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Abstract

In this text we study some possible solutions to the measurement problem in quantum
mechanics. This problem is about an inherent contradiction between the Schrödinger
equation and the Born postulate: the Schrödinger equation tells us how a system evolves,
yet when it is applied to a measurement it does not reproduce the Born postulate. Alt-
hough many solutions to the measurement problem have been proposed, to this day the
problem remains unsolved.

We first look at “the flea on Schrödinger’s cat”, which is based on the idea that small
perturbations can have a large influence on macroscopic quantum mechanical systems.
Therefore, the randomness in the Born postulate could be explained as a lack of knowledge
about these perturbations. Some problems with this method are discussed, and an attempt
will be made to address them. Then we will have a look at the Penrose approach, which
tries to use gravity to solve the measurement problem. Inspired by the problems of these
two solutions, we will try to combine them into a single hybrid solution, in an attempt to
solve the issues.
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Chapter 1

Introduction

The measurement problem is one of the oldest problems in quantum mechanics, and has
been around since its discovery. Records of it go as far back as 1926, when Born questioned
whether or not the outcomes of measurements in quantum mechanics are determined by
hidden properties. The measurement problem is about a discrepancy between quantum
mechanics and classical mechanics. Quantum mechanics predicts superpositions, even
at the macroscopic scale, yet such things are completely absent in classical mechanics.
The most famous formulation of the measurement problem is probably Schrödinger’s cat,
where quantum mechanics paradoxically predicts a cat to be in a superposition of being
both alive and dead at the same time. Many solutions have been proposed over the years,
such as the many-worlds interpretation, pilot wave theory, and Ghirardi-Rimini-Weber
theory. Still, to this day, no completely satisfying solution has been found, despite the
fundamental nature of the measurement problem.

The aim of this text is to explore and discuss some of the solutions to the measurement
problem. In chapter 2 we provide the mathematical details of the measurement problem
and give a few examples of well known solutions. In chapter 3 we take a look at a more
recent solution to the measurement problem: “the flea on Schrödinger’s cat”. We also
discuss some of the issues it has and possible approaches to solving them. In chapter 4
we will look at a solution proposed by Penrose which claims that gravity is the crucial
component causing wave function collapse. Finally, in chapter 5 we will propose a solution
which makes use of ideas from both “the flea on Schrödinger’s cat” and Penrose’s solution.
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Chapter 2

The measurement problem

The measurement problem may be described as the failure of quantum theory to reproduce
the macroscopic classical world.1 To put it briefly, quantum mechanics predicts macrosco-
pic superpositions, yet none are ever observed. Despite the measurement problem being
almost as old as quantum mechanics itself, no satisfying solution has been found.

2.1 A contradiction in quantum mechanics

In quantum mechanics, states evolve according to the Schrödinger equation:

ih̄
∂

∂t
|ψ(t)〉 = H |ψ(t)〉 . (2.1)

On the other hand, measurements occur according to the Born postulate, which says that
the possible measurement outcomes for measuring an observable A are its eigenvectors,
and the probability pφ of obtaining such an eigenvector |φ〉 as an outcome is

pφ = | 〈φ|ψ〉 |2, (2.2)

where |ψ〉 is the state before the measurement. After the measurement, the state of the
system has been reduced to |φ〉, and we say the wave function has collapsed.

Using these postulates, most of modern day physics can be derived, yet they also
lead to a contradiction. After all, measurement apparatuses are physical objects, and so
they too will evolve according to the Schrödinger equation. Thus we can also use the
Schrödinger equation to see what the outcome of a measurement is. In general, this does
not lead to the same anwser as the Born postulate.

For instance, consider the spin of an electron in the following superposition:

1√
2

(|↑〉+ |↓〉). (2.3)

Here |↑〉 represents the state where the spin is in the positive z direction (i.e. σz |↑〉 = |↑〉),
and is |↓〉 the state where the spin is in the negative z direction (σz |↓〉 = − |↓〉). If we
measure the spin in the z direction, then according to the Born postulate there is a 50%
chance of getting the outcome spin up and a 50% chance of getting spin down.

Now we investigate what should happen according to the Schrödinger equation. Let
|0〉A be the state initially describing the measurement apparatus. Then our total initial
state is:

|ψ(0)〉 =
1√
2

(|↑〉+ |↓〉)⊗ |0〉A . (2.4)

1Many different formulations of the measurement problem are possible [5].
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CHAPTER 2. THE MEASUREMENT PROBLEM 2.2

The Schrödinger equation says that time evolution is a unitary operator U(t), so

|ψ(t)〉 = U(t)

(
1√
2

(|↑〉+ |↓〉)⊗ |0〉A
)

=
1√
2
U(t) (|↑〉 ⊗ |0〉A) +

1√
2
U(t) (|↓〉 ⊗ |0〉A) . (2.5)

Since the measurement apparatus measures the spin, we have

U(T ) (|↑〉 ⊗ |0〉A) = |↑〉 ⊗ |↑〉A ,
U(T ) (|↓〉 ⊗ |0〉A) = |↓〉 ⊗ |↓〉A , (2.6)

where |↑〉A is the state of the measurement apparatus indicating spin up, |↓〉A is the state
of the measurement apparatus indicating spin down, and T is a point in time large enough
such that the measurement can be considered complete. Combining (2.5) and (2.6), we
obtain

|ψ(T )〉 =
1√
2
|↑〉 ⊗ |↑〉A +

1√
2
|↓〉 ⊗ |↓〉A . (2.7)

So instead of collapsing the superposition of the electron, the measurement apparatus
joins the electron in the superposition. This is in contradiction with the Born postulate;
we now have a 100% chance of getting the state 1√

2
|↑〉 ⊗ |↑〉A + 1√

2
|↓〉 ⊗ |↓〉A instead of a

50% chance of getting |↑〉 ⊗ |↑〉A and a 50% chance of getting |↓〉 ⊗ |↓〉A.
This paradox is probably best known in the form of Schrödinger’s cat. There, a scientist

puts a cat in a box, along with a radioactive atom. The box is set up so that it will release
a deadly poison if the atom decays. Since the atom is a quantum system, it will enter
a superposition of being decayed and not decayed. This will result in the cat being in a
superposition of dead and alive, which is not the expected macroscopic behavior. Here,
the atom plays the role of the electron and the cat plays the role of the measurement
apparatus.

2.2 Interpreting measurements

This paradox is known as the measurement problem. The different ways of resolving it
correspond to the interpretations of quantum mechanics. We will now give a few examples
of these interpretations.

One of the better known interpretations is the many-worlds interpretation, also known
as the Everett interpretation. According to this, the Schrödinger equation always gives
the correct outcome. Thus, when a measurement takes place, a macroscopic superposition
like (2.7) really does occur physically. The interpretation says that the two parts of the
wave function each represent their own branch of the universe, one in which the outcome
was spin up and the device registered spin up, and one in which the outcome was spin
down and the device registered spin down. An observer would read off spin up or spin
down, so it would appear to him that the wave function collapsed.

Another interpretation is the pilot wave theory, or de Broglie–Bohm theory. In pilot
wave theory the particle and its wave function are separate entities. The wave function
guides the behavior of the particle according to the so called guiding equation. This
equation is constructed in such a way as to recover standard quantum mechanics. The
particle always has a well-defined position (as opposed to a superposition), so no collapse
happens during a measurement.

Finally, there is Ghirardi–Rimini–Weber theory. Ghirardi–Rimini–Weber theory is an
example of an objective collapse theory, which means that wave function collapse is a

Page 6



CHAPTER 2. THE MEASUREMENT PROBLEM 2.2

physical process, independent of the observer. This is unlike the previous two examples,
where wave function collapse is an effect caused by the perspective of the observer, or where
wave function collapse does not happen at all, respectively. Ghirardi–Rimini–Weber theory
postulates that the wave function of a particle has a chance to spontaneously collapse at
any moment. This probability is very small, so that we do not notice it for a single particle.
A macroscopic superposition on the other hand, is an entangled mess of many particles,
each with a probability to collapse. So it has a much higher chance of collapsing.

In the next chapter we will study another interpretation called the flea on Schrödinger’s
cat, in which small perturbations cause wave function collapse. After that we will have
a short look at the Penrose interpertation, in which collapse takes place due to gravity.
Finally, we will combine these two interpretations into yet another interpretation. All
three of these interpretations are objective collapse theories.
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Chapter 3

The flea on Schrödinger’s cat

The flea on Schrödinger’s cat is a relatively new approach to the measurement problem
[5] [6]. The basic idea is that some macroscopic systems are incredibly sensitive to small
perturbations. So the outcome of a measurement might be determined by these perturba-
tions, thus giving the illusion of a random outcome.1 The name “the flea on Schrödinger’s
cat” comes from the fact that a tiny perturbation (flea) is responsible for collapsing the
Schrödinger’s cat state (2.7).

3.1 Instability of large quantum systems

To demonstrate the effect of a small perturbation on a large quantum system we consider
the double well potential (figure 3.1).

Figure 3.1: A symmetrical double well potential.

Suppose that there is a slight perturbation, such that the the potential is not perfectly
symmetrical. For instance, suppose that the left well is ∆E lower in energy than the right
well.

Figure 3.2: A biased double well potential with energy difference ∆E.

Consider now a single quantum particle present in this well. At first sight, we would
expect the ground state to be entirely in the left well, since the potential is lower.

1Unless the perturbations themselves are non-deterministic, in which case the outcome will still be truly
random.
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CHAPTER 3. THE FLEA ON SCHRÖDINGER’S CAT 3.1

Figure 3.3: A quantum object in the left well.

However, due to the wavy nature of quantum mechanics, the wave function cannot fully
localize in the minimum of the potential. After all, if the entire wave function were located
at the minimum, the uncertainty principle would give infinite uncertainty in momentum.
Generally in quantum mechanics, the wave function spreads out to a characteristic wave
length λ as given by the de Broglie relation:

λ =
h

p
, (3.1)

where h is the Planck constant, and p the momentum. The wave function will therefore
occupy a region around the minimum, thus forcing parts of it to be at a relatively high
potential (see figure 3.3). Since the center of the right well has a lower potential than
these parts, the wave function can lower its energy by tunneling to the right. Thus the
ground state occupies both wells (although the part of the wave function in the left well
is slightly larger).

Figure 3.4: A quantum object in the ground state. It occupies both wells.

Now consider a more classical object (for instance one consisting of a large number
of quantum particles). The constant h in (3.1) represents the significance of quantum
mechanics2, so taking the limit h to 0 corresponds to the classical limit. Thus we can see
that for a more classical system, the characteristic wavelength will be smaller, representing
a more localized wave function. Now, the entire wave function fits inside the part of the
left well that is lower than the lowest point in the right well (see figure 3.5) 3. Thus the
ground state will almost be contained in the left well.

2This can seen in the formula E = hf , where E is the energy of a photon and f its frequency. So
at fixed frequency f , h gives the minimum energy quantum (one photon). Therefore, setting h to zero
corresponds to the classical limit. Alternatively, by looking at the Schrödinger equation, it can be seen
that small h corresponds to large m, so it can also be interpreted as the limit of large mass, which is again
a classical limit.

3Wave functions in quantum mechanics always have a non-zero amplitude everywhere in space, so there
should still be a tiny bit of wave function in the right well. Nevertheless, for simplicity, these small parts
are ignored in the drawings here.
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CHAPTER 3. THE FLEA ON SCHRÖDINGER’S CAT 3.2

Figure 3.5: An almost classical object in the ground state. It is localized in the left well,
since it fits almost completely inside the part of the left well that is completely below the
lowest point of the right well (red line).

As we can see from figure 3.4, for large h a small perturbation ∆E has very little
effect on a quantum system. However, in figure we can see 3.5 that it has a much larger
effect when the system becomes classical. This is actually quite counter-intuitive, as
larger systems are apparently more affected by perturbations than smaller systems. This
property for large quantum systems to localize has been studied both numerically and
analytically [5] [6] [3] [11].

We can repeat the same argument for an arbitrary macroscopic physical potential,
since in practice potentials have only one global minimum (perfect symmetry is rare when
you have many particles).

Figure 3.6: The ground state of a quantum system in some arbitrary potential. It has
peaks at multiple minima.

Figure 3.7: The ground state of a classical system in some arbitrary potential. It is almost
completely localized at the global minimum.

The fact that classical systems localize at a single point is of great interest to the
measurement problem. After all, measurement apparatuses have to be classical since they
need to be large enough for us to read the result, and this localization to a single point is
rather reminiscent of wave function collapse.

3.2 The measurement process

Let us try to apply this instability property to a measurement. We consider the simplest
possible setup, in order to understand best what is going on. Suppose we want to measure
the spin of an electron. We will assume our measurement apparatus to be in a double
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CHAPTER 3. THE FLEA ON SCHRÖDINGER’S CAT 3.2

well potential, initially with the wave function located in the center. We also assume
an interaction term in the Hamiltonian of the form −µ · S ⊗ X, where S is the spin
operator of the electron, X is the position operator of the measurement apparatus, and µ
is a coupling constant 4. This term is chosen such that different measurement outcomes
correspond to different values for the electron spin. When the spin is up, this term becomes
a positive constant times the position operator, so the measurement apparatus can lower
its energy by moving left. Similarly, it will move right when the electron has spin up.
Thus the two wells represent the two different measurement outcomes (think of a needle
on a measurement apparatus moving left to point at the label spin down, or moving right
to point at the label spin up).

Figure 3.8: The initial state of a measurement apparatus.

Let us now consider the case of an electron in a superposition

1√
2

(|↑〉+ |↓〉). (3.2)

Because of the interaction term in the Hamiltonian, half of the wave function will move
left, while the other half will go to the right. This will put the measurement apparatus in
a macroscopic superposition:

Figure 3.9: The measurement device coupled to an electron in superposition. The left
peak is coupled to spin down, while the right peak is coupled to spin up.

This is precisely the Schrödinger cat state from the measurement problem that we wish
to avoid. However, suppose that there is a small perturbation of the potential in one of
the wells. Now the potential has a single global minimum, so we can use the instability
argument such that the apparatus will collapse to a single outcome (figure 3.10). Here we
use that any measurement apparatus is a classical object.

4An alternative would be a term of the form µ · S ⊗ P , where P is the momentum operator. However,
we will stick with the −µ · S ⊗X term, since it will make some concepts easier to explain.
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CHAPTER 3. THE FLEA ON SCHRÖDINGER’S CAT 3.3

Figure 3.10: A small perturbation in the left well. The global minimum of the potential
is now in the right well, so the entire wave function localizes there.

We thus read a single outcome on the measurement device. Since the perturbation is
too small to be observed, the outcome appears random. However, this is an illusion; as long
as the perturbation is deterministic, so is the outcome. We simply lack the information
to observe it as such.

Since the measurement apparatus is macroscopic, perturbations are to be expected. In
particular, particles are constantly moving around due to thermal fluctuations, and since
the apparatus consists of a large number of particles, we cannot expect the potential to
be perfectly symmetrical.

3.3 Born probabilities

So far this method only works in the 50% spin up 50% spin down case. After all, the
perturbation completely determines the outcome of the measurement, and it does not
depend on the electron spin. There is always a 50% chance for the outcome spin up and
a 50% chance for spin down, regardless of the initial superposition of the electron.

So how do we get the Born probabilities (2.2)? We need perturbations that in some
way depend on the electron spin. But even that is not enough, as shown by the following
argument, which is just an extension of the argument leading to the measurement problem
to include all possible initial conditions.

Suppose we do have some source of perturbations that gives rise to the Born pro-
babilities. Let |0(p)〉A be the initial state of the measurement apparatus, including the
perturbation p. This state can be different at each measurement, since the perturbation
typically differs. Now suppose we measure an electron in the state |↑〉. To accommodate
the Born probabilities, this state must always give the outcome spin up. So for any initial
state |0(p)〉A, we must have

U(T )(|↑〉 ⊗ |0(p)〉A) = |↑〉 ⊗ |↑ (p)〉A (3.3)

where |↑ (p)〉A is a state possibly varying depending on p, but always such that the appa-
ratus indicates spin up. Similarly, we have

U(T )(|↓〉 ⊗ |0(p)〉A) = |↓〉 ⊗ |↓ (p)〉A . (3.4)

Applying these two relations to the state 1√
2
(|↑〉+ |↓〉), we find for any perturbation p

|ψ(T )〉 = U(T )

(
1√
2

(|↑〉+ |↓〉)⊗ |0(p)〉A
)

=
1√
2
U(T ) (|↑〉 ⊗ |0(p)〉A) +

1√
2
U(T ) (|↓〉 ⊗ |0(p)〉A)

=
1√
2
|↑〉 ⊗ |↑ (p)〉A +

1√
2
|↓〉 ⊗ |↓ (p)〉A (3.5)
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CHAPTER 3. THE FLEA ON SCHRÖDINGER’S CAT 3.4

which is clearly a macroscopic superposition rather than a definite outcome. We are
therefore back to the measurement problem and conclude that Born probabilities do not
come out. By only assuming that the 100% spin up and the 100% spin down cases work,
we automatically find that the 50% spin up 50% spin down case fails.

The problem here is that the outcome of the measurement is entirely determined
by the perturbation, while the initial superposition of the wave function has no impact
whatsoever. If the part of the wave function coupled to spin up somehow influenced the
perturbation, then per linear time evolution that influence would be entangled to that
part of the wave function, and thus have no influence on the part that is coupled to spin
down.

In order to recover the Born probabilities, we must add something that breaks the
linearity of time evolution. Since time evolution is always linear in quantum mechanics,
we need to look outside standard quantum mechanics for the solution. Because the origin
of the perturbation is not set, it seems reasonable to look for non-linear perturbations
(possibly following from some underlying theory).

Another problem with recovering the Born probabilities is that since the collapse is
caused by the measurement apparatus, the probabilities are likely to be dependent on
the properties of the measurement apparatus. However, when measuring the same state,
we always want to get the same probabilities, namely the Born probabilities. A possible
solution could be that the perturbations are caused by the measurement apparatus, so that
they scale with the properties of the device. If the perturbations remain in proportion
to the measurement device, the chance of tunneling right instead of left will remain the
same, such that the probabilities are the same at all scales.

3.4 Tunneling times

The Born postulate says that when a measurement is made, the measured state collapses
instantly to the outcome state. In the flea method, however, the collapse happens due to
a tunneling process. So in order to match the observed behavior, this tunneling process
must happen faster than we can measure. As it turns out, the tunneling times actually
get slower the more classical the device is.

To derive the tunneling times, we will approximate the double well potential as a two-
level system [6]. Let ∆ = E1 − E0 be the difference between the first excited state and
the ground state. If we ignore all higher energy states and keep only the first two energy
states, the Hamiltonian is reduced to

H =
1

2

(
0 −∆
−∆ 0

)
. (3.6)

The energy eigenstates of H are given by

φ0=
1√
2

(
1
1

)
,

φ1=
1√
2

(
1
−1

)
. (3.7)

From these, the localized states can be constructed as

φl=
1√
2

(φ0 + φ1)=

(
1
0

)
,

φr=
1√
2

(φ0 − φ1)=

(
0
1

)
. (3.8)
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CHAPTER 3. THE FLEA ON SCHRÖDINGER’S CAT 3.5

Suppose that we now add a perturbation of size δ to the left well:

H =
1

2

(
δ −∆
−∆ 0

)
. (3.9)

The eigenstates now become:

φ0=
1√
2

(
δ2 + ∆2 + δ

√
δ2 + ∆2

)−1/2
(

∆

δ +
√
δ2 + ∆2

)
,

φ1=
1√
2

(
δ2 + ∆2 + δ

√
δ2 + ∆2

)−1/2
(

∆

δ −
√
δ2 + ∆2

)
. (3.10)

For a double well potential V (x) = 1
2ω

2x2 + 1
4λx

4, we can use the WKB approximation to
get [1]

∆ =
h̄ω√
1
2eπ

e−dV /h̄, (3.11)

where the WKB factor dV is given by

dV =

∫ a

−a
dx
√
V (x). (3.12)

Therefore, in the classical limit (h̄→ 0), ∆ goes to zero exponentially. Applying ∆� δ to
3.10, we can see that φ0 → φr and φ1 → φr.

5 This means that the localized states become
stationary states, and thus no tunneling will take place. This is a serious problem, since
we want the measurement device to correspond to a classical system.

We can calculate the tunneling times more explicitly by approximating them with half
the oscillation time of the two level system

T =
πh̄

∆
, (3.13)

since this is the time it takes for the system to go from one localized state to the other.
If h̄ goes to zero, ∆ goes to zero and so the tunneling times get arbitrarily large, which is
consistent with the previous argument.

3.5 Energy conservation

The flea on Schrödinger’s cat is an objective collapse theory, which means that it descri-
bes wave function collapse as a physical process independent of the observer. Objective
collapse theories typically have issues with energy conservation, since a wave function in
a superposition of different energies has an (expected) energy different from the states it
might collapse to. For instance, 1√

2
(|E = 0〉+ |E = 1〉) has expected energy 1

2 . If you were

to measure its energy, there is a probability 1
2 for it to collapse to |E = 1〉. However, this

state has energy 1, so energy is not conserved.
The flea method deals with this problem by taking into account the environment. Since

the measurement device is macroscopic, there are internal degrees of freedom that act as
an energy reservoir. One possible model for this is the Spehner-Haake model [12]. Here it
is assumed that the apparatus consists of N particles. The Schrödinger equation is then
transformed to center of mass coordinates, given by

h(P,Q, π, ρ) = hA(P,Q) + hAE(π) + hE(Q, ρ), (3.14)

5The limit φ0 → φr corresponds to what we have seen in section 3.1 , where we have argued that the
ground state localizes to the deepest well.
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CHAPTER 3. THE FLEA ON SCHRÖDINGER’S CAT 3.6

where

hA(P,Q) =
P 2

2M
+NV (Q)

hE(π) =
1

2M

N−1∑
n=1

π2
n +

(
N−1∑
n=1

πn

)2


hAE(Q, ρ) =

∞∑
k=1

1

k!
fk(ρ)V k(Q), (3.15)

where Q is the center of mass position operator, P is the center of mass momentum
operator, ρn is the relative position operators with corresponding momentum operators
πn, M is the total mass of the system, V the potential, and finally fk(ρ) is some function
of ρ.

As you can see, the Hamiltonian for the center of mass hA(P,Q) is just the standard
Hamiltonian for a single particle of mass M . The second term hE(π) describes the envi-
ronment, which consists of relative movement between the particles. This means there can
be energy hidden in these internal degrees of freedom. Finally, we have some interaction
term hAE(Q, ρ) between the center of mass and the environment. This allows energy to
move between the two systems.

When the center of mass wave function collapses, the energy it loses can move to the
internal degrees of freedom, so that energy is still conserved. This process is entirely
described within standard quantum mechanics, which guarantees that it will conserve
energy.6 This process is not much different from friction, where energy seems to disappear
but really just transfers to relative motion between particles.

3.6 Stability of outcomes

Suppose a measurement has taken place, and due to a perturbation the wave function has
collapsed to a single outcome. We assume the perturbations to be constantly changing,
since different measurements with the same apparatus are supposed to give different outco-
mes in quantum mechanics. So suppose that after some amount of time, the perturbation
has changed location. Then, the wave function will collapse to the new minimum, thus
changing the displayed outcome.

This instability of the outcome is undesirable, as it would make measurements im-
possible (possibly even undefined). Luckily, a solution is already in place, namely the
interaction term −µ · S ⊗X. When the wave function has collapsed to the spin up out-
come (as in figure 3.10), the position is positive for the entire wave function. The electron
can thus lower the interaction energy by becoming entirely spin up. If some kind of envi-
ronment is present, providing a source of energy and spin, it will try to minimize energy
and thus become entirely spin up. We thus find that measuring spin up will collapse the
electron itself into the spin up state, not just the measurement device. This is a property
that any interpretation of quantum mechanics needs to explain, since it is part of the Born
postulate, so it is nice that it already follows from the interaction term.

Given now that the electron is in the spin up state, we can again look at the interaction
term −µ · S ⊗X and see that this lowers the energy at the right well. This in turn keeps
the wave function at that outcome, making it stable.

There are however, some issues with this approach. It depends on the value of µ being
large enough to outclass the perturbations. This may seem relatively unproblematic at

6The potential is time independent between the moment the perturbation has appeared and the wave
function has fully collapsed
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CHAPTER 3. THE FLEA ON SCHRÖDINGER’S CAT 3.7

first, since the perturbations are assumed to be small, while µ is part of a macroscopic
effect. However, if the interaction energy µSa (where a is the distance from the center
to the minima) were larger than the perturbations, the spin up part would always move
to the right and the spin down part would always move to the left. So no collapse would
occur in a spin superposition.

3.7 Entanglement and locality

According to the flea model, the outcomes of measurements are determined purely by local
properties, namely the perturbation in the measurement apparatus. However, quantum
mechanics is a non local theory, due to the phenomenon of entanglement. To demonstrate
this, consider the following two electron entangled state:

1√
2

(|↑↓〉+ |↓↑〉) (3.16)

According to the Born postulate, a measurement of both spins of this state can only
have outcomes |↑↓〉 and |↓↑〉, each with a 50% chance. This is true even if the electrons
are separated by a large distance.

Now consider the same situation in the flea model. When we measure one of the
electrons, the outcome is determined by the perturbation in the measurement device.
Since the |↑↓〉 part of the wave function behaves like |↑〉 locally, we have a 50% chance
to get spin up. Similarly, if we measure the second electron, the outcome is determined
by the perturbation in the measurement device used. At first sight, there is no reason
to think that the perturbations in the two measurement devices are correlated, especially
if the electrons are separated by a large distance. So we again have a 50% chance of
measuring spin up. This means we have a 25% chance to get the outcome |↑↑〉, which is
in contradiction with the Born postulate.

However, a closer look shows that a possible solution would be to again make use of
the interaction term in the Hamiltonian. If we make a measurement of the spin of one
electron, a random perturbation will collapse the wave function of the apparatus to an
outcome. The interaction term will then collapse the superposition of the electron spin to
that outcome, as mentioned in section 3.6. Since the electrons are correlated (since they
are entangled), the collapse of one electron might induce a collapse of the other. Then, due
to the interaction term, the other measurement device will collapse to the corresponding
outcome.

It is not exactly clear how the electron will induce the collapse of the other electron.
But at least the electrons are correlated, in contrast to the perturbations, which really
have nothing to do with each other.

Unfortunately, it turns out that such an induced collapse is not possible. Suppose that
the issues mentioned in section 3.3 have been solved and p is a perturbation for the first
electron is such that it will collapse from the superposition 1√

2
(|↑〉+ |↓〉) to spin up. This

means that

U(T )(|↓↑〉 ⊗ |0〉A) = |↑↑〉 ⊗ |↑〉A ,
U(T )(|↑↓〉 ⊗ |0〉A) = |↑↓〉 ⊗ |↑〉A , (3.17)

where A is the measurement apparatus measuring the first electron. Here we use the fact
that the states |↓↑〉 and |↑↓〉 are product states, so the first electron has no influence on
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the second electron. We can now use linear evolution to get

U(T )

(
1√
2

(|↓↑〉+ |↑↓〉)⊗ |0〉A
)

=
1√
2

(U(T )(|↓↑〉 ⊗ |A〉) + U(T )(|↑↓〉 ⊗ |0〉A))

=
1√
2

(|↑↑〉 ⊗ |↑〉A + |↑↓〉 ⊗ |↑〉A)

=
1√
2

(|↑↑〉+ |↑↓〉)⊗ |↑〉A

= |↑〉 ⊗ 1√
2

(|↑〉+ |↓〉)⊗ |↑〉A . (3.18)

So the second electron remains in the superposition 1√
2
(|↑〉+ |↓〉), and no induced collapse

has taken place. Just as with the Born probabilities, it is the linearity of time evolution
that causes problems. By the same token, if a solution to the Born probability problem is
found, it might also invalidate this argument.
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Chapter 4

The Penrose interpretation

Penrose suggested another approach to the measurement problem [7] [8]. There are com-
pelling reasons to think that gravity and quantum superpositions are incompatible. The-
refore, it might be gravity that causes the wave function to collapse.

4.1 Superpositions in space-time

Gravity has a very interesting property with respect to the measurement problem, namely,
bigger objects feel more of it. This is interesting, because measurement devices have larger
masses than the small quantum system we have observed to have superpositions. So if
gravity were to cause wave function collapse, it might do so just for superpositions in
measurement devices but not for superpositions in these small quantum systems. Thus
keeping the Schrödinger equation for small system, while recovering the Born postulate
for measurement devices.

The idea in the Penrose interpretation is that large quantum superpositions are incom-
patible with general relativity, so a theory of quantum mechanics must somehow prevent
large quantum superposition from occurring. This means some kind of wave function
collapse must occur, once a measurement device enters superposition.

To illustrate the argument, suppose we have a large mass object in a superposition

1√
2

(|a〉+ |b〉), (4.1)

where |a〉 indicates a state localized around position a, and |b〉 around b. From general
relativity we know that mass curves space-time. We do not know exactly how this happens
in quantum mechanics, since no complete theory of quantum gravity exists (yet). However,
we do know what space-time looks like when the state is just |a〉 (see figure 4.1), so let us
call this space-time Ga. Similarly, we write Gb for the space-time corresponding to |b〉.
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(a) The system localized around a and its indu-
ced space-time Ga.

(b) The system localized around b and its indu-
ced space-time Gb.

Figure 4.1: Wave functions in space-time.

For the state 1√
2
(|a〉+ |b〉) we do not know the space-time, however, a reasonably guess

would be to just apply linearity:

1√
2

(|a〉 ⊗Ga + |b〉 ⊗Gb) (4.2)

Figure 4.2: The system in a superposition 1√
2
(|a〉+ |b〉), with its induced space-time.

We now no longer have a single space-time, but a superposition of two space-times.
But this leads to problems. The quantum states |a〉 and |b〉 are wave functions in space,
however, it is no longer clear in which space, since there are now two different space-times.
So these states no longer have a clear meaning. Even worse, there is no single direction of
time anymore. Thus time evolution is no longer defined.

According to Penrose, the degree of ill-definedness can be measured in terms of an
uncertainty in energy. This uncertainty in energy corresponds to a decay time T = h̄ ∆E,
representing the time it takes for the superposition to collapse. This is similar to calcula-
ting the decay time of unstable particles, using the uncertainty in energy.

4.2 The Schrödinger-Newton equation

There does not yet exist a complete description of quantum gravity, In order to approxi-
mate gravity at a semi-classical scale, we introduce the Schrödinger-Newton equation:

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + V ψ +mΦψ. (4.3)
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Here V is the ordinary potential and Φ is the gravitational potential, which satisfies the
Poisson equation:

∇2Φ = 4πGm|ψ|2. (4.4)

Equation (4.3) can be derived [10] as the effective behavior of a many particle system.
Solving (4.4), we obtain

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + V ψ −Gm2

∫
|ψ(t, ~y)|2

|~x− ~y|
d3~yψ. (4.5)

This is the equation you would find when you interpret m|ψ|2 as a mass density. This
means there is a self-interaction of the particle, since different parts of the wave function
treat each other as a mass density, and hence as a source of gravity. The self-interaction
comes from the equation representing a many particle system, and these particles interact
with each other.

The Schrödinger-Newton equation can tell us something about the states that the wave
function might collapse to. This is because we expect the final state to be stable, meaning
it must be a stationary solution of the Schrödinger-Newton equation. However, because
of the self-interaction, the Schrödinger-Newton equation is distinctly non-linear, making
it even harder to solve than the already difficult ordinary Schrödinger equation.

We can, however, find the gravitational potential for a Gaussian wave function [9]:

|ψ(~x)|2 =
1

π3/2σ3
e−r

2/σ2
, (4.6)

where A is a normalization constant, σ2 is the variance and r2 = x2 + y2 + z2. Solving
(4.4) for a Gaussian density, we obtain the gravitational potential:

Φ(~x) = −Gm
r

erf
( r
σ

)
, (4.7)

where erf(x) is the error function, given by

erf(x) =
1√
π

∫ x

−x
e−t

2
dt. (4.8)

In figure 4.3, the gravitational potential Φ is plotted for σ = 1.

Figure 4.3: A plot of a Gaussian wave function density |ψ(r)|2 with σ = G = m = 1,
centered around 0. The corresponding gravitational potential V (r) is also plotted.
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The potential shows that particles are attracted to the center of the Gaussian, which
coincides with what you would expect from gravity. For large r, we have erf(r) ≈ 1, and
so we recover the classical gravitational potential:

Φ(~x) = −Gm
r
. (4.9)

Although the stationary solutions might not be Gaussians, we can still try to approximate
a stationary solution using a Gaussian in order to better understand the behavior of such
solutions. The time-independent Schrödinger-Newton equation in vacuum is

Eψ = − h̄2

2m
∇2ψ −Gm2

∫
|ψ(t, ~y)|2

|~x− ~y|
d3~yψ. (4.10)

We thus need the right hand side to be approximately a constant times ψ. Plugging in
ψ(~x) = 1

π3/4σ3/2 e
−r2/2σ2

, and using 4.7, we find

E = − h̄2

2m

(
r2

σ4
− 3

σ2

)
− Gm2

r
erf
( r
σ

)
. (4.11)

We now apply the Taylor expansion of erf around zero

erf(x) =
2√
π

(
x− x3

3
+
x5

10
− x7

42
+

x9

216
− . . .

)
(4.12)

to obtain

E = − h̄2

2m

(
r2

σ4
− 3

σ2

)
− 2Gm2

√
πσ

(
1− r2

3σ2

)
+O(r4). (4.13)

This is approximately a constant if

h̄2

2mσ4
=

2Gm2

3
√
πσ3

, (4.14)

which can be solved as

σ =
3
√
πh̄2

4Gm3
. (4.15)

We can see that as m increases, σ decreases. This is to be expected, since a larger mass
increases the gravitational attraction between different parts of the wave function, thus
narrowing the width of the wave function. However, σ is never completely zero, since the
wave nature of quantum mechanics prevents this. Hence the value of σ arises as a balance
between gravity and quantum mechanics.

Similarly to section 3.1 we get the behavior that more classical (larger mass) systems
become increasingly localized. For similar reasons, this is an interesting property with
respect to the measurement problem.

4.3 Collapse from the Schrödinger-Newton equation

We want to use the Schrödinger-Newton equation to explain wave function collapse. Sup-
pose that we have a wave function in a superposition of two locations:1

|ψ(~x)|2 =
1

π3/2σ3
e−(~x−~a)2/σ2

+
1

π3/2σ3
e−(~x−~b)2/σ2

. (4.16)

1We can use a sum of delta functions, however Gaussians are more natural as they have no singularities
in the potential.
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The Poisson equation is linear, so the gravitational potential is

Φ(~x) = − Gm

|~x− ~a|
erf

(
|~x− ~a|
σ

)
− Gm

|~x−~b|
erf

(
|~x−~b|
σ

)
. (4.17)

Figure 4.4: A plot of a wave function in a superpostion of two Gaussians with σ = G =
m = 1, centered around -2 and 2. The corresponding gravitational potential Φ(r) is also
plotted.

The left Gaussian can lower its energy by moving right, and the right Gaussian can
lower its energy by moving left. By symmetry, the system will collapse to the center. This
might not appear to be the case at first, since there is a bump in the middle, however, the
potential generated by the left Gaussian moves with the left Gaussian, so only the potential
generated by the right Gaussian should be considered for the left Gaussian. Alternatively,
you can think of two classical particles which attract each other and end up in the center,
which is approximately correct because of (4.9).

So we do have wave function collapse. However, the outcome is problematic. The wave
function ends up in the center of the original two Gaussians, while in order to recover the
Born postulate, we need the outcome to be near a or b. In fact, if we were measuring the
electron spin, the center would not even be a valid outcome, for only spin up and down
would be, which are represented by a and b. So even though the Schrödinger-Newton
equation might cause wave function collapse, it does not explain the Born postulate.
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Chapter 5

Gravity and the flea

In this chapter we combine the ideas of the flea method and the Penrose interpretation.
It will turn out that this solves some of the problems in these interpretations. However,
other problems still remain unsolved.

5.1 The measurement process 2.0

There are multiple reasons to consider applying the Schrödinger-Newton equation to the
measurement process in section 3.2. Most of the issues in the flea method seem to arise from
the linearity of time evolution. This makes the Schrödinger-Newton equation interesting,
since it is a non-linear equation. But the specific way in which it is non-linear is interesting
too. In particular, it gives wave functions a tendency to collapse to a single point (or a
narrow Gaussian), since different parts of the wave function attract each other. This
means that superpositions are unstable, so we are pretty much guaranteed not to have a
superposition at the end of the measurement. Also, as argued in section 4.1, gravity might
be related to the measurement problem.

We will try to make as few assumptions as possible in the derivation of the measure-
ment process. Suppose we have a measurement device, capable of measuring the spin of
an electron. This must mean that some part of the apparatus does something different
depending on whether the spin is up or down. This difference must be something we can
read off, so it must be macroscopic. So we will assume this part moves left if the spin
is down, and moves right if it is up, and also that it will stay at that location for some
amount of time.

Figure 5.1: The device in its initial state.

Suppose that we try to measure the spin of an electron in a superposition

1√
2

(|↑〉+ |↓〉) . (5.1)
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If we wish to use the Schrödinger-Newton equation, time evolution is no longer linear.
However, since the effects of gravity are much smaller than those of other forces, the effect
of the force pushing the system to the left or right (most likely electromagnetic) is still
approximately linear. So the wave function still ends up in a superposition:

Figure 5.2: The device after coupling to an electron with spin 1√
2

(|↑〉+ |↓〉).

The measurement device is macroscopic, meaning it consists of many particles. Since
the Schrödinger-Newton equation can be derived as an effective many particle equation, it
does not seem unreasonable to use it here. This gives us a gravitational potential, which
is similar to the one in figure 4.4, since it is generated by a wave function localized at two
locations. But this is just the double well potential. So here we get it for free, instead of
assuming it1.

Figure 5.3: The gravitational potential corresponding to the superposition state.

Suppose that we have some small perturbation in one of the wells.

Figure 5.4: The gravitational potential plus some small perturbation.

1Assuming a double well potential for measurement devices might be reasonable, however wave function
collapse happens for any macroscopic object, not just measurement devices, which makes the assumption
a lot less obvious.
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This will cause a small part of the wave function to tunnel to the other well. This
in turn will lower the potential at that well, since the potential is generated by the mass
density of the wave function.

Figure 5.5: The gravitational potential after some part of the wave function has tunneled
to the lower well.

Now the wave function will start to tunnel even faster. So there is a self-reinforcing
effect causing the wave function to tunnel faster and faster to the lower well, until the
entire wave function has collapsed to a single outcome.

Figure 5.6: The gravitational potential after the wave function has collapsed to a single
well.

If a perturbation were to appear in the other well, it would not have any effect, since it
would never be larger than the gravitational potential. The outcome state is thus stable,
solving the issues mentioned in section 3.6. Another advantage of using the Schrödinger-
Newton equation, is that a collapse mechanism is already built in. So we no longer need the
argument from section 3.1 to work. And finally, since the Schrödinger-Newton equation
already breaks the linearity, we are free in the choice of perturbation (they no longer need
to come from some non-linear theory).

5.2 Applicability of the Schrödinger-Newton equation

At first sight the Schrödinger-Newton equation seems like a reasonable assumption. After
all, the measurement apparatus is a classical system, so it must consist of many particles.
This also makes the self interaction of the wave function seem fairly reasonable, since it
is really just an approximation of the interaction between the different particles that the
apparatus consists.
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Figure 5.7: A wave function consisting of many particles. The particles have been drawn
as circles. There is self-interaction, since different particles in the different parts of the
wave function interact with each other.

However, we still run into problems. Consider again the apparatus in its initial state.

Figure 5.8: The initial state of a measurement apparatus consisting of many particles.

When the apparatus couples to the electron in superposition, the apparatus takes over
the superposition. However, each individual particle making up the apparatus also gets in
a superposition. Thus, we end up in a state that appears microscopically similar to figure
5.7, but which at the individual particle level looks very different.

Figure 5.9: The many particle measurement apparatus after coupling to an electron in
superposition.

Now there is no longer a reason to expect a self-interaction. Particles in one peak of
the wave function are entangled to a different part of the electron spin from particles in
the other peak. So quantum linearity suggest the peaks should not interact.

We can still use the Schrödinger-Newton equation, but we have to assume it at the
single particle level, meaning we assume that there is something fundamentally non-linear
about gravity. This is not particularly strange, since it is still unclear whether or not
gravity can be incorporated in quantum mechanics. Also, as we have seen in section 4.1,
linearity and general relativity do not go well together.
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5.3 Born probabilities

Similarly to the flea on Schrödinger’s cat, a priori this process only seems to work in the
fifty-fifty case. Since the perturbation determines to which side the wave function tunnels,
the outcome is just random. However, unlike the flea model, the 100% spin up and the
100% spin down cases also seem to work. If the entire wave function is on the right side,
there will be a deep well there and so no small perturbation will be large enough to make
the wave function tunnel to the left side. This is important, since for the flea model it
was proven that if the 100% cases work, then the fifty-fifty case cannot work. This was
because of the linearity of time evolution, which the Schrödinger-Newton equation breaks.

It remains unclear how this gravitational method would produce the Born probabilities
for other spin distributions. Suppose that the electron is in such a superposition, say

1√
3
|↑〉 +

√
2
3 |↓〉. The well corresponding to spin down will now be quite a bit deeper

than the one corresponding to spin up. So you would expect the wave function to start
tunneling towards the spin down outcome, unless there is a perturbation large enough to
make the spin up well the deeper. However, the wells are generated by gravity, so they are
of the order Gm2. This means that the perturbation must be of a similar order in order
to change the outcome. So it must scale with Gm2 as well. It is not quite clear if such
perturbations even exist.

A possible source of such perturbations might be fluctuations in the many particle
wave function. As seen in section 5.2, the wave function of the measurement device is
really an average over many particles. These particles move around due to temperature,
so the wave function tends to fluctuate. This will lead to fluctuations in the gravitational
potential, which can be interpreted as perturbations. If there are more particles, there
will be more fluctuations, and since the mass scales with the number of particles, the
perturbations will scale with the mass.

However, it turns out that these perturbations do not scale quadratically with the
mass. To illustrate this, suppose we do have such perturbations for all m (or at least
some range of m). We will show that this assumption contradicts itself. If we have some
apparatus with large mass M , we know that it generates perturbations PM of the order
GM in the gravitational field,2 so PM is a random variable with standard deviation of
order GM . Since M is large, we know the apparatus must consist of smaller objects, so we
can for instance interpret it as a collection of N objects, each with mass m = M/N . For
these objects we have perturbations Pm of the order Gm in the gravitational field. Since
gravitational fields add, we get PM =

∑N
i=1 Pmi , which, by the central limit theorem, has

a standard deviation of order GN1/2m = GM1/2m1/2, thus giving a contradiction. So
perturbations of such nature only exists when they scale as Gm1/2 in the gravitational
field (Gm3/2 in the potential), and not for Gm (Gm2 in the potential).

The fact that such perturbations cannot scale as Gm2 should not come as a surprise.
We know that such fluctuations become less relevant at larger scales, since they must
produce the classical behavior we observe. This leads to a more fundamental problem with
recovering the Born probabilities. We need perturbations of the order Gm2 to get the Born
probabilities. These perturbations have to be fundamental, in the sense that we cannot
remove them by taking more accurate measurements, since we must always recover the
Born probabilities, even for incredibly accurate measurements. Such perturbations would
be observable at the macroscopic level, yet all perturbations we observe at this scale can
be removed by taking more accurate measurements.

To get around this issue, we propose two possible approaches to a solution. First of

2Perturbations of order GM2 in the gravitational potential correspond to perturbations of order GM
in the gravitational field, if an object of mass M is used to probe the field. This is true here, since we are
considering the effects of the perturbations on the measurement device which has mass M .
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all, we can get around the problem if we only need collapse at a fixed mass scale. Then
there would be no need for the perturbations to scale as Gm2. When the measurement
apparatus couples to the electron, it is not instantly brought entirely into a superposition.
Instead, this happens gradually, where the electron first couples to a few atoms, which then
in turn couple to more atoms, until eventually the entire device is in a superposition state.
So the mass of the part that is in superposition effectively slowly increases, and so does
the relevance of gravity. There might be some mass scale at which gravity is important
enough to induce collapse, so when the superposition reaches this scale, it collapses. This
always happens at the same scale, so we only need the perturbations to produce the Born
probabilities at that scale.

Figure 5.10: The superposition of the electron couples gradually to increasingly larger
objects, until finally it couples to the entire pointer.

Another approach would be perturbations that exist for a very short amount of time.
Suppose for instance, that the gravity between two objects is not a deterministic variable,
but a very quickly varying stochastic variable with the classical value as an average, and
a standard deviation of order Gm2. This would not make a difference for the macroscopic
behavior of gravity, but if the fluctuations times are at least comparable in size to tunneling
times, they might produce Born probabilities. This basically reduces the problem to the
problem of getting fast enough tunneling times.

To demonstrate how Born probabilities might appear, we consider normally distributed
fluctuations. The cumulative distribution function for a normal distribution with standard
deviation σ, centered around µ, is given by

F (x) =
1

2

[
1 + erf

(
x− µ
σ
√

2

)]
. (5.2)

We take the fluctuations at each point to be normally distributed independently in space,
with σ proportional to |ψ(x, t)|2. The motivation is that they are fluctuations of gravity,
and gravity is proportional to the mass density (so to m|ψ(x, t)|2). We will also take the
mean to be 0, since we want to recover gravity at the classical scale. For convenience, we
will assume the tunneling times to be much shorter than the fluctuation times.3 Suppose
we have an electron in spin superposition x |↑〉 +

√
1− x2 |↓〉, and perturbation Pl in the

left well and Pr in the right well. To figure out what the outcome will be, we need to
calculate which well is the lowest one, since that is where the wave function will tunnel
to. We approximate the superposition as consisting of two Gaussians, one on the left with
mass x2m, and one on the right with mass (1− x2)m. Taking the limit r → 0 of equation
(4.7) using (4.12), we have the following expression for the potential at the center of a
Gaussian wave function

V (0) = −2Gm2

√
πσ

. (5.3)

Pluggin in (4.15), we get

V (0) = −8G2m5

3πh̄2 . (5.4)

3If the tunneling times are not significantly shorter than the fluctuation times, the calculation becomes
much harder.
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We thus find that the wave function will collapse to the left if and only if

−8G2x10m5

3πh̄2 + Pl < −
8G2(1− x2)5m5

3πh̄2 + Pr. (5.5)

Rewriting this, we get the condition

Pl − Pr < A
(
x10 − (1− x2)5

)
, (5.6)

where A = 8G2m5

3πh̄2
.

Figure 5.11: The double well with perturbations in each of the wells. Here the wave
function would tunnel to the left.

The sum of two normal distributions is again a normal distribution with µ = µ1 + µ2

and σ =
√
σ2

1 + σ2
2. Using this and (5.2), we see that (5.6) happens with probability

F (x10 − (1− x2)5) =
1

2

[
1 + erf

(
A(x10 − (1− x2)5)√
c2x4 + c2(1− x2)2

√
2

)]

=
1

2

[
1 + erf

(
A

c

x10 − (1− x2)5

√
1− 2x2 + 2x4

√
2

)]
, (5.7)

where c is the proportionality constant σ = c|ψ|2.

A plot of these probabilities can be seen in figure 5.12 for c = 0.464A. Since c had to
be chosen to give a good result, it is essentially a one parameter fit. For a one-parameter
fit, the result is relatively good, however there are still some slight deviations from the
Born probabilities.
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Figure 5.12: The derived probabilities (blue line) plotted against the Born probabilities
(red line). The proportionality constant c is taken to be 0.464A, since this gives the best
match.

Interestingly, most formulas that look similar to (5.7) do not give as good a result. In
fact, for any possible power of m in equation (5.4), 5 gives the best result (see figure 5.13).

Figure 5.13: The minimal mean squared error of the derived probabilities compared to
the Born probabilities for each possible power of m in equation (5.4). The mean squared
error for a power 5 is 0.1474 which is slightly lower than for a power 4, which has 0.1567.

For instance, if we look at the best fit for m6, it looks noticeable worse:
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Figure 5.14: The derived probabilities for V (0) proportional to m6 (blue line) plotted
against the Born probabilities (red line). The proportionality constant c is taken to be
0.39A, since this gives the best match.

There is a rather subtle point to be made about this derivation. By taking the electron
in a superposition x |↑〉 +

√
1− x2 |↓〉, we implicitly assume this state to be normalized.

However, the motivation for normalization comes from the Born postulate, which is pre-
cisely what we are trying to derive. Therefore, it is not completely obvious that we can
assume the spin wave function to be normalized. This is not a problem here, since we
do not use the wave function directly, but instead only use the mass density which we
assume to be distributed according to the wave function squared. The normalization con-
dition therefore reduces to the condition that the total mass is m, which is clearly true by
assumption.

5.4 Tunneling times

In this case the classical limit corresponds to the limit of large mass. Since the double well
potential is generated by gravity, increasing the mass increases the potential. So according
to (3.11) and (3.12), the energy difference ∆ will go to 0 for large masses. We thus again
find that in the classical limit the tunneling times decrease, similar to section 3.4.

This argument is not completely watertight. There are reasons to believe that the
WKB-method used to derive (3.11) only work if the double well potential is symmetric
[2]. But in order to get Born probabilities, we need large perturbations, meaning the well
will not be approximately symmetric. There is also an intuitive explanation why (3.11)
might fail in the asymmetric case. The potential contributes in two ways to the tunneling
times. First of all, the potential in between the two wells acts as a barrier which slows
down the tunneling time. This can be seen in (3.12), as it integrates over the potential
between the two wells. The potential also contributes in the sense that, at least intuitively,
tunneling should go faster from a higher well to a lower, since energy is lowered. This is
only relevant to the asymmetric case, since the otherwise there is no difference between
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the wells. This effect cannot be seen in (3.12), and so it is not surprising that it might fail
in the asymmetric case.

It is also important to note that in the flea method the potential was static, whereas
here it is generated by the wave function itself and thus is changing. Since the wave
function tunnels to one well, it also lowers the potential even more at that well, and so
the tunneling speed should increase. This could mean that the actual tunneling times are
smaller than the initial static tunneling times.

Using an expression for ∆ the tunneling times can be approximated with (3.13). These
tunneling times will depend on the mass m will tell us at which mass scales tunneling
(and thus collapse) will take place within a reasonable time frame. For single particles
the tunneling should take very long, since we know particles can be in a superposition
without the superposition spontaneously decaying. For macroscopic objects the tunneling
time should be incredibly small, as we have never observed a large scale superposition.
Calculating these tunneling times could give us the means to test this theory, as it will
tell us at which scales superposition become fundamentally unstable.

To demonstrate this, assume that ∆ ≈ Gm2, which is a typical gravitational energy for
an object with mass m.4 From (3.13) we find that the tunneling time is 5.98 · 1036s for an
electron, or approximately 1019 times the age of the universe. With such long tunneling
times, spontaneous collapse would practically never occur for single particles, which is
consistent with our current observations. For an object with a mass of 1kg, the tunneling
time would be 4.97 · 10−24s, which would appear instantaneous to us. This would mean
that there would be no macroscopic superpositions, which again is consistent with our
current observations. Finally, the mass required for the tunneling time to be one second is
2.23 · 10−12kg, or approximately the mass of a human cell. This would give us a testable
prediction, as it would mean that superpositions at such mass scales are fundamentally
unstable.

5.5 Entanglement and locality

The same problem with entanglement as mentioned in section 3.7 is present here as well.
There seems to be no reason one measurement would influence the outcome of another
measurement a large distance away. However, the counterargument in section 3.7 now
fails, because time evolution is no longer linear under the Schrödinger-Newton equation.
So the solution mentioned there could in principle work, although it is still not clear how
exactly the collapse of one electron would induce a collapse in the other one. Since it is
gravity that breaks the linearity, it must be gravity that somehow influences the other
electron at long distance, if this argument were to hold. Either way, entanglement seems
like a though problem since the collapse at least appears to be completely local.

.

4In fact, the self-interaction energy of a sphere of radius R with uniform mass density is U = − 3
5R
Gm2

[4], which is not unlike the type of energy we are considering.
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Conclusion

In this text we considered three possible solutions to the measurement problem. We first
looked at “The flea on Schrödinger’s cat”, which turned out to not be able to produce
the correct Born probabilities because it has linear time evolution. It also has issues
with tunneling times being too long, unstable measurement outcomes, and reproducing
entanglement. On the other hand, problems with energy conservation could be avoided.

Next, we looked at the Penrose interpretation. This led to the Schrödinger-Newton
equation as a way of making quantum mechanics non-linear. The Penrose interpretation
itself however, lacks the ability to explain concretely how wave function collapse takes
place.

By combining the two interpretations, we get both the non-linearity from the Penrose
interpretation, as well as a concrete explanation of wave function collapse from “The flea
on Schrödinger’s cat”. So unlike “The flea on Schrödinger’s cat” it is not impossible to get
Born probabilities, at least in principle. It also solves the problem of unstable outcomes,
as the self-interaction keeps a collapsed state localized.

There are still some unanswered questions. The fact that perturbations similar in size
to the potential are needed to derive Born probabilities still seems like a weak point. The
two possible solutions mentioned in section 5.3 could work in principle, but more work is
needed to confirm this. Also, even though it has been shown that reasonably behaving
perturbations can produce the Born probabilities, it is not clear if such perturbations
actually physically exist and are always present during a measurement. More research
could go into searching for possible physical sources of such perturbations, and figuring
out which ones generate Born probabilities. The tunneling times have a better shot at
being fast enough than in the flea method, however, explicit calculations are still necessary
to confirm this. Using this, it can be calculated at which scales the collapse takes place in
a reasonable time frame, which could possibly be compared to experiments. Finally, an
explanation is still missing for entanglement. Although entanglement is generally hard to
explain due to its strange non-local properties, doing so is still necessary for reproducing
quantum mechanics.

Page 33



References

[1] Anupam Garg. “Tunnel splittings for one-dimensional potential wells revisited”.
American Journal of Physics 68 (2000), pp. 430–437.

[2] Ricard Gelabert, Miquel Moreno, and José M. Lluch. “Applicability of the WKB
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