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We describe how inequivalent quantizations (superselection sectors) arise within two related 
algebraic approaches to quantum mechanics (viz. quantization by canonical groups and by 
C*-algebras). By construction of the quantum hamiltonian and the path integral of a particle 
moving on a coset space, we show that the inequivalent quantizations manifest themselves as the 
particle coupling to a certain fictitious external gauge field, in a representation depending on the 
superselection sector; various well-known topologically non-trivial Yang-Mills field configura- 
tions emerge in this way. The general theory is illustrated by taking the coset space to be a circle 
and a sphere, which puts 0-angles (hence the Aharonov-Bohm effect) and the Dirac charge 
quantization condition, respectively, in a new light. 

1. Introduction and preliminaries 

In  this  p a p e r  we discuss topoiog ica l  q u a n t u m  effects.  The  mot iva t ion  was to 

u n d e r s t a n d  how the  inequiva len t  quant iza t ions ,  which, in cer ta in  ope ra to r i a l  

quan t i za t ion  schemes,  may be  seen  to ar ise  f rom abs t rac t  r e p r e s e n t a t i o n  theory,  

mani fes t  themselves  in the  physics of  the  systems u n d e r  cons idera t ion .  

Specif ical ly,  we analyse  the  example  of  the  q u a n t u m  mechanics  of  a par t i c le  

moving on a topologica l ly  non- t r iv ia l  conf igura t ion  s p a c e -  the  quo t ien t  space  

G / H .  In  this  sec t ion we descr ibe  and  con t ras t  two r e l a t e d  a lgebra ic  a pp roa c he s  to 

the  quan t i za t ion  of  these  systems: one  in which the  observab les  a re  r e l a t ed  to  a 

so-cal led  canonica l  g roup  [1, 2], and  one  encod ing  the  observables  in to  a t ransfor -  

ma t ion  g roup  C*-a lgeb ra  [3, 4]. In  bo th  cases  the  usual  r e p l a c e m e n t  of  a sub-a lge-  
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bra of the Poisson algebra of functions on phase space by operators leads to the 
possibility of inequivalent quantizations, which may be identified with superselec- 
tion sectors of the system. This situation is in stark contrast to the case of quantum 
mechanics on the real line, where the Stone-yon Neumann theorem on the 
representations of the Heisenberg-Weyl group states that there is only one 
quantization up to unitary equivalence. 

Our starting point, then, is the algebra of quantum observables. The inequiva- 
lent quantizations arise as unitarily inequivalent representations, which may be 
found by the induced representation theory of Mackey. This theory has an analytic 
as well as a geometric side, which we review in subsect. 1.1, as the relevant 
constructions and results are spread over the literature. The representations 
appear as Hilbert spaces of sections of certain vector bundles over the configura- 
tion space (the case of complex functions on the configuration space being but one 
example). In sect. 2 we use this representation theory to derive an expression, 
involving an integral over the subgroup H, for the propagator in any of these 
quantizations. This allows us to explain the origin of previous formulae for the 
propagator for particles moving on homogeneous spaces [5-7] which may be seen 
as a special case (the "trivially induced" case) of our work. We then evaluate the 
propagator for short times, which later on (in subsect. 2.3) allows us to construct 
the path integral via the Trotter product formula. 

In sect. 3, we derive the same expression from a very different point of view - a 
generalised heat-kernel expansion. We show how the different quantizations may 
be viewed as the particle coupling to a specific external gauge field (the so-called 
H-connection) via a term P exp(- fA) in the propagator (the gauge field is A and 
P denotes path-ordering). This term is slightly awkward since it does not arise 
simply as a term in the action (due to the path-ordering) but we show how it may 
be re-written (using auxiliary variables) so that the propagator is a conventional 
path-integral. A similar path-ordered exponential (as well as its absorption into the 
action) occurs in the context of the so-called Polyakov spin factor [8, 9], which, 
indeed, entirely fits into the framework of our formalism. 

We end by describing specific examples of the general scheme: a particle moving 
on a 2-sphere, which is related to magnetic monopoles, and on a circle; here the 
relevance of our formalism to anyon statistics and its applications to high-T c 
superconductivity and the quantum Hall effect should be mentioned. 

Apart from a reformulation and explicit interrelation of the two quantization 
schemes mentioned, the key results of this paper are expression (3.6) for the 
hamiltonian in an arbitrary superselection sector ("quantization"), the correspond- 
ing expression (2.16) for the propagator, and the resulting path integral (3.28). We 
use several approaches and points of view, and include a number of consistency 
checks and corollaries. Since we employ a variety of (known) geometric and 
analytic techniques, we have included some background discussion on the mathe- 
matics used, in order to make the paper as readable as possible. 
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1.1. HOMOGENEOUS SPACES AND INDUCED REPRESENTATIONS 

Notation. The physical system whose quantization we study in this paper is a 
particle moving on a homogeneous configuration space Q = G / H ,  alternatively 
called a coset space. We assume G to be a finite-dimensional Lie-group with Lie 
algebra ~t, and H a compact subgroup with Lie algebra 3, such that Q is a smooth 
(i.e. C ~*) manifold. Convenient summaries of the relevant mathematics of such 
spaces are refs. [10-12], where further references to the literature may be found. 
Below we review the minimal amount of material necessary to understand what 
follows. 

For notational simplicity we assume G to be unimodular (an assumption auto- 
matically satisfied by H due to its compactness), in which case both G and H 
possess a left- and right-invariant Haar  measure, which we will simply denote by 
dx  and dh, respectively (elements of G will generically be called x or y, whereas h 
stands for an element of H). In that case Q has a unique measure (up to a 
multiplicative constant) dq, which is invariant under the natural (left-) action of G 
on Q, under which x ~ G sends a coset q = {yH} to xq -- {xyH} (chapter 4 of ref. 
[13]). Given a normalization of the Haar measures on G and H, the invariant 
measure is uniquely determined by requiring 

fG dxf (  x ) = fQ dq fH dh f(  s( q )h ) (1.1) 

for all f ~  C¢(G) (where C¢(X) is the space of all continuous functions with 
compact support on a space X) and an arbitrary measurable section s: Q ~ G, i.e. 
p o s = id, where p: G ~ Q is the canonical projection px--{xH}. Denoting the 
coset {H} by q0, this means that s(q)qo = q. Our assumption of unimodularity is 
satisfied in practically all cases of interest (and certainly by the examples we shall 
consider), but may easily be lifted at the expense of introducing the appropriate 
Radon-Nikodym derivatives in the relevant formulae (cf. ref. [13]). 

Since H is compact, it follows that the pair G, H is reductive [11], which means 
that the Lie algebra g has a decomposition as a vector space g = I~ ~ q, with 
[th q] c q. We label a basis of generators of g by T a, a = 1 . . . .  , d~, those of q by 
T,~, a = 1 . . . .  , d o, and those of 1~ by T/, i = 1 . . . . .  d H. The structure constants 
appearing in [Ta, T b] -- CabCTc are real, so that in unitary representations of G the 
T, are represented by skew-adjoint operators. Representations will be denoted by 
the symbol ~r. 

Induced representations. An induced representation of a group G generalizes 
the left-regular representation on LZ(G/H)  (for the general functional-analytic 
theory see ref. [13]; for the geometric realization el. ref. [14]; our formulation in 
terms of local sections follows ref. [4], also of. ref. [1]. The general theory of fibre 
bundles employed in the geometric construction may be found in refs. [10, 15].) 
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Firstly, note that G is the total space of a principal fiber bundle P -- (G, Q, p, H) 
with base manifold Q = G / H  and group H, the projection p : G  ~ Q being the 
canonical one defined above. The action of the "gauge group" H on G is simply 
given by right-multiplication. Now choose a unitary representation ~'x of H on a 
Hilbert space "~'x, which we assume to be irreducible (although this is not strictly 
necessary for the following construction). By compactness of H, ,,~e'x  ̂is of finite 
dimension d x. The symbol X is regarded as an element of the dual H, which, by 
definition, is the set of equivalence classes of irreducible unitary representations of 
H, and ~r x is a particular (and arbitrary) choice of a representative of the class X- 
For example, the dual of SO(3) is N, and X may be identified with the spin j; the 
matrix ~rx(x) would be called Di(R)  (x --- R ~ SO(3)). One then forms the vector 
bundle E x associated to P; its base space is Q, and its fibers are isomorphic to X," x, 
which is identified with the fiber p-l(qo) .  Points of E x are equivalence classes 
[x, ~x] (~x ~ "ge'x) under the equivalence relation (x, ~x)=-(xh -1, rrx(h)~x) for all 
h E H. Then G acts on E x by y[x, ~x] = [yx, ~x], and therefore it also acts on F x 
(the space of smooth cross sections of E ~ with compact support) by means of 

(1.2) 

The fibers being isomorphic to the Hilbert space "~x, there is a natural hermitian 
structure ( . , . ) ~ r  x in each of them, in terms of which one can define an inner 
product in F x by 

( ~ x ,  ~ )  = fo  dq(  aFir (q ) ,  ~FX(q))x, • (1.3) 

The Hilbert space ,,~x is the closure of F x in this inner product, with respect to 
which the representation ~-x is unitary. 

The realization of an induced representation constructed above is useful for 
abstract, coordinate free geometric considerations. In practice it is convenient to 
realize the sections gtx in terms of local trivializations of the bundle. We cover Q 
with open sets {U~}~ ~ ~ for some index set I, so that the U~ are homeomorphic to a 
euclidean space, and do this in such a way that we can locally define smooth 
sections s~: U,~ ~ G (that is, p o s,, is the identity map). For q ~ U,~ - U,, n Ut3, 
the sections s~ and sa are then related by the gauge transformation 

st3( q ) = s~( q)h,,t3( q) , (1.4) 

where now h,u3: Q--* H is required to be smooth, and to be such that it satisfies 
the consistency (cocycle) condition h,,t3(q)h~v(q) = h~,v(q) on q ~ U~ c3 Ut3 N U~. 

Relative to such a local trivialization, a section ~ x  is represented by a collection 
of functions ~g(. ,  a): U~ ~ "¢"x, a ~ I, defined by ~X(q, ~) = s~(q)- l~X(q),  where 
the right-hand side, which is an element of the fiber p-~(q0), is identified with a 
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vector  in "gfx by the rule [e, ~h x ] -= ~b x (so that  [h, ~x] - ~rx(h)tpx). This implies that  
on an over lap  region U,,t3, sections in different  "gauges"  a and /3 are  re la ted  by 
the gauge  t rans format ion  

- i  x ~)¢(q, f l ) = ~ x ( h , ~ ( q )  )~b (q, ot). (1.5)  

Conversely,  the section ~ x  may be recovered  f rom its local representa t ives  by 
qtX(q) = [s , (q ) ,  ¢X(q, a)], which by the definit ion of  the equivalence class [- ,-  ] and 

the above relat ion be tween  sections in different  gauges is i ndependen t  of  the  

choice of  a .  
W e  denote  the whole collection of  local sections {~bx( • , t~)}~ ~ l simply by Cx. T h e  

definit ion of  ~x in te rms  of  ~ x  easily implies that  the group represen ta t ion  ~-x 
acts on the local sections according to 

("n'X(x)d/X)(q, ot) ='lr.,c((sa(q))-Ixs~l(x-Iq))llsX(x-lq, fl).  (1.6)  

H e r e  it has been  supposed  that  q ~ U,~ and x - l q  E U/3; which par t icular  Ut3 is 
selected in over lap regions is immater ia l  due to the compatibi l i ty  condit ions given 
above.  (Strictly speaking,  we should use a different  symbol f rom the rr x in (1.2) 

here.)  T h e  inner  p roduc t  (1.3) can be wri t ten as 

(Ox,~b~) = E f, dqp,~(q)(~b~(q,°t) ,OX(q,a))x < oo, 
~ I  U~ 

(1.7)  

in te rms  of  a par t i t ion of  unity* p. 
We  r emark  that  when  H is abel ian the  vector  bundles  E x are all line bundles,  so 

that  it should be  clear  that  the construct ion above general izes  the usual bundle-  
theoret ic  approach  to magnet ic  monopoles ,  cf. subsect.  5.1 below (also see ref. 

[16]). 

Semi-direct products. For  reasons  to become  clear  shortly, we now apply this 
construct ion to a par t icular  semi-direct  p roduc t  extension of  G, namely  

G c = G t~.V. (1.8)  

H e r e  V is assumed to be  a f ini te-dimensional  vector  space,  on which G acts (x  ~ G 
sending a point  v ~ V to xo ~ V). Deno t ing  e lements  of  G c by pairs (x ,  o), x ~ G, 
v ~ V, the mult ipl icat ion law in G c is given by (x ,  v ) .  (y ,  w) = (xy, o +xw). 

*This is a collection of functions p,~: Q - ,  R such that the support of each p~, is in U,,, and 
~,~ ~ x Pa(q) = 1 for all q. The value of the inner product is not affected by the precise choice of p in 
view of the compatibility between different trivializations of ~b x in overlap regions, and the unitarity 
of ~r x. 
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The general representation theory of semi-direct products [13] teaches us that 
(at least in the so-called regular case) all irreducible representations of G¢ may be 
found by inducing from subgroups H c c G c given by H~ = H t>< V, where H is the 
stability group (little group) of an arbitrary point q0 in a G-orbit Q in V* (the dual 
of V, i.e. the set of continuous linear functionals on V). The action of G on V* is 
given by the rule (xw, v ) =  (w, x - l  v), where (w, v) is the value of the function- 
al w ~ V* on v ~ V; if we identify V with V* via the natural inner product in 
V = R" then (w, v) is evidently just the inner product of w and v. Hence Q = 
{XqolX ~ G} = G / H  -- Q / H e .  (Note that the action of Gc on Q is given by the 
action of G, i.e. V acts trivially.) 

One then induces from a particular class of representations of He, namely those 
given by 

rrqo,x( ( h, v ) ) = e i(q'''') rrx( h ) , (1.9) 

where rr x is an irreducible representation of H, as above; recall that q0 ~ Q c V*. 
Hence the carrier space of rrqo, x is simply 'g"x ® C = ,gt" x. 

The corresponding representation of G~ is then given by the previous construc- 
tion, with the replacements G ~ G¢, H ~ He,  and )( ~ qo, X. By letting Q run over 
all G-orbits in V, and X over I2I, one thus obtains all irreducible representations of 
Go. We now assume that Q and qo have been fixed, and replace the label qo, X 
simply by g. The induced representation of G¢ is accordingly simply called rr x. To 
find a convenient realization in a Hilbert space of local sections, we use the family 
of sections s,~: Q --* G employed before, and trivially extend it to a collection of 

¢ . t sections s,~. Q ~ G~ by s,~(q) = (s,,(q),O). 
With this choice, the Hilbert space carrying the representation 7r qo'x -- ~-x of G c 

coincides with the space ,g~,x carrying 7r x of G, and a short computation using eq. 
(1.6) shows that the representation itself is given by 

( ~ X ( (  x , v ) ) ~ b X ) ( q , a )  =e i (q ' " '1rx ( ( s~(q) ) - t x s t3 (x - 'q ) )~bX(x - lq ,~ ) .  (1.10) 

It then emerges that the representation ~rX(G) given before is just the restriction 
of 7rX(Gc) to G (identifying x ~ G with (x, 0) ~ Go). Whereas rr x is irreducible as 
a representation of G¢, it is reducible, as a representation of G. 

This completes our account of induced representations. We will now use this 
formalism to quantize a particle whose configuration space is Q. 

1.2. QUANTIZATION ON HOMOGENEOUS SPACES 

The operatorial quantization of a particle moving on Q = G / H  goes back to 
Mackey [17], whose work was subsequently extended by various authors (cf. refs. 
[1,3,4, 18, 19] and references therein). Below we will motivate, examine and 
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interrelate two similar quaiatization techniques, whose results form the basis of our 
later derivation of path integrals. 

Quantization and reduction of the observables. We adhere to the conventional 
quantization programme, which is to replace (smooth) functions f ,  g on a phase 
space M (-- T*Q in our case) by operators ~r(f), rr(g) in such a way that Poisson 
brackets are replaced by (i times) commutators, i.e. ~({f, g}) = i[rr(f),  ~'(g)]. Our 
convention here is that {f,g}-- -w(Xf ,  Xs), with to = -dO the canonical sym- 
plectic form on T*Q expressed in terms of the Liouville form 0, and Xf the 
hamiltonian vector field defined by a function f [1, 15]. 

It is well known (e.g. ref. [2]) that this cannot be done for all f ,  g ~ C~*(M) if the 
algebra rr(C®(M)) is to act irreducibly on ,,~, so that the next step in the 
quantization programme is to identify a subset 5 r e  C®(M) that can actually be 
"quantized". We follow refs. [1,2,20] in choosing the elementary functions that 
can be quantized a priori to be the (smooth) functions on configuration space 
C~(Q) c C~(T*Q) (identifying a function on Q with its pull-back to T ' Q ) ,  and the 
symbols of vector fields Y on Q (this choice can be justified by localization 
arguments). The symbol fv  of Y is defined by its value at a point m ~ M 

f r( m) = %m( rr( m) ) = <m,Y),~o,o, (1.11) 

that is, the value of the 1-form m on the vector Y(rr(m)) (zr is the projection of 
M = T*Q onto Q). In local coordinates, fr(P, q) = yi(q)Pi if Y=  yi(q)O/Oqi. It 
can be shown [1, 2] that the hamiltonian vector field Xfv on M canonically related 
to f r  (see above) generates diffeomorphisms on M which are the pullback of those 
on Q generated by Y, and in that sense the association of f r  with Y given in eq. 
(1.11) is the natural one. The Poisson algebra generated by these observables is 
[1,21 

=Xg, 

{fx , fY} =ftx,Yl ' 

{f, g} = o, (1.12) 

with f ,  g ~ C**(Q), and fx,  fv  as in (1.11). Here [X,Y] is the commutator of the 
two vector fields on Q. 

We now set out to quantize the subalgebra of the Poisson algebra C®(M) which 
is generated by the two types of functions g and f y  specified above (since f x  is 
linear in p this is similar to choosing the vertical polarization in geometric 
quantization [2]). Denoting the quantum operator corresponding to g by ~'(g), 
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etC., the quantum algebra to be satisfied is obtained byreplacing { , } in (1.12) by 

i [ ,  1, i.e. 

i[~r(fx),rr(g)] = ~ r ( X g ) ,  

i [ ~ ( f x ) ,  7r( f r ) ]  -- r r ( f tx , r ] ) ,  

[ r r ( f ) ,  r r (g ) ]  = 0 .  (1.13) 

Beware of the different meaning of the commutator in the left-hand side (commu- 
tator of operators) and the right-hand side (Lie bracket or commutator of vector 
fields). By identifying the set of complete vector fields on Q with the Lie algebra of 
the diffeomorphism group Diff(Q) (up to a sign, cf. eq. (1.14) below), and the 
vector space C®(Q), regarded as an additive abelian group, with its Lie algebra, 
one sees [1, 2] that (1.3) is the Lie algebra of the semi-direct product Diff(Q) 
C~(Q), with Diff(Q) acting on C®(Q) by (~of)(q) =f(~0-l(q)) .  

We now look at (1.13) as abstract algebraic relations between the observables 
.Ix, f r ,  f ,  g, and at the quantization ~r( . . . )  as a particular representation of these 
abstract relations. The problem of finding all such representations can be com- 
pletely solved if we cut down the number of basic observables to be quantized even 
further. This can be done satisfactorily if Q = G / H ,  and we accordingly specialize 
to this case in what follows. 

We can exploit the fact that an element X of the Lie algebra g of G, defines a 
complete vector field (called X)  on Q defined by 

( 2 f ) ( q )  = q) l , .o .  (1.14) 

Since G acts transitively on Q, the vector fields corresponding to the entire set of 
generators 7", form a (generally over-complete) basis at any point of Q, so that one 
loses no essential information in restricting the system (1.13) to such vector fields. 
We write f x -  f 2  in what follows. 

To illustrate this procedure, and to show that (1.13) are essentially "canonical" 
commutation relations, one may take the example G = Q = R". Choose X to be 
the generator X i = O/Oq i and f the coordinate function fJ  (i.e. f ( q )  = q;); then, in 
the notation Pi = rr ( fx  i) and Qi = r r ( f0 ,  (1.13) says i[Pi, Qi] = 6[, etc. 

As we will make explicit for n = 3, there is a much more interesting way to write 
Q = R" as a homogeneous space. This is to take Q = [R 3-- E ( 3 ) / S O ( 3 ) -  G / H ,  
where E(3) = SO(3) ~ R 3 is the euclidean group. The commutation relations (1.13) 
then reproduce the usual commutators of position, momentum and angular mo- 
mentum. 

We now may identify an abstract algebraic structure corresponding to these 
commutation relations in two essentially different ways. 
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Quantization by transformation group C*-algebras. The first approach [3,4] 
seeks to retain the whole algebra C=(Q) (as well as the vector fields T,), and 
succeeds in doing so by taking the abstract algebraic structure encoding the 
commutation relations (1.13) to be an operator algebra .if, i.e. an algebra of 
objects that in all respects behave like operators on a Hilbert space, but are not 
necessarily concretely represented as such. More specifically, the mathematical 
analysis is much simplified by taking d to be a C*-algebra, that is, an operator 
algebra with involution which is isomorphic to a norm-closed algebra of bounded 
operators on some Hilbert space (cf., e.g. the introductory lectures by Roberts [21], 
or a mathematical textbook like ref. [22]). In the spirit of quantum field theory [21] 
we call .~' the algebra of observables of the given system. 

Once .ff has been identified, one can study the inequivalent representations of 
this algebra by (bounded) operators on concretely given Hilbert spaces. The 
inequivalent representations may alternatively be identified with the superselection 
sectors of the system, or with "inequivalent quantizations". 

In the specific case of a particle moving on Q = G/H,  we follow refs. [3,4] in 
taking ~ '  to be the so-called transformation group C*-algebra C*(G, Q). The point 
of this choice is that this algebra encodes the commutation relations (1.13) in the 
following sense: there is a bijective correspondence between (non-degenerate) 
representations rr(C*(G, Q)) and (integrable) representations ~r of the system 
(1.13) (supplemented by the anti-commutator of f ,  g), in which f x  corresponds to 
an element X of g as explained above, and f ,  g ~ C®(Q). (This result easily 
follows by specializing the results in ref. [3] to the smooth case, i.e. G and H as 
specified in the beginning of this section. In this context, the representation ~r is 
called integrable if the representation of the Lie algebra g can be exponentiated to 
a unitary representation of G, cf. ref. [13].) 

As detailed in ref. [3], the representation theory of the algebra ~ '  = C*(G, Q), 
and therefore of the commutation relations (1.13) follows from Mackey's imprimi- 
tivity theorem [13, 17], and is completely known. One finds that there is a 
one-to-one correspondence between (equivalence classes of) irreducible represen- 
tations of C*(G, Q) (hence superselection sectors or inequivalent quantizations of 
the particle on Q) and elements of the dual I2I defined before. We call the 
representation of C*(G, Q) associated to X ~ I2I by the name ~'~, and its carrier 
Hilbert space sT¢ 'x. 

This notation is justified by the fact that the representation 7rX(g) associated to 
~-x(~,) is obtained by taking the "derivative" of a unitary representation rrX(G), 
which is precisely the induced representation, realized on the Hilbert space of 
sections X X, constructed in the previous subsection. More precisely, it can be 
shown [23] that the operators ~ x ( f x ) ,  X ~  It, can be sensibly defined on the 
domain F x c X~ 'x of smooth compactly supported sections, and are given by 

d 
7rX ( f x ) = - i-2:~rX( exp(  t X  ) ) l,=o - _ i~rx ( X ) . (1.15) 
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The commutation relations hold on this domain. Moreover, the functions in C®(Q) 
are simply represented by multiplication operators, i.e. 

( TrX(f)gtX)( q) = f( q)grX( q), (1.16) 

and similarly with ~ x  replaced by a local section ~b~. 
The representation theory may be illustrated by the example Q = R 3, realized as 

the coset E(3)/SO(3). As we have seen before, the dual of SO(3) is N, so that the 
different quantizations of a particle moving in •3 are labeled by spin (to get 
half-integral spins in this context one has to replace E(3) by its covering group 
SU(2) t~ ~3). The realization of ~'J on a Hilbert space of cross-sections constructed 
in subsect. 1.1 is particularly straightforward here, as the base space Q - - R  3 is 
contractible, so that the bundle P = (E(3),il~ 3,p,SO(3)) is trivial and admits a 
global smooth cross section s. The sections g'~ are accordingly simply functions on 
R 3 with values in the spin j representation space ~ = C  2j+l, and , , ~ =  
L2(R3,d3q, ,,~j). The simplest choice for s is s(q) = (1, q), upon which (1.6) simpli- 
fies to 

(~'J((R,a))~i),,(q) =DI(R)I,O/(R-'(q-a)).  (1.17) 

Canonical group quantization. A method (which will turn out to be closely 
related to the preceding one) of relating the commutation relations (1.13) (with the 
vector fields restricted to g) to a more conventional mathematical structure than a 
C*-algebra, has been formulated by Isham [1] (for applications cf. refs. [24-26]). 
Here the abstract algebraic object encoding the commutation relations is taken to 
be a group G c (and the relevant representations are the (weakly) continuous 
unitary ones, see below), and in the case under consideration (Q = G / H )  there is 
sufficient symmetry to choose G c to be a finite-dimensional Lie group (in which 
case one actually may equivalently take the algebraic object to he a C*-algebra, 
namely the group algebra C*(Gc)!; the (weakly) continuous unitary representations 
of a locally compact group G are in bijective correspondence with the non-degen- 
erate representations of C*(G) [22]). 

The first step in the canonical group quantization of a configuration space Q is 
to find a group (3 which acts transitively on Q; in the case Q = G / H  we take 
(~ -- G (this choice is not mandatory; in fact the representation of a space Q as a 
coset G / H  is non-unique, cf. ref. [3] for a discussion of this point). The problem, 
then, is to find a finite number of functions, which generate the algebra C®(Q), and 
which are chosen in such a way that the algebra (1.13) (or, equivalently, the 
Poisson brackets (1.12)) closes, for in that case the commutation relations define a 
finite-dimensional Lie algebra, which can be associated with the group G c. This 
problem is equivalent to finding a finite generating set {gi} C C®(Q) for which )~gi 

(cf. (1.14)) is a linear combination of the other g's for all i and all X E  g. 
This problem can be solved for a large class of homogeneous configuration 

spaces Q = G/H, which turns out to include many examples of interest (including 
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vector spaces, which in ref. [1] are dealt with using quite different techniques). The 
idea [1,2, 18] is to find a representation % of G on a vector space V such that 
there exists a G-orbit on V* (cf. text below (1.8)) which is diffeomorphic to Q. In 
detail, G acts on V* by the dual representation rr,* defined by (rc,*(x)w,v)= 
(w, zr~(x-t)v),  w ~ V * ,  v ~ V ,  and one seeks a G-orbit Q c V *  for which the 
action ~r~*(x)q coincides with the action xq defined at the beginning of this 
section. 

For example, the n-sphere S" can be realized as the homogeneous space 
S" = SO(n + 1) /SO(n) ,  taking V = I~ "+l, with % the defining (fundamental) 
representation of G -- SO(n + 1): the dual action on V* = R "+~ can be identified 
with the action of G on V, whose orbits are all n-spheres (except for the point 0). 

Now choose a basis {e;}, i - -  1 . . . . .  d v, in V, relative to which the generators 7". 
of ~ have matrix elements % ( T . ) / -  C.{. One can define the required functions gi 
by gi(q) = (q, e i) (remember that q ~ Q c V*). Thus gi is the /-coordinate of the 
embedding of Q in V*. (Note that the gi a re  not the coordinates of Q in a certain 
local coordinate system (such as the angle ~O for Q = St), but the cartesian 
coordinates of the embedding of Q in V*, which are continuous functions on Q.) 
Defining 7~. by (1.14), it then easily follows t h a t  7"ag i i j = C . jg .  With this choice, the 
algebra (1.12) becomes (writing f .  ----JET.) 

{fa g i }=  i j c , C.ig , { f . ,  fb} = C.bf~, {gi, gj'} = 0, (1.18) 

where the C,~ are the structure constants of G. This is isomorphic to the Lie 
algebra of the semidirect product (1.8), with respect to the action 7r~ of G on V. 
This Gc is taken to be the "canonical group", which encodes the commutation 
relations (1.18), which are a special case of the fundamental ones (1.13), in the 
following way (cf. the situation in the previous subsection for quantization using 
C*-algebras!): there is a bijective correspondence between the weakly continuous 
unitary representations of Q ,  and the integrable representations of the system 
(1.18). 

The simplest non-trivial example is the unit circle, Q = S l, The canonical group 
is G c = SO(2) ~ R 2, with SO(2) acting on R 2 in the usual way by rotation around 
the origin. The generator of SO(2) then corresponds to the angular momentum, 
whereas the generators of R 2 are the position coordinates x = cos ~o, y = sin ~0 
(expressed in polar coordinates). 

The representation theory of G~ has already been discussed in subsect. 1.1. 
According to the general theory, irreducible representations of G c correspond to 
G-orbits in V*. By assumption, one of these orbits "is" Q, and the representations 
of G c based on this orbit are in turn labeled by the dual I2I. Those representations 
• rX(Gc) are realized on a Hilbert space ,ZC'x of sections of some vector bundle over 
Q, constructed in subsect. 1.1. Hence a particularly natural class of representations 
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of the Poisson algebra (1.18) is obtained by setting 

rrX( f~) = -i~rX( Ta) , (1.19) 

as in eq. (1.15), with ~ x ( g i )  given by a multiplication operator,  cf. eq. (1.16). These 
operators, then, satisfy the algebra (1.18), with { , } replaced by i[ , ], as required. 

It is illuminating to see how a particle moving on Q = R is quantized in this 
formalism: one takes G = R and V = R 2, with the B-action on R 2 given by 

a(p,,p2) = (p, ,ap,  + P 2 ) ,  (1.20) 

where a ~ R, and Pi are the usual cartesian coordinates in R 2. The canonical 
group is accordingly G~ = R t~ •2, which turns out to be isomorphic to the 
Heisenberg-Weyl group of R. The dual action on V * =  ~2 (identified with 
extended configuration space) is then 

a(x, ,x2) = (x  l - a x  2 ,x 2 ) .  (1.21) 

The G-orbits in V* which are diffeomorphic to Q are given by x 2 = const. = c, and 
the corresponding induced representations in the realization given in (1.10) are the 
usual Schr6dinger representation of the canonical commutation relations with 
c = h .  

This result may be extended to Q = R" for any n; one takes G = R" and 
V =  R "+~, with a G-action and its dual given by setting R = 1 in the formulae 
below. One then finds a one-parameter  family of orbits in V* which are diffeo- 
morphic to R", and the parameter  once again emerges as Planck's constant 
assuming different values in different (and inequivalent!) representations. 

In the transformation group C*-algebra approach we have seen that spin arises 
on choosing G to be the euclidean group (G = E(3) for n = 3); a similar construc- 
tion can be performed here (and trivially generalizes to any n). For Q = R 3 we 
now choose G = E(3) and V = R 4. Denoting elements of G by (R, a), R E SO(3), 
a ~ R 3, the G-action on V is given by (p  ~ R 3) 

(R, a)(p,p4 ) = (Rp, (a, Rp) +P4), (1.22) 

which clearly generalizes eq. (1.20). The dual action on V* follows as 

(R ,a ) (x ,  x 4 ) = ( R x - a x 4 , x 4 ) .  (1.23) 

There  are three orbit-types, among which the family x 4 = C (C :~: 0)  consists of 
orbits diffemorphic (in face equal) to R 3, which implies H = SO(3). If one takes 
q0 -- (0, c) and c -- 1, the realization (1.10) of rr~(Gc) restricted to G c Gc precisely 
reproduces (1.17) (and taking c 4. 1 corresponds to setting h v~ 1 in the relevant 
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formulae). Also, the generators of R a c  V c G e are the usual cartesian position 
coordinates; the fourth generator of V equals the constant c. 

Comparison of the two methods. Recalling the representation theory of the 
algebra of observables ~¢ = C*(G, Q) discussed before, and comparing it with the 
one of the canonical group Ge, the following should now be clear: The (equivalence 
classes of) irreducible representations of  C*(G, Q) are identical to those representa- 
tions of the canonical group G¢ which correspond to one suitably chosen G-orbit in 
V*, which is diffeomorphic to Q. By "suitably chosen" we mean that the (dual) 
action of G on that particular orbit should coincide with the action of G on Q used 
in the construction of the C*-algebra C*(G, Q). 

In those representations, the operators ~r(g i) - qi belong to the algebra C®(Q) 
(in its representation by multiplication operators on ,,?,x), and in fact generate it 
(in a suitable topological sense). Of course, the Lie algebra of G c holds in any 
representation of Go, but the close connection with the algebraic structure of 
C®(Q) and C*(G, Q) is only valid in those representations of G¢ which are based 
on the suitably chosen orbit Q. 

We see, then, that we may quantize a particle moving on Q = G / H  in two 
alternative ways. In the transformation group C*-algebra approach one declares 
the algebra of observables to be 0~' = C*(G, Q), and finds its inequivalent irre- 
ducible representations, identified with inequivalent quantizations, labeled by 
elements X of the dual group I~I, and realized on Hilbert spaces ,~,,,x of sections of 
certain vector bundles over Q; in the canonical group approach one starts with the 
canonical group G¢ given by (1.8), and studies the inequivalent irreducible repre- 
sentations of this group. A number of such representations can, for all physical 
intents and purposes, be identified with the representations 1r x of C*(G, Q) on the 
Hilbert spaces ,,gO, x, and may, accordingly, be identified with inequivalent quantiza- 
tions of the system. It is these representations that we will investigate further in 
this paper. 

The other representations of G¢ arise because the canonical group method cuts 
down the function space C~(Q) in a rather arbitrary way, tailored to get a closed 
Poisson algebra, so that one loses information about the manifold Q (which is fully 
contained in the total space C®(Q)). The potential relevance of the "other" 
representations is discussed in ref. [1]. 

2. Heat kernel and short-time propagator 

2.1. TIME-EVOLUTION 

Quantization of the hamiltonian. The conclusion of our discussion of quantiza- 
tion on a homogeneous space Q is that we end up with a Hilbert space ,,~g,x of 
sections of a certain vector bundle over Q; in what follows we shall use the explicit 
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realization of this space in terms of the local sections ~b x, as explained below the 
definition (1.3). On this Hilbert space, then, the Poisson algebra (1.12) is repre- 
sented by the operators given in (1.15) and (1.16) (which are essentially self-adjoint 
on the domain of compactly supported smooth sections F x [23]). In this way, we 
have quantized arbitrary (smooth) functions of q, and functions which are linear 
in p. 

To quantize the hamiltonian we need to deal with functions that are quadratic in 
the momenta, which presents an infamous difficulty. One cannot, in general, put 
r r X ( f x f v ) = r r X ( f x ) r r x ( f v ) ,  since the left-hand side does not depend on the 
ordering of the f ' s ,  whereas the right-hand side does. To avoid this problem we 
specialize to hamiltonians of the type 

H =  E ( / x o ) 2  + V(q), (2.1) 

where EQX~ is a Casimir operator of G (which is not necessarily a sum over a 
complete basis in g, cf. E~= IPi 2 for G = E(3)). To apply our quantization method 
the potential V is a priori restricted to be smooth, but the method can presumably 
be extended to deal with arbitrary measurable potentials (barring problems involv- 
ing self-adjointness). We can quantize H by putting 

H x = f i X ( H )  = - ~¢ rx (Xo )  2 + ¢ r x ( g ) ,  (2.2) 
Q 

which is ambiguous only up to a constant, as befits the energy. Note that for 
Q = G = R 3, (2.2), with appropriate XQ, leads to the usual Schr6dinger equation. 
The above discussion may be made more precise by involving the symbol calculus 
for differential operators on vector bundles, but we will not need such generality 
and abstraction. (Another approach to (2.2) is to start from a *-automorphism 
group on a : =  C*(G,Q), representing the time-evolution of the system, and 
showing that the hamiltonian H X actually implements this automorphism in the 
irreducible representation ~rX(a¢) [4, 16]. The hamiltonian is naturally defined up 
to a constant in that case, too.) 

Heat kernel. We wish to find the imaginary-time propagator (heat kernel) for 
the hamiltonian H x. The heat kernel K x is defined by the propagation property 

( e - ' m ~ X ) ( q , a )  = ~, f d q ' p ~ ( q ' ) K X ( q , a ; q ' , 1 3 ; t ) ~ / X ( q ' , f l ) ,  (2.3) 
/3~I U# 

which is to hold for all ~x E,,~x. The notation is as follows: the labels t~,fl 
attached to q, q' refer to the sections s,,: U,,: Q - ,  G (etc.) with respect to which 
the respective ¢X's are defined, that is they specify the gauge in which K x is 
defined, cf. (1.4) etc.; also cf. (2.5) below (it is obviously assumed that q E U~ and 
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q ' ~ U 0 ) .  Also, p is a partition of unity, cf. (1.7). Since ~O~:(q,a)E2¢" x, 
KX(q, a; q', fl; t) is a d x × d x matrix; we suppress all matrix and vector indices; one 
may put ~b x = (~ox)iei, where the e i form a basis of X,~ x. In Dirac notation, the 
above definition would read (sum over j implicit) 

fu dq, po(q , ) (q ,  ile -m* . . . .  x ( q , a ; i l e - m * l O x )  = ~ a, I q , / 3 ; j ) ( q , / 3 ; j l ~  ) ,  
/3El 

(2.4) 

so that the heat kernel (KX(q, a; q', fl; t )) i i  = (q, a; i le- 'n~lq ', fl; j )  is indeed the 
usual (imaginary-time) propagator. 

Under a gauge transformation (1.4) the wave-function O x transforms according 
to eq. (1.5), which implies that 

X . t . t K X ( q , y ; q ' , 6 ; t )  =rcx (h~ , (q ) )K  ( q , a , q  ,[3,t)qrx(ht3~(q ) ) ,  (2.5) 

with h ~  = hg],  and the right-hand side is obviously a product of matrices. 
Many analytic properties are known in case that H x is an elliptic partial 

differential operator,  e.g. refs. [27, 28]. For example, for Q compact K x is C ® in 
both q and q' for t > 0. In general, K x satisfies a parabolic PDE, which follows 
from the fact that the left-hand side of eq. (2.3) satisfies the PDE 

(3, + HX)~bX(q,t) = 0  

if O x is in the domain of H x (which is the case if 0 x ~ FX). This implies 

(O, +HX(Oq))KX(q, a;  q',/3; t)  = 0 (2.6) 

for t > 0; as indicated by the notation, H x acts on the first variable. The boundary 
condition for t -- 0 follows from the definition (2.3): 

KX(q,q' ,O) = 6 ( q , q ' ) ,  (2.7) 

where the right-hand side is the invariant 6-function on Q, defined with respect to 
the measure dq. The symmetry of H x implies 

K X ( q , a ; q ' , f l ; t )  = K X ( q  ' , f l ; q , a ; t ) .  (2.8) 

Finally, let us assume that H x is elliptic; in that case it can be shown by elliptic 
regularity theorems that K x must be a smooth cross-section of E x as a function of 
q, with q' and t > 0 fixed [23]. 
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2.2. MOTION ON Q = G / H  VS MOTION ON G 

General formula. A key step in our approach is to relate the heat kernel on Q 
for the hamiltonian (2.2) to the heat kernel on G with respect to a very similar 
hamiltonian H G, cf. eq. (2.12) below. Motion on a group manifold G is a special 
case of our formalism, contained by setting Q = G, hence H = {e}*. This gives only 
one representation of the quantum algebra, namely on the Hilbert space ,,~ = LE(G) 
(defined with respect to a given left-invariant Haar measure on G). The (trivially) 
induced representation ¢r(G) is just the left-regular representation, defined by 
(rr(y)qy)(x)= ~O(y-lx), which is a special case of (1.6). The representation rr 
playing the role of rr x, the momenta and position variables are then quantized by 
eqs. (1.15) and (1.16). 

The motivation for looking at Z (which in the present context may be regarded 
as the Hilbert space completion of the space of smooth sections of the trivial line 
bundle over G) comes from the observation [4] that each ,,~x is unitarily equiva- 
lent to a subspace of ,g,'. To see this, we first define the operator Pj: X ~ ,g" by 

( P~@ )( x) =dx f H dh ~rx( h )JJ~b( xh ) (2.9) 

(no sum over j), which is a projector, as follows from the orthogonality relations 
for compact groups [13]. Subsequently, define an operator Vj: Z ~ ,g,,x by 

i ij (V~)(q,a) =~TfHdh%(h ) *(s~(q)h). (2.10) 

It can be checked (from the same orthogonality relations) that V~ annihilates the 
orthogonal complement of and is unitary on P~,,~, PxJ,,~ itself; accordingly 1/] is a 
partial isometry. Its main virtue is that it intertwines the left-regular representation 
¢r on Z and the induced representation ~r x on ,,~x, as follows from (1.6) and 
(2.10): 

VxJo ~r = wXo VxJ. (2.11) 

Note that VxJ indeed maps any ~ ~ , ~  into a well-defined section, that is, the 
image Vx~ ~ automatically has the correct gauge transformation property (1.5). Since 
this works for any fixed j = 1 . . . . .  dx, we see that ~ contains d x copies of ,,q~,x (up 
to unitary equivalence). 

* One may alternatively put G = (G x G) /H,  with H the diagonal subgroup of G >< G, but such 
generality is not needed here. 
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Now define, analogously to (2.2), the hamiltonian 

137 

H o = - y ' I r (Xo)  2 + I2 (2.12) 
a 

on ,,~, where 12 is a multiplication operator given by 12(x) -- V(xqo). This defini- 
tion is motivated by the property (following from (2.2), (2.11), and (2.12)) that 

V~oHG=HXoV~. (2.13) 

Let K G be the heat kernel on G for the hamiltonian (2.12), i.e. 

(e -'HC ~b)(x) = fG dx' KG(x, x', t )O(x ' ) .  (2.14) 

It easily follows from the fact that Y:.aX~ is a Casimir operator, and from the 
definition of 12, that H G commutes with the right-regular representation ~r' of H 
on X (defined by (Tr'(h)O)(x) = O(xh)), which implies the invariance property 

KG( xh, xh', t) = KG( x, x', t) (2.15) 

for all h ~ H. 
We now use (2.13) to write (exp(-tHx)V~¢,)(q) in two different ways, one 

involving (2.3) and the other one using (2.14). Using (2.10) and (2.15), and the 
arbitrariness of ~b ~ X we are led to the central result of this section, which relates 
the propagator in any superselection sector X to the one on G: 

KX(q,a;q' ,[3;t)  = fHdh~rx(h)rG(s , (q)h ,sa(q ' ) , t ) ,  (2.16) 

where we assume (as usual) that q ~ U,, and q' ~ Ut3. The correct gauge transfor- 
mation property (2.5) is ensured by (2.15). This formula derives and generalizes an 
equation postulated by Dowker [5] for the trivially induced case X = id. It is useful 
to rewrite eq. (2.16) as 

- 1 / 2  j o r x ( q , a ; q ' , f l ; t )  = ( d x )  (V~KG(',s#( q ) , t ) ) (q ) ,  (2.17) 

where KG, with its second argument and t > 0 fixed, is regarded as an element of 
,,~?'. It then follows immediately from (2.13) that K x as given by eqs. (2.16) or (2.17) 
indeed satisfies the heat equation (2.6). 

Riemann normal coordinates. Our next goal is to explicitly compute the H- 
integral in eq. (2.16) in the short-time limit of K c, and to interpret the result 
geometrically. To do so, we exploit the existence of G-invariant metrics g, gO  and 
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g "  (and associated invariant measures dx,  dq, and dh)  on G, Q, and H, 
respectively [10, 29]. The structure of the heat kernel on a riemannian manifold is 
intimately related to the latter's geodesics, and this motivates us to attempt to 
compute (2.16) in Riemann normal coordinates (RNC) (cf., e.g. ref. [30]). The 
RNC on (a geodesically convex neighbourhood of the identity of) G are con- 
structed via the exponential map of g into G [11,29]. This map is defined by 
e x -- 3,(1), where 3,(t) is the unique one-parameter group tangent to X ~ (TG)e --- g; 
3' is, in fact, a geodesic. The RNC of a point exp(xaTo)~ G are simply xL  
Similarly, the RNC of a point q = exp(q``T``)qo ~ Q are just q``, and those of 
exp(hiT~) ~ H are h i. This construction exploits the fact that a curve exp(tX)qo c Q 
is a geodesic if X ~  cI [11, 12]. 

We now need to express the metrics g, gO, and gn  in terms of RNC. The main 
difficulty is in gO. For a given section s: Q ~ G we can construct a vielbein on Q 
by [12] %(q) = s(q)'T``, where T`̀  ~ cl is regarded as an element of (TQ)qo, and x' is 
the derivative of the map x: Q ~ Q defined by the left-action of G on Q. If 
g°(T``, T#) = 8,, 8 then by definition of gO we have that g°(e``,  e#)(q) = 8`` 8. To be 
concrete, in what follows we take s to be the canonical section se, defined in a 
neighbourhood of q0 by 

sc( eq°r" qo) = ea"r~, (2.18) 

where the left-hand side may be read as so(q``) in RNC. The Baker -Campbel l -  
Hausdorff-formula allows us to express the vectors a/aq`` in RNC in terms of the 
vielbein: 

a 
1 /3 1 # a - - .  = % + ~C``#vq e ,  - ~Ca#cCac~, q q e,  + 0 ( 0 3 ) .  (2.19) aq`` 

Here  Greek and Latin indices which are early in the alphabet are summed from 1 
to do,  and 1 to dc ,  respectively; below, we also use the convention that "middle"  
Latin indices are summed from 1 to d H (in accordance with the conventions stated 
in subsect. 1.1). Also, we have lowered the third index on C with the euclidean 
metric g, with respect to which the generators T a defining the C's are orthonor- 
mal. We can now compute gO#(q), and therefore the determinant gO(q) in RNC, 
with the result 

I I y 8 gO(q)  = 1  +('~C``v,C``a,- '~C,,cCsc,~)q 0 + 0 ( 0 3 ) .  (2.20) 

One similarly (and more easily) finds 

I I b d g(  x ) = 1 + ( ~Cad c + -$Ccda)C, bcX x + O ( x 3 ) ,  (2.21) 
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and 

gH(h) = 1 -- ~CiktCjkthih j + O(h3). (2.22) 

2.3. SHORT-TIME HEAT KERNEL 

Propagator on G. Although the above considerations, and in particular the 
expression (2.16), are valid for any Q = G / H  for which H is compact, we can only 
compute K G (following the literature) if the hamiltonian H o reduces to (minus) 
the Laplace-Beltrami operator ALB on G. To match this with the hamiltonian 
(2.12) we firstly assume that l /=  0 (it is easy to restore the potential later on in the 
path integral by a Feynman-Kac-like formula, see below), and secondly take G to 
be compact*, with the Casimir operator defining (2.1) and (2.12) given by the usual 
C2(G) = - E a T  ft. Then it is well known that [12, 29] 

H o  = = (2.23) 

where ALB is constructed from any left-invariant metric g on G (for concreteness' 
sake we may take the unique G x G invariant metric, which exists by compactness 
of G). 

In general, the heat equation on a d-dimensional manifold M 

(a, - Z L B ( a x ) ) K ( x ,  X' ,  t ) ,  (2.24) 

with boundary conditions analogous to (2.7, 2.8), can be solved by the asymptotic 
Hadamard-Minakshisundaram-DeWitt (HMD) expansion (cf. refs. [12, 28, 30] and 
references therein) 

K(x ,  x', t) = (4~t)  -d/2 A,12(x,x,)e_,,tx..e)/2, ~ an(X ' x ' ) t" .  (2.25) 
n ~ O  

Here o-(x, x') is one-half times the geodesic distance squared between x and x' 
(which are assumed to be joined by a unique geodesic, i.e. the validity of the 
solution (2.25) is restricted to the case in which x' lies in a geodesically convex 
neighbourhood of x). A simple reparametrization argument allows one to express 
this as 

fo dxa dxb 
ldSgab(X(S)) ds ds ' o'( x , x ' )  ~ I (2.26) 

where x(s) is an affinely parametrized geodesic with x(0)--x and x(1)=X'. 

*This assumption may be relaxed, as long as the hamiltonians (2.23) and (3.1) below are elliptic, and 
have a reductive decomposition. 
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The second factor in the expansion (2.25) is the square-root of the so-called 
Van Vleck-Morette determinant, defined by 

ra (x,x,) ] _,: 
A ( x , x ' ) = g ( x ) - I / 2  det[ O-~x--;-g g ( x ' )  (2.27) 

These expressions greatly simplify in RNC based at x' [30], in which tr(x, x') 
= ½x°x ° and A(x, x') = ( g ( x ) g ( x ' ) )  - t /2 .  

We are now in a position to calculate the right-hand side of eq. (2.16). The 
hamiltonian H x defining the heat kernel K x is, by (2.1) (or (2.13) and (2.23))just 
H x = rrx(C2(G)). Since this operator is G-invariant (that is, it commutes with 
~rX(G)) it follows that for all x ~ G 

K X ( x q ,  a; xq', [3; t) = KX(q ,  a; q', [3; t)  (2.28) 

(appropriately modified if xq and q do not lie in the same patch U,,, etc.). We 
accordingly need only compute K x for fixed q' = q0- The situation further simpli- 
fies by working in the canonical section sc defined in (2.18); note that sc(q o) = e. 
We also assume that q lies in the RNC patch of q0 (which entails no loss of 
generality, as eventually we will be interested only in the ease where q and q' are 
infinitesimally close), so that we compute K x in a single gauge s,, = s# = s~. 

As our motivation is mainly to derive a path-integral representation of the full 
heat kernel by "infinitely" many insertions of the short-time one, we only need K G 
and K x in the short-time and short-distance limit. More precisely, it is sufficient to 
know the kernels up to O(t), where O ( ( x - x ' )  z) is counted as O(t); hence in 
o-(x, x ' ) / 2 t  we need ~r to quartic accuracy in x - x '  [30, 31]. Analogous statements 
hold on Q. The exact expression for K G is known for, e.g. semi-simple Lie groups 
[12] (and typically is gaussian), but we will not exploit this fact. 

Computation. To do the computation, we first express 

Sc( q ) h -~ exp( q"T,~ )exp(  hiTi ) 

as a single exponential exp(xa(q,h)To)  using the BCH formula, so that 
tr(Sc(q)h, e) = ½x"x a, which we need to quartic accuracy in products of q~ and h i. 
We then insert (2.25) and (2.27), and use the known [28, 30] result 

ao(X, x ' )  + a , ( x ,  x ' ) t  = e R(x)'16 + . . . .  (2.29) 

up to the desired accuracy, with the Ricci scalar on G being given by the constant 
R_- 1 ~CabcCab c. Subsequently, eqs. (2.21) and (2.22) are used to approximate the 
Van Vleck-Morette determinant, and the measure dh, respectively. 
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The only remaining complication is that because H is compact the H-integral is 
of the type f~-aI-Ii dh i . . . .  where the a's are constants of order 1, and the dots 
include a gaussian weighting factor. However, elementary asymptotic analysis (for 
example, using Mellin transform techniques) reveals that f~dh exp(-hZ/t)<~ ct n 
for all n ~ I~/and some constant c, so that to our desired accuracy we are justified 
in replacing the existing bounds on the h-integration interval by + oo, that is, we 
may ignore the compactness of H, as well as the fact that the RNC patch may not 
coincide with all of H. 

Doing the gaussian integral than leads to a result which, after some re-arrange- 
ment, can be expressed as 

[ o-(q~ q0) KX(q, c; q0, c; t)  = (4~-t) -d°/2A'/2(q, q0)exp [ -- 
2t 

t ) 
+ gR o -  + . . . .  

(2.30) 

where as explained before, the neglected terms are of O(t a) and O(q3). Here  o- 
and A are defined as in (2.26) and (2.27); in fact, in RNC one simply has 

Xq,q~ o-(q, q0) = ~ . The Ricci scalar is defined with respect to the metric gO and is 
given by the constant 

R o = C i 1 3 7 ~ . / i  , (2.31) 

cf. ref. [12] (note that the f ' s  explicitly depend on the metric, for they are defined 
with respect to an orthonormal set of generators). Finally, the constant C g is the 
Casimir operator for rrx(H), that is, 

C~" = - E~'x(T~) z , (2.32) 
i 

where the d x × d x unit matrix is implicit in the left-hand side. The term involving 
C x in eq. (2.30) obviously comes from 7r x in eq. (2.16). 

The result (2.30) has been derived in a special gauge and for a special point 
q' = q0, but the general expression for KX(q, ~; q', ~; t) can be derived from (2.28) 
and (2.5) with (1.4) and (2.18). 

3. Path integrals and external Yang-Mills fields 

3.1. HAMILTONIAN 

H-connection. After the explicit calculation in sect. 2, we will now further our 
understanding of the heat kernel (2.30), and derive a more general expression for 
it that in principle allows one to compute the higher-order corrections in t. We 
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continue to assume that G is compact. Our starting point is the following 
hamiltonian on ,,~,x (cf. the text preceding eq. (2.28)) 

H x = rrx(C2(G)) = - E (,n-X(T,,)) 2, (3.1) 
o 

which is an elliptic PDO, which can in principle be computed from eqs. (1.6) and 
(1.15). That is, ~rX(T,) 2= (d /d t ) (d /ds ) r rX(exp tT ,  expsT,)lt=s=o on the domain 
F x ~ ,,W x of smooth sections of E x. Fortunately, we can give an explicit expression 
for H x as a Laplace-Beltrami operator in a certain background gauge field of a 
known type, namely the H-connection A H (sect. II.11 of ref. [10]). This is the 
natural connection on the principal fiber bundle P = (G, Q, p, H) described in 
subsect. 1.1 (induced representations). A N is just the part of the Maurer-Cartan 
form 0MC on G which takes values in ~l, i.e. A H = OiTi, where 0 i are canonical 
left-invariant one-forms on G dual to the Lie algebra of H c G [10, 12, 15]. 

It is remarkable that A H is a solution of the Yang-Mills equation [32], which 
fact has been the main motivation for its appearance in theoretical physics so far 
(e.g. refs. [33-35]). In fact, some of the well known solutions such as the Dirac 
monopole field (for Q = S 2 = SO(3)/U(1); cf. subsect. 4.1) and the BPST instanton 
(for Q = S 4 = SO(5)/SO(4)) are examples of the H-connection, cf. ref. [35]. 

- -  * H Any section s= of P defines a gauge field A H = s , A  on Q with respect to the 
"gauge group" H. A remarkable property of this gauge field, which we record for 
later use, is 

fqlA"  = o ,  (3.2) 

where A~ is the H-connection in the canonical section (2.18); the line integral 
from q0 to q is taken along a geodesic. This follows from the fact that geodesics 
through q0 have the form y(t)  = exp(tq'~T~)qo, so that ( s 'AN,  dy/dt)exp(,q,r,)qo = 
(A N, q"L~)expto"r, -- 0. In general, the integral of A~ ~ along arbitrary geodesics on 
Q (that is, those not passing through q0) does not vanish. 

Explicit form of the hamiltonian. Employing the H-connection, now regarded as 
a ~-x(~)-valued connection A x - ~-x(A H) on the vector bundle E x, and the metric 
gO on Q (cf. subsect. 2.2), we can form the gauge-covariant Laplace-Beltrami 
operator 

ALB( A x) = (d +AX)*(d + A x) 

= (g°)~'"(V~, +AX)(0,, +AX) ,  (3.3) 

which acts on smooth sections of the bundle E x, and extends to an operator on 
,,~x which is essentially self-adjoint precisely on the domain F x of smooth sections 
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of E x [23]. In the first equation in (3.3), the covariant derivative d +A x is 
understood as a map from the space of sections of E x to the space of section-val- 
ued one-forms on Q, and (d +AX) * (mapping the section-valued one-forms into 
the sections) is the adjoint of this map with respect to the inner product (derived 
from the metric gQ) on the space of p-forms (p = 0, 1 in this case), cf. refs. 
[15, 36]; in the second form V denotes the covariant derivative with respect to the 
metric connection. We omit the "gauge-dependence" index a on AX; by defini- 
tion, the action of ALB(AX) o n  a local section is ALB(AX)~IX(q, Or)-- 
Aua( AX(q))@X(q, a). 

For compact Q, the operator ALB(A x) has discrete spectrum [36], so that X ,'x 
has a complete basis of eigenfunctions. It can be shown by elementary harmonic 

x I analysis (appendix B of ref. [12]) that the eigenfunctions ( ¢ ) v  are labeled by 
3' ~ (~ (the dual of G, i.e. the set of equivalence classes of unitary irreducible 
representations of G), and by a further degeneracy index I (by Frobenius reciproc- 
ity, only those 3' occur for which Try(H) contains ~-x(H)). One then has from eq. 
B.71 of ref. [12] 

A L B ( A X ) ( ¢ x ) I  r = ( - C ~ ( G )  + C[)(~Ox)tv, (3.4) 

where C~'(G) is the value of the Casimir operator C2(G) in the irreducible 
representation ~-v(G), and C x has already been defined in (2.32) as C2(H) in rr x. 

x I Now use the fact that ( ¢ ) r  transforms as an irreducible multiplet under ¢rX(G), 
i.e. 

= ~rv(x)(O )v (3.5) 

for all x ~ G. Combining (3.1), (3.4) and (3.5) we thus find 

H x =  - -ALB(AX ) + C ~ .  (3.6) 

We see that one of the effects of being in a non-trivially induced representation 
(sector) is the appearance of a certain background Yang-Mills field in the 
hamiltonian. 

3.2. GAUGE-COVARIANTHEATEQUATION 

Generalized HMD expansion. We now return to the heat equation (2.6), with 
H x given by (3.6) of subsect. 3.1. The ansatz (2.25) can be generalized to (cf. ref. 
[28]) 

KX( q,a; q',fl; t) = A1/2(q' q') e -~(a'q')/2t e -tc¢ IX(q, a; q', fl) ~ an(q, q') tn , 
( 47rt ) d°/2 

(3.7) 
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where the d x × d x matrix IX(q,  a; q', [3) as well as the ti, depend on A x. Inserting 
(3.7) into (2.6) with the hamiltonian (3.6), and use of the identities [28] 

i ~ (r~O~All2= i s ( d  o V~O~o') zi '/2 (3.8) TO" trt, = t r ,  

(with % - %(q, q') =- art(q, q ' ) /Oqt ' ;  w e  now use /z ,  t, rather than a, [3 to avoid 
confusion with the ot on A N denoting its gauge dependence, and to stress that we 
do not necessarily work in the RNC q" on Q) shows that I x must satisfy 

tr**D+,IX(q, a;  q', [3) = 0, (3.9) 

where the gauge-covariant derivative is defined by its action 

( D ~ b X ) ( q ,  a )  = (O~, +AX(q)~ , )~bX(q ,  or) (3.10) 

on any object in a gauge a. The initial condition 

I X ( q , a ; q , a )  -- 1 (3.11) 

is required in order to satisfy the boundary condition (2.7). 
Since the vector o-~'0~, ~ (TQ)q is tangent to the geodesic from q' to q, eq. (3.9) 

with (3.11) is solved by (cf. eq. (3.24) below for a more detailed argument) 

IX (q ,  a; q', a )  = P exp - ,A~ ,  (3.12) 

where, to start with, we have assumed that q, q ' ~  U~,. The integral is over the 
geodesic (assumed unique) from q' to q, and the symbol P path-orders the 
matrix-valued gauge field along the geodesic, with "later" gauge fields (whose 
argument is closer to the latest point q) standing to the left of "earlier" ones 
(those closer to the earliest point q'). If q e U~ and q' ~ U 0 then solution (3.12) 
has to be replaced by 

s x ( q ,  o~; q' ,  [3) = e exp  - A ~ . _  ~ 

q n [ 
where ~'0 = ~, Y. =[3, and q.+~ =q ' .  The geodesic from q' to q is supposed to pass 
through the patches U 0 - U,,, U l . . . . .  O n - U s, such that qi ~ U i -  1 CI U i. The 
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transformation property of A x under a gauge transformation [15] yields 
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i: P e x p -  ,+A~='trx(hl3,,(qi))P. e x p -  A~ crx(h,~o(qi+,)), (3.14) 

which assures firstly that (3.13) is independent of the choice of the intermediate 
points qi, and secondly that I x transforms exactly as K x, cf. eq. (2.5). Therefore, 
I x carries the full gauge dependence of K x, so that we conclude that the 5,  in 
(3.7) are gauge-invariant. 

Consistency of  the ansatz. One can covariantly differentiate eq. (3.9) an arbi- 
trary number of times with respect to q, and then put q = q'. Use of the initial 
condition (3.11) and the known coincidence limits of the covariant derivatives of 
o-(q, q') [28] then yields 

(D~,IX)(q, ~; q, a )  = O, (3.15) 

({v .  + v. + q, . )  = O, (3.16) 

etc.; here { , } is the anti-commutator. The second equation is equivalent to 

since 

( D~,D.IX)( q, a; q, a) = ½( F~)~,,lX( q, a) , (3.17) 

[ V. + A~ x , V. + A~] = [ D~,, D~] = F~X~, (3.18) 

with D~ given by (3.10). 
It is not at all obvious that (3.12) satisfies (3.15) and (3.17), so we find it rather 

instructive to explicitly check this. We assume q, q' ~ U= and write AX~ = A  in the 
following (which, in any case, is independent of the explicit form of the gauge 
field). By definition 

q 1 ( d 3 , )  fol d A A.(~/(k)) __d_~_ (A). fq, A = £  dA A , - ~ - v ( a )  = d3," (3.19) 

Here 3': [0,1] ~ Q is a geodesic with y(0) = q' and y(1) = q. Since y depends on its 
terminal points, we write y(q, q', A). One has 

0 
3,P(q, q', A) = B~(q,  q', A), (3.20) aq ~ 

where B(q, q', A) is a Jacobi field, that is, a solution of the equation of geodesic 
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deviation with boundary conditions 

B2(q,q',O) = 0 ,  B2(q,q' , l  ) =6°~ , (3.21) 

cf. ref. [37] for a review of this notion (in particular, for a coordinate free version 
of (3.20) and (3.21)); also see ref. [15]. Hence 

dy p \ dT p d 
0 Ao(Y(h))--~-~'(h) ) =O'~Ao(r(AI)B~(A)'-~ (~) + A o ( r ( A ) ) _ ~ _ B ~ ( A ) ,  

Oq ~ 

(3.22) 

where we have suppressed the q, q' dependence of B and y. 
Now use the formula (see ref. [38], p. 340, in a rather different notation) 

dy 8(Pexp-fqqA)=-foldAPexp(-fldA'(A,-d-~)./(x,) ) 
X 6((A, dy a 

for any variation 8. We take 6 =O/Oq ~, use (3.19),(3.22), partially integrate the 
d /dA  in the 2nd term in eq. (3.22), and use (3.21) to find 

(3.24) 

where F is the curvature (3.18), and B, is the vector field B~(y(A)) = B~O/OyP(A), 
cf. eq. (3.20); our convention is ~BF = B°Fo, ~ dq". 

Since o'~B, solves the geodesic deviation equation with initial value zero, and 
final value o'~0,, i.e. being tangent to the geodesic, so that there is no geodesic 
deviation, it must vanish. This shows, on contracting eq. (3.24) with %, that (3.12) 
indeed solves eq. (3.9). Also, (3.24) and (3.12) trivially imply (3.15). 

To find D~,D,I x we need the covariant derivative of the right-hand side of eq. 
(3.24). The only term that contributes in the limit q' ~ q is the one in which 0~, acts 
on LsF, that is, in the coincidence limit we may ignore the exponential, as well as 
the A~, in D~,. We thus have to evaluate 

Oq ~" ~q~ L dh (q,q ' ,A)B~(q,q ' ,h)F,w(y(h)) .  (3.25) 

Because d3,(q, q, k ) /dA = 0 we only get a contribution in the coincidence limit if 
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0. acts on the first term in the integrand. Clearly 

0 d~ p d 
Oq ~ dA (q ,q ' ,A)  = - - ~ B h t q , q ' , A  j . ' r '  
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It can be shown directly from the geodesic deviation equation that [37] B~(q, q, A) = 
A~.  Using these equations in (3.25), the desired result (3.17) follows. 

Expansion coefficients. Let us return to the expansion (3.7). To derive a path 
integral we need ao(q, q') to order o-(q, q'), whereas al, as it is in an O(t) term, is 
only needed in the coincidence limit, cf. ref. [31] and subsect. 2.3. The desired 
quantities can be found from the recursion relations satisfied by the a n, which 
follow by inserting (3.7) with (3.12) (or (3.13)) in the heat equation (2.6), and by 
taking the coincidence limit in these relations, cf. refs. [28, 39]. The result is, that to 
the desired accuracy there is no A x dependence, so that one has 

ao + al  t = eR° t / 6  + " "  , (3.26) 

cf. (2.29), with RQ given in (2.31). 
The results (3.7), (3.13) and (3.26) give the heat kernel in the short-time 

approximation, which we had already computed explicitly in subsect. 2.3 as (2.30) 
(in a special gauge, and for the special value q'--q0). The two methods, totally 
different in nature, produce the same answer, as follows from (3.2). 

3.3. PATHINTEGRAL 

Time-slice path integral. We return to the full hamiltonian (2.2), which we write 
as H x = H~ + V x, with H6 ~ given by (3.1), rewritten as (3.6) with (3.3) (this H6 ~ 
was previously called H x, in the absence of a potential). The following time-slicing 
derivation of the path integral is valid in euclidean time t (the one used so far) if 
we assume that V is bounded from below (like HX), or in real time tR---- --it if 
H~ + V x is essentially self-adjoint on the domain of smooth sections F x. The 
last-mentioned condition is satisfied if V (and therefore V x, which is just V times 
the d x × d x unit matrix) is real-valued, and the sum of a square-integrable function 
(i.e. an element of ,ge "x) and a function which is essentially bounded with respect to 
the measure dq on Q (cf. theorem X.15 of ref. [40], which can be generalized to 
the present situation). Note that our H6 v = --ZlLa(AX), which includes a Yang-Mills 
field, is not the usual free hamiltonian --ZlLB; the latter cannot be used in the 
Trotter formula (eq. (3.27)) since it fails to be essentially self-adjoint on F x (or any 
other reasonable domain). 
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We derive the path integral in the standard fashion* from the Trotter formula 
[44] 

e - t m  = s-lim (e - tH~/"  e - ' v x / " ) "  (3.27) 
?1 - -~  oo  

for t >t 0; here s-lira indicates that the limit is to be understood in the strong 
operator topology. Using the heat kernel K x to O(t) = O((q - q,)2) [31], that is, 
substituting the expansion (3.7) with (2.26), (3.13) and (3.26) we obtain a path-in- 
tegral representation for the heat kernel itself (in euclidean time) or the transition 
amplitude from q' to q in time t R = - i t  (in real time) 

KX(q,a;q',~;t)= fq ?qe-StqlPe-lqA~-#, 
q ~ q  

(3.28) 

where the integral is over all paths q for which q(0) = q' and q(t)  = q. The action 
is given by 

• [ ] f0r d 1 o dq~' dq~ - -  ~R o + C~ , (3.29) S [ q ] =  s x g ~ ( q ( s ) )  ds  ds  + V ( q ( s ) ) -  i 

which strictly speaking should include the d x × d x unit matrix (we have written q~' 
for the/~-coordinate of q(s)). The full amplitude (3.28) is a d x × d x matrix, so that 
our path integral is not of the usual form, where the integrand is a single 
exponential of a scalar functional. Expressions of the type (3.28) have previously 
been used in refs. [45, 46]. As we will explain later on, it is possible to get rid of the 
path-ordering by introducing extra variables. 

The precise definition of the functional integral used here is 

n d q i A l / 2 ( q i , q i _ l  ) 
KX ( q' t~ ; q"13 ; t ) ffi s 'lim foi~f -**~ -( ~ e-Stq"i-d p e -  /AXv''"-l ' (3.30) 

where q0 = q', q,, = q, dq is the invariant measure on Q (cf. (1.1) and subsect. 2.2), 
qi, i-1 is a geodesic from q/- l  to qi, and S[qi, i_ 1] is defined as in (3.29), with 0 and 
t replaced by ti_ 1 and t i, (if we assume that qi, i - i  is affinely parametrized, with 
qi i -  l ( t i -  1) = q i -  1 and qi . i -  l ( t i  ) ---- qi; here t i -- t i_ 1 ---- t /n ) .  Furthermore, A. x 

J y i ~ - - T i - - I  

is defined as in (3.13), assuming that q i E U i ,  e tc .  The way the potential 
V appears in (3.28) is compatible with (3.27) if one notes that, to O ( t / n ) ,  one 
has ( t / n )  V(q i_ 1) = ffi~_,V(q(s)) (at least for continuous V; more general potentials 
are handled as in the proof of theorem X.68 of ref. [40]). As a technical point, we 

* For an overview of path-integral techniques cf. refs. [41-43], the last two being mathematically 
rigorous expositions. 
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remark that the limit n ---> ~ in (3.30) is in the strong operator topology, that is, we 
regard K x as an integral operator on ,g~,x and take the limit on any fixed vector 
in ,,~,x. 

One of the features of the definition (3.30) of the path integral is that the 
short-time propagator is given by the action evaluated on a "classical" path (a 
geodesic) connecting the endpoints (rather than by some mid- or end-point 
evaluation of the lagrangian). This procedure is further explained in ref. [47] 
(where only the trivially induced case X = id is considered). 

Finally, as explained in ref. [30] (also cf. ref. [31]), one can omit the 
Van Vleck-Morette determinant A ~/2 in the measure in (3.30) if one replaces 
R o / 6  in the action (2.29) by RQ/3; in fact, one may use an arbitrary power of za in 
the measure if the coefficient of the Ricci scalar is appropriately modified. 

Wiener measure approach. If we stick to euclidean time t, it is possible to 
pursue a different approach to the functional integral, which is not based on 
time-slicing. One can exploit the fact that Hd d=  --ZaLB defines a (conditional) 
Wiener measure/zc~ on the space ~ o  = C(0~+, Q) of continuous functions on R + 
with values in Q (that is, continuous paths in Q with a given starting (and ending) 
point), see, e.g. refs. [42, 50]. In terms of the Wiener measure, one can write a 
generalized (from X = id to general X) Feynman-Kac formula 

KX( q, a; q', fl; t) = f~o dl~Cw( q)e-/~dsV(q(~)) P e-lqA~-a e(R°/6-c[)t ' (3.31) 

where ~ v  is the conditional Wiener measure concentrated on paths starting at q' 
and ending at q. In this case, the line integral of A x is a stochastic integral of a 
type investigated in refs. [51,52]; the gauge field appears as a "vertical drift" 
affecting free diffusion on Q. The precise definition of the stochastic line integral 
of the gauge field is the following obvious generalization of the flat-space expres- 
sion given in ref. [51] 

P e-/qA = s'lim H/~= l e-½t'4"(q'~"(qi'q~-')+A"(q~-0~"(q"q;-0], (3.32) 
n -..~ oo  

where, in the interest of notational clarity, we have omitted the gauge dependence 
of A =-AX; if q and q' lie in different patches then expression (3.32) has to be 
appropriately modified in the manner of (3.13). The expression above is a func- 
tional of the brownian path q, in which we have selected points q~ = q(ti), where 
t i = i t / n  (do not confuse this i with v r-Z-- 1 ). The product l=I is ordered along the 
path q, i.e. the terms are in the order i = n, n - 1 . . . .  , i = 1 from left to right. The 
vector tr~ has been defined below (3.8), and [28] ~ ( q , q ' ) = - O t r ( q ,  q')/O(q') ~ 
(which equals trY(q, q') in RNC, or in cartesian coordinates in fiat space-time). 
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This approach provides an interesting example of brownian motion on vector 
bundles [50]; moreover, it has the advantage that (3.31) is a bona fide integral (as 
opposed to (3.30), which is the limit of a sequence of integrals, but not itself an 
integral). On the other hand, one no longer recognizes the action in (3.31). 

Gauge-invariant formal ism.  The heat kernel K x is explicitly gauge-dependent, 
cf. eq. (2.5). We can, however, perform a unitary transformation on Z ~''v which 
leads to state vectors and a modified heat kernel which are invariant under all 
"based" gauge transformations. A based gauge transformations is one which maps 
a normalized section (i.e. s(q o) = e) into a normalized section; this implies that the 
transformation function must satisfy h ~ ( q o )  = e, cf. eq. (1.4). The unitary transfor- 
mation in question is given by 

(UOX)(q, °t) -- Og l (q )  = ( P  e- /~ '4x-"°)  - ~" ( q , ~ ) ,  (3 .33)  

where the integral is along a geodesic (assumed unique) joining q0 • U,,, and q. It 
follows from (1.5) and (3.14) that ~ l  is independent of the choice of o~, and is 
indeed invariant under based gauge transformations (these Mandelstam-type wave 
functions have, of course, often been used in the past, cf. ref. [46] and references 
therein). (This construction does not, in fact, depend on the use of geodesics, so 
that it is easy to amend the formalism in case that q and q0 do not lie in a single 
RNC patch; one just has to give a unique prescription for a path joining q0 to any 
point in Q.) 

Let U map ,,~e "x into ~"~i. One may define a propagation kernel K ~  in Ze'~ 
analogously to (2.3), and clearly K~l---UKxU - I  (where K x is regarded as an 
integral operator on ,,~x). Then, going through the same derivation as before (or 
performing the unitary transformation above), it follows that K~I has a path- 
integral representation similar to (3.28); the only difference is that P exp - f q A ~  ,_. t3 

A x where A is an ordered triangular has to be replaced by Pqo exp --fA ~o'-" '-t3 '-~o' 
path qo-* q ' ~  q ~ q0, and the suffix qo on P indicates that the ordering along 
this path starts at q0. In the regularized expression (3.30) one accordingly has to 
replace the geodesic path qi . i - l ,  along which A x is integrated, by an ordered 
triangle qo ~ qi- 1 ~ qi -* qo,_ all sides being geodesics. 

It follows from the transformation properties (3.14) that this factor, and thereby 
the whole path integral, is indeed invariant under based gauge transformations; 
this fact can be made more explicit by invoking the non-abelian Stokes theorem 
[53], which converts P q o e x p - f ,  aA into a rather complicated ordered surface 
integral of the curvature F. 

In this approach, gauge dependence is traded for path (and qo) dependence, 
which in our application seems reasonable because the point q0 and the set of 
geodesics on Q are indeed preferred objects. 
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Removal of the path ordering. It is possible to get rid of the path ordering in 
the functional integral (3.28), at the expense of introducing extra, unphysical 
variables. The starting observation is that one can introduce d x creation and 
annihilation operators a~" ), either fermionic or bosonic, with vacuum 10), in terms 
of which 

(P e-/,~'4)u = lim <OIT[a,(t)e-/~d'"r<'XA' 'cq~'')'oq/d'>"'c') a*(O)]lO), (3.34) 
eJ, o 

where Z k t  = (AX)"zrx(T,)kt (we omit reference to the gauge dependence of A for 
simplicity), which is assumed to be traceless. The time-evolution of the oscillator 
operators is governed by the hamiltonian H = ea~ak; we need to go through this 
regularization, for without any time dependence of the operators the time-ordering 
T is ambiguous. To prove (3.34), which is a generalization of a similar expression 
for a Wilson loop given by Polyakov [8] (also cf. ref. [48]), expand the exponent- 
ial and use Wick's theorem. The propagator is lim~o<OIT[ak(sl)a~(s2)]lO)= 
6ktO(sl --S2); many contractions will vanish because they produce traces of A, or 
else conflicting step-functions, and the surviving ones precisely yield the correct 
terms occurring in the expansion of the left-hand side. 

Using a coherent-state formalism [49], the right-hand side of (3.34) can be 
written as a path integral, yielding 

(Pe-/#'4)u = lim fz - -  8 (t) 0_,, 

with the action 

: 

--~-s Zk 

dzd~,e_gtz,z,A,j , j  I , (3.35) 
2~-i J=y=0 

_ d z k ]  dq 

+ Zk -- Yk(S) Zk -- Jk(S) } ,  (3.36) 

with z k = zk(s), etc. The boundary conditions Zk(0) = ~'k(0) = Zk(t) = ~'k(t) -- 0 on  
the paths over which the functional integral extends follow immediately in the 
coherent-state formalism [49], where the ground state is just the coherent state 
10) = Iz -- 0). This works for both bosons and fermions (for which the factor 2"rri in 
the measure is to be omitted). Note that the J ,]  differentiation cannot be 
interchanged with the path integration: if one insists on differentiating and 
subsequently putting the sources to zero first, an additional regularization is 
necessary, in which the factors z(t) and %'(0) are to be replaced by lim 8 ~ 0 z(t - 8) 
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and lima_, o £,(8), respectively, the limit to be taken after performing the path 
integral. 

Using (3.35) and (3.36) we can now write (3.28) as a path integral with a single 
action 

8 8 
K X ( q , a ; q ' , [ 3 ;  t ) i j  = lim - -  - -  

,~o a~.(t) aJj(O) 

dz d~. ~,A,J,.r] 
X ~ q  2~'i e-Stgl-stz' , (3.37) 

q - #  o - o  J=Y=O 

where S is the action (3.29). 
For the above manipulations to be justified it is necessary to adopt the time-slic- 

ing definition (3.30) of the path integral. A similar procedure may be followed for 
the gauge-invariant path integral. It is not clear to us, however, how the Wiener 
integral (3.31) with (3.32) can be cast into the un-path-ordered framework: the 
continuum path integral (3.35) seems useless here, whereas a discretized functional 
integral analogous to the one given in ref. [48] would rely on the approximation 
exp(T/.i_l)= 1 + T/,i_ 1 (where T,.i_ l stands for the generic argument of the 
exponentials in (3.32)), which does not hold with respect to the Wiener measure. 

4. Examples 

4.1. PARTICLE ON A S P H E R E  

Set-up. To illustrate our abstract considerations in a concrete example, we now 
consider a particle moving on the two-sphere Q = $2; as we shall see, the 
superselection sectors of this system can be interpreted in terms of a fictitious 
Dirac magnetic monopole, in whose field the particle moves [16]. The well-known 
description of a monopole in terms of line bundles [54, 55] then follows straightfor- 
wardly from our general formalism. 

We write S 2 = SO(3)/SO(2), i.e. we take G = SO(3) and H = SO(2) = U(1). The 
Lie algebra of SO(3) is written, as usual, as [Ta, T b] = E,bcT c. In the operator-alge- 
braic description, the algebra of observables is .~ = C*(SO(3), $2); as explained in 
subsect. 1.2, the irreducible representations "rr" of this algebra are labeled by 
I~I = SO(2) = 7/(the dual of SO(2) is 7/, because the irreducible unitary representa- 
tions of SO(2) are all one-dimensional and given by ~',(0) = exp(inO), 0 ~ [0,2~'), 
n ~ 7/. Accordingly, ,,$~', = C). 

In the canonical group method, we embed S 2 in R 3 in the usual way as the unit 
sphere, s9 that Go= SO(3)~ R 3 -  E(3) [1]. The functions gi(q)  in (1.18) are 
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accordingly just the three cartesian coordinates of a point q ~ S 2, that is, gl(¢O, 0) 
-- sin 0 cos ~o, etc., where q~ and 0 are spherical coordinates on S 2. The irreducible 
unitary representations of E(3) correspond to SO(3)-orbits in R 3, which are of two 
different types: one is the origin, all the other ones are two-spheres with radius 
r > 0. Among the latter we select the one with r = 1 and obtain a family of 
representations labeled by the unitary irreducible representations of its stability 
group H = SO(2). As detailed in sect. 1, these representations ~-" exactly corre- 
spond to those of the algebra of observables za¢ defined previously. 

Following the prescription in subsect. 1.1, we can give an explicit realization of 
the representation 7r" of ~¢ or E(3) on a Hilbert space of sections (also cf. refs. 
[1, 16]). To start with, the principal bundle P -  (SO(3), S 2, p, SO(2)) is defined by 
the usual topology on the total space SO(3) and the base space S 2, and the 
projection p: SO(3)---> S 2. The latter is defined by choosing the special point 
q0 ~ $2 to be (0,0, 1) (the embedding of S 2 in R 3 being understood), i.e. px •xq o, 

x E SO(3). Hence H = SO(2) is identified with the subgroup of rotations around 
the z-axis. In terms of the parametrization of SO(3) by Euler angles [56] the 
projection is explicitly given by pR(~,/3, y) = (sin 13 cos a, sin/3 sin ~, cos/3). Thus 
the bundle P is just the Hopf fibration of S 3 over S 2 (up to a discrete factor 7/2), 
which already suggests a connection with magnetic monopole theory [33]. 

The associated vector bundles E x = E" over S 2 have one-dimensional fibers 
Z,, = C, and are therefore line bundles. Their structure is well known in physics 
[54, 55], and the realization of the induced representation 7rn on the Hilbert space 
,,W" of L2-sections of E" has been detailed in ref. [16]. Suffice it to remark here 
that the representatives i r r " ( T , ) - J "  of the generators of SO(3) are exactly the 
angular momentum operators of a charged particle moving in the field of a U(1) 
magnetic monopole of (automatically quantized) charge eg = n, which are essen- 
tially self-adjoint on the domain F" of smooth sections of E". 

H-connection. We will now demonstrate by straightforward computation that 
the H-connection on the bundle P is indeed the magnetic monopole field (as was 
already shown in a different way in refs. [34, 35]). We work in the canonical section 
s~ (2.18). This is found by noting that 

(q~, O) = e -°sin'pTj+Oc°s¢T2 qo , (4.1) 

SO that the RNC o n  S 2 are given by ql(~o, 0) -- - 0  sin ~o and q2(cp, 0) ----= 0 COS ~o. By 
eqs. (2.18) and (4.1), the canonical section is given by 

Sc(q0, 0 ) = e-OSin~oTl+Oeos~'T2- e~r3eOr2 e-*T3; (4.2) 

the second equality expresses sc in Euler angles, and shows that s c coincides with 
the section (gauge) s÷ used in refs. [16,55]. In RNC on SO(3) we obviously have 
so(c0, 0) ffi ( - 0 sin ~o, 0 cos ~o, 0). 
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To find the H-connection A H on P we will first give a few formulae which are 
valid for any coset space G / H .  One may express the vector field O/Ox ~, where x a 
are RNC on G, in terms of the basis of left-invariant vector fields L~ [10, 12, 15] at 
any point x (which lies in the RNC patch of e). It follows from problem III.4 of 
ref. [15] that 

0 
Ox ~ = M ( x ) b ~ L b ( x ) ,  (4.3) 

with 

~.ad(x ) , (4.4) 

where ~'ad is the adjoint representation of G on its Lie algebra g. 
Specializing to G = SO(3), the matrix M is known to be (cf. problem III.5(8) of 

ref. [15]) 

x  o(a sinx)_ 
M(x)b"  = ~ x - - 7  - - ~ ( 1  -- cos x)  (4.5) 

b where Eac -- Eac b, x = q~--7~. The H-connection 03T3 on P = (SO(3), S 2, p, SO(2)) 
then follows in the RNC x as 

A l l ( x )  = T3M3adx °. (4.6) 

In the gauge s c we thus have, using eqs. (4.2), (4.5) and (4.6) 

A ~ ( 9 ,  O) - ( s * A " ) ( ~ ,  0) = T3(1 - cos 0) d~p, (4.7) 

which is indeed the usual Dirac monopole field (in this gauge); in the literature 
one finds the expression A~, = (1 - cos 0) / s in  0, which is taken with respect to the 
orthonormal basis one-form a~ ~ = sin 0 d~o [55]. Note that (4.7) indeed satisfies 
(3.2), as geodesics emerging from q0 = (0, 0, 1) have ~o = const. The connection A n 
on the principal bundle P defines the connections A" on the associated vector 
bundles En: since ~rn(T 3) = in we have 

A~( 9, O) = ~'.( A H) = in(1 - cos O) d g ,  (4.8) 

which is a monopole field with charge eg--n;  this charge is automatically quan- 
tized as a consequence of the representation theory of the algebra of observables. 
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Path integral. Since C~ ~ -- n 2, the hamiltonian (3.6) in the representation (super- 
selection sector) 7r" and the gauge s c is 

H " =  - ( V + A ~ ) Z + n  z, (4.9) 

which is the hamiltonian of a charged particle moving in a monopole field with 
eg = n [55]. 

The path integral (3.28) can be written down after the following (trivial) 
remarks. The Van Vleck-Moret te  determinant A (cf. (2.27)) being non-trivial 
already for S 2, it is fruitful to follow the procedure sketched after (3.30), i.e. to 
omit A 1/2 in the measure in (3.30), and replace 1 /6  by 1 /3  in the action (3.28) 
[30]. Note that by eq. (2.19) the Ricci scalar on Q -- S 2 is R o = 2 (which is indeed 
correct for the unit sphere!). Finally, the canonical metric gO on S 2 is the usual 
one (that is, ds 2= d02+  (sin 0) 2 d~o2), and the path integral (3.28) follows. Note 
that the path-ordering symbol can be omitted, as the gauge field is abelian; 
accordingly, the term with the gauge field can be included in the lagrangian. The 
fact that this term is as involved as (3.13) (specialized to the abelian case) was 
previously noted in ref. [57], also cf. ref. [58]. 

In the trivially induced case n = 0, which is ordinary quantum mechanics on the 
two-sphere, the path integral (now without an external field) can be evaluated 
exactly [7, 41]; it is a challenge to extend this result (which holds for motion on any 
split-rank symmetric space, and any semi-simple Lie group [12]) to the non-trivially 
induced case n :~ 0 (or, generally, X :~ 0). 

4.2. PARTICLE ON A CIRCLE 

Representations of the algebra of observables. The quantum mechanics of a 
particle moving on a circle has extensively been studied in the literature (cf. refs. 
[1, 41] and references therein), and is often cited as a prime example of a system 
admitting inequivalent quantizations, whose emergence is usually related to the 
multiple connectedness of its configuration space Q = S t -  S. In our approach 
(also cf. refs. [1, 16]) this topological feature is buried in the group- and representa- 
tion-theoretic aspects of the situation, although both the traditional approach and 
our method eventually relate the various quantizations to the representations of Z, 
which arises as 7rl(S) and H, respectively. 

We take G -- R and H = 7/(so that S = R/7/); accordingly, the action of R on S is 
given by ~ o ~ q ~ + 2 ~ ' x m o d 2 r r ,  ~ o ~ [ 0 , 2 7 r ) - S ,  x~ll~. In the C*-algebraic ap- 
proach (cf. subsect. 1.2) we quantize the system by taking the algebra of observ- 
ables to be ~¢ -- C*(R, S). In the canonical group method we embed S in R 2 ---- C as 
the unit circle, and take G c = R I~ C, where x ~ R acts on z ~ C by mapping it to 
exp(2rr/x)z. 
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As we have seen in subsect. 1.1, the irreducible representations of C*(G, H) are 
classified by I2I, which in the present case is Z = SO(2) (namely, 0 ~ SO(2) defines 
the unitary irreducible representation rr s of 7/ by rrs(n) = exp(inO)). The unitary 
irreducible representations of G c fall into two classes: the first consisting of only 
one representation, based on the R-orbit 0 ~ C, and the second consisting of the 
representations based on the circles S r with radius r > 0. We take r = 1 (the 
relevance of the other Sr is discussed in ref. [1]), and by the theory reviewed in 
sect. 1 the representations ~r ° of G c based on this orbit are essentially the same as 
those of the C*-algebra d .  

By the procedure explained in subsect. 1.1 we thus get a collection of represen- 
tations rr ° of ~¢ and Go, 0 ~ [0, 2rr), realized on the Hilbert space s~'g '° of sections 
of a line bundle E s over S. As explained in ref. [16], the momentum operator  
p S =  _irrO(T) (cf. (1.15)), where T is the generator of R, is given by - i d / d ~ p ,  
which is defined and essentially self-adjoint on the domain F ° of smooth sections 
of E ° (which, if regarded as a subspace of the Hilbert space L2[0, 27r], consists 
of the C = functions ~b ° satisfying the twisted boundary condition 

~Os(2rr) = exp(-iO)~Os(O)). 

However, we are not really in the geometric situation of subsect. 3.1, as the little 
group H --- 7/is discrete, so that there are no vertical and horizontal vector fields, 
that is, connections, on the bundles E °. Fortunately enough, we can use almost the 
entire theory developed in sect. 3, in particular the expression (3.6) for the 
hamiltonian, if, following ref. [16], we perform a unitary transformation, which 
maps ,g,,0 to L2[O, 2rr], and bijectively maps the domain F ° c 7d "° into Ca(S), which 
consists of those functions in Ca([O, 2*r]) which, together with all their derivatives, 
are periodic. In this realization one has 

• d _ 19) 2, 
(4.10) 

(with ~ = 0/2~r) which is essentially self-adjoint on C~(S) [16]. This is indeed a 
special case of (3.6), with the gauge field 

-- T I ) 
A ° = - i ~ g d ~ = l r  o ~ d ~  , (4.11) 

where T x = i is, in a formal sense, the (anti-hermitian) generator of 7/ (so that 
~'o(n)=exp(nrroTl)). This gauge field is precisely the one leading to the 
Aharonov-Bohm effect; it is also associated with anyon statistics, which is conjec- 
tured to play a role in high-T c superconductivity and the fractional quantum Hall 
effect [59]. We wish to point out that the alternative description of a particle with 
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anyon statistics as a particle with normal statistics moving in an external 
Aharonov-Bohm gauge field is an immediate consequence of our formalism. 

Heat kernel. The heat equation (2.6), with H x = H ° given by (4.10) is solved 
exactly by 

e -t°2 [ ~ o - ~ ' - 2 i ~ 9 t ~ )  
' ' (4.12) 

in terms of the Jacobi theta function 

03(z , ' r )  -- Y'. e 2~rinz+~rirn2, (4.13) 
n ~  m ~  

defined for I m  r > 0. Using the Poisson summation formula, this can be rewritten 
as (cf. e.g. ref. [41]) 

1 n )-"~ ~ e-(~o-~"+2~'")2/4t ei°(~-'P'+2~'n)' (4.14) K°(q~,~o',t) = ~ =_ 

which is manifestly periodic in q~ and ~o', and therefore satisfies the boundary 
condition discussed below eq. (2.8), which in the present case requires that K ° is 
in C=(S) x C=(S) for t > 0 (recall that we have "untwisted" the bundle E ° by the 
unitary transformation mentioned earlier in this section). 

The only complication in recognizing that (4.14) for t ~ 0 coincides with the 
asymptotic expansion (3.7) (with (3.12) and (4.11)) comes from the fact that the 
coordinates q~ and ~' used in (4.14) are discontinuous at 0, 2~-. Therefore,  points 
in S which are actually nearby may be described by coordinates q~ and ~o' which 
differ by _+ 27r. Accordingly, for t ~ 0 the only contribution in the sum comes from 
the n = 0 term if ~ - q¢ = O(~-), and from the n = + 1 term if q~ - q? -- O ( f [ )  -T- 
2rr. In any case, the surviving term is just o-(q~, ~o')/2t in the first exponential (cf. 
(2.26) and preceding text for the definition of or), and iO d(q~, q?) in the second 
one, where the signed distance d is obtained by taking the value of n in 
d,(q~, q?) = q~ - q~' + 2rrn for which o-(~o, q¢) = (~o - ~' + 2~rn)2/2. This is well de- 
fined whenever q~ and q¢ can be joined by a unique geodesic; the set of points for 
which this is not the case is of measure zero in the regularized path integral (3.30), 
and may be ignored. 

Path integral. We conclude that we are exactly in the situation described in 
subsect. 3.2, sb that we can write down the path integral (3.28), with the gauge field 
A given by (4.11), the path-ordering being absent, and the constants RQ and C x 



158 N.P. Landsman, N. Linden / Inequivalent quantizations 

both vanishing. We can absorb the gauge field into the action, and thus obtain 

with the action 

KO(~,~',t)  = f. ~ e  -st't'l, (4.15) 

S[ 4]  = fo ds[ ¼(d<p/ds) 2 + V(q~(s)) + ia9 d¢/ds] ,  (4.16) 

where for clarity d~o/ds - d~(s)/ds. 
This result, in which O labels a superselection sector, or, (in this context) 

equivalently, an induced representation, may be compared with the conventional 
way the theta angle is introduced into the path integral [41]. To do so, we make the 
standard observation that fd ds (d~b/ds) = d(q~, q3') + 2rrn, where n is the winding 
number of the path, i.e. the number of times it wraps around the circle. This fact is 
not completely trivial, as the path • is generically non-differentiable, but is easily 
seen to be true in the time-slice definition (3.30) (by virtue of the specific 
definition of a stochastic integral, it even holds in the Wiener measure definition 
of the path integral (3.31)). We may, therefore, rewrite (4.15) as 

t ~  

KO(~°,q~',t) =ei~d(+'~'~ E ei'O f,,.~ ,.~q~e -s°t'~l, (4.17) 
n = - =  , ~ + -  +',,, 

where, as indicated by our notation, the path integral occurring in the nth term in 
the sum is over paths with winding number n only. The action S O is just (4.16) but 
without the O-term. 

The form (4.17) of the path integral is exactly the one found in the literature 
[41], where it is derived in a very different way. Our derivation shows that (4.17) is 
a special case of (3.28): the 0-dependence of the path integral ultimately arises 
because the irreducible representations of the algebra of observables of a particle 
moving on a circle are labeled by a theta-angle [16]. The conventional approach 
obtains the 0-dependence from the representation theory of the first homotopy 
group ~-l(S)= 7, and in the present case this avenue leads to the same result as 
ours. However, it has recently been claimed [60] (and seems to be folklore anyway), 
on the basis of an extrapolation of the conventional approach to more general 
configuration spaces than the circle, that only multiply connected configuration 
spaces admit inequivalent quantizations. The results of refs. [1, 4, 16] as well as of 
this paper show that such a statement is false: we suggest that inequivalent 
quantizations correspond to inequivalent representations of the algebra of observ- 
ables of the system (whether this algebra is a "C*-algebra", or the universal 
enveloping algebra of a "canonical group", or some other mathematical object is a 
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secondary matter) ,  and there  are countless examples of simply connec ted  configu- 

rat ion spaces for which such inequivalent  represen ta t ions  exist ( the two-sphere 

The  authors  wish to thank  S. Albeverio,  A. Dancer ,  C. Isham, K. F redenhagen ,  

H. Osborn;  and  P. Tuckey for discussions. 
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