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Abstract. Concepts from the theory of abstract operator algebras are used to solve the problem of 
quantizing a particle moving on an arbitrary locally compact homogeneous space. Inequivalent quantiza- 
tions are identified with inequivalent irreducible representations of the corresponding C*-algebra. 
Topological terms in the action (or Hamiltonian) are found to be representation-dependent, and are 
automatically induced by the quantization procedure. Known charge quantization conditions turn out to 
be identically satisfied. Several examples are considered, among them the Dirac monopole and the 
Aharonov-Bohm effect. 
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1. Introduction 

The study of topological quantum effects, with such diverse areas of application as 
magnetic monopoles [ 1, 2], general relativity [3], anomalies in quantum field theory 
[4], the quantum Hall effect [5], and high-To superconductivity [6], is becoming one 
of the most important and fascinating branches of theoretical physics. In this Letter, 
we address two of the principal problems in this field: the quantization of a physical 
system formulated on a topologically nontrivial configuration space and, in direct 
relation to this, the origin and explicit form of so-called 'topological' terms in the 
Hamiltonian (or action) of such systems. The former problem will be solved for a 
special class of configuration spaces Q, namely the locally compact homogeneous 
ones, i.e., Q = G/H for some locally compact group G with closed subgroup H. For 
technical reasons, our approach to the second issue at this stage is justified only for 
amenable type I groups; this class includes, among others, all compact groups, all 
locally compact Abelian groups, as well as all (semidirect) products of such groups. 

It is well known that a number of systems of this type cannot be quantized by 
imposing canonical commutation relations, because these would conflict with the 
global structure of the system (cf., e.g., [3]), or lead to problems related to the (essen- 
tial) self-adjointness of the observables involved [7]. Accordingly, several methods 
to deal with general systems possessing a topologically nontrivial configuration space 
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have been proposed in the literature, like path-integral quantization [8, 9] and 
geometric quantization [10, 11], having been amended by certain cohomological 
techniques in [ 12] and [ 13], respectively, star (deformation) quantization [ 14], which 
has been reformulated as a C*-algebra theory [15], Borel quantization [16], and 
various others. These techniques have led to important insights concerning the 
existence of various 'inequivalent' quantum theories corresponding to a given 
classical system, which appear to go hand in hand with certain 'topological' terms 
in the action (or Hamiltonian). Thus kinematical and dynamical aspects of the 
quantization procedure turn out to be inextricably linked to each other. 

The main purpose of the quantization method (yet another one!) presented in this 
Letter is to explain this very linkage in a transparent algebraic language, providing 
a direct connection between the existence of inequivalent quantizations, which we 
identify with superselection sectors, and the emergence of topological terms in the 
Hamiltonian. To do so, we propose to rely on the insights of Segal [ 17] and Haag 
and Kastler [ 18], according to whom quantization of a given system amounts to the 
specification of a C*-algebra ~r whose self-adjoint elements correspond to the 
physical observables of the system. (Note that a C*-algebra is an object which is 
isomorphic to a norm-closed sub-algebra of the algebra of all bounded operators on 
some Hilbert space, assumed to be separable in the quantum-mechanical case.) 

Before identifying d ,  it should be remarked that the representation Q = G/H is 
highly nonunique, so that the choice of G should be restricted by demanding that 
it respects certain additional structures, e.g., a metric. Even so, one may form arbi- 
trary nontrivial extensions E of G by K (G = E/K), and let E act on Q via the 
canonical epimorphism p : E ~ G. Such extensions can be classified by cohomolog- 
ical methods [19], and, as will rapidly become clear, inequivalent extensions will 
lead to different quantizations in the present method. (This is true for trivial 
extensions of G as well, but these just correspond to the incorporation of internal 
degrees of freedom.) In ordinary quantum mechanics, only central extensions are 
taken into account [20], whereas the proposed method is more general, so that one 
is faced with an embarras du choix which may be a blessing or a curse. In any case, 
it will turn out that topological quantum effects are caused by a non-minimal choice 
of the group G. 

2. Algebraic Quantization 

But let us agree on a particular representation Q = G/H. We then quantize the 
system at one stroke by stating* that the C*-algebra ~r is given by the so-called 
crossed product (also called covariance algebra [24, 25]) 

~/=  Co(Q) x~ a. (1) 

* This proposal, which is just a C*-algebraization of Mackey's quantization method for homogeneous 
spaces [21l, was independently made in [22] and (later) in [23]. It should be stressed, that the embedding 
of Co(Q) in M is part of the identification of the quantum algebra, since G and H as such are not 
uniquely determined by M. 
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Following [25], we define (1) by first introducing the semidirect product bundle 6 e, 
whose base space is G, and whose fibers are isomorphic to the C*-algebra C0(Q), 
on which the group G acts via *-automorphisms 0t x defined by ~tx[tp](q) = tp(x- ~q) 
for tp ~ Co(Q) (here q -~xq denotes the action of G on Q). Elements of the bundle 
are then pairs (A, x) ,  A ~ Co(Q), x e G, which are multiplied according to 

(A, x ) .  (B, y )  = (Actx[B], xy) .  (2) 

The adjoint is given by 

(A, x)*  = (~x ,[A'l,  x - ' ) .  (3) 

The crossed product (1) is the canonical C*-completion [25] of the L~-cross - 
sectional algebra of  ~ ,  equipped with the usual convolution product, and the 
involution f*(x) --A(x-7)f(x-Z)*,  with A the modular function on G. 

Once the appropriate C*-algebra pertaining to a physical system has been 
specified, one needs to construct its representations by bounded operators on a 
concrete Hilbert space in order to investigate the quantum mechanics of the system. 
It may be shown [25] that the irreducible representations rc of M are in one-to-one 
correspondence with the pairs (U, g'), where U is a unitary representation of G and 
~' is a representation of the C*-algebra Co(Q) satisfying the 'covariance' condition 

(U(x)~'(q~)U*(x)) = ~'(~G[tO]). (4) 

It then follows from the standard theory of induced group representations [21, 26] 
that the irreducible representations ~ of  (1) are in one-to-one correspondence with the 
irreducible unitary representations [i o f  H. 

Given h" and a (measurable) section s : Q --, G, the representation rc~(~) may be 
canonically realized on the Hilbert space or" = L2(G/H, I~, o~f~) (i.e., the space of 
wave functions on Q with values in o~f~), where # is a certain (known) quasi- 
invariant measure on G/H, with associated Radon-Nikodym derivative Px [26, 21], 
and ovf~ is the carrier space of  n r. For 0 ~ r  one then has 

f)O)(q) = f~ dx f(q,  x)(U~(x)O)(q); ( ~ (  

(Ug(x)O)(q) = p ~/2(q)D~(s(q) l xs(x - l q))O(x - 'q), (5) 

where we have identified a section f of ~ with a function f on Q x G. In case that 
canonical quantization applies, the canonical commutation relations are equivalent 
to (4) [21], which itself may be rederived from (5). The 'momenta'  (divided by h) 
are just the generators of the U(x). Finally, note that these irreducible representa- 
tions are not faithful, unless H is trivial. 

3. Examples 

Let me illustrate this with a few examples. The simplest case is Q = R. Then H is 
trivial, and the algebra (1) has a unique irreducible representation. Thus one is 
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immediately led to the Stone-yon Neumann uniqueness theorem; in fact, the 
reasoning above here reduces to Mackey's proof of this theorem [21]. 

An interesting example is a particle moving on the half-line R +. Here R + is to be 
regarded as a multiplicative group which acts on itself by left-multiplication. The 
method above then trivially leads to the correct quantization of  this system, in 
which . g  = L2(R +, dx/x), on which the position operator x acts in the usual way, 
but where the 'canonical' momentum operator is given by p = - ix d/dx, cf. [3]. 

Next, we consider the case Q = R 3, interpreted as a flat Riemannian manifold. 
This allows the maximal symmetry group E(3) = SO(3) 6 T 3. Within the context of 
scalar quantum mechanics, one may take G = SU(2) 6 T 3. The canonical action of  
G on R 3 shows that the little group H is SU(2), so that the irreducible representa- 
tions of the quantum algebra (1) are labeled by the spin of the particle (compare 
this with Mackey's derivation of  spin [21]). 

Deleting the origin (or any other point) from the above configuration space gives 
Q = R 3 - { 0 } - - - S 2 x  R, which may be written as a coset by choosing 
G = SO(3)x  R. Here the first factor acts on Q in the obvious way, whereas 
elements of the second factor act on the radial coordinate alone (cf. the next 
example). Hence H = SO(2), so that a quantum-mechanical particle moving on Q 
has inequivalent representations labeled by n c =  n 6 7/ (here Dn(~)= exp(in a) for 

6 SO(2)). For later use, we note that, in terms of spherical coordinates on Q, a 
suitable section s : Q ~ G is given by 

s(r, ~b, 8) = (R(~b, 8, -q~), log r), (6) 

where R ~ SO(3) is parametrized with the conventional Euler angles. 
Finally, we examine the case Q---R 3 -  {z -ax i s} ,  which is equivalent to 

Q = ~  x R x S ' .  Let q=(r , z ,  dp) in cylindrical coordinates, and choose 
(a, b, c) = x ~ G = R • R x R to act on Q according to xq = (ear, b + z, c + ~b [ 2r0. 
This shows that H = Z, whose irreducible unitary representations are labeled by an 
angle 8 ~ [0, 2~z), so that Do(n)= exp(in 8). In agreement with other approaches 
[8, 27, 3] we thus find that, within 'scalar' quantum mechanics, the present system 
has inequivalent quantizations labeled by a 8-angle. 

4. Dynamics and Topological Actions 

In the algebraic description, time evolution in the algebra is not governed by a 
given Hamiltonian, but by a group of *-automorphisms (cf. [28]). In practically all 
infinite systems, and in the finite systems considered above as well, these automor- 
phisms are outer. This means that one has .4, = 0t, [.4], whereas there is no unitary 
group in ~ implementing this by A, = U, AU*,. This reason that the time evolu- 
tion operator cannot be in the algebra ~r is that this contains only localized 
objects, whereas the Hamiltonian is a global object. The latter may, however, be 
constructed in certain representations g~ of d as the operator satisfying 
eitn'olt~o(A) e -i'n~, = ~o(.4t). Thus, the Hamiltonian Ho derives its structure from 
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both the morphism ~,, and the representation n,o, which carries global, hence 
topological information; in short, it may depend explicitly on the parameter r 
labeling the representation n,o of the quantum algebra. 

Thus, the first task is to actually construct the automorphism ~,, which is most 
easily done in a given representation r~ c of ~ on ~[('c = LZ(G) �9 This is defined by 
7t~.(Co(Q)) given by (rt'c(f)~b)(x) =f(xqo)d/(x), in terms of an arbitrary point qo e Q, 
and by the left-regular representation T L of G. For G amenable nc is faithful (and 
reducible for nontrivial H). Now in the case that G is type I, the unitary group 
corresponding to the Nelson operator [26] associated to T t- may be shown to define 
an outer *-automorphism on nc(~r ~ ~ .  

One may then construct the Hamiltonian in arbitrary representations by the 
prescription in the preceding paragraph. It turns out, that even though the time 
evolution on the abstract algebra is essentially free, the Hamiltonian (and thence the 
action) in a topologically nontrivial representation of  s t  automatically contains 
topological terms. Moreover, appropriate quantization conditions on coupling 
constants, well known from the path-integral formalism [9, 12, 29], are identically 
satisfied as a consequence of the 'quantized' representation theory of ~r 

5. The Magnetic Monopole 

We will illustrate these statements on the example of a magnetic monopole, which 
is generic to numerous topological quantum effects. The relevant feature of a 
charged particle moving in the field of a monopole is not that it moves in the field 
of a monopole, but that the location of the monopole (taken to be the origin) is 
excluded from its configuration space. To derive relevant aspects of the quantum 
mechanics of such a particle, we will therefore only assume that its configuration 
space is Q = R 3 - {0}. According to Section 3, its quantum algebra ~r has inequiv- 
alent representations r~., n �9 Z, defined by D. of H and Equation (5). Let H.  denote 
the Hamiltonian in each of these representations. The construction in the preceding 
section implies that/40 is the ordinary free Hamiltonian on L2(•3), which we write 
(in units such that m = 1/2) as Ho =pEr + j2/r2, where Pr is the radial momentum, 
and j z =  y. j2 is the standard angular momentum operator of a spinless particle. 

While the J, generate the representation Uo of SO(3) associated to n o according 
to (5) (with trivial D = Do), explicit calculation (or some reflection) shows that in 
a general representation n.(~r one has 11. = p2 + (j(n))2/r2 ' where the J~") generate 
the representation U. of SO(3) associated to n. according to (5), with 
D.(~t) = exp(imt) (actually, U. is a representation of SO(3) x R, but the R-depen- 
dence trivially factorizes). The generators J}") may be explicitly computed from (5) 
and (6). The result is that one finds exactly the angular momentum operators of a 
charged particle moving in the field of a monopole of charge - n  as written down 
by Wu and Yang [2]! Here n =eg  is the monopole charge, and one sees that the 
Dirac quantization condition is automatically satisfied in the above description 
(note that half-integer charges may be obtained through the replacement of SO(3) 
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by SU(2) in the above considerations). Indeed, the Hamiltonian can be written as 
H, = (p - eA_,)  2, where A, is the conventional monopole field with charge g = n/e 
[1, 2]. 

There is, however, an essential technical difference between the above description 
of a quantum monopole, and the one by Wu and Yang [2]: we have not been talking 
about fiber bundles or co-ordinate patches at all (the J~"~ mentioned above would 
correspond to the Wu-Yang operators defined on the Northern Hemisphere). This 
is because the section s employed in the construction of the representation (5) is not 
necessarily continuous; indeed, the choice (6) is discontinuous along the entire 
negative z-axis. On the other hand, since the J~"~ are unbounded operators, one 
should specify their domain of definition. In the present case, a rather involved 
analysis shows that the G~rding domain [26] for the J~"~ is given by the following 
restrictions on the wave function ~(r 8) (we suppress the dependence on the radial 
coordinate r, which 'goes for a free ride'): ~b e C~ 2hi x [0, it]), with boundary 
conditions ~b(0, 8) = •(2n, 0) (together with all derivatives); ~(r 0) = r 0); 
(d'~/c3r162 0 ) =  0 for all m, and finally ~b(r n ) =  exp(-2inr :t) (also cf. 
[30]). Finally, it goes without saying that the freedom to perform gauge transforma- 
tions in the conventional approach corresponds to the arbitariness in the section s 
of which (6) is but one particular choice. 

6. The Aharonov-Bohm effect 

In similar vein, the existence of the Aharonov-Bohm effect follows from the single 
assumption that a charged particle moves in the configuration space Q = • 3  
{z -axis}.  According to the analysis in Section 3, the quantum algebra of such a 
particle has inequivalent representations no, with 8 ~ [0, 2n), and the construction in 
Section 4 leads to a family of Hamiltonians Ho. As in the monopole case, Ho is just 
the free Hamiltonian on L2(R3), which we write in cylindrical coordinates as Ho = 
p2 -F p2 q_ jE/r2" Here J = - i~ /~ r  is the generator of the representation of the third 
factor R in G (cf. the previous section), which in the representation no(~r is 
essentially self-adjoint on the domain consisting of wave functions ~k which are C ~ 
in r and satisfy the boundary condition @(r, z, 2r0 = ~b(r, z, 0). It follows that in the 
topologically nontrivial 8-representations one has Ho=p~+p~+J~/r  2, with 
Jo = iO/Dr + 8/2~, defined on the same (G~irding) domain as J = Jo (for related 
considerations cf. [31]). 

One now may or may not be surprised to find that H o is precisely the Hamiltonian 
of a charged particle moving in the field generated by an infinitely thin solenoid 
coinciding with the z-axis, generating a flux equal to - 8 / e  (that is, the particle is 
minimally coupled to a static vector potential eA = eA, =-8/2r~r). This is the 
configuration of the (idealized) Aharonov-Bohm experiment [32]. 

7. Some Conjectures 

While the examples above have been constructed in a mathematically rigorous 
manner, it is natural to expect that a similar structure emerges in field-theoretic 
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models, where the construction problem is still open. For example, the heuristic 
derivation of the quantization of the coupling constant in the (four- or two- 
dimensional) Wess-Zumino-Witten (WZW) action [29] is entirely analogous to 
that in the monopole case, so that we feel justified in assuming that it arises in the 
way sketched in Section 4. Note, however, that the configuration space of the SU(3) 
nonlinear a-model is the space of appropriately defined smooth mappings from S 4 
to SU(3), which has a natural group structure, but fails to be locally compact, so 
that the quantum algebra (l)  should be constructed by an appropriate limiting 
procedure. If successful, our approach would immediately explain the connection 
between the projective representations of this group [33], the existence of Schwinger 
terms in its current algebra [34], and the emergence of the WZW-term in the action 
(also cf. [35, 36]). 

Another well-known topological effect in field theory is the 0-angle in quantum 
chromodynamics (QCD). This parallels the 0-angle in the Aharonov-Bohm effect 
(or, equivalently, of the quantum particle moving on a circle [3]), so that we believe 
that the CP-violating topological action in QCD is also automatically induced in 
topologically nontrivial vacuum representations of this theory, by the mechanism 
discussed in this paper. 
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