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Abstract
Bachelor Physics and Astronomy

“Why the quantum?” - Bananaworld

by Myrthe Scheepers

In his book Bananaworld: Quantum Mechanics for Primates, Jeffrey Bub proposes that
quantum mechanics is fundamentally a theory about the structure of information. He
explains, by using the correlations between in- and outputs of simulation games with
entangled bananas, how indeterminacy follows from nonlocality and relativistic causal-
ity. Even though this view seems to be completely different from more traditional views
of quantum mechanics, such as a computational view, there are some interesting as-
pects in the relation between the two views. Discussing this relatively new view of
quantum mechanics described by Bub might be really promising for the future of foun-
dations of quantum mechanics.
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Chapter 1

Introduction

There is much to say about quantum mechanics. That is one reason why it is hard
to explain what this theory is really about. For example, one could say that quantum
mechanics is about wave-particle duality, or about the uncertainty principle, or about
quantized energy. All cover some aspects of quantum mechanics and none are com-
pletely right or wrong. And no matter what one says that quantum mechanics is about,
all descriptions agree that quantum mechanics is, in at least some aspects, counterintu-
itive.

There are many different theories and interpretations of quantum mechanics, many
of which can tell you a different story about its relation to reality or its implications.
There are a couple of ways in which quantum mechanics is hard to understand. The
most fundamental reason concerns the fact that quantum mechanics has not been un-
derstood completely, or that the theory is not ‘finished.’ You cannot understand some-
thing that has not been figured out yet. The most brilliant scientists do not agree on
whether the theory is incomplete or limited in another way. They cannot explain why
it describes some experiments and phenomena very well, but fails in other experiments
or situations.

Another reason that quantum mechanics is hard to understand is that there are
many different possible interpretations of quantum mechanics. As long as there is not
just one clear answer to the question what quantum mechanics is, it will not get any
easier to get a grip on quantum mechanics. Though some interpretations are more
popular or easier to understand than others, there is no consensus about which inter-
pretation fits the theory best.

The last reason that nobody understands quantum mechanics, is that some of the
theories on its own are hard to understand and not easy to accept. Even if you have
the proper knowledge of mathematics and physics to understand quantum mechanics,
there will still be aspects of it that you cannot grasp or accept, because they are highly
counterintuitive.

Studying physics in Nijmegen has taught me a lot about quantum mechanics. But
the thing you mostly learn, or maybe ‘do’ is more appropriate for the courses that I
am talking about, is how to use quantum mechanics to do calculations and make ap-
proximations in different situations. However, there is a whole other side of quantum
mechanics that does not get much attention during the courses. That is the interpreta-
tion and the more conceptual side of it.

It is far too ambitious to try to find one superior characterization or explanation of
quantum mechanics. So that is not the aim of this thesis. What I want to do instead is
discover a completely different view of quantum mechanics from the minimal one that I



2 Chapter 1. Introduction

was brought up with as a student. The view I am going to look into is the one discussed
by Jeffrey Bub in his recent book Bananaworld. He claims that quantum mechanics is
fundamentally a theory of information. Question I will take into account to discuss this
view are:

• What are the main characteristics of this view?

• What are problems and/or unanswered questions of this view?

• In what way(s) is this view different from the minimal one?

• Is it possible to relate this view to the minimal view?

This thesis will therefore consist firstly of a brief introduction on the author of this
book, and the book in general. Thereafter I will summarize some of the arguments
and explanations important to understand the presented view that are described in
Bananaworld. After this summary, the questions listed above will be discussed and
the view of quantum mechanics as a theory of information will be compared to the
minimal view of quantum mechanics. A review of the book is added in the appendix,
to make sure the discussion of the presented view of quantum mechanics is not too
much influenced by the presentation used in the book by Bub.
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Chapter 2

Bananaworld

2.1 About the author and his work

Jeffrey Bub mainly focuses his work on the conceptual foundations of quantum me-
chanics. He is a philosopher of physics, but started out by studying pure mathematics
and physics at the University of Cape Town. After those bachelor degrees, he did an-
other bachelor degree in applied mathematics at the same university. Then he went to
the University of London to do a PhD in mathematical physics, which he finished in
1966. His PhD-advisor was David Bohm, who had a great influence on the later work
of Bub, and the foundations of quantum mechanics in general.

After a couple of years during which he worked at different universities, he became
a full professor at the University of Maryland in 1986, and has worked there ever since.
He became a Distinguished University Professor in 2007.

Bub has written three books about the interpretation of quantum mechanics. The
first one, The Interpretation of Quantum Mechanics, is from 1974. The second book is
entitled Interpreting the Quantum World, first published in 1997. With that book, Bub
won the Lakatos Award of 1998, which is each year awarded to an English-language
book that is an outstanding contribution to the philosophy of science.

Around 2000, Bub’s interest changed from his work on a version of a dynamical
collapse theory, to quantum information theory. One of the reasons for this change was
a comment from Gilles Brassard about wanting to derive quantum mechanics from the
possibility of secure key distribution and the impossibility of secure bit commitment.
This got Bub really interested, and after discussions with Rob Clifton, they eventually
wrote an article together with Clifton’s student Hans Halvorson titled “Characteriz-
ing quantum mechanics in terms of information-theoretic constraints” (Clifton, Bub,
and Halvorson, 2003). This article marked the beginning of Bub’s work on quantum
information theory (Bub, 2018a).

However, the formal framework of that article was still C*-algebras. After hearing
Sandu Popescu talk about PR-boxes, Bub realized that by using that framework, one
is looking at quantum mechanics ‘from the inside’. The C*-algebraic formalism can
only be used to describe classical and quantum correlations, but not all PR-correlations.
That is why he started looking at quantum mechanics ‘from the outside,’ by looking at
a broader class of no-signaling correlations. This new approach lead to new questions
and eventually led to his new book Bananaworld: Quantum Mechanics for Primates (Bub,
2018a).
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This book discusses various of the questions raised by the information theoretic
approach to quantum mechanics. And with this book, Bub addresses a broader public,
not necessarily highly educated in physics and mathematics.

2.2 About the book

Bananaworld: Quantum Mechanics for Primates was first published in 2016. A second
edition was published very recently in May 2018. Apart from some minor corrections,
the changes in the second edition mainly occur in the part called “The Information-
Theoretic Interpretation”.

Although the book is written for a public not only consisting of people with a solid
background in physics and mathematics, it is not certainly a ‘quantum mechanics for
dummies’. The main topic of the book is to explain a new concept in the foundations
of quantum mechanics. Even though it is written for a wide range of readers, it is just
as interesting for the experts as it is for the non-experts.

The idea for Bananaworld came from the article ‘Nonlocality beyond quantum me-
chanics’ written by Popescu (Popescu, 2014), and the book Quantum Chance: Nonlocal-
ity, Teleportation and Other Quantum Marvels written by Nicolas Gisin (Gisin, 2014). Both
works are about the conceptual revolution of quantum mechanics. This conceptual
revolution started when people realized that quantum mechanics is not an incomplete
theory with hidden variables, and started accepting it as a nonlocal theory (Bub, 2016,
p. ix).

To make Bananaworld accessible to a broad public, much of the technical and math-
ematical details of the arguments are limited to “More”-sections at the end of each
chapter and the supplement of the book called “Some mathematical supplement”. The
regular chapters and paragraphs of the book are as much limited to the conceptual
arguments as possible.

The examples and arguments of Bananaworld are supported by drawings made by
Bub’s daughter, Tanya. She used figures inspired by the Tenniel drawings for Alice in
Wonderland (Bub, 2016, p. ix). Just like in all papers on quantum information theory,
Bub uses agents called Alice and Bob, who are in the book drawn as a girl and a rabbit
respectively. I also used some drawings from the book for this thesis, for example on
the title page.
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Chapter 3

Summary

3.1 Bananaworld

Bananaworld is an imaginary world in which there are classical and quan-
tum correlations, but also superquantum correlations between separated
systems that are even more nonclassical than the correlations of entangled
quantum states. The conceptual puzzles of quantum correlations arise with-
out the distraction of the mathematical formalism of quantum mechanics,
and you can see what is at stake - where the clash lies with the usual pre-
suppositions about the physical world (Bub, 2016, p. 7).

This is how Bub describes the thought experiment he calls ‘Bananaworld’ We will later
discuss what is exactly meant by the different relations and how he uses the imaginary
bananas in Bananaworld to explain the theory of quantum mechanics as a theory of the
structure of information.

The bananas in Bananaworld can be compared to what is called a ‘box’ in other,
maybe more known, explanations of correlations in quantum mechanics.

Just like the simplest boxes, the bananas in Bananaworld have two possible inputs.
The inputs in the case of the bananas correspond to different ways of peeling, either
from the top end or from the stem end, which are denoted by T and S respectively. It is
important to note that each banana can only be peeled once. The bananas also have two
possible outputs describing their taste called ordinary and intense, which correspond
to 0 and 1 respectively, like in the explanations with boxes. The taste of a banana is
supposed to be an objective fact, and does not depend on one’s subjective opinion. The
correlations that we will be talking about occur between the different ways of peeling
and the tastes of the bananas (Bub, 2016, pp. 8-9).

Bub chose to use bananas instead of boxes because he thinks they make certain
properties more concrete. For example, it is easier to think of two bananas to be far
apart from each other, than it is to think of two parts of a box to be stretched apart.
Another advantage of the bananas with respect to the boxes is that they can be used
to describe for example correlations where more than two bananas are correlated (Bub,
2016, p. viii).

Even though the bananas Bub uses are a thought experiment, they can be useful to
discover facts about the real world. It can mainly show that certain correlations can
be simulated with quantum entangled bananas, but not with classical local resources
(Bub, 2016, p. viii).
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3.2 Correlations

Physics is all about correlations, or statistical dependence, and is especially about ex-
plaining why correlations occur in the circumstances in which they occur. However,
we will see that the different kinds of explanations from which we can choose are very
limited (Gisin, 2014, p. 7).

We distinguish different kinds of correlations which can appear between different
events. The events are always separated from each other either spatially or temporally,
or both. Correlations between events can be divided into different categories.

An important category of correlations that is relevant for this discussion is that of
classical correlations, appearing in classical physics. Those correlations can either be
explained by local resources or a common cause, and are therefore often called ‘local
correlations’ (Bub, 2016, p. 10).

When a correlation can be explained by local resources, a signal can travel between
the two events. However, that signal cannot travel faster than the speed of light, so
there can be no instantaneous transfer of information between the different events
(Bub, 2016, p. 11). This limit of the speed of light is a result of Albert Einstein’s the-
ory of special relativity. In this case, the events will be called causally separated, and in
Minkowski space one of the events is in the so-called light cone of the other event.

In a correlation characterized by a common cause, the transfer of information seems
to be traveling faster than the speed of light, so it seems instantaneous. But because
special relativity does not allow this, these correlations in classical physics must be
caused by a common cause lying in the past of both events. An example of such a
common cause is a flash of lightning, which is the common cause for two events being
two persons far away from each other both hearing thunder (Bub, 2016, p. 11). These
events then will be called space-like separated, and lie both in the future light cone of
the common cause event.

The correlations that cannot be explained by either local resources, or a common
cause explanation, are called nonlocal correlations. Some of these correlations can be
explained by quantum resources, which can either be local or nonlocal. A geometrical
representation of what this looks like will be given and discussed in section 3.8. It is
good to know that there is no advantage of local quantum resources over local clas-
sical resources. So we will often refer to correlations that can be simulated with local
quantum resources as classical correlations (Bub, 2016, p. 11).

Our discussion based on Bananaworld will be about the correlations represented by
the probabilistic correlation between the inputs (peelings) and outputs (tastes) of the
bananas (or boxes, experiments, etc.).

3.2.1 Simulating correlation

To simulate different correlations, Bub uses a game played by Alice and Bob. The mod-
erator of the game contacts both Alice and Bob, and gives them both individually a
prompt (S or T) at the beginning of each round. They each respond with an answer (1
or 0). They win the round if the responses and the prompts satisfy a certain given cor-
relation. The game is played over many rounds. They cannot have contact with each
other during the game, but they are allowed to discuss a strategy before the simulation
game starts (Bub, 2016, pp. 52-53).
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For example, if the correlation they are looking for is such that they must respond
with the same answer when the prompts are the same, and with a different answer if
the prompts are different, the winning strategy is to respond with a 0 for S and a 1 for
T (or the other way around) (Bub, 2016, p. 52).

In addition to the searched correlation, one can restrict Alice and Bob by demand-
ing that the response of a given prompt has to be random. This would make them
satisfy the the no-signaling principle, which is in the relativistic limit equivalent to the
assumption of free choice, this means that, for example, the no-signaling principle in
a certain inertial frame, can be the assumption of free choice when looked at from an-
other inertial frame. Both will be discussed in section 3.4.2. For now, this means that
the responses 0 and 1 should come up with equal probability over many rounds of the
game when given the prompt S (and the same for T). Alice and Bob can still win this
game by having a shared list of random numbers. They can agree on a list of randomly
ordered 0’s and 1’s before the game, and use the strategy to answer the output on the
list, or the opposite output, depending on the prompt. So when they are given the
prompt S they respond exactly the bit on the list, but if the prompt is T then they give
the opposite bit as an answer. Now the correlations is perfectly simulated, and the new
condition of both answers turning up with an equal probability is satisfied (Bub, 2016,
pp. 52-53).

In this example, Alice and Bob only used local resources to simulate the correlation,
so you can conclude that this is a local correlation. However, this example was very
easy, so we will look ate more complicated correlations in the next sections.

3.2.2 Measuring correlations

We discussed an example of how a simple correlation can be simulated by a game. But
let’s now look better at what the simulation represents and at what the correlation in
the real world is. Bub uses his bananas, with inputs S and T, and outputs 0 and 1, to
explain the correlations. It is, however, useful to remember that the correlations, even
though most of the time the in- and outputs are not as simple as in the examples given,
occur in our real world as well.

Bits

A classical ‘bit’ is a unit of information, best known for its use in computer science. It
is two-valued, which means that it can have the value of either 0 or 1, denoting the two
different ‘states’ in which the bit can be (Bub, 2016, p. 30).

Measuring an observable, for example a tossed coin, or the polarization direction of
a photon, reveals the state of the measured coin or photon in these cases. The value of
the measurement can only be 0 or 1, not any other value. What is important is therefore
that the measured observable has only two possible outcomes, which you can call either
0 or 1, as long as you are consistent during the experiment.

The correlation can be seen as the distribution of probabilities for the outputs, given
certain inputs. So in the example of the toss of a coin, the correlation, in case of an ideal
coin, would be that both heads and tails, called 0 and 1 or the other way around, have
an equal probability of 1/2. As for the coin toss, a correlation will become more obvious
when the experiment is repeated many times.
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Qubits

There is also a quantum version of the classical ‘bit’, which we call a ‘quantum bit’, or
‘qubit’ in short. The measurement of a qubit gives one of two possible values, just like
the measurement of a bit. However, a qubit can be seen as containing an infinite set of
noncommuting two-valued observables that cannot all have definite values simultane-
ously (Bub, 2016, p. 30).

For example, when you measure a polarization direction of a photon, there are dif-
ferent directions in which you can measure, but you have to choose one. Each mea-
surement in a different direction has two different outcomes. Therefore, you end up
with one output, which you can call either 0 or 1, for the one measured polarization
direction, or observable, of the photon. You cannot have information about any of the
other observables at the same time.

Measuring the polarization of a photon in a certain direction forces it to randomly
transition into that direction. The transition is detected by the measurement device as
one of two possible outcomes in that polarization direction (Bub, 2016, p. 35). Keep
in mind that this measuring does not reveal pre-existing properties of the photon; the
measurement itself forces the photon to get into a state.

For simplicity, Bub discusses photons with two different observables. The first is
measuring the polarization in the z direction, corresponding to observable Z. When
this observable is measured, the result will be that the photon is in either one of the
states labeled by |0〉 or |1〉. The other observable is measuring the polarization of the
photon in the x direction, corresponding to an observable X . This results in the photon
being in one of the states labeled by |+〉 or |−〉. The angle between Z andX is 45◦ (Bub,
2016, pp. 37-38). A representation of these states is shown in figure 3.1.

The states |+〉 and |−〉 of the X observable can be expressed in terms of the states
of the Z observable. This gives a linear superposition:

|+〉 = 1√
2
|0〉+ 1√

2
|1〉 (3.1)

and
|−〉 = 1√

2
|0〉 − 1√

2
|1〉. (3.2)

In this case the states |0〉 and |1〉 are called the ‘basis’, and the factors 1√
2

are normaliza-
tion constants. Analogously, the states of observable Z can also be expressed with the
states of observable X as a basis (Bub, 2016, p. 39).

If you measure the observable Z of a photon in the state |+〉 = 1√
2
|0〉 + 1√

2
|1〉, it has

a probability cos2(π4 ) =
1
2 of finding the state to be |0〉 and a probability sin2(π4 ) =

1
2 of

finding the state to be |1〉. This is because of the angles between the different observ-
ables. The resulting probability of the output state is also equivalent to the square of
the normalization constant directly before that output state (Bub, 2016, p. 40).

To get the analogue with the bananas: peeling a banana from the stem end corre-
sponds to measuring observable Z, the polarization in a certain direction, and peeling
from the top end corresponds to measuring observable X , the diagonal polarization at
an angle π

4 to Z. The tastes 0 and 1 correspond to the two outcomes of the different
measurements (Bub, 2016, p. 36).
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FIGURE 3.1: Directions of the different basis vector states belonging to
observables Z and X of a photon.

Entanglement

A pair of qubits can be in a state that is a superposition of product states called an
‘entangled state’. For example the entangled state of two photons can be expressed in
the Z observable and X observable states as

|φ+〉 = 1√
2
|0〉|0〉+ 1√

2
|1〉|1〉 = 1√

2
|+〉|+〉+ 1√

2
|−〉|−〉 (3.3)

respectively. In this entangled state, each state of the product states can be attributed
to one of the two entangled photons (Bub, 2016, p. 41).

Independently of whether you measure Z or X on both these photons, the prob-
ability of finding both photons in the state |0〉|0〉 or |1〉|1〉 if you measure Z, or in the
state |+〉|+〉 or |−〉|−〉 if you measureX is 1

2 . This value for the probability can be found
by the square of the normalization constant in front of the state in the entangled state
(Bub, 2016, p. 41).

The possible outputs |0〉|+〉, |0〉|−〉, |1〉|+〉, and |1〉|−〉 all have an equal probability
of 1

4 . The explanation for this value is that each photon has a probability 1
2 of ending up

in one of the two possible states of the measured observable. The product 1
2 ·

1
2 = 1

4 gives
the probability of the product state (Bub, 2016, pp. 41-42). The reason that this method
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of calculating the probability for a certain product state, i.e. by multiplying the prob-
abilities of both photons, can only be used when different observables are measured
on the photons, is that the observables are commuting. The results for measurements
on different observables are uncorrelated, whereas the results for measurements of the
same observable are correlated.

3.3 Some useful definitions

In this sections, some concepts that Bub uses throughout the book are defined more
explicitly. They are also explained in parts of the summary, but they are briefly listed
here so they can be consulted at any time.

Classical means that the correlation can be explained by either local resources, or a
common cause. This is explained mainly in section 3.2.

Local resources are resources that communicate by sending a signal that can travel
not faster than the speed of light. It is explained mainly in section 3.2.

Common causes are resources that seem to be sending an instantaneous message, but
in which case the correlation can be explained by a common event in the past of the
correlated events. This is explained mainly in section 3.2.

Nonlocal resources are resources that are not local, but still satisfy the no-signaling
principle. These can be used to explain nonlocal correlations as described mainly in
section 3.2.

Quantum resources contain all local resources, but include some, not all, nonlocal
resources. The boundary between the quantum resources and the nonlocal resources
that are not quantum resources is given by the Tsirelson bound. Quantum resources
are entangled objects as explained mainly in section 3.2.2.

No-signaling is the condition that if Alice and Bob perform measurements on space-
like separated locations, the marginal probabilities for Alice’s measurement outcomes
are independent of those for Bob’s measurement outcomes. This signifies that it is not
possible, given relativistic constrains, for Bob’s choice of measurement to influence
Alice’s measurement outcomes. This is explained mainly in section 3.4.2.

Free choice is about the assumption that explains the result of measurement outcomes
in local realistic terms. This comes down to the condition that the parameters of an
experiment can be chosen freely. A parameter can be considered ‘free’ if it is statisti-
cally independent of all other parameters and observations that do not lie in its causal
future. This is explained mainly in section 3.4.2.

3.4 Einstein-Podolsky-Rosen argument

In 1935 Albert Einstein, Boris Podolsky, and Nathan Rosen published their famous
article in which they argued that quantum mechanics must be an incomplete theory
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(Einstein, Podolsky, and Rosen, 1935). The argument presented in this article is often
referred to as the ‘EPR-argument’.

This argument is pretty controversial and thousands of papers have been written
about it. But in short, and in modern language, the EPR-argument claims that assuming
a strong version of locality entangled states in quantum mechanics must only involve
classical correlations that can be simulated with local resources. They took this as a
signal that quantum mechanics is incomplete, because they could, in theory, explain
quantum phenomena with classical resources. They only did not know exactly which
classical resources.

Later, Einstein published in an article in 1948 explaining that the EPR-argument
rests on two important assumptions about locality (Einstein, 1948). The first assump-
tion is called the ‘separability assumption’, and means that two space-like separated
objects have their own ‘being-thus’, which is an independent state of existence. The
second assumption is called the ‘locality assumption’, and means that if objects A and
B are separated, an event in A cannot instantaneously affect the ‘being-thus’ of B, and
conversely (Bub, 2016, p. 46). These assumptions are the basis of Einstein’s concept of
local realism (Gisin, 2014, p. v).

3.4.1 Correlation

As Bub describes in Bananaworld, one could view the EPR-argument in terms of a cor-
relation. He describes the EPR-correlation as follows (Bub, 2016, p. 49):

• if the same observable is measured on A and on B, the outcomes are the same,
with equal probability of 1

2 for 00 and 11;

• if different observables are measured on A and on B, the outcomes are uncorre-
lated, with equal probability of 1

4 for 00, 01, 10, 11;

• the marginal probabilities for each possible outcome, 0 or 1, when either observ-
able is measured on A, or when either observable is measured on B, are 1

2 , irre-
spective of what observable is measured on the paired particle, or whether any
observable is measured at all.

Here 00 means that both outputs for A and B are 0, and 01 means that the output for A
is 0 and the output for B is 1, etc.

Translated into terms of Bananaworld, this correlation becomes (Bub, 2016, p. 50):

• if the peelings are the same, SS or TT , the tastes are the same, with equal proba-
bility of 1

2 for 00 and 11;

• if the peelings are different, ST or TS, the tastes are uncorrelated, with equal
probability of 1

4 for 00, 01, 10, 11;

• the marginal probabilities for the tastes 0 or 1 if a banana is peeled S or T are
1
2 , irrespective of how the paired banana is peeled, or whether or not the paired
banana is peeled.

This time, the input SS means that both Alice and Bob peel their entangled banana
from the stem end, and ST means that Alice peels her entangled banana from the stem
end and Bob peels his entangled banana from the top end, etc. Analogously for the
outputs.
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3.4.2 Local simulation

To successfully simulate this correlation using local resources only means that the no-
signaling principle is satisfied. This principle is contained in the last condition of the
correlation, namely that the probability for the two possible outputs must be equal
to 1

2 , irrespective of which observable is measured on the other photon or banana, or
whether an observable is measured at all on the other photon or banana (Bub, 2016,
p. 51).

In the relativistic limit, the no-signaling principle is equivalent to what is called the
‘assumption of free choice’. In Bananaworld, this assumption means that Alice’s choice
of peeling her banana from the stem or from the top end is independent of Bob’s choice
of the peeling of his banana (Bub, 2016, p. 95).

A strategy to simulate the EPR-correlation, without violating the no-signaling prin-
ciple and the assumption of free will would be to give Alice and Bob each two lists of
classical bits. The lists must contain at least as many bits as rounds of the game they
are going to play. They both get the same two lists, one for the S-peeling, called the
S-list, and one for the T -peeling, called the T -list. They then use the following strategy
(Bub, 2016, p. 53):

• if the prompt is S, the response is a bit from the S-list;

• if the prompt is T , the response is a bit from the T -list.

This strategy has a success rate of 100%. For if they get the same prompt, they respond
with the same bit, so the output is the same. But when they both get different prompts,
they respond with a bit from different lists and the chance of responding with the same
bit is 1

2 , because of the randomness of the lists.
Figure 3.2 shows an illustration from Bananaworld of the local simulation of the EPR-

correlation (Bub, 2016, p. 54).
In this simulation, the shared random variable is the intrinsic property, or ‘being-

thus’, of the bananas used in the game. Each pair of random bits from one of the lists
Alice and Bob have, is a shared random variable of the bananas (Bub, 2016, p. 53).
Like the lists that Alice and Bob have were generated before the simulation game and
are the same, this is a common cause explanation for the successful simulation of the
EPR-correlation.

3.4.3 Consequences

The conclusion Einstein, Podolsky, and Rosen draw from their argument is derived
from the possibility to simulate the classical correlations, which are involved in entan-
gled states of quantum mechanics that local resources (Bub, 2016, p. 49). In the simula-
tion of the EPR-argument, the local resources are the ‘being-thus’ of the systems, which
tells them there is a common cause explanation of the correlation. Therefore, a causal
relationship between the two systems can be excluded and the no-signaling principle
is satisfied (Bub, 2016, pp. 54-55).

The ‘being-thus’ of the system is an element of reality which quantum mechanics
does not describe. There is no common cause variable in the description, like |φ+〉, of a
quantum state. This is the argument Einstein, Podolsky, and Rosen used to claim that
quantum mechanics must be an incomplete theory (Bub, 2016, pp. 54-55).
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FIGURE 3.2: The Einstein-Podolsky-Rosen simulation game. Alice and
Bob can win the game if they respond on the basis of two shared random
lists of bits that they consult in order for each round of the game, an S-list
for S prompts and a T -list for T prompts. This is Round 4, the prompts
are both S, so according to the shared S-list, Alice and Bob both respond

with a 0 (Bub, 2016, p. 54).

3.5 Bell’s inequality and Bell’s theorem

A little less than thirty years after the EPR-argument, John Bell introduced what is
now known as ‘Bell’s inequality’. Every common cause explanation of a probabilistic
correlation between outcomes of measurements on two separate systems would have
to satisfy this inequality (Bub, 2016, p. 56).

Bub’s expression for Bell’s inequality in the case of the simulation game is given by

1

4
≤ pL(successful simulation) ≤ 3

4
(3.4)

where pL is the probability of success with local resources (Bub, 2016, p. 62). The
boundaries of pL will be discussed, based on the Popescu-Rohrlich correlation, together
with the proof of the inequality, in section 3.6.3.

Bell also showed that, when the inequality is violated, there are possible correla-
tions between two quantum systems without a common cause explanation and causal
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influence between the two systems. This result is known as ‘Bell’s theorem’ (Bub, 2016,
p. 56).

Bell’s original paper in 1964 tries to prove that not all correlations can be explained
by common causes. Bell wrote

In a theory in which parameter are added to quantum mechanics to deter-
mine the results of individual measurements [...] there must be a mecha-
nism whereby the setting of one measuring device can influence the read-
ing of another instrument, however remote. Moreover, the signal involved
must propagate instantaneously (Bell, 1964, p. 199).

He claims that even if a hidden variable would be introduced to quantum mechanics,
it should be nonlocal. Bell’s paper was intended to show that correlations explained by
a hidden variable, satisfy a certain inequality, and was not directly about other possible
explanations of the correlations. However, the paper is highly relevant because viola-
tion of the inequality is realized by the correlations of entangled quantum states (Bub,
2016, p. 60). This violation will be discussed in section 3.6.5.

Bell’s inequality can be violated by measurements of certain two-valued observ-
ables of a pair of quantum systems in an entangled state. Bell looked at the correlation
between outcomes of measuring different observables on two separated entangled sys-
tems, whereas Einstein, Podolsky, and Rosen based their argument on the correlation
between outcomes of measuring the same observable on two separated entangled sys-
tems (Bub, 2016, pp. 56-57). This proves that Einstein’s intuition about the correlations
of entangled quantum states, and the EPR-argument that depends on this intuition, is
wrong.

It took a number of years before Bell’s theorem and its implications became known
in the physics community. But after Alain Aspect and his colleagues did an experiment
on entangled photons and successfully confirmed the violation of Bell’s inequality in
the 1980s, more people became familiar with Bell’s theorem. In the 1990s this even
lead to a revolution in quantum information, which made foundational questions of
quantum mechanics more popular (Bub, 2016, p. 56).

3.6 Popescu-Rohrlich argument

Bub does not follow the exact argumentation of Bell, instead he uses a correlation in-
troduced by Sandu Popescu and Daniel Rohrlich to derive Bell’s theorem. This method
fits the other argumentation in the book, based on the simulation game played by Alice
and Bob, much better (Bub, 2016, p. 57).

The Popescu-Rorhlich argument, called PR-argument from now on, shows restric-
tions of simulating correlations when one is limited to using local resources only. It also
shows the possibility to have nonlocal correlations that are stronger than the correlation
of entangled quantum states, without violating the no-signaling principle (Bub, 2016,
p. vii). The original PR-argument is based on the ‘PR-box’, this gives the PR-correlation
that can be used for the bananas in Bananaworld too.

In the article in which they introduced the PR-box, Popescu and Rohrlich changed
the usual order in quantum mechanics, which is to derive nonlocality as a theorem
from indeterminacy as an axiom. They took nonlocality and relativistic causality as
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axioms to derive indeterminacy as a theorem. Their goal was to get a more funda-
mental description of quantum mechanics from this new approach. Bub uses some of
the same conclusions in Bananaworld as Popescu and Rohrlich, such as, the so-called
Tsirelson bound, and nonlocal correlations violating a version of Bell’s inequality: the
CSHS-inequality (Popescu and Rohrlich, 1994). These conclusions will be discussed in
sections 3.6.6 and 3.6.7 respectively.

3.6.1 Correlation

The correlation proposed by Popescu and Rohrlich is as follows (Bub, 2016, p. 57):

• if the inputs are 00, 01, 10, the outputs are the same, but if the inputs are 11 the
outputs are different;

• the marginal probabilities of the outputs 0 or 1 for any input separately are 1
2 .

In this case the two possible inputs of the PR-box are, just like the outputs, given by
0 and 1. The second condition of this correlation makes sure that the no-signaling
principle is satisfied.

Translated into terms of Bananaworld, this correlation becomes (Bub, 2016, p. 59):

• if the peelings are SS, ST , TS, the tastes are the same, 00 or 11;

• if the peelings are TT , the tastes are different, 01 or 10;

• the marginal probabilities for the tastes 0 or 1 if a banana is peeled S or T are
1
2 , irrespective of the taste of the paired banana and whether or not the paired
banana is peeled.

Again, the last condition guarantees that the no-signaling principle is satisfied.

3.6.2 Local simulation

For this correlation there is a successful strategy, which gives Alica and Bob a probabil-
ity 3

4 to win the game. This strategy would be to use a sufficiently long list of random
bits of which Alice and Bob each have a copy. They should respond to a prompt with
the bit on the shared list, in same order as on the list. Due to the random bits on the list,
they will satisfy the no-signaling condition in each round. They will win all rounds of
the simulation game for which the prompts are SS, ST , or TS, because they give the
same response. This means that they will ignore the prompt in each round, and always
respond with the same bit as the other. Therefore, they lose all rounds for which the
prompts are TT (Bub, 2016, p. 59).

This will be shown to be the optimal strategy for the simulation game of the PR-
correlation when limited to local resources in the next section. The local resource that
Alice and Bob used was the shared list of random bits playing the role of the common
cause of successfully simulating the correlation. Just as Alice and Bob only had their
common cause as a local resource, there do not exist any local resources in our real
world which can give a higher probability for success either. Therefore, in the real
world the optimal result of simulating PR-correlations with local resources is 3

4 , too
(Bub, 2016, p. 60).
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Given that this is the optimal strategy, this simulation shows that the 3
4 probability

of success is the highest possible and therefore is the upper bound of success with local
resources only, just like stated in Bell’s inequality, seen in equation 3.4.

3.6.3 Proof of Bell’s inequality

Bub uses a proof of Bell’s inequality as given in equation 3.4 from Gisin’s book Quantum
Chance: nonlocality, teleportation, and other quantum marvels. The proof is very straight-
forward and easy to understand when you use the Bananaworld simulation game for
the PR-correlation.

There are four different local strategies available to Alice and Bob individually.
They are responding with 0 to every prompt, responding with 1 to every prompt, re-
sponding with the same value as the prompt (0 for S and 1 for T ), and responding with
a different value as the prompt (1 for S and 0 for T ). The combination of the strategies
of Alice and Bob gives 16 possible local strategies in total. They are all represented in
table 3.1 (Bub, 2016, p. 61). Each of these 16 strategies represents a different common
cause, because each combined strategy gives Alice and Bob a different local instruction
set to respond (Bub, 2016, p. 63).

Alice’s
strategy

Bob’s
strategy

Response for
input SS

Response for
input ST

Response for
input TS

Response for
input TT

Score

0 0 00 00 00 00 3
0 1 01 01 01 01 1
0 same 00 01 00 01 3
0 different 01 00 01 00 1
1 0 10 10 10 10 1
1 1 11 11 11 11 3
1 same 10 11 10 11 1
1 different 11 10 11 10 3
same 0 00 00 10 10 3
same 1 01 01 11 11 1
same same 00 01 10 11 1
same different 01 00 11 10 3
different 0 10 10 00 00 1
different 1 11 11 01 01 3
different same 10 11 00 01 3
different different 11 10 01 00 1

TABLE 3.1: All possible response strategies for simulating the Popescu-
Rohrlich correlation. The correct responses are indicated in bold (Bub,

2016, p. 62).

As can be seen in the last column of table 3.1, no strategy is more successful than a
score of 3

4 , and no strategy less successful than a score of 1
4 . If all prompts are random,
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the probability of a successful simulation can be calculated with

p(success) =
1

4
[p(same output|SS) + p(same output|ST ) +

p(same output|TS) + p(different output|TT )]
(3.5)

because each possible pair of prompts SS, ST , TS, and TT occurs with the same prob-
ability of 1

4 (Bub, 2016, p. 62).
When you would look at all possible local strategies, this would give you that

1

4
≤ pL(successful simulation) ≤ 3

4
, (3.6)

which is the expression of Bell’s inequality as given in equation 3.4. And therefore, the
optimal strategy for simulating the PR-correlation with local resources is 3

4 (Bub, 2016,
p. 62).

If Alice and Bob both would not use a local strategy as mentioned above, but instead
give random responses to the given prompts, their probability for success would be 1

2 .
Their responses would be the same half of the rounds, and be different half of the
rounds, and therefore they would have a probability of 1

2 to successfully simulate the
PR-correlation (Bub, 2016, p. 62).

The fact that it is not possible to simulate the PR-correlation perfectly using local
resources, implies that the correlation cannot be explained by a common cause (Bub,
2016, p. 64). It calls for another explanation, which might be nonlocal, such as the
entangled states of quantum mechanics.

3.6.4 Clauser-Horne-Shimony-Holt version of Bell’s theorem

A number of alternative versions of Bell’s original inequality have been derived for
different sets of observables. One, introduced by John Clauser, Michael Horne, Abner
Shimony, and Richard Holt in their article ‘Proposed Experiment to Test Local Hidden-
Variable Theories’ (Clauser et al., 1969), is particularly useful in the argumentation of
Bananaworld and therefore also discussed by Bub.

Clauser et al. derived their inequality in 1969, five years after the paper which
introduced Bell’s original inequality. The practical use of the Clauser-Horne-Shimony-
Holt inequality, or CHSH-inequality, is mainly that it is easier to test experimentally
than Bell’s inequality (Bub, 2016, p. 64).

Bub derives the CHSH-inequality based on the simulation of the PR-correlation.
Only, instead of using 0 and 1 as outputs, he now writes ±1. The notation of the condi-
tional probabilities, such as p(responses same|A,B), is similar. Note that observables of
Alice and Bob,A andB, are separated by a comma to avoid confusion with the product
of the observables (Bub, 2016, p. 64).

Consider the expectation value of the product of the responses for a pair of Al-
ice’s and Bob’s observables, A and B, denoted by 〈AB〉. The expectation value is the
weighted sum of the products of the possible pairs of responses, with the probabilities
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for that pair of responses, it is given by:

〈AB〉 = p(−1,−1|A,B)− p(−1, 1|A,B)− p(1,−1|A,B) + p(1, 1|A,B)

= p(responses same|A,B)− p(responses different|A,B).
(3.7)

This expectation value depends on the choice of units for the output and is the reason
for choosing ±1 instead of 0 and 1 (Bub, 2016, pp. 64-65).

Because the sum of probabilities must be equal to 1, and thus

p(responses same|A,B) + p(responses different|A,B) = 1. (3.8)

The expectation value can now be expressed as (Bub, 2016, p. 65):

〈AB〉 = 2p(responses same|A,B)− 1 = 2p(responses different|A,B), (3.9)

and the probabilities can be written in terms of the expectation value (Bub, 2016, p. 65):

p(responses same|A,B) =
1 + 〈AB〉

2
, (3.10)

p(responses different|A,B) =
1− 〈AB〉

2
. (3.11)

Use this notation notation to rewrite the probability of successfully simulating the PR-
correlation as given in equation 3.5 yields:

p(success) =
1

4
[p(responses same|A,B) + p(responses same|A,B′)

+ p(responses same|A′, B) + p(responses different|A′, B′)]

=
1

4

(
1 + 〈AB〉

2
+

1 + 〈AB′〉
2

+
1 + 〈A′B〉

2
+

1− 〈A′B′〉
2

)
=

1

2

(
1 +

K

4

)
,

(3.12)

where A and A′, and B and B′ are the two possible observables for Alice and Bob
respectively, and

K = 〈AB〉+ 〈AB′〉+ 〈A′B〉 − 〈A′B′〉 (3.13)

is a variable (Bub, 2016, p. 65).
The value for K is determined by the expectation values, and therefore depends

of the kind of resources used to simulate the PR-correlation. In the next section the
value of K for local resources will be discusses. In the following sections, we will try
to increase the value for K to acquire a higher probability of successful simulation.

Local simulation

For the local simulation, Alice and Bob use a shared local variable, which we will de-
note by λ. This variable takes values from a finite set, for simplicity. So the value for
λ can be anything, with any probability, as long as the probabilities of λ’s add up to
1. The only condition is that the probability corresponding to λ is independent of the
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probability of the prompt. The probability of the prompt is determined by the moder-
ator giving the prompts, and should, in the ideal case, be equal for all prompts (Bub,
2016, p. 65).

Bub introduces the notation pλ(a|A) and pλ(b|B) for the probability that Alice re-
sponds with a given the prompt A, and that Bob responds with b given the prompt
B, respectively. Both probabilities depend on λ. For local simulation, the probability
of getting outputs a and b for inputs A and B, given local variable λ, is equal to the
product of the individual probabilities for Alice’s and Bob’s response:

pλ(a, b|A,B) = pλ(a|A) · pλ(b|B). (3.14)

On the contrary, for the PR-correlation between in- and outputs, this is not the case.
Without the given local variable λ, this correlation satisfies:

p(a, b|A,B) 6= p(a|A) · p(b|B) (3.15)

This difference is explained by the fact that in the case of the shared random variable λ,
Alice’s output for a given input and given λ cannot depend on Bob’s in- or output, and
conversely. In that case, the responses are uncorrelated, or conditionally statistically
independent, so they factorize as the product of the separate probabilities of Alice and
Bob (Bub, 2016, p. 66).

Conditional statistical independence is equivalent to two conditions on the proba-
bilities. The first is called ‘outcome independence’ and means that the probability for
the two possible outcomes, given the hidden variable and a certain input, is indepen-
dent of the outcome of the outcome of a measurement on an entangled particle. The
second condition is called ‘parameter independence’ and means that the probability for
the two possible outcomes, given the hidden variable and a certain input, is indepen-
dent of the direction of measurement, or input, of the entangled particle (Bub, 2018b,
pp. 75-76).

This distinction assures that Alice and Bob have no control over their outputs, but
guarantees that their choice of measurement can be chosen freely, or is random (Bub,
2018b, p. 76).

The difference between the uncorrelated joint probabilities, which depend on the
shared local variable, and the PR-correlated joint probabilities, is what limits the prob-
ability for success when simulating the PR-correlation with local resources (Bub, 2016,
p. 66).

Calculating the expectation value given the shared local variable λ can be achieved
by combining equations 3.7 and 3.14, which gives:

〈AB〉λ = pλ(−1,−1|A,B)− pλ(−1, 1|A,B)− pλ(1,−1|A,B) + pλ(1, 1|A,B)

= pλ(−1|A) · pλ(−1|B)− pλ(−1|A) · pλ(1|B)

− pλ(1|A) · pλ(−1|B) + pλ(1|A) · pλ(1|B)

= (pλ(1|A)− pλ(−1|A)) · (pλ(1|B)− pλ(−1|B))

= 〈A〉λ〈B〉λ.

(3.16)

Here 〈A〉λ and 〈B〉λ denote the expectation values for A and B weighed with the prob-
abilities corresponding to λ for 1 and -1 (Bub, 2016, pp. 66-67).
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With this result, the valueK for the local simulation can be determined for a certain
shared local variable λ:

Kλ = 〈A〉λ〈B〉λ + 〈A〉λ〈B
′〉λ + 〈A

′〉λ〈B〉λ − 〈A
′〉λ〈B

′〉λ
= 〈A〉λ

[
〈B〉λ + 〈B

′〉λ
]
+ 〈A′〉λ

[
〈B〉λ − 〈B

′〉λ
]
.

(3.17)

The possible numerical values for Kλ are determined by considering that 〈A〉λ, 〈A′〉λ,
〈B〉λ, and 〈B′〉λ all take their values between -1 and 1. This means that if the sum
[〈B〉λ + 〈B′〉λ] takes its maximum value of 2, the difference [〈B〉λ − 〈B′〉λ] is equal to 0,
and the other way around, if the difference [〈B〉λ − 〈B′〉λ] takes its maximum value of
2, the sum [〈B〉λ + 〈B′〉λ] is equal to 0. Analogously for the minimum values of the sum
and difference of the expectation values 〈B〉λ and 〈B′〉λ, when one of them is equal to
-2, and the other one is 0, and conversely. Combined with the maximum and minimum
values for 〈A〉λ and 〈A′〉λ, this gives that Kλ is bounded by -2 and 2. Averaging Kλ

over λ does not change the inequality, because 0 ≤ p(λ) ≤ 1. So for simulating the
PR-correlation with local resources, we have:

−2 ≤ KL ≤ 2. (3.18)

This is the CHSH-version of Bell’s theorem as given by Bub (Bub, 2016, pp. 67-68).
Inserting this upper boundary for KL into the CHSH-inequality as given in equation
3.12 gives

pL(successful simulation) ≤ 1

2

(
1 +

2

4

)
=

3

4
(3.19)

as the maximum probability of simulating the PR-correlation with local resources (Bub,
2016, p. 68).

3.6.5 Quantum simulation

After discussing the limits of local simulation of the PR-correlation, it is time to take a
look at simulations involving entangled quantum states, as described in section 3.2.2;
this is what we call quantum simulations.

Alice and Bob prepare pairs of photons in the maximally entangled state

|φ+〉 = 1√
2
|0〉|0〉+ 1√

2
|1〉|1〉. (3.20)

They each get one photon of each entangled pair en make sure they keep track of the
right order of the photons, so they will both use a photon of the same pair in each
round of the game. Alice measures the polarization of her photons in directions 0 and
π
4 , denoted by observables A and A′, when she gets the prompt S or T , respectively,
and Bob measures the polarization of his photons in directions π

8 and −π8 , denoted by
observables B and B′, when he gets the prompt S or T , respectively. These angles of
the polarization of the photons is represented in figure 3.3 (Bub, 2016, p. 70).

Between each of the pairs of observables A, B and A, B′ and A′, B, the angle is
π
8 . So when these are measured, the probability of getting the same result for both ob-
servables is cos2(π8 ) ≈ 0, 85. Analogously, the probability that these measurements give
different outputs is sin2(π8 ) ≈ 0, 15. The angle between measurements in directions of
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FIGURE 3.3: The polarization directions A, A′, B, and B′ for the optimal
quantum simulation of the PR-correlation (Bub, 2016, p. 70).

the pair A′, B′ is 3π
8 . Therefore, measurements in these directions give the same output

with probability cos2(3π8 ) = sin2(π8 ) ≈ 0, 15, and a different output with probability
sin2(3π8 ) = cos2(π8 ) ≈ 0, 85 (Bub, 2016, pp. 70-71).

This success rate is significantly higher than the result where local resources were
used. Furthermore, the probability for success is higher than the boundary of 3

4 given
by Bell’s inequality. This violation implies that the use of entangled quantum states
as a shared resource cannot be considered local. Therefore, it proves that, since the
existence of quantum entanglement has been experimentally verified, we live in a non-
local world, and there are correlations without a common cause explanation (Bub, 2016,
p. 64).

3.6.6 Optimal quantum simulation

To determine the maximum probability of successfully simulating the PR-correlation
with quantum resources, we need to determine the value of KQ, i.e. the quantum
mechanical value for K. Recall that the value for K is based on the expectation values
of the products of observables as described in section 3.6.4. Again, use the values ±1,
instead of 0 and 1, as outputs for the different observables to calculate the expectation
values of the products of observables. The calculation of the expectation values using
entangled quantum states is given by:

〈AB〉|φ+〉 = p(outcomes same|A,B)− p(ooutcomes different|A,B)

= cos2
(π
8

)
− sin2

(π
8

)
= cos

(
2 · π

8

)
= cos

(π
4

)
=

1√
2
.

(3.21)
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This gives the same values for 〈AB〉|φ+〉, 〈A′B〉|φ+〉, and 〈AB′〉|φ+〉, but a different value
for 〈A′B′〉|φ+〉, since 〈A′B′〉|φ+〉 = sin2

(
π
8

)
− cos2

(
π
8

)
= − cos

(
π
4

)
= − 1√

2
(Bub, 2016,

p. 71).
Now the value for KQ is (Bub, 2016, p. 71):

KQ = 〈AB〉|φ+〉 + 〈A
′B〉|φ+〉 + 〈AB

′〉|φ+〉 − 〈A
′B′〉|φ+〉 = 4 · 1√

2
= 2
√
2. (3.22)

This value is also known as the ‘Tsirelson bound’, named after Boris Tsirelson (some-
times spelled Cirel’son). It is the optimal value for simulating the PR-correlation with
quantum resources, but Bub does not prove in Banananworld why this is the case (Bub,
2016, p. 68).

Together with the CHSH-inequality in equation 3.12, this value for KQ gives the
probability of successfully simulating the PR-correlation with quantum resources (Bub,
2016, p. 71):

pQ(successful simulation) ≤
1

2

(
1 +

2
√
2

4

)
≈ 0, 85. (3.23)

3.6.7 Superquantum

Using quantum resources, the PR-correlation still cannot be simulated with a probabil-
ity for success of 1. However, there might be another kind of no-signaling resources
able to do so, Bub calls these ‘superquantum’ resources. Theoretically, achieving the
maximum probability of success for the PR-correlation with nonlocal superquantum
resources would require a value of K = 4. The first three terms need to take a value of
1, whereas the last term needs to be -1 to achieve this value for K (Bub, 2016, p. 69).

In the thought experiment of Bananaworld, bananas exhibiting such a superquantum
correlation are possible. But the question is now why we seem to be committed by the
Tsirelson bound in the real world. This question will be further discussed in section 3.9

3.7 Correlation arrays

Bub introduces a new notation for the PR-correlation. Given that Alice’s and Bob’s
inputs for the correlation are A and B respectively, and their outputs are given by a
and b respectively, each with possible values of 0 and 1, the correlation is given by:

a⊕ b = A ·B (3.24)

where ‘⊕’ is addition modulo 2, and ‘·’ is multiplication in the usual sense (Bub, 2016,
p. 89).

This correlation can also be represented in what is called a ‘correlation array’. In
the correlation array, all conditional probabilities for possible combinations of inputs
are listed in a table. The correlation array for the PR-correlation is given in table 3.2.
Often, the probability labels are dropped to make the array more readable (Bub, 2016,
pp. 89-90).

It is important to note that the probabilities in each cell of the table must add up to 1.
If you would have a deterministic correlation array, the only values for the probabilities
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Alice S T

Bob 0 1 0 1

S
0 p(00|SS) = 1

2 p(10|SS) = 0 p(00|TS) = 1
2 p(10|TS) = 0

1 p(01|SS) = 0 p(11|SS) = 1
2 p(01|TS) = 0 p(11|TS) = 1

2

T
0 p(00|ST ) = 1

2 p(10|ST ) = 0 p(00|TT ) = 0 p(10|TT ) = 1
2

1 p(01|ST ) = 0 p(11|ST ) = 1
2 p(00|SS) = 1

2 p(11|TT ) = 0

TABLE 3.2: The standard PR-correlation array (Bub, 2016, p. 89)
.

would be 0, and 1. The reason for this is that for a deterministic correlation, there is only
one possible set of outputs for each different input (Bub, 2016, pp. 108-109).

3.8 Polytope of no-signaling correlations

We have seen three different kinds of correlations that satisfy the no-signaling condi-
tion, namely classical, quantum, and superquantum correlations. In this section, the
relation between these correlations will be expressed geometrically (Bub, 2016, p. 106).

Figure 3.4 is what Bub calls “the key diagram for the narrative in the book” (Bub,
2016, p. 113). It is a schematic representation of the local polytope L, inside a convex
set Q, which in turn is inside the polytope representing all no-signaling correlations P
(Bub, 2016, p. 113).

FIGURE 3.4: A schematic representation of the different sorts of correla-
tions in Bananaworld (Bub, 2016, p. 107).
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To understand what this means, we first need to discuss the meaning of the word
‘polytope’. Polytopes are geometric objects with ‘flat’ sides in IRn, so they can exist
in any number of n dimensions. For example, a two-dimensional polytope is called a
‘polygon’, which is a plane figure such as an equilateral triangle. An important charac-
teristic of a polytope is that its boundary is given by different vertices joined by finite
straight line segments. This discussion will be limited to considering ‘convex’ poly-
topes, which means that no straight line between any two points in the polytope goes
outside the polytope. All polytopes are bounded by ‘facets’, which are multidimen-
sional analogues of what is a face of a ‘polyhedron’, a three-dimensional polytope. A
facet of a polytope always has one dimension less than the dimension of the polytope
(Bub, 2016, pp. 106-107).

All correlations that can be simulated by using local resources are represented by
the points inside the local polytope L. In Bananaworld this local correlation polytope
is a four-dimensional hyperoctahedron. A hyperoctahedron is a polytope defined by
eight vertices in four dimensions. The vertices each represent a local deterministic
correlation given by a particular correlation array, reduced to a correlation vector. This
particular representation was proposed by Itamar Pitowsky (Bub, 2016, pp. 107-108).

Pitowsky defines the correlation vector as p = (p11, p12, p21, p22). The components
pij are in this case the average values of the product of Alice’s and Bob’s output for a
measurement on an entangled pair of particles, denoted by sij = ±1. i = 1, 2 repre-
sents the observable Alice chooses to measure, and j = 1, 2 represents the observable
Bob chooses to measure (Pitowsky, 2008, p. 2). Just as in the derivation of the CSHS-
inequality, possible outputs of the measurements are set to be ±1 in this case.

If you consider all possible deterministic correlation arrays, so the ones with only
possible values for the probability of 0 and 1, there are in total 44 = 256 possibilities.
Now 240 of those correlation arrays violate the no-signaling principle, and hence rep-
resent nonlocal deterministic correlations. For those correlations, the joint probabilities
cannot be expressed as products of the individual local probabilities for Alice and Bob
(Bub, 2016, pp. 108-109).

The remaining 16 correlation arrays are local deterministic correlations that do not
violate the no-signaling principle. Each array can be represented by a point in an eight-
dimensional space. The number of dimensions is directly related to the number of
independent variables. Constraints used to reduce this number of dimensions are that
the sum of the probabilities should be equal to 1, and no-signaling conditions (Bub,
2016, p. 110).

The smallest closed convex set containing all these 16 points, is the local correlation
polytope L. The edges of this polytope all have length 1, because the coordinates of
the vertices are 0 or 1. Each point in the interior of the polytope represents a specific
mixture of probability distributions of deterministic arrays. Only the vertices are not
mixtures of this kind, because they are the extremal points of the polytope (Bub, 2016,
p. 110).

The 16 correlation arrays can be reduced to eight different correlation vectors. So
each correlation vector corresponds to a pair of correlation arrays. Instead of calcu-
lating the values for pij in the way Pitowsky does, taking the average values of the
products sij Bub determines the correlation vectors directly from the correlation ar-
rays. He gives each cell of the correlation array, which corresponds to certain values ij,
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a value -1 or 1, depending on whether the input value is different or the same as the
output value respectively. By doing this, he finds the same eight correlation vectors as
Pitowsky:

(1, 1, 1, 1), (1, 1,−1,−1), (1,−1, 1,−1), (1,−1,−1, 1),
(−1,−1,−1,−1), (−1,−1, 1, 1), (−1, 1, 1,−1), (−1, 1, 1,−1).

These eight vectors define the vertices of the four-dimensional hyperoctahedron L
(Bub, 2016, pp. 111-112).

Considering the correlation arrays for the PR-correlation, gives eight more correla-
tion vectors:

(1, 1, 1,−1), (1, 1,−1, 1), (1,−1, 1, 1), (−1, 1, 1, 1),
(−1,−1,−1, 1), (−1,−1, 1,−1), (−1, 1,−1,−1), (1,−1,−1,−1).

These vectors define eight points outside the local polytope. However, the eight local
correlation vectors and the eight additional correlation vectors derived from the PR-
correlation arrays together define the 16 vertices of a four-dimensional hypercube P .
This polytope contains all points representing no-signaling correlations, including the
local correlations of L (Bub, 2016, pp. 112-113).

Between the local polytope L and the nonlocal polytope P , there is a convex set
of points Q, of which the furthest points from the center are at the Tsirelson bound.
Q is not a polytope, because its boundary does not consist of ‘flat’ facets. In figure
3.4 it is represented as a circle, but this is not completely correct either. In reality, the
boundary of Q is a convex, but complicated three-dimensional region of points, with
extrema at the Tsirelson bound (Bub, 2016, p. 113). Note that the extrema are on the
Tsirelson bound, and explicitly, this means that the real bound of Q goes below this
bound. Therefore, there are non-quantum correlations below the Tsirelson bound (Bub,
2016, p. 182).

3.9 Why the quantum?

The question “Why the quantum?” is the title of one of the chapters of Bananaworld.
Bub explains that he got it from one of John Wheeler’s “Really Big Questions”. The
question has different interpretations, for example why the world is quantum rather
than classical, but also why the world is quantum rather than superquantum. This last
question was also asked by Popescu and Rohrlich when they introduced their argu-
ment of the existence of superquantum no-signaling correlations. In this context, the
question therefore is: “Why is there a Tsirelson bound?” (Bub, 2016, p. 181)

3.9.1 Information causality

In 2009, Marcin Pawłowki, Tomasz Paterek, Dagomir Kaszlikowski, Valerio Scarani,
Andreas Winter, and Marek Żukowski showed that a principle called ‘information
causality’ could explain the Tsirelson bound (Pawłowski et al., 2009). However, this
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principle does not answer the question “Why the quantum?” completely. Informa-
tion causality only fixes a part of the boundary between quantum and superquantum
correlations for two qubits (Bub, 2016, pp. 181-182).

There are many other principles that have been suggested to derive the Tsirelson
bound from. Even though some are more successful than others, none of them is com-
pletely satisfying, as they only exclude some superquantum correlations, but not all
(Bub, 2016, p. 183).

The no-signaling principle has come up many times. It limits the amount of infor-
mation that a receiver can get about the data set of the sender. Information causality is a
generalization of this principle. Consider the case in which Alice sends Bob a message
of M classical bits. According to the information causality principle, Bob cannot know
any more than M bits of Alice’s set from that message. The no-signaling principle is
the special case for M = 0, in which case there is no communication at all between
Alice and Bob. Classical and quantum correlations satisfy information causality, but
PR-correlations and a lot of superquantum correlations do not (Bub, 2016, p. 184).

The motivation for information causality as an information-theoretic principle is
that it excludes those PR-correlations and a lot of superquantum correlations which
seem ‘to good to be true’ (Bub, 2016, p. 187). The intuition that one cannot get more
information from the sender than was actually send to you therefore underlyies this
principle.
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Chapter 4

Different views of quantum
mechanics

4.1 Quantum information theory

The paper “A Mathematical Theory of Communication”, written by Claude Shannon,
can be seen as the beginning of information theory (Shannon, 1948). Shannon defined
a more technical notion of ‘information’ in contrast with the everyday concept of ‘in-
formation’ that is associated with knowledge, language, and meaning (Timpson, 2013,
p. 11). The technical notion of ‘information’ as described by Shannon is similar to the
meaning of ‘information’ meant in Bananaworld, because it is concerned with the cor-
relations of signals, which in this case come from experiments. This technical use of
‘information’ forms the basis of information theory.

In chapter 3 it was described how Bub introduced quantum information theory.
The information theoretic approach can be recognized in the description of quantum
mechanics in terms of inputs and outputs as (qu)bits with possible values 0 and 1. In
the following sections, a number of things will be discussed that are relevant for further
discussion and comparison with the minimal view of quantum mechanics.

4.1.1 Characteristics of Bub’s view

The most important assumption in Bub’s view of quantum mechanics is that the the-
ory is fundamentally a theory of information. He proposes that quantum mechanics
is about the structure of information, by which he means that quantum mechanics de-
scribes a structurally different kind of correlations from classical mechanics. These
correlations can be described using information theory (Bub, 2016, p. 6).

After using the information-theoretic framework to describe quantum mechanics,
there is another important characteristic of the view of quantum mechanics Bub presents
in Bananaworld. Which is similar to the approach proposed by Popescu and Rohrlich
(Popescu and Rohrlich, 1994). Instead of what many fundamental theories of quantum
mechanics do, namely deriving the nonlocal aspects of quantum mechanics from the
assumption of indeterminism, Popescu and Rohrlich, and also Bub, suggest to do it
the other way around. They combine nonlocality and relativistic causality as axioms to
derive intrinsic randomness as a theorem.

From this description of quantum mechanics ‘from the outside’, so without using
a formalism derived from quantum mechanics itself, Bub (and Popescu and Rohrlich)



28 Chapter 4. Different views of quantum mechanics

showed that there are more nonlocal correlations that satisfy the no-signaling princi-
ple than only the quantum correlations. These theoretically possible superquantum
correlations do not seem to exist in the real world.

4.1.2 Problems of Bub’s view

This sections introduces a number of problems with the view of quantum mechanics
that Bub described. It is not intended to describe all problems with his view, but is
only meant to pinpoint some of the bigger problems. It is important to discuss these
problems to make a fair comparison with the minimal view of quantum mechanics
later.

Information about what?

This question was asked by Bell. Like ‘measurement’, he did not like to use the term
‘information’ either, because according to him it had not place in a description of phys-
ical reality (Bell, 1990, p. 34). According to Christopher Timpson, when considering
that the quantum state represents information, there are two possible answers to this
question. The first is that information is about what the outcome of an experiment will
be, and the second is that information reveals something about a system prior to the
measurement, so it reveals a hidden-variable (Timpson, 2013, p. 146).

If the information represented by the quantum state only says something about the
outcome of the experiment, it is hard not to end up with an instrumentalist use of quan-
tum mechanics. Instead of telling you something about the quantum state itself, this
meaning of information only considers the quantum state as a device to calculate the
probabilities of all possible outcomes of experiments. This answer is not very com-
pelling as it does not result in a new interpretation of quantum mechanics (Timpson,
2013, p. 147).

The other answer to the question, about the information referring to a hidden vari-
able, is not very appealing either. Problems of the quantum state, such as the collapse
and nonlocality, are not solved when information is considered to refer to a hidden
variable. So this would not solve the problems posed by more traditional ways of
describing quantum mechanics either. Informationist would be aiming for an inter-
pretation of ‘information’ that would solve these problems, whereas this interpretation
only moves the problem from physical level to the level of knowledge about the system
(Timpson, 2013, p. 147).

Even though there are ways to avoid the problems posed by these two answers to
what the information refers to, they tend not to get any simpler. The question will
therefore be an obstacle for quantum information theory for as long as it lacks a clear
answer.

What the structure of information does not explain

Probably the hardest thing about the information theoretic approach to quantum me-
chanics is that it is hard to see how, and even if, it can explain important quantum
mechanical properties and phenomena. Examples of these are superconductivity, and
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symmetry breaking, which are explained by quantum mechanics, but cannot be di-
rectly explained by information theory yet. The problem therefore is that one would
expect that if these examples can be described in terms of quantum mechanics, and
quantum mechanics can be described in terms of the structure of information, then one
would expect that the examples can be described in terms of the structure of informa-
tion, too. However, this is way less obvious that it seems, and this causes a problem for
Bub’s theory.

Another kind of problem in this category can be explained by the example of entan-
glement. Clifton et al. used C*-algebras, from which entanglement follows automat-
ically given the mathematical machinery (Clifton, Bub, and Halvorson, 2003). How-
ever, if you dismiss the C*-algebraic framework and give a fully information-theoretic
characterization of quantum mechanics, as Bub himself did in his work, there is no ex-
planation for the existence of entanglement (Timpson, 2013, p. 171). So the approach
of quantum mechanics as explained by Bub can be used to describe systems in which
entanglement occurs, but it cannot explain why entanglement itself exists. Due to this
point of critique it is hard to see how the structure of information can be a fundamental
property of quantum mechanics.

Interpretational questions

One last problem with the theory described by Bub discussed here concerns the inter-
pretation of quantum mechanics. Bub claims that quantum mechanics is fundamen-
tally about the structure of information, but this does not necessarily lead to progress
on the part of the interpretation of quantum mechanics. The idea of quantum mechan-
ics as a theory of the structure of information leads to a new way of deriving the math-
ematical structure of quantum mechanics, but this structure can still be interpreted in
many different ways (Timpson, 2013, p. 175).

Bub has an answer to this problem, for he claims that some interpretations are for-
bidden by the axioms used in information theory (Timpson, 2013, p. 179). The three
axioms used in information theory are: (1) the one-world assumption, stating that a
measurement has a single outcome, (2) the assumption that quantum mechanics ap-
plies to systems of any complexity, including observers, and (3) self-consistency, in
particular agreement between an observer and a super-observer (Bub, 2018b, p. 226).

The Everettian interpretation rejects assumption (1), the one-world assumption, and
believes in many worlds. This interpretation is not very plausible, according to Bub,
when you consider, for example, the decision-theoretic account of the probabilistic cor-
relations that are already known to characterize Hilbert space uniquely (Bub, 2018b,
p. 226).

Another interpretation called quantum Bayesianism, or QBism in short, rejects as-
sumption (3), the self-consistency assumption. This interpretation is also information-
theoretic, because it understands all probabilities, including quantum probabilities, as
personal judgments of an agent, based on how the external world responds to actions
by the agent. This means that the perspectives of an observer and a super-observer do
not need to be consistent (Bub, 2018b, pp. 226-227).

The last possibility of rejecting one of the axioms is rejecting (2), the assumption that
quantum mechanics applies to systems of any complexity, including observers. Bub
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thinks rejecting this assumption comes closest to what Bohr and some other early pro-
ponents of the Copenhagen interpretations had in mind, and calls this the information-
theoretic interpretation. The main idea of this interpretation is that quantum proba-
bilities are probabilities of what will be found when a measurement is done with one
ultimate observer as a reference. This means that just one observer is legitimate in the
application of quantum mechanics, namely the perspective of the observer for whom
an actual measurement outcome occurs at the macrolevel (Bub, 2018b, pp. 227-229).

4.2 Comparison

In this section of this thesis, two approaches or views of quantum mechanics will be
compared. The goal is not to choose which one is better, but to see what the differences
and/or similarities are and where they could complement each other.

4.2.1 Minimal view

To make a good comparison, it is important to define what is meant by the minimal
view of quantum mechanics. A description as detailed as the one of quantum infor-
mation theory will not be given here. Instead, some key properties of the minimal
description will be given and taken as a basis to compare the two different views on.
This explanation of the minimal view will be based mostly on what is taught in the
mandatory quantum mechanics classes of the bachelor Physics at the Radboud Univer-
sity.

As said in the introduction, the minimal view is focused on ‘doing’ rather than
‘understanding’. The important difference between these two is that ‘doing’ is about
using the formalism and does not really care about where the formalism comes from
as long as the results correctly describe their experiments. For ‘understanding’ on the
other hand, the main goal is rather to find out why a certain explanation can be used
and why its limits are where they are.

For ‘doing’, or ‘using’, quantum mechanics, important concepts are for example
the Schrödinger equation, wave functions, eigenstates and eigenfunctions, boundary
conditions, and operators. These are all more or less concepts which can be applied
without understanding their meaning in reality. You have to familiarize yourself with
the notation and relations between them, but asking questions about the interpretation
of quantum mechanics is not the purpose of the minimal view (Sudbury, 1986).

4.2.2 Relating the two

Some of the relations between the two views of quantum mechanics are discussed
by Bub in “Supplement: Some Mathematical Machinery” of Bananaworld (Bub, 2018b,
pp. 233-267). That is also the part of the book in which most elements of the minimal
view of quantum mechanics can be recognized. In this part, Bub explains some things
about, for example, the Dirac notation, Pauli spin operators, and the Schrödinger equa-
tion. However, the link between this section and the rest of the book is limited to
relating peelings of the bananas to measuring different observables on particles. After
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relating those, the discussion continues in a minimal direction, by deriving other prop-
erties, and stays silent about explaining those properties in an information-theoretic
framework.

As discussed in the section about the problems of quantum information theory, this
seems to imply that there is a possible relation between the phenomena explained by
quantum mechanics and the information-theoretic description of quantum mechanics.
However, this relation is still largely unknown, or at least is not discussed by Bub.

It seems here that there is still a large gap between describing quantum mechanics
‘from the inside’, by using a an appropriate mathematical framework based on Hilbert
spaces, and ‘from the outside’, by describing quantum mechanics as the nonlocal corre-
lations bounded by the Tsirelson bound. However, to complete our picture of quantum
mechanics, this gap should eventually close, because in the end they are both descrip-
tions of a single concept of quantum mechanics.





33

Chapter 5

Conclusion

What can finally be said about the fact that the questions addressed by Bub in Banana-
world are not discussed in the courses about quantum mechanics at Radboud Univer-
sity? One could argue that it is sufficient for the students to be taught how to use
quantum mechanics. However, if this change of perspective on quantum mechanics is
a new revolution in quantum mechanics, as Bub calls it, shouldn’t it get more attention
in the curriculum?

For me, reading Bananaworld has given me access to a whole new ‘world of quantum
mechanics’, namely the possibility of describing it in terms of probabilistic correlations.
Apart from the fact that this new kind of formalism is very interesting in itself, I think
the questions it raises about the foundations of quantum mechanics are even more
important. The discussions about the implications of this view may not have been
finished, but the new questions it raises might just stimulate students to do what they
are supposed to do in my opinion: think for themselves.

Teaching students which calculation to use in which situation might be hard enough
for quantum mechanics, but focusing only on this part in the mandatory courses, and
not even giving students the option to explore other approaches in optional courses, is
in my opinion a missed opportunity.

I would therefore surely recommend my fellow students to read some of the recent
papers published on the subject of foundations of quantum mechanics. Indeed, when
you start looking into this, suddenly you see it popping up everywhere and realize that
this is a very hot topic in contemporary physics, especially quantum computation and
quantum information theory.

Eventually, I hope that foundations of quantum mechanics will receive more atten-
tion, both in general and at Radboud University, and more answers will be found to
the questions still open. It would be great if in a number of years, the two approaches
can be seen as describing one and the same theory, instead of being separated by a gap
as it seems to be right now.
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Appendix A

Review of Bananaworld

In this appendix I will give my opinion of the book Bananaworld: Quantum Mechanics for
Primates. The focus will be on the way Bub presents the subject, the examples he uses,
the structure of the book, et cetera. To review the book thoroughly, I came up with
different criteria: goal, content, structure, presentation, and overall conclusion. These
criteria will be discussed separately.

A.1 Goal

Bub’s goal was to write a book for a public not only consisting of experts in physics
and mathematics, but also of people interested in foundations of quantum mechanics
without having the physical and mathematical background. It is quite hard to write a
good book for such a broad public. You have to simplify many things, but also keep it
interesting for the people who do have a background in physics or mathematics.

In my opinion, Bub partly succeeded. By explaining many of the more technical
concepts in the “More”-sections and in the mathematical supplements at the end of
each chapter, and the end of the book, respectively, he managed to take most technical-
ities out of the main parts of the book. However, there were still some difficult concepts
which could not be avoided in the main text, and I would not expect people without a
mathematical background to be able to grasp those.

Another goal of Bananaworld is to convince people that quantum mechanics really
is about information theory, rather than about something else like wave functions, and
I think he did succeed in achieving this. I will not claim that everyone who reads this
book will convert from, for example, thinking that quantum mechanics is about quan-
tized energy to agreeing with Bub that it is really about the structure of information.
But I do think that after reading the book, you cannot convincingly deny that informa-
tion theory is an important view on quantum mechanics that cannot be ignored.

A.2 Content

The book covers a lot of ground. In a way the subjects are all quite well related to
each other. However, I think Bub maybe tried to explain too much. Therefore I chose
to only summarize parts of six of the ten chapters of the book for this thesis. In the
other chapters he discusses, for example, some more correlations that can be simulated
with PR-bananas, and more examples of different kinds of simulation games. Even
though those can be helpful towards explaining more aspects and applications of the
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PR-bananas, I think they might distract from the important message of the book as
well.

A.3 Structure

The use of short summaries in each chapter was very useful. The main points of the
sections were repeated in those text boxes, and were not only useful to look back after
reading a few more chapters, but also really helped to check if you understood the most
important message of each section.

I have some doubts about the choice of the order of discussing some subjects. For
example, explaining the concept of entangled photons so early, far before using them
for quantum simulations, was strange to me at first even as a physics student. How-
ever, I saw eventually the logic of that choice, because the information about bits and
qubits was very useful at that point of the argumentation. So it is quite hard to decide
when to introduce which concepts, and even though I still do not agree with all choices,
I think Bub did quite well.

Related to what I said about the content of the book, I think some parts are ex-
plained very elaborately, even though they might not be that important. Many, in my
view, very important arguments are all put all together in the chapter “Bananaworld”,
whereas Bub describes many different examples of using PR-correlations extensively
in different chapters. I think the focus could be more on the argumentation, but I can
imagine other people have different preferences.

A.4 Presentation

The most important and novel aspect of the presentation of quantum information the-
ory in Bananaworld is the thought experiment using bananas of the imaginary Banana-
world island. Even though it adds a fun element to the book, also because of the beau-
tiful drawings, I think it does not really add anything to the argumentation. Bub is in
my view not really consistent in using the bananas and the better known ‘boxes’. Fur-
thermore, he mentions that things that are proven with the thought experiments of the
bananas also say something about the real world. However, eventually he discusses
numerous characteristics and implications of the non-physical PR-bananas, which do
not have an analogue in our real world. Therefore, the example of the bananas is still
not much easier to grasp than the conceptual boxes.

A.5 Overall conclusion

My overall conclusion of the book is that it is a good introduction to quantum infor-
mation theory, but the difficulty should not be underestimated. It contains many of
the most important results from articles in the field, not only historically like the EPR-
article, but also more recent results. Some more difficult articles are explained really
well by translating them to the easier examples in the book. However, the banana-
analogue of the boxes does not contribute very much except for the fun-part.



A.5. Overall conclusion 37

For me, the book has been my first introduction to quantum information theory. It
has really broadened my view of quantum mechanics and has triggered my interest in
the foundations of quantum mechanics. I read most parts of the book multiple times,
and that contributed to understanding it. After getting the whole picture of the theory,
it was easier for me to understand the smaller concepts and see the relation to the bigger
picture, but I guess that applies to all serious books and theories.
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