a
11~(0,x)h~(1), where a is the Van Vleck matrix. In RNC one simply

hasa~(0,x) = 5~,so that we concludethat

= x~±~h*~+ 0(h
2). (2.34)
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From (2.31), (2.33)and (2.34) wethusfind

W~(x,p) = (mh)~’4 f d~x(*)e1~~_e_x2/2hKh(x)[l + 0(h)].

Bn(x)

(2.35)
From (2.29), (2.35) andthe Lebesguedominatedconvergencetheorem (justi-
fled by the propertiesof f, andallowing usto ignorethe 0(h) term in (2.35)
whentaking thelimit) we obtain

~im(Qh(f)Qh,Qh)= f(0). (2.36)

Sincethe continuityof the functionh —~(Qh (f )Qh, Qh) for h > 0 is trivial to
establish,we concludethat thecollectionof states{Wh}h>0 consistingof vector
statesdefinedby theQ~forh > 0 [cf. text after (2.33) 1’ andw

0 = 0, is aclassical
germconvergingto 0. As remarkedabove,thisprovesthatthe deformationwe
haveconstructedsatisfiescondition 2 in the introduction.To summarize:

Theorem 1.LetaparacompactmanifoldP be the total spaceofa principalfibre
bundleover Q with compactstructuregroup H, andlet g bea H-invariantmet-
ric on P. Equip (T*P)/H with the quotientPoissonstructure denvedfrom the
canonicalsymplecticstructureof T*P. Let A0 be the commutativeC*~algebra
C0((T*P)/H), andA~its densesubalgebraconsistingofthosefunctionswhose
fibrewiseFourier transforms(2.2) arein C~(TP). Let A = K (L

2 (P) )H be the
C* -algebra of H-invariant compactoperatorson L2 (P) (L2 definedw. r. t. the
measureassociatedto g). Then the “quantization map” Qh (f), constructedfor
eachf ~ A~by(2.5) with (2.6), is definedon a strip (0,h

0), whereh0 > 0 depends
on f [and equalsoc if the manifold is exponentialin thesenseexplainedafter
(2.32)], andsatisfiestheconditions1—4 in theintroduction(section1 above)ofa
strict deformationquantization.

The proofthatconditions1, 3, 4 aresatisfiedis in subsection2.2above,andthe
proofof condition2 hasbeenthe contentsof the presentsubsection.

Althoughit is onlyof parentheticalrelevanceto themainsubjectofthis paper,
we give

Theorem 2.If P is compactthe Wignerfunctions(2.31), (2.32)arecontinuousfor
any Q1, Q2 E L

2 (P) (and h > 0). For non-compactP theyare continuousand
vanishat infinity if thefollowingcondition is satisfiedby themetric g on P. the
constant

p = supd~(R(x
1x2))/dji(x2) (2.37)

X1 ,X2

shouldbefinite. Herethesupremumis takenoverall pairsofpointswhich can be
connectedby a unique geodesic, and R(x1 x2) is thegeodesicreflectionofx1 in
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X
2 [that is, R(x1 x2 ) = ?( 1 ), where;; is the affinelj’ parametrizedgeodesicfor

vt’hich y(0) = xi andy(l/2) = x2]. TheRadon—Nikodvmderivativein (2.37)
(which is a function ofx2 with x~as a parameter) relatesto the Rietnannian
measure~ion P.

Proof A geometricexpressionof (2.31 ) is

~QIQ2~°~ = h~ f d~(xi)~~~2fl
exp(B(x2)) -

x e(1/Ov1x2~Qi (.v1 )Q2 (R(x1x2 ) ), (2.38)

where x2 = prT~p,p(O),and R(x1x2) is the tangentvector to y at x2. To
derive (2.38),choosea regularizationÔ~2ofthe (covariant)Dirac distribution
on P supportedat x2, so that

~Q1Q7(-~2,P) = lim/dP(x) ~Q1Q2(\,P)~~2(~\).

Substitute (2.31), scaleh out, anduse (2.10). Then takethe limit e —~ 0, and
(2.38) follows. Using the Cauchy—Schwarzinequality onethen finds

I r;~1~2(0)12 ~ h~p
2~~Q

112 11Q2H
2, (2.39)

with the vector norms in L2(P). Hence if p < oc and h ~ 0 the map ~P
L2(P) ® L2(P) —p Lc~(T*P)definedby cI~(Q

1,Q2)= J4~Qis continuous,

sincewe haveshownthat it is boundedwith norm less thanh~p
2.Now take

bothQ in D(P). It theneasily follows from the Riemann—Lebesguelemmathat
wQQ is C~in x andC

0 in p. Now V(P) is densein L
2 (P), so that ‘1~mapsa

densesubspaceof L2(P) ® L2 (P) into Co (T* P), which is norm-closed;hence
I~, being continuous,mapsall of L2 (P) ~ L2 (P) into C

0 (T* P). The theorem
follows. The analogousstatementon (T*P)/H is immediate as H is compact.
Comparewith prop. 1.92 in ref. [14].

We close this subsectionwith an aside. The quantizationrule (2.5) is, of

course,far from unique,and correspondsto aparticularoperatororderingpre-
scription,but one may modify it in a certainobviousway. The motivation for
this is that in flat spaceP = ll’~ (and H = {e}), one has for the transition
probability betweentwo vectorsQ1 e L

2 (Rt’) the remarkableformula

= hnf l+Q
1

1/1Q
2. (2.40)

If we now regardthe Wigner function 14~as a classicalobservable(which on
the one handis somehowjustified by theorem2, and by the correspondence
betweenstatesand observablesin quantummechanics,where a state is at the
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sametime an observablevia its densitymatrix, but on theotherhandis slightly
perverse,as the Wignerfunctiondependson h), then (2.29) and (2.40) show
that

[Q] = Qh(h~W~), (2.41)

showingthat the orthogonalprojector [Q ] on a wave function Q is precisely
thequantizationoftheWignerfunctionofthis wave function(timesh~). Using
(2.5 ) , oneseesthat thisproperty no longer holdsfor generalcurvedspacesdue
to the factorJ in (2.31). However, (2.40) and (2.41 ) arevalid if we multiply
the right-handside of (2.5) by J(X; h/2)’/2, and replaceJ in (2.31) by its
squareroot. This is still astrict deformationquantizationdueto (2.21).

3. Representationtheoryand dynamics

3.1. STRUCTUREOF THE QUANTUM ALGEBRA OF OBSERVABLES

We haveseenthat the quantumalgebraof observablesis A = K (L2 (P))”,
thecompactoperatorson L2 (P) which commutewith therepresentation7~R(H)
[cf. (2.8)]. This C*~algebrahasa very transparentstructure,as we will now
spellout (what follows is completelystandard).Considerits densesubalgebra
A = HS(L2(P))” L~(P x p)H of H-invariant Hilbert—Schmidtoperators.
An elementK ofA is determinedby (anddetermines)a kernelK e L2 (P xP)”,
satisfying

K(x
1h,x2h) = K(x1,x2) (3.1)

almosteverywhere(w.r.t. the H-invariantRiemannianmeasureii on P). Since
1u is H-invariant it determinesa measurev on Q; moreover,H has a unique
Haarmeasurewith totalmass 1. Theseare relatedby

fd~(x)f(x) = fdv(q) fdhf(s(q)h) (3.2)

for any f E L’ (P) andany measurablesections: Q —~ P. The Hilbert spaces
L

2 (Q) and L2(H) aredefinedw.r.t. theserespectivemeasures.We perform a
unitary transformationT: L2(P) —~L2(Q x H) L2 (Q) ® L2(H) as follows.
Choosea measurablesections Q —~ P leadingto auniquefactorizationx =

s(~)h(x) of x E P into ~ prp~Q(xT)e Q andh(x) E H Put

(Tyi)(q h) = ~u(s(q)h) (3 3)

for yl e Cc(P) andextend T to L2(P) by continuity T is unitary and has
inverseT givenon y~E Cc(Q x H) by

(T*,,Z?)(x) = ~,i~U~h(x)) (34)

with h(x) determinedby the factorizationmentionedabove
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Now considerthe groupalgebraC* (H). This is definedas the C*~envelope
ofthe BanachalgebraL’ (H) [33], equippedwith the convolutionproduct

(f1f2)(h) = fdkfi(hk’)f2(k). (3.5)

We recall the left-regularrepresentation~L of C* (H) given on ~LfE L
2 (H) by

(mL(f)yl)(h) = fdkf(k)w(klh). (3.6)

This leadsto a faithful representationof the C*~algebraA’ = K(L2(Q)) ®
C* (H) on L2 (Q x H) which is thetensorproductofthedefiningrepresentation
of K ( L2 ( Q ) ) andthe left-regularrepresentationof C* ( H ) . We identify A’ with
its representative.We constructa mapp : A —~A’, by defining it on the dense
subalgebraL2(P x p)H c A by

(p(K))(q
1,q2,h) = K(s(q1)h,s(q2)), (3.7)

where,asexplainedabove,weidentify bothK e HS(L
2 (P ) )“ andp (K ) ~ A’

with their respectivekernel functions (the latter tensoredwith a function on

H). It follows from (3.1), (3.3), and (3.4) that p (K) = TKT*, sothat p is a
* -homomorphism.The imageof HS(L2 (P))” is L2 (Q x Q x H), which is dense
in A’. Hencetheextensionof p to A definesanisomorphismbetweenA andA’.
In conclusion,

A = ~(L2(P))~’ ~(L2(Q)) ® C*(H). (3.8)
This allows allows usto immediatelyclassify the irreduciblerepresentations

of A, that is, the quantumsuperselectionsectorsof the systemwhosealgebra
of observablesis A. Theseare determinedby C* (H), as the compactsK only
haveone irreducible representation.Thereis a one-to-onecorrespondencebe-

tweennon-degeneraterepresentationsof C* (H), andunitary representationsof
H [33], henceeachunitary irreduciblerepresentationof C* (H) is determined

by a unitary irreduciblerepresentation~ir~ of H on a Hilbert space7-ti. This, in
turn, inducesan irreduciblerepresentation~X of A on 7-0~= L2 (Q) ~

3.2. REALIZATION OF THE IRREDUCIBLE REPRESENTATIONSOF A

In the precedingargumentthe sections wasjust measurable.To study the
self-adjointnessof certain unboundedoperatorsrelevantto physics,as well as
to get a clear-cutgeometricstructure,it is useful to use smooth local sections.
Hencewecover Q with open sets{U~}~~jso that smoothsections5(~: U(~ —~P

exist, cf. ref. [7]. On overlapregions Uc, fl Up one has sp(q) = s~(q )h(,p (q)
with somesmoothgaugetransformationhQp: U(, fl U~—~ H. Thesesectionsplus
thegaugetransformationsincorporatethetopologyof theprincipal fibre bundle
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(P,Q, H). Eachrepresentation~‘r~(H) leadsto an associatedvectorbundleEX,

whosespaceof smoothcross-sectionsis denotedby ~X ~An elementyi consists
of acollection {cIJc~}c~ejof smoothfunctions y.’~, : U(, —~ 7-ti, which on overlap
regionsU,~,fl U~are relatedby

y’c*(q) = ic~(h~,p(q))yip(q). (3.9)

The spaceof compactlysupportedsmoothcross-sectionsof EX is denotedby
VeX ; this spaceis equippedwith the obviousinnerproduct

= ~ (3.10)
c~EJ

where{Pa}~,~jis a partitionof unity subordinateto the cover {Uc,}c,~j,andthe
inner producton the right-handside is the onein 7-(~~.Theclosureof 17~ in this
inner productis W L2 (EX).

It follows from (3.7)andharmonicanalysison H that 7-tX carriesanirreducible
representation~X of A, which on the densesubalgebraC~(P x p)H is given by

(~X(K)~p)(q)= ~fdv(q’)P~(q’)
aEJ

~ (3.11)

where we assumethat q E U~.Strictly speaking,this is defined on as a
boundedoperator,andthenextendedto 7-t2~by continuity. It follows from (3.1)
and (3.9) (togetherwith the gaugetransformationrule of the sectionsse,) that
(3.11) is well defined: firstly ~X (K)yip transformslike Wp undergaugetrans-

formations (3.9), andsecondlyon the right-handside onecould choose,say,y
ratherthanrs on an overlapregion Uc, n U

2 withoutaffectingthe result.
It is convenientto havea different, unitarily equivalentrealization of the

Hubertspaceof sectionsat our disposal,which we call 7~X~This is the Hilbert
spaceclosureof F,~,which is the spaceof H-equivariant C/~functionson P
with valuesin ~ that is, ~ E ~ satisfies

~(xh) = 7r~(h’)y/(x). (3.12)

The inner productis

(~‘) = fdv(~) (~(x),~’(x))~~, (3.13)

where ~ = prp~Q(x) as before; as P/H is diffeomorphic to Q, it carriesthe
measurev (notethat dueto (3.12) thel~(~innerproducton theright-handside
of (3.13) is a functionon P/H). A unitary transformation1’: ~X 7-(~is given
by

(Dç~(q) = ~(s~(q)), (3.14)
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with inverse

(D*W)(x) = mX(h(,(x))~yl(,(~), (3.15)

whereh~,(x)is definedby the factorizationx = s(,(~)h(,(x);in overlapregions
the right-handside is independentof t due to (3.9). Thesetransformations
mapJ~~cXandf’~ into eachother,sothat the former is just thespaceof C~cross-
sectionsof EX in the given realization.We thenhaveiiX (K ) = 7~*

7~X(K ) T on
~ given by

(~X(K)~)(x) = fdv(~) fdhK(xh~v)mx(h)~(i’); (3.16)

the integrandis indeeda function on P/H Q dueto (3.1) and (3.12). For
later use, wedisplayan isomorphismbetween7~anda Hilbert subspace7@ of
L

2(P). We takea unit vectoru E ~ anddefinethe projectorP/~by

~ (3.17)

whered~is thedimensionof ~r~the orthogonalityrelationsfor compactgroups
imply that P~is indeeda projector, andwe call its image7~.It follows from
(3.1) andthe H-invarianceof the measure~ on P that PJ commutes with all
elementsof A. Subsequently,we definea partial isometry~ : L2 (P) —~ f2X by

(~~)(x)= ~fdh yl(xh)m
5(h)u. (3.18)

This is unitary on 7-~(X and annihilatesits orthogonalcomplement.Moreover,
from (3.2), (3.16) and (3.18)

/XoA=~X(A)o/X (3.19)

for all A E A [with A in its definingrepresentationon L
2 (P) 1. This showsthat

~X (A) P~A. Theintertwiningproperty (3.19) showsthat L2 (P) containsd~
copiesof eachirreduciblerepresentationm~(A) (one for each unit vector u in
an orthogonalbasisof 7~I)~).

The physical relevanceof the trivial exercisein differential geometrygiven

aboveis that the smoothcross-sectionsl
7-~are a natural domain of essential

self-adjointnessof position,momentum,andHamiltonian in the representation
(superselectionsector)x. Beingunbounded,theseoperatorsarenotof the form
jtX (Qh (f)) for any f ~ A0 moreover,the Hamiltonian is only definedup to
a constant,and accordinglyis not an observablein the propersense.We now
proceedto explain thesepoints in more detail.
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3.3. CLASSICAL DYNAMICS

We will analysethedynamicsdefinedby the classicalHamiltonianfunction
on T*P equalto

Ho(x,p) = ~g~(x)p~pv (3.20)

in canonicalco-ordinates;it is invariantlydefinedas — 1/2 timesthe (princi-

pal) symbolof the Laplacianon (P,g), andmany of its propertiesareexplored
in ref. [ 1 ] . Let j be the isomorphismbetweenT*J~and TP definedby the
metric (so that g(j (0 ),X) = (0, X) ). Then the flow Pt of H0 is as follows:

Pt (0 ) is the one-form obtainedby parallel transporting0 along the affinely
parametrizedgeodesicy(prT~p,p(0 ), j (0 ); t) [recallourpreviousnotation,ac-
cordingtowhichy (x, Y; 0) = xand(d/dt)y(x, Y;0) = Y] . Thecorresponding
flow J~on TP mapsX ~ T~Pinto ,b~(X), which is the paralleltransportof X
alongthe geodesicy (x, X; t).

The classicalHamiltoniandefinesa one-parametergroupof * -automorphisms

on Co(T*P) by
~[f] = fop1. (3.21)

Thisautomorphismgroupquotientswell to A0 = C0 ( (T* P)/H). With (R~)*
being the pull-backof R~(which is itself the pull-backof Rh to T*P) to the
continuousfunctionson T*P, oneeasilyderives

(R~)*oct~= ci~o(R~)*. (3.22)

Thisfollows, sinceRh isan isometryofP,sothat (Rh_i )* of = joR~moreover,
if y is ageodesicwith initial tangentj (0) thenRh_i (y) is ageodesicwith initial
tangentf(R~0),andthe paralleltransportof R~0alongthe latter equalsR~of
theparalleltransportof 0 alongthe formergeodesicy. RegardingC0( (T* P)/H)
as the H-invariant subalgebraof C0(T* P) as before,we seefrom (3.22) that
o~quotientsto a *automorphismof A0, which we call by the samenamefor
simplicity. Apart from beingautomorphismsof A0 in the C*~sense,theo~are
Poissonmorphismsas well.

We recallthatA0 is isomorphicby Fouriertransform(2.2) to .FA0, whichhas
adensesubalgebraA0 = C~(TP)”, cf. the text following (2.4).Theautomor-
phismci~is thenequivalentto ~ on FA0, definedby

~[f] = ~oci~[f], (3.23)

whereJ = Ff. Forfutureuse,we claim that ~ on A0 may bewritten as

= (2m)_~ff d~x(Y)d~x(Z)e~~X_flf(Yz(t)), (3.24)
T~PT~P

whereX e T~P,andY~(t) istheparalleltransportof Yalongthegeodesicema-
natingfrom xwith initial tangentZ. Themainingredientin theproofof (3.24)is
thefact that the measures/i~ areinvariant underparalleltransport.A geodesic
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)) from x to y inducesan isomorphismbetweenT~Pand T,P throughparal-
lel transport.Let y = y (x, Z; t ) , and definethe Radon—Nikodymderivatives
Vt ( Y) = dPy(x,z;l)( Yz (t ) )/dp~( Y ) . Clearly v0 = 1 , anda computationin co-
ordinatesusing(2.1 ) andthe geodesicequationrevealsthat di1/dt(t = 0) = 0.
But v1 satisfiesa first-order differential equation in t which follows from the
geodesicequationand the condition for parallel transport,and this equation
suppliedwith the two initial conditionslisted implies thatv~= 1 for all t. This
easily leadsto (3.24); similarly, the measuresd/i~on T~Pare invariant under
paralleltransport.Hencean alternativeway of definingthemeasuresp~and~
would be to takea Lebesguemeasureon somefiducial fibre, andtranslatethis
measureto the other fibres of T(*)P by paralleltransportalong geodesics.This
is globallywell defined,becausethe holonomy of Riemannianmanifoldstakes

valuesin SO(n ) , which leavesthe Lebesguemeasureinvariant.
The symplecticleavesP0 of (T*P)/H are labelledby the co-adjointorbits0

in h, andaredescribedin refs. [ 1 6,321 . TheHamiltonianH0 is H-invariant, and
quotientsto a reducedHamiltonian H0 on P0. which describesthe motion of

a chargedparticle on Q = P/H in an externalYang—Mills field. The “charge”
of the particleis the orbit 0, andthe Yang—Mills field is the oneencodedin the
metric g on P by standardKaluza—Klein ideology [8]; the resultingequations
of motion on P0 are the Wong equations[16,42,32,311. This Yang—Mills field
also allows oneto define a projectionfrom P0 to T*Q, which makes P0 a fibre
bundleover T*Q with fibre 0.

To stresstheanalogywith the quantizedsituation, it is helpful to look at the
reduceddynamicsin amorerepresentation-theoreticway. The embeddingi0
P0 —~ (T* P )/H definesa Poissonmorphismi~: C0 ( (T* P)/H) —~ C~(P0),
which maybe regardedasan irreduciblerealization (“classicalrepresentation”)
7(0 i~,of the PoissonalgebraA0. One may then ask whetherthe automor-

phismsc~canbeimplementedin the representationire, that is, is therea flow

Pt
0 on Po so that

= 7(°(f) op~ (3.25)
for all f ~ A~?The answeris yesof course,andthe generatingfunction of the
flow is preciselythereducedHamiltonian H

0.

3.4. QUANTUM DYNAMICS

We now wish to define a one-parameter*-automorphismgroup on the
quantumalgebraof observablesA which in some sense is the quantizationof
theclassicaltime evolutionrs~on A0.Let

Hh = —-~h
2ALB (3.26)

in termsof the Laplace—Beltramioperator4LB on L2(P), which is essentially
self-adjoint on C~(P)[12] (recall our assumptionthat (P,g) is complete).
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With A e A in its definingrepresentationon L2 (P ), define

c~[A] = eihhmhIhAe_ihuI~Ih. (3.27)

This indeeddefinesan automorphismof A: ci~’[A ] is compactandH-invariant
if A is, becausethe compactsform a two-sided ideal in B(7-(), andas H is an
isometrygroupof g, exp(—ihtALB/2 ) commuteswith 7(R (H) [cf. (2.8)].

For P = R~with its flat metric it is easyto check that i~ o Q~= Q~o
ct?, but this is not the caseon generalRiemannianmanifolds.Experiencewith
scatteringtheorysuggeststhatevenuniformconvergenceofquantumto classical
dynamics [that is, IIc~° Qh(f) — Qh ° c~(f)IIgoingto zero with h] cannotbe
expected.Instead,wewill proveconvergenceofcertainexpectationvalues.This
involves the notion of a classicalgerm,which was introducedin ref. [25] as
a generalizationof acoherentstate;the definition is recalledin subsection2.3
above.

Theorem 3.Let {wh} bean arbitrary classicalgerm,definedforh � 0, anddefine
the classicalandquantumdynamicsby the Laplacian on a completeRieman-
nian manifoldP [cf (3.20), (3.21) and(3.26), (3.27), respectively].Thenfor each
observablef e

limwh(c4[Qh(f)] — Qh(ct~[f])) = 0. (3.28)

Proof We assumethat the classicalgerm {wh} consistsof vector statesQ
11

in L
2 (P) [that is, Wh(A) = (AQh,Qh) for h > 0]; the generalcasefollows

by decomposition[any stateon A C K (L2 (P)) is given by a densityoper-
ator, which hasa discretedecompositioninto vectorstates]. Define Qh(t) =

exp(—itHh/h)Qh[cf. (3.26)]andwh(t) = (Qh(t),Qh(t))forh>O.If{wh}is
a classical germ then so is {wh (t)}: continuity of the function h
(Wh (t)) (Qh(f)) for h > 0 follows from the strong continuity of h
exp( —ithALB/2), and the existenceof the limit h —~ 0, alreadysuggestedby
the bound I (Wh (t)) (Qh(f) ) I II Qh(f ) andthe continuity of II ~ (f ) in h
on somestrip [0, e), is shownbelow.

Obviously, for h > 0 wehavefrom (2.29) (which we rewrite as an integral
over T* P, usingthe H-invarianceoff)

Wh(ci~[Qh(f)]) T’P (3.29)

Wft(Q~[f])) T/Pf~(t)~ (3.30)

wherethetimedependenceof JV~(t) is givenby theclassicalLiouville equation,
i.e., a~(t)/at = {~(t),H

0}, (3.31)
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whereH0 is the Hamiltonian (3.20) on T*P, and { , } is the canonicalPoisson
bracketon T*P, which in generalis to be evaluatedin the senseofweak (distri-
butional) derivativeswith regardto the testfunction f. On the otherhand,the
time dependenceof lV~h(i) follows from (2.31) andthe Schrödingerequation.
This holdson the domain of ZJLB, so to be precisewe shouldproceedon the
assumptionthatQh is in this domain for all h > 0.

A straightforwardcomputation,expressingtheLaplacianin local co-ordinates,
and not overlooking the ~/g(x) in the measure dp~(* ) then shows that
a WQh(t)/dt_8rV~(t)/at evaluatedat t = 0 weaklytendsto zerofor h —i 0. The

main ingredientofthiscalculationis to convertderivativesOfQh (y (x, *; ±h/2))
w.r.t. * into thosew.r.t. x, which canbedoneusing (2.15).The Jacobifields h
that enterthe resultingexpressionsmay be evaluatedfor small h usingthe ex-
pressionsgiven after (2.20), whereasJ and its derivativesapproachunity [cf.
(2.21)]. Finally, in convertingp~into i0/d*~onegeneratesboundaryintegrals
overOBh(x) C T~P[cf. (2.31)], which multiply f evaluatedon this boundary;
such termsgo to zero for sufficiently small h becauseof thecompactsupportof
f (particularly in the fibre direction, in this case).

Thiscomputationshowsthat

lirn(wh(t))(Qh(f)) = 1irnwh(v~[Qh(f)]) (3.32)

hasthe samederivativeat t = 0 as c~odefinedby çi
5o(t) = (D

0(~[f]). Since
their valuesat t = 0 obviously coincide,too, andbothfunctionssatisfy a first-

orderautonomousdifferential equationin t which hasasolution for all t (recall
our assumptionthat P be complete),we concludethat ‘po(t) = ç~o(t)for all t.

providedthat theWh (h > 0) arevectorstatesbuilt from vectorsin thedomainof
ALB. But thedefinition (3.32)of c~oitself (asopposedto its derivative) involves

only boundedoperators,sothatthe conclusionmaybeextendedto anyclassical
germ.Thisprovesthe theorem.

Alternativeproof Tofurtherourinsightinto thewaythequantumtimeevolution
approachesthe classicalone, we will sketchan instructivealternativeproofof
theorem3. This proof usesheat kernels, andonly works for P compact.The
initial detouris includedin orderto exploit the pleasantpropertiesof Euclidean
(asopposedto real-time)heat kernels.

For fixed f C A0, definefor h > 0

9~h(z1,z2) = (Qh(f)e_~+B/
2Qh,e~~u1~B/2Qft). (3.33)

SinceALB is a positiveoperator,this function is holomorphicfor Rez
1 > 0 and

Rez2 > 0, henceby ref. [39, thm. 14.18] çb~hasa continuousextensionto the
real axis. The uniform bound Iq’h(zl, z2)I ~cHQh(f)II < const. for thesevalues
of its argumentimplies, by a well-knowntheoremin complexvariables(cf. ref.
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[39, thms. 14.6 and 14.18]), that limh,0 ~ ~ coo is holomorphicin the same
region,with acontinuousextensionto its boundary.Hencefor t real

ço0(t) = lirn p0(z1,z2), (3.34)
zi —‘it,
z2——il

that is, the limits wherethe z, approachthe imaginaryaxis andh —~ 0 may be
interchanged.

For realandpositiver, the heatkernel is definedby

(exp(—TALB/2)Q)(x) = fd~(~)K(r;x~y)Q(y)~ (3.35)

andK isC°°in x andy for r > 0 [12]. It follows from ref. [38, thm. 5.16] that
K = K0(l + R), where

‘A’ \ii/2
K0(t~xy) = ~x,y,, e_~,~/T (3.36)

where a(x, y) is one-halftimesthe distancebetweenx andy (alongaminimal
geodesic),andA is the VanVleck—Morettedeterminant(cf. refs. [15,7]). The
remainder(which is positivedefinite,like K itself [12]) is uniformly bounded
for sufficiently small t:

R(t;x,y) < Ct (3.37)

for someconstantC. Writing K0(t)Q for (3.35),with K replacedby K0, we

thushavefrom (3.34), (3.37),andthe analyticity of ~
= lirn lim(Qh(f)Ko(hzl)Qh,Ko(hz2)Qh). (3.38)

Zi—’it, h—~0

However,K0 generatesa holomorphicsemigroup,justlike K [i.e., exp(zALB)],
hencethe samereasoningthat led to (3.34) allows usto interchangethe limits
in (3.38), to concludethat for real t

lirnwh(ci~[Qh(f)]) = lirn(Ko(—iht)Qh(f)Ko(iht)Qh,Qh). (3.39)

We now takearbitrary (x1,x2) C P x P, exceptthat x1 and x2 shouldnot be
conjugatepoints [7]; this only removesa set of measurezero on P x P from
consideration.By a theoremof de Rham, therethenexistsaminimalgeodesic
y connectingx1 andx2, which doesnot haveanypair of conjugatepointson it.
Accordingly, wecanwrite x1 = y (x, *; 1/2) andx2 = y (x, *; —1/2) for some
x and *. By the theory relatingconjugatepoints to Jacobifields [7], we can
find an openset U c P x P containing(x1,x2), which is diffeomorphicto an
openset V C TP which contains* C T~P(but it doesnot necessarilycontain
0 e TIP). We write the right-handsideof (3.39)asan integraloverP x P, and
examinethecontributionfrom U. A formula analogousto (2.10),but restricted
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to U, rewritesthis integralasan integral over V. Rescalingby a factor h in the
fibre direction, this leadsto the expression

fdi~(xl)di~(x2)Qh(xl)Qh(x2)(Ko(_iht)Qh(f)Ko(iht))(xl~x2)

= h0fdp(x)d(*)fdJi(v)dJ;(~)t(v,~)J(x,*;h/2)J(y,1~h/2).

x K0 ( —iht; y(x, *; h/2 ), y (~‘~y;h/2))

x K0(iht; y(vJ’; —h/2),;‘(x,*; —h/2)). (3.40)

Using (3.36), andsomepropertiesof a [ 1 5 1 this canbe computedfor small h;
for example,onehas

a(y(x,*;h/2), ~(y,~h/2))

= a(x,v) — ~ + g(j~’~~~)1+ 0(h
2), (3.41)

wherey~-_~is a minimal geodesicbetweenx and v (which is affinely param-
etrized so that y (0) = x andy (1) = y), and ~ is its tangentat the origin.
Subsequently,one uses (2.16) (with x’ = y) and one seesthat the factor J
cancelsthe VanVleck—Morettedeterminantsin (3.40) for h = 0. After asimple
further rearrangementwe maythen use (3.24) and (3.39) to concludethat

iimfd~i(xi ) dp(x
2) Qh(xl )Qh(x2)

x (~[Qh(f)](xi,x2) - Qh(c~[f1)(x1,x2)) = 0. (3.42)

Sincex1 andx2 werearbitrary (a.e.) this proves(3.28).

Note that a rather different approachto the classicallimit of the dynamics
(3.26) is presentedin ref. [40]; thefirst rigorousresultson the classicallimit of

quantumcorrelationfunctionswere obtainedby Hepp [191. He usedcoherent
states,of which our classicalgermsarea generalization.

To sumup, we haveasatisfactoryquantumdynamicson Adefinedby (3.27).
Wemay now askif andhowcv~is implementedin theirreduciblerepresentations
7(X of A (cf. subsection3.2). That is, we look for a self-adjointoperatorH~on
7-(X which satisfies

7(X (4 [A]) = eitH~mx(A)e_1t~~ (3.43)

for all A C A. Such an operator (defined up to a constant)clearly plays the
role of the quantumHamiltonian in the sectorx~cf. the classicalcase (3.25).
Before giving the answer,we recall [81 that the H-invariant metric g on P
determinesa connectionA on the bundle(P,Q,H) as well asa metric gQ on Q:
thehorizontalsubspaceH~PC T~Pis definedasthe orthogonalcomplementof
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the intrinsicallydefinedverticalsubspaceV~PC TIP,andthevalueofgQ(X, Y)
at q C Q is takento be g(A(X),A(Y) ), where2(X) is the horizontallift ofX
at an arbitrarypoint in the fibre aboveq. Conversely,a metric on Q plus an
invariantmetric on H anda connectionon P determinean H-invariantmetric
on P.

Theorem 4. TheHamiltonianin thesectorxisgivenbythegauge-covariantLapla-
cian on EX [the vectorbundleassociatedto P by the representationm~(H)] with
respectto themetric gQ on Q andthe connectionA on P which are canonically
associatedto theH-invariant metricg on JL~.with AX dmX(A ), andotherwise
self-evident notation

H~= _~h2VAx VAX (3.44)

This operator is definedandessentiallyselfadfoint on the spaceI~ C 7-(X of
compactlysupportedsmoothcross-sectionsofEX.

Proof For simplicity, we omit the factor —h2/2 throughoutthis proof, as well
as the 1/h appearingin (3.27) and (3.43). As shownafter (3.16), the Hubert
space7~Xis naturally isomorphicto 72~XC L2(P). It is clearfrom (3. 1 7 ), (3.27),
andtheH-invarianceof ALB that theunitary groupexp(jtALB), restrictedto 7~X

(which subspaceit leavesinvariant), implementstime evolution on PU~A.We
wish to identify the generatorof this group, andthis amountsto answeringthe
questionwhetherALB, restrictedtoP~L2(P)= ~ is essentiallyself-adjointon

thedomainP~D(P)[with the Schwartzspace17(P) C~°°(P)]. This question
is moreeasilyanalysedby transferringthe situationto 7~Xusing (3.18). Indeed,

mapsV (P) ontoJ~/( (V (P) ® ~ )H [cf. (3.12)]; the notationX” stands
for the H-equivariantsubspaceof somespaceX of functionsor distributions;in
thiscasethe equivarianceconditionis givenby (3.12).Considerthe inclusions

V(P)®7-(XCL2(P)®7-(XCD’(P)®7-IX.

The Laplacian ALB is defined on 17’ (P) (using weak derivatives), and acts
componentwiseon 17’ (P) ® 7-t~ (i.e., it doesnot touch 7-tX); in what follows
we call this extendedoperatorstill ALB. Thus ALB acts on the two subspaces
listed by restriction, its action on 17(P) ® 7-t~being given through ordinary
(strong) derivatives.Since ALB is essentiallyself-adjoint on 17(P) C L2(P)
[12] (recall our assumptionthatP becomplete),it is essentiallyself-adjointon
17(P) ® 7-(~C L2(P) ® 7i~.If D(ALB) = 17(P) is the domainof ALB on L2(P)
then the domainof its adjoint D (A~B)consistsof thoseelementsço of L2 (P)
for which ALB(P is in L2(P), andthe actionof A1~Bcoincideswith thatof ALB on
distributions(all thistensoredwith arbitraryvectorsin 7~tX)~This is easilyseen
to betrue alsoin the equivariantcase.The spaceof distributions17’ (P) carries
a representation7(~of H by duality [that is, (m~(h)(ço),f) = (ço, mR(h’)f)

for (0 C 17’ (P) andf C 17(P), cf. (2.7) for lrR]. Hence it makessenseto speak



1 18 NP. Landsman/ Strict deformationquantizationofa particle

of the subspace(17’ (P ) ®
7~1X) H of H-equivariantdistributionson P with values

in ~ ~This leadsto the triple

(17(P)®HX)HC~ C (17I(P)®~~)H.

SinceLILB ~5 H-invariant it is well definedon (17’ (P ) ® 7-tx ) “ ~andwedenotethe
restrictionofzlLB to (17’ (P) ®7-(~)H by z1~B.Ifwe putD(z1~B)= (17(P)®7-t~)H
thenthedomainD ( (A~B) ~) of its adjoint in 7~Xconsistsof thoseelements~pof
7~Xfor whichA~~çois in 7~XHenceD( (A~B)*) C D(Aj~~),andthis immediately

implies that Ai~Bis essentiallyself-adjoint; namely,supposethat thereexistsa
yJCD((A~~)*)forwhich((4~~)*±i)y/=0thenthisylisinD(A~B)also,and
becauseAj~~coincideswith (A~B)*on (17’(P) ® 7~tX)H wewould contradictthe
essentialself-adjointnessof 4LB on 17(P).

We nownoticethat f/~X~ALB zlo J~, includingtheirdomains,soit follows

that zI~Bgeneratestime evolutionon 7~X. Finally, we usethe identity, valid on
fX [6] (cf. ref. [24] for the specialcaseP = G)

z1j~~ V~ . VAX C~(H), (3.45)

whereC~(H) = >i:~T? is the second-orderCasimiroperatorof H in the rep-

resentation7(X~Since 7(~is irreducible, the last term is a constantwhich can be
omittedfrom the Hamiltonian.Usingthe unitary intertwinerD [cf. (3.14)],we
cantransferthe whole situationfrom ~ to 7-(X, andthis provesthe theorem.~

This theoremprovidessome motivation for the useof vector bundlesand
their smoothcross-sectionsin quantummechanics.Also, it givesa techniquefor
proving (essential)self-adjointnessof Schrödingeroperatorsin external (non-
abelian)magneticfields: giventhemetricon Qandtheconnectionon P defining
thefield, oneconstructsthemetricg on P andfinds outwhether(P,g) isgeodesi-
cally complete,which is a classicalproblem.Furtherinformationon operators
of the type (3.44) may be found in, e.g.,ref. [40].

3.5. POSITION AND MOMENTUMOBSERVABLES:CLASSICAL THEORY

As to position and momentum,in the absenceof global co-ordinateson Q
onecannotexpectoperatorsof the form “qP” or “—ihD/3q~to be meaningful.
In the absenceof gaugefields, onecanrecoverposition andmomentumfrom
the groupDiff(Q) > C/~(Q) [1,16,22]. This is the semi-directproductof the
diffeomorphismgroupof Q andthegroupof smoothfunctionson Q with corn-
pact support; the latter is an abeliangroup underaddition.A diffeomorphism
~ acts on a function F C C~(Q) by sendingit to F o ~ which definesthe
semi-directproductstructure.

However, in an externalgaugefield [describedas a connectionon thebundle
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(P,Q,H) ] the correctgroupto useis

g = Aut(P) 1:~C~(Q). (3.46)

Here Aut(P) is the group of smoothbundleautomorphismsof P, that is, the
restriction of Diff(P ) to thoseC°°diffeomorphisms(0 that satisfy ço (xh) =

ço(x)h for all x C P andh C H. The relationbetweenAut(P) andDiff(Q) is
describedby theexact sequenceof groups

1 —÷ Gau(P) —f Aut(P) —f Diff(Q) —* 1, (3.47)

which is theglobalversionof the so-calledAtiyahexactsequenceof Lie algebras
(cf. ref. [28])

0 —* 4’(P) -+ XH(P) ,~ X(Q) —~ 0. (3.48)

ThegaugegroupGau(P)consistsofthosebundleautomorphismsofP whichdo
not mappointsout of the fibre theyarein, andtheepimorphismofAut (P ) onto
Diff(Q) is the obviousone; our notationwill be that ~pE Aut(P) is mapped
onto ~ C Diff(Q); this definesthe semi-directproductstructureof ~ as in
the Diff(Q) case.We assumethat all diffeomorphismsfeaturingin (3.47) are
equalto the identity outsidesomecompactset: if we interpret (3.48) as the
Lie algebraversion of (3.47), the smooth vector fields occurring in it have
compactsupport,so that their flows areautomaticallycomplete,and they are
closed under addition and taking Lie brackets.HenceX~’(P)consistsof H-
invariantverticalvectorfieldson P, X” (P) is theLie algebraofall H-invariant
vectorfields on P, andX(Q) are the vector fields on Q. TheconnectionA on
P is equivalentto a splitting of the sequence(3.48), since t~C X(Q) has a
horizontal lift A(t~)C ~H(p); wewill denotethe horizontallift of Y C TqQto
T~,PbyA~(Y)[prp_~Q(p)= q].

In our approach,the relevanceof the group ~ is that it naturallyacts as a
*automorphismgroupon both A0 andA, andthat the quantizationmaps Qh
asymptoticallyintertwine this action. We start by explaininghow ~ acts on
S = (T*P )/H; this is a straightforwardextensionof the symplecticcasewith
Diff(Q) > C/~(Q) [16,22]. The actionis called p°,andis givenby

(p
0(ç~))([0]) = [((01)*O] (3.49)

for (0 C Aut(P), and

(p°(F))([0]) = [0 +dP(prT~p+p(0))] (3.50)

for F C C,~°(Q). The actionof (p,F) C ~ is then given by p0(((0, F)) =

p°(F) o p°(p). Here [0] C (T*P)/H is the imageof 0 C T*P undertakingH-
equivalenceclasses,P is thelift ofF C C°°(Q) to C°°(P) (that is, thepull-back
ofF for thebundleprojectionprp,Q); the resultis independentof theparticular
choiceof 0 in its equivalenceclass.As in thesymplecticcase,it is easilychecked
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that the p0 are Poissonmorphisms.Thus we may define an action (~0of ~ on
A

0 as the pull-backof p°,which is *automorphicaswell as Poisson,viz.,

C~(~,F)[f1= fop
0(((0,F)~). (3.51)

The Fourier transform(2.2) thenyieldsan action ~0 on A
0 = C~((TP)/H),

through ~ [f ] .F~
0[f 1 . If [Xl C ( TP)/H is the equivalenceclassof X C

TiP, then

(~[t])([X]) = d~(~’(x))t([(01x]) (3.52)

dp (x)

(~[f])([X]) = e~~t([X]), (3.53)

which are independentof the choiceof X in [X I.
Let 7(0 be the irreducible“representation”of A

0 on the symplecticleafP0 C

(T*P)/H [cf. text prior to (3.25)]. We askwhetherthe automorphism(~°is
implementedin ~0 that is, is thereasymplectomorphisrnp°( (ço, F ) ) for which

m°(t?~,F)[f1) = 7(°(f)op°(((0,F)’)? (3.54)

The answeris clearly yes, asp° is simply given by the restriction of p°to P0
(notethat the 0 in p°standsfor the value h = 0 rather than the zero orbit
0 = {0}). If q~is a one-parametersubgroupof Aut(P) with generator~ C

then the generatingfunction a
0(~)of the flow p°(p,) on P° is given by the

symbola(~)quotientedto a functionon P0 [the symbola(ç~)of avectorfield ~
on P is the C°°function on T*P definedby (a(~))(0) =

if~ C X” then a(~)is H-invariant, soby ref. [1, thm. 4.3.5] it quotientsto a
functionon any symplecticleafof (T*P)/H]. Similarly, thegeneratingfunction
of the flow p0 (tF) is F itself (moreprecisely,the quotientof P to P°).

A momentumvariable on Q is a vector field X; in the presenceof a gauge
field the only intrinsicobject on P0 to be associatedto ~ is a0(A(~)).Locally
P0 T*Q x 0, on which we choosecanonicalco-ordinates(q,p,0) relative

to a giventrivialization (gauge)s, in which the connectionA hascomponents
s*A = A,dq~ T

1, and~= ~‘0/0q~’; onefinds (cf. ref. [16, 111.36])

a°(A(~))(q,p,0)= ~°(q)(p(,- 0~A,(q)). (3.55)

We obtainedthis expressionfrom the “classical” representationtheoryof the
classicalalgebraofobservablesA0 and its automorphismgroup~ for a different
perspectivecf. refs. [16, ch. III] and [31, 3.3].

3.6. QUANTUM POSITION AND MOMENTUM

To quantizethestructuresoftheprecedingsubsection,westartby constructing
an automorphicactionof ~ on the quantumalgebraof observablesg. Thefirst
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stepis to defineaunitaryrepresentationph (for fixed h > 0) ofg on L2 (P) by

(ph~)yl)(x) = [dP((01(x))/dP(x)]”2W((01(x)) (356)

(ph(F)yj)(~) = e_iF~~yi(x) (357)

and ph ( (~F ) ) = ~h (F)ph(~) This representationcommuteswith 7tR (H)
[cf (2 7 ) I so it definesa ~ automorphicactionof ~ on A by

~F)[A] = ph(((0 F))Aph(((0 F))* (3 58)

ForK C C~(P x p)H C A the kernel (calledK as well as before) transforms
as

1 1 1/2
h (d~i((0 (x

1))d,u((0 (x2))(ci5,[K])(x1,x2) = \ dp(x~) dp(x2)

xK(ço’(x1),ço~(x2)), (3.59)

(c4[K])(xi,x2) = eix2)~K(xi,x2). (3.60)

In analogywith theorem3 wenow have

Theorem5. For eachclassicalgerm {Wh}h>0 andfor eachf e A~as wellasany
((0,F) C c

~in~wh(cv~F)[Qh(f)] —Qh(cs?IOF)[f])) = 0. (3.61)

Proof This is very similar to theproofof theorem3, andweleavethe detailsto

the reader.All analysisis trivial sincef hascompactsupport,so that we may
makeTaylor expansionsof the kernelsof the operatorsappearingin (3.61),
and concludethat 0(h) termsin the integranddo not contribute in the limit
h —÷ 0. The result theneasily follows from (3.59), (3.60), (2.5), (3.52),and
(3.53). Onehere needsthe fact that the point a = (0(exp~(±hX/2))is equal
to b = exp~1~1(±(0~X/2)up to 0(h

2), in the sensethatg(a) = g(b) + 0(h2)
forallgeC2(P). E

Note that if ço is an isometry of P then (3.61) holds without the urn and
the Wh, i.e., in that casethe quantizationQh exactly intertwinesa~ando~.An

interestingcasewherethis happensis whenP is a Lie group G andg is a left-
invariantmetric on G. Thenleft multiplication by a fixed x C G is anisometry.
If we furthermoretake H = G [so that (T*P)/H g* andA = C* (G)] we
recoverRieffel’s result thatthe deformationof C

0(g*) to C* (G) is G-invariant
[37].

Let 7~Xbethe irreduciblerepresentationof A on 7~Xgivenby (3.16);onehas
a unitary representationJ~5X of G on 7(X, which is givenby the sameformulaeas
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(3.56), (3.57),with yi now taking valuesin 7-ti. Passingto 7-tX via the unitary
map (3.14),we obtainpX pjjXD*:

(pX(~yl)Q(q) = [dv(~1(q))/dv(q)]~2

x 7(~((hp[(0’(s~(q))])1)ylp(ç~’(q)), (3.62)
(pX(F)yj)Q(q) = e_iF(~)/hyj

0(q), (3.63)

whereh~is asdefinedafter (3.1 5 ): it is theelementofH satisfying
5p (~‘ (q ) )h~

= ço’(s~,(q)).We hereassumethatq C U~,and~‘(q) C Up. This represen-

tation pX(g) implementsthe automorphisms~X, for, defining pX((ço,F)) =

pX(F)pX ((p ) it may be shownthat for all A C A andany ((0, F) C ~

mX((~,F)[A1) pX(((0,F))ThX(A)pX(((0,F))*. (3.64)

An illuminating specialcaseis P = G and ço(x) = vx for somefixed C G.
In that casepX isjust the representationof G inducedby n~(H), the argument
of 7(~in (3.62) reducingto the Wigner cocycle 5(~(~~‘ Vsp (y’q). The pair
(3.62), (3.63) is thena systemof imprimitivity basedon Q = G/H (see refs.
[29,13], or [23] for a discussionof inducedrepresentationsin connectionwith
quantization,fibre bundlesandtransformationgroupC*~algebras).

Following physicists’conventions,we define a representationdU of a Lie
algebrag derivedfrom a unitary representationU of its Lie group G by

dU(T) = ih(d/dt)U((etT))I,
0, (3.65)

which is definedandessentiallyself-adjointon a suitabledomain (for example,
the Gàrding domain if G is locally compact,which our group ~ is not, see
below). For ~ C X” [the Lie algebraof Aut(P)] andF C C~(Q) [identifying
theabeliangroupC~(Q) with its Lie algebra]we find

(dpX(~)~)0(q) = (_ih [v~ + ~div~(q)] + d7(X((A,~)(s(~(q)))) ~~(q),

(3.66)

(dpX(F)yl)(~(q) = F(q)yl(,(q). (3.67)

Here ~ = (prp~Q)~(~),and div is defined, e.g., in ref. [1]. The expression
(3.66)follows from (3.62) by directcomputationplusa rearrangementbringing
in the connectionA, but a more efficient derivationis to start from

(dp~(~)~)(x)= -ih((~ + ~div~(x))~)(x). (3.68)

Onethendecomposes~ = hor(~)+ v ((A,~)), wherehor(~)is the horizontal
part of ~, andv (T) is the vertical vectorfield on P canonically associatedto
any T C h, andusesthe fact that

hor(~)W= V~ci!.
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The equivariancecondition (3.12) allows oneto convertv(T)yi into [(ih)’
times] d7(~(T)yi.

The operators(3.66), (3.67) are definedandessentiallyself-adjointon the
domainVeX of compactlysupportedcross-sectionsof thevectorbundleEX ; this
isthe samedomainofdefinition ofthe Hamiltonian (3.44).In fact, the proofof
theessentialself-adjointnessofdpX (~)follows exactlythe samelinesastheproof
oftheorem4. The analogueoftheessentialself-adjointnessoftheLaplacianon
C~(P) C L2 (P) in thatproofis herethefactthatc~is essentiallyself-adjointon
C~(P) if its flow is complete[ 1 , 5.4.2], a conditionautomaticallysatisfiedin
ourcaseas we assumedthat~ hascompactsupport.In the specialcaseP = G
(eq. 3.66) was obtainedin ref. [24], wherethe readerwill alsofind a physical
interpretationof the third term in its right-handside [viz., in casethat ~ is a
symmetryof the dynamicsthen this term is the contributionof the external
gaugefield tothe conservedoperatordpX(~)].

Finally, if ç~C X(Q ) then the quantummomentumoperatorassociatedwith
this vectorfield is dpX (A(t~)),which is given by the right-handsideof (3.66)
without the third term.If the connectionA is flat this yieldsa representationof
Lie(Diff(Q)).

4. Groupoids and algebroids

4.1. QUANTUMTHEORY

Thepassagefrom the classicalalgebraof observablesA
0 = C0( (T* P)/H) to

its quantumanalogueA = K (L
2 (P))” hasa transparentdescriptionin terms

of Lie groupoidsandLie algebroids(generalreferenceson thesestructuresare
refs. [35,28,11]). The precisedefinition of a Lie groupoid is givenin ref. [28,
III.!]; the ingredientsarea total spaceQ, a basespaceB (both assumedto
be manifolds, all the mapsoccurringin what follows being smooth),andtwo
projectionss (source) and t (target) of Q ontoB, as well as an immersion

B —f Q. An elementg C Q can be interpretedas an arrow betweenthe
objectss(g) and t(g), and such arrows can be composedif their endpoints
match [that is, g

1g2 is defined iff s(g1) = t(g2)], in which casewe write

(g1, g2) C Q
2 moreover,eachg hasan inverse1(g) g’ as an arrow in the

oppositedirection. The subspaceG° i(B) C Q is calledthe unit spaceof Q;
it consistsof all elementsof the type gg’, which areobviouslyclosedarrows.
The multiplication (by composition)of threearrowsis associativewheneverit
is defined.An arrowis not in generaluniquelydeterminedby itsendpoints,and
theunit spacedoesnotgenerallyexhaustthe set of closedarrows.A transparent
way to look at (or, indeed,define) a groupoid is as a (small) categorywhose

arrowsall haveinverses.The arrowsare the elementsof Q andthe objectsare
the noints nf R
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We will considerthe so-calledgauge groupoid [28,1 1 1 QH = P >< H P re-

latedto the principal bundle (P,Q,H), which is a quotientby H of the coarse
groupoidQ = P x P. Thelatterhastotal spaceQ = P x P, basespaceB = P,
andsourceandtargetprojectionss( (x,y ) ) = y, t ( (x, y ) ) = x. The inclusion
is i(x) = (x,x), the inverseis (x,y~’ = (y,x), andthe compositionrule is
(x1 , y ) (y, x2) = (x1 , x2 ) . Its quotientP x H P is obtainedby imposingthe equiv-
alencerelation (xi , x2 ) ~ (y1 , y2 ) iff (x1 , x2 ) = (j~~h, y2h) for someh C H; we
denotetheequivalenceclassof (x,v) by [x,y]. Accordingly, B = Q = P/H,
the inverse is [x,y]’ = [y,x], the projections ares([x,v] ) = prp_~Q(y),
t ( [x, y ] ) = prp_~Q(x ) , the inclusion is i (q ) = [s (q ) , s (q ) I (for an arbitrary
sectionsof P), andmultiplication [x1,y1 ] . [Y2, x2] is definediffy2 = v1h for
someh C H, andthe compositionequals[x1 h,x2 I in that case.

A representationof Q [35] is a covariantfunctor it mapping Q into the
categorywhoseobjectsare Hilbert spacesandwhosearrows areunitary maps.
Hence 7((b) ~

7~bis a Hubert spacefor each b C B, and 7((g) is a unitary
operatorfrom 71~s(g)to 71t(g)’ with 7((g

1g2) = m(g1 )m(g2) wheneverg1g2 is
defined.Ifone in additionhasa measureii on B, andthe

7-tb form a measurable
field, thenonemay form the directintegral7-t,~= j~dv(b ) 7-~. If all the 7~1bare
identicalto a fixed 7iB thensimply 7-tn = L2(B, v ) 0 7~1B.This Hilbert space7~
is useful,becauseit carriesa representationof the groupoid C*~algebraC* (Q)
and for a large classof groupoids (including thoseof the type we use) there
is a bijective correspondencebetweenrepresentationsof C* (Q) on 7-(~~and
representations7( of Q itself (providedthat m satisfiesanobviousmeasurability

condition) [35]. For example,a faithful representationof the coarsegroupoid
P x P is obtainedby putting?~t~= C for all p C P, anddefining it (x, v)) to be
the unitary “operator” mapping 1 C 7-t~to 1 C 7-tv. Onemay choosev to be the
Riemannianmeasure~i on P, and7-1~= L2 (P).

A faithful representationit of P xH P follows from taking ?~lq= L2 (H), and
ic([x,y]) = mL(ha(x)(hfl(y)Y’), regardedas a map from 7-(~to 7-(~,with

= prp_~Q(x), etc.; 7tL is the left-regularrepresentationof H [cf. (3.6)1, and
h(, etc. is definedafter (3.1 5). Alternatively, a singlemeasurablesections may
be used,cf. subsection3.1. We now equip Q with the measurev [see (3.2)],
and7-ta is L2 (Q) ® L2 (H), which is naturally isomorphicto L2 (P), cf. (3.3).

To define C* (Q) one choosesa measure/~bon eachfibre Q~) t’ (b) of
Q,andthis systemof measuresshouldbe invariantin thefollowing sense.Each
g C Q definesa mapLg : Q5(g) Qt(g) by Lg (g’) = gg’, which is bijectiveas
g hasan inverse.All suchmapsareto be measurepreserving.For Q = P XH P
thefibresFq areall isomorphicto P, andonemay take/~bto bethe Riemannian
measure~t. Givensuchaninvariantcollectionof measures(calledaHaarsystem
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on Q ), onedefinesaproducton Cc(12 ) by

(fi *f2)(g) = f d1Ls(g)(g’)fl(gg’)f2((g’)~’), (4.1)
Qs(g)

andan involution by ______

f*(g) = f(g’). (4.2)

Note that the measurev on B combineswith the Haarsystem {/ib}bEB to a
measure/-i~on Q in the obviousway [35, 1.3], putting jiç~(f) fB dv(b) x
fQb d~tb(g ) f (g ) for f C Cc(Q ). For Q = P x P with V = /2 On B = P and
/-~b JL on Qb p this yields /~LQ = p C ~t, whereason Q = P XH P we
obtainthe quotientofthis productmeasureby H; in fact, realizingCc(P XH P)
as Cc (P X p)H [the functionsf satisfyingf (xh,yh ) = f (x,y) for all x,y C

P, h C H], wecan put /1PXHP(f) = i ® p(f), asH is compact.
The choiceof the measures/-~bmakesthe passagefrom Q to C* (Q ) non-

canonical,but in manycases(includingthoseofinteresthere,cf. the remarkat
theendof this subsection)onecanshowthatC*~algebrasdefinedusingdifferent
measuresystemsare isomorphic [35]. (The choice of thesemeasuresis remi-
niscentofacorrespondingsituationis geometricquantizationtheory,whereone
hasto chooseameasureon the spaceof leavesof apolarizationon a symplectic
manifold.) In casethat Q is a differentiablegroupoid [28,11] (as in all our
examples),onemay entirelyforego the choiceof a Haarsystemon Q, by using
half-densitiesratherthan functionson Q (this waspointedoutby Connesfor
the specialcaseQ = P x P [9], and in generalby Weinstein [46]). Thedetails
areas follows.

For any g C Q, the manifold Q hasa submanifoldTg t
1 (t(g)), which is

thefibre of the targetprojection,andevidentlypassesthroughg. Similarly, one
hassubmanifolds5g 51 (s(g)), whichare thefibres of the sourceprojection.
Let A’!2 (kert* )g (A’!2 (kers~)g) bethefibre at g of thebundleof half-densities
over Tg (Sg). This leadsto a line bundleA overQ, whosefibre at g is Ag
A’!2 (kers~)g ® A”2 (kert~)g. With Lg : t1 (s(g)) —~ t’ (t(g)) definedas
above,and Rg : s’(t(g)) —~ s’(s(g)) given by Rg(g’) = g’g, we have
naturalisomorphismsfor any composablepair (g,g’) C

(Rg’)* : (kers*)g —f (kers*)gg’,

(Lg)* : (kert*)g’ —* (kert*)gg’,

(L(gF)_ig_i)* : (kert*)g —* (kert*)(g)_I,

1~: (kert*)g’ —+ (kers*)(g/)_i. (4.3)

Note, that the push-forward(Lg )* of a map like Lg, which is only partially
defined,is not, in general,definedon the entiretangentspaceat a point, but it
is preciselydefinedon thethe domain given [and similarly for the othermaps
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occurringin (4.3)]. Pulling back,thisleadsto an isomorphism

A;,g’ : A ‘!2(kers~ )gg’ ® A’!2(kert~ )gg’ ® A’!2(kers~) (g’)~’ ® A’~2(kert~) (g’)-’

~A~2(kers*)g®A’(kert*)g’ ®A’!2(kert*)g, (4.4)

where ‘ (ker t~) ~ 1/2 (ker L~) ® ~/2 (ker t* ) standsfor thebundleofdensities

over a fibre of the targetprojection. If f
1 C f~(A ) are compactlysupported

continuoussectionsofthe bundleA, wemay definea productby

(.f, *f2)(g) = f A;g,(f,(gg’)®f2((g’)~)), (4.5)

Qs(g)

cf. (4.1). The involution is now given by
f*(g) = yol*(f(g

1)), (4.6)

wheret is the operationwhich interchangesthe orderof two factorsin a tensor
product.In casethatQ = G is a Lie group, the manifolds Tg andSg coincide
with G, sothat A is simply the bundleof densitiesoverG, andweseethat the
convolutionalgebramay bedefinedusingdensitiesratherthanfunctions,with
no needfor a Haarmeasure[46].

We now return to scalar functionson Q, which are a bit easierto use in
practice. A generalprocedureto constructa norm on C~(Q) is given in ref.
[35], but it is easierto defineit in a faithful representation.Any representation
it (Q) correspondsto a representation(called it as well) of C~(Q) on 7-I~~: for

q~C 7-(~onehas

(it(f)~,~) = f dpç~(g)f(g) (it(g)yl(s(g)),~(t(g)))~,). (4.7)

[This formula is correctif p~ç~is invariant in the senseof ref. [35, 1.3], which is
thecasein our examples;otherwisea Radon—Nikodymderivativeenters(4.7).]
If it(Cc(Q)) is faithful, onemay definethe norm by If II = IIit(f)II, andclose
Cc(Q) in this norm to obtain the groupoidC*~algebraC* (Q) [note that faith-
fulnessof it (Q) doesnot imply the faithfulnessof it(C~(Q) )].

Applying this procedureto the coarsegroupoidP x P, one easily finds that

it(Px P) on 7-(~~= L2(P) (constructedabove) is faithful, andthatC* (Px P) =

K (L2 (P)). Similarly, using it (P xH P) aboveas well as the analysis in sub-
section 3.1 one finds that C* (P XH P) = A = ~C(L2(P))’~’. One may ask
which representationitX (Q) the irreduciblerepresentationit1 (A) (cf. subsec-
tion 3.2) correspondsto; the answeris that itX (q) = 7-1~for all q C Q, with

itX([x,y]) = it
1(h~(x)(hp(y))’).

In the specialcaseP = G (a Lie group) one hasP XH P G x (G/H) by
the isomorphismP xH P ~ [x, V I ‘—~ (xy’, xq0) C G x (G/H), where q0 is
the coset{H} (hence (x, q) ~ [s(q), x~’s(q)1). The groupoid G x (G/H)
has B = G/H, immersionmap i(q) = (e,q), projectionss((x,q)) = x’q
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and t ( (x, q) ) = q, inversion (x, q ) ‘ = (x ‘ , x ~q), andmultiplication
(x, q ) (y, x ~q) = (xy,q ). This is a special caseof a semi-directproduct
groupoid [35 I . The fibres Q~areall isomorphicto G, which oneequipswith a
Haarmeasure.ThegroupoidC*~algebraC* (G, G/H) is thenthetransformation
group C*~algebracorrespondingto the canonicalactionof Gon G/H, or, equiv-
alently,the crossedproductof G with C0(G/H) for the naturalautomorphism
groupof C0 (G/H) definedby G. Usingvariousmathematicalsettingsandmo-
tivations,it wasindependentlyproposedin refs. [ 1 3,2,30,23]that C* (G, G/H)
be the algebraof observablesof a particlemoving on the homogeneouscon-
figuration spaceQ = G/H, andthat the Hamiltonianbe aquadraticCasimir
operatorof G. This wasanaturalalgebraicreformulationof Mackey’squantiza-
tion on G/H usingsystemsofimprimitivity [29]. It wasrealizedin refs. [24,25]
that this constructionquantizesthe “universal” phasespaceof a particle in a
Yang—Mills field [ 1 6,42,32] in the specialcaseP = G. We now seethat this
quantizationis aspecialcaseof thegroupoidconstructionpresentedabove.The
furtherspecializationH = G (so that C* (G, e) = C* (G) and (T*G)/G o~g*
with the Lie—Kirillov Poissonstructure)thenreproducesRieffel’s deformation
of C0 (g* ) into C* (G) [37 ] (at leastwhenG is compact,but webelievethatour
constructiongeneralizesto the non-compactcase).

4.2. CLASSICAL THEORY

In the discussionof the quantumtheoryabovewe haveexhibitedthe algebra
of observablesA as a derivedobject, namelythe C*~algebraof a certainLie
groupoid.This isnot alwayspossible,becausetherearemanyC*~algebraswhich
arenot relatedto groupoids.A similarspecialsituationprevailsclassically,for
the classicalalgebraof observablesA0 = C0 ( (T* P)/H) belongsto a limited
classof Poissonalgebras,which arederivedfrom an underlyingLie algebroid
[44, 4.2.2.c], [11]. This leadsto aneatparallelwith thequantumtheory,which
we wishto point out.

A Lie algebroidA is a vector bundleover a basemanifold B, so that the
spaceof smoothsectionsF (A) is equippedwith a Lie bracket [ , I. Apart
from prA,B thereis anotherprojectionprA,TB, the “anchor” of A, which de-
fines a Lie algebrahomomorphismof F (A) to F (TB) (see ref. [28, 111.2]
for details). The simplestexampleis A = TP with the obviousprojection
onto B = P, and the identity projection to TB = TP, the Lie bracketon
F ( TP) beingtheusual commutatorof vectorfields on P. Onecanpassfrom
Lie groupoidsto Lie algebroids[28, 111.3], andA = TP is the Lie algebroid
of the coarseLie groupoidP x P. Quotientingby H, one may define the Lie
algebroid (TP)/H [28, A2] over Q. The spaceof sectionsF ( (TP)/H) is iso-
morphic to the spaceX” (P) of H-invariantvector fields on P [cf. (3.48)],
which isomorphismdefinesthe Lie bracket on F ( (TP)/H). The projection
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onto TQ is the obvious one, and (TP)/H is the Lie algebroid of the gauge
groupoidP XH P [28,11].

It was pointed out by Weinstein [44] that the categoryof Lie algebroidsis
isomorphicto the categoryof vectorbundleswith additivePoissonstructures.
Hencewe canassociateaPoissonalgebraC°°(A* ) to a Lie algebroidA, which
consistsof the smoothfunctions on the dual bundle A*. The Poissonbracket
is initially constructedon elementsof F (A ) (identified with the subspaceof

C~c(A* ) offunctionslinearon thefibres) simply by theLie bracket.Thisbracket
maysubsequentlybeextendedto adensesubsetofC~(A* ) (in asuitabletopol-
ogy) by imposingthe Leibniz rule (derivationproperty) on productsof linear
functions.On A = TP this procedureis equivalentto imposingthe identity
{a(~,),a(t~2)} = a([~,,t~2]),wherea(~)C C~(T*P) is the symbol of the
vectorfield ç~on P [cf. text following (3.55)]. A moreintrinsic constructionof
this Poissonstructureis givenin ref. [ 1 1 , 11.4.2] : in ourcaseof a gaugegroupoid
this amountsto the following. (T*P)/H is isomorphicto the conormalbundle

of the inclusionof the basespaceQ into P xH P, and is accordingly itself the
unit spaceof the symplecticgroupoid T* (P XH P) (whosegroupoidstructure
is spelledout in ref. [1 1 , 11.4] , andwhich is a symplecticmanifold as a cotan-
gentbundlein the usualway).The Poissonstructureon (T*P)/H is thengiven
by requiring the sourceprojection of T* (P XH P) (with the canonicalPoisson
structure)onto its unit spaceto bea Poissonmorphism.The dual of (T*P)/H
is (TP)/H (the normal bundleof the embedding),which is preciselythe Lie
algebroidof P xH P. Hencethe ensuingPoissonalgebrais just C°°((T* P)/H)
with its canonicalPoissonstructure. If we restrict the Poissonbracket to its

subalgebraC~°’°((T*P)/H) and close in the uniform topology, we obtain the
classicalalgebraof observablesA0 of a particleon Q moving in a Yang—Mills
field [44, 4.2.2.c].

To completethe analogywith the quantumsituation,we needto developa

suitablerepresentationtheory of Lie algebroids,and show that thereis a bi-
jective correspondencebetweenrepresentationsof a given Lie algebroid, and
realizations(“classicalrepresentations”)of its associatedPoissonalgebra.The
definition of a representationof aLie algebroidgivenin ref. [28, 111.2.9] is too
generalfor this purpose,andwe leave the constructionof a suitabletheory to
thefuture.

43 QUANTIZATION AS DEFORMATION AND GLUEING OF GROUPOIDS

We seethat thestepof quantizingA0 by A is equivalentto the passagefrom

theLiealgebroid(TP )/H to theLie groupoidP xHP that is to theintegration
of agivenLie algebroid,andto subsequentlyfinding the irreduciblerepresenta-
tions of the Poissonalgebraandthe C* algebraassociatedto the algebroidand
thegroupoid respectively(notethat it is notalwayspossibleto integrateagiven
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Lie algebroid[28 ] ). Fromthegeneralpointof view of groupoids,the theoryin
this paperonly coversthe transitivedifferentiablecase.Hencein ref. [26 ] we
conjecturethat thereexists a deformationof the Poissonalgebraassociatedto
any integrableLie algebroidinto the C*~a1gebraof a correspondingdifferen-
tiable groupoid(thisgeneralizationwas independentlysuggestedby the referee
of thepresentpaper).Furtherspeculationthenleadsto the hopeof associating
a Poissonalgebrato a densesubalgebraof any C*~a1gebraof the type studied
in non-commutativegeometry,as some form of an “infinitesimal invariant”,
similar to the Lie algebraattachedto aLie group.

The relationbetweenthisprogramandthetheoryofquantizingarbitraryPois-
sonalgebrasusingsymplecticgroupoids,whichis developedin refs. [21,46,47]
is not immediatelyclear.GivenaPoissonmanifoldM, onelooksfor a symplec-
tic groupoid5(M), ofwhich M is thebasespace.ForM = (T*P)/H onefinds
5(M) = T* (P XH P), so that,in particular,5(g*) T*G. The nextstepis to
applytheusualgeometricquantizationalgorithmto 5(M), in orderto obtaina
Hilbert space7-t (M). Thecrucialmoveis nowto exploit thegroupoidstructure
of S (M) to definean associativemultiplication andan involution on 7-1 (M),
thusproducinga *..algebraA(M) . Finally, oneneedsto introduceapolarization
to reducethe size of A(M), endingup with a quantumalgebraof observables
A(M) (cf. refs. [46,47] for details).Eventhe simplecaseM = g* has yet to be
workedout in detail, but onemay expectthatA(g* ) is somedensesubalgebra
of C* (G), and, more generally,that the groupoidC*~algebrasusedin this pa-
pereventuallyemerge.Of course,the symplecticgroupoidprogramis intended
to quantizeevenmoregeneralPoissonalgebrasthan thoseobtainedfrom Lie
algebroids.

Anotherway of lookingatthe deformationof A0 into A is to regard(TP)/H
not as analgebroidbut as agroupoid,with basespaceQ andthevectorbundle
projectionof (TP)/H onto Q. This moveis equivalentto ignoringthe Poisson
structureof A0, andjust using its C*~structure;indeed,A0 = C* ( (TP)/H).
The elementsof (TP)/H areall closedarrows,andthe groupoidoperationis
additioninsideafibre. OnemaythenregardPxHP asadeformationof (TP)/H
in the following sense:the space~Planck { (TP ) /H} X {0} U {P Xjj P} X (0, 1],
which glues(TP)/H to P xH P, may begiventhestructureof amanifold (with
boundary).Two equivalentways of accomplishingthis are given in a more
generalcontextin refs. [20, III. 1] and [45, 4.1]; the essenceis to shrink an
open set in TP by afactorh C (0, 1] in sucha way that the shrunkenset lies
in atubular neighbourhoodof P C TP, so that it is diffeomorphicto an open
set in P x P. The procedureis entirely analogousto the constructionof the
quantizationmapsQh in subsection2.1 above.

The manifold ~
2planck is itself a Lie groupoid,with basespaceQ x [0, 1],

andall arrowsleavingeachh C [0, 1] inert, so that the groupoidstructuresin
(TP )/H andin eachcopy of P xH P do not interferewith eachother, andare
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as givenbefore.This groupoidis the quotientof the so-calledtangentgroupoid
of P by H; the constructionof the tangentgroupoid of a manifold is due to
Connes(unpublished),and is describedin ref. [20, 111.19]. It is a specialcase
ofthenormal groupoidG~ G(G,,G2) correspondingto a groupoidhomomor-
phism~ : G, —÷ G2, which is also an immersionof manifolds.To obtain ~

2Pianck

as a normal groupoid, one has to perform the constructiondescribedin ref.
[20, ch. III] with G, = Q, regardedas a trivial groupoid (i.e., B = Q ), and
G

2 P Xjj P, with the immersion~pgiven by the inclusion i of B = Q into
Q = P XH P specifiedin the precedingsubsection.As alreadymentioned,the
normal bundle of this immersionis (TP)/H, andthis fact easily leadsto the
identification of G with ~Planck. Its C*~algebraC* (Qplanck) (improperly) con-
tains the classicalalgebraof observablesA0 as well as a copy of its quantum
counterpartA for eachvalueof h C (0, 1 ] , andappearsto bea fascinatingtool
for studyingthe classicallimit ofquantummechanics(cf., in a differentcontext,
ref. [4]).

In conclusion,wewould like to thankR. NestandG. Skandalis,withoutwhose
commentson ref. [25] the precedingsubsectioncould not havebeenwritten;
in particular,the identification of the continuousfield of C*~algebrasusedin
ref. [25] (which is essentiallyC* (�

2planck) in the particularcasethat P is a Lie
group)asbeing a specialcaseof a C*~a1gebraof anormal groupoidof the type
constructedin ref. [20] (in connectionwith KK-theory) was explainedto the
authorby Skandalis.
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