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1 Introduction

Noncommutative geometry has roots in and is a synthesis of a number of diverse areas
of mathematics, including:

• Hilbert space and single operator theory;

• Operator algebras (C*-algebras and von Neumann algebras);

• Spin geometry – Dirac operators – index theory;

• Algebraic topology – homological algebra.

It has certainly also been inspired by quantum mechanics, and, besides feedback to the
above areas that it comes from, noncommutative geometry has applications to (at least):

1. Foliation theory;

2. Number theory – arithmetic algebraic geometry;

3. Deformation theory – quantization theory;

4. Quantum field theory – renormalization;

5. Elementary particle physics – Standard Model;

6. Solid state physics – Quantum Hall effect;

In this sense, as a general mathematical formalism with such a wide range of deep appli-
cations to both mathematics and physics, noncommutative geometry may be compared
with Newton’s calculus. The interaction between the above areas plays an important
role in noncommutative geometry, especially the unexpected use of tools from algebraic
topology (like K-theory) and homological algebra (like Hochschild (co)homology) in the
context of operator algebras and more general complex associative algebras. But the re-
verse direction, where operator techniques are e.g. used to redevelop and generalize spin
geometry and index theory, is at least as fruitful and is arguably even more unexpected.

The history of noncommutative geometry goes back to John von Neumann’s work on
the mathematical structure of quantum physics, as presented in his book Mathematische
Grundlagen der Quantenmechanik (Springer, 1932), and his subsequent invention of the
theory of operator algebras (written down is a series of papers published between 1936
and 1949, partly with his assistant F.J. Murray). Other events of great importance to
noncommutative geometry were the definition of C*-algebras and the first results in this
area by Gelfand and Naimark in 1943, and the development of index theory by Atiyah
and Singer from 1968 onwards.

Connes himself brought the “introverted” period in the history of operator algebras
to a close with his magnificent classification of injective factors in 1976, and subsequently
opened up the field by relating it to foliated manifolds and index theory. This led to
a series of papers by Connes in the period 1979-1985 that launched noncommutative
geometry as a new area of mathematics. An important feature of this area was and is the
interplay between abstract theory and examples; what makes it difficult to enter the field
is that both theory and examples are technically quite complicated.
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From about 1995, the notion of a spectral triple began to play a dominant role in
noncommutative geometry. This made the field more accessible, since unlike techniques
like K-theory and cyclic cohomology, spectral triples are quite concrete objects, which can
be studied using standard techniques in Hilbert space. Perhaps it is worth saying that
the alternation of periods in which noncommutative geometry undergoes a more abstract
development with periods where Hilbert space techniques are predominant reflects the
dual nature of C*-algebras, which may be seen as either abstract Banach algebras, or
concrete operator algebras on Hilbert space.

A basic library in noncommutative geometry should at least include:

• Alain Connes, Noncommutative Geometry (Academic Press, 1994), the Old Testament;

• Alain Connes and Matilde Marcolli, Noncommutative Geometry, Quantum Fields, and
Motives (Hindawi/AMS, 2008), the New Testament;

• J.M. Gracia-Bondia, J.C. Varilly, H. Figueroa, Elements of Noncommutative Geometry
(Birkhäuser, 2001), the Exegesis.

All of these are easily found online. Recent introductions include J. Varilly, An Intro-
duction to Noncommutative Geometry (EMS, 2006) and M. Khalkhali, Basic Noncommutative
Geometry (EMS, 2009), which are best read in the opposite order (in that Khalkhali is
more introductory than Varilly). On specialized topics within noncommutative geom-
etry or at its interface with neighbouring areas of mathematics, the following technical
monographs are useful: B. Blackadar, K-Theory for Operator Algebras (CUP, 1998); N.
Higson and J. Roe, Analytic K-Homology (OUP, 2000), and J.-L. Loday. Cyclic Homology
(Springer, 1998). Online lecture notes include R. Wulkenhaar, Spektrale Tripel (German),1

wwwmath.uni-muenster.de/u/raimar/lehre/WS08/SpektraleTripel/index.html

and Lecture Notes on C*-algebras and K-theory (2003-2004) by the present author, at
remote.science.uva.nl/∼npl/CK.html.

The basic strategy of noncommutative geometry is the following procedure:

1. Reformulate some object/notion from topology or geometry in terms of a commuta-
tive (and associative) algebra (over C) and possible other operator-theoretic data;2

2. Check the validity of this reformulation through a reconstruction theorem, stating that
the original object can be recovered from these data up to isomorphism (preferably
as a categorical duality);

3. Try to define the corresponding “noncommutative” object by simply dropping the
commutativity of the algebra in step 1, and see where you get!

The third step is a cardinal change compared with algebraic geometry, which also in-
volves steps 1 and 2, even in quite perfect form: Grothendieck’s correspondence between
affine schemes and commutative rings is indeed a categorical duality.

1No typo! Its is really wwwmath.uni-muenster.de rather than www.math.uni-muenster.de.
2So far, the commutative algebras in question tend to be defined over C, but this may change!



1 INTRODUCTION 4

The motivating example for this strategy is, as well as its most perfect realization is,
of course, the Gelfand Duality Theorem for commutative C*-algebras.3

Here the starting object from topology is a compact Hausdorff space X, which defines
a commutative algebra A = C(X) ≡ C(X,C). In order to reconstruct X from A, the latter
needs to be seen as a unital commutative C*-algebra. Note that the map X 7→ C(X)
extends to a contravariant functor C from the category CH of compact Hausdorff spaces
(as objects) and continuous maps (as arrows) to the category UCCA of unital commutative
C*-algebras (as objects) and unital *-homomorphisms (as arrows), since a map ϕ : X→ Y
induces the pullback ϕ∗ : C(Y) → C(X) (i.e. ϕ∗( f ) = f ◦ ϕ), with the right behaviour for
functoriality. In a contravariant situation like this, it is often convenient to say that C is a
functor from CH to the opposite category UCCA

op
, in which the direction of each arrow is

reversed.
The key to the reconstruction of X from C(X) is the Gelfand spectrum Σ(A) of a (unital)

commutative C*-algebra A. As a set, Σ(A) consists of all nonzero multiplicative functionals
ϕ : A → C, equipped with the topology of pointwise convergence (i.e. ϕn → ϕ iff
ϕn(a) → ϕ(a) for all a ∈ A).4 The map A 7→ Σ(A) extends to a functor Σ : UCCA → CH

op

by pullback, too, and the pair (C,Σ) defines a duality between the categories CH and UCCA
(in other words, an equivalence between CH and UCCA

op
). This means, in particular, that

Σ(C(X)) � X; (1)
C(Σ(A)) � A, (2)

for all compact Hausdorff spaces X and all unital commutative C*-algebras A. The first
isomorphism is x 7→ evx, with x ∈ X and the evaluation map evx ∈ Σ(C(X)) given by
evx( f ) = f (x). The second isomorphism is implemented by the famous Gelfand transform
a 7→ â, where a ∈ A and â ∈ C(Σ(A)) is defined by â(ϕ) = ϕ(x).

Finally, the grand move, i.e. step 3, is to declare that a “noncommutative space” is an
arbitrary C*-algebra. This is a well-defined notion, which forms the basis of noncommuta-
tive geometry. The (second) Gelfand–Naimark Theorem, stating that any C*-algebra has

3Despite its perfection, one should realize that this is by no means the only way to proceed. If one likes
order theory instead of operator algebras, an alternative way to capture the notion of a topological space
X algebraically is to regard the topology O(X) as a frame; this is a complete distributive lattice such that
x ∧

∨
λ yλ =

∨
λ x ∧ yλ for arbitrary families {yλ} (and not just for finite ones, in which case the said property

follows from the definition of a distributive lattice). Indeed, the topologyO(X) of any space X is a frame with
U 6 V if U ⊆ V. However, just like the fact that not any commutative unital algebra A per se is of the form
A � C(X) for some space X – motivating the idea of regarding C(X) as a commutative unital C*-algebra in
order to have a good reconstruction theorem – there are frames that are not isomorphic toO(X) for some space
X. To put this right, one defines a point of a frame F as a frame map ϕ : F → {0, 1} ≡ O(∗), where a frame map
preserves finite meets and arbitrary joins. The set Pt(F ) of points of a frameF may be topologized in a natural
way by declaring its opens to be the subsets of Pt(F ) that are of the form Pt(U) = {ϕ ∈ Pt(F ) | ϕ−1(U) = 1},
where U ∈ F . We say that a frame F is spatial if it is isomorphic (in the category of frames) to O(Pt(F )).
A topological space X is called sober if it is homeomorphic to Pt(O(X)). This leads, almost by definition, to
a categorical duality between spatial frames and sober spaces. The move of defining ‘generalised spaces’
in this context, analogous to regarding a C*-algebra as a ‘noncommutative space’, would be to say that a
generalised space is an arbitrary frame. See, for example, S. Mac Lane and I. Moerdijk, Sheaves in Geometry
and Logic: A First Introduction to Topos Theory (Springer, New York, 1992). The connection between this
lattice-theoretic notion of a generalized space and a noncommutative space is explained in C. Heunen, N.P.
Landsman, and B. Spitters, A topos for algebraic quantum theory, Commun. Math. Phys. 291, 63–110 (2009).

4Strictly speaking, this only defines the correct topology on Σ(A) if it is metrisable, which is the case iff A
is norm-separable. In general, the topology on Σ(A) is defined by specifying the following base of open sets:
for each ε > 0,n ∈ N, a1, . . . , an ∈ A, ϕ0 ∈ Σ(A), take {ϕ ∈ Σ(A) | |ϕ(ai) − ϕ0(ai)| < ε∀ i = 1, . . . ,n}.
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a faithful representation on some Hilbert space (and that conversely any norm-closed in-
volutive subalgebra of B(H) is a C*-algebra) then explains the importance of Hilbert space
theory in the noncommutative geometry; this role has no counterpart in algebraic geom-
etry and is responsible for the intimate connection between noncommutative geometry
and quantum physics (whose mathematical formalism is based on Hilbert spaces).

The next example of the “strategy” comes from complex vector bundles E π
→ X. Step 1 is

implemented by passing to

Γ(X,E) ≡ Γ(E) = {σ : X→ E | π ◦ σ = idX}, (3)

where we assume that σ, like π, is continuous (this is implicit in our definition of arrows).
Observation 1 is that Γ(E) is a (right) module over C(X), with σ· f , f ∈ C(X), simply defined
by σ · f (x) = σ(x) f (x). But just looking at right C(X) modules is not enough to reconstruct
vector bundels over X. The key observation is that Γ(E) is finitely generated projective over
C(X). We say that a right module E over some algebra A is finitely generated projective
or f.g.p. if E is isomorphic (as a right A-module) to p(⊕nA), for some n, with p ∈ Mn(A)
(in which case we may assume that p2 = p). Here ⊕nA ≡ An is the direct sum of n copies
of A, seen as a right-module over itself through right-multiplication (n times extended to
the direct sum), and Mn(A) is the algebra of n × n matrices with entries in A. The map
p : An

→ An is A-linear and hence an element of Mn(A), acting on An from the left in the
obvious way.

The technical step in proving this is the property of complementation of vector bundles:
if E π

→ X is a vector bundle over a (locally) compact Hausdorff space X, there exists

another vector bundle F π′
→ X such that E ⊕ F is trivial, i.e. isomorphic to Cn

×X for some
n. From this, the property that Γ(E) is f.g.p. over C(X) easily follows: construct p as in

p : C(X)n
→ C(X,Cn)→ Γ(X,Cn

× X)→ Γ(E ⊕ F)→ Γ(E) ⊕ Γ(F)→ Γ(E),

where the first four arrows are the obvious isomorphisms and the last one is projection
onto the first component.

Subsequently, one can prove that, for given unital commutative C*-algebra A, the
category of f.g.p. (right) A-modules is dual to the category of vector bundles over Σ(A),
for fixed A. We will not do this in detail, but just mention the key steps, drawing attention
to the analogy with Gelfand duality.

The passage from vector bundles over X to f.g.p. (right) C(X)-modules has just been
dealt with. The first step in the opposite direction, of course, is to pass from A to Σ(A),
which we write as X, so that henceforth we may assume that a given f.g.p. A-module E is
in fact a C(X)-module. Subsequently, the fibers Ex of E =

⋃
x∈X Ex are defined as

Ex = E/E · C(X; x), (4)

where C(X; x) = { f ∈ C(X) | f (x) = 0}. This also yields a canonical projection πx : E → Ex
and hence a “Gelfand transform” σ 7→ σ̂, where σ ∈ E and σ̂ : X → E is given by σ̂(x) =
πx(σ). Clearly, σ̂(x) ∈ Ex, i.e., π ◦ σ̂ = idX in terms of the obvious projection π : E→ X. We
now define the topology on E as the weakest one such that Γ(E) = {σ̂ | σ ∈ E}; a base for
this topology is simply given by the collection of all U ⊂ E for which σ̂−1(U) ∈ O(X) for
all σ.

Finally, by step 3, a “noncommutative vector bundle” over a “noncommutative space”
A (in the guise of a C*-algebra) is then simply defined as a f.g.p. right A-module. This is



1 INTRODUCTION 6

somewhat unsatisfactory, because the notion of f.g.p. is purely algebraic and lacks contact
with Hilbert spaces and operator algebras. To put this right, we introduce the following:

Definition 1.1 A Hilbert module over a C*-algebra A is a complete right A-module E with a
C-sequilinear map 〈 , 〉 : E × E → A, called an A-valued inner product, satisfying

〈ψ,ϕ〉∗ = 〈ϕ,ψ〉; (5)
〈ψ,ϕ〉a = 〈ψ,ϕa〉; (6)
〈ψ,ψ〉 ≥ 0; (7)

〈ψ,ψ〉 = 0 ⇔ ψ = 0, (8)

for all ψ,ϕ ∈ E, a ∈ A. The requirement that E be complete refers to the norm

‖ψ‖2 = ‖〈ψ,ψ〉‖A. (9)

Note that (9) indeed defines a norm on E because of (8).

The three main classes of examples are:

1. Hermitian vector bundles. If a complex vector bundle E π
→ X is equipped with a

hermitian structure,5 then E = Γ(E) is a Hilbert C(X)-module in the obvious way, i.e.
〈ψ,ϕ〉(x) = (ψ(x), ϕ(x))x. Conversely, each f.g.p. Hilbert C(X)-module is of this form.

2. Hilbert spaces. Each Hilbert space is obviously a Hilbert C-module.

3. C*-algebras. Each C*-algebra A is a Hilbert A-module with right-module structure
given by right-multiplication and 〈a, b〉 = a∗b. Note that the norm (9) coincides with
the original norm of A because of the C*-axiom ‖a∗a‖ = ‖a‖2.

Thus Hilbert modules generalize Hermitian vector bundles, Hilbert spaces, and C*-
algebras, forming an ideal concept in noncommutative geometry. However, it is precisely
this diversity that makes a reconstruction theorem unfeasible.

What’s the next step? Ome might try to make the notion of a manifold “noncommuta-
tive”, and indeed this has been done, leading to all sorts of “noncommutative differential
calculi”. Or perhaps one should focus on Riemannian manifolds? It was one of Connes’s
most penetrating insights, however, that it is the class of spin manifolds that leads to the
most attractive noncommutative generalization in the form of (real) spectral triples. To
understand the complete definition of a real spectral triple, it is mandatory to start with
the commutative case.6

Hence we are now going to enter the world of Clifford algebras and Dirac operators,
with Varilly’s notes Dirac Operators and Spectral Geometry as our guide. Whenever we
expand on his notes, this will usually have the purpose of clarifying the underlying ideas
from classical (i.e. ‘commutative’) geometry a bit more.

5This is a family of inner products ( , )x in Ex that is continuous in x in the sense that for all σ, τ ∈ Γ(E), the
function x 7→ (σ(x), τ(x))x is in C(X).

6Warning: the reconstruction theorem for real spectral triples is extremely difficult; see Alain Connes,
On the spectral characterization of manifolds, arXiv:0810.2088. Before the appearance of this paper, even
some of the best experts in noncommutative geometry had published incorrect versions and/or proofs of this
theorem. The lecture notes by Wulkenhaar cited earlier give a nice introduction to Connes’s paper.
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2 Clifford algebras and spinor representations

2.1 Definition of Cl(V, g)

Let V � Rn be a real finite-dimensional vector space. The tensor algebra

(T(V), ι : V ↪→ T(V))

is (by definition) the solution to the following universal problem: given a linear map ϕ :
V → A from V into a real associative algebra A, there is a unique algebra homomorphism
α : T(V) → A such that ϕ = α ◦ ι. The solution of any universal problem is only defined
up to isomorphism (in this case, in the category of real associative algebras); the simplest
realization of T(V) is

T(V) =

∞⊕
p=0

V⊗p, (10)

where V⊗p
≡ ⊗

pV is the p-times tensor product of V with itself, V⊗0
≡ R, and the direct

sum is meant to be algebraic, i.e. there are only finitely many terms in each element of
T(V). These elements, then, are linear combinations of terms of the form v1⊗ · · ·⊗vp, with
vi ∈ V. The algebra structure of T(V) is given by concatenation, i.e.

v1 ⊗ · · · ⊗ vp · w1 ⊗ · · · ⊗ wq = v1 ⊗ · · · ⊗ vp ⊗ w1 ⊗ · · · ⊗ wq, (11)

so that, symbolically, V⊗p
· V⊗q

→ V⊗(p+q). The injection ι is given by ι(v) = v, seen as an
element of V⊗1 = V, and the map α in the definition is just given by linear extension of

α(v1 ⊗ · · · ⊗ vp) = ϕ(v1) · · ·ϕ(vp). (12)

Now suppose the map ϕ is, in addition, supposed to satisfy7

ϕ(v)ϕ(w) = −ϕ(w)ϕ(w). (13)

The corresponding universal problem for such maps is solved by the exterior algebra

Λ•(V) =

n⊕
p=0

V⊗Ap, (14)

where n = dim(V) and V⊗Ap is the antisymmetrized tensor product of p copies of V. This
is the subspace of V⊗p spanned by totally antisymmetric expressions of the form

v1 ∧ · · · ∧ vp =
1
p!

∑
σ∈Πp

(−1)|σ|vσ(1) ⊗ · · · ⊗ vσ(p), (15)

where Πp is the symmetric group (aka permutation group) on p symbols and |σ| = 0, 1 is
the signature of σ ∈ Πp. One may also realize Λ•(V) as

Λ•(V) � T(V)/IA, (16)

7Similarly, the universal problem for maps satisfying ϕ(v)ϕ(w) = ϕ(w)ϕ(w) is solved by the symmetric
algebra S(V) =

⊕n
p=0 V⊗Sp, where V⊗Sp is the totally symmetrized tensor product of p copies of V.
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where IA is the two-sided ideal in T(V) generated by v ⊗ v for all v ∈ V, or, equivalently,
by v ⊗ w + w ⊗ v for all v,w ∈ V. The connection between (14) and (16) is as follows: if
π : T(V)→ T(V)/IA is the canonical projection, then π(v1⊗ · · ·⊗vp) 7→ v1∧· · ·∧vp defines
an isomorphismπ(V⊗p)→ V⊗Ap for each p, and hence an isomorphism T(V)/IA → Λ•(V),
the right-hand side being defined as in (14).

Now suppose V is equipped with a bilinear form g : V × V → R. We may then look for
solutions of the universal problem for maps ϕ : V → A satisfying

ϕ(v)ϕ(w) + ϕ(w)ϕ(v) = 2g(v,w). (17)

This solution exists and is called the Clifford algebra Cl(V, g). It may be realized in the spirit
of (16) as

Λ•(V) = T(V)/Ig, (18)

where Ig is the two-sided ideal in T(V) generated by v ⊗ v − g(v, v) for all v ∈ V, or,
equivalently, by v⊗w+w⊗v−2g(v,w) for all v,w ∈ V. In terms of the canonical projection
πg : T(V)→ T(V)/Ig, we often write

v1 · · · vp = πg(v1 ⊗ · · · ⊗ vp), (19)

and, with slight abuse of notation,

v1 ∧ · · · ∧ vp = πg(v1 ∧ · · · ∧ vp). (20)

In the latter case, we should carefully note whether we regard v1 ∧ · · · ∧ vp as an element
of Λ•(V) or of Cl(V, g). Using the notation (19), we have

vw + wv = 2g(v,w), (21)

also if each side is sandwiched between other terms. Hence expressions of the type
v1 · · · vp can often be simplified, whereas in v1 ∧ · · · ∧ vp – seen as an element of Cl(V, g) –
no rewriting is possible, since no symmetric terms of the kind vw + wv occur. Removing
all symmetric occurrences in favour of factors g and terms of lower degree (in p), one can
reduce any term of the form (19) to terms of the form (20). It follows that

Cl(V, g) � Λ•(V) (22)

as vector spaces, and that each side has the following basis, defined in terms of a basis
(ei)n

i=1 of V:
1, e1, . . . , en, e1 ∧ e2, . . . , e1 ∧ · · · ∧ en. (23)

Hence, up to a ±1 sign, each subset S of n = {1, . . . ,n} defines a basis vector, consisting
of the antisymmetrized product of all basis vectors ei corresponding to elements of S.
Therefore, with n = dim(V),

dim(Cl(V, g)) = dim(Λ•(V)) = 2n. (24)

Algebraically, Cl(V, g) and Λ•(V) are quite different (except when g = 0): for example, in
Cl(V, g) one has v · v = g(v, v), whereas v · v = 0 in Λ•(V).
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2.2 Structure of Cl(V, g)

The structure of Cl(V, g) is completely determined by the dimension of V and the signature
of g. Indeed, by Sylvester’s Theorem V has a basis in which g is diagonal, with possible
entries 1,−1, 0. Let us assume, from now on, that g is nondegenerate. In that case, the
signature (p, q) of g, with p + q = n, expresses that g ≡ gp,q has p positive eigenvalues and
q negative ones (which may therefore be taken to be ±1 in a suitable basis). We write

Clp,q = Cl(Rp+q, gp,q); (25)
Cl+p = Clp,0; (26)

Cl−p = Cl0,p. (27)

It turns out that the structure of Cl(V, g) can be found by computing a few low-
dimensional cases and using periodicity results. This will be clarified in the following
exercises (some of whose answers are easily distilled from Varilly’s notes!). The simplest
cases are:

Cl−1 � C; (28)
Cl+1 � R ⊕ R. (29)

We use the basis (u1,u2) of Cl±1 , where u1 is 1 ∈ R seen as V⊗0 and u2 is 1 ∈ R seen as V⊗1,
with V = R. By definition, u1 is the unit of the algebra. For (28), the map ϕ : V → C
given by ϕ(u2) = i satisfies ϕ(u2)2 = g(u2,u2) = −1 and hence extends to ϕ : Cl−1 → C; on
R = V⊗0 this extension is given byϕ(u1) = 1 and taking linear combinations. A dimension
count shows that ϕ is bijective and hence is an isomorphism.

To prove (29), define ϕ : R → R ⊕ R by ϕ(u2) = (1,−1), so that ϕ(u2)2 = g(u2,u2) = 1.
This extends to an isomorphism ϕ : Cl+1 → R ⊕ R; specifically, ϕ(u1) = (1, 1).

Exercise 2.1 Show that:

Cl−2 � H; (30)
Cl+2 � M2(R); (31)

Cl1,1 � M2(R). (32)

Here the quaternions H are the real algebra with unit 1 and other generators I, J,K with
relations I2 = J2 = K2 = −1, and hence IJK = −1. It is convenient to realize H as the real
subalgebra of M2(C) that consists of matrices of the form

H =

{(
z w
−w z

)
, z,w ∈ C

}
, (33)

with generators realized as (for example)

1 7→

(
1 0
0 1

)
; (34)

I 7→
(

0 i
i 0

)
; (35)

J 7→
(

i 0
0 −i

)
; (36)

K 7→

(
0 1
−1 0

)
. (37)
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In the case of interest to us, the relevant periodicity results are

Cl−p+2 � Cl+p ⊗ Cl−2 ; (38)

Cl+p+2 � Cl−p ⊗ Cl+2 . (39)

It follows that
Cl±p+8 � Cl±p ⊗M16(R). (40)

Exercise 2.2 Varilly computes all Cl+p ≡ Clp0 on p. 9. Similarly, compute all Cl−p for p = 1, . . . , 8.

You may be disturbed by the sign changes in (38) and (39). These are absent if one uses
the language of superalgebras, aka Z2-graded algebras. We say that a (real or complex)
associative algebra A is a superalgebra, if A = A0

⊕A1 as a vector space and multiplication is:
A0
× A0

→ A0, A1
× A1

→ A0, A0
× A1

→ A1, A1
× A0

→ A1. In order to avoid confusion
with direct sum decompositions as algebras, we will henceforth write A = A0

⊕̂A1 in this
case.

This is the case for Cl(V, g), since we may write

Cl(V, g) = Cl(V, g)0
⊕̂Cl(V, g)1, (41)

where Cl(V, g)0/Cl(V, g)1 is the linear span of all v1 · · · vp for p even/odd; this is well defined,
since the relations (21) can only change the degree p by an even amount.

Next, we define the super tensor product A⊗̂B of two superalgebras A and B. As a vector
space, this coincides with the usual tensor product A ⊗ B, but as an algebra one defines
multiplication by linear extension of

a ⊗ bi · a j ⊗ b = (−1)|bi|·|a j|aa j ⊗ bib. (42)

Here we assume that bi ∈ Bi and a j ∈ A j, with |bi| = i and |a j| = j; in other words, elements
a ∈ A0 (“even”) have grading |a| = 0, whereas |a| = 1 for a ∈ A1 (“odd”). The factor
(−1)|bi|·|a j| is therefore nontrivial iff both b1 and a j are odd.

Exercise 2.3 Show that Cl±p+q � Cl±p ⊗̂Cl±q .

2.3 Complexification

We start from a complex vector space VC � Cn, still equipped with nondegenerate bilinear
form gC : VC ×VC → C. This time, there is always a basis of VC in which g is the identity,
so that (up to isomorphism) we may simply write

Cln = Cl(Cn, 1n), (43)

defined as the solution to a universal problem as in the real case. This also means that

Cln � Cl+n ⊗R C � Cl−n ⊗R C, (44)

and in fact any Clp,q with p + q = n could have been used here: complexification washes
out the signature of g.

The structure of such complex Clifford algebras may be inferred either directly, or
from the real case: either way, we obtain

Cl1 � C ⊕ C; (45)
Cl2 � M2(C), (46)
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with the periodicity theorem

Cln+2 � Cln ⊗C M2(C). (47)

Exercise 2.4 1. Prove (45) both from (29) and (28).

2. Prove (47) directly (e.g., by adapting the argument in Lemma 1.5 of Varilly).

The last three results combined immediately give

Cl2k � M2k(C); (48)
Cl2k+1 � M2k(C) ⊕M2k(C). (49)

It is important not to confuse (49) with the decomposition

Cl2k+1 = Cl0
2k+1⊕̂Cl1

2k+1 � M2k(C)⊕̂M2k(C), (50)

where we used
Cl0

2k+1 � Cl2k (51)

as algebras. Similarly,
Cl0

2k � Cl2k−1. (52)

Exercise 2.5 Prove (51) and (52).

Namely, in (49) the ⊕ is meant in the sense of algebras, whereas in (50) the symbol ⊕̂ just
refers to vector spaces, as already indicated by our notation. The relationship between the
two copies of M2k(C) in (50) is clarified by the introduction of

γ = (−i)ke1 · · · en, (53)

with either n = 2k or n = 2k + 1 and (ei) a basis of Cn (the sign of γ depends on the
orientation of this basis); see Varilly, §1.5. Note that

γ2 = 1. (54)

• For n = 2k + 1, γ obviously lies in the odd part Cl1
2k+1, and is in the center of Cl2k+1

(whose center is actually spanned by 1 and γ). Any element of the odd part may be
written uniquely as y = γx, where x is even.

• For n = 2k, γ is even and generates the center of Cl0
2k; the center of Cl2k is trivial.

2.4 Cln as a C*-algebra

As it stands, Cln is a complex associative algebra. It is easy to define an involution on Cln,
namely z∗ = z for z ∈ C and

(v1 · · · vp)∗ = vp · · · v1; (55)

this is well-defined, since it respects the relations vw + vw = 2g(v,w) that may be used to
rewrite either side. To find an appropriate norm, we consider the canonical representation
of Cln on itself by left multiplication, and turn Cln � Λ•(Cn) into a complex Hilbert space
of dimension 2n by declaring the basis (23) to be an orthonormal one. More poshly, one
may put

(v1 · · · vp,w1 · · ·wq) = δpq det
(
g(vi,w j)

)
, (56)
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and an even more sophisticated description is

(x, y) = τ(x∗y), (57)

where τ is the trace on Cln defined in Varilly, §1.3. With respect to any of these (equivalent)
inner products, the left action of Cln on itself defines a faithful *-representation π, so that
Cln is a C*-algebra in the associated norm ‖x‖ = ‖π(x)‖. One may then see (48) and (49) as
isomorphisms of C*-algebras.

It is clear from these isomorphisms that the above representation π cannot be irre-
ducible: the irreducible representation (irrep) of Cln for n = 2k has dimension 2k instead
of 22k, and for n = 2k + 1 one has two inequivalent irreducible representations of dimen-
sion 2k. It is possible to construct the irreps of Cln in a more or less natural way, which
also gives insight into the relationship between real and complex Clifford algebras. Our
treatment below is simpler but perhaps less profound than Varilly’s.8

We start with n = 2k, with associated real Clifford algebra Cl+2k, with complexification
Cln. The basic trick is to turn the real vector space R2k into Ck, instead of complexifying
it to C2k. This can be done by introducing the 2k × 2k real matrix

J =

(
0 1k
−1k 0

)
, (58)

which satisfies J2 = −1. We then turn R2k into a complex vector space by defining iv = Jv.
This gives an isomorphism R2k = Rk

⊕ Rk � Ck, explicitly: (x, y) 7→ x + iy. Subsequently,
we make R2k a complex Hilbert space of dimension k through the inner product (in terms
of the positive definite form g on R2k)

(v,w)J = g(v,w) + ig(Jv,w). (59)

Exercise 2.6 Verify that this defines a sesquilinear form on R2k with respect to the complex
structure iv = Jv and show that this form is positive definite.

We then represent Cl2k on
H(k)

F = Λ•(Ck) � C2k
(60)

(the “fermionic Fock space”) in two steps.

1. For v ∈ R2k we put
πF(v) = a(v) + a†(v), (61)

(also written by Varilly as a = ε and a† = ι), with a†(v)z = zv and a(v)z = 0 for z ∈ C,
and, with ui ∈ R2k � Ck for all i,

a(v)u1 ∧ · · · ∧ up =

p∑
j=1

(−1) j−1(v,u j)J u1 ∧ · · · û j · · · ∧ up; (62)

a†(v)u1 ∧ · · · ∧ up = v ∧ u1 ∧ · · · ∧ up, (63)

8As a compromise between his approach and the one we follow, consider Λ•(C2k), on which Cl2k is
represented by left multiplication. This representation is reducible, and one may find an irreducible subspace
isomorphic to H(k)

F by projecting onto the antisymmetrized combinations of vectors of the type (v, iv), v ∈ Ck.
For one thing, this projection removes all subspaces Λp(C2k) for p > k.



2 CLIFFORD ALGEBRAS AND SPINOR REPRESENTATIONS 13

where û j means that u j is omitted. This satisfies

πF(v)πF(w) + πF(w)πF(v) = 2g(v,w) · 1,

and hence by universality the map πF : R2k
→ End(H(k)

F ) thus defined extends to a
representation πF of Cl+2k on H(k)

F . This representation is real, in the sense that

πF(v)∗ = πF(v) (64)

for all v ∈ R2k.

2. This representation πF(Cl+n ) is then extended to Cln by complex linearity: whenever
a factor i acts on a vector v, one uses iv = Jv. It follows from the previous item that
this is a *-representation in that πF(x)∗ = πF(x∗) for all x ∈ Cln.

The irreducibility of πF is proved by Varilly, §1.9, but it is useful to prove it for yourself.

Exercise 2.7 Prove that πF(Cl+2k) and πF(Cl2k) are faithful and irreducible. Hint: for faithfulness
it suffices to look at the action on C. For irreducibility, by Schur’s lemma and the structure of
Clifford algebras it is enough to prove that [T, πF(v)] = 0 for all v ∈ V implies T = c · 1, and for
this it is enough to prove that [T, a(v)] = [T, a†(v)] = 0 for all v ∈ V implies T = c · 1.

The odd-dimensional case is now handled as follows: for n = 2k + 1 we use H(k)
F as

defined for n = 2k, i.e. (60), and represent the even part Cl0
n of Cln through (51). For the

odd part Cl1
n, by (54) there are two possibilities: either πF(γ) = 1, or πF(γ) = −1. We write

these as π±F , so that
π±F (γx) = ±πF(x), (65)

where x ∈ Cl0
n and hence γx ∈ Cl1

n. This gives two inequivalent irreps π±F of Cln for
n = 2k + 1, both realized on H(k)

F � C2k
, in terms of which

πF(Cl2k+1) = π+
F (Cl2k+1) ⊕ π−F (Cl2k+1). (66)

In view of (52), an analogous phenomenon occurs for πF(Cl0
n) for n = 2k. The operator

πF(γ), still with γ as in (53), which lies in the even part, commutes with πF(Cl0
n) and

reduces it, so that
πF(Cl0

2k) = π+
F (Cl0

2k) ⊕ π−F (Cl0
2k), (67)

where π+
F and π−F are both realized on H(k−1)

F � C2k−1
. Each is irreducible and the pair is

inequivalent as representations of Cl0
2k. This phenomenon will recur the next subsection.

We will use the following notation: For n = 2k, we write S2k = C2k
for the irreducible

representation space on which πF(Cl2k) is defined. Its decomposition under Cl0
n is written

Sn = S+
n ⊕ S−n , (68)

with S±2k = C2k−1
. This decomposition induces a grading operator γn : Sn → Sn, given by

γnψ± = ±ψ± forψ± ∈ S±; in fact, in terms of (53) one simply has γn = πF(γ). For n = 2k+1,
we write S2k+1 = C2k

for the irreducible representation space carrying either π±F (of which
we typically use π+

F ).
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2.5 Spin(n) and SpinC(n)

In order to understand “spin geometry”, we need to know about the so-called Spin(n) and
SpinC(n) groups, where the label n refers to the Clifford algebras Cln and Cln containing
these groups. Our treatment will be brief, since a full understanding requires more
knowledge about Lie groups and Lie algebras than we may reasonably assume.9 It is the
lift from SO(n) to Spin(n) that will later enable us to pass from Riemannian geometry to
spin geometry.

We start with Cl+n and write V ≡ Rn (although an analogous story can be told for
all the Clp,q, with corresponding groups Spin(p, q) covering SO(p, q)). Following Varilly’s
notation, we define an anti-automorphism ! of Cl+n by linear extension of

v1 · · · vp! = vp · · · v1; (69)

this is easily seen to be well-defined, because it preserves the relations (21) (officially, it
is best to define ! by putting A = (Cl+n )

op
in the universal property of Cl+n and putting

ϕ(v) = v)).

Exercise 2.8 Show that xvx! ∈ V for any x = v1 · · · vp ∈ Cl+n and v, vi ∈ V ⊂ Cl+n .

We now define

Spin(n) = {tv1 · · · vp | p even, t = ±1, vi ∈ V, g(vi, vi) = 1}, (70)

where p = 0 is included, so Z2 = {−1, 1}, seen as a subgroup of R ⊂ Cl+n , lies in Spin(n).
This is a group contained in Cl+n under the product given by multiplication in Cl+n : the
unit element is simply 1 ∈ R, and the inverse is (v1 · · · vp)−1 = v1 · · · vp!.10

A slightly more complicated argument than the one in the exercise (based on the fact
that SO(n) is generated by reflections) shows that the map v 7→ xvx! = xvx−1

≡ λ(x)v from
V to V is in SO(n). This gives a homomorphism λ : Spin(n)→ SO(n), which is part of the
SES (Short Exact Sequence)

1→ Z2 → Spin(n)→ SO(n)→ 1. (71)

Indeed, the kernel of λ is just Z2. It can be shown that for n ≥ 3, Spin(n) is connected and
simply connected, so in that case it is the universal cover of SO(n). The lowest-dimensional
examples are

Spin(3) � SU(2); (72)
Spin(4) � SU(2) × SU(2). (73)

The definition of SpinC(n) is a bit less natural.11 With the torus T = {z ∈ C | zz = 1}, we
define

SpinC(n) = {zv1 · · · vp | p even, z ∈ T, vi ∈ V, g(vi, vi) = 1}, (74)

9For a very good treatment of the Spin(n) and SpinC(n) groups see R. Goodman and N.R. Wallach,
Representations and Invariants of the Classical Groups (CUP, 1998).

10For arbitrary p one obtains the group Pin(n), which covers O(n).
11With Varilly’s approach to the definition of SpinC(n), it needs to be shown that any u1 · · · up for ui ∈ Cn

with ‖ui‖ = 1 can be rewritten as zv1 · · · vp with z ∈ C, ‖z‖ = 1 and vi ∈ Rn with ‖vi‖ = 1. This is far from
obvious, and his text is ambiguous whether one should impose ui = λivi, λi ∈ T from the start.
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again with p = 0 included so that T ⊂ SpinC(n); this defines SpinC(n) as a group contained
in the algebra Cln, borrowing its multiplication. This immediately yields

SpinC(n) � Spin(n) ×Z2 T, (75)

which stands for the quotient of Spin(n) × T by the equivalence relation (x, z) ∼ (−x,−z).
Indeed, the map Spin(n) × T → SpinC(n) given by (x, z) 7→ zx assigns the same image to
(x, z) and (x′, z′) iff (x′, z′) = (±x,±z). The homomorphism λ : Spin(n)→ SO(n) extends to
SpinC(n), using the same formula λ(x)v = xvx−1 for x ∈ SpinC(n). This gives our second
SES

1→ T→ SpinC(n)→ SO(n)→ 1; (76)

in terms of the realization (75), the second arrow is z 7→ [1, z]Z2 . And the picture would
be incomplete without the third SES

1→ Spin(n)→ SpinC(n)→ T→ 1, (77)

where the second arrow is x 7→ [x, 1]Z2 and the third is [x, z]Z2 7→ z2.

Since Spin(n) ⊂ Cl+n ⊂ Cln and SpinC(n) ⊂ Cln, representations of Cln yield representa-
tions of Spin(n) and SpinC(n) by restriction. Note that Spin(n) and SpinC(n) are contained
in the even part Cl0

n. We concentrate on the irreducible representations πF. In general,
irreps may become reducible when restricted to subalgebras or subgroups, and inequiv-
alent representations might become equivalent upon restriction. However, none of this
occurs here.

• n = 2k. Although πF(Cl2k) on S2k is irreducible, its restriction to Cl0
2k is reducible,

decomposing as a direct sum of two inequivalent irreducible subrepresentationsπ±F ,
realized on S±2k; see (67). Further restricting π±F (Cl0

2k) to Spin(n) or SpinC(n), these
representations remain irreducible and inequivalent.12 Hence both spin groups
have a pair of inequivalent irreps π±F of (complex) dimension 2k−1. These are called
spinor representations and are often denoted by ∆± or c±.

• n = 2k + 1. Here Cl0
2k+1 has a unique irrep on S2k+1, see (60), which remains

irreducible if restricted to either Spin(n) or SpinC(n). Hence both spin groups have
just one irreducible spinor representation πF of dimension 2k, often called ∆ or c,
carried by S2k+1

Furthermore, it can be shown that these representations are unitary with respect to the
inner product on H(k)

F that has already been defined.
For example, it follows that Spin(3) has a unique spinor representation of dimension

2; this is just de defining (or “spin 1/2”) representation D1/2 of SU(2), cf. (72). For n = 4
we obtain two inequivalent 2-dimensional spinor representations of Spin(4); these are the
irreps of SU(2) × SU(2) given by (x, y) 7→ D1/2(x) and (x, y) 7→ D1/2(y).

Finally, it follows from the definition of the spin groups that any representationπ obtained
by restriction of some representation π(Cln) is Spin(n)-covariant in the following sense:

π(x)π(v)π(x−1) = π(λ(x)v), (78)

for each x ∈ Spin(n) and v ∈ V.
12Varilly’s proof of irreducibility in §1.10 is not correct.
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3 Spin manifolds

The following material cannot be found in Varilly’s notes, but it seems necessary to me
in order to really understand what is going on in his chapter 3. Our aim is to give three
equivalent definitions of a Riemannian manifold: the first is intuitively clear, the second
goes towards noncommutative geometry, and the third prepares for the definition of a
spin manifold as a refinement of a Riemannian manifold.

3.1 What is a Riemannian manifold?

The traditional definition of a Riemannian manifold (M, g) is that M is a smooth manifold
and g is a collection of symmetric bilinear forms gx : TxM × TxM → R, defined for each
x ∈ M, such that each gx is positive definite, and the collection {gx} is smooth in x. The
latter requirement can be formulated either locally or, equivalently, globally.

Locally, we cover M = ∪α Uα by open sets Uα � Rn, with associated (bijective)
charts ϕα : Uα → Rn, writing (x1, . . . , xn)α = ϕα(x) for the coordinates of x ∈ Uα in the
chart ϕα. The definition of a smooth manifold then entails that the transition functions
(x1, . . . , xn)α 7→ (x1, . . . , xn)β, defined whenever x ∈ Uα ∩Uβ, are smooth. The components
of the metric at x ∈ Uα w.r.t. chart ϕα are defined by

gi j(x1, . . . , xn)α = gx

(
∂
∂xi

,
∂
∂x j

)
. (79)

These, then, are required to be smooth functions of the coordinates (x1, . . . , xn)α, for each
α.

Globally, we require the function x 7→ gx(X(x),Y(x)) from M to R to be smooth for all
smooth vector fields X and Y on M. This is equivalent to the local smoothness condition,
for locally we may write X(x) =

∑
i Xi(x1, . . . , xn)α∂/∂xi, Y(x) =

∑
i Yi(x1, . . . , xn)α∂/∂xi, so

that by bilinearity of g one has

gx(X(x),Y(x)) =
∑

i, j

gi j(x1, . . . , xn)αXi(x1, . . . , xn)αY j(x1, . . . , xn)α. (80)

This global definition of smoothness is the main step towards Varilly’s Definition
2.1 of a Riemannian metric on p. 18, which, however, works with continuity instead of
smoothness. (This is very unusual in Riemannian geometry, as the curvature and other
tensors cannot be defined if the metric is merely continuous.). In effect, his definition
states thatX(M) is something like a real Hilbert module over C(M), or, in the smooth case,
a pre Hilbert module over C∞(M) in the sense that E = X(M) is not complete in the norm
‖X‖2 = supx∈M gx(X(x),X(x)).

Exercise 3.1 Show that the traditional definition of a Riemannian manifold is equivalent to
Varilly’s Definition 2.1 (adapted to the smooth setting). In particular, explain how the maps
gx : TxM × TxM → R are obtained from the single map g : X(M) × X(M) → C(M) in Varilly’s
Definition 2.1.

Our main goal, however, is a third approach to the definition of a Riemannian mani-
fold, available if M is oriented.13 This necessitates a crash course in principal fibre bundles
and their associated vector bundles.

13Let n = dim(M) as usual, and take the top power Ωn(M) = Γ(M,Λn(M)), where Λp(M) is the bundle of
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3.2 Principal fibre bundles

Principal fibre bundles can be defined in the continuous setting or in the smooth setting.
We choose the latter setting, so that in what follows P and M are manifolds and G is a Lie
group (think of SO(n) or Spin(n)).

Definition 3.2 Let P be a manifold and G a Lie group that acts on P from the right, written
(p, g) 7→ pg. We also write M = P/G, with canonical projection π : P→ M. The pair (P,G) is a
principal G-bundle if:

1. The G-action is free (i.e. pg , p for all p and all g , e);

2. Each x ∈ M has an open neighbourhood U such that there is a bundle morphism P|U ≡
π−1(U)→ U×G intertwining the given G-action on P with the natural G-action on U×G,
i.e. (x, h)g = (x, hg).

It follows that:

• the G-action on P is proper;14

• the quotient space M is a manifold;

• the projection π : P→M is G-invariant in that π(pg) = π(p);

• the projection π is a surjective submersion.15

The simplest example is, of course, P = M ×G with obvious right G action; this bundle is
called trivial. To give our first nontrivial example, we recall that if E→M and F→M are
(real or complex) vector bundels over M, one can form the vector bundle

Hom(E,F) = ∪x∈ML(Ex,Fx), (81)

over M, whose fiber at x consists of all linear maps Ex → Fx. We denote the projection
Hom(E,F)→M by π̃, i.e. any ϕ ∈ Hom(E,F) is by definition an element of some L(Ex,Fx),
so that ϕ : Ex → Fx, in which case π̃(ϕ) = x. The smooth structure on Hom(E,F) is
defined in terms of E and F. This may either be done locally, or globally, as follows. Let
φ̃ : M→ Hom(E,F) satisfy π̃ ◦ φ̃ = idM, i.e., φ̃(x) ∈ L(Ex,Fx). For each σ ∈ Γ(E), we obtain
a map φ(σ) : M→ F in the obvious way by

φ(σ)(x) = φ̃(x)(σ(x)); (82)

p-forms over M and Γ(M,Λp(M)) is the C∞(M)-module of smooth sections thereof. The fibers of Λn(M) are
1-dimensional. A volume form is an element Vol of Ωn(M) that nowhere vanishes, i.e. Vol(x) , 0 for all x ∈M.
A manifold M is orientable if it has a volume form. If so, the volume forms fall into two equivalence classes,
where Vol1 ∼ Vol2 iff Vol1(x) = c(x)Vol2(x), where c ∈ C∞(M) is strictly positive. An orientation of an orientable
manifold M is a choice of one of these equivalence classes. Such a choice makes an orientable manifold
oriented.

A local basis (e1(x), . . . , en(x)) of TxM, is said to be oriented if the associated n-form θ1(x) ∧ · · ·θn(x) lies in
the equivalence class defined by the given orientation, i.e. if θ1(x)∧ · · ·θn(x) = c(x)Vol(x) with c(x) > 0, where
Vol is a representative of the equivalence class of nonvanishing volume forms defining the orientation. Of
course, this depends on the order in which the ei(x) are listed!

14This means that the map (p, g) 7→ (pg, p) from P×G to P×P is proper, i.e. the inverse image of a compact
set is compact.

15A smooth surjective map f : M → N between two manifolds is a submersion if f∗(x) : TxM → T f (x)N is a
surjection for all x ∈M. This is not automatic from surjectivity.
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clearly, φ(σ) is a section of F. But this section is not necessarily smooth. We now define

Γ(Hom(E,F)) = {φ̃ : M→ Hom(E,F) | π̃ ◦ φ̃ = idM, φ(σ) ∈ Γ(F)∀ σ ∈ Γ(E)}. (83)

In other words, we require by definition (of the left-hand side) that

Γ(Hom(E,F)) � HomC∞(M)(Γ(E),Γ(F)), (84)

where the bijection φ̃ ↔ φ is given by (82). Finally, the smooth structure on any vector
bundle may be defined by stating what its smooth sections are (see Chapter 1 above for
the topological case), so that we have now also (albeit implicitly) defined the smooth
structure on Hom(E,F).

We now apply this construction to the real vector bundles E = M × Rn and F = TM,
with n = dim(M) as usual; this yields the vector bundle Hom(M×Rn,TM) over M, whose
fiber Homx(M × Rn,TM) at x consists of all linear maps px : Rn

→ TxM. For a given such
map px, we may consider the set of n vectors in TxM given by (px(e1), . . . , px(en)), where
(e1, . . . , en) is the standard basis of Rn.

Definition 3.3 The (oriented) frame bundle F(+)(M) on an (oriented) manifold M is the sub-
bundle of Hom(M × Rn,TM) consisting of all linear maps px : Rn

→ TxM, x ∈ M, for which
(px(e1), . . . , px(en)) is an (oriented) basis of TxM. The bundle structure and the smooth structure of
this bundel are inherited from Hom(M×Rn,TM). In particular, the projectionπF : F(+)(M)→M
is given by πF(px) = x, where px ∈ Homx(M × Rn,TM).

So the idea is that each px ∈ Fx(M) defines a basis for Tx(M), in other words, a frame.
A local section p : U → F(M), x 7→ px, then defines a “moving frame” (e1(x), . . . , en(x)),
with ei(x) = px(ei), defined for x ∈ U ⊂ M. It is important to realize that unlike the vector
bundle Hom(M×Rn,TM) of which it is a sub-bundle, F(M) typically has no global smooth
sections.16

We now show that F(M) may be seen as a principal GL(n,R) bundle. Indeed, this
group acts on F(M) by

(pg)(v) = p(gv), (85)

where p ∈ F(M), g ∈ GL(n,R), and v ∈ Rn. If g is given by the matrix gi j, and (e1(x), . . . , en(x))
with ei(x) = p(ei), p ≡ px, is a basis of TxM, then pg induces the (ordered) set of vectors
(e′1(x), . . . , e′n(x)) with e′i (x) = (pg)(ei) =

∑
j g jie j(x). The condition det(g) , 0 then precisely

guarantees that (e′1(x), . . . , e′n(x)) is again a basis of TxM. Furthermore, this action is free,
because the defining GL(n,R) action on Rn is free. A local trivialization TM|U � U ×Rn of
TM for U ⊂ M (with TM|U = π−1(U)) induces a local trivialization of Hom(M × Rn,TM)
as

Hom(M × Rn,TM)|U � U × L(Rn,Rn) ≡ U ×Mn(R),

which in turn induces a local trivialization of F(M) as

F(M)|U � U × GL(n,R). (86)

This diffeomorphism is explicitly given as follows. If ξ ∈ TxM corresponds to (x, ξ̃) ∈
U × Rn, with ξ̃ =

∑
i ξ̃iei, then p ∈ Fx(M), x ∈ U, corresponds to (x, p̃) ∈ U × GL(n,R),

where p̃i j = (ei, p̃(e j)) in terms of the standard inner product on Rn. It follows that (86)
is equivariant, since pg corresponds to the matrix product p̃g. This shows that F(M) is

16By Brouwer’s Theorem, the two-sphere M = S2 already illustrates this phenomenon.
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a principal GL(n,R) bundle under the action (85), and analogously F+(M) is a principal
GL+(n,R) bundle (where GL+(n,R) consists of all g ∈Mn(R) with det(g) > 0).

Now suppose that M is oriented and Riemannian. This leads to the following refinement
of the frame bundle.

Definition 3.4 The orthonormal frame bundle SO(M) on an oriented Riemannian manifold
(M, g) is the sub-bundle of F+(M) consisting of all linear maps px : Rn

→ TxM, x ∈M, for which

gx(px(ei), px(e j)) = δi j. (87)

In fact, (px(e1), . . . , px(en)) is automatically a basis of TxM by (87), so we could equivalently
have defined SO(M) as the sub-bundle of Hom(M×Rn,TM) consisting of all px : Rn

→ TxM
for which (87) holds and (px(e1), . . . , px(en)) is oriented. Clearly, SO(M) is no longer a
principal GL+(n,R) bundle, since (87) may be violated by the action of g. However, it is a
principal SO(n) bundle over M by the same action (85).

Exercise 3.5 Prove this in detail.

So a Riemannian structure on M defines a specific principal SO(n)-bundle over M.
Could we, perhaps, define Riemannian manifolds in such a way? Yes, we can, but to do
so, a certain construction on bundles is needed.

3.3 Associated vector bundles

Let P be a principal G bundle and let G act linearly on some vector space V (i.e., a
representation G → Hom(V) is given). From these data we construct a vector bundle
Eover M with typical fibre V, as follows. The total space of the bundle is

E = P ×G V ≡ (P × V)/G, (88)

where the quotient is defined by the obvious right G action on P×V, i.e. (p, v)g = (pg, g−1v).
We denote elements of E by equivalence classes [p, v], so that [pg, v] = [p, gv]. In terms of
these, the bundle projection π̃ : E→M is given by

π̃([p, v]) = π(p), (89)

where π : P→M is the bundle projection of P.

Exercise 3.6 1. Show that a local trivialization P|U � U×G corresponds bijectively to a choice
of a local section s : U → P and explain how the latter also induces a local trivialization
E|U � U × V.

2. Prove that the space of smooth sections of P ×G V can be realized as

Γ(P ×G V) � C∞(P,V)G
≡ { f ∈ C∞(P,V) | f (pg) = g−1 f (p)∀ p ∈ P, g ∈ G}. (90)

For us, the first example of this construction is F(M) ×GL(n,R) Rn, defined with respect
to the usual action of GL(n,R) on Rn. It then turns out that

F(M) ×GL(n,R) Rn � TM; (91)

the isomorphism in question is given by [p, v] 7→ p(v). Similarly,

SO(M) ×SO(n) Rn � TM. (92)
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Exercise 3.7 Show that Γ(TM) � Γ(SO(M) ×SO(n) Rn), using (90).

Definition 3.8 An oriented Riemannian manifold is an oriented manifold M, dim(M) = n,
together with a principal SO(n) bundle SO(M) over M and an explicit isomorphism (92).

Exercise 3.9 Show that this definition of a Riemannian manifold is equivalent to the traditional
one.

3.4 Spin manifolds

We now recall the groups Spin(n) and SpinC(n) from Chapter 2, as well as their action λ
on Rn. With respect to the latter, we arrive at the following.

Definition 3.10 1. A Spin manifold is an oriented manifold M, dim(M) = n, together with
a principal Spin(n) bundle Spin(M) over M and an explicit isomorphism

Spin(M) ×Spin(n) Rn � TM. (93)

2. Similarly, A SpinC manifold is an oriented manifold M, dim(M) = n, together with a
principal SpinC(n) bundle SpinC(M) over M and an explicit isomorphism

SpinC(M) ×SpinC(n) Rn � TM. (94)

This is actually a refinement of a Riemannian manifold:

Exercise 3.11 Show that a Spin manifold or a SpinC manifold automatically carries a Riemannian
structure.

Conversely, a spin structure on M is compatible with a given Riemannian structure if the
latter coincides with the one of this exercise. Let us note, however, that this can always
be achieved by modifying (93) if necessary.

The richness of Spin geometry compared with Riemannian geometry is a consequence
of the existence of certain vector bundles associated with Spin(M) that are different from
the tangent bundle or tensor powers thereof. Namely, as shown in the previous chapter,
the groups Spin(n) and SpinC(n) have spinor representations.

Recall that for any n, we have a spinor representation of Spin(n) and SpinC(n) on Sn,
reducible for n even, and irreducible for n odd. With respect to these, a Spin manifold M
defines a complex vector bundle

Sn = Spin(M) ×Spin(n) Sn, (95)

called the spinor bundle over M. Similarly, a SpinC manifold defines a complex vector
bundle of the same dimension by

S
C
n = Spin(M)C ×SpinC(n) Sn. (96)

The relationship between Spin and SpinC manifolds, and hence between (95) and (96), is
not straightforward and will be analysed below.
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3.5 Charge conjugation

The notion of charge conjugation, originally developed in the context of particle physics, is
the key to the relationship between Spin and SpinC manifolds. As just described, let Sn
simultaneously carry spinor representations of Spin(n) ⊂ Cln as well as of SpinC(n) ⊂ Cln;
for the moment we will be interested in the inclusion

Cl±n ⊂ Cln = Cl±n ⊗R C, (97)

in so far as Cl±n (for a fixed choice of + or −, to which the analysis below is quite sensitive)
is included in the complex algebra Cln as a real subalgebra and both act irreducibly on
the complex vector space Sn. Suppose, more generally, that one has a real subalgebra A of
its complexification A = A ⊗R C, and that A (and hence A) acts irreducibly on a complex
vector space S through a representation π : A→ End(S). Note that A typically has many
different real subalgebras of which it is the complexification; for example, for A = Cln one
might take A = Cl+, or A = Cl−, or any other Clp,q with p + q = n.

In such a situation, two questions may arise:

1. Does S have a real subspace S that is stable under π(A)? In that case, π(A) would
be the complexification of π(A) restricted to S, in that S = S ⊗R C and π(a + bi) =
π(a) + iπ(b) for a, b ∈ A and a + bi ∈ A.

2. Does the complex representation π(A) on S extend to a quaternionic representa-
tion, i.e., does the given C-action on S (which commutes with π(A) by its complex
linearity) extend to an H-action on S that still commutes with π(A)?

Let us give an easy sufficient condition for a positive answer to either question; using
Schur’s lemma, this condition is also necessary (given the assumed irreducibility of π).

1. Suppose there is an antilinear map J : S → S with J2 = 1, such that [J, π(a)] = 0 for
all a ∈ A. In that case, we may put S = {v ∈ S | Jv = v}, and the answer to question 1
is positive. Such a J is called a real structure for (A,A, π,S).

2. Suppose there is an antilinear map J : S→ S with J2 = −1, such that [J, π(a)] = 0 for
all a ∈ A. In that case, the generators (I, J,K) of H act on S by Iv = iv, J as given, and
K = IJ. Thus the answer to question 2 is positive. Such a J is called a quaternionic
structure for (A,A, π,S).

Either way, if π is faithful and irreducible, we may reconstruct A from A and J by17

A = {a ∈ A | [J, π(a)] = 0}. (98)

More generally, J identifies a real subalgebra

EndR(S) = {x ∈ End(S) | JxJ∗ = x} (99)

of End(S); if π(A) is faithful and irreducible, and S is finite-dimensional, we have A �
π(A) � End(S) and A � π(A) � EndR(S).

17This provides some justification for Connes’ denoting J as a realstructure even if J2 = −1 (i.e. in the
quaternionic case); (98) holds with either sign of J2.
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As an application of (98), for n even we always have either a real or a quaternionic
structure J±n for Cl±n ⊂ Cln for both signs with respect to the spinor or Fock representation
π of Cln (which is faithful and irreducible), so that

Cl±n = {x ∈ Cln | [J±n , π(x)] = 0}. (100)

Finally, we may altogether forget A and start from an irreducible representation π(A)
of the real algebra A on a real vector space S; this includes the complex case S, since we
may regard S as a real vector space (of twice its complex dimension). The commutant
π(A)′ consists of all (bounded) real-linear maps T : S → S such that [T, π(a)] = 0 for all
a ∈ A. We then have the following possibilities.

• π(A)′ � R iff the C-linear extension πC(A) of π(A) to the complexification S ⊗R C of
S (which, in this case, is the complex vector space S in the discussion above) admits
a real structure; regarded as a real representation, πC(A) on S = S ⊗R C is reducible.

• π(A)′ � C iff S is itself complex (coinciding with S above), π(A) is C-linear, irre-
ducible over C and R, and admits neither a real not a quaternionic structure.

• π(A)′ � H iff S is complex (coinciding with S above) and π(A) admits a quaternionic
structure, so that it is H-linear (hence a fortiori C-linear); it is irreducible over all of
R, C, and H.

In case that no real or quaternionic structure exists, one may ask for either of these
for a smaller real subalgebra of A than A, or, say, for a group contained in A. In odd
dimensions n this will be the case for A = Cln, the smaller subalgebra being Cl0

n (i.e. the
even part of Cln and hence also for the group Spin(n). Thus for all n we will find an
operator Jn : Sn → Sn with J±n = 1 and [J, π(x)] = 0 for all x ∈ Cl0

n and hence also for all
x ∈ Spin(n). Appropriate analogues of (98) then hold. For example, for odd n one has

(Cl±n )0 = {x ∈ Cl0
n | [J±n , π(x)] = 0}; (101)

Spin(n) = {x ∈ SpinC(n) | [J±n , π(x)] = 0}. (102)

These are not valid for even n, since π((Cl±n )0) and π(Spin(n)) are not irreducible, but this
can be remedied by a simple trick: if (68) is the decomposition of Sn into irreducibles (for
both π((Cl±n )0) and π(Spin(n))), and γn is the grading on Sn, then for even n one has

(Cl±n )0 = {x ∈ Cl0
n | [J±n , π(x)] = 0, [γn, π(x)] = 0}; (103)

Spin(n) = {x ∈ SpinC(n) | [J±n , π(x)] = 0, [γn, π(x)] = 0}. (104)

Finally, let S be a Hilbert space. In that case one requires J to be anti-unitary, i.e.,
J∗J = JJ∗ = 1. This guarantees that, for both signs of J2, the representations π(A) on
S and π(A) on S are unitarily equivalent, namely through J : S → S (which is linear!).
Here S is the same set and additive group as S, but as a complex vestor space it carries
the conjugate C-action; the representation π(A) is the same as π(A), but now seen as
acting on S. Conversely, if one has a unitary equivalence between π : A → End(S) and
π : A→ End(S), then this may arise from either a real or a quaternionic structure.18

18Connes and his followers call such a J real in both cases, i.e., even if J2 = −1. Physicists call both real and
quaternionic structures charge conjugations, often denoted by C instead of J.
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3.6 Charge conjugation for Clifford algebras

Let us work out the details for the case of Spin(n) ⊂ Cl±n ⊂ Cln. Both Cl±n and Cln act
irreducibly on S = Sn by the spinor representation π = πF (see section 2.4). As shown in
section 2.5, the spin group Spin(n) (as well as SpinC(n)) then acts on the same space Sn by
restricting π(Cln) to Spin(n) ⊂ Cln; the representation π(Spin(n)) is irreducible for odd n,
whilst it is the direct sum of two irreps for even n. We recall the structure of Cl±n and Cln
for n = 1, . . . , 8 (extended to arbitrary n by periodicity mod 8), and give existence of J±n
and sign of its square (here x in the tabel means that J±n does not exist for that sign and n).

n Cl+n Cl−n Cln Sn (J+
n )2 (J−n )2

1 R ⊕ R C C ⊕ C C 1 x
2 M2(R) H M2(C) C2 1 −1
3 M2(C) H ⊕H M2(C) ⊕M2(C) C2 x −1
4 M2(H) M2(H) M4(C) C4

−1 −1
5 M2(H) ⊕M2(H) M4(C) M4(C) ⊕M4(C) C4

−1 x
6 M4(H) M8(R) M8(C) C8

−1 1
7 M8(C) M8(R) ⊕M8(R) M8(C) ⊕M8(C) C8 x 1
8 M16(R) M16(R) M16(C) C16 1 1

For example, take n = 1. The spinor representation π(Cl+1 ) on S1 = C is given by
π(1) = 1 and π(e1) = 1; accordingly, there is a real structure given by Jz = z. This
corresponds to fact that π(Cl+1 ) on C is the complexification of the real representation πR
of Cl+1 on S1 = R, given by the same expressions πR(1) = πR(e1) = 1, with commutant
πR(Cl+1 ) = R. In contrast, regarding C � R2 as a real irreducible representation space for
Cl−1 , one has π(Cl−1 ) on S1 = C given by π(1) = 1 � 12 = diag(1, 1) and π(e1) = i � J, with
J given by (58) (for k = 1). This admits neither a real nor a quaternionic structure, whilst
R2 has no invariant subspace under π(Cl−1 ), despite the presence of J ∈ π(Cl−1 )′.

For n = 2, the case Cl+2 is obvious; the real structure is again given by Jz = z, z ∈ C2.
For Cl−2 , we use the spinor representation π(e1) = I, π(e2) = J, and hence π(e1e2) = K,
with I, J,K given in (35) – (37). We relabel these as I′, J′,K′ and now introduce a second
H-action on C2, which commutes with the one just defined, by Iz = iz, J(z1, z2) = (z2,−z1),
and hence K(z1, z2) = (iz2,−iz1).

Exercise 3.12 Check the table for n = 3 and n = 4.

The entries for n = 5, 6, 7, 8 follow from the previous ones and the periodicity results (38)
and (39). For example, for n = 5 we have (with ⊗ ≡ ⊗R)

Cl+5 � Cl−3 ⊗ Cl+2 ; (105)
Cl−5 � Cl+3 ⊗ Cl−2 . (106)

The tensor product of a quaternionic and a real structure, as in (105), is a quaternionic
one, explaining the sign in (J+

5 )2 = −1. On the other hand, since Cl+3 has neither, so does
Cl−5 . In general, real tensor real is real, quaternionic tensor quaternionic is real, and, as
already used, real tensor quaternionic is quaternionic (since 1 × 1 = 1, −1 × −1 = 1, and
1 × −1 = 1, respectively).

Let us now look at the peculiar cases Cl−1 and Cl−5 , for which neither a real nor a
quaternionic structure exists. A way out of this situation, favoured by Connes and his
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followers, is to restrict Cl2k+1, k = 0, 2 to its even part (Cl2k+1)0, which by (51) is isomorphic
to Cl2k. This does have a J for all k, reducing the situation at n = 2k + 1 to the one at n = 2k
(mod 8, i.e., n = 1 is reduced to n = 8). In particular, J−2k provides a real or quaternionic
structure for (Cl−2k+1)0 and hence commutes with all even elements of Cl−2k+1. The price one
pays is that for k = 0 or k = 2, the operator J2k+1 fails to commute with the odd elements of
Cl−2k+1 (for otherwise all of Cl−2k+1 would have a real or quaternionic structure). However,
this failure is under control, since explicit computations show that for k = 0, 2 one does
have a J−2k+1 (= J−2k) that commutes with all even elements of Cl−2k+1 and anticommutes with
all odd elements.19 With this proviso, one may replace the x under (J−1 )2 by 1 (i.e. the sign
of (J−8 )2) and the x under (J−5 )2 by −1 (i.e. the sign of (J−4 )2). In what follows, we shall use
J−n for any n, understood in this way, i.e., as an antiunitary operator on Sn that:

1. commutes with the (Cl−n )0-action on Sn;

2. for n = 2, 3, 4, 6, 7, 8 mod 8 also commutes with the (Cl−n )1- action on Sn, and hence
commutes with the entire Cl−n -action;

3. for n = 1, 5 mod 8 anticommutes with the (Cl−n )1- action on Sn.

The final matter to be settled, for n = 2k, is the behaviour of J−n under the grading γ2k
of S2k with respect to the decomposition S2k = S+

2k⊕S−2k relative to (Cl2k)0 or Spin(2k). Also
this can simply be computed for given J−2k, so that one finally obtains the famous sign
table of Connes, which (by convention) refers to Cl−n :20

n ε ε′ ε′′

1 1 −1
2 −1 1 -1
3 −1 1
4 −1 1 1
5 −1 −1
6 1 1 -1
7 1 1
8 1 1 1

Here (J−n )2 = ε, J−n x = ε′xJ−n for all x ∈ (Cl−n )1 (i.e., ε′ = 1 if J−n is real or quaternionic for
all of Cl−n and ε′ = −1 if J−n is real or quaternionic just for (Cl−n )0 whereas it anticommutes
with the odd part (Cl−n )1), and finally J−nγn = ε′′γnJ−n , where γn is the grading on Sn
(defined only for n even).

This table has deep implications for the nature of Reality.

19This is immediately clear for n = 1, where one may put J−1 z = z, so that [J−1 z, π(1)] = 0 but J−1π(e1)z = iz =
−π(e1)J−1 z. To understand n = 5, we need to deal with Cl+3 � Cl−1 ⊗ Cl+2 . With J−1 as just defined, which is real,
for Cl+3 we have real tensor real, which is real. For Cl−5 , the isomorphism (106) implies real tensor quaternionic,
which is quaternionic. Hence we have an operator J−5 that commutes with (Cl−5 )0 and anticommutes with
(Cl−5 )1, and satisfies (J−5 )2 = −1.

20To really appreciate this table, one needs KO-theory.
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3.7 Bundles of Clifford algebras over a Riemannian manifold

Let (M, g) be an oriented Riemannian manifold, defined according to Definition 3.8. Define
the following real and complex associated vector bundles over M:

Cl±(M, g) = SO(M) ×SO(n) Cl±n ; (107)
Cl(M, g) = SO(M) ×SO(n) Cln, (108)

with respect to the following action of SO(n) on Cl±n and hence on Cln:

R · (v1 · · · vp) = Rv1 · · ·Rvn. (109)

Here vi ∈ Rn, and v 7→ Rv is the defining action of SO(n) on Rn; to define (108), the action
(109) is extended to vi ∈ Cn by complexification. For p = 0 we put Rz = z, z ∈ C. This
action is well defined, as by definition of SO(n) it respects the relations v2

− (v, v) = 0,
where the right-hand side is the usual inner product in Rn: after all, one has

R(v2
− (v, v)) = (Rv)2

− (v, v) = (Rv)2
− (Rv,Rv) = 0.

By definition, Cl(M, g) is locally given by Cl(M, g)U � U × Cln, i.e. its typical fiber is Cln,
and similarly for Cl±(M, g). The trace τ turns Cln into a Hilbert space (Varilly, §1.3) and
hence Cl(M, g) is a hermitian vector bundle. As we know, the continuous cross-sections of
Cl±(M, g) and Cl(M, g) are given by

B±g = C(Spin(M),Cl±n )Spin(n); (110)

Bg = Γ(M,Cl(M, g)) = C(SO(M),Cln)SO(n), (111)

respectively. The latter is a (f.g.p.) Hilbert C(M) module, because Cl(M, g) is a hermitian
vector bundle. Explicitly, the C(M)-valued inner product on Bg is given by

〈β, γ〉C(M)(x) = τ(β(ϕ)∗γ(ϕ)), (112)

where x ∈ M, and ϕ is any element of SO(M) projecting to x; this is well defined (i.e.
independent of the choice of ϕ) by SO(n)-equivariance of β and γ and SO(n)-invariance
of the trace τ, in that τ(Rx) = τ(x) for any x ∈ Cln and R ∈ SO(n).

Exercise 3.13 Check this.

However, Bg has interesting additional structure, because, as we have seen, Cln is a
C∗-algebra, with norm written as ‖ · ‖Cln .

Proposition 3.14 The Hilbert C(M) module Bg is a C∗-algebra with respect to pointwise opera-
tions and norm

‖β‖ = sup
ϕ∈SO(M)

{‖β(ϕ)‖Cln}. (113)

Exercise 3.15 Show that Bg is isomorphic (as a Hilbert C(M) module and as a C∗-algebra) to
Varilly’s Bg (see his Lemma 2.3 on p. 19).

We now prepare for the definition of the important notion of a Clifford module. In any
case, the following pre-definition is interesting in its own right.21

21See my paper onhttp://xxx.lanl.gov/pdf/math-ph/0008004 for a survey of Hilbert bimodules, Morita
equivalence, etc.
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Definition 3.16 1. Let A be a C∗-algebra and E a Hilbert A module. The operator algebra
EndA(E) consists of all adjointable linear maps b : E → E, i.e., there exists a map
b∗ : E → E with the property that 〈η, bη′〉A = 〈b∗η, η′〉A for all η, η′ ∈ E.

2. Let A and B be C∗-algebras. A Hilbert B-A bimodule is a Hilbert A module E along with
a nondegenerate ∗-homomorphism B→ EndA(E).

In part 1, it turns out that b ∈ EndA(E) is automatically bounded, that b∗ is unique, and
that EndA(E) is a C∗-algebra in the usual operator norm on the Banach space E and the
adjoint b 7→ b∗. Thus the notion of a ∗-homomorphism B → EndA(E) in part 2 is well
defined. Note that if E is f.g.p. over A, one has

EndA(E) � E⊗AE, (114)

where E is the conjugate space to E, seen as a left A module through the action a · η = ηa∗

(which is complex linear in a), and ⊗A is the algebraic tensor product over A (i.e. one
identifies ηa ⊗A η′ with η ⊗A aη′, for all a ∈ A).

There are many examples of Hilbert bimodules. The easiest is E = A, initially as a
Hilbert A module through 〈η, η′〉A = η∗η′ and right mutliplication, and subsequently with
b(η) = bη. as a Hilbert A-A bimodule; the definition is easily checked.

Definition 3.17 A complex Clifford module on an oriented Riemannian manifold (M, g) is a
f.g.p. Hilbert Bg - C(M) bimodule E = Γ(E), for which the map Bg → Γ(End(E)) defining the
action of Bg on E is C(M)-linear.

A real Clifford module on (M, g) is a real vector bundle E equipped with a C(M,R)-linear action
of Cl±(M, g) on Γ(E); if a fiber metric g on E is given, this action is supposed to be symmetric with
respect to g, making Γ(E) a “real” Hilbert B±g - C(M,R) bimodule.

The simplest example is probably Ω•(M) = Γ(M,Λ•(T∗M)) in the real case and its
complexification Ω•C(M) in the complex case (where one simple replaces the cotangent
bundle T∗M by the complexified cotangent bundle T∗CM, with fibers T∗xM ⊗R C).

Exercise 3.18 Show that for an oriented Riemannian manifold one has

Λ•(T∗M)) � SO(M) ×SO(n) Λ•(Rn), (115)

as vector bundles, defined with respect to the natural action of SO(n) on Λ•(Rn) induced from the
defining SO(n) action on Rn (i.e., R · (v1 ∧ · · · ∧ vp) = Rv1 ∧ · · · ∧ Rvp).

Consequently, for the continuous cross-sections one has

Ω•(M) � C(SO(M),Λ•(Rn))SO(n), (116)

and analogously for the complexification Ω•C(M). Now recall the natural action of Cln
on Λ•(Cn), given by (62) - (63), or, equivalenty, by left-multiplication of Cln on itself,
combined with the vector space isomorphism Cln � Λ•(Cn). The Bg-action on Ω•C(M) – in
its realization (116) – is then given by

(βω)(p) = β(p) · ω(p), (117)

where β ∈ Bg, ω ∈ Ω(M), and p ∈ SO(M). Elementary manipulations show that this
action is well defined in the sense that βω is SO(n)-equivariant, provided ω itself is. By
restriction, the same procedure turns Ω•(M) into a real Clifford module.
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This is a special case of a general construction: if some (real) vector space V carries
both a representation c of Cl±n and a representation ρ of SO(n), such that (cf. (78))

ρ(R)c(v)ρ(R−1) = c(R · v) (118)

for all R ∈ SO(n) and v ∈ Rn, then B±g acts on the sections Γ(EV) of the vector bundle

EV = SO(M) ×SO(n) V (119)

through the formula (117), mutatis mutandis. Similarly in the complex case: if V is a
finite-dimensional Hilbert space carrying an SO(n)-covariant representation of Cln in the
sense of (118), then Bg acts on Γ(EV) by (117).

Now assume that M is a Spin or a SpinC manifold; the following formulae are written
down for the Spin case, but one may add suffixes C as appropriate. The group Spin(n)
acts on Cl±n ⊂ Cln through xz = z for p = 0 and

x · (v1 · · · vp) = xv1 · · · vpx−1 = λ(x)v1 · · ·λ(x)vp, (120)

in terms of the familiar map λ : Spin(n)→ SO(n) and the SO(n) action (109). The formulae
to be given now are defined with respect to this action.

Exercise 3.19 Show that

Cl±(M,G) � Spin(M) ×Spin(n) Cl±n ; (121)
Cl(M,G) � Spin(M) ×Spin(n) Cln; (122)

B±g � C(Spin(M),Cl±n )Spin(n); (123)

Bg � C(Spin(M).Cln)Spin(n), (124)

Any representation c of Cl±n on some vector space W brings along a representation of
Spin(n) ⊂ Cl±n on W by restriction of the Cl±n -action. This makes c automatically Spin(n)-
covariant, as in (78); similarly for a representation of Cl on a complex vector space W. As
in (119), we then define

EW = Spin(M) ×Spin(n) W, (125)

with associated actions of B±g (in the real or complex case) and of Bg (in the complex
case) defined in the (by now) obvious way. This extends our previous construction (117)
of Clifford modules from SO(n)-representations to Spin(n)-representations. The most
important example of this construction is given by the spinor representation (95), with
continuous cross-sections of Sn given by

Γ(Sn) = C(Spin(M),Sn)Spin(n). (126)

This immediately turns Γ(Sn) into a Clifford module by the action (119), or, explicitly,

βψ(p) = β(p)ψ(p), (127)

where β ∈ Bg or β ∈ B±g , realized as (124), etc., ψ ∈ Γ(Sn), and p ∈ Spin(M).

Exercise 3.20 Show that this action is well defined.

Hence Γ(Sn) is a Hilbert Bg - C(M) Hilbert bimodule. It has a stronger property, however.
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Definition 3.21 Let A and B be unital C∗-algebras.22 A Hilbert B - A bimoduleM is a B - A
Morita equivalence if:

1. M is f.g.p. over A;

2. M is full in A (i.e., the linear span of {〈µ, ν〉A | µ, ν ∈ M} is dense in A);

3. B � EndA(M).

We say that A and B are Morita equivalent if there exists a B - A Morita equivalence.

Clearly, by (114) we then also have B � M ⊗A M. Note that if A and B are Morita
equivalent, the bimodule implementing this equivalence is by now means unique, not
even up to unitary equivalence! In fact, one may study things like the unitary equivalence
class of all A - A Morita equivalences, see Varilly.

Our earlier example of E = A as an A - A Hilbert bimodule is actually a Morita
equivalence, showing that A is Morita equivalent to itself (in fact, Morita equivalence
is indeed an equivalence relation!). Perhaps more surprisingly, for any k, the matrix
algebra Mk(C) is Morita equivalent to C throughM = Ck with the obvious actions. This
suggests the significance of Morita equivalence: A and B are Morita equivalent if they
have equivalent representation categories.

For n odd, instead of (111) define23

B0
g = Γ(M,Cl(M, g)) = C(SO(M),Cl0

n)SO(n). (128)

Theorem 3.22 Let M be Spin or SpinC. If n is even, then Γ(Sn) is a Bg - C(M) Morita equivalence.
If n is odd, Γ(Sn) is a B0

g - C(M) Morita equivalence.

Locally, with C(M) ≡ C(M,C) � Γ(M × C, we have

(S2k)|U � U × S2k � U × C2k
; (129)

(Bg)|U � U × Cl2k � U ×M2k(C); (130)
(M × C)|U � U × C. (131)

Hence locally, Theorem 3.22 just restates the matrix example just given, for Cl2k is Morita
equivalent to C. Globally, Theorem 3.22 states that these “local” Morita equivalence can
be glued together so as to form a global Morita equivalence.

Exercise 3.23 Prove Theorem 3.22.

Theorem 3.22 holds for both Spin and SpinC manifolds. In the Spin case, however,
there is additional structure. The following result is just stated for the minus sign in Cl−n ,
but an analogous result also holds for Cl+n .

Proposition 3.24 Let M be a Spin manifold, with associated spinor bundle Sn, and let J−n : Sn →

Sn be a an antiunitary real or quaternionic structure with respect to Cl−n (for even n) or (Cl−n )0

(for odd n). Then the operator C−n : Γ(Sn)→ Γ(Sn), given in terms of (126) by

C−nψ(p) = J−nψ(p), (132)

is well defined, antiunitary, and:
22See Landsman, math-ph/0008004, loc.cit., for the nonunital case.
23Alternatively, for odd n we may leave Sn as it is and replace C(M) in the statement of Theorem (3.22) by

C(M,C ⊕ C), reflecting the fact (prove!) that Cl2k+1 is Morita equivalent to C ⊕ C.
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1. commutes with the C(M,R) action on Γ(Sn);

2. commutes with the (B−g )0-action on Γ(Sn);

3. for n = 2, 3, 4, 6, 7, 8 mod 8 commutes with the (B−g )1- action on Γ(Sn), and hence commutes
with the entire B−g -action;

4. for n = 1, 5 mod 8 anticommutes with the (B−g )1- action on Γ(Sn).

Here B−g is given by (110), and for i = 0, 1,

(B−g )i = C(Spin(M), (Cl−n )i)Spin(n). (133)

This is almost immediate from the definitions. For C−n to be well defined, is is already
sufficient that J−n commutes with the Spin(n) action on Sn (as it indeed does).

We are finally in a position to explain Connes’s noncommutative geometry approach
to Spin and SpinC manifolds. From the point of view of differential geometry, Connes’s
definitions are theorems. Roughly speaking,

Spin manifold = SpinC manifold + charge conjugation. (134)

We state the following definition and exercise for n even; for the odd case, replace Bg by
B0

g, etc.

Definition 3.25 1. A SpinC manifold is a (unitary equivalence class of) Bg - C(M) Morita
equivalence(s)M.

2. A Spin manifold is a SpinC manifold (as just defined) with a charge conjugation, i.e. an
antiunitary operator C : M → M that satisfies the four properties listed in Proposition
3.24 (with C−n replaced by C and Γ(Sn) replaced byM).

When the going gets tough, the tough get going:

Exercise 3.26 Show how a Spin(C) structure as we defined it can be reconstructed from the data
in Definition 3.25. Hint: We know thatM = Γ(M,F) for some vector bundle F→M. Construct
the principal Spin(C)-bundle Σ(C)(M) as a suitable sub-bundle of Hom(M×Sn,F). Cf. Definition
3.3.

For later use, we mention that the idea of (132) may also be used to define a grading
Γn on Γ(Sn) whenever n is even: starting with the spinor grading operator γn : Sn → Sn,
introduced just below (68), we define an operator Γn : Γ(Sn)→ Γ(Sn) by

Γnψ(p) = γnψ(p). (135)

By the corresponding properties of γn, this operator satisfies Γ2
n = 1 and Γ∗n = Γn (with

respect to the natural inner product on Γ(Sn)), and hence Γn has eigenvalues ±1. The
corresponding eigenspaces Γ±(Sn) are evidently given by

Γ±(Sn) = C(Spin(M), S±n )Spin(n), (136)

inducing a decomposition Γ(Sn) = Γ+(Sn) ⊕ Γ+(Sn).
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4 Dirac operators

Historically, Dirac operators first arose in physics, notably in a paper in 1928 by Dirac,
who, in one of the most famous papers in 20th century physics, tried to write down a
relativistic theory of electrons. As it turned out, the equation he gave not only described
electrons, but also positrons (i.e. their antiparticles), which was a sensational new notion
at the time, discovered through the mathematical structure of Dirac’s equation.24

In 1962, the same class of operators was rediscovered in the context of mathematics
by Atiyah and Singer, who used Dirac operators both as examples of their famous index
theorem and as an ingredient in one of their proofs of the theorem in general. The
physics and the mathematics lines met in the 1980s, where so-called anomalies in quantum
field theory were mathematically understood (albeit with a lot of handwaving involving
path intergals) on the basis of the mathematical Atiyah-Singer index theorem applied
to the Dirac equation of physics. In noncommutative geometry, the Dirac operators
of mathematics and physics meet once again. In particular, Dirac operators on spin
manifolds provide the motivating example of a (commutative) spectral triple.

4.1 Connections and covariant derivatives on vector bundles

In what follows, π : E → M is a real or complex vector bundle, “linear” means R- or
C-linear as appropriate, and Γ(E) stands for the smooth sections of E (as opposed to the
continuous sections), unless explicitly stated otherwise. Furthermore,

Ω•(M) ≡ A•(M) = Γ(Λ•(T∗M))

stands for the smooth differential forms on M. One may subsequently form the tensor
product bundle E⊗Λ•(T∗M) of E-valued differential forms on M. For any two bundles E,
F over M one has an isomorhpism of f.g.p. A-modules25

Γ(E ⊗ F) � Γ(E) ⊗C∞(M) Γ(F), (137)

so that, in particular,
Γ(E ⊗Λ•(T∗M)) � Γ(E) ⊗C∞(M) Ω•(M). (138)

The sub-bundle of one-forms Ω1(M) = Γ(T∗M) plays a special role, with

Γ(E ⊗ T∗M) � Γ(E) ⊗C∞(M) Γ(T∗M).

Definition 4.1 A connection on a vector bundle π : E→M is a linear map

∇ : Γ(E)→ Γ(E) ⊗C∞(M) Γ(T∗M) (139)

that, for all σ ∈ Γ(E) and f ∈ C∞(M), satisfies the Leibniz rule

∇(σ · f ) = (∇σ) · f + σ ⊗C∞(M) d f . (140)

24With hindsight, one could argue that, in an equally famous paper, Schrödinger already wrote down the
first example of what we now call a Dirac operator in 1926, namely the momentum operator p = −id/dx on
L2(R) for a quantum particle moving on the line.

25To see this, use the Serre–Swan Theorem to write Γ(E) = pEAm for some pE ∈ Mm(A), m ∈ N, and
A = C∞(M), and similarly Γ(F) = pFAl. Then E ⊗ F is (isomorphic to) the sub-bundle of the trivial bundle
M×(Cm

⊗Cl) � M×Cml whose fiber at x ∈M is the image of pE(x)⊗pF(x) in Cm
⊗Cl, so that Γ(E⊗F) � pE⊗pF(Aml).

On the other hand, since Am
⊗A Al � Aml, we have Γ(E) ⊗A Γ(F) � pE ⊗ pFAm

⊗A Al � pE ⊗ pFAml.
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Here Γ(E) is a right C∞(M) module, whereas Γ(T∗M), and more generally Ω•(M), is to be
seen as a C∞(M)-C∞(M) bimodule, where in this case the left- and right actions coincide
(this is possible because C∞(M) is commutative). Hence Γ(E)⊗C∞(M) Γ(T∗M) is naturally a
right C∞(M) module, and (140) states that ∇ fails to be C∞(M)-linear in a controlled way.
For example, take E = M×C, so that Γ(E) = C∞(M) and hence Γ(E)⊗C∞(M)Γ(T∗M) � Γ(T∗M).
The exterior derivative d : C∞(M) → Γ(T∗M), which is the same as d : Ω0(M) → Ω1(M),
then provides a connection on the trivial bundle E, in which case the Leibniz rule assumes
the familiar form d(g f ) = gd f + (dg) f . This illustrates the idea that the general case (139)
is an attempt to generalize the exterior derivative from trivial vector bundles, whose
sections are just functions on M, to arbitrary vector bundles.

To explore the multitude of connections a bundle may admit, consider two such, ∇
and ∇′. One immediately sees from (140) that

(∇ − ∇′)(σ · f ) = (∇ − ∇′)(σ) · f , (141)

so that, unlike a single connection, the difference between two connections on E is C∞(M)-
linear. Hence (by the functorial form of the Serre–Swan Theorem),

∇ − ∇
′ : Γ(E)→ Γ(E) ⊗C∞(M) Γ(T∗M)

is induced by a vector bundle map E→ E ⊗ T∗M, or, equivalently,

∇ − ∇
′
∈ Γ(End(E) ⊗ T∗M). (142)

This is often written as∇−∇′ = A, where A ∈ Γ(End(E)⊗T∗M) is a so-called End(E)-valued
one-form on M. Technically, this implies that the space of all connections on E is an affine
space modeled on Γ(End(E) ⊗ T∗M), which means what we have just said, namely that
any connection ∇ on E can be written as the sum of a fixed connection ∇′ and an element
of Γ(End(E) ⊗ T∗M). Calling the latter element A, we may write ∇A ≡ ∇

′ + A. Locally, we
may take ∇′ = d, obtaining the physicists’ formula ∇A = d + A.

In the following exercise, R may also be replaced by C.

Exercise 4.2 Take local trivializations of both E|U � U×Rp and T∗M|U � U×Rn, for some open
U ⊂M.

1. What are the local expressions for σ ∈ Γ(E|U) and ω ∈ Γ(T∗M|U)?

2. What is the local expression of A ∈ Γ(End(E|U) ⊗ T∗M|U)?

3. Show directly that ∇A = d + A, with A of the local form found in the previous questions,
defines a connection on the trivial bundle E|U (i.e. write down the local form of the Leibniz
rule and verify that d + A satisfies it).

4. Conversely, show directly that any connection is locally of this form.

Later on, for general spectral triples (A,H,D), the space of sections E = Γ(E) will be
generalized to an f.g.p. module over A, and a connection on E will be defined as a
linear map ∇ : E → E⊗AΩ1

D(A), where Ω1
D(A) consists of all finite linear combinations

of operators of the form a[D, b]. This is an A-A bimodule under left- and right operator
multiplication by elements of A, so thatE⊗AΩ1

D(A) is a right A module, likeE. The Leibniz
rule then reads ∇(σ · f ) = σ⊗A d f + (∇σ) · f , with d f = [D, f ]. As in the commutative case,
such connections always exist in multitude.

If you don’t like differential forms, the following equivalent definition of a connection
may please you.
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Definition 4.3 A covariant derivative on a vector bundle π : E → M assigns a linear map
∇X : Γ(E)→ Γ(E) to each smooth vector field X on M, such that

∇X(σ · f ) = (∇Xσ) · f + σ · (X f ). (143)

The assignment X 7→ ∇X is linear and C∞(M)-linear, i.e., ∇sX+tY = s∇X + t∇Y and ∇gX = g∇X
for all g ∈ C∞(M).

Exercise 4.4 Explain and prove the equivalence between Definitions 4.1 and 4.3. In other words,
show that a connection on E defines a covariant derivative on E and vice versa.

A third way to look at connections or covariant derivatives arises if we realize vector
bundels as associated bundles in terms of principal fibre bundles. We work in the setting
of Definition 3.2.

Definition 4.5 Let P be a principal G-bundle over M. An Ehresmann connection on P, simply
called a connection in what follows, is a family of linear maps hp : Tπ(p)M → TpP, p ∈ P such
that:26

1. π′ ◦ hp = idTπ(p)M, i.e., π′(hp(ξ)) = ξ for all ξ ∈ Tπ(p)M;

2. hpg = R′g ◦ hp (where Rg(p) = pg), for all p ∈ P and g ∈ G;

3. the vector field p 7→ hp(X) on P is smooth for any smooth vector field X on M.

This family (hp), p ∈ P, is called a horizontal lift; indeed, the idea is that TM is lifted into
TP. Equivalently, one may define a connection on P as a family of subspaces Hp ⊂ TpP,
smoothly depending on p ∈ P, such that

π′ : Hp
�
−→ Tπ(p)M (144)

is an isomorphism for each p, and

Hpg = R′gHp. (145)

This structure arises from Definition 4.5 by declaring Hp to be the image hp(Tπ(p)M); vice
versa, a choice of Hp determines a decomposition

TpP = Hp ⊕ Vp, (146)

where the vertical tangent space Vp at p consists of all tangent vectors v of the form (v f )(p) =
d f (pg(t))/dtt=0 for smooth curves t 7→ g(t) in g with g(0) = e. Hence Vp is tangent to the
G-orbit through p, whereas Hp is tangent to the ’horizontal’ direction given by M. The
crucial difference is that Vp is given by the bundle structure, whereas Hp is not canonically
given but must be chosen. This is what an Ehresmann connection does.

A connection on P immediately leads to a covariant derivative on any bundle (88)
associated to P through a representation of G on a vector space V. Namely, for σ ∈
C∞(P,V)G (see (90)) we put

∇Xσ(p) = hp(Xπ(p))σ(p). (147)

26We write ϕ′ : TX → TY for the derivative of a smooth map ϕ : X → Y between manifolds X, Y. In
particular, ϕ′x : TxX→ Tϕ(x)Y is linear. We sometimes write ϕ′ for ϕ′x.
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Exercise 4.6 1. Show that ∇Xσ ∈ C∞(P,V)G.

2. Show that ∇X satisfies the Leibniz rule (143).

For no. 2, use

C∞(M) � C∞(P)G = { f ∈ C∞(P) | f (pg) = f (p)∀p ∈ P, g ∈ G},

so that the action of C∞(M) on Γ(E) is simply given by (σ · f )(p) = σ(p) f (p), f ∈ C∞(P)G.
This is an extremely powerful construction, because any vector bundle can be realized

as an associated bundle, and any connection is of the above form; cf. the next subsection.
To perform local computations with (147), we assume P|U � U × G and (P ×G V)|U �

U ×V, so that locally σ : U→ E is represented by a V-valued function σ̃ : U→ V defined
by

σ̃(x) = σ(x, e). (148)

To proceed, you need to know that TeG = g is (by definition) the Lie algebra of G, and that
R′g : TeG→ TgG is an isomorphism, so that we may also say that TgG � g. With p = (x, g),
x ∈ U ⊂ M, g ∈ G, we then have T(x,g)(U × G) � TxM ⊕ g. Hence the lift hp may locally be
written as

h(x,g)(ξ) = ξ− < A(x), ξ >, (149)

where A is a g-valued 1-form on U (this is the “gauge field” of physics) and < −,− > is
the pairing between 1-forms and vectors on M. Using (148) and the G-equivariance of
σ ∈ C∞(P,V)G, the local expression for the covariant derivative turns out to be

∇Xσ̃(x) = Xσ̃(x)+ < A(x),X(x) > σ̃(x), (150)

where < A(x),X(x) >∈ g acts on σ̃(x) ∈ V through (the derivative of) the given representa-
tion of G on V defining the associated bundle E = P×G V. Hence locally ∇ = d + A, where
the g-valued one-form A on U is defined in terms of the lifting maps hp by (149).

In fact, this local construction has a global counterpart. Given the liftings hp, define a
g-valued 1-form A on P by

< A, ξ >p = 0 for all ξ ∈ Hp; (151)
< A, ηY > = Y for all Y ∈ g, (152)

where the vector field ηY on P associated to Y ∈ g is defined by

ηY f (p) =
d
dt

f (petY)|t=0. (153)

This completely defines A, since the vectors ηY, Y ∈ g, span the vertical tangent space Vp,
and (151) fixes the action of A on Hp. Property 2 in Definition 4.5, or rather its consequence
(145), then leads to

R∗gA = Ad(g)A, (154)

where Ad is the adjoint representation of G on its Lie algebra g (informally, Ad(g)Y =
gYg−1). If the above trivializations of P and E over U then correspond to a local cross-
section s : U → P, as in Exercise 3.6, the local g-valued one-form A on U is simply given
in terms of A by A = s∗A. Furthermore, the global version of (149) is

hp(ξ) = ξ̃ − η<A,ξ̃>, (155)

where ξ̃ is any lift of ξ, i.e., if ξ ∈ Tπ(p)M, then ξ̃ ∈ TpP such that π′(ξ̃) = ξ.
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4.2 Levi-Civita, Clifford, and spin connections

Since there are many connections on a given vector bundle, extra conditions are sought to
single out particularly nice ones, if at all possible unique (given the conditions). The oldest
example is the Levi-Civita connection∇g : Γ(TM)→ Γ(TM⊗T∗M) on E = TM, where (M, g) is
Riemannian. Equivalently, in the style of Definition 4.3, one has a family∇g

X : Γ(X)→ Γ(X),
where X ∈ Γ(TM). The “fundamental theorem of Riemannian geometry” states that (for
a given metric g) there is a unique connection ∇g on TM that is both torsion-free, in that

∇
g
XY − ∇g

YX = [X,Y], (156)

and metric, in the sense that

g(∇g
XY,Z) + g(Y,∇g

XZ) = Xg(Y,Z), (157)

for all smooth vector-fields X,Y,Z ∈ Γ(TM).
Though initially defined on the tangent bundle TM, by the construction in the previous

subsection the Levi-Civita connection∇g induces a connection on any vector bundle (119)
associated to SO(M) through an appropriate representation V of SO(n). Indeed, through
the isomorphism (92), ∇g arises from a particular connection hg = (hg

p)p∈P on the principal
SO(n)-bundle SO(M) of orthonormal frames.27 As a case in point, (115) shows that for
V = Λ•(Rn), the Levi-Civita connection on TM induces a connection on EV = Λ•(T∗M).
As such, the Levi-Civita connection ∇g has a remarkable property, abstracted as follows.

Suppose (M, g) is Riemannian and suppose that E = Γ(E) is a Clifford module (see
Definition 3.17). Using the embedding Γ(TM) ⊂ B±g ⊂ Bg, given by Exercise 3.7, the
canonical map Rn

→ Cln, and (111), we obtain an action of Γ(TM) onE, given by restriction
of the Bg or B±g action. We write c for this Γ(TM)-action, so that we have a map c : Γ(TM)→
EndC(M)Γ(E).

Definition 4.7 A Clifford connection on a Clifford module Γ(E) (with respect to a Riemannian
manifold (M, g)) is a connection ∇ on E that satisfies

∇X(c(Y)σ) = c(Y)∇Xσ + c(∇g
XY)σ, (158)

for all X,Y ∈ Γ(TM) and σ ∈ E.

A simple way of constructing Clifford connections on Clifford modules is as follows.

Exercise 4.8 1. Show that the induced Levi-Civita connection on (119) is a Clifford connec-
tion, for any vector space V with representation ρ : SO(n)→ End(V).

2. As a special case, explain how the Levi-Civita connection on Λ•(T∗M) defines a Clifford
connection on the Clifford module Ω•(M) = Γ(M,Λ•(T∗M)).

The second major example of a Clifford connection on a Clifford module is the spin
connection on the spinor bundle on a spin manifold. Recall that a spin manifold M is
defined in terms of a principal Spin(n) bundle Spin(M) on M with an isomorphism (93),
and that the associated Riemannian structure on M is given by the principal SO(n) bundle
SO(M) = Spin(M)/Z2. Letπ : Spin(M)→ SO(M) be the ensuing projection, with kernel Z2.
Since Z2 is discrete, each linear map π′p : Tp(Spin(M))→ Tπ(p)(SO(M)) is an isomorphism.
As we have seen, the Levi-Civita connection on TM induces an (Ehresmann) connection
hg on SO(M).

27Those with a good background in differential geometry may try to find the explicit maps hp that define
the Levi-Civita connection; see Kobayashi and Nomizu, Foundations of Differential Geometry, Vol. 1.
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Definition 4.9 Let M be a spin manifold.

1. The spin connection on the principal Spin(n) bundle Spin(M) is the (Ehresmann) connec-
tion hS defined by

hS
p = (π′p)−1

◦ hg
π(p), (159)

where hg is the Levi-Civita connection on SO(M) = Spin(M)/Z2.

2. For any representation of Spin(n) on a vector space W, the spin connection on the associated
vector bundle EW = Spin(M) ×Spin(n) W is the connection induced by the spin connection
(159) on Spin(M) through (147).

3. In particular, the spin connection on the spinor bundle Sn associated to Spin(M) by
(95) is the connection defined in the previous item.

The same method as in Exercise 4.8 now proves the following.

Proposition 4.10 If a vector space W carries a Spin(n) representation defined as the restriction of
a Cl±n -action or of a Cln-action on W, then the spin connection on any vector bundle EW associated
to Spin(M) by (125) is a Clifford connection.

To make this a bit more explicit, we write the Levi-Civita connection on TM locally as

∇
g
XYa = Xb(ebYa + Γa

bcY
c), (160)

where Y = Yaea in terms of a local vielbein (ea) (i.e., an orthonormal frame), and all repeated
indices are summed from 1 to n (Einstein summation convention). Equivalently,

∇
g = d + Γ, (161)

where Γ is a local matrix-valued 1-form on U given by Γ = θbΓb in terms of the basis (θa)
dual to (ea), and each Γb is an n × n matrix with matrix elements (Γb)a

c. Conceptually, the
matrix Γb is an element of the Lie algebra so(n) of SO(n) acting in its defining representation
on Rn. The associated spin connection turns out to be given locally by

∇
S = d + ω, (162)

where ω is a one-form on U taking values in the Lie algebra of Spin(n) in its spinor
representation on Sn. As a matrix on Sn, we haveω = θbωb, withωb = Γa

bc [γa, γc]/4, where
γa = c(ea) is the representative of ea ∈ Rn

⊂ Cln acting on Sn.28 Hence

∇
S
Xψ = Xa(ea +

1
4

Γb
ac [γb, γc])ψ. (163)

To state the main example with an appropriate refinement, note that condition (157)
has an analogue for complex vector bundles, called hermiticity: suppose E is a hermitian
complex vector bundle, i.e. an f.g.p. Hilbert C(M)-module (M compact), with hermitian
structure 〈−,−〉C(M) : Γ(E)×Γ(E)→ C(M). We then say that a connection∇ on E is hermitian
if

〈∇Xσ, τ〉C(M) + 〈σ,∇Xτ〉C(M) = X〈σ, τ〉C(M) (164)

for all X ∈ Γ(TM) and all σ, τ ∈ Γ(E) (smooth sections).
28This formula arises from a computation of the inverse of the Lie algebra isomorphism λ′ : spin(n)→ so(n)

induced by the Lie group covering homomorphism λ : Spin(n) → SO(n) we have already encountered. If
spin(n) is realized as the set of commutators of elements of Rn in Cl±n , and so(n) is the set of antisymmetric
n× n matrices with elements (w∧ v)i j = 1

2 (wiv j − viw j), one obtains (λ′)−1(v∧w) = ∓[v,w]/4. See Varilly, §1.7.
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Proposition 4.11 The spin connection ∇S on the spinor bundle Sn:

1. is a Clifford connection;

2. commutes with the charge conjugation C−n ;

3. is hermitian with respect to the inner product on Sn that makes πF(Cln) a *-representation
(and hence makes the associated Spin(n) representation unitary).

Moreover, ∇S is the unique connection on Sn with these properties.

The last claim is the way Varilly introduces the spin connection, and he proves this
proposition on pp. 29–30, using the local expressions for ∇g and ∇S.

Exercise 4.12 Prove Proposition 4.11 globally, i.e., from Definition 4.9.

4.3 Dirac operators: definition

Let Γ(E) be a Clifford module, i.e., a Bg - C∞(M) (pre-Hilbert) bimodule, over a Riemannian
manifold (M, g), and let ∇ be any connection on E (not necessarily Clifford!). These data
define a first-order partial differential operator D on Γ(E) by

iD : Γ(E) ∇→ Γ(E ⊗ T∗M)
flip ◦ ]
−→ Γ(TM ⊗ E) � Γ(TM) ⊗C∞(M) Γ(E) c

→ Γ(E), (165)

where
flip ◦ ](ψ ⊗ ω) = ω] ⊗ ψ, (166)

for ψ ∈ Γ(E) and ω ∈ Ω1(M), in terms of the isomorphism T∗M→ TM, ω 7→ ω], given by
the metric g (i.e., g(ω],X) =< ω,X > for all vector fields X).

Locally, D may be written as

D = −i
∑

a
c(ea)∇ea , (167)

where (ea) is an arbitrary vielbein. Indeed, we have ∇ =
∑

a θ
a
∇ea and (θa)] = ea.

Exercise 4.13 Show that [D, f ] = −ic(O f ) for all f ∈ C∞(M), where O f is the vector field
O f = (d f )] and f acts on Γ(E) as a multiplication operator.

For example, the Dirac operator on Λ•(T∗M) associated to the Levi-Civita connection
∇

g (see Exercise 4.8) turns out to be D = d + d∗, where d∗ is the (formal) adjoint of d in
terms of the natural inner product on Ω•(M). The golden example is:

Definition 4.14 The Dirac operator D/ is the Dirac operator on Γ(Sn) with respect to the spin
connection ∇S.

To find a local expression for D/ , we initially write the Γ(TM)-action on Γ(Sn), given by
(127) with β = X a vector field, as

Xψ(p) = X(p)ψ(p) =
∑

a
Xa(p)γaψ(p), (168)

where p ∈ Spin(M), X(p) ∈ Rn has components (X1(p), . . . ,Xn(p)), and

γa = πF(êa) ∈ End(Sn) (169)
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is the Fock representation (or Clifford action) of the a-th basis vector êa of Rn on Sn. A local
section s : U → Spin(M), U ⊂ M, trivializes both Spin(M) itself and all vector bundles
associated to Spin(M), see Exercise 3.6. Explicitly, the bundle isomorphism

Spin(M)|U � U × Spin(n); (170)
p 7→ (x, ρ), (171)

is given by x = π(p) ∈ U, whilst ρ ∈ Spin(n) is defined by

p = s(x)ρ. (172)

For any associated vector bundle E = Spin(M) ×Spin(n) V, using (172) we then have

E|U � U × V; (173)
[p, v] 7→ (x, ρv). (174)

This induces a trivialisation, which, still using (172), is given by

Γ(E|U) � C∞(U,V); (175)
σ 7→ σ̃, (176)

σ̃(x) = σ(s(x)); (177)
σ(p) = ρ−1σ̃(x), (178)

where σ ∈ C∞(Spin(M),V)Spin(n). In particular, take V = Rn and E = TM, see (93). Given
some section s : U → Spin(M), under the isomorphism (93) the constant maps x 7→ (x, êa)
from U to U×Rn correspond to a specific local vielbein TM|U. If a vector field X ∈ Γ(TM) is
given as an equivariant map X ∈ C∞(Spin(M),Rn)Spin(n), the corresponding trivialisation
X̃ : U → Rn then has components (X̃1(x), . . . , X̃n(x)), with X(s(x)) =

∑
a X̃a(x)êa. Therefore,

if one also localises ψ ∈ Γ(Sn) to ψ̃ : U→ Sn, with ψ̃(x) = ψ(s(x)), setting p = s(x) one finds
that (168) localises to

X̃ψ̃(x) =
∑

a
X̃a(x)γaψ̃(x), (179)

so that the local Dirac operator (167) becomes

D/ ψ̃(x) = −i
∑

a
γa∇

S
a ψ̃(x) ≡ −i

∑
a
γa(ea(x) +

1
4

Γb
ac(x) [γb, γc])ψ̃(x); (180)

even more explicitly, one may write ea(x) =
∑
µ eµa (x)∂/∂xµ, as physicists do.

Dirac operators can be “coupled to a vector bundle” (in physics, this coupling is to
internal degrees of freedom like electric charge, in the case of electrons and positrons, or
color and flavour, in the case of quarks). We illustrate this for D/ . Suppose F is a vector
bundle with connection called ∇F. The spin connection ∇S on Sn and ∇F

A on F jointly
determine a connection ∇ of Sn ⊗ F by (check the Leibniz rule!)

∇X(σ ⊗C∞(M) τ) = (∇S
Xσ) ⊗C∞(M) τ + σ ⊗C∞(M) ∇

F
Xτ, (181)

and hence a Dirac operator D/ F on Sn ⊗ F by the general procedure (165) or (167). If ∇F

is locally given by ∇F = d + A, we may write D/ F = D/ A, as physicists tend to do. We then
have the local expression

D/ A = −i
∑

a
γa(∇S

a + Aa), (182)

with Aa =< A, ea >, acting on a spinor fieldψ taking values in Sn⊗F, where F is the typical
fiber of F (note that γa is a matrix acting on Sn and Aa is a matrix acting on F).
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4.4 Dirac operators: analysis

This material is well covered by Varilly, Chapter 3. We just have some minor additions.
Let (M, g) be a Riemannian manifold, which for the moment we allow to be non-

compact. A good way to define the usual Laplacian ∆ : C∞c (M) → C∞c (M) is to embed
C∞c (M) ⊂ L2(M) ≡ L2(M, νg). In terms of O f = (d f )] ∈ Γ(TM), where f ∈ C∞c (M), using the
metric g : Γ(TM) × Γ(TM)→ C∞(M) we define a quadratic Q form on C∞c (M) by

Q( f1, f2) =

∫
M

dνg g(O f1,O f2). (183)

By the theory of symmetric quadratic forms on Hilbert space, there is a unique operator
∆g : C∞c (M)→ C∞c (M) implementing Q, in that

Q( f1, f2) = ( f1,∆g f2), (184)

where the brackets on the right-hand side denote the inner product in L2(M). This operator
is symmetric on C∞c (M), i.e, ∆g ⊂ ∆∗g, but not self-adjoint, i.e., ∆∗g , ∆g.

• If M is closed, i.e., compact without boundary, ∆g is essentially self-adjoint, in the
sense that its adjoint ∆∗g is self-adjoint, or, in other words, that ∆∗∗g = ∆∗g.

• If M is an open set in Rn, like M = (0, 1), then ∆g is not essentially self-adjoint
on C∞c (M): it has a family of self-adjoint extensions, parametrised by boundary
conditions on ∂M (such as Dirichlet, Neumann, . . . ). In spectral geometry, one
usually takes Dirichlet boundary conditions, because in that case the corresponding
self-adjoint extension of ∆g remains positive, in the sense that ( f ,∆g f ) ≥ 0 for all
f ∈ Dom(∆g). Hence an alternative way of arriving at this particular self-adjoint
extension of ∆g is to define it as the so-called Friedrichs extension.

• If M is a compact Riemannian manifold with boundary, the situation is the same,

if one interprets C∞c (M) as C∞c (
o

M), where
o

M is the interior of M; think of M = [0, 1]

with
o

M= (0, 1).

• If M is noncompact without boundary, ∆g is essentially self-adjoint on C∞c (M) when
M is geodesically complete, in the sense that geodesics can be extended to arbitrary
parameter values.29

The Laplacian ∆E : Γ(E)→ Γ(E) of a (real or complex) hermitian connection ∇E on a (real
or complex) vector bundle E over a Riemannian manifold may be defined analogously.

1. Define a quadratic form QE on Γ(E) by

QE(ψ1, ψ2) =
∑

a

∫
M

dνg 〈∇eaψ1,∇eaψ2〉C∞(M) (185)

where 〈−,−〉C∞(M) : Γ(E)×Γ(E)→ C∞(M) is the hermitian structure and (ea) is a local
vielbein (put together by a partition of unity).

29The geodesic equation ∆
g
γ̇γ̇ = 0 with initial data γ(0) = x0 and γ̇(0) = u(x0) has a local solution t 7→ γ(t),

γ : (−ε, ε)→M, for some ε > 0. The manifold is called geodesically complete if this solution exists for all t ∈ R,
for arbitrary initial data. Clearly, M = (0, 1) with flat metric is not geodesically complete, like all bounded
open sets in Rn.
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2. Define ∆E = (∇E)∗∇E in the same way as in (184), namely as the unique operator
satisfying

QE(ψ1, ψ2) = (ψ1,∆
Eψ2), (186)

where the brackets on the right-hand side denote the natural inner product on Γ(E):

(ψ1, ψ2) =

∫
M

dνg 〈ψ1, ψ2〉C∞(M). (187)

3. Extend ∆E to a self-adjoint operator on L2(E), defined as the completion of Γ(E) with
respect to the inner product (187); the details are the same as for the scalar Laplacian.

Yet another way to define ∆E is to start from the expression

∆E
X,Y = ∇E

∇
g
XY
− ∇

E
X∇

E
Y, (188)

where X,Y ∈ Γ(TM) and ∇g is the Levi-Civita connection on TM. Next, define

∆E =
∑

a
∆E

ea,ea
(189)

Exercise 4.15 1. Show that (189) coincides with the operator defined by (186).

2. Show that ∆E
X,Y − ∆E

Y,X : Γ(E)→ Γ(E) is C∞(M)-linear.

For the following exercise, see Fact 3.12 on p. 39 of Varilly.

Exercise 4.16 Show that if N∆(λ) ∼ λα for λ → ∞, then λk ∼ k1/α for k → ∞, where (λk) are
the eigenvalues of ∆g listed in increasing order, including multiplicities.

Finally, for Weyl’s Theorem, Varilly refers to lectures [Hig] by Nigel Higson for a proof
(see also the homepage of this course for the pdf file). Unfortunately:

Exercise 4.17 Look at Theorem 1.13 in Higson’s lectures and find the gap in his proof!
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5 Noncommutative calculus

Spectral triples (A,H,D) are the noncommutative generalisations of compact spin mani-
folds M. The elementary part of the definition is given as Definition 4.1 in Varilly;

• H is a Hilbert space;

• A ⊂ B(H) is a unital *-algebra of bounded operators acting on H;

• D : Dom(D)→ H is a selfadjoint operator on H (generally unbounded) with dense
domain Dom(D) ⊂ H.

• If ψ ∈ Dom(D), then aψ ∈ Dom(D) for all a ∈ A (or, symbolically, ADom(D) ⊆
Dom(D)), and [D, a] (which is well-defined on Dom(D) by the previous condition)
is bounded (i.e., initially on Dom(D), but subsequently [D, a] extends to a bounded
operator on H, still called [D, a]). Symbolically: [D, a] ∈ B(H) for all a ∈ A.

• For each λ ∈ ρ(D), the operator (D − λ)−1 is compact (equivalently, (D + i)−1 is
compact).

Exercise 5.1 Show that for the canonical commutative spectral triple (C∞(M),L2(Sn),D/ ) the
operator [D/ , a] is (indeed) bounded for all a ∈ C∞(M). Hint:30

1. The domain Dom(D/ ) of D/ is the completion of Γ(Sn) in the norm ‖ψ‖21 = ‖ψ‖2 + ‖D/ ψ‖2,
where ‖ · ‖ is the L2-norm on Γ(Sn). (Note that Dom(D/ ) = H1(Sn), the Sobolev space
consisting of all distributional sections ψ of Sn for which ψ ∈ L2(Sn) and D/ ψ ∈ L2(Sn).)

2. Show that ‖ − ic(O f )‖ = ‖O f ‖∞, where the left-hand side is the operator norm on L2(Sn),
and the norm on the right is ‖X‖2∞ = supx∈M{gx(X(x),X(x))} for any vector field X on M.

The aim of the noncommutative calculus is to adapt the notions of integration and dif-
ferentiation to spectral triples.31 We start with integration. The idea is to define

>
a for

a ∈ A, generalizing
∫

M a for a ∈ C∞(M) (which is defined through the measure νg on M
induced by the Riemannian metric g). The definition will be applicable when (A,H,D) is
p-summable for some p ∈ [1,∞), in which case?

a = Tr +(a|D|−p). (190)

Here a ∈ A and Tr + is the Dixmier trace on H. In fact, if some p ∈ [1,∞) exists such that the
operator |D|−p lies in the domain of Tr +, then p is unique under the additional property
that (190) is nonzero for some a ∈ A. For the canonical commutative spectral triple one
finds p = n = dim(M), and (190) is computed via Connes’ trace theorem. This states that

30The first part is true because D/ is elliptic. The Sobolev space H1(Sn) may equivalently be defined as the
space of all ψ ∈ L2(Sn) for which all first derivatives in all coordinate patches of M (with respect to a “good”
cover) are in L2(Sn).

31It should be mentioned, however, that something like Newton’s fundamental theorem of calculus, stating
that integration (defined as the area of the surface enclosed by the graph of a function f : I → R and I ⊆ R)
is the inverse of differentiation, modernized by Stokes’ formula

∫
M

dω =
∫
∂M
ω, appears to be lacking in

noncommutative geometry (though the local index theorem of Connes and Moscovici gives an even more
remarkable connection between differentiation and integration in the noncommutative case).
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for any positive elliptic pseudodifferential operator P of order −n on a complex vector
bundle E→M, one has

Tr +(P) =
1

n(2π)n Wred(P), (191)

where Wred(P) is the so-called Wodzicki residue of P. This formula also applies to the
spinor bundle E = Sn if one takes P = f |D/ |−n, f ∈ C∞(M), although this P may not be
elliptic. This eventually yields the justification for calling (190) an integral, namely?

f = Cn

∫
M

f , (192)

where Cn is some constant.
It has to be stated that the details of the noncommutative calculus are extremely

technical, relying on partly unusual constructions in (functional) analysis. In any case, let
us explain at least the terminology and the basic ideas.

5.1 The Dixmier trace

Let T ∈ K(H) be a compact operator on H. The singular values of T are sk(T) =
√
λk(T∗T),

where λk(T∗T) are the eigenvalues of T∗T (which is positive, so that λk(T∗T) ≥ 0 and the
square root poses no problems). Let us form the sum

σN(T) =

N∑
k=0

sk(T), (193)

where the sk(T) are listed in decreasing order s0(T) ≥ s1(T) ≥ . . ..
You may be familiar with the algebra B1(H) of trace-class operators, consisting of all

T ∈ K(H) for which limN→∞ σN(T) exists. The trace of T ∈ B1(H) is then defined as
Tr (T) =

∑
i(ei,Tei), where (ei) is some o.n.b. of H (the result turns out to be finite and

independent of the the choice of this basis).

Definition 5.2 1. We say that T ∈ K(H) lies in the class B+
1 (H) if supN{σN(T)/ log(N)} < ∞.

2. A positive operator T ∈ K(H) is called measurable if limN→∞ σN(T)/ log(N exists (and is
finite). In that case we write T ∈ B(+)

1 (H) (note that trivially B(+)
1 (H) ⊂ B+

1 (H)).

3. A general operator T ∈ K(H) is called measurable if each Ti ≥ 0, i = 1, 2, 3, 4, in the
decomposition of T into positive operators is measurable.32

The Dixmier trace Tr + of T ∈ B(+)
1 (H) is defined by

Tr +(T) = lim
N→∞

σN(T)/ log(N). (194)

It is a highly nontrivial fact that this expression actually defines a trace.33 To motivate this
definition, let us look at the eigenvalue asymptotics of the Dirac operator D/ . It follows
from Lichnerowicz’s formula and Weyl’s asymptotics for the eigenvalues of the Laplacian
that λk(|D/ |) ∼ k1/n for k → ∞, so that sk(|D/ |−n) ∼ 1/k and hence σN(|D/ |−n) ∼

∑N
k 1/k ∼

32That is, T = Ta + iTb, T∗a = Ta, T∗b = Tb, Ta = (T + T∗)/2, Tb = (T − T∗)/2i, Ta = T1 − T2, Tb = T3 − T4, Ti ≥ 0.
33There exists an uncountable (and uncomputable) family of traces Tr +

ω on B+
1 (H), all of which reduce to

Tr + on the class of measurable operators B(+)
1 (H) ⊂ B+

1 (H). See Varilly, §4.4.
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log(N). Hence |D/ |−n
∈ B+

1 (H), and a more detailed analysis shows that |D/ |−n
∈ B(+)

1 (H).
Here the operators |D/ | and |D/ |−n are most easily defined using the spectral theorem,
i.e. if D/ =

∑
k λk|ψk〉〈ψk| is the spectral resolution of D/ , then |D/ | =

∑
k |λk||ψk〉〈ψk| and

similarly |D/ |−n =
∑

k |λk|
−n
|ψk〉〈ψk|. In case that D/ has zero eigenvalue(s), the corresponding

eigenvectors are simply omitted in the expression for |D/ |−n (in other words, |D/ |−1 is defined
as zero on the kernel of |D/ | and is the usual inverse of |D/ | on the orthogonal complement
of its kernel, where |D/ | is invertible).34

Exercise 5.3 Read Example 4.4 and do Exercise 4.5 in Varilly, p. 43.

These considerations suggest the following alternative and closely related axioms for
spectral triples, all of which are satisfied by the canonical commutative spectral triple
(C∞(M),L2(Sn),D/ ) for p = n = dim(M). Let B(+)

p (H) be the set of all T ∈ K(H) for which

limN→∞ σN(T)/N
p−1

p ) exists (and is finite), and let B+
p (H) consist of all T ∈ K(H) for which

supN{σN(T)/N(p−1)/p
} < ∞. We may regard B(+)

1 (H) and B+
1 (H) as limiting cases as p→ 1.

Definition 5.4 1. A spectral triple (A,H,D) is said to have spectral dimension p ∈ N if
λk(|D|−1) = O(k−1/p) as k→∞ (for the smallest such p).

2. A spectral triple is strongly p-summable if |D|−p
∈ B(+)

1 (H).

3. A spectral triple is p-summable if |D|−p
∈ B+

1 (H).

4. A spectral triple is strongly p+-summable if |D|−1
∈ B(+)

p (H).

5. A spectral triple is p+-summable if |D|−1
∈ B+

p (H).

The terminology “strongly p-summable” is our own. The implications are 1 → 5 → 3,
2 → 3, 4 → 5, and 4 → 2; it is not so clear what the best “summability” axiom should
be. Connes’s reconstruction theorem (in which A is commutative) requires strong p-
summability, which is derived from the first property in Definition 5.4 and some fur-
ther axioms (see Section 6). Clearly, if (A,H,D) is (strongly) p(+)-summable, then it is
also (strongly) q(+)-summable for all q > p. The interesting value of p for a (strongly)
p(+)-summable spectral triple is therefore the smallest p for which it is (strongly) p(+)-
summable. In all nonpathological cases, this coincides with the spectral dimension of the
spectral triple in question. If 1 and 4 apply, it follows that Tr +(|D|−p > 0 for the spectral
dimension p (whereas Tr +(a|D|−q = 0 for all a ∈ A and all q > p).

If (A,H,D) is a strongly35 p-summable spectral triple, the noncommutative integral
(190) actually defines a trace on A, in the sense that it is linear and has the tracial property?

ab =

?
ba, (195)

for all a, b ∈ A. This is far from obvious; see Varilly, Theorem 6.5 (from which you’ll see
that (195) even holds for a ∈ A and b ∈ B(H)). If (A,H,D) is regular, (195) is true for all
b ∈ B(H) and all a ∈ ΩD(A), i.e., the algebra generated by A and dA ≡ {[D, a], a ∈ A}.36

34In fact, expressions like this can be defined for any closed operator, whether or not its is selfadjoint and/or
has discrete spectrum.

35If (A,H,D) is just p-summable, a similar statement holds for te integral defined by any Dixmier trace Tr ω.
36See F. Cipriani, D. Guido, S. Scarlatti, A remark on trace properties of K-cycles, J. Operator Theory 35,

179–189 (1996).
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Finally, for spectral dimension p consider the complex function

ζD(z) = Tr (|D|−z), (196)

where for large real part of z (i.e., Re(z) > p) the right-hand side is defined as
∑

k |λk|
−z, and

by analytic continuation otherwise.37 For example, for the canonical commutative spectral
triple it turns out that ζD/ is meromorphic with simple poles at z = n,n − 1,n − 2, . . . (this
is a classical result of Minakshisundaram and Pleijel from 1949). In general, the complete
set of singularities of ζD forms the dimension spectrum of the triple. These singularities are
the same if, for any a ∈ A, ζD is replaced by (with some abuse of notation)

ζa(z) = Tr (a|D|−z). (197)

If ζD has simple poles only and the spectral triple is p-summable, the residue of this
function at z = 0 is then related to the Dixmier trace by

Resz=0ζa = Tr +(a|D|−p). (198)

5.2 Pseudodifferential operators

Pseudodifferential operators (ΨDO’s) enter the discussion because operators of the type
a|D/ |−n on H = L2(Sn), where a ∈ C∞(M), are in this class. For our purposes (in which M
is compact), it is enough to consider compactly supported symbols. Starting with scalar
symbols on Rn, we therefore have operators of the type V(5.1) (= eq. (5.1) in Varilly),
where p has compact support in x and satisfies the bound V(5.4) for K = suppx(p). If the
symbol p of P satisfies V(5.4), we say that P ∈ ΨDOm(Rn). One may regard ΨDO’s as maps
between endless varieties of space of smooth functions, Hilbert spaces, or distributions;
for our purposes it is convenient to see them as linear maps

P : C∞c (Rn)→ C∞(Rn),

or into C∞c (Rn) if K = suppx(p) is compact, and, for each open U ⊂ Rn (or U ⊂ K), as

P : C∞c (U)→ C∞(U).

The definition of classical symbols in Varilly is not quite correct: in V(5.5), the p j are
supposed to satisfy the scaling relation

p j(x, tξ) = t jp j(x, ξ) (199)

only for ‖ξ‖ ≥ c j > 0. If P ∈ ΨDOm(Rn) for all m ∈ Z, we write P ∈ ΨDO−∞(Rn) and say
that P is a smoothing operator.

Our main interest will lie in the singularities of the kernel KP of P, defined as

KP(x, y) =

∫
Rn

dnξ
(2π)n eiξ(x−y)p(x, ξ), (200)

which is a distribution on R2n defined as an oscillatory intergal (rather than as a Lebesgue
integral, which unlike (200) for m ≥ 0 ought to be absolutely convergent). This has the

37Higson’s Trieste Lectures [Hig] give a very clear introduction to such matters.
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following meaning: take a cutoff function χ ∈ C∞c (Rn) with χ(ξ) = 1 if 0 ≤ ‖ξ‖ ≤ 1,
0 ≤ χ(ξ) ≤ 1 if 1 ≤ ‖ξ‖ ≤ 2, and χ(ξ) = 0 whenever ‖ξ‖ ≥ 2. Then by definition

KP(x, y) = lim
ε→0

∫
Rn

dnξ
(2π)n χ(εξ)eiξ(x−y)p(x, ξ), (201)

where the limit is meant in the sense that∫
Rn

dny KP(x, y) f (y) = lim
ε→0

∫
Rn

dny KεP(x, y) f (y),

where KεP(x, y) is the expression on the right-hand side of (201), and f ∈ C∞c (Rn), However,
if P is a smoothing operator, KP is C∞ and the integral (200) is defined as a Lebesgue
integral. In general, the location of the singularities of KP is controlled by:38

Lemma 5.5 If P ∈ ΨDOm(Rn) and suppx(p) is compact, then for each ε > 0 one can decompose
P = P1 + P2, where P1 is ε-local in the sense that for each x ∈ supp(P f ) there is y ∈ supp( f )
with |x − y| < ε, and P2 is a smoothing operator.

Consequently, the singularities of KP must lie on the diagonal x = y; it follows that the
limit in (201) exists pointwise for x , y. More detailed analysis shows that for a classical
P ∈ ΨDOm(Rn), m ≥ 0, the singularities of KP near the diagonal take the form

KP(x, y) =

−1∑
k=−m−n

hk(x, x − y) − h0(x) log(|x − y|) + R(x, y), (202)

where hk(x, tz) = tkh(x, z) for small z, and R is smooth. Each function hk can be computed in
terms of symbols p j for which p ∼

∑
j p j. This should be clear from naive power counting,

since p j(x, ξ) behaves as ‖ξ‖ j for ξ→∞. The case of interest turns out to be

h0(x) =

∫
Sn−1

dn−1σ(ξ) p−n(x, ξ). (203)

If P has compact support in x, the Wodzicki residue

Wred(P) =

∫
Rn

dnx h0(x) =

∫
S∗Rn

p−n (204)

is well defined, where S∗Rn = {(x, ξ) ∈ T∗Rn
| ‖ξ‖ = 1} is the cosphere bundle on Rn. One

then has:

Theorem 5.6 The classical pseudodifferential operators on Rn whose symbols are compactly sup-
ported in x form an algebra under operator multiplication (i.e., composition), and the Wodzicki
residue (204) defines a trace on this algebra.

All this may be generalized to compact Riemannian manifolds M and even to vector
bundles E over M. To do so, we first generalize the theory on Rn to operators P :
C∞c (Rn,Cp) → C∞(Rn,Cp), defined by symbols p for which p(x, ξ) ∈ Mp(C). Estimates
like V(5.4) now relate to the matrix norm of p(x, ξ). With this modification, (classical)

38Note that P1 in the is lemma is not local in the sense that supp(P1 f ) ⊆ supp( f ) for all f ∈ C∞c (Rn) (in which
case P1 would be a differential operator by Peetre’s Theorem). The difference is that P1 of the lemma may
actually increase support, but only in a tiny way.
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pseudodifferential operators of order m on Rn may then be defined in the same way as in
the scalar case.

Second, cover M = ∪αUα in such a way that the open sets Uα locally trivialise E|Uα �
Uα × Cp and admit coordinatization Uα � Bα ⊂ Rn into disjoint open balls Bα in Rn.

We then have:

Definition 5.7 A linear map P : Γ(E) → Γ(E) is a pseudodifferential operator of order m if one
(and hence all) of the following equivalent conditions is satisfied:

1. Each of its localizations P : C∞c (Bα,Cp) → C∞(Bα,Cp) is a pseudodifferential operator of
order m on Rn.

2. For some partition of unity (ϕα) subordinate to the cover (Uα), each map Pα : f 7→ ϕαP(ϕβ f )
from C∞c (Uα,Cp) to C∞c (Uβ,Cp) is a pseudodifferential operator of order m on Rn.

3. P =
∑
α Pα+P2, where each Pα : C∞c (Bα,Cp)→ C∞(Bα,Cp) is a pseudodifferential operator

of order m on Rn, and P2 is of the form

P2ψ(x) =

∫
M

dνg(y)K2(x, y)ψ(y), (205)

for some smooth (matrix-valued) kernel K2 (so that K2(x, y) : Ey → Ex is a linear map).

Note that with some abuse of notation (meant to avoid the unnecessary complications
that strictly correct notation would involve), we have identified e.g. P : Γ(E|Uα)→ Γ(E|Uα)
with P : C∞c (Bα,Cp)→ C∞(Bα,Cp), omitting both the trivializing map E|Uα → Uα ×Cp and
the coordinatization Uα → Bα.

The equivalence of these conditions follows from Lemma 5.5; operators of the form
(205) with smooth kernel K2 are precisely the smoothing operators on Γ(E). The formula
for the Wodzicki residue now reads

Wred(P) =

∫
S∗M

tr p−n, (206)

where the cosphere bundle

S∗M = {X ∈ T∗M | g(X,X) = 1} (207)

is defined in terms of the Riemannian metric g, and tr is the usual trace on Mp(C). Theorem
5.6 then adapts in the obvious way (Guillemin–Wodzicki):

Theorem 5.8 The classical pseudodifferential operators on Γ(E) form an algebra under composi-
tion, and the Wodzicki residue (206) defines a trace on this algebra.

The proof of (192) is given by Varilly, Proposition 6.1 and Example 5.16.

Exercise 5.9 Give a self-contained exposition of the computation leading to (192).
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6 Smooth structures

Differential calculus on spectral triples (A,H,D) emerges through the self-adjoint operator
D : Dom(D) → H. This operator will define two different “smooth structures”, the first
one lying in H, the second in B(H).

6.1 Smooth vectors

Definition 6.1 The subspace H∞ ⊂ H of smooth vectors in H (relative to D) is defined as

H∞ = ∩m∈NHm; (208)
Hm = Dom(Dm). (209)

It can be shown that H∞ is (norm) dense in H. Given the property that D has compact
resolvent, we may write for m ∈ N,

D =
∑

k

λk|ψk〉〈ψk|, (210)

|D|m =
∑

k

|λk|
m
|ψk〉〈ψk|, ; (211)

Hm = Dom(|D|m) = Dom(Dm) =

ψ =
∑

k

ckψk,
∑

k

|ck|
2 < ∞,

∑
k

|ck|
2m < ∞

 , (212)

where (ψk)k is the o.n.b. of H consisting of eigenvectors of D with eigenvalues λk (repeated
in the sum (210) in case of multiplicity), and |ψk〉〈ψk| is the orthogonal projection onto
Cψk. Each Hm may be seen in two quite different ways:

1. Hm is a dense subspace of H in the inner product (and hence norm) of H, so that
|D|m : Hm

→ H and Dm : Hm
→ H are unbounded operators;

2. Hm is a Hilbert space in its own right in the inner product

(ψ,ϕ)m = (ψ,ϕ) + (|D|mψ, |D|mϕ), (213)

so that |D|m : Hm
→ H and Dm : Hm

→ H are bounded (hence continuous) operators.

Although H∞ is no longer a Hilbert space in any sense, in slightly different form both
aspects pertain to H∞ as well:

1. H∞ is a dense subspace of H in the norm of H, and all |D|m : H∞ → H and
Dm : H∞ → H, m ∈ N, are unbounded operators;

2. H∞ is a Fréchet space,39 and each Dm : H∞ → H∞ or |D|m : H∞ → H∞ is a continuous
linear map.

Indeed, the seminorms ‖ · ‖ on H∞ are the Hilbert space norms

‖ψ‖2m = ‖ψ‖2 + ‖|D|mψ‖2, (214)

39I.e. a locally convex vector space defined by a countable number of seminorms ‖ · ‖m that is sequentially
complete, in the sense that a sequence that is Cauchy with respect to all ‖ · ‖m converges.
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and H∞ is sequentially complete because each Hilbert space Hm is. Furthermore, Dm maps
Hl into Hl−m for l ≥ m, so that H∞ is stable under Dm and |D|m. One may now introduce
pseudodifferential operators of order l as those operators P : H∞ → H∞ that extend
to bounded operators Hm

→ Hm−l for any m ≥ l. In particular, the pseudodifferential
operators of order zero map H∞ → H∞ and are bounded with respect to any norm ‖ · ‖m.

For the canonical commutative spectral triple (C∞(M),L2(Sn),D/ ), it follows from stan-
dard arguments involving elliptic regularity and Sobolev embedding that

H∞ = Γ(Sn), (215)

where the right-hand side is the space of smooth sections of the spinor bundle Sn → M.
Hence the smooth structure of the spinor bundle Sn → M, though lost in forming the
completion L2(Sn) of Γ(Sn), can be recovered from the domain of the Dirac operators
and its higher powers. Another example is D = −id/dx on L2(R), for which L2(R)∞ =
C∞(R) ∩ L2(R), as followd from Sobolev’s theorems.

6.2 Derivations

A derivation on an algebra A (over R or C) is a linear map δ : A→ A satisfying the Leibniz
rule δ(ab) = δ(a)b + aδ(b). Two key examples are:

1. Classical geometry: A = C∞(M), δX( f ) = X f for any smooth vector field X on M.
Conversely, any derivation on C∞(M) is of this form.

2. Quantum geometry: A = B(H), c ∈ B(H),

δ(a) = i[c, a]. (216)

Conversely, any strongly continuous derivation δ : B(H) → B(H) is of this form
(Kadison).

It can be shown that nonzero derivations on C(M) as a C∗-algebra do not exist (Sakai). To
cover the case of classical geometry from an operator-algebraic point of view, one needs
to introduce unbounded derivations on Banach algebras. Apart from δX : C∞(M)→ C∞(M),
which is an unbounded derivation on C(M) with domain C∞(M), we note the examples of
the type δ(a) = i[c, a] for unbounded c : Dom(c)→ H. This is an unbounded derivation on
B(H) whose domain consists of all a ∈ B(H) satisfying aDom(c) ⊆ Dom(c) and [c, a] ∈ B(H).

Just as for unbounded operators on H, we say that δ : Dom(δ)→ B, where Dom(δ) ⊆ B
is a dense subset of a Banach algebra B, is closed if its graph its closed, i.e., if {(a, δ(a)), a ∈
Dom(δ)} ⊂ B × B is closed. This is the case iff an → a and δ(a)→ b imply a ∈ Dom(δ) and
δ(a) = b.

If A is a *-algebra, we say that : A→ A is symmetric if

δ(a∗) = δ(a)∗. (217)

If A = B(H) and c∗ = c, then (216) is symmetric; this explains the i. Similarly, if δ is an
unbounded derivation, we say that it is symmetric if a∗ ∈ Dom(δ) whenever a ∈ Dom(δ)
and (217) holds.

Exercise 6.2 Show that if D is selfadjoint (and hence closed), then the unbounded derivation

δ̃(a) = i[D, a], (218)

is closed with respect to the strong operator topology on B(H) (in which an → a iff anψ → aψ in
H for all ψ ∈ H).
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6.3 Smooth operators

To define the smooth operators, we introduce the unbounded derivation

δ(a) = i[|D|, a], (219)

defined for a ∈ B(H) satisfying aDom(|D|) ⊆ Dom(|D|) and [|D|, a] ∈ B(H). Hence δ is an
unbounded linear map on the Banach space B(H) whose domain Dom(δ) consists of all
a ∈ B(H) with the properties just stated. Note that Dom(D) = Dom(|D|), but by no means
Dom(δ) = Dom(δ̃), with δ̃(a) = i[D, a]!

By induction, we define δk : Dom(δk)→ B(H) by saying that a ∈ Dom(δk) if:

1. a ∈ Dom(δk−1);

2. δk−1(a)Dom(|D|) ⊆ Dom(|D|);

3. δk(a) = i[|D|, δk−1(a)] ∈ B(H).

Definition 6.3 The subspace B∞(H) ⊂ B(H) of smooth operators on H (relative to D) is defined
as

B∞(H) = ∩m∈NDom(δm). (220)

Curiously, it does not seem to be known what this space is for the canonical commutative
spectral triple (C∞(M),L2(Sn),D/ ). We do know, however, that

B∞(H) ⊇ ΨDO0(Sn), (221)

where the right-hand side is the set of pseudodifferential operators of order zero on Sn.40

We are now in a position to state the basic regularity axioms for spectral triples, using
the notation dA ≡ {[D, a], a ∈ A}. We have already dealt with what we now call Axiom 0,
but repeat it for convenience (see (218)):

Axiom 0: A ⊂ Dom(δ̃) , or dA ⊂ B(H);

Axiom 1: A ⊂ B∞(H) and dA ⊂ B∞(H);

Axiom 2: H∞ is finitely generated projective over A (with respect to the given A-action
on H, restricted to H∞).

Of course, in order to state Axiom 2, we need AH∞ ⊆ H∞.

Exercise 6.4 Prove from Axiom 1 that aψ ∈ H∞ whenever ψ ∈ H∞ (Hint: see Varilly).

It would be more natural to state Axiom 1 in terms of D rather than |D| in (219), but in
that form it is not true for the canonical commutative spectral triple!

Axiom 0 holds for the canonical commutative spectral triple because of Exercise 4.13.
Axiom 2 follows from (215) and the Serre–Swan Theorem. Axiom 1 is not so easy to verify.
The proof (due to Connes and Moscovici) has three steps.

1. a ∈ B∞(H) iff a ∈ Dom(Lk
◦ Rl) for all k, l ∈ N. See Varilly Prop. 6.13.

2. Lk
◦ Rl(a) ∈ ΨDO0(Sn) for all k, l ∈ N. See VarillyCor. 6.14.

3. ΨDO0(Sn) ⊂ B(L2(Sn)); this is the Calderon–Vaillancourt Theorem.
40In the lecture I stated that one has equality in (221) and attributed this result to H.O. Cordes, but in fact,

so far only the inclusion (221) seems to have been proved. See Lemma I.2 in Connes and Moscovici, The local
index formula in noncommutative geometry, Geom. Funct. Anal. 5, 174-243 (1995).
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6.4 Orientability

The Orientability Axiom is stated in terms of Hochschild Homology. This is the simplest
homology theory for algebras. Let A be a complex algebra with unit, and let M be an A-A
bimodule (later we will take M = A). The chain complex leading to Hochschild Homology
is defined for each n ∈ N by

Cn(A,M) = M ⊗ A⊗n, (222)

with C0(A,M) = M. The boundary maps bn : Cn(A,M)→ Cn−1(A,M) are given by

bn(m ⊗ a1 ⊗ · · · ⊗ an) = (ma1) ⊗ a2 ⊗ · · · ⊗ an + (−1)n(anm) ⊗ a1 ⊗ · · · ⊗ an−1

+

n−1∑
i=1

(−1)im ⊗ a1 ⊗ · · · ⊗ ai−1 ⊗ aiai+1 ⊗ ai+2 ⊗ · · · ⊗ an, (223)

and b0 = 0. For example, b1(a ⊗m) = ma − am.

Exercise 6.5 Show that bn−1 ◦ bn = 0 (i.e., “b2 = 0”).

The Hochschild Homology of A with coefficients in M is then defined as usual, i.e., by

HH∗(A,M) =

∞⊕
i=0

HHi(A,M); (224)

HHi(A,M) =
ker(bi)

im(bi+1)
≡

Zi(A,M)
Bi(A,M)

. (225)

For example,

HH0(A,M) =
ker(b0)
im(b1)

=
M

[A,M]
, (226)

where [A,M] consists of all elements of m of the form ma − am and linear combinations
thereof. We write HHi(A,A) ≡ HHi(A).

Let us take a look at A = C∞(M), with M = A, as always for a compact manifold M.
Recall that Ωp stands for the C∞(M)-module of smooth p-forms on M. We then have maps

µi : Ci(A,A) → Ωi(M); (227)
f0 ⊗ f1 ⊗ · · · ⊗ fi 7→ f0d f1 ∧ · · · d fi; (228)

εi : Ωi(M) → Ci(A,A); (229)

f0d f1 ∧ · · · d fi 7→
∑
σ∈Πi

(−1)|σ| f0 ⊗ fσ(1) ⊗ · · · ⊗ fσ(i), (230)

where Πp is the permutation group on p symbols.

Exercise 6.6 Show that bi ◦ εi = 0 and µi ◦ bi+1 = 0.

Consequently, µi and εi induce maps

µ̃i : HHi(C∞(M)) → Ωi(M); (231)
ε̃i : Ωi(M) → HHi(C∞(M)), (232)

respectively. If one replaces the algebraic tensor product by the projective one, these maps
are inverse to each other, so that HH∗(C∞(M)) � Ω∗(M) (Connes–Hochschild–Kostant–
Rosenberg Theorem). In order to obtain the de Rham cohomology of M, one needs to
pass from Hochschil homology to periodic cyclic homology.



6 SMOOTH STRUCTURES 50

To state the Axiom of Orientability, we need the following map, assuming A is part of
a spectral triple (A,H,D).

πD : Ci(A,A) → B(H); (233)
πD(a0 ⊗ a1 ⊗ · · · ⊗ ai) 7→ a0da1 · · · dai, (234)

with da = [D, a]; the analogy with (228) is hard to miss. The Axiom of Orientability relies
on a two others, which we state first.

Axiom 3: (A,H,D) has spectral dimension n, i.e., λk(|D|−1) = O(k−1/n) as k→∞.

Axiom 4: If n is even, then (A,H,D) is graded, with grading operator Γ.

Axiom 4 means that there exists an operator Γ : H → H with Γ2 = 1, Γ∗ = Γ, and
ΓD + DΓ = 0. Such an operator leads to a decomposition H = H+ ⊕ H−, where H± are
the eigenspaces of H with eigenvalues ±1, such that D : H± → H∓. As we have seen, the
canonical commutative spectral triple is indeed graded.

Axiom 5: There exists an antisymmetric Hochschild boundary c ∈ Zn(A,A) such that
πD(c) = Γ if d is even and πD(c) = 1 if n is odd.

This Axiom of Orientability is only understandable if one sees its verification in the
canonical commutative spectral triple, for which we refer to Varilly, pp. 80–81.

Exercise 6.7 Do Exercise 7.2 in Varilly, p. 81.

In combination with the preceding axioms 1–4, Axiom 5 also has an important (yet highly
technical) consequence, namely the fact that (A,H,D) is strongly p-summable, so that the
noncommutative integral (190) is defined (see Wulkenhaar, p. 17). In combination with
Axiom 2, this enables us to state:

Axiom 6: If ( , ) is the inner product on H (as usual) and 〈 , 〉A is the canonical A-valued
inner product on H∞ (seen as a finitely generated projective A-module H∞ � pAm,
with p ∈Mm(A), so that 〈ψ,ϕ〉A =

∑m
i=1 ψ

∗

iϕi for ψ = (ψ1, . . . , ψm), ψi ∈ A, etc.), then

(ψ,ϕ) =

?
〈ψ,ϕ〉A. (235)

There are two remaining axioms.

Axiom 7: (A,H,D) is real, in that there exists an antilinear operator J : H → H satisfying
J∗J = 1 (i.e., J is antiunitary), as well as J2 = ε, JD = ε′DJ, and JΓ = ε′′ΓJ, where the
signs ε, ε′, ε′′ are ±1 according to the table on p. 24.

Axiom 8: The multiplicity of the von Neumann algebra A′′ generated by A is equal to 2k,
where n = 2k or n = 2k + 1.

Connes’ reconstruction theorem then states the following:

Theorem 6.8 A commutative spectral triple satisfying Axioms 1–8 is isomorphic to the canonical
commutative spectral triple (C∞(M),L2(Sn),D/ ), with dim(M) = n, and vice versa.

The proof is very difficult, but the first step is appealing, namely A = A′′ ∩ B∞(H).
However, the axioms are not necessarily of this form to achieve this. In fact, in interest-

ing noncommutative examples strange phenomena appear (e.g., the spectral dimension
of Axiom 3 may not coincide with the KO-dimension appearing in Axiom 6, and there is
no good reason why the number n in Axiom 7 should be equal to either of these). Hence
enough remains to be done for newcomers!


