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1 Introduction
Initially I set out to find similarities between some of Weyl’s theorems. The first of which is a duo
of theorems that uses sequences to approximate elements of the spectrum, the second is a theorem
that states: any two self-adjoint that differ a compact operator have a distinct part of the spectrum
that align, and the third states that any self-adjoint operator differs a small compact operator from
a diagonal operator. One can directly see the similarity of having two operators differ a compact
operator. As time went on, this search for similarities evolved to a more broader search for compact
perturbations, which can be used in the so called Calkin algebra, the algebra of bounded linear
operators modulo compact operators.

The space of bounded linear operators (B(H)) inherits a natural algebraic structure. There
exists a natural addition and multiplication on operators and with the addition of the adjoint a
algebraic structure natural to bounded linear operators arises, there are many variations of these
algebra, we shall be looking at C∗-algebras. With this algebraic interpretation we shall prove a
generalization of one of Weyl’s theorems and give a interpretation for the Calkin algebra.

The term C∗-algebra was introduced by I. E. Segal in 1947 to describe norm-closed subalgebras
of B(H). In his paper Segal defines a C∗-algebra as a "uniformly closed, self-adjoint algebra of
bounded operators on a Hilbert space".

A familiarity with the rudiments of functional analysis is required to read this thesis. To avoid
any confusion in notation the first chapter will consist of notation standards and basic concepts of
operator theory, specifically properties of compact operators and C∗-algebras.
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2 Preliminaries
For this paper a basis in Hilbert spaces, operator theory and C∗-algebra is required. Therefore we
start with some preliminaries regarding these subjects. A basic understanding of linear algebra and
function analysis is required to fully understand the language used in this text, as know properties
are used. These preliminaries will also clear up any misconceptions regarding notation.

Not every theorem in the preliminaries will be proven. Any of these proofs can be found in [1].

2.1 Hilbert spaces and Operator theory
We start of with one massive definition regarding Hilbert spaces, operators and the adjoint.

Definition 2.1. A Hilbert space is a vector space with an inner product ·, · such that any Cauchy
sequence is convergent in the metric generated by said inner product. This metric is generated in
following way:

d(x, y) =
√

x− y, x− y .

In this thesis the inner product will be linear in the first entry. In a Hilbert space unit vectors are
vectors with length 1, that is ‖x‖ = 1. Two elements x, y ∈ H are called orthonormal if

x, y =

{
1 if x = y
0 if x 6= y.

B(H) is the space of all continuous linear operators1 on a Hilbert space, with an norm

‖A‖ = sup{‖Ax‖ : x is a unit vector in H},

where ‖Ax‖ :=
√

Ax,Ax is the norm of Ax. The space B(H) can also be regarded as the space of
bounded linear operators, in the sense that ‖Ax‖ ≤ C‖x‖ for some C > 0 for all x ∈ H.

Any Hilbert space has a orthonormal basis; a net (vλ)λ∈Λ of orthonormal elements such that
any x ∈ H can be written as

x =
∑
λ∈Λ

x, vλ vλ.

If such a base is countable we can use sequences instead and we say that a Hilbert space is separable
when the space has a countable base. We quickly note that for a Hilbert space H to be separable is
equivalent to the topological definition; H contains a countable dense subset. Since any closed linear
subspace of H is a Hilbert space, any closed linear subspace has a basis on it own.

The spectrum of an operator A is the set

σ(A) = {λ ∈ C | A− λI is not invertible}

The complement of the spectrum of A is called the resolvent of A written ρ(A).
The adjoint of an operator A is the (unique) operator A∗ that has the property:

∀x, y ∈ H : Ax, y = x,A∗y .

1An operator is another term for function between vector spaces
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Some interesting classes of operators are:

Self-adjoint: A = A∗;

Normal: NN∗ = N∗N ;

Unitary: UU∗ = U∗U = I;

Projection: A = A∗ = A2;

Diagonalizable: there exists an orthonormal basis consisting of eigenvectors of T.

Denote B(H)sa by the space of all self-adjoint operators.

Lemma 2.2 (Cauchy-Schwarz inequality). for any x, y ∈ H we have the inequality

| x, y | ≤ ‖x‖ · ‖y‖.

Lemma 2.3 (Pythagorean theorem). Let (vi)
k
i=1 be a orthonormal set; then for all x ∈ H,

‖x‖2 =

k∑
i=1

| x, vi |2 + ‖x−
k∑
i=1

x, vi vi‖2.

Lemma 2.4 (Bessel’s inequality). For a separable Hilbert space H and a orthonormal sequence
(en)∞n=1 the inequality

∞∑
n=1

| x, en |2 ≤ ‖x‖2,

holds for all x ∈ H.

Corollary 2.5. For a separable Hilbert space H, a orthonormal sequence (en)∞n=1 in H and any
x ∈ H we have

lim
n→∞

x, en = 0.

Proposition 2.6. For a nonempty subset Y ⊆ H the set

Y ⊥ := {x ∈ H | ∀y ∈ Y : x, y = 0}

of all elements perpendicular to Y , is a closed linear subspace of H.

As a result of this we have te following theorem.

Theorem 2.7. If Y ⊆ H is a nonempty closed linear subset, then

H = Y ⊕ Y ⊥,

in the sense that for any x ∈ H there exist unique points x1 ∈ A, x2 ∈ Y ⊥ such that x = x1 + x2.

Proposition 2.8. For any A ∈ B(H) the kernel of A is a closed linear subspace of H.
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This result will be used by combining it with the previous theorem, that is, for any A ∈ B(H)
we have a decomposition

H = ker(A)⊕ ker(A)⊥

Much of the structure of a Hilbert space H and the space B(H) comes from the inner product,
especially when in comes to properties of the adjoint. As such, there is a method to prove that
two operators are the same, using the inner product. This is most useful to prove statements like
A = A∗.

Lemma 2.9. Let A,B ∈ B(H). Then A = B if and only if Ax, y = Bx, y for all x, y ∈ H.

Proof. From left to right the proof follows directly from the fact that Ax = Bx for all x. For the
converse, we let x ∈ H be arbitrary, we show that Ax = Bx. Choose y := (A−B)x, then we have
the following line of implications.

Ax, y = Bx, y ⇒ (A−B)x, y = 0⇒ (A−B)x, (A−B)x = 0⇒ ‖(A−B)x‖ = 0⇒ Ax = Bx

And so A = B.

To get a feeling for eigenvalues and diagonal operators, we prove the following theorem.

Theorem 2.10. Suppose H is a separable Hilbert space. Then A ∈ B(H) is diagonalizable if and
only if there is an orthonormal basis (vn)∞n=1 for H and a bounded sequence (λn)∞n=1 such that

Ax =

∞∑
n=1

λn x, vn vn ∀x ∈ H, (2.1)

in which case λ1, λ2, λ3, . . . are exactly the eigenvalues of A.

Proof. Suppose A is diagonalizable. Choose an orthonormal basis (vn)∞n=1 of eigenvectors with
corresponding eigenvalues (λn)∞n=1. Then for x ∈ H we have

x =

∞∑
n=1

x, vn vn,

and so

Ax =

∞∑
n=1

x, vn Avn =

∞∑
n=1

x, vn λnvn,

since A is continuous. Now we need the sequence (λn)∞n=1 to be bounded:

|λn| = ‖λnvn‖ = ‖Avn‖ ≤ ‖A‖‖vn‖ = ‖A‖,

and so sup{|λn, n ∈ N} ≤ ‖A‖.
Conversely suppose A is of the form in (2.1), then for the eigenvalues we have

Avj =

∞∑
n=1

vj , vn λnvn = λjvj ,
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since all eigenvectors are orthonormal. This means that v1, v2, v3, . . . are eigenvectors of A and
λ1, λ2, λ3, . . . are eigenvalues of A. Now we only need to prove that A has no other eigenvalues, for
in that case B = {v | v is a eigenvector of A} is not an orthonormal base.

Suppose Ax = λx. Writing x =
∑∞
n=1 x, vn vn and Ax =

∑∞
n=1 λn x, vn vn we get the

countable set of equations

λn x, vn vn = λ x, vn vn ∀n ∈ N,

x 6= 0, thus there exists a n0 such that x, vn 6= 0. And so λn0
= λ. This means that x ∈ B and

λ ∈ (λn)∞n=1, and so there are no further eigenvalues and eigenvectors.

Another decomposition we use is a decomposition into two self-adjoint operators. We shall use
this for the Weyl-von Neumann-Berg theorem.

Proposition 2.11. Any operator N can be written as N = A+ iB where A and B are self-adjoint
operators. Moreover, if N is normal then A and B commute.

This proposition can be proven directly by setting A = N+N∗

2 and B = N−N∗
2i .

Theorem 2.12 (Banach inverse mapping theorem). If T ∈ B(H) is bijective then the inverse
also lies in B(H).

Theorem 2.13. The spectrum of an operator is a non-empty compact set in C. Moreover if A = A∗

then σ(A) ⊆ R+.

2.2 Compact operators
There exist a unique norm-closed ideal in the space of bounded linear operators on a Hilbert space.
This is the ideal of so called compact operators.

Definition 2.14. An operator K ∈ B(H) is compact if for any sequence of unit vectors (xn)∞n=1

the sequence (Kxn)∞n=1 has a Cauchy subsequence.

Although the word compact cannot be found directly in the definition, it is closely related to
the compactness of sets. Indeed, for a Hilbert space a subset Y is compact if and only if it is
sequentially compact (every sequence has a convergent/Cauchy subsequence). Therefore another
equivalent definition of a compact operator is to say that the image of the unit sphere in H is a
compact set.

Proposition 2.15. For any compact operators K and K ′, bounded operator B, and scalar λ, the
following properties hold:

1) K +K ′ is compact;

2) λK is compact;

3) BK and KB are compact.

This makes K(H), the set of all compact operators on H, an ideal on B(H). This can be pushed
further as K(H) is a closed ideal of B(H), which follows directly from the following proposition.

6



Proposition 2.16. If K ∈ B(H) is the norm-limit of compact operators, then K is compact.

Definition 2.17. The rank of an operator T is the dimension of its range. Furthermore

F(H) = {F ∈ B(H) | F has finite rank }.

When a Hilbert space is finite dimensional, it always isomorphic (as a Hilbert space) to Cn for
some n ∈ N. Any operator on Cn can be represented as a matrix, and any matrix A is compact.
Indeed if (xn)∞n=1 is a sequence of unit vectors then (Axn)∞n=1 is a bounded sequence, which has
a convergent subsequence by the Bolzano-Weierstrass theorem. Consequently if the rank of an
operator is finite, it is compact.

Lemma 2.18. Any finite rank operator T ∈ B(H) is compact.

Proof. The rank of T is finite so for some n ∈ N we have Ran(T )
Φ∼= Cn . Now T is bounded so for

a sequence of unit vectors (xn)∞n=1 the sequence (Φ(Txn))
∞
n=1 is contained in a closed ball BR(0)

for some R > 0. Closed balls in Cn are compact and thus sequentially compact, so (Φ(Txn))
∞
n=1

has a convergent subsequence in Cn. The function ψ is an isomorphism and thus (Txn)∞n=1 has a
convergent subsequence in T (H). This makes T a compact operator.

Theorem 2.19. Any compact operators is the norm-limit of a sequence of finite rank operators.
In other words, F(H) = K(H) with respect to the norm.

A proof can be found in [1] (Theorem 4.11).
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Theorem 2.20 (Schauder’s theorem). An operator is compact if and only if its adjoint is
compact.

Proof. We have A∗∗ = A as a consequence of lemma 2.9, so the implication from left to right is
sufficient. Suppose A is a compact operator and (xn)∞n=1 is a sequence of unit vectors. The sequence
(AA∗xn)∞n=1 must contain a Cauchy subsequence (AA∗xnk)∞k=1, as A is compact implies that AA∗
is compact by proposition 2.15.(3). Comparing two terms in the subsequence (A∗xnk)∞k=1 of the
sequence (A∗xn)∞n=1 we find, with the Cauchy–Schwarz inequality,

‖A∗(xnk − xnm)‖2 = AA∗(xnk − xnm), xnk − xnm
≤ ‖AA∗(xnk − xnm)‖ · ‖(xnk − xnm)‖
≤ 2‖AA∗(xnk − xnm)‖ → 0,

as ‖(xnk−xnm)‖ ≤ 2 since they are unit vectors. Consequently (A∗xnk)∞k=1 is a Cauchy subsequence
of (A∗xn)∞n=1.

Theorem 2.21. The set of finite rank operators F(H) is contained in any non-trivial ideal J of
B(H).

This theorem is proven in [5] (theorem 5.2.1). As F(H) = K(H) this theorem extends to the
following corollary.

Corollary 2.22. The set K(H) is contained in any non-trivial norm-closed ideal J of B(H).

It turns out that this can be pushed even further. The set of compact operators is unique in
the sense that it is the only proper closed ideal in B(H).

Theorem 2.23. IF J is a proper closed ideal in B(H), then J = K(H).

A proof can be found in [5] (lemma 5.4.20).

2.3 C*-algebras and the Calkin algebra
The space of bounded linear operators can be interpreted as an algebra. There already exist a
addition and multiplication operation on operators in B(H), and the idea of an adjoint on operators
can be generalized to a more general linear convolution. This gives the generalization of B(H) to
so called C∗-algebra’s. This generalization is useful to this thesis as it creates an interpretation for
quotients such as the quotient B(H)/K(H).

Definition 2.24. A Banach algebra is a complex normed algebra A that is complete (as a metric
space with respect to the norm) and satisfies

‖AB‖ ≤ ‖A‖‖B‖ for all A,B ∈ A

A Banach ∗-algebra is a Banach algebra A with a conjugate linear convolution ∗(called the ad-
joint) that is anti-isomorphic. That is, for all A,B in A and λ ∈ C we have,

(A+B)∗ = A∗ +B∗

(λA)∗ = λA∗

A∗∗ = A

(AB)∗ = B∗A∗
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A Banach ∗-algebra is called a C∗-algebra if it has the following additional condition:

‖A∗A‖ = ‖A‖2 for all A ∈ A.

For a C∗-algebra A we denote by Asa the C∗-subalgebra of self-adjoint elements. A subset J ⊆ U is
called a subalgebra of A if it is closed under addition and multiplication.

The term C∗-algebra was introduced in 1947 by I.E. Segal to describe norm-closed subalgebras
of B(H). Consequently, it will be to no surprise that we have the following proposition.

Proposition 2.25. B(H) is a C∗-algebra, with the adjoint and norm as in Definition 2.1. Moreover
the ideal of compact operators is a subalgebra of B(H).

Now we want the quotient B(H)/K(H) to have the same structure as the original space B(H).

Proposition 2.26. For a C∗-algebra A with subalgebra J the quotient A/J is once again a
C∗-algebra.

A proof of this proposition can be found in [3] (Theorem I.5.4).

Definition 2.27. The quotient B(H)/K(H) is called the Calkin algebra. When two cosets T1 +
K(H) and T2 +K(H) are equal we denote T1 =c T2.

A large part of this thesis is focused on compact perturbations i.e. operators T1 and T2 that
can be written as

T1 = T2 +K,

where K is a compact operator. This means that each time we find such a perturbation we have

T1 =c T2.

i.e. T1 = T2 in the Calkin algebra.
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3 Approximating the spectra of self-adjoint operators

3.1 The full spectrum
When a Hilbert space is finite dimensional the entire spectrum consists eigenvalues, as any injective
matrix is also surjective, and vice versa. This property does not hold in the infinite dimensional case,
and therefore for an element λ ∈ σ(A) the operator A− λ is either non-injective or non-surjective.
This leads to the following decomposition of the spectrum:

Definition 3.1. σp(A) = {λ ∈ σ(A) | A−λ is not injective} is called the point spectrum. Points
in the point spectrum are called eigenvalues.
σc(A) = {λ ∈ σ(A) | A − λ is injective and Ran(A − λ)  H is dense} is called the continuous
spectrum.
σr(A) = {λ ∈ σ(A) | A − λ is injective and Ran(A − λ)  H is not dense} is called the residual
spectrum.

We can interpret an element λ ∈ σc(A) as an element where A − λ is nearly invertable. The
operator might not be surjective, but it comes pretty close. Now σ(A) is the disjoint union of these
three sets:

σ(A) = σp(A) ∪ σc(A) ∪ σr(A).

Proposition 3.2. If A is self-adjoint, then σr(A) = ∅.

This proposition also holds for normal operators. However, considering this thesis is focused on
self-adjoint operators, we only proof the statement for A = A∗.

Proof. Suppose λ ∈ σ(A) and that A − λ is injective. We show that Ran(A − λ) must be dense.
Firstly we note that λ = λ by theorem 2.13. Now the operator A− λ is self-adjoint, as

(A− λ)∗ = A∗ − λ = A− λ.

Note the identity
Ran(B) = ker(B∗)⊥,

which holds for any bounded operator B. Then if ker((A − λ)∗) = {0} we have Ran(A− λ) =
{0}⊥ = H. Since A− λ is self-adjoint and injective, we have

ker((A− λ)∗) = ker(A− λ) = {0}.

Example. In the finite dimensional case every element in the spectrum will always be an eigenvalue,
i.e. σp(A) = σ(A). This does not have to happen in the infinite case. Let us look at an example
where the point spectrum is even empty.

Suppose H = L2([0, 1], µ) is the space of quadratic integrable function on the interval [0, 1] with
respect to the Lebesgue measure µ. We look at the multiplication operator T where

(Tf)(x) := x · f(x),
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for all x ∈ [0, 1] and all integratable functions f . The operator T is bounded as the interval [0, 1] is
bounded. As the interval is real, the operator is self-adjoint. Indeed, for f, g ∈ H we see∫

f(x)(T ∗g)(x) dµ(x) = f, T ∗g

= Tf, g

=

∫
xf(x)g(x) dµ(x),

which implies that
T ∗g(x) = xg(x) µ-a.e.,

and so T ∗g = Tg in H. We claim that T has no eigenvalues, since for f 6= 0 (which really means:
f(x) 6= 0 µ− a.e.), we have

(T − λ)f = 0⇔ (x− λ)f(x) = 0 ∀x µ− a.e.

As x − λ 6= 0 for all but one (x = λ), the operator T − λ can not be injective, so σp(T ) = ∅.
Furthermore T is self-adjoint and so by proposition 3.2 we have σc(A) = σ(A).

This operator is not diagonalizable, for one can not make a base of eigenvectors if there are no
corresponding eigenvalues.

Now we prove that every element λ in the spectrum can be approximated with a sequence of
element in H that are very close to being eigenvectors of λ.

Theorem 3.3. Let A be self-adjoint. Then λ ∈ σ(A) if and only if there exist a sequence (un)∞n=1

such that ‖un‖ = 1 and ‖(A− λ)un‖ → 0

Proof. for λ ∈ σ(A) the residual spectrum is empty so only two cases arise:

(a) ker(A− λ) 6= {0} (i.e. λ is an eigenvalue). Then ∀n ∈ N let un = f for any fixed
f ∈ ker(A− λ) with ‖f‖ = 1.

(b) ker(A − λ) = {0} and Ran(A − λ) is dense but not equal to H. We may choose a sequence
(vn)∞n=1 in Ran(A−λ) with ‖vn‖ = 1 and ‖(A−λ)−1vn‖ → ∞. Such a sequence can be found
by taking a sequence with limit x ∈ H\Ran(A − λ) which is nonempty by assumption such
that ‖x‖ = 1. Using the sequence (vn)∞n=1 we can define un = (A−λ)−1vn

‖(A−λ)−1vn‖ for all n. Now
‖un‖ = 1 and

|(A− λ)un‖ =
‖vn‖

‖(A− λ)−1vn‖
→ 0

Conversely, let λ ∈ ρ(A). Then the Banach inverse mapping theorem states: (A−λ)−1 is bounded.
Choose M > 0 such that

∀v ∈ H : ‖(A− λ)−1v‖ ≤M‖v‖.
If we suppose that there is a sequence (un)∞n=1 such that ‖un‖ = 1 and ‖(A − λ)un‖ → 0 then in
particular we have

1 = ‖un‖ = ‖(A− λ)−1(A− λ)un‖ ≤M‖(A− λ)un‖ → 0,

this would mean 1 ≤ 0, which is a contradiction.

The only consequence of A = A∗ that we used in the previous theorem is proposition 3.2, and
so the theorem would also hold for normal operators, as remarked below proposition 3.2.
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3.2 The essential spectrum and Weyl’s criterion
We can push the result of theorem 3.3 a bit further for a specific part of the spectrum. Using the
same argumentation in theorem 3.3, a classification arises for the so called essential spectrum.

Definition 3.4. The discrete spectrum of an operator A is the set of all eigenvalues of A with
finite multiplicity that are isolated points of σ(A). More formally

σd(A) = {λ ∈ σp(A) | dim ker(A−λ) <∞ and ∃ε > 0 such that ∀z ∈ σ(A)\{λ} we have |z−λ| ≥ ε}.

The essential spectrum is defined as the complement of σd(A) i.e.

σess(A) = σ(A)\σd(A).

In this paragraph we shall prove a version of theorem 3.3 for the essential spectrum. To prove
this we shall not be using the essential spectrum directly but instead we look at whether the operator
A−λ has an unbounded inverse. This brings along a problem. As when λ lies in the spectrum, the
operator A− λ does not have a proper inverse, so we must tweak the definition of inverse.

Remark. We say that the inverse of an operator A exists (as a possibly not bounded operator) if
A is injective. We do so by restricting the domain of A−1 to the range of A. That is, there is a
function A−1 such that

A−1 : Ran(A)→ H
Ax 7→ x.

It should be noted that for any self-adjoint (and normal) operator any element in the essential
spectrum is either surjective of very close to being surjective, as any element in the continuous
spectrum has produces an operator with dense range in H.

Proposition 3.5. Let λ be a isolated point of σ(A) and A be self-adjoint. Then (A− λ) restricted
to ker(A− λ)⊥ has a bounded inverse.

A proof of this proposition an the following theorem can be found in [2] (proposition 6.6 and
theorem 6.7).

Theorem 3.6. Let A be self-adjoint and λ ∈ σ(A). Then λ ∈ σd(A) if and only if ker(A − λ) is
finite-dimensional and A− λ restricted to ker(A− λ)⊥ has a bounded inverse.

Looking at the negation of this statement we find the following corollary.

Corollary 3.7. Let ker(A − λ) be finite-dimensional. Then λ ∈ σess(A) if and only if A − λ
restricted to ker(A− λ)⊥ has an unbounded inverse.

Here unbounded means not bounded in the sense an operator B is unbounded if for any n ∈ N
there exists a vn ∈ H such that ‖Bvn‖ > n.

Definition 3.8. A sequence (un)∞n=1 converges weakly to u ∈ H if for each v ∈ H we have
ui, v → u, v . We write un

w−→ u. A sequence (un)∞n=1 converges strongly to u if ‖ui − u‖ → 0.
Here we write un

s−→ u.

12



We note that strong convergence implies weak convergence and strong convergence is the same
as regular convergence, now written differently as to not be confused with weak convergence.

Definition 3.9. A sequence (un)∞n=1 is called a Weyl sequence for A and λ if ‖un‖ = 1, un
w−→ 0

and (A− λ)un
s−→ 0.

Note that un
w−→ 0 if and only if un, y → 0 for all y ∈ H, as 0, y = 0 for all y ∈ H. We shall

show that an element λ ∈ σess(A) if and only if there exists a Weyl sequence for A and λ. To prove
this, we need a couple of propositions.

Proposition 3.10. Suppose K is a compact operator, un
w−→ 0, and ‖un‖ = 1 for all n ∈ N. Then

Kun
s−→ 0.

Proof. Suppose Kun does not converge strongly to 0. Then we can choose an ε > 0 and a subse-
quence (unk)∞k=1 such that for k large enough we have

‖Kunk‖ ≥ ε. (3.1)

K is compact thus the sequence (Kunk)∞k=1 contains a convergent subsequence (Kunkl )
∞
l=1. First

we note that (Kun)∞n=1 converges weakly to 0 as un
w−→ 0. We claim that this subsequence must

converge to 0. If this claim holds we have a contradiction with (3.1). To prove the claim we show
that if vn

w−→ w and vn
s−→ v then w = v. Indeed, by the continuity of the inner product we have

w, y = lim
n→∞

vn, y = lim
n→∞

vn, y = w, y ,

and so for all y ∈ H we have
v, y = w, y .

Setting y := w − v yields w = v. Now as Kunkl
w−→ 0 and Kunkl convergence strongly to some v,

we must have v = 0.

Proposition 3.11. The property A = A∗ implies that ker(A)⊥ is A-invariant.

Proof. For x ∈ ker(A)⊥ and any y ∈ ker(A) we have

Ax, y = x,A∗y = x,Ay = x, 0 = 0,

and so Ax ∈ ker(A)⊥.

To prove un
w−→ 0, it is sufficient to prove the statement for a dense subset Y ⊆ H.

Proposition 3.12. Suppose un, v → 0 for all v in a dense subset of H. Then un
w−→ 0.

Proof. Suppose x ∈ H, then we can choose a sequence (ym)∞m=1 in Y , a dense subset in H, such
that

x = lim
m→∞

ym.

Then, by interchanging limits, we find

lim
n→∞

un, x = lim
n→∞

un, lim
m→∞

ym

= lim
n→∞

lim
m→∞

un, ym

= lim
m→∞

lim
n→∞

un, ym = 0.

These limits can be interchanged due to following analytic proposition.
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Proposition 3.13. Suppose (anm)n,m∈N is a sequence of complex numbers such that limn→∞ anm
exist for almost all m and limm→∞ anm exist for almost all n. Then we can interchange limits i.e.

lim
n→∞

lim
m→∞

anm = lim
m→∞

lim
n→∞

amn.

Here almost all means all exact for a finite number.

Theorem 3.14 (Weyl’s criterion). Let H be a separable Hilbert space and let A be a self-adjoint
operator. Then λ ∈ σess(A) if and only if there exists a Weyl sequence for A and λ.

Proof. Fix an arbitrary λ ∈ σess(A), then ker(A− λ) is either infinite dimensional or finite dimen-
sional. If the first case arises we can choose an orthonormal basis (un)∞n=1 for ker(A− λ) since the
kernel is a closed linear subspace of H. Now we prove that this sequence is a Weyl sequence for λ
and A.

By corollary 2.5 we have
lim
n→∞

x, un = 0 for all x ∈ H,

and so un
w−→ 0. Naturally we have (A− λ)un = 0, and so in particular (A− λ)un

s−→ 0.
The proof for the second case is quite similar to the proof of theorem 3.3. The spectrum of a

self-adjoint operator is contained in R and so λ = λ. From this, it follows that A− λ is self-adjoint
and furthermore ker(A − λ)⊥ is (A − λ)-invariant due to proposition 3.11. Using corollary 3.7 we
find an unbounded inverse for A − λ restricted to ker(A − λ)⊥. Now we can choose a sequence of
unit vectors (vn)∞n=1 in ker(A− λ)⊥, which by assumption is infinite dimensional, so that

‖(A− λ)−1vn‖ > n > 0 for all n ≥ 1.

Set un = (A− λ)−1vn‖(A− λ)−1vn‖−1; then ‖un‖ = 1 and

‖(A− λ)un‖ = ‖vn‖ · ‖(A− λ)−1vn‖−1 s−→ 0.

It remains to show that un
w−→ 0. Let x ∈ H; then we have the decomposition

H = ker(A− λ)⊕ ker(A− λ)⊥,

from which we can write x = x1 + x2 accordingly. We note that ker(A − λ)⊥ is (A − λ)-invariant
thus un = (A− λ)−1vn‖(A− λ)−1vn‖−1 ∈ ker(A− λ)⊥ and

un, x = un, x1 + un, x2 = un, x2 .

This means that it is sufficient so show y, un → 0 for all y ∈ ker(A−λ)⊥. Moreover, it is sufficient
to prove that un, y → 0 for y in a dense subset of ker(A − λ)⊥, as stated by proposition 3.12.
Setting Aλ = (A− λ) restricted to ker(A− λ)⊥, we claim that the domain D

(
(A−1

λ )∗
)
is dense in

ker(A− λ)⊥. Temporarily assuming the claim, we compute,

| un, y | = | (A− λ)−1vn‖(A− λ)−1vn‖−1, y |
= ‖(A− λ)−1vn‖−1 · | vn, ((A− λ)−1)∗y |
≤ ‖(A− λ)−1vn‖−1 · ‖vn‖ · ‖((A− λ)−1)∗y‖,
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which we can compute since y ∈ D
(
(A−1

λ )∗
)
. The right hand side converges to zero as n → ∞,

hence un
w−→ 0.

Now we only need to prove the claim. We note that any element of the form (A − λ)x, with
x ∈ D(A− λ), belongs to D

(
(A−1

λ )∗
)
since, for any u ∈ D

(
(A−1

λ )∗
)
,

Aλx,A
−1
λ u = x, u .

As Ran(Aλ) is dense in ker(A − λ)⊥, The domain of (A−1
λ )∗ is dense as well. This completes the

proof from left to right.
Conversely, suppose (un)∞n=1 is Weyl sequence for A and λ. Theorem 3.3 states that λ ∈ σ(A),

so we only need to show that λ is not an isolated eigenvalue with finite multiplicity (i.e. ker(A−λ)
is finite dimensional). Again two options arise; the kernel of A − λ is either infinite-or finite-
dimensional. If ker(A− λ) is infinite, then we are done by the definition of the essential spectrum,
so we can assume it is finite. By corollary 3.7 it suffices to show that A−λ restricted to ker(A−λ)⊥

does not have a bounded inverse.
Let (vi)

k
i=1 be a finite orthonormal basis for ker(A−λ) and let Pλ be the orthonormal projection

onto ker(A− λ). Then, as these vectors form a orthonormal basis for RanPλ, we obtain

‖Pλun‖2 = ‖
k∑
i=1

un, vi vi‖2 =

k∑
i=1

‖ un, vi vi‖2 =

k∑
i=1

| un, vi |2,

by the Pythagorean theorem. And since | un, vi | → 0 for any i = 1, 2, . . . , k, we have

lim
n→∞

‖Pλun‖2 = lim
n→∞

k∑
i=1

| un, vi |2 = 0.

Set Pλ = 1− Pλ. Now the Pythagorean theorem gives

‖Pλun‖2 = 1− ‖Pλun‖2 → 1. (3.2)

Denote vn = Pλun
‖Pλun‖

, so that ‖vn‖ = 1 and the denominator remains bounded by (3.2). Note that

(A− λ)Pλun = (A− λ)un − (A− λ)Pλun = (A− λ)un,

because Pλun ∈ ker(A − λ). Since (un)∞n=1 is a Weyl sequence for A and λ and the denominator
remained bounded, we have

‖(A− λ)vn‖ = ‖(A− λ)un‖ · ‖Pλun‖−1 → 0.

Now the claimed result follows directly from the following lemma.

Lemma 3.15. Suppose B is a operator with an inverse. Then B−1 is unbounded if and only if
there is a sequence of unit vectors (vn)∞n=1 such that ‖Bvn‖ → 0.

Note that for Weyl’s criterion we only need the implication from right to left.
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Proof. If B−1 is unbounded then for any n ∈ N we can find a un such that ‖B−1un‖ ≥ n,
consequently, ‖B−1un‖ → ∞ as n→∞. Setting vn = B−1un‖B−1un‖−1, we compute

‖Bvn‖ = ‖un‖ · ‖B−1un‖−1 → 0.

Conversely, suppose there is such a sequence (vn)∞n=1. To prove B−1 is unbounded, we must show
that for any n ∈ N there exists a unit vector un with ‖B−1un‖ ≥ n. Take n ∈ N arbitrarily.
‖Bvn‖ → 0 so we can pick m > n such that ‖Bvm‖ ≤ 1

n . Now we pick c ∈ R≥1 such that

c · n‖Bvm‖ = 1.

If we denote un = B(c · n · vm), then ‖un‖ = 1 and ‖B−1un‖ = c · n‖vm‖ = c · n ≥ n.

Proposition 3.16. Suppose H is a separable Hilbert space and D is a self-adjoint diagonal operator.
Then the essential spectrum of D is equal to the set of all limit points of its eigenvalue sequence.

To illustrate the uses of the previous, a (partial) proof shall be given using Weyl’s criterion.
With the criterion we prove

{λ ∈ C | λ is a limit point of σ(D)} ⊆ σess(D).

A complete proof can be found in [4] (theorem 2.2.4) where they use the Weyl-von Neumann-Berg
theorem, which we shall discuss in chapter 4.

Proof. Suppose λ is a limit point of the eigenvalues, say λ = limk→∞ λnk . We look at the corre-
sponding (sub)sequence of eigenvectors (vnk)∞k=1 and claim that this sequence is a Weyl sequence
for λ and D. Then, by Weyl’s criterion, λ lies in the essential spectrum of D. We must prove that
(A− λ)vnk

s−→ 0 and vnk
w−→ 0. Suppose ε > 0 and choose N ∈ N accordingly such that

|λnk − λ| ≤ ε for any k > N.

For any k > N we can write

(D − λ)vnk = (λnk − λ)vnk ,

as vnk is an eigenvector with corresponding eigenvalue λnk . From this we estimate

‖(D − λ)vnk‖ = |λ− λnk | · ‖vnk‖ ≤ ε,

and so (D − λ)vnk
s−→ 0. Since (vn)∞n=1 is an orthonormal base for H, corollary 2.5 states that for

any x ∈ H,
lim
n→∞

vn, x = 0,

which will also hold for a subsequence (vnk)∞k=1. This makes (vnk)∞k=1 a Weyl sequence for λ and
D.
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3.3 Weyl’s theorem
We stated earlier that in this chapter we shall prove that compact operators have no influence on
the essential spectrum. However a stronger result can be proven. For this we need the following
definition.

Definition 3.17. Let A ∈ B(H) with a nonempty resolvent set ρ(A). An operator B is called
relatively A-compact if BRA(z) := B(A− z)−1 is compact for some z ∈ ρ(A). Here

RA(z) := (A− z)−1,

is well-defined, as z ∈ ρ(A) means A− z is invertible.

The product of a compact operator and a bounded operator is always compact. RA(z) is
bounded by the Banach inverse mapping theorem, so any compact operator B is relatively compact
to any operator A (as ρ(A) 6= ∅). For two operators A,B ∈ B(H) we shall show that if the difference
A−B is either relatively A-or B-compact, then they have the same essential spectrum.

Lemma 3.18. Let A and B be self-adjoint operators and let V = A−B. If V is A-compact, then
V is B-compact.

The proof of this lemma can be found in [2] (Theorem 14.2).

Theorem 3.19 (Weyl’s theorem). Let A and B be self-adjoint operators, and let A − B be
A-compact. Then,

σess(A) = σess(B).

Proof. A − B is A-compact, so we can choose z ∈ ρ(A) such that (A − B)(A − z)−1 is compact.
Let λ ∈ σess(A). Then by Weyl’s criterion there exists a Weyl sequence (un)∞n=1 for A and λ, that
is ‖un‖ = 1, un

w−→ 0 and (A− λ)un
s−→ 0. Now we have

(A− z)un = (A− λ)un + (λ− z)un
w−→ 0, (3.3)

as the first term converges strongly to zero and un
w−→ 0 implies (λ − z)un

w−→ 0. We claim that
(B − λ)un

s−→ 0, for we can write

(B − λ)un = (A− λ)un + (B −A)(A− z)−1(A− z)un. (3.4)

The first term on the right satisfies (λ − A)un
s−→ 0. The operator (A − B)(z − A)−1 is compact

and so by (3.3) and proposition 3.10, the second term on the right in (3.4) converges strongly to
zero. Now the conditions are met for (un)∞n=1 to be a Weyl sequence for λ and B. This proves
σess(A) ⊆ σess(B). By Lemma 3.18, (A− B) is B-compact. Thus, we can switch roles between A
and B in the argument above. This gives the equality we were looking for.

Corollary 3.20. If K is a compact self-adjoint operator, then σess(K) = ∅.

For this proof we need three different zero-elements: the zero-operator, the zero-element in the
Hilbert space, and the number zero. This should be noted beforehand, so there is no ambiguity.
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Proof. We can write K = 0 +K, where

0 : x 7→ 0H

is the operator that sends every element in H to the 0-element in H. By Weyl’s theorem we have
σess(K) = σess(0), so if σd(0) = σ(0) we are done. Note σ(0) = {λ ∈ C | −λI is not invertible}
and −λI is not invertible if and only if λ = 0. Therefore σ(0) = {0}. 0 is an eigenvalue because
the operator 0 − 0 · I = 0 is not injective. Considering that 0 is the only point in the spectrum it
must be isolated, and since dim(0) = 0 <∞, we have 0 ∈ σd(0).
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4 The Weyl-von Neumann-Berg Theorem
The Weyl-von Neumann-Berg theorem, firstly proven by Weyl has since taken many names. It
states that, after the addition of a compact operator (Weyl (1909)) or Hilbert-Schmidt operator
(von Neumann (1935)) of arbitrarily small norm, a bounded self-adjoint operator on a Hilbert
space is equal to a diagonal operator. The results are subsumed in later generalizations for bounded
normal operators due to David Berg (1971, compact perturbation) and Dan-Virgil Voiculescu (1979,
Hilbert-Schmidt perturbation). We shall prove the generalization of David Berg using C∗-algebras
and consequently deduce the initial theorem of Weyl.

We prove that a self-adjoint operator can be decomposed as

A = D +K,

where D is a diagonal operator and K is a compact operator. To find such a decomposition, the
operator A needs to be written in a such way that a diagonal operator will appear somewhere in the
notation. This can be done by writing A as a (perhaps infinite) sum of projections. More precisely,
as a sum of spectral projections.

4.1 Spectral projections
We wish to write any operator A as an infinite sum of projections. This is somewhat analogue to
the idea that any number between 0 and 1 has an unique binary expansion. That is to say for any
α ∈ [0, 1] there is a sequence (ak)∞k=1 such that

∞∑
k=1

2−kak = α.

This can be achieved by setting cn = d2n · α− 1e and an = cn − 2cn−1. Indeed we have

lim
n→∞

cn
2n

= α,

whilst simultaneously the identity
cn
2n

=

n∑
k=1

2−kak

holds for any n ∈ N. Now for an operator A with σ(A) ⊆ [0, 1] we shall show that we can write

A =

∞∑
k=1

2−kEAk ,

where EAk will be spectral projections of A.

Definition 4.1. A projection-valued measure on a measurable space (X,Σ), is a mapping E
from Σ to B(H) such that

E(X) = idH ,

and for every ψ, φ ∈ H, the set function

Y 7→ E(Y )ψ, φ ,

is a complex measure on M.
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In this thesis (X,Σ) = (σ(A), B(σ(A)) will be the spectrum of an operator A with the Borel
measure on said spectrum. We shall not go into details of the actual measure, and only use it
loosely. If we were to use the actual measure for proofs, then the difficulty of this thesis would
skyrocket. For all intents and purposes we look at it as if it were just an ordinary measure.

Remark. It should be noted that the spectral theorem states that every self-adjoint operator A
has an associated projection-valued measure EA such that

A =

∫
σ(A)

x dEA(x),

which we shall use extensively.

Definition 4.2. With the previous remark we can define

g(A) :=

∫
σ(A)

g(x) dEA(x),

for a measurable function g on σ(A). In particular taking g = 1∆ an indicator function for
∆ ⊆ σ(A), we can define

EA(∆) ≡ 1∆(A) =

∫
σ(A)

1∆(x) dEA(x)

called the spectral projection of ∆.

The name spectral projection has not been chosen arbitrarily: The operator 1∆(A) is a projection
for any A ∈ B(H)sa and ∆ ⊆ σ(A). To prove this we need the following proposition.

Proposition 4.3. Let A be a self-adjoint operator in B(H). Then for any Borel measurable function
f on σ(A) we have:

1) f 7→ f(A) is a ring homomorphism from B(σ(A)) to B(H);

2) f(A)∗ = f(A).

With this proposition we note 1∆(A)∗ = 1∆(A) = 1∆(A) and 1∆(A)2 = 12
∆(A) = 1∆(A).
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Lemma 4.4. For σ(A) ⊆ [0, 1] we have

A =

∞∑
k=1

2−kEAk where EAk = EA

2k−1⋃
j=1

(2−k(2j − 1), 2−k · 2j]

 .

Here EA(∆) is the spectral projection of ∆, as in definition 4.2. These intervals are called dyadic
intervals.

Proof. A formal proof will go beyond the scope of this thesis, so instead a sketch of the proof will
be given. First a visualization of the dyadic intervals. Here the intervals are drawn for k = 1, 2, 3, 4.

A result from the spectral theorem is that a self-adjoint operator A can be written as

A =

∫
σ(A)

x dEA.

Now we are looking for the equality∫
σ(A)

x dEA =

∞∑
k=1

2−k
∫
σ(A)

x1∆k
(x) dEA,

where ∆k =
⋃2k−1

j=1 (2−k(2j − 1), 2−k · 2j] is the k-th dyadic interval of [0,1]. With Beppo-Levi we
can switch the integral and the sum, so if the functions x and

∑∞
k=1 2−kx1∆k

(x) are the same for
every x the equality will hold. This is not the case however. The dyadic intervals create gaps, so
the indicator functions will be 0 at times, and thus

∑∞
k=1 2−k1∆k

(x) < 1. This means that for the
equality to hold, the function must be equal EA−almost everywhere. Proving this goes beyond this
thesis.

A more detailed look into spectral projections and Functional Calculus can be found in [3].

Lemma 4.5. Let H be separable and let A be a separable abelian C∗-subalgebra of B(H). Then there
is a countable commuting family E = {En | n ≥ 1} of projections such that Asa ⊆ E = span(E).

Proof. For convenience, let us translate A by a multiple of the identity and scale it such that
0 ≤ A ≤ I. We do this so that the spectrum of A is contained in [0, 1]. Each self-adjoint operator is
in the norm-closed span of its spectral projections corresponding to dyadic intervals. More precisely,
for any A ∈ Asa we have

A =

∞∑
k=1

2−kEAk , where EAk = EA(

2k−1⋃
i=1

(2−k(2i− 1), 2−k(2i)]).

Consequently, A ∈ span{EAk | k ∈ N}.
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A is separable and thus Asa is seperable too. Choose a countable dense subset {A1, A2, . . . } for
Asa. Then the sequence (An)∞n=1 in Asa has the following property: for any W open in Asa there
is an An ∈W . Consequently for T ∈ Asa we have

∀m ∈ N ∃ATnm such that ATnm ∈ B 1
m

(T ).

so the subsequence (ATnm)∞m=1 converges to T. Now T ∈ span{ATnm | m ∈ N} and hence

Asa ⊆ span{An | n ∈ N}

⊆ span{EAnk | n, k ∈ N}.

The set E = {EAnk | k, n ∈ N} is a countable family of projections. This family commutes as all
operators An commute, and furthermore all EAnk commute for a given n ∈ N.

4.2 Proving the Weyl-von Neumann-Berg theorem
Theorem 4.6. Suppose that A is a separable abelian C∗-subalgebra in B(H). Then there is an
orthonormal basis {ek | k ≥ 1} for H so that Asa is contained in D +K(H) where D the algebra of
diagonal operators with respect to this basis, and K(H) the algebra of compact operators.

By Lemma 4.5, Asa is contained in a C∗-algebra E = span(E) generated by a countable, com-
muting family E = {En | n ≥ 1} of projections. If finitely many projections are given, we may
assume that they are the first N on the list. We do so for the Weyl-von Neumann-Berg Theorem,
which is a corollary of theorem 4.6. In this theorem N has no restriction, i.e. what we prove can
be done for any chosen N .

Proof. Let N be arbitrary and choose E = span(E) generated by a countable, commuting family
E = {En | n ≥ 1} of projections such that Asa is contained in E. We show that a diagonal algebra
D can be constructed such that E ⊆ D + K(H). Consequently we will have Asa ⊆ E ⊆ D + K(H)
as D and K(H) are closed subsets of B(H). Fix an orthonormal basis x1, x2, . . . for H. For each
projection Ei ∈ E let us denote E(−1)

i := I − Ei and E(1)
i := Ei. Then for k ≥ N , set

Lk = span

{
k∏
i=1

E
(εi)
i xj | 1 ≤ j ≤ k, εi = ±1

}
,

and let Fk be the projection on the subspace Lk. Note that the product is taken over the functions
E

(εi)
i in B(H) rather than the elements E(εi)

i xj in H.
Also note that (Lk)∞k=N is an increasing sequence of finite dimensional subspaces with dense

union in H. It is dense since xj ∈ Lk for any j = 1, 2, . . . , k and (xj)
∞
j=1 is an orthonormal basis

for H. To prove xj ∈ Lk ∀ j < k, we first note that for k = 2 we have

E1E2 + E1(I − E2) + (I − E1)E2 + (I − E1)(I − E2) = I,

and so xj ∈ L2. With an inductive argument this can be shown for all Lk. Denote by σk the sum
of all possible product combinations of E(ε1)

1 , . . . , E
(εk)
k . Then by induction we have

σk+1 = σk(I − Ek+1) + σkEk+1 = I(I − Ek+1) + I · Ek+1 = I.
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Recall the initially set N and let

Dn =

{
En for 1 ≤ n ≤ N
En(I − Fn) for n > N.

The we let D be the C∗-algebra generated by {Dn : n ≥ 1}. Now we show that E is contained in
D +K(H). If n ≤ N then En = Dn and for n > N we have

Dn = En(I − Fn) = En − EnFn,

and hence
En = Dn + EnFn.

Here EnFn is compact by lemma 2.18 as Ran(EnFn) = Ln, which is finite dimensional.
It remains to show that D is diagonalizable, meaning every element D ∈ D is a diagonal operator

with regards to a predetermined base of eigenvectors. As D commutes with each Fk for k ≥ N ,
the finite dimensional subspaces HN := LN and Hk := Lk ∩ L⊥k−1 for k > N are all invariant for
D ∈ D. This result requires 5 different case studies, as for varying k and n different scenarios
appear. Suppose D ∈ D, we prove D(Hk) ⊆ Hk for all k ≥ N .

1) If k = N,D = En for some n ≤ N ,
then D(Hk) = En(LN ) ⊆ LN , since LN in invariant under En if n ≤ N .

2) Suppose k = N,D = En(I − Fn) for some n > N ,
now D(Hk) = (En(I − Fn)(LN ) = {0} ⊆ LN since LN ⊆ Ln ⇒ Fn(LN ) = LN .

3) If k > N,D = En for some n ≤ N ,
then D(Hk) = En(Lk ∩ L⊥k−1). Suppose x ∈ Lk ∩ L⊥k−1 then Enx ∈ Lk as n ≤ N < k and
∀y ∈ Lk−1 we have Enx, y = x,Eny = 0. Consequently Enx ∈ Lk ∩ L⊥k−1.

4) Now suppose k > N,D = En(I − Fn) for some n > N and n > k ,
with the same argument used in 2) we find D(Hk) = En(I − Fn)(Lk ∩ L⊥k−1) = {0}. As
{0} ⊆ Lk ∩ L⊥k−1 we are done.

5) Lastly, we suppose k > N,D = En(I − Fn) for some n with k ≥ n > N , then En and Fn
commute, and hence for x ∈ Lk ∩L⊥k−1 we have En(I − Fn)x = (En − FnEn)x = z − Fnz for
Enx := z ∈ Lk ∩ L⊥k−1. Note that Ln ⊆ Lk ⇒ Fnz = z So z − Fnz = z − z = 0. Once again
we have D(Hk) = {0}, which completes the final case study.

Now that we have checked operators of the form D = Dn, the conclusion extends to the entire
C∗-algebra generated by {Dn : n ≥ 1}. Consequently the finite dimensional subspaces HN and Hk
are all invariant under operators D ∈ D.

We note that the sequence (Hk)∞k=N is a sequence of closed subspaces that are all perpendicular
to each other and that the union is dense in H. This is true as (Lk)∞k=N is an increasing sequence
of finite dimensional subspaces with dense union in H.

The restriction of any D to any Hk is a commuting family of normal matrices, which is diago-
nalizable by the finite dimensional spectral theorem. Choose D ∈ D arbitrarily. As Hk is a closed
subspace we can choose a basis Bk = (vk1 , . . . , v

k
nk

) for Hk. Since k 6= k′ implies that Hk and Hk′
are perpendicular, we have vki , v

k′

j = 0 for all i, j if k 6= k′. And lastly, as the union is dense the
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set B =
⋃∞
k=1Bk is an orthonormal basis for H, containing only eigenvectors of D. Vice versa, all

eigenvectors of D are contained in B, resulting in a basis of eigenvectors of D, making any D ∈ D
diagonalizable with respect to the same basis.

We can push this a bit further for normal and self-adjoint operators. The following corollary
asserts that every normal operator is a small compact operator away from being a diagonalizable
operator. Furthermore, in the Calkin algebra the coset of any self-adjoint operator is equal to the
coset of a diagonal operator.

Theorem 4.7 (Weyl-von Neumann-Berg Theorem). Every normal operator N on a separable
Hilbert space can be expressed as a sum N = D+K of a diagonal normal operator D and a compact
operator K. Moreover for any n commuting self-adjoint operators A1, . . . , An and any ε > 0, there
are diagonal self-adjoint operators Di and compact operators Ki such that Ai = Di + Ki and
‖Ki‖ < ε for any i = 1, 2, . . . n.

If we drop the property ‖Ki‖ < ε we can deduce the result directly from the previous theorem
by setting A as the C-algebra generated by A1, A2, . . . , An. If we do want this property, we have
to look at the series given in lemma 4.4.

Proof. Suppose ε > 0 and A1, . . . , An are commuting self-adjoint operators. Lemma 4.4 states

Ai =

∞∑
k=1

2−kE
(i)
k where E

(i)
k = EAi

2k−1⋃
j=1

(2−k(2j − 1), 2−k · 2j]

 .

We choose N large enough such that 2−N < ε. As mentioned at the beginning of theorem 4.6, the
entire argument in the proof of theorem 4.6 works for any N . We did this, so it could be done for
this particular N . By setting A as the C∗-algebra generated by A1, A2, . . . , An we can follow the
same line of argumentation used in the previous theorem for E = {E(i)

k | k ≥ 1 ; 1 ≤ i ≤ n}, as
Ai, . . . , An ∈ span(E) and A1, . . . , An all commute. From this, we find a diagonal algebra D that
contains the following elements:

D
(i)
k = E

(i)
k for 1 ≤ k ≤ N

D
(i)
k = E

(i)
k −Ri,k for k > N ,

where each Ri,k is a projection of finite rank (and thus compact due to lemma 2.18) as seen in
equation (4.2) of Theorem 4.6 and the arguments following said equation. Now we define

Bi =

∞∑
k=1

2−kD
(i)
k and Ki = Ai −Bi =

∑
k>N

2−kRi,k,

where all Bi are self-adjoint, as all E(i)
k and Ri.k are self-adjoint. For n > N we set

Ti,n =
∑

n>k>N

2−kRi,k.
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Then Ki is the limit of the sequence (Ti,n)∞n=N . Any Ti,n is a finite sum of compact operators,
hence all Ti,n are compact. Now proposition 2.16 states that Ki is compact. It remains to show
that the compact operators in question are smaller then ε, indeed we have

‖Ki(x)‖ =

∥∥∥∥∥∑
k>N

2−kRi,k(x)

∥∥∥∥∥ ≤ ∑
k>N

2−k ‖Ri,k(x)‖ ≤
∑
k>N

2−k < 2−N

for any unit vector x ∈ H. As a result, ‖Ki‖ < 2−N < ε.
Now we have the decomposition Ai = Bi +Ki, where Ki is compact and Bi ∈ D is self-adjoint.

This proves the second part of the theorem. To obtain the result for a normal operator N , we
apply this result to the real and imaginary part of N , as any normal operator N can be written as
N = A+ iB. Here A and B commute and are self-adjoint as seen in Proposition 2.11, so they meet
the required conditions.

Corollary 4.8. For any n ∈ N we can write a self-adjoint operator as A = Dn +Kn with ‖Kn‖ <
1/n and Dn diagonalizable. Consequently we have the norm limit

A = lim
n→∞

Dn.

Subalgebras are norm-closed, so one might think that therefore the above operator A is diagonal
operator. However every Dn inherits a different algebra Dn, making this conclusion invalid. Indeed,
not every self-adjoint operator is a diagonal operator, as seen in the example given in the beginning
of chapter 3 (taking the multiplication operator x · f(x) on [0, 1]).

Eventhough the proof of the Weyl-von Neumann-Berg is a constructive one, it is not a simple
one. If the construction would be used in an example, it would require a lot of difficult calculations
using spectral projections and infnite sums. Therefore this last corollary is mostly usefull in the
abstract.
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5 Essential unitary equivalence
The results of chapter 3 and 4 can be combined in a result regarding the Calkin algebra, of two
self-adjoint operators have the same essential spectrum then the are unitary equivalent in the Calkin
algebra. Unitary equivalence is a very strong equivalence as it retains the structure of the underlying
Hilbert space. That is to say for a unitary operator U we have

Ux,Uy = x, y ∀x, y ∈ H,

and consequently if two operators A and B are unitary equivalent (which means A = U∗BU for
some unitary operator U) we have

‖Bx‖ = ‖Ax‖ ∀x ∈ H.

Definition 5.1. Two bounded operators T1 and T2 are essentially unitarily equivalent if there
is a unitary isomorphism U such that the difference T1 − U∗T2U is compact.

Now if we consider the Calkin algebra, we see that if T1 and T2 are essentially unitary equivalent
in B(H), they are unitary equivalent in the Calkin algebra.

Proposition 5.2. Essential unitary equivalence is an equivalence relation. We shall denote the
relation as T1 ∼e T2.

Proof. Any operator T is unitary equivalent to itself as T − T = 0 is compact and I = I∗ is a
unitary isomorphism. Suppose T1 ∼e T2 and choose U such that

T1 − U∗T2U = K,

is compact. Multiplying with U on the right and U∗ on the left results in

UT1U
∗ − UU∗T2UU

∗ = UKU∗,

and therefore,
(U∗)∗T1(U∗)− T2 = UKU∗.

Hence UKU∗ is compact by proposition 2.15, as U and U∗ are bounded. This means that T2 ∼e T1.
Now suppose T1 ∼e T2 and T2 ∼e T3. Then T3 ∼e T2 and as such we can choose unitary

isomorphisms U1 and U2 and compact operators K1 and K2 such that

T2 − U1
∗T1U1 = K1,

T3 − U2
∗T2U2 = K2.

Then we can compute
T3 − (U1U2)∗T1(U1U2) = K2 + U2

∗K1U2,

where the right side is compact, and U1U2 a unitary isomorphism.

Before we start with the main theorem for essential unitary equivalence we set aside an analytic
lemma.
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Lemma 5.3. Let (λi)
∞
i=1 and (µj)

∞
j=1 be two bounded sequences of real numbers, and suppose that

they have the same limit points. Then there is a bijection σ : N→ N such that |λi − µσ(i)| → 0 as
i→∞.

Proof. Finding such a bijection comes down to rearranging both sequences in such a way that the
terms come ε−close to each other as n → ∞. As the sequences are bounded there must be at
least one limit point. First we observe what happens when there are finitely many limit points, say
x1, x2, . . . , xn. Then there are n subsequences in both (λn)∞n=1 and (µn)∞m=1 that converge to these
points. For i = 1, 2, . . . , n we write

λink → xi ← µink ,

for these subsequences. Without loss of generality we may assume the subsequences are pairwise
disjoint, as to not have terms be part of two different subsequences. Now we rearrange (λn)∞n=1.
The first term in the new sequence becomes the first term in the first subsequence (to x1), the
second term becomes the first term in the second subsequence. We continue this listing for the
first n terms, then repeat the process for terms n + 1 trough 2n in the new sequence. Now the
subsequences becomes

λ1
n1
, λ2
n1
, . . . , λn−1

n1
, λ1
n2
, λ2
n2
, . . .

Doing the same for (µm)∞m=1 results in two sequences that have the desired property.
If there are infinitely many limit points, then there will be countably many. We may paste

N countably many times behind itself, which is as large as N × N. This set is countable which
results in a bijection Ψ to N. Placing the first subsequence in the first iteration of N, the second
subsequence in the second iteration and the n-th in the n-th iteration gives a bijection trough Ψ
using the same process as described above.

Now, using both Weyl’s theorem and the Weyl-von Neumann-Berg theorem, we obtain a condi-
tion for two self-adjoint operators to be essentially unitarily equivalent and consequently unitarily
equivalent in the Calkin algebra.

Theorem 5.4. If T1 and T2 are self-adjoint operators on a separable Hilbert space, and have the
same essential spectrum, then T1 ∼e T2.

Proof. Firstly we prove the statement for self-adjoint diagonal operators, then extend the argument
using the Weyl-von Neumann-Berg theorem. Suppose D1 and D2 are diagonal operators with
bases of eigenvectors (vn)∞n=1 and (wn)∞n=1 respectively, and corresponding eigenvalues (λn)∞n=1 and
(µn)∞n=1. A unitary isomorphism U can be constructed by mapping these bases upon each other.
That is, there is a unitary isomorphism U and a permutation σ : N→ N such that

Uvn = wσ(n) for all n ∈ N.

Choose U and σ. Since U is uniform we also have

U∗wσ(n) = vn for all n ∈ N,

and thus for any element vn of the base we have

(D1 − U∗D2U)vn = λnvn − U∗D2wσ(n)

= λnvn − U∗µσ(n)vn

= (λn − µσ(n))vn.
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Since D1 and D2 have the same essential spectrum, proposition 3.16 states that the sequences
(λn)∞n=1 and (µn)∞n=1 have the same limit points. Then, as they have the same limit points, lemma
5.3 states that there is a bijection σ : N → N such that |λn − µσ(n)| → 0 as n → ∞. Since the
sequence (vn)∞n=1 is a base for the Hilbert space, the operator D1 − U∗D2U is a diagonal operator
where the sequence

(
λn − µσ(n)

)∞
n=1

of eigenvalues converges to zero.
The converse of the spectral theorem for compact operators (proved in [6]) states that if T is

an diagonal operator and the corresponding sequence of eigenvalues converges to zero, then T is
compact. Hence the operator D1 − U∗D2U is compact, which concludes the proof for diagonal
self-adjoint operators.

Now, with theWeyl-von Neumann-Berg theorem we write T1 = D1+K1 and T2 = D2+K2, where
D1,2 are diagonal operators and K1,2 are compact operators. Considering σess(T1) = σess(T2),
corollary 3.16 now states that D1 and D2 have the same essential spectrum. As we have already
proved the theorem for diagonal operators, we can find an unitary isomorphism U and compact
operator K such that

D1 − U∗D2U = K.

With the Weyl-von Neumann-Berg decompositions we compute

T1 −K1 − U∗(T2 −K2)U = K

and so
T1 − U∗T2U = K +K1 − U∗K2U,

where the right side is compact as a direct result of proposition 2.15. In conclusion, T1 is essentially
unitarily equivalent to T2.

Corollary 5.5. If T1 and T2 are as in theorem 5.4 then their images in the Calkin algebra are
unitarily equivalent. In other words, there exists a unitary isomorphism U ∈ B(H) such that

T1 =c U
∗T2U.

An essential part proving theorem 5.4 is first comparing the essential spectrum of diagonal
operators instead of the original self-adjoint (or normal) operators, and then revisiting the original
operators with the Weyl-von Neumann-Berg theorem. I suspect that this method is applicable to
more then just this theorem. Two diagonal operators with the same essential spectrum might have
more in common then just having the same limit points. If so, then perhaps these similarities can
lead to more results applicable to the Calkin algebra.
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