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Abstract

We clarify the role of the Born rule in the Copenhagen Interpretation of quantum mechanics by
deriving it from Bohr’s doctrine of classical concepts, translated into the following mathematical
statement: a quantum system described by a noncommutative C

∗-algebra of observables is empir-
ically accessible only through associated commutative C

∗-algebras. The Born probabilities emerge
as the relative frequencies of outcomes in long runs of measurements on a quantum system; it is
not necessary to adopt the frequency interpretation of single-case probabilities (which will be the
subject of a sequel paper). Our derivation of the Born rule uses ideas from a program begun by
Finkelstein (1965) and Hartle (1968), intending to remove the Born rule as a separate postulate of
quantum mechanics. Mathematically speaking, our approach refines previous elaborations of this
program - notably the one due to Farhi, Goldstone, and Gutmann (1989) as completed by Van
Wesep (2006) - in replacing infinite tensor products of Hilbert spaces by continuous fields of C

∗-
algebras. In combination with our interpretational context, this technical improvement circumvents
valid criticisms that earlier derivations of the Born rule have provoked, especially to the effect that
such derivations were mathematically flawed as well as circular. Furthermore, instead of relying
on the controversial eigenvector-eigenvalue link in quantum theory, our derivation just assumes that
pure states in classical physics have the usual interpretation as truthmakers that assign sharp values
to observables.

1



1 INTRODUCTION 2

1 Introduction

In its simplest formulation, the Born rule says that if A is some quantum-mechanical observable with
nondegenerate discrete spectrum σ(A), then the probability Pψ(A = λi) that a measurement of A in a
state |ψ〉 yields the result λi ∈ σ(A) is given by

Pψ(A = λi) = |〈ei, ψ〉|
2, (1)

where |ei〉 is a normalized eigenvector of A with eigenvector λi. In other words, if |ψ〉 =
∑

i ci|ei〉 with
∑

i |ci|
2 = 1, then Pψ(A = λi) = |ci|

2. More generally, if A is a self-adjoint operator on a Hilbert space
H with associated spectral measure ∆ 7→ E(∆), then the probability Pψ(A ∈ ∆) that the proposition
A ∈ ∆ comes out to be true if A is measured in a state |ψ〉 equals

Pψ(A ∈ ∆) = 〈ψ|E(∆)|ψ〉. (2)

The Born rule provides the key link between the mathematical formalism of quantum physics and
experiment, and as such is responsible for most predictions of quantum theory. In the history and
philosophy of science, the Born rule (on a par with the Heisenberg uncertainty relations) is often seen as
a turning point where indeterminism entered fundamental physics.1 Of course, classical physics is full of
random phenomena as well. But in all known cases, their apparent random character may be retraced
to ignorance about the initial state or about microscopic degrees of freedom or time scales; see, e.g., [13]
and [40]. In contrast, the type of randomness to which quantum mechanics gives rise via the Born rule
is generally felt to be ‘irreducible’ (in the sense of not being reducible to ignorance, not even about the
Laws of Nature).2

Even the assumption that quantum mechanics is a correct and fundamental theory by no means
implies that this feeling is correct. Indeed, although among rival interpretations the Copenhagen Inter-
pretation is the one that arguably puts most emphasis on both the fundamental and the probabilistic
character of quantum theory, a mature work by one of its founders actually contains the following
passage:

‘One may call these uncertainties objective, in that they are simply a consequence of the fact
that we describe the experiment in terms of classical physics; they do not depend in detail on
the observer. One may call them subjective, in that they reflect our incomplete knowledge
of the world.’ (Heisenberg, [22, pp. 53–54].)

This claim is in tune with one of the two main principles of the Copenhagen Interpretation,3 namely
Bohr’s doctrine of classical concepts. A mature and well-known expression of this doctrine is as follows:

‘However far the phenomena transcend the scope of classical physical explanation, the ac-
count of all evidence must be expressed in classical terms. (. . . ) The argument is simply
that by the word experiment we refer to a situation where we can tell others what we have
done and what we have learned and that, therefore, the account of the experimental arrange-
ments and of the results of the observations must be expressed in unambiguous language
with suitable application of the terminology of classical physics.’ (Bohr, [1, p. 209].)

Elsewhere, Bohr time and again stresses that measurement devices must be described classically ‘if
these are to serve their purpose’. We take this to mean that, although such devices are ontologically
quantum-mechanical by nature, they become a tool (in fact, the only tool) for the description of quantum
phenomena as soon as they are epistemically treated as if they were classical. Thus the so-called Heisen-
berg cut, i.e. the borderline between the part of the world that is described classically and the part that

1The Born rule was first stated by Max Born in the context of scattering theory [2], following a slightly earlier paper
in which he famously omitted the absolute value squared signs (though he corrected this in a footnote added in proof).
The well-known application to the position operator is due to Pauli [39]. The general formulation (2) is due to von
Neumann [36, §iii.1]. See [33] for a detailed reconstruction of the historical origin of the Born rule within the context
of quantum mechanics, as well as [40] for a briefer historical treatment in the more general setting of the emergence of
modern probability theory and probabilistic thinking.

2Notable exceptions are Einstein [12, pp. 129–130] and ’t Hooft [25].
3The other one, the Principle of Complementarity, plays no role in this paper.
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is described quantum-mechanically, is epistemic or (inter)subjective in nature and hence movable; see
also [43, 44]. In our opinion, this ideology provides an attractive qualitative basis for the understanding
of randomness in Nature, for it preserves the fundamental difference between random phenomena in
classical and in quantum physics (the given explanation of quantum probabilities as arising from the
classical description of some part of the world would not make any sense if applied to classical proba-
bilities), while discarding the notion of strictly ‘irreducible’ randomness (which is only defined through
negation and quite possibly makes no philosophical sense at all).

However, little (if any) work has been done in relating this ideology to the Born rule, which in the
Copenhagen Interpretation simply seems to be taken for granted as a mathematical recipe that requires
no explanation. It is the purpose of the present paper to fill this gap: as we shall see, the Born rule
can actually be derived from a particular instance of Bohr’s doctrine of classical concepts, provided one
identifies the Born probabilities with the relative frequencies of outcomes in long runs of measurements
on a quantum system.4 As always, the mathematical implementation of Bohr’s philosophical ideas is
ambiguous; as far as his doctrine of classical concepts is concerned, we read it as saying that a quantum
system described by a noncommutative algebra A of observables is empirically accessible only through
commutative algebras associated with A.5 For convenience, and in line with the modern mathematical
description of quantum theory [47, 3, 19, 45, 31, 32], we assume that these algebras are in fact (unital)
C∗-algebras. The simplest kind of commutative algebras associated with A are its (unital) commutative
C∗-subalgebras; in this paper we need a more subtle limiting procedure to ‘extract’ a commutative
C∗-algebra of macroscopic observables.

Our derivation of the Born rule relies on certain ideas that were originally proposed by Finkelstein
[17] and Hartle [21], whose work was continued by Ochs [38], Bugajski and Motyka [5], Farhi, Goldstone
and Gutmann [15], and Van Wesep [50].6 We review this development in Section 2, either incorporating
or circumventing critique of the papers just listed that has been issued by a number of authors, including
Cassinello and Sánchez-Gómez [6] and Caves and Schack [7]. Their critique has been partly of a math-
ematical and partly of a conceptual nature, but in our opinion one of the most devastating arguments
against the program in question, namely its reliance on the so-called eigenstate-eigenvalue link, has not
been made before.

We will show how the program of deriving the Born rule from ‘first principles’ can nonetheless be
carried out if it is underwritten by Bohr’s doctrine of classical concepts (in its reading mentioned above).
The mathematical formalism needed to accomplish this starts from the modern algebraic approach to
the quantum theory of large systems [47, 3, 19, 23, 35, 45], which, however, we need to reformulate
in order to incorporate Bohr’s doctrine in an optimal way. This reformulation is based on the unified
picture provided by continuous fields of C∗-algebras [10, 29] in the description of the classical limit of
quantum mechanics. This limit actually has (at least) two guises, namely the limit ~ → 0 of Planck’s
constant going to zero, and the limit N → ∞ of a system size going to infinity. Both can be brought
under the umbrella of continuous fields of C∗-algebras; for ~ → 0 this was done in [31], and for N → ∞
it was announced in [32] and will be completed in the present paper, where essential use is made of ideas
of Raggio and Werner [41] and Duffield and Werner [11]. In fact, once the appropriate framework has
been set up in Section 3, the derivation of the Born rule in Section 4 will turn out to be almost trivial.

This paper is part of a larger research programme, whose goal it is to interpret quantum mechanics
entirely in terms of its classical limit. This is meant as a technical implementation of the Copenhagen
Interpretation as originally formulated by Bohr and Heisenberg (cf. [27]), whose goal was expressed quite
well by Landau and Lifshitz [30, p. 3]:

“Thus quantum mechanics occupies a very unusual place among physical theories: it contains
classical mechanics as a limiting case, yet at the same time it requires this limiting case for
its own formulation.”

4With this limited goal it is not even necessary to mention single-case probabilities, let alone interpret them; doing so
requires a far deeper analysis, which will be the subject of a sequel paper, based on [24].

5Apart from leading to the Born rule, this reading also gives rise to a very pretty description of complementarity
through the mathematical framework of topos theory; see [24]. Cf. Scheibe [43] and Howard [26] for different readings of
the doctrine of classical concepts.

6Some of these papers were not quite written in support of the Copenhagen Interpretation but rather against it, usually
defending the Everettian stance.
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2 The strong law of large numbers in quantum theory

Let us first review what has been achieved mathematically in [17, 21, 38, 5, 15, 50]. For simplicity, we
restrict ourselves to the simple situation of repeated measurements on a two-level (or, in current parlance,
one-qubit) system, i.e. with Hilbert space C2. Suppose we have an observable A (i.e. a hermitian 2 × 2
matrix) with eigenvalues 0 and 1 and corresponding orthogonal eigenstates |0〉 and |1〉. A long series of
measurements of A in a given initial state |ψ〉 ∈ C2 (prepared anew for each subsequent measurement)
will produce a sequence x = (x1, x2, . . .), where xi = 0 or 1. We idealize a long series of measurements
as an infinite one, so that x ∈ 2N, with 2 = {0, 1} and the space of infinite binary sequences is denoted
by 2N = {x : N → 2}. We define p ∈ [0, 1] as the Born probability

p = |〈1|ψ〉|2, (3)

so that |〈0|ψ〉|2 = 1 − p.
We first review the classical strong law of large numbers relevant to 2N, seen as a measure space with

Borel structure generated by the sets

B
(ǫ)
k = {x : N → 2 | xk = ǫ}, (4)

where k ∈ N and ǫ ∈ 2. For any p ∈ [0, 1], consider the probability measure µp on 2 defined by

µp(0) = 1− p and µp(1) = p. This defines a probability measure µ∞
p on 2N for which µ∞

p (B
(1)
k ) = p and

µ∞
p (B

(0)
k ) = 1 − p for all k. Let

Lp =

{

x ∈ 2N | lim
N→∞

1

N

N
∑

k=1

xk = p

}

⊂ 2N. (5)

This is a Borel set. The strong law of large numbers states that

µ∞
p (Lp) = 1. (6)

A measure theorist will read this as is stands: Lp has measure one with respect to µ∞
p . A probability

theorist defines functions fk : 2N → 2 by fk(x) = xk, notes that the fk are i.i.d. random variables,

and says that the sequence of functions (1/N)
∑N

k=1 fk on 2N converges pointwise to p with probability
one (or almost surely) with respect to µ∞

p . A physicist defines an elementary proposition (or ‘yes-no

question’) χLp
(i.e. the characteristic function of Lp) on the ‘phase space’ 2N, which is answered by yes

in a pure state x if limN→∞
1
N

∑N

k=1 xk = p, and by no otherwise. The probability measure µ∞
p defines

a mixed state on 2N, and (6) gives the state-proposition pairing in the case at hand as

〈µ∞
p , χLp

〉 = 1. (7)

If, for a general yes-no question Q and state ρ, one initially interprets 〈ρ,Q〉 as the probability of
obtaining a positive answer to Q in the state ρ (or, more generally, interprets 〈ρ, f〉 as the expectation
value of an observable f in a state ρ), then one still has to expand this interpretation by stipulating
what notion of probability one is using [18, 34]. Even if a probability equals one, as in (7), one still has
to declare whether or not one adopts the so-called Necessity Thesis [34] (stating that probability one
implies certainty). These questions cannot be answered by the mathematical formalism.

The papers just cited attempt to extend the strong law of large numbers to the quantum case,
and, not always sensitive to the last remark, draw certain conclusion about quantum mechanics from
such an extension. A correct way of proceeding at least mathematically emerges from a combinination
of results in [15, 50], as follows. Let (C2)⊗N ∼= C2N be the N -fold tensor product of C2, and let
(C2)⊗∞

ψ be the separable component of the infinite tensor product (C2)⊗∞ Hilbert space (in the sense

of von Neumann [37]) of C2 that contains |ψ〉⊗∞, where |ψ〉 ∈ C2 is a given (unit) vector.7 The

7Apart from the original source [37], this formalism is also explained in e.g. [15] or [14, §6.2]. The details are not
relevant here, as we will replace the use of infinite tensor products of Hilbert spaces by a different formalism later on. In
any case, the simplest way to define (C2)⊗∞

ψ
is to regard it as the Hilbert space of the GNS-representation of the infinite

tensor product
N

N M2(C) (cf. [28, §11.4]) induced by the vector state |ψ〉⊗∞; see Section 4 below.
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unit vector |ψ〉⊗∞ ∈ (C2)⊗∞
ψ ⊂ (C2)⊗∞, seen as a state, is the quantum analogue of the probability

measure µ∞
p in the classical situation just reviewed. The quantum analogue of the proposition χLp

is a

projection P(Lp) on (C2)⊗∞
ψ , defined as follows. For each k ∈ N, define a projection P

(1)
k on (C2)⊗∞

ψ by

P
(1)
k = 1⊗ · · · |1〉〈1| ⊗ 1 · · · , where the projection |1〉〈1| on C2 acts on the k’th copy of C2 in the infinite

tensor product and all other entries are unit matrices on C2. Similarly, P
(0)
k is defined by replacing |1〉〈1|

by |0〉〈0|. The projections {P
(0)
k , P

(1)
k }k∈N commute, and generate a complete Boolean algebra Pψ of

projections on (C2)⊗∞
ψ . Let B2N be the (countably complete) Boolean algebra of Borel sets in 2N. By

Theorem 1 in [50], there is a unique homomorphism P : B2N → Pψ of Boolean algebras that satisfies

P(B
(0)
k ) = P

(0)
k ;

P(B
(1)
k ) = P

(1)
k , (8)

for each k ∈ N. The projection P(Lp), then, is what its notation says, i.e. the image of the Borel set
Lp ∈ B2N under P . Interpreted as a yes-no question, it asks if a given measurement outcome x has
mean p.

Let p be as in (3). It is easy to show [50] that (6) implies

P(Lp)|ψ〉
⊗∞ = |ψ〉⊗∞. (9)

Regarding the unit vector |ψ〉⊗∞ as a state ψ⊗∞ (in the algebraic sense) on any von Neumann algebra
of operators on (C2)⊗∞

ψ containing P(Lp), we can rewrite (9) in the form of the classical pairing (7), i.e.

〈ψ⊗∞,P(Lp)〉 = 1. (10)

Indeed, since P(Lp) is a projection, eqs. (9) and (10) are equivalent.
Furthermore, let us define the frequency operator fN on C

2N by stipulating that its eigenstates are
|x1〉 · · · |xN 〉 (where xi = 0 or 1), with eigenvalues

fN |x1〉 · · · |xN 〉 =
1

N

N
∑

k=1

xk|x1〉 · · · |xN 〉. (11)

In words, fN is the relative frequency of the entry 1 in the list (x1, . . . , xN ). Clearly, fN can be extended

to an operator fψN on (C2)⊗∞
ψ by

fψN =
1

N

N
∑

k=1

P
(1)
k . (12)

It then follows from (9) that

lim
N→∞

fψN |ψ〉
⊗∞ = p|ψ〉⊗∞, (13)

with p given by (3). In fact, defining

fψ∞ = s− lim
N→∞

fψN , (14)

where s− lim denotes the limit in the strong operator topology on (C2)⊗∞
ψ , it can even be shown that

fψ∞ = p · 1, (15)

where 1 is the unit operator on (C2)⊗∞
ψ .

Results of this type can be derived quite easily from the modern algebraic approach to the quantum
theory of large systems [47, 3, 19, 32]; see below. For the moment, we discuss the interpretation of (15)
and especially of its corollary (13).

Authors of papers like [17, 21, 15, 50] argue that, in view of (3) and the definition (12) of fψN , eq. (13)
provides a derivation of the Born rule from the so-called eigenstate-eigenvalue link. This terminology,
which sounds like a tautology in mathematics, is often used in the philosophy of physics; see, e.g.
[4, 8]. The link in question is the postulate that if A is an observable and |ψ〉 is an eigenstate of A
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with eigenvalue λ, then a measurement of A in the state |ψ〉 yields the result λ with certainty.8 The
eigenstate-eigenvalue link is, of course, a special case of the Born rule, but the whole point of the exercise
is to derive the Born rule from the eigenstate-eigenvalue link, rather than the other way round.

To assess the claim that (13) provides a derivation of the Born rule from the eigenstate-eigenvalue
link, we make three points.9

1. Applying the eigenstate-eigenvalue link to conclude from (13) that fψ∞ has a sharp value p in the

state |ψ〉⊗∞, is inconsistent with measuring fψ∞ by measuring each of its components P
(1)
k in (12)

separately. For each such measurement will disturb the state; neither |ψ〉⊗∞ nor any |ψ〉⊗N is an

eigenstate of any P
(1)
k , not to mention all of them.10 Hence f is to be measured directly. Although

according to [15] this can be done in some cases, it precludes any inference of single-case Born
probabilities from (13).

2. Even if a measurement of fψ∞ were to take place by computing the limit (14) from an infinite list
x of single-case measurements, interpreting Born probabilities as limiting frequencies would face
all the usual objections to the frequency interpretation of probability [16, 18, 20, 34].

3. The eigenstate-eigenvalue link is the source of the measurement problem in quantum mechanics
and hence is held to be unsound by most contemporary specialists in the foundations of quantum
mechanics (see [4, 8] and references therein). Indeed, the eigenstate-eigenvalue link cannot be
found in the writings of Bohr and Heisenberg; it was first postulated by Dirac [9].

The first two points were also made in [6, 7], but despite our adding the third objection, we hesitate in
following the authors of these papers in concluding that the program of deriving the Born probabilities
from properties of the frequency operator is “flawed at every step” [7]. Indeed, by changing both the
conceptual and the mathematical setting we will see that each of these objections can be met:

1. Changing the definition of the frequency operator fψ∞ from a strong operator limit on a Hilbert
space (which even depends on the state |ψ〉) to an element f∞ of a commutative (i.e. classical)
C∗-algebra of macroscopic observables (which is independent of |ψ〉) ‘stabilizes’ f against per-
turbations. Thus, without jeopardizing our derivation and interpretation of the Born rule, the
frequency operator can be measured either directly (as suggested in [15]), or in terms of repeated
measurements of the underlying observable A in the state |ψ〉. The latter procedure determines

the possible values (0 or 1) of each P
(1)
k for k = 1, . . . , N < ∞, upon which one takes the limit

N → ∞. This seems to correspond to experimental practice.

2. The second objection is obviated if one simply interprets the possible values of the frequency
operator f∞ according to its definition, i.e. as limiting frequencies of either a single experiment on
a large number of sites or a long run of individual experiments on single sites. In particular, one
should refrain from making any statement about single-case probabilities. On this view, the Born
rule simply says nothing about individual experiments on single sites.11

3. Instead of relying on the controversial eigenvector-eigenvalue link in quantum theory, our derivation
will just assume that pure states in classical physics have the usual interpretation as ‘truthmakers’
that assign sharp values to observables.

8Philosophical realists adhering to the eigenstate-eigenvalue link would simply say that A has the value λ in the
eigenstate |ψ〉, but precisely among realists it has become fashionable to deny the eigenstate-eigenvalue link for the reasons
mentioned in the main text [4, 8]. For example, in Bohmian mechanics position always has a sharp value, whereas in the
modal interpretation of quantum mechanics the link is dropped in a more flexible way.

9We leave it to the reader to assess the more far-reaching claim in [50] that (13) “nullifies any remaining objection to
the many-worlds view”. Given their recent attempt to derive the Born rule in a completely different way [42, 51], this
claim is apparently not even supported by adherents of the many-worlds interpretation.

10In fact, any component of the complete von Neumann tensor product (C2)⊗∞ containing at least one simultaneous

eigenstate of all P
(1)
k

is orthogonal in its entirety to (C2)⊗∞

ψ
.

11Except in an empty way, as in Popper’s so-called propensity interpretation of probability [18, 34].
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3 Large quantum systems and the Born rule

3.1 Continuous field of C
∗-algebras

In experimental physics, theoretical predictions based on the Born rule are typically checked by per-
forming N identical experiments on a given quantum system in a given state |ψ〉, where N is large.
This situation is idealized by taking the limit N → ∞. We describe this limit in a way that reorganizes
the well-known algebraic description of infinite quantum systems by quasilocal C∗-algebras [47, 3, 19]
and macroscopic observables [23, 35, 41, 11, 45] into our preferred tool in the mathematical analysis of
classical behaviour in quantum theory [31, 32], namely continuous fields of C∗-algebras. For the reader’s
convenience we recall the latter notion, replacing the original definition of Dixmier [10] by the equivalent
formulation of Kirchberg and S. Wassermann [29]. By a morphism we mean a ∗-homomorphism.

Definition 1 A continuous field of C∗-algebras over a locally compact Hausdorff space X consists
of a C∗-algebra A, a collection of C∗-algebras {Ax}x∈X, and a surjective morphism ϕx : A → Ax for
each x ∈ X, such that:

1. The function x 7→ ‖ϕx(A)‖x is in C0(X) for each A ∈ A (where ‖ · ‖x is the norm in Ax).

2. The norm of A ∈ A is ‖A‖ = supx∈X ‖ϕx(A)‖.

3. The C∗-algebra A is a C0(X) module in the sense that for any f ∈ C0(X) and A ∈ A there is an
element fA ∈ A for which ϕx(fA) = f(x)ϕx(A) for all x ∈ X.

A continuous section of the field is a map x 7→ Ax ∈ Ax for which there is an A ∈ A such that
Ax = ϕx(A) for all x ∈ X.

It follows that the C∗-algebra A may actually be identified with the space of continuous sections of the
field: if we do so, the morphism ϕx is just the evaluation map at x. The general idea is that the family
(Ax)x∈X of C∗-algebras is glued together by specifying a topology on the bundle

∐

x∈X Ax (disjoint
union). This topology is defined indirectly via the specification of the space of continuous sections of the
bundle (cf. the Serre–Swan Theorem for vector bundles). The third condition makes A a C0(X)-module
in the sense that there exists a nondegenerate morphism from C0(X) to the center of the multiplier
algebra of A.

This seemingly technical definition turns out to provide an attractive framework for the study of
the classical limit of quantum mechanics. In the scenario ~ → 0, the parameter space X is typically
X = [0, 1], and A0 is the commutative C∗-algebra of C0-functions on some classical phase space. For
each ~ > 0, one then constructs A~ as the algebra of quantum observables for varying ~ (it may or
may not be the case that the A~ are isomorphic for different values of ~). Continuous sections of the
field then describe quantization and the classical limit of observables at one go [31]. More generally, the
classical theory is ‘glued’ to the corresponding quantum theories via the continuous field structure.

3.2 Macroscopic and quasilocal observables

To describe large quantum systems and their possible classical behaviour, we use the one-point com-
pactification X = Ṅ. This is homeomorphic to {0} ∪ 1/N ⊂ R in the relative topology borrowed from
R, viz. under the map n 7→ 1/n and ∞ 7→ 0 (where ∞ is the compactification point added to N).

To derive the Born rule, we need N copies of a single quantum system with unital algebra of observ-
ables A1 (e.g., A1 = M2(C) as above). From the single C∗-algebra A1, we are going to construct two
quite different continuous fields of C∗-algebras over Ṅ, called A(c) and A(q). These fields coincide as far
as their fibers above N ∈ N are concerned, which are given by

A
(c)
N = A

(q)
N = A⊗N

1 . (16)

Here ⊗ is the spatial tensor product; see, e.g., [28, Ch. 11]. However, the two fields differ in their
respective fibers above the limit point ∞, given by

A(c)
∞ = C(S(A1)); (17)

A(q)
∞ = limNA⊗N

1 . (18)
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Here S(A1) is the state space of A1 (equipped with the weak∗-topology),12 and the C∗-algebra in the
right-hand side of (18) is the inductive limit with respect to the inclusion maps A⊗N

1 →֒ AN+1
1 given by

AN 7→ AN ⊗ 1 (see below for an explicit description).13

In order to define the continuous sections of A
(c)
∞ , we define, for M ≤ N , symmetrization maps

jNM : A⊗M
1 → A⊗N

1 by
jNM (AM ) = SN(AM ⊗ 1 ⊗ · · · ⊗ 1), (19)

where one has N −M copies of the unit 1 ∈ A1 so as to obtain an element of A⊗N
1 . The symmetrization

operator SN : A⊗N
1 → A⊗N

1 is given by (linear and continuous) extension of

SN (B1 ⊗ · · · ⊗BN ) =
1

N !

∑

σ∈SN

Bσ(1) ⊗ · · · ⊗Bσ(N), (20)

where SN is the permutation group (i.e. symmetric group) on N elements and Bi ∈ A1 for all i =
1, . . . , N . For example, jN1 : A1 → A⊗N

1 is given by

jN1(B) = B
(N)

=
1

N

N
∑

k=1

1 ⊗ · · · ⊗Bk ⊗ 1 · · · ⊗ 1, (21)

where Bk is B seen as an element of the k’th copy of A1 in A⊗N
1 . In particular, for A1 = M2(C) the

frequency operator fN in A⊗N
1 defined by (11) is of this form, since from (12) we infer that

fN = jN1(|1〉〈1|). (22)

More generally, for A1 = B(H) (the algebra of all bounded operators on a Hilbert space H), the operator
that counts the frequency of the eigenstate |λ〉 ∈ H of some observable A upon N measurements of A
is given by

fN = jN1(|λ〉〈λ|). (23)

Definition 2 We say that a sequence (A1, A2, · · · ) with AN ∈ A⊗N
1 is symmetric when

AN = jNM (AM ) (24)

for some fixed M and all N ≥M . We call (A1, A2, · · · ) quasisymmetric if for any ε > 0 there is an Nε
and a symmetric sequence (A′

1, A
′
2, · · · ) such that ‖AN −A′

N‖ < ε for all N ≥ Nε.

Physically speaking, the tail of a symmetric sequence entirely consists of ‘averaged’ or ‘intensive’ ob-
servables. which become macroscopic in the limit N → ∞. Quasisymmetric sequences have the im-
portant property that they mutually commute in the limit N → ∞; more precisely, if (A1, A2, · · · ) and
(A′

1, A
′
2, · · · ) are quasisymmetric sequences, then

lim
N→∞

‖ANA
′
N −A′

NAN‖ = 0. (25)

Hence we see that in the limit N → ∞ the quasisymmetric sequences organize themselves in a commu-
tative C∗-algebra, which we call the C∗-algebra of macroscopic observables of the given large system.
To see that this limit algebra of macroscopic observables is isomorphic to C(S(A1)), we complete the

definition of the continuous field A
(c)
∞ by defining its continuous sections.

Theorem 1 For any unital C∗-algebra A1, the fibers

A
(c)
N = A⊗N

1 ;

A(c)
∞ = C(S(A1)) (26)

12For example, the state space of A1 = S(M2(C)) is isomorphic as a compact convex set to the three-ball B3 =
{(x, y, z) ∈ R3 | x2 + y2 + z2 ≤ 1}: describing a state as a density matrix ρ on C2, the corresponding point (x, y, z) ∈ B3

is given by the well-known parametrization ρ(x, y, z) = 1
2

„

1 + z x− iy

x+ iy 1 − z

«

.

13One often writes ∪N∈NAN for the inductive limit limNAN , where the bar denotes norm completion. In the notation

of [28, §11.4], our limNA⊗N
1 corresponds to

N

a∈A
Aa with A = N and Aa = A1 for all a.
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form a continuous field of C∗-algebras over Ṅ if the C∗-algebra A(c) of continuous sections is defined as
follows: a section

A : N 7→ AN ∈ A⊗N
1 ;

: ∞ 7→ A∞ ∈ C(S(A1)) (27)

of the above field is declared to be continuous if the sequence (A1, A2, · · · ) is quasisymmetric, and

A∞(ω) = lim
N→∞

ω⊗N (AN ). (28)

Here ω ∈ S(A1) and ω⊗N ∈ S(A⊗N
1 ) is the tensor product of N copies of ω, defined by (linear and

continuous) extension of ω⊗N (B1 ⊗ · · · ⊗BN ) = ω(B1) · · ·ω(BN ); cf. [28, Prop. 11.4.6]. The limit (28)
then exists by definition of an approximately symmetric sequence: if (A1, A2, · · · ) is symmetric with
(24), one has ω⊗N (AN ) = ω⊗M (AM ) for N > M , so that the tail of the sequence (ω⊗N (AN )) is even
independent of N . In the approximately symmetric case one easily proves that (ω⊗N (AN )) is a Cauchy
sequence.

Proof. To prove that A
(c)
∞ is a continuous field, the main point is to show that

lim
N→∞

‖AN‖ = ‖A∞‖, (29)

if (A1, A2, · · · ) is quasisymmetric and A∞ is given by (28). This is easy to show for symmetric sequences:
assume (24), so that ‖AN‖ = ‖jNN(AN )‖ for N ≥ M . By the C∗-axiom ‖A∗A‖ = ‖A2‖ it suffices to
prove (29) for A∗

∞ = A∞, which implies A∗
M = AM and hence A∗

N = AN for all N ≥M . One then has
‖AN‖ = sup{|ρ(AN )|, ρ ∈ S(A⊗N

1 )}. Because of the special form of AN one may replace the supremum
over the set S(A⊗N

1 ) of all states on A⊗N
1 by the supremum over the set Sp(A⊗N

1 ) of all symmetric states
(see Definition 5 below), which in turn may be replaced by the supremum over the extreme boundary
∂Sp(A⊗N

1 ) of Sp(A⊗N
1 ). The latter consists of all states of the form ρ = ω⊗N [46], so that ‖AN‖ =

sup {|ω⊗N(AN )|, ω ∈ S(A1)}. This is actually equal to ‖AM‖ = sup {|ω⊗M (AM )|}. Now the norm in

A
(c)
∞ is ‖A∞‖ = sup {|A∞(ω)|, ω ∈ S(A1)}, and by definition of A∞ one has A∞(ω) = ω⊗M (AM ). Hence

(29) follows.
Given (29), the theorem follows from [31, Prop. II.1.2.3] and the fact that the set of functions A∞

on S(A1) arising in the said way are dense in C(S(A1)) (equipped with the supremum-norm). This
follows from the Stone–Weierstrass theorem, from which one infers that the functions in question exhaust
S(A1). �

We now turn to the continuous field A(q) defined by the quasilocal observables.

Definition 3 A sequence (A1, A2, · · · ) (where AN ∈ A⊗N
1 , as before) is called local when for some fixed

M and all N ≥M one has AN = AM ⊗1⊗· · ·⊗1 (where one has N−M copies of the unit 1 ∈ A1), and
quasilocal when for any ε > 0 there is an Nε and a local sequence (A′

1, A
′
2, · · · ) such that ‖AN−A′

N‖ < ε
for all N ≥ Nε.

The inductive limit C∗-algebra limNA⊗N
1 then simply consists of all equivalence classes [A1, A2, · · · ]

of quasilocal sequences (A1, A2, · · · ) under the equivalence relation (A1, A2, · · · ) ∼ (B1, B2, · · · ) when

limN→∞ ‖AN −BN‖ = 0. The C∗-algebraic structure on A
(q)
∞ is inherited from the quasilocal sequences

in the obvious (pointwise) way, except for the norm, which is given by

‖[A1, A2, · · · ]‖ = lim
N→∞

‖AN‖. (30)

Each A⊗N
1 is contained in A

(q)
∞ as a C∗-subalgebra by identifying AN ∈ A⊗N

1 with the equivalence class
[0, · · · , 0, AN ⊗ 1, AN ⊗ 1 ⊗ 1, · · · ] (where the zero’s are irrelevant, of course; any entry could have been
chosen).

Theorem 2 For any unital C∗-algebra A1, the fibers

A
(q)
N = A⊗N

1 ;

A(q)
∞ = limNA⊗N

1 (31)
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form a continuous field of C∗-algebras over Ṅ if the C∗-algebra A(q) of continuous sections is defined as
follows: a section

A : N 7→ AN ∈ A⊗N
1 ;

: ∞ 7→ A∞ ∈ limNA⊗N
1 (32)

of the above field is declared to be continuous if the sequence (A1, A2, · · · ) is quasilocal, and

A∞ = [A1, A2, · · · ]. (33)

Proof. This time, the first property in Definition 1 is immediate from (30). The other properties
are either trivial or follow from [31, Prop. II.1.2.3]. �

4 The Born rule

To see the relevance of the above considerations to the Born rule, we first rederive (15). For any A1, we
note that a state ρ on A1 defines a state ρ⊗∞ on limNAN by

ρ⊗∞([A1, A2, . . . , ]) = lim
N→∞

ρ⊗N (AN ), (34)

which limit is easily seen to exist by first approximating a quasilocal sequence by a local one.
We take A1 = B(H) and pick a unit vector |ψ〉 ∈ H with associated pure state ψ on A1. As in (34),

the infinite tensor product ψ⊗∞ defines a state on A
(q)
∞ , which is pure by [28, Prop. 11.4.7]. Hence the

associated GNS-representation πψ⊗∞(A
(q)
∞ ) is irreducible; we may identify its carrier space Hψ⊗∞ with

the separable component H⊗∞
ψ of von Neumann’s infinite tensor product H⊗∞ that contains |ψ〉⊗∞ as

the cyclic vector Ωψ⊗∞ of the GNS-construction (cf. [14, Ch. 6] and also see Section 2 above).

Each operator fN defined by (23) lies in A⊗N
1 and hence in A

(q)
∞ . Although limN→∞ fN does not

exist within A
(q)
∞ , one may consider a possible limit limN→∞ πψ⊗∞(fN ) as an operator on Hψ⊗∞ . This

limit indeed exists in the strong operator topology, and commutes with all elements of πψ⊗∞(A
(q)
∞ ) (this

is easily checked to be the case for any quasisymmetric sequence). Since πψ⊗∞ is irreducible, the limit
operator must be a multiple of the unit, and using (34) and (23) one computes the constant as

s− lim
N→∞

πψ⊗∞(fN ) = |〈λ|ψ〉|2 · 1. (35)

This generalizes (15), and also, to our mind, gives an impeccable derivation of it. The type of derivation
of the Born rule reviewed in Section 2 is based on (35), but despite the fact that its mathematical status
has now been clarified, it faces the conceptual problems listed in that section.

To solve these problems, we use the continuous field A(c) instead of A(q), again with A1 = B(H).
Identifying a density matrix ρ on H with a state on B(H) in the usual way by ρ(B) = Tr ρB, for a
symmetric sequence with AN = jN1(B) (see (21)) one easily finds

A∞(ρ) = Tr ρB. (36)

Our key application then arises from the frequency operator (23), which amounts to the choice B =
|λ〉〈λ|. In that case (36) becomes

f∞(ρ) = 〈λ|ρ|λ〉. (37)

In particular, if |ψ〉 ∈ H is a unit vector and ρ = |ψ〉〈ψ|, defining a vector state ψ on B(H) by
ψ(A) = 〈ψ|A|ψ〉, one has

f∞(ψ) = |〈λ|ψ〉|2. (38)

This is the Born rule, at least formally. To understand why this identification is correct also conceptually,
at least in the context of the Copenhagen Interpretation, one has to realize the following. Unlike its
counterpart in (35), the limit operator f∞ in (38) is by construction an element of a commutative algebra,
namely the C∗-algebra C(S(A1)) of macroscopic observables attached to the N -fold duplication of A1 for
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N → ∞. According to Bohr’s doctrine of classical concepts (cf. the Introduction), any statement about
the quantum system described by A1 has to be made through commutative C∗-algebras C associated to
A1, and has to use “the terminology of classical physics”. This terminology includes the role of pure
states as ‘truthmakers’, in the sense that if f : M → R is a classical observable defined as a real-valued
function on some phase space M , then a point ρ ∈M validates the proposition f = λ for λ = f(ρ) with
certainty. This is precisely what happens in (38), which uses C = C(S(A1)), hence M = S(A1), and
states that in the classical state ψ, the observable f∞ simply has the (sharp) value |〈λ|ψ〉|2. Thus one
has a non-probabilistic statement in classical physics, which expresses a probabilistic observation about
quantum physics.

The specific way in which fN converges to f∞ as a continuous section of A(c), as well as its relationship
to (35), is clarified by the following device [31, 32].

Definition 4 A continuous field of states on a continuous field of C∗-algebras (A, {Ax}x∈X , {ϕx}x∈X)
over X is a family of states ωx on Ax, defined for each x ∈ X, such that x 7→ ωx(Ax) is continuous on
X for each A ∈ A (i.e. for each continuous section x 7→ ϕx(A) ≡ Ax of the field of C∗-algebras).

In the case at hand, where X = Ṅ, this only imposes the condition

ω∞(A∞) = lim
N→∞

ωN (AN ), (39)

for each continuous section A of the field in question, which we take to be either A(c) or A(q). Indeed,
the relationship between these two continuous fields of C∗-algebras is most easily studied through their
respective continuous fields of states.

Any state ω on A
(q)
∞ trivially defines a continuous fields of states on A(q) by restriction, using the

inclusion A⊗N
1 ⊂ limN→∞A⊗N

1 explained just above Theorem 2. The ensuing family of states ωN on
A⊗N

1 does not necessarily extend to a continuous field on A(c), and - especially in the context of the
Born rule - it is interesting to find examples when they do.

Definition 5 A state ω on limNA⊗N
1 is symmetric when each of its restrictions to A⊗N

1 is invariant
under the natural action of the symmetric group SN on A⊗N

1 (under which σ ∈ SN maps an elementary
tensor AN = B1 ⊗ · · · ⊗BN ∈ A⊗N

1 to Bσ(1) ⊗ · · · ⊗Bσ(N)).

Such states were analyzed by Størmer [46], who proved a noncommutative version of De Finetti’s well-
known representation theorem in classical probability: any symmetric state ω on limNA⊗N

1 has a unique
decomposition

ω =

∫

S(A1)

dµ(ρ) ρ⊗∞, (40)

where µ is a probability measure on S(A1), and ρ⊗∞ is defined as in (34).

Theorem 3 Let ω be a symmetric state on limNA⊗N
1 with decomposition (40), and let ωN be the

restriction of ω to A⊗N
1 . Define a state ω∞ on A

(c)
∞ = C(S(A1)) by

ω∞(f) = µ(f) ≡

∫

S(A1)

dµ(ρ) f(ρ). (41)

Then the family of states {ωN , ω∞}N∈N satisfies (39) for any A ∈ A(c) and hence defines a continuous
family of states on A(c).

Proof. This is immediate from (28) and (40).14 �

We now see that the state ω = ψ⊗∞ used at the beginning of this section is an example of Definition 5,
for which the associated measure µ in (40) and (41) is the Dirac measure δψ concentrated at ψ ∈ S(A1).
The states ωN on A⊗N

1 are, of course, given by ωN = ψ⊗N , and the function N 7→ ωN (fN ) has constant
value |〈λ|ψ〉|2. Hence one recovers the limit (38) either from (39) or from (41), since δψ(f∞) = f∞(ψ);
the fact that these computations coincide is an illustration of Theorem 3.

14Analogous results appear in the work of Unnerstall [48, 49].
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