Nuclear Physics B 371 (1992) 415-433
North-Holland

Superselection rules from Dirac and BRST
quantisation of constrained systems

N.P. Landsman * and N. Linden
DAMTP, University of Cambridge, Silver Street, Cambridge CB3 9EW, UK

Received 5 August 1991
(Revised 11 October 1991)
Accepted for publication 18 October 1991

Adopting the point of view that inequivalent quantisations correspond to superselection
sectors, i.e. unitarily inequivalent representations of the algebra of observables, we show how the
superselection sectors of a particle moving on a coset space G/H follow from its quantisation as
a constrained system (the unconstrained system being the phase space T *G). Both the Dirac
and BRST method are examined; the former works well for compact H, whereas the latter runs
into several difficulties. Accordingly, a possible improvement to the BRST procedure is sug-
gested.

1. Introduction

An intriguing feature of the quantum mechanics of non-linear systems is the
possibility of inequivalent quantisations [1-4]. Within a C*-algebraic [5,6] or
canonical group [3] approach these quantisations arise as unitarily inequivalent
representations of the algebra of quantum observables (i.e. superselection sectors).
For homogeneous configuration spaces, these are realised on Hilbert spaces of
cross sections of vector bundles over the configuration space (for a review see ref.
[7]). Within this set of quantisations is the naive one in which the wave functions
are cross sections of a trivial complex line bundle over the configuration space (i.e.
complex-valued functions over configuration space). In the case of quantum
mechanics on the real line (or any finite-dimensional vector space) the Stone — von
Neumann theorem [8] shows that the naive quantisation is the unique one *, up to
unitary equivalence, but this uniqueness is the exception, rather than the rule.

The configuration spaces we shall be concerned with here are of the type G/H
where G and H are Lie groups of which G is unimodular (for simplicity) and H
compact, and we shall address the question of how the inequivalent quantisations
arise when the system is thought of as constrained motion on G (as explained in
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refs. [3,5,6], for a coset space G/H, the inequivalent quantisations are labelled by
H - the space of equivalence classes of irreducible representations of H). In sect. 2
we show how the classical constrained phase space T*(G/H) - the cotangent
bundle of G/H - and the space of constrained classical observables C*(T *(G /H))
are derived from the unconstrained system of motion on G. In sect. 3 we treat the
quantum mechanics of motion on G/H according to Dirac [9]: we describe a
minimal quantisation of motion on G in which the quantised constraints 7(p,),
i=1, ..., dy=dim H are well defined. As we show, the requirement that the
m(p;) be among the quantisable functions leads to the treatment of G itself as a
coset space, and we demonstrate how the inequivalent quantisations of motion on
G/H arise. The Dirac approach works well here as a consequence of the
compactness of H; for non-compact H issues of ill-defined inner products and
operators with continuous spectra need to be addressed.

In sects. 4 and 5 we extend the system yet further and treat motion on G/H
within the BRST formalism [10], first classically, then quantum mechanically. The
former analysis has been undertaken by other authors for a general phase space
[11-13] and a summary, as it applies to our models, is included for completeness:
the result is that the physical observables may be understood as corresponding to
the BRST observable cohomology classes at ghost number zero. In sect. 5 we
discuss the quantum BRST cohomology. However unlike sects. 2 and 3 where we
found that quantisation of the classical constrained system by the Dirac method
leads neatly to the quantum constrained system, we see (as has been noted before
[14-16,23]) that the BRST quantisation is by no means so satisfactory. We are
unable to improve upon previous treatments and thus have to resort to a somewhat
ad hoc prescription to regain the correct physical state cohomology; nonetheless, it
is illuminating to see how the inequivalent quantisations arise via inequivalent
representations of the BRST operator selecting the physical state space. In sect. 6
we present a conclusion and, motivated by ideas from operator algebra theory,
propose a framework for BRST state and observable cohomology which empha-
sises their duality and which may resolve some of the difficulties in sect. 5 in a
coherent fashion.

2. Classical reduced phase space

In this section we show how the classical constraints reduce the extended phase
space, T*G - the cotangent bundle of G - to the constrained phase space
T*(G/H): we identify the space I’ » © T*G on which the constraints p, =0, i =1,
..., dim H (as defined below) hold, then take the quotient of this space by the
gauge transformations generated by the p,. This is an example of symplectic
reduction [4,17].
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It will be convenient to use a specific partial coordinate system on T*G: given a
basis L, (x), a=1, ..., dim G, x € G, for the left-invariant vector fields on G, one
can define a dual basis 8°(x) via (8%, L,), =5, at each point. Then an arbitrary
element a € (T*G), can be expanded as a =p,0°(x). We use the p, as coordi-
nates for (T*G), and these coordinates are globally valid since T*G is a trivial
bundle (T*G = G X g* where g* is the dual of g, the Lie algebra of G). In these
coordinates the Liouville form is [17]

0(p, x) =p,0°(x), (2.1)
so that, using the Maurer—Cartan equations d8¢ = — 3C, “0° A 6°, the standard
symplectic form is

w=-d§=—dp, A8+ 3C, °p,0° A 6°. (2.2)

The hamiltonian vector field X, associated to a (CY) function f(x, p) on T*G
is defined by

. of .
tXfw=df=a—ppo +(L,f) 64, (2.3)

a

and the Poisson bracket of two such functions is given by

{1, 8} = —w(X;, X,)=X;g

Il

% )i - ig—Laf. (2.4)

L,g+C, ‘p.—
( 8 abpcapb apa apa

Thus the Poisson bracket of two coordinate functions p, and p, is
{Pa> P} = Cop'p,.. (2.5)
The contraints for the system, in these coordinates, are
p;=0, i=1,...,dim H, (2.6)
which satisfy
{Pi’ Pj} = Cijkpk7 (2.7)

with C,/* the structure constants of H, and are thus first class. The “constraint
surface”, I, is T*G} p=0=G X m*, where we have chosen a specific reductive
decomposition, g =m @ B, of the Lie algebra g (§ is the Lie algebra of H) with

[6,8]ch, [h,m]cm. (2.8)
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The hamiltonian vector field X, associated to the constraint p; is given by

0
X =L.—-C ‘p—, 29
p; i atpcap ( )

a

and hence on the constraint surface it is

J
Xp‘_r,},=Li—Ca,ﬁpBg, a=1,...,dim m, (2.10)
which is tangent to I, as it should be. The commutator of two such vector fields
satisfies

[pr’ ij] Mr,= Ciijpk Mr, (2.11)

so that, by Frobenius® theorem (see ref. [17] for example) the system {X),, I} "
is integrable and foliates I, (in fact [ X o X ,,j] = C,-j"ka even off the constraint
surface so that the gauge orbits are defined on all of T*G).

Now m* carries a representation of the subgroup H — the so-called co-isotropic
representation 7r,:

(Trco(Ti)p)a= _C’_aBpB, (212)

so that
3
X, tr,=L;— (wCO(T,-)p)ag, (2.13)

and X, | r, generate the global transformation of 1,

(x(1r), p(2)) = (x e'Ti, e "7 p), (2.14)
so that the set {X, 1 - }" ' generates the action of H,

(x, p) = (xh, m(h~")p), heEH. (2.15)

By definition of a vector bundle associated to the principle fibre bundle (G,
G/H, p, H) (see e.g. ref. [18)]), the quotient space of I, by this H action is
precisely the associated vector bundle G X ym™*, where m* is an H-module by eq.
(2.12). But this vector bundle is just T*(G/H) [19], so that we have shown that
I',/H=T*(G/H). We have thus achieved the desired goal of showing how the
constraints p; reduce the phase space T*G to T*(G/H).

The reduction of observables proceeds straightforwardly in this case. The
starting point is the space of observables on the unconstrained phase space,
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& = CT*G). One firstly takes the quotient of this space by the ideal consisting of
functions vanishing of I, #={feCAT*G)|f! r,= 0} so that &/ F=%F =
C™(I). The true observables are the gauge-invariant functions, i.e. & 4=
B\ gauge invariane WhETE gauge invariant means
X, tr f={pi f}1r,=0, (2.16)
but since I, /H = T*(G/H), as demonstrated above, we get finally
&oq=C*(T*(G/H)). (2.17)

One may also perform these steps in opposite order, i.e. by defining the gauge-in-
variant functions in C*(T*G) as those satisfying eq. (2.16), and then ¥,y as

Mgauge invariant/ g

3. Dirac quantisation

Having treated the system classically, we now turn to the quantisation of the
model and show how to quantise motion on the classical configuration space G/H
treated as constrained motion on G, following Dirac’s procedure: we identify the
extended Hilbert space (i.e. the relevant quantisation of the classical configuration
space G) and identify the true Hilbert space as wave functions in the extended
Hilbert space, subject to the quantised constraint w(p;) = 0. We are particularly
concerned to demonstrate how the inequivalent quantisations of G/H emerge in
the treatment of G/H as a constrained system. As we shall show, the requirement
that the classical constraints p; be quantisable (i.e. that =(p,) are well-defined
operators) forces us to quantise G in a non-trivial manner.

In order to see why this is the case, let us try to quantise motion on G in a naive
fashion and show why this is inadequate for our purposes. We shall take quantisa-
tion of G to mean (i) identification of a subalgebra of the Poisson bracket algebra
of functions on phase space, C*(T*G) (one takes only a subalgebra since one
cannot quantise all classical observables [4,17]); (i1) replacement of such functions
f with operators ﬁ (iii) finding a unitary representation of this operator algebra.
The C*-algebra/ group theoretic approach to this scheme is disucssed in detail in
ref. [7] and when applied to the configuration space G, leads to the quantisable
functions being C* functions on configuration space and symbols of right-invariant
vector fields on G (if G = R", this just means functions linear in p), with associated
algebra of quantum observables G X C*(G) (this denotes the crossed product of
C*(G) and G, with respect to the obvious automorphic action of the latter on the
former [6]: heuristically this algebra is generated by C*(G) and the Lie algebra of
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G, with commutation relations [T,, g] =R, g for g € C(G); cf. eq. (3.2) below).
The unique irreducible representation of this algebra is on L*(G) and is given by

(m(N))(x) =f(x)e(x), feCA(G), ¥y<eL*(G), 3.1)
(m(»¥)(x) =¢(y~'x), y€G,

so that the symbols fy of right-invariant vector fields R, on G are quantised by

d —tT,
(7(fr)¥)(x) = al//(e x) |0

=7 (T)¢(x). (3:2)

m, is the left-regular representation of G on LA(G): (7 (y)¢)x) = y(y 'x), cf.
eq. (3.1).

However, the constraints p; are the symbols of left-invariant vector fields which
means that they are not automatically quantised within the scheme. Of course,
left-invariant vector fields can be expressed as products of right-invariant vector
fields and functions in C*(G), however this will lead to ordering ambiguities on
quantisation. There is however a more serious problem with the naive approach:
even if one could find a consistent ordering prescription, one is led to a unique
quantisation of G/H and the infinite set of inequivalent quantisations labelled by
representations of H [1,5] do not emerge *.

A resolution of these difficulties is to treat G as the homogeneous space
GXH/ H where H = H is the diagonal subgroup of H X Hc G X H: an element
(x, h)€ G X H acts on y € G sending y to xya~'; the little group of this action at
the identity id € G consists of elements of the form (h, h) € G X H, so that
defining H = {(h, h) € G X H| h € H}, we indeed have that G = G X H/H.

The inequivalent quantisations of a particle moving on G X H/H (which we
shall write as G /H from now on) are labelled by representations y of H and are
realised on the Hilbert space X% = L*(G, #) (i.e. functions on G with values in
#,) where the Hilbert space %, carri~es an irreducible representation 7, of H (but
now regarded as a representation of H). Applying eq. (1.6) of ref. [7] and choosing

* It is, of course, possible to quantise G in such a way that operators associated to symbols of
left-invariant vector fields are well defined — instead of the left action of G on itself in the scheme
used in ref. [7], one uses the right action. One finds a similar representation of the canonical group on
# = LXG), so that in particular the quantisation of p; is w(p,) = 7(T}) (7 ¢ being the right-regular
representation of G on L*(G) - (wg(y)¢Xx)=¢(xy)) and the Hilbert space of the constrained
system is #2={y € 7| (T )y =0} or equivalently ¢(xh)=¢(x) Yh € H. However #9 is not
invariant under mg(7T,) (the remaining generators of G) so that one does not have a representation of
“momentum observables” in this quantisation. Furthermore this quantisation also suffers from the
problem that the inequivalent quantisations do not appear.
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the cross section s(x)=s(x, id) from G to G, the Hilbert space carries a
representation of G X C*(G) which we shall denote X7, with G represented by

(7 ((x, B))¥)(y) = (R)¥(x"'yh), bEXZ, (3.3)
and C*(G) represented by

(Cm(HE)Y) =fF(NE(y). (3-4)

The reason for using this quantisation of G is that the operators corresponding to
the constraints p, are well defined on the Hilbert space X#,

d
“w(pi) = 7 *m((id, €7)) li-o, (3.5)
Le.
Fm(p)¥)(¥) = (mR(T) + 7 (T) )P (¥). (3.6)

Note that 7y acts on the argument y of ¢ whereas 7, acts on its (suppressed)
index in #,. We may thus define the constrained Hilbert space as

wx =g ez | *a(p)y =0}, (3.7)

or equivalently
#x={pex# |y(xh) =7, (hY(x)). (3.8)

# X% has the inner product inherited from that on *.%. Since H is compact (and
normalised so that its volume is 1) it follows that this Hilbert space is precisely that
given in refs. [6,7] as a representation w* of G X C*(G/H) induced by the
representation xy of H. As explained there, this is one of the inequivalent
quantisations of the classical configuration space Q = G/H, and we have therefore
shown that there is a one-to-one correspondence between inequivalent quantisa-
tions of G X H/H and those of G/H. In particular we have a representation of the
group G (whose self-adjoint generators give the “momentum” observables appro-
priate to G/H),

(mX()¢)(y) = (m((x, id))d)(y) =v(x'y), (3.9)

(since these commute with the constraint) and C*(Q) € C*(G) is represented by

(mX(H)w)(y) =f(»)u(y), feC(G/H). (3.10)
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Clearly *7((x, id)) = w*(x) in eq. (3.9) is the usual representation of G induced by
, of H[6,7]. Notice that only those functions in C*(G) that satisfy

f(xh) =f(x) VheHandVxeG (3.11)

commute with the constraints and are therefore defined on #X. These functions
are precisely the ones (now called f) which are defined on G/H.

In summary, we have shown that in order to Dirac quantise motion on the
configuration space G/H treated as constrained motion on G, the requirement
that the classical constraints p; be represented by well-defined operators in the
quantum theory leads to the quantisation of G as the coset space G X H /FI, this
being the minimal one for which the constraints are amongst the algebra of
observables. It is then found that the known inequivalent quantisations of G/H
are in one-to-one correspondence with the inequivalent quantisations of G X H/ H.
In particular, the observables of the extended system which commute with the
constraints are precisely those which arise when quantising G /H directly.

4, Classical BRST

In sect. 3 it was shown that, by starting with an extended space of states (the
Hilbert space *#) and an extended set of obsevables, the physical Hilbert space
and observables are recovered by imposing the quantised constraints. A natural
next step is to enlarge the state space and observables one stage further and
analyse the system of a particle moving on G/H within the BRST framework (cf.
ref. [20]).

As the classical BRST formalism has been treated before in great generality
[11-13] we discuss it here very briefly for completeness: one extends the classical
algebra of observables, C*(T*G), by adding 2d;; anti-commuting variables {c'},
{b}, i=1,..., dy. These have the following Poisson brackets:

{c', b)) = 5. (4.1)

The “algebra of observables” is now isomorphic to the supermanifold &gpgy =
C*(T*G) ® A(h & h*), where A(V) is the exterior algebra of a vector space V
[12,21] *. Having extended the algebra of observables, one has to find a set of
criteria for selecting the “physical” observables. If these criteria are satisfactory,
the space of physical observables should be isomorphic to C(T *(G/H)). In order

* Although only C*(T*G) has physical meaning, we still refer to this supermanifold as the algebra of
observables.
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to identify the physical observables one needs to introduce two new observables:
the classical BRST charge

2 =c'p,— 3C,fc'c’b, (42)
and the classical ghost charge
N, =c'b; (4.3)
with Poisson brackets
{2, Ny} =2, {2, 2} =0. (4.4)

0 generates BRST transformations dgrerf = {2, f}, f €Xgrer, Which are nilpo-
tent on account of eq. (4.4). A classical observable A is called BRST closed if {A,
2} =0 and BRST exact if 4 ={B, 2} for some observable B. 4 is said to have
ghost number n if {N,,, A} =nA.

It is shown in refs. [11-13] that the space of BRST cohomology classes at ghost
number zero (i.e. the set of observables of ghost number zero which are BRST
closed, with two observables being identified if their difference is BRST exact) is
isomorphic to the algebra of smooth functions on the reduced phase space, i.e. to
C(T*(G/H)) in our case.

In sect. 2 we discussed the unconstrained phase space T* G and its reduction to
the physical phase space T*(G/H), but the idea of a BRST-extended classical
phase space is rather illusive since C(T*G)® A(h®H*) is not the space of
functions on some space in any very obvious way. Nonetheless, the classical BRST
cohomology has a “classical” meaning: applying the results of ref. {22], we find that
(at non-negative ghost number *) it is isomorphic to the ordinary Lie algebra
cohomology of H with values in C™(I,) (cf. sect. 2), which is to be regarded here as
an infinite-dimensional §-module under the action (2.13), i.e.

H gRST classical observable ~ H* ( b ’ Cm( GXxXm* )) . (45)

In other words, since I, = G X m™ carries a right action of H (eq. (2.15)), C(I) is
a H-module under the trivially induced action, which gives rise to an §-module by
differentiation. This characterisation of BRST cohomology is obvious for the
zeroth cohomology space since the algebra of observables is the space of H-in-
variant functions on I’,.

* The classical BRST cohomology vanishes at negative ghost number under a regularity assumption
which is satisfied in our case.
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5. Quantum BRST

The aim of this section is to show how the physical states and observables occur
within the quantum BRST framework. In particular we shall show how the
non-trivially induced representations arise.

5.1. AN ILLUSTRATIVE EXAMPLE

In sect. 3 we showed that one can quantise the observables of the extended
system (i.e. those corresponding to motion on G) in such a way that the classical
constraints p, =0 are well-defined operators. The space of states and the inner
product on such states which resulted was shown to be that which would have been
found on direct quantisation of motion on G/H (i.e. the physical states were
isometrically embedded in the extended Hilbert space). It might be hoped that by
quantising an algebra of classical BRST observables (as in sect. 2 we do not expect
to quantise all classical observables) and imposing the quantised version of the
classical BRST conditions on the BRST extended state space one could identify
the physical states with their correct inner product. Specifically: the physical states
might be expected to be identified with the cohomology classes of the BRST
operator of ghost number zero. Unfortunately it does not seem possible to
implement this idea in general (cf. ref. [23]).

Rather than treat the general problem, it is instructive to treat a simple example
(discussed previously in refs. [14,24]) as the problems which arise, and a resolution
of them, may been seen in this case. The example is a particle moving on the
configuration space Q = R" thought of as constrained motion on G = R” X S! (i.e.
H = S'=SO(2)). Let us call local coordinates on R” X S!, (g, ), then the classical
constraint is p, = 0. In order to BRST quantise this system we introduce one ghost
coordinate ¢ and its conjugate momentum b. An irreducible representation of all
the operators of the BRST extended system is on the indefinite metric space of
functions of g, 6, ¢ with inner product

. o de -
woh=[ dgfozwz—?;f de ¥*(q, 6, ¢)¥(q, 0, c). (5.1)
[ dc is Berezin integration, g is represented by multiplication and the conjugate
momentum to g% is represented by p,= —i(3/3g*); c is represented by multipli-
cation and b by b= d/dc; there is a slight complication in the treatment of the S'
where the Heisenberg group is not appropriate [3,25], but the result is as expected
in that one can represent p, by p,= —i(3/06), defined and self-adjoint on
absolutely continuous periodic functions on the interval [0, 27]. The skew-adjoint
ghost number operator is

n 1 d ad
G tel 24 52
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(we are not free to add a constant to Ngh without destroying its skew-adjointness *)
and the BRST charge is

. a
= —ic—, 53
pys (5.3)
which is self-adjoint on the above-mentioned domain, tensored with functions of c.
We may expand any function lI’(c_], 8, c) as

¥(q, 0, c)=d(q, 0) +cyi(q, 0) (54)

with
Npto = — 30, Ngh(cwl) = 3(cty). (5.5)

Thus we note that the eigenvalues of N,, are + 1 and there are no states of ghost
number zero.

We now analyse the cohomology of the BRST operator 0: at ghost number
— 3 Oy =0=(3h,/38)q, 6) =0, and the fact that there are no states at ghost
number — 2 (so that no state of ghost number — 3 may be written as () means
that the cohomology classes at ghost number —% are in one-to-one Correspon-
dence with functions on R”. One might therefore be tempted to interpret these
cohomology classes as the physical states. However, in order for this identification
to be correct, the inner product on the space of such states should be the
“physical” inner product — at the very least we require that the inner product is
positive definite. However it may easily be seen that the norm of the cohomology
classes at ghost number — 3 with respect to the inner product {,) is zero.

A resolution of this d1ff1culty, suggested in refs. [14-16), may be found by
consideration of the cohomology classes at ghost number + 3: clearly all states of
ghost number + % are BRST closed and (by use of Fourier series, for example) it
may be seen that the only states which are not of the form (2 x for some y are

=cy(q, 0) where (3, /36)(q, 6) = 0 (for the required x would be x = 8y, but
thlS is not in the domain of self-adjomtness of ) **). We thus see that the space of
cohomology classes at ghost number + 5 are the same and may both be identified
with functions on R”.

As at ghost number — %, it may easily be checked that the norm (with respect to
{,») of any state in a BRST cohomology classes at ghost number + 3 is zero. Thus
one cannot take the physical states to be eigenstates of ghost number.

* In refs. [12,23], I\}Sh is indeed modified by subtracting its smallest eigenvalue (-3 in this example)
from it, so that zero is now in its spectrum, at the expense of destroying its skew-adjointness, but
without resolving any of the issues raised here.

** That this reasoning is correct may be seen by taking the inner product with a BRST closed function:
if ‘I’(q, 8, c)=olg) (ie. 0O = 0) then (P, ¥)=[dgq ¥¢ (g)y(q, 8) which is non-zero in general.
However if one could write ¥ = ‘IfX for some y then W, ¥y =, .(lx) (.QlI’ x>=0.
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We are thus left with the question of just how one should identify physical
states. As far as the present authors are aware, there is no completely satisfactory
way of doing this, with various possibilities being ad hoc in different ways (cf. ref.
[26] for a discussion of the corresponding situation in string theory). We therefore
take a pragmatic view and adopt a procedure which (as we shall show) leads to the
correct identification of the true physical states.

Following refs. [14-16] we note that one can identify a positive norm subspace
in the BRST cohomology in such a way that the inner product of two states in the
subspace is the “physical” inner product. This subspace does not have definite
ghost number. The idea is that given a state ¥ = (¢, 6) in the BRST cohomology
at ghost number — 1 one associates to it the state

Yoy = Yo t+ e, (5.6)

Thus if we take as the representative of a given cohomology class that function
which is independent of 6 (of course the inner product will be independent of
which representative of the cohomology class we choose), we find that

(Y 12 )=fﬁd dc(gb*+lc¢/1*)(z/7 +1c¢ﬁ)
phys> £ phys o q 0 T 2CY 0T 2CYy

=[ dg ll’(;k(&m (5.7)

and hence that this subspace may be isometrically identified with the physical state
space.

This simple example has shown that one cannot choose the quantum states to
be the cohomology classes of ghost number zero or even to be eigenstates of the
“renormalised” (by one half) ghost number operator. A resolution of the difficulty
was to choose a linear subspace of the cohomology spaces at ghost number + %
and — ;. This subspace could be identified with the physical states with their
correct positive definite inner product.

Before we discuss the physical observables it is useful to examine the remaining
BRST cohomology classes. We may take states of the form

V_=g— 3¢ (5-8)

where dy,/90 = 0 as representatives of these classes. These states have negative
norm and are orthogonal to the physical state space as defined above. Thus we see
that the space of BRST chomology classes breaks up into two orthogonal sub-
spaces, one, V., of positive definite inner product, and one, V_, of negative
definite inner product. (Clearly any state ¥ =, + ¢/, may be written as a linear
combination of states in V, and V_.)
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In order that we may truly identify V , as the physical states we must check that
the “physical observables” are represented on them. This is the case since the
fundamental operators £ and p= —i(d/dx) clearly commute with the BRST
charge and furthermore they do not mix positive and negative norm subspaces, for
it ¥, €V, and ¥_eV_, then

hys

(Wss RT_) =(Wy . p¥_) =0 (5.9)

hys

It should be noted that £ and p which are “physical” operators in a heuristic
sense commute with 2 and have ghost number zero. This once again emphasises
the mis-match between physical states and physical observables in quantum BRST:
physical operators are of ghost number zero, but physical states are not eigenstates
of ghost number.

5.2. THE GENERAL CASE

The features observed in the simple example occur generally in the class of
coset spaces addressed in this paper. This allows us to show how the physical states
of such models may be identified within the space of states of the BRST system.
As explained below, the physical states are represented by cohomology classes of
the BRST operator, but in order to get the correct inner product, one cannot take
the states at ghost number zero in general, but may take a lincar subspace of
cohomology classes at lowest and highest ghost number. The formalism we employ
shows that the non-trivially induced representations occur naturally, and arise as a
consequence of a choice of representation of the constraint algebra.

What we require, then, is a quantisation of the BRST-extended system, includ-
ing ghosts, in which the BRST charge is self-adjoint, the ghost number operator is
skew-adjoint and which allows us to then identify the physical states. Thus for the
general case of motion on G/H (G unimodular and H compact), we introduce
dim H ghosts, ¢/, and their conjugate momenta b,. As in the subsect. 5.1, the
quantisation of the classical BRST charge, 2 will be denoted .(), so that the
classical BRST charge

2 =c'p,— 3C fc'c’b, (5.10)
(where p; are the classical constraints as in sect. 2) is quantised by
0 =¢&xm(p) - 3C,fe¢b,, (5.11)

where this operator is represented on the space % =X ® A(}) (*.# is defined
in sect. 3), i.e. functions of the form

dim H
XW(x,c)= L X, (x)chc.. . ¢, (5.12)
r=0
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where each function *y; ,(x) is in LG, #,) (ie. the Hilbert space *#
associated to the quantlsatlon induced by the reprcsentatlon x of H = H). b; is
represented by b, =d/dc’.

The (indefinite) inner product is

(W, )= [ deVdeV™! L de(F, ¥),, (5.13)

where (¥, EI’) is the (posmve definite) inner product on X%,

It may be checked that 22=0 and that 0 is essentially self-adjoint on the
domain of functions of the form (5.12) such that the *¢; , are in a common
domain of essential self-adjointness of the constraints m( p,) The closure of £
thus defines the self-adjoint BRST operator. The ghost number operator is
represented by

N (5.14)

II
o
/—\

h.w‘ >
!

S
i3

e’

and is skew-adjoint.

In sect. 2 it was remarked that the classical BRST observable cohomology is
related to the Lie algebra cohomology of § with values in C*(I,). The presenta-
tion above shows that quantum BRST state cohomology is also related to the Lie
algebra cohomology of b, as is well known [24,27,28]. Specifically, the BRST state
cohomology is isomorphic to the Lie algebra cohomology of § with values in the
representation space of the constraints: the operators Xw(p,) are defined on a
dense domain in *# = L*(G, %X), and the representation is given in eq. (3.6) by

(Fm ()Y )(y) = (mo(T) + 7 (T) )is(¥), (5.15)

ie. this representation is the tensor product of w on L¥G) with 7, on Z,.
Although the representative mg(h) of the group element 4 € H is defined on the
whole of L%(G), the representative of a Lie algebra element is unbounded and
naturally defined on C3(G) € L%(G) (CZ denotes C” functions of compact support
- a common domain of essential self-adjointness for the mx(7)). Hence the
quantum BRST state cohomology is (cf. eq. (4.5))

XHgRST quantum state = H*(b: C?(G, %{)) (5.16)
In order to identify convenient representatives of the cohomology classes of .(},

we use the fact that there is a Hodge theorem for the quantum BRST complex
[24]: one defines the operators

O* =b'xm(p;) — £C,fbbIe,, (5.17)
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and the “BRST laplacian”
A =00%+ 6*0. (5.18)

It is found that any BRST cohomology class may be represented by a unique
“harmonic form” - i.e. a state satisfying

A¥ or, equivalently Q¥ = Q*¥ =0, (5.19)

The latter two conditions mean [24] that any cohomology class may be represented
by a state satisfying

Xm(p)¥ =0, c'Clb¥=0. (5.20)

Notice that the Hodge theorem in [24], which was derived for a finite-dimensional
representation of the constraints, may be extended to the infinite-dimensional case
— one merely required that 0 be self-adjoint on a dense domain, which we have
arranged to be the case. The fact that the representation of the constraints is not
specified means that the theorem applies both to the trivally and non-trivially
induced case.

We may now see that the cohomology classes at ghost number N, = — 1dy (e
with no powers of ¢ in their expansion) may be (non-isometrically) identified with
those states in LG, #,) satisfying

X (p)¥X =0, (5.21)

as may the states at ghost number N, = + idy.

As in the example discussed in subsect. 5.1, one cannot take a physical state to
be an eigenstate of ghost number in general, but we may take the physical state to
be

‘P+=1I’phys=¢0+%c1...cN Yo, (5.22)
where
xm( p) iy = 0. (5.23)

As in the earlier example of R” X S!, we see that the space V of BRST cohomology
classes at ghost numbers N, = + 3d;; breaks up into orthogonal positive and
negative norm subspaces V=V _ @& V_ where

V_=yy—3c'...cN ¥, eV_. (5.24)

We also see that the quantisation of the “physical” observables, G X C*(G /H), do
not mix V, and V_ since, as we showed in sect. 3, the physical observables
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commute with the constraints and hence with () and for such an observable, 0,
(Whysr O¥_) =0.

hys

6. Conclusion

In sect. 3 we showed that the requirement that the constraints p; be unambigu-
ously quantised observables in the Dirac approach to quantum theory necessitates
the treatment of the unconstrained configuration space G as G X H/H This, in
turn, leads to the appearance of inequivalent quantisations when treating motion
on G/H as a (first-class) constrained system.

The BRST treatment of this model was not so straightforward as a result of the
unsatisfactory nature of the definition of physical states. A potential source of the
difficulties lies in the fact that (following the proposal in ref. [12]) we have
quantised the functions on phase space C*(T *G) on a conventional, positive inner
product Hilbert space, *.#, and subsequently quantised the BRST-extended phase
space & grer (cf. sect. 4) by simply taking the tensor product of ¥ with A(), the
representation space of the ghost algebra A(H ® §*), which has an indefinite inner
product. That this strategy is problematic was pointed out in ref. [23], and a
solution was suggested in refs. [14,29]: the “matter observables” (i.e. the classical
extended phase space) ought to be quantised on an indefinite-metric space, in
which case examples suggest that the BRST cohomology works out satisfactorily.
Indeed the success of the BRST method in gauge field theories is based on the fact
that the gauge field is covariantly quantised on an indefinite-metric space. It would
be very interesting to develop this idea in the case at hand, i.e. to study indefinite-
metric representations of generic crossed product C*-algebras G X C(G /H)
(where in our case G =G X H and H = H) (cf. ref. [30] for the indefinite-metric
representations of the canonical commutation relations).

Alternatively one may enlarge the BRST phase space by adding a Lagrange
multiplier plus its conjugate momentum as well as a new ghost—antighost pair for
each constraint. This is the idea of the so-called Batalin—Fradkin—Vilkovisky
(BFV) formalism (see e.g. refs. [31-33]): the algebra &gger is to be replaced by
Fgpy = CAT*G) @ A(h @ h* @ h & h*) (cf. the text below eq. (4.1)). Note that the
range of the Lagrange multipliers has been taken to be compact if H is.

One of the virtues of doubling the number of ghosts is that the quantum ghost
number operator now has integral spectrum, leaving some hope that one may
retrieve the physical state space of the constrained system as the space of
cohomology classes of the BFV-extended BRST operator at ghost number zero (it
may be that one has to both double the number of ghosts and quantise the
“matter” in an indefinite metric space, cf. ref. [14]).

Leaving this for the future, we would instead like to upgrade the quantum
BRST formalism, while retaining positive definite metric quantisations of the
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matter observables, by putting forward a tentative suggestion for a reformulation
of the physicality conditions which has the merit of emphasising the duality
between physical states and operators in the quantum theory.

A form of duality has been discussed by Hennecaux [14] who showed that, at
least for finite-dimensional representation spaces, the set of physical operators
(irrespective of ghost numbers) is isomorphic to the set of operators on physical
states (of all ghost numbers). However, as we have already discussed, as soon as
one tries to cut down the physical states by some restriction on the ghost number,
this duality disappears as physical operators are naturally of ghost number zero
whereas positive norm physical states are not eigenstates of ghost number, in
general.

Inspired by the algebraic approach to quantum theory, we suggest an alternative
way of defining physical states which uses the fact that any state |¢) in an
(indefinite) Hilbert space carrying a representation of the BRST and ghost
operators defines a linear functional w,, on the space, 7, of bounded operators on
X7 @ A(B):

w0, = Wl AlW), Acw. (6.1)

Such functionals generate a certain vector space &', which is a subspace of the
algebraic dual of .
As is well known, & is graded by the ghost number, i.e.

o= @O A", (6.2)

with A e ™ if [Ngh, A] =nA. The restricted dual &' inherits this grading, with
w €5, if w vanishes on all of & for m # n. Equivalently,

0 €y @ o[ Ny, 4] —na)=0Vd ey (6.3)
We propose using the usual derivation 8 on the space of operators:
8A=bpprA=1i[A4, 0], (6.4)

and defining the usual operator cohomology with respect to 8, with a physical
operator being a cohomology class of ghost number zero, i.e.

[N 4] =0. (6.5)

The alteration we suggest is to define the BRST state homology by defining an
operator d on the space of linear functionals via

dw(A)=w(5A). (6.6)

Clearly 9% = 0 since 62=0. As & maps & into &Y, 9 maps Ay Into A,y
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Thus we can define the state homology classes, HERST at ghost number n, as
those w €./, satisfying
dw =0 (6.7)
with
W, =0, 0w, —w,=dw; for some w;. (6.8)

An element of HBRST s called pure if it can be represented in the form (6.1) for
some | > . Physical states are then defined as the pure elements of HERST,

This definition is motivated by the way states are defined in C*-algebra theory
and has the advantage that the state and operator cohomology are automatically
dual. Our hope is that the physical states, thus defined, are positive and corre-
spond to the pure states on the constrained algebra G X C*(G/H) in the superse-
lection sector y, and that, by varying y in the above construction, one gets all pure
states. This conjecture is under investigation.
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