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Adopting the point of view that inequivalent quantisationscorrespondto superselection
sectors,i.e. unitarily inequivalentrepresentationsof thealgebraof observables,we show howthe
superselectionsectorsof a particlemoving on a cosetspaceG/H follow from its quantisationas
a constrainedsystem(the unconstrainedsystembeing the phasespaceT*G). Both the Dirac
andBRST method are examined;theformerworkswell for compactH, whereasthe latter runs
into several difficulties. Accordingly, a possible improvementto the BRST procedureis sug-
gested.

1. Introduction

An intriguing feature of the quantum mechanicsof non-linearsystemsis the
possibility of inequivalent quantisations[1—4].Within a C*~algebraic[5,61 or
canonicalgroup [31approachthesequantisationsariseas unitarily inequivalent
representationsof the algebraof quantumobservables(i.e. superselectionsectors).
For homogeneousconfigurationspaces,theseare realisedon Hilbert spacesof
crosssectionsof vectorbundlesover the configurationspace(for a review seeref.
[7]). Within this set of quantisationsis the naïveone in which the wave functions
arecrosssectionsof a trivial complexline bundleover the configurationspace(i.e.
complex-valuedfunctions over configuration space). In the case of quantum
mechanicson the real line (or any finite-dimensionalvectorspace)the Stone— von
Neumanntheorem[8] showsthat the naïvequantisationis theuniqueone , up to
unitaryequivalence,but this uniquenessis the exception,rather than the rule.

The configurationspaceswe shallbe concernedwith hereareof the type G/H
where G and H are Lie groupsof which G is unimodular (for simplicity) andH
compact,andwe shall addressthe questionof how the inequivalentquantisations
arisewhen the system is thoughtof as constrainedmotion on G (as explainedin
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refs. [3,5,6], for a cosetspaceG/H, the inequivalentquantisationsare labelledby
H — the spaceof equivalenceclassesof irreduciblerepresentationsof H). In sect.2
we show how the classicalconstrainedphasespaceT * (G/H) — the cotangent
bundleof G/H — andthe spaceof constrainedclassicalobservablesC~(T*(G/H))

arederivedfrom the unconstrainedsystemof motion on G. In sect.3 we treatthe
quantum mechanicsof motion on G/H according to Dirac [9]: we describea
minimal quantisationof motion on G in which the quantisedconstraints~r(p~),

i = 1, ..., d~= dim H are well defined. As we show, the requirement that the
ir(p1) be amongthe quantisablefunctions leadsto the treatmentof G itself as a
cosetspace,andwe demonstratehow the inequivalentquantisationsof motion on
G/H arise. The Dirac approachworks well here as a consequenceof the
compactnessof H; for non-compactH issuesof ill-defined inner products and
operatorswith continuousspectraneedto be addressed.

In sects.4 and 5 we extendthe systemyet further and treatmotion on G/H
within the BRST formalism [10], first classically,thenquantummechanically.The
former analysishas beenundertakenby otherauthorsfor a generalphasespace
[11—13]anda summary,as it applies to our models, is included for completeness:
the resultis that the physical observablesmay be understoodas correspondingto
the BRST observablecohomology classesat ghostnumberzero. In sect. 5 we
discussthe quantumBRST cohomology.Howeverunlike sects.2 and 3 wherewe
found that quantisationof the classicalconstrainedsystemby the Dirac method
leadsneatlyto the quantumconstrainedsystem,we see(ashasbeennotedbefore

[14—16,23])that the BRST quantisationis by no meansso satisfactory.We are
unableto improveupon previoustreatmentsandthushave to resortto a somewhat
ad hoc prescriptionto regainthecorrectphysicalstatecohomology;nonetheless,it
is illuminating to see how the inequivalentquantisationsarisevia inequivalent
representationsof the BRST operatorselectingthe physicalstatespace.In sect. 6
we presenta conclusionand,motivated by ideasfrom operatoralgebratheory,
proposea frameworkfor BRST stateand observablecohomologywhich empha-
sises their duality andwhich may resolve some of the difficulties in sect. 5 in a
coherentfashion.

2. Classicalreduced phasespace

In this sectionwe show how the classicalconstraintsreducethe extendedphase
space,T * G — the cotangentbundle of G — to the constrainedphasespace
T * (G/H): we identify the spaceF~c T * G on which the constraintsp1 = 0, i = 1,

dim H (as definedbelow) hold, then take the quotient of this spaceby the
gaugetransformationsgeneratedby the p1. This is an exampleof symplectic
reduction[4,17].
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It will beconvenientto usea specific partial coordinatesystemon T * G: givena
basis La(X), a = 1, ..., dim G, x E G, for the left-invariantvectorfields on G,one
can definea dual basis Oa(x) via ~ Lb)x = 6~at eachpoint. Then an arbitrary

elementa E (T*G)~canbe expandedas a =p~o’~(x).We use the Pa ascoordi-
natesfor (T * G)~and thesecoordinatesare globallyvalid sinceT * G is a trivial
bundle(T * G G X g * where ~* is the dualof g, the Lie algebraof G). In these
coordinatesthe Liouville form is [171

O(p, x) ‘Pa0’~(X), (2.1)

so that, usingthe Maurer—Cartanequationsd9’~= — ~CbC°O’~ A
0c the standard

symplecticform is

= —do = ~dPa A O~+ ~CbcPa° A OC (2.2)

The hamiltonianvectorfield Xf associatedto a (C
1) function f(x, p) on T*G

is definedby

~9f
ix~w= df= dpa+ (Laf) oa (2.3)

Pa

andthe Poissonbracketof two such functionsis given by

{f, g} = —0(Xf, Xg) =Xfg

0g af ag
= ~ ~ (2.4)

ôPb 8Pa apa

Thus the Poissonbracketof two coordinatefunctions Pa and Pb is

(Pa, Pb) = CabCPC. (2.5)

The contraintsfor the system,in thesecoordinates,are

p
1=O, i=1,...,dimH, (2.6)

whichsatisfy

{p1, p~}= CjJ”~pk, (2.7)

with C~1kthe structureconstantsof H, and are thus first class.The “constraint

surface”,~ is T*G r ~ G x m*, where we havechosena specific reductive
decomposition,g = m ~ tj, of the Lie algebra g (t~is the Lie algebraof H) with

[~,b]cb, [b,m]cm. (2.8)
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The hamiltonianvectorfield X~,associatedto the constraint p1 is given by

a
X~=L,—CaiCPc__, (2.9)

Pa

andhenceon the constraintsurfaceit is

x~rrLiCai~P~~, a= 1,..., dim m, (2.10)

which is tangentto [,,,as it shouldbe. The commutatorof two suchvectorfields
satisfies

[xv,xv.] r ~ = CiJkXPk ~, (2.11)

so that, by Frobenius’ theorem(see ref. [17] for example)the system(X~r F,,), H

is integrableandfoliates F~,(in fact [Xv, X~1= CiJkXPk evenoff the constraint
surfaceso that the gaugeorbits are definedon all of T * G).

Now m* carriesa representationof the subgroupH — the so-calledco-isotropic

representation7r~0:

(‘7Tco(Ti)P)a= _Cial:
3P

13, (2.12)

so that

a
~ ~,,= L, — (~Tco(1)P)a~, (2.13)

and X~r r generatethe global transformationof [,,

(x(t), p(t)) = (x etT, e_t~~~co(Tj)p), (2.14)

so that the set (X~I ~ ~ generatesthe actionof H,

(x, p) —~(xh, ir~0(h~)p), h E H. (2.15)

By definition of a vector bundle associatedto the principle fibre bundle (G,
G/H, p, H) (see e.g. ref. [181), the quotient spaceof F~ by this H action is
preciselythe associatedvectorbundleG X m where m* is an H-moduleby eq.
(2.12). But this vectorbundle is just T*(G/H) [19], so that we haveshown that
T~/H= T * (G/H). We havethus achievedthe desiredgoal of showinghow the
constraintsp1 reducethe phasespaceT * G to T * (G/H).

The reduction of observablesproceedsstraightforwardly in this case. The
starting point is the space of observableson the unconstrainedphase space,
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d = C~(T* G). Onefirstly takesthequotientof this spaceby the idealconsistingof
functions vanishing of F’,,, 5= {fE C~(T*G)IfI ~-. = 0) so that d/5~.~’=
C~([’~).The true observablesare the gauge-invariantfunctions, i.e. ~red =

~ I gauge invariant where gaugeinvariantmeans

X~I ~,,f—{p~,f) I ~-. = 0, (2.16)

but since I~,,/H= T*(G/H), asdemonstratedabove,we get finally

dred~ C~(T*(G/H)). (2.17)

Onemay also perform thesestepsin oppositeorder,i.e. by defining the gauge-in-
variant functions in Ccc(T*G) as those satisfying eq. (2.16), and then dred as
.u”gauge invariant/~~

3. Dirac quantisation

Having treatedthe systemclassically,we now turn to the quantisationof the
modeland show how to quantisemotion on the classicalconfigurationspaceG/H
treatedas constrainedmotion on G, following Dirac’s procedure:we identify the
extendedHilbert space(i.e. the relevantquantisationof theclassicalconfiguration
spaceG) and identify the true Hilbert spaceas wave functions in the extended
Hubert space,subject to the quantisedconstraint 7T(p,) = 0. We are particularly

concernedto demonstratehow the inequivalentquantisationsof G/H emergein
the treatmentof G/H asa constrainedsystem.As we shall show,the requirement
that the classicalconstraintsp, be quantisable(i.e. that ir(p,) are well-defined
operators)forcesusto quantiseG in a non-trivial manner.

In orderto seewhy this is thecase,let us try to quantisemotionon G in a naïve
fashionandshow why this is inadequatefor our purposes.We shall takequantisa-
tion of G to mean(i) identification of a subalgebraof the Poissonbracketalgebra
of functions on phasespace,C~(T* G) (one takesonly a subalgebrasince one
cannotquantiseall classicalobservables[4,17]); (ii) replacementof such functions
f with operatorsf; (iii) finding a unitary representationof this operatoralgebra.
The C*~algebra/group theoreticapproachto this schemeis disucssedin detail in
ref. [7] andwhen applied to the configurationspaceG, leads to the quantisable
functionsbeingC~functionson configurationspaceandsymbolsof right-invariant
vectorfields on G (if G = ]~“, thisjust meansfunctionslinear in p),with associated
algebraof quantumobservablesG K C°°(G)(this denotesthe crossedproduct of
C~(G)and G, with respectto the obviousautomorphicactionof the latteron the
former [61:heuristicallythis algebrais generatedby C~(G)andthe Lie algebraof
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G, with commutationrelations [T~, g] = R~gfor g E C~(G);cf. eq. (3.2) below).
The unique irreducible representationof this algebrais on L2(G) andis given by

(~(f)~,1i)(x)=f(x)~i(x), fEC~(G), ~/iEL2(G),
(3.1)

(~(y)~)(x)=~(y~x), yEG,

so that the symbols fR, of right-invariantvectorfields Ra on G arequantisedby

(~(fRj~)(x) = ~(etT*x) I

L(~)~~(x). (3.2)

~L is the left-regular representationof G on L2(G): (~rL(y)tfI)(x) i~i(y~x),cf.
eq. (3.1).

However, the constraintsp, arethe symbolsof left-invariantvectorfields which
meansthat they are not automaticallyquantisedwithin the scheme.Of course,
left-invariant vector fields can be expressedas productsof right-invariantvector
fields and functions in C~(G),howeverthis will lead to orderingambiguitieson
quantisation.There is howevera more seriousproblemwith the naïveapproach:
even if one could find a consistentorderingprescription,one is led to a unique
quantisationof G/H andthe infinite set of inequivalentquantisationslabelled by
representationsof H [1,5] do notemerge~.

A resolution of these difficulties is to treat G as the homogeneousspace
G x H/H where H H is the diagonalsubgroupof H>< H C G X H: an element

(x, h) E G X H actson y E G sendingy to xyh ‘; the little groupof this actionat
the identity id E G consistsof elementsof the form (h, h) E G >< H, so that

defining H = {(h, h) E G x H h E H), we indeedhavethat G — G X H/H.
The inequivalentquantisationsof a particle moving on G x H/H (which we

shallwrite as G/H from now on) are labelled by representationsx of H and are
realisedon the Hilbert spaceX9’ = L2(G, ~ (i.e. functionson G with valuesin

wherethe Hilbert spaceZ~carriesan irreduciblerepresentationir,,
1. of H (but

now regardedas a representationof H). Applying eq.(1.6) of ref. [71 andchoosing

* It is, of course,possible to quantise G in such a way that operatorsassociatedto symbols of

left-invariantvector fields arewell defined — insteadof the left action of G on itself in the scheme
usedin ref. [7], oneusestheright action. Onefinds a similar representationof the canonicalgroupon

= L
2(G), so that in particularthe quantisationof p~is lr(p,) = ~R(~) (~TR beingthe right-regular

representationof G on L2(G) — (~r~(y)i~iXx)çli(xy)) and the Hilbert spaceof the constrained
system is ~ = (tJ’ E 2’ I ITR(7)lIf = 0} or equivalently ~/i(xh) 1/1(x) VheH. HoweverZ~ is not
invariantunder ITR(T,,)(the remaininggeneratorsof G) so that onedoesnot havea representationof
“momentum observables”in this quantisation.Furthermorethis quantisationalso suffersfrom the
problemthat the inequivalentquantisationsdo not appear.
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the cross section s(x) = s(x, id) from G to G, the Hilbert space carries a
representationof G K C~(G)which we shall denoteX

7~.,with G representedby

(x~Tr((x,h))i/i)(y) =~~(h)qi(x’yh), ~sE~Z, (3.3)

andC(G) representedby

(X~.(f)~p)(y)=f(y)~’(y). (3.4)

The reasonfor usingthis quantisationof G is that the operatorscorrespondingto
the constraintsp1 arewell definedon the Hilbert spacexi”,

X~.(p~) = .. x~.((~d,etT~))~=o, (3.5)

i.e.

(X~(p.)ç(j)(y) = (irR(Ti) +~(T1))~/i(y). (3.6)

Note that irR actson the argumenty of i~iwhereas actson its (suppressed)
index in Z,~.We may thus definethe constrainedHilbert spaceas

= E ‘~Z X~~.(p.)~/j= o}, (3.7)

or equivalently

= E ‘~YI~/i(xh)=~~(h’)~/i(x)}. (3.8)

~‘X hasthe inner product inherited from that on ~Z Since H is compact(and

normalisedso that its volume is 1) it follows that thisHubertspaceis preciselythat
given in refs. [6,71 as a representation‘n~of G K C(G/H) induced by the
representationx of H. As explained there, this is one of the inequivalent
quantisationsof theclassicalconfigurationspaceQ = G/H, andwe havetherefore
shown that thereis a one-to-onecorrespondencebetweeninequivalentquantisa-
tions of G X H/H andthoseof G/H. In particularwe havea representationof the
group G (whoseself-adjointgeneratorsgive the “momentum” observablesappro-
priate to G/H),

(7~-X(x)~,)(y) (‘~r((x, id))i/i)(y) = t~i(x’y), (3.9)

(sincethesecommutewith the constraint)and C(Q) c C(G) is representedby

(17.x(j),I1)(y) =.t~(y)~fr(y), fEC*~(G/H). (3.10)
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ClearlyX~-((X, id)) = ~-X(X) in eq.(3.9) is the usualrepresentationof G inducedby

of H [6,7]. Notice that only thosefunctions in C°°(G)that satisfy

f(xh)=f(x) YhEHandYxEG (3.11)

commutewith the constraintsand are thereforedefinedon YX. Thesefunctions
areprecisely the ones(now calledf) which aredefinedon G/H.

In summary,we have shown that in order to Dirac quantisemotion on the
configuration spaceG/H treatedas constrainedmotion on G, the requirement
that the classicalconstraintsp, be representedby well-defined operatorsin the
quantumtheory leadsto the quantisationof G as the cosetspaceG>< H/H, this
being the minimal one for which the constraintsare amongst the algebra of
observables.It is then found that the known inequivalentquantisationsof G/H
arein one-to-onecorrespondencewith the inequivalentquantisationsof G >< H/H.
In particular, the observablesof the extendedsystemwhich commutewith the
constraintsarepreciselythosewhich arisewhen quantisingG/H directly.

4. ClassicalBRST

In sect. 3 it was shown that, by startingwith an extendedspaceof states(the
Hilbert spaceXZ) and an extendedset of obsevables,the physical Hilbert space
and observablesare recoveredby imposing the quantisedconstraints.A natural
next step is to enlarge the state space and observablesone stage further and
analysethe systemof a particlemoving on G/H within the BRST framework(cf.
ref. [20]).

As the classicalBRST formalism has beentreatedbefore in greatgenerality
[11—13]we discussit herevery briefly for completeness:one extendsthe classical
algebraof observables,C(T*G), by adding 2dH anti-commutingvariables {c’),
{b,}, i = 1,..., dH. Thesehavethe following Poissonbrackets:

(c’, b
3} = 6~. (4.1)

The “algebraof observables”is now isomorphicto the supermanifolddBRST =

C(T * G) ~A(i~~ b *) where A(V) is the exterior algebraof a vector spaceV
[12,21]*• Having extendedthe algebraof observables,one has to find a set of
criteria for selectingthe “physical” observables.If thesecriteria are satisfactory,
the spaceof physicalobservablesshouldbe isomorphicto C~’(T*(G/H)) In order

* Although only C~(T*G)hasphysical meaning,we still refer to this supermanifoldas the algebraof

observables.



N.P. Landsman,N. Linden / Superselectionrules 423

to identify the physical observablesone needsto introducetwo new observables:

the classicalBRST charge

n = c’p, — ~cjJ’~c’c~bk (4.2)

andthe classicalghostcharge

Ngh=C’bi (4.3)

with Poissonbrackets

(12, Ngh} = fl, ~l, (2) = 0. (4.4)

(2 generatesBRST transformations6BRsTf= W, f}, fEdBRST,which are nilpo-
tent on accountof eq.(4.4). A classicalobservableA is calledBRSTclosedif (A,
t2)= 0 and BRST exact if A = (B, (2) for someobservableB. A is said to have
ghostnumbern if {Ngh, A) = nA.

It is shownin refs. [11—13]that the spaceof BRST cohomologyclassesat ghost
numberzero (i.e. the set of observablesof ghostnumberzero which are BRST
closed,with two observablesbeing identified if their differenceis BRST exact)is
isomorphicto the algebraof smoothfunctionson the reducedphasespace,i.e. to
C(T*(G/H)) in our case.

In sect.2we discussedthe unconstrainedphasespaceT * G andits reductionto
the physical phasespaceT*(G/H), but the idea of a BRST-extendedclassical
phase space is rather illusive since C(T * G)® A(b~ ~j*) is not the space of
functionson somespacein any veryobviousway. Nonetheless,the classicalBRST
cohomologyhasa “classical”meaning:applying the resultsof ref. [22],we find that
(at non-negativeghost number*) it is isomorphic to the ordinary Lie algebra
cohomologyof H with valuesin C~(V~)(cf. sect.2), which is to be regardedhere as
an infinite-dimensionalb-moduleunderthe action(2.13), i.e.

H* =H*I~ C°°’G ~* 45BRST classical observable ~ \

In otherwords,since = G x m* carriesa right actionof H (eq. (2.15)),C(F~)is
a H-moduleunderthe trivially inducedaction,which gives rise to an b-moduleby
differentiation. This characterisationof BRST cohomology is obvious for the
zerothcohomologyspacesince the algebraof observablesis the spaceof H-in-
variantfunctionson F~.

* The classical BRST cohomologyvanishesat negativeghost numberunder a regularity assumption
which is satisfiedin our case.
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5. Quantum BRST

Theaim of thissection is to show how thephysical statesandobservablesoccur

within the quantum BRST framework. In particular we shall show how the
non-trivially inducedrepresentationsarise.

5.1. AN ILLUSTRATIVE EXAMPLE

In sect. 3 we showed that one can quantisethe observablesof the extended
system(i.e. thosecorrespondingto motion on G) in such a way that the classical
constraintsp, = 0 arewell-definedoperators.The spaceof statesand the inner
producton suchstateswhich resultedwasshownto be thatwhich would havebeen
found on direct quantisationof motion on G/H (i.e. the physical stateswere
isometricallyembeddedin the extendedHilbert space).It might be hopedthat by
quantisingan algebraof classicalBRST observables(asin sect. 2 we do not expect
to quantiseall classicalobservables)and imposing the quantisedversion of the
classicalBRST conditionson the BRST extendedstatespaceone could identify
the physical stateswith their correctinner product.Specifically: the physicalstates
might be expectedto be identified with the cohomologyclassesof the BRST
operator of ghost number zero. Unfortunately it does not seem possible to
implementthis idea in general(cf. ref. [23]).

Ratherthan treatthe generalproblem, it is instructiveto treata simple example
(discussedpreviously in refs. [14,24])as the problemswhicharise,anda resolution
of them, may been seenin this case.The exampleis a particle moving on the
configurationspaceQ = W thoughtof as constrainedmotion on G = l~°x St (i.e.
H = S1 — S0(2)).Let uscall local coordinateson l~l”X S1 (q, 6), then the classical
constraintis p

0 = 0. In order to BRSTquantisethis systemwe introduceoneghost
coordinatec and its conjugatemomentumb. An irreduciblerepresentationof all
the operatorsof the BRST extendedsystemis on the indefinite metric spaceof
functionsof q, 6, c with inner product

- 2~rd6 -

<~‘~~ = L dqj i—f dc ~f1*(q, 6, c)~P(q,6, c). (5.1)

f dc is Berezin integration,q is representedby multiplication and the conjugate
momentumto qa is representedby p3.,,, = — i(a/aq”); c is representedby multipli-
cation and b by b = a/ac; thereis a slight complicationin the treatmentof the 5’
wherethe Heisenberggroup is not appropriate[3,25],but the resultis as expected
in that one can represent p0 by j3~= —i(i9/d6), defined and self-adjoint on
absolutelycontinuousperiodicfunctionson the interval [0, 2 IT]. The skew-adjoint
ghostnumberoperatoris

1 a a
Nh=— c——-—c (5.2)

g 2 ac ac
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(we arenotfree to addaconstantto ~gh withoutdestroyingits skew-adjointness*)
andthe BRST chargeis

a
(2= —ic— (5.3)

86

which is self-adjointon theabove-mentioneddomain,tensoredwith functionsof c.
We may expandany function ~P(q,6, c) as

1Ji~(q,6, c) = ‘J’l~(q,6) + cqii(q, 6) (5.4)

with

~h~’O ~~I’O’ ‘~gh(c~Pl)=+(ciPi). (5.5)

Thus we note that the eigenvaluesof Ng
15 are ±~ andthereareno statesof ghost

numberzero.
We now analysethe cohomologyof the BRST operator(2: at ghostnumber

— ~ = 0 (a~0/86)(q,6) = 0, andthe fact that thereareno statesat ghost
number — ~ (so that no stateof ghostnumber— may be written as ~ means
that the cohomologyclassesat ghostnumber — are in one-to-onecorrespon-
dencewith functions on l~”.One might thereforebe temptedto interpret these
cohomologyclassesas the physicalstates.However, in order for this identification
to be correct, the inner product on the space of such states should be the
“physical” inner product — at the very leastwe require that the inner productis
positive definite. Howeverit may easily be seenthat the norm of the cohomology
classesat ghostnumber— ~ with respectto the inner product(,) is zero.

A resolution of this difficulty, suggestedin refs. [14—16],may be found by

considerationof the cohomologyclassesat ghostnumber + +: clearly all statesof
ghostnumber + areBRST closedand (by useof Fourier series,for example)it
may be seenthat the only stateswhich are not of the form (

2x for some x are
111 = c~fr

1(q,6) where(8i/~r1/a6)(q,6) = 0 (for the requiredx would be x = 6~,,,but
this is not in thedomainof self-adjointnessof (2 **)~Wethusseethat the spaceof
cohomologyclassesat ghostnumber±~ are the sameandmay bothbe identified
with functionson ]1P1.

As at ghostnumber— -~, it may easilybecheckedthat the norm(with respectto
<,)‘) of any statein a BRST cohomologyclassesat ghostnumber + ~ is zero. Thus
onecannottake thephysicalstatesto be eigenstatesofghostnumber.

* In refs.[12,23],
1~h is indeed modified by subtractingits smallesteigenvalue(— ~ in this example)

from it, so that zero is now in its spectrum,at the expenseof destroyingits skew-adjointness,but
without resolvingany of the issuesraisedhere.

** That thisreasoningis correctmaybe seenby taking the innerproductwith a BRST closedfunction:
if ~l’(q, 0, c) = tp

0(q) (i.e. Q’P = 0) then (‘I’, ‘I’) = Jdq 1/i,~’(q)1/i1(q,0)which is non-zeroin general.
Howeverif onecould write ~I’= ‘I’y for somex then (!P, ~P>= (IJ~,fI~> (fl’W, x) = 0.
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We are thus left with the questionof just how one should identify physical
states.As far as the presentauthorsareaware,thereis no completelysatisfactory
way of doing this, with variouspossibilitiesbeing ad hoc in different ways(cf. ref.
[26] for a discussionof the correspondingsituationin string theory).We therefore

take a pragmaticview andadopta procedurewhich (aswe shall show) leadsto the
correct identification of the true physical states.

Following refs. [14—16]we note that onecan identify a positivenorm subspace

in the BRST cohomologyin sucha way that the inner productof two statesin the
subspaceis the “physical” inner product. This subspacedoes not havedefinite
ghostnumber.The ideais that givena state~I’= 4’1

0(q, 6) in the BRST cohomology
at ghostnumber— one associatesto it the state

lI/phys = ~~bo+ ~ci/i0. (5.6)

Thus if we take as the representativeof a given cohomologyclass that function
which is independentof 6 (of course the inner product will be independentof
which representativeof the cohomologyclasswe choose),we find that

- d8 - -

K~t’phys, ~‘phys) = f~—dq dc (~i~+ ~c~i~)(~o +

(5.7)

andhencethat this subspacemay be isometricallyidentifiedwith thephysical state
space.

This simpleexamplehas shown that one cannotchoosethe quantumstatesto
be the cohomologyclassesof ghostnumberzeroor evento be eigenstatesof the
“renormalised”(by onehalf) ghostnumberoperator.A resolutionof the difficulty
was to choosea linear subspaceof the cohomologyspacesat ghostnumber + -~

and — -~. This subspacecould be identified with the physical stateswith their
correctpositive definite inner product.

Beforewe discussthe physical observablesit is useful to examinethe remaining
BRST cohomologyclasses.We may take statesof the form

(5.8)

where
3ç1’

0/
86 = 0 as representativesof theseclasses.Thesestateshavenegative

norm andareorthogonalto the physical statespaceas definedabove.Thuswe see
that the spaceof BRST chomology classesbreaks up into two orthogonalsub-
spaces,one, V~,of positive definite inner product, and one, V, of negative
definite inner product.(Clearly any state~I’= ~ + c~/i

1maybe written as a linear
combinationof statesin V~and V.)
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In order that we maytruly identify V~as the physicalstateswe mustcheckthat
the “physical observables”are representedon them. This is the case since the
fundamentaloperators 2 and ft = — i(3/t9x) clearly commute with the BRST
chargeandfurthermoretheydo not mix positiveandnegativenormsubspaces,for
if ~

1~PhYSEV+ and 111EV, then

<11’phys, ~“—~ = K11’~hY

5,j
311’_) = 0. (5.9)

It shouldbe noted that 2 and ft which are “physical” operatorsin a heuristic
sensecommutewith (~and haveghostnumberzero. This onceagainemphasises
the mis-matchbetweenphysicalstatesandphysicalobservablesin quantumBRST:
physicaloperatorsare of ghostnumberzero,butphysicalstatesare not eigenstates

of ghostnumber.

5.2. THE GENERAL CASE

The featuresobservedin the simple exampleoccur generally in the class of
cosetspacesaddressedin this paper.This allows usto show how thephysical states
of such modelsmay be identifiedwithin the spaceof statesof the BRST system.
As explainedbelow, the physical statesare representedby cohomologyclassesof
the BRST operator,but in orderto get the correctinner product,onecannottake
the statesat ghost numberzero in general,but may take a linear subspaceof
cohomologyclassesat lowest andhighestghostnumber.The formalismwe employ

showsthat the non-trivially inducedrepresentationsoccur naturally, andariseas a
consequenceof a choiceof representationof the constraintalgebra.

What we require,then,is a quantisationof the BRST-extendedsystem,includ-
ing ghosts,in which the BRST chargeis self-adjoint, the ghostnumberoperatoris
skew-adjointandwhich allows usto then identify the physicalstates.Thus for the
general case of motion on G/H (G unimodular and H compact),we introduce
dim H ghosts, c’, and their conjugatemomenta b,. As in the subsect.5.1, the

quantisationof the classicalBRST charge, (2 will be denoted (2, so that the
classicalBRST charge

(2= c’p
1 — ~CIJ’c’c~bk (5.10)

(wherep are the classicalconstraintsas in sect.2) is quantisedby

(
2=ÔIXIT(p.) —~CEJ”ê’ê~~k, (5.11)

wherethis operatoris representedon the space~z X~” ® A(b) (XZ is defined
in sect. 3), i.e. functions of the form

dim H
X11I’(X, c) = E ~/f~ ~(x)c’Ic’2. . .c”, (5.12)
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where each function X~fr..(x) is in L2(G, z~)(i.e. the Hilbert spaceX2’

associatedto the quantisationinducedby the representationx of H H). b is

representedby b, =

The (indefinite) inner productis

(11’, 11’) = J dcN dcN~ ... dc’(~P,~ (5.13)

where (11’, 11’)~is the (positive definite) inner producton Xx’.

It may be checkedthat ~2 = 0 and that (2 is essentiallyseif-adjoint on the
domain of functions of the form (5.12) such that the Xç(, are in a common
domain of essentialself-adjointnessof the constraints7T(p

1). The closureof (2
thus defines the self-adjoint BRST operator. The ghost number operator is
representedby

= ~-(e’~,— be’) (5.14)

and is skew-adjoint.
In sect. 2 it was remarkedthat the classicalBRST observablecohomologyis

related to the Lie algebracohomologyof b with valuesin C°°(T). The presenta-
tion aboveshows that quantumBRST statecohomologyis also relatedto the Lie
algebracohomologyof b~as is well known [24,27,28].Specifically, the BRST state
cohomologyis isomorphic to the Lie algebracohomologyof b with valuesin the
representationspaceof the constraints:the operatorsXIT(p.) are defined on a
densedomain in XZ = L

2(G, Zr), andthe representationis given in eq. (3.6) by

(XIT(p.)c(f)(y) = (ITR(Tl) +IT~(I))~I(y), (5.15)

i.e. this representationis the tensor product of ITR on L2(G) with ITX on
Although the representativeITR(h) of the group elementh E H is definedon the
whole of L2(G), the representativeof a Lie algebraelementis unboundedand
naturally definedon C~’(G)CL2(G) (C~denotesC functionsof compactsupport
— a common domain of essential self-adjointnessfor the ITR(Ti)). Hence the
quantumBRST statecohomologyis (cf. eq.(4.5))

XH~RsTquantumstateH*(b, C~(G, ‘~)). (5.16)

In order to identify convenientrepresentativesof the cohomologyclassesof (~,

we use the fact that there is a Hodge theoremfor the quantumBRST complex
[24]: onedefinesthe operators

= b’ XIT(p.) — ~.C~f~’~’Ck, (5.17)
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andthe “BRST laplacian”

(5.18)

It is found that any BRST cohomologyclass may be representedby a unique
“harmonicform” — i.e. a statesatisfying

Silt or,equivalently~ (5.19)

The latter two conditionsmean[24] that any cohomologyclassmaybe represented
by a statesatisfying

XIT(p.)11r0, c1CI/’bklIt=O. (5.20)

Notice that the Hodge theoremin [24], which wasderivedfor a finite-dimensional
representationof the constraints,may beextendedto the infinite-dimensionalcase
— one merelyrequiredthat ñ be seif-adjoint on a densedomain,which we have
arrangedto be the case.The fact that the representationof the constraintsis not
specified meansthat the theoremapplies both to the trivally and non-trivially
inducedcase.

We may now seethat the cohomologyclassesat ghostnumberNg = — ~d

11 (i.e.
with no powersof c in their expansion)maybe (non-isometrically)identified with
thosestatesin L

2(G, Z
1) satisfying

XIT(p.)1JIX = 0, (5.21)

as maythe statesat ghostnumberNg = + ~dN.
As in the examplediscussedin subsect.5.1, onecannottakea physical stateto

be an eigenstateof ghostnumberin general,butwe may take the physicalstateto
be

~ (5.22)

where

XIT(P)~//=0 (5.23)

As in the earlierexampleof ]~1”X S’, we seethat the spaceV of BRSTcohomology
classesat ghost numbers N~= ±~dH breaks up into orthogonalpositive and
negativenorm subspacesV = ~ V where

(5.24)

We also seethat the quantisationof the “physical” observables,G K C°°(G/H),do
not mix V~and V since, as we showed in sect. 3, the physical observables
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commutewith the constraintsand hencewith (2 and for such an observable,O,

K~I’phys, Oil’_) = 0.

6. Conclusion

In sect.3 we showedthat the requirementthat the constraintsp, beunambigu-

ouslyquantisedobservablesin the Dirac approachto quantumtheorynecessitates
the treatmentof the unconstrainedconfigurationspaceG as G x H/H. This, in
turn, leadsto the appearanceof inequivalentquantisationswhen treatingmotion
on G/H as a (first-class)constrainedsystem.

The BRSTtreatmentof this model wasnot so straightforwardas a result of the
unsatisfactorynatureof the definition of physical states.A potentialsourceof the
difficulties lies in the fact that (following the proposal in ref. [12]) we have
quantisedthefunctionson phasespaceCc*(T*G) on a conventional,positiveinner
productHilbert space,X~, andsubsequentlyquantisedthe BRST-extendedphase
spacedBRsT (cf. sect.4) by simply taking the tensorproductof Xf9’ with fl(b), the
representationspaceof the ghostalgebraA(b ® b *), which hasan indefinite inner
product. That this strategy is problematicwas pointed out in ref. [23], and a
solution wassuggestedin refs. [14,291:the “matter observables”(i.e. the classical
extendedphasespace)ought to be quantisedon an indefinite-metric space, in
which caseexamplessuggestthat the BRST cohomologyworks out satisfactorily.
Indeedthe successof theBRST methodin gaugefield theoriesis basedon the fact
that thegaugefield is covariantlyquantisedon an indefinite-metricspace.It would
be very interestingto developthis ideain the caseat hand,i.e. to studyindefinite-
metric representationsof generic crossedproduct C*algebras G K C~(G/H)
(where in our case O = G x H and H = H) (cf. ref. [30] for the indefinite-metric
representationsof the canonicalcommutationrelations).

Alternatively one may enlarge the BRST phasespaceby adding a Lagrange
multiplier plus its conjugatemomentumas well as a new ghost—antighostpair for
each constraint. This is the idea of the so-called Batalin—Fradkin—Vilkovisky
(BFV) formalism (see e.g. refs. [31—33]):the algebra dBR5T is to be replacedby
dBFV = C~(T* O) eA(b eb * ~b ~b *) (cf. the text below eq. (4.1)).Note that the
rangeof the Lagrangemultipliers hasbeentakento be compactif H is.

Oneof the virtuesof doubling the numberof ghostsis that the quantumghost
number operatornow has integral spectrum,leaving some hope that one may
retrieve the physical state space of the constrainedsystem as the space of
cohomologyclassesof the BFV-extendedBRST operatorat ghostnumberzero (it
may be that one has to both double the number of ghostsand quantise the
“matter” in an indefinite metric space,cf. ref. [14]).

Leaving this for the future, we would instead like to upgradethe quantum
BRST formalism, while retaining positive definite metric quantisationsof the
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matterobservables,by puttingforward a tentativesuggestionfor a reformulation
of the physicality conditions which has the merit of emphasisingthe duality
betweenphysicalstatesand operatorsin the quantumtheory.

A form of duality hasbeen discussedby Henneaux[14] who showedthat, at
least for finite-dimensional representationspaces,the set of physical operators
(irrespectiveof ghostnumbers)is isomorphic to the set of operatorson physical
states(of all ghostnumbers).However, as we havealreadydiscussed,as soonas
onetries to cut down the physical statesby somerestrictionon the ghostnumber,
this duality disappearsas physical operatorsare naturally of ghost numberzero
whereaspositive norm physical states are not eigenstatesof ghostnumber, in
general.

Inspiredby the algebraicapproachto quantumtheory, we suggestan alternative
way of defining physical stateswhich uses the fact that any state I cli) in an
(indefinite) Hilbert space carrying a representationof the BRST and ghost
operatorsdefinesa linearfunctional w,1, on thespace,d, of boundedoperatorson

AEd. (6.1)

Such functionalsgeneratea certainvector spaced’, which is a subspaceof the
algebraicdual of d.

As is well known, d is gradedby the ghostnumber,i.e.

d= ~ (6.2)

with A Ed

t”~ if [~gh’ A] = nA. The restricteddual d’ inheritsthis grading,with
w Edt.,) if w vanisheson all of d(m) for m * n. Equivalently,

wEd~,)~w({Ngh, A] —nA)=OVAEd. (6.3)

We proposeusingthe usualderivation 6 on the spaceof operators:

6A=6BRSTA=i[A, I1}~, (6.4)

and defining the usual operatorcohomologywith respectto 6, with a physical
operatorbeing a cohomologyclassof ghostnumberzero,i.e.

[~gh, A] =0. (6.5)

The alterationwe suggestis to define the BRST statehomology by defining an
operator8 on the spaceof linear functionalsvia

3w(A) ~(6A). (6.6)

Clearly 82 = 0 since 62 = 0. As S mapsdc” into dt”~~,8 mapsd~~)into
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Thus we can define the statehomology classes,H~RST, at ghostnumbern, as
those0) Ed~,,)satisfying

8w = 0 (6.7)

with

Wi ~2 ~1 — ~2 = 80)3 for some 0)3. (6.8)

An elementof H~RST is calledpure if it can be representedin the form (6.1) for

some I cli> . Physicalstatesare thendefinedas the pure elementsof H~1RST.

This definition is motivatedby the way statesaredefinedin C *..algebratheory
and has the advantagethat the stateand operatorcohomologyare automatically
dual. Our hope is that the physical states,thus defined, are positive and corre-
spondto the purestateson the constrainedalgebraG K C(G/H) in the superse-
lection sectorx~andthat, by varying x in the aboveconstruction,onegetsall pure
states.This conjectureis underinvestigation.

References

[1] G.W. Mackey, Inducedrepresentations(Benjamin,New York, 1968)
[2] J.M. Souriau,Structuredessystèmesdynamiques(Dunod, Paris, 1970)
[3] C.J. Isham,in Relativity, groupsand topology2, Proc. Les Houches1983, ed. B.S. DeWitt and R.

Stora(North-Holland, Amsterdam,1984)
[4] V. Guillemin and S. Sternberg,Symplectic techniquesin physics(CambridgeUniv. Press,Cam-

bridge, 1984)
[5] NP. Landsman,Lett. Math. Phys.20 (1990) 11
[6] NP. Landsman,Rev. Math. Phys. 2 (1991) 45, 73
[7] NP. Landsmanand N. Linden, NucI. Phys.B365 (1991) 121
[8] M. Stone,Lineartransformationsin Hilbert space,Amer. Math. Soc. Colloq. Publ. Vol. 15 (1932);

J. von Neumann,Math.Ann. 104 (1931)570
[9] PAM. Dirac, Lectureson quantum mechanics(Yeshiva,New York, 1964)

[10] C. Becchi, A. Rouet and R. Stora,Commun. Math. Phys.42 (1975) 127; Ann. Phys. (N.Y.) 98
(1976)287;
I.V. Tyutin, Lebedevpreprint FIAN No. 39 (1975);
B.L. Voronov andIV. Tyutin, Theor. Math.Phys.50 (1982)218

[11] M. HenneauxandC. Teitelboim,Commun.Math. Phys.115 (1988)213
[121 B. Kostantand S. Sternberg,Ann. Phys.(N.Y.) 176 (1987)49
[13] D. McMullan, J. Math. Phys.28 (1987) 428
[14] M. Henneaux,Ann. Phys. (N.Y.) 194 (1989) 281
[15] P. Thomi, J. Math.Phys.29 (1988) 1014
[16] D. McMullan andJ. Paterson,Phys.Lett. B202 (1988)358; J. Math.Phys.30 (1989) 477, 487
[17] R. Abraham and J.E. Marsden,Foundationsof mechanics,2nd. edition (Benjamin/Cummings,

Reading,MA, 1978)
[18] S. Kobayashi and K. Nomizu, Foundationsof differential geometry, Vol 1. (Wiley, New York,

1963)
[19] K. Nomizu,Amer. J. Math. 76 (1954)33
[20] B.P. Dolan, J. Phys.A23 (1990)4439
[21] R. Loll, Commun.Math. Phys.119 (1988)509



NP. Landsman,N.Linden / Superselectionrules 433

[22] J.M. Figueroa-O’Farrill,Commun.Math.Phys.127 (1990) 181
[23] C. Duval, J. FlhadadandG.M. Tuynman,Commun.Math.Phys.126 (1990)535
[24] J.W. van Holten, Nuci. Phys.B339 (1990) 158
[25] C.J. IshamandN. Linden, Class.Quant.Gray. 4 (1987) 1333
[26] L. Brink andM. Henneaux,Principlesof string theory (Plenum,New York, 1988);

M. Freemanand DI. Olive, Phys.Lett. B175 (1986)151
[27] M.B. Green, J.H. Schwarzand E. Witten, Superstringtheory, Vol. 1 (CambridgeUniv. Press,

Cambridge,1987)
[28] Y. Choquet-Bruhatand C. DeWitt-Morette,Analysis,manifolds and physics, PartII: 92 Applica-

tions (North-Holland,Amsterdam,1989)
[29] S. Hwangand R. Marnelius,NucI. Phys.B320 (1989)476
[30] L. Jakobczyk,Ann. Phys.(N.Y.) 161 (1985)314
[31] l.A. Batalin andE.S. Fradkin,Phys.Lett. B122 (1983) 157
[32] J. Govaerts,Hamiltonian quantisationand constraineddynamics(Leuven, Univ. Press,Louvain,

1991)
[33] M. HenneawcandC. Teitelboim, in Quantumfield theory andquantumstatistics,ed. l.A. Batalin,

C.J. IshamandG.A. Vilkovisky (Adam Huger,Bristol, 1987)


